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ABSTRACT

This dissertation investigates the plane elasticity problem

of a finite, rigid rectangular block partially embedded in , and

perfectly bonded to an elastic half space. The bond thickness is

assumed to be sufficiently thin, so that there is no discontinuity

in the displacements of the bonded surfaces.

The problem is formulated by superposition of the solutions

to the problems of horizontal and vertical line inclusions beneath

an elastic half space, which are derived from integral transform

techniques. Substitution of these results into the boundary condi-

tions appropriate for the embedded block problem leads to a system

of six coupled singular integral equations, whose unknowns are the

normal and shear stress discontinuities between the bonded surfaces.

Three distinct sets of loads are applied to the embedded

block , so that it either translates without rotation in the x— or

y- direction, or rotates about an axis in the z-direction . In all

three cases, by taking advantage of the symmetric nature of the

problems, the number of the governing singular integral equations

is reduced from six to four. These equations may be solved numeri-

cally by employinj the collocation scheme introduced by Erdogan,

Gupta, and Cook, provided that they be supplemented with four sub-

sidiary conditions. The requirement for additional conditions is

dictated by the order of the singularities at the corners of the

block, established through an asymptotic expansion of the singular

integral equations in the vicinity of these corners.
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The problem of two vertical inclusions perpendicular to the

free surface of the half space, and loaded in a manner analogous

to the embedded block problem, is also formulated for each case.

These problems, besides their also being of interest, provide a fur-

ther estimate of the accuracy of the numerical results.

The numerical analysis was carried out for various geometries

for the case of plane strain. Several important physical quantities

are computed, such as the diffusion of the load from the block into

the elastic half space, and the local stress distribution around

the block, excluding the singular points.
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CHAPTER I

INTRODUCTION

This dissertation is concerned with the stress analysis of an

elastic half space, in which a perfectly bonded, rigid rectangular

block Ls partially embedded. The bond thickness is assumed to be

sufficiently thin so that the displacements of the bonded surfaces

are continuous. Within this context the problem is one of plane

strain and can be considered appropriate to calculations that involve

the stress distributions aroun d foundations where the out-of—plane

dimensions are very large when compared with the length or width of

the rectangle. Alternatively, the problem can be viewed as one of

generalized plane stress analyzing the load diffusion from a finite,

rigid rectangular insert, partially embedded within a semi—infinite

sheet, where the axis of the insert is perpendicular to the edge of

the sheet. The geometry and coordinate system for such a block is

shown in Fig. 1, where ~i is the shear modulus and K is related to

Poisson ’s ratio by K — 3 - 4v (plane strain) or K — (3-v)/ ( l+v) (plane

stress), and v is Poisson’s ratio.

Problems such as the one considered here have had a long

history, which is best summarized in a paper by Muki and Sternberg

(1], who consider the diffusion of load from a transverse tension bar

into a semi—infinite elastic sheet. They reconsider the problem

initially posed by Reissner [2J, who considered the load transfer

from a transverse stringer, a finite segment of which overlaps with ,

1
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2

and is continuously bonded to , a semi-infinite elastic sheet. Theirs

is essentially a contact problem in which the finite stringer is at-

tached to the semi-infinite sheet and their objective is to obtain a

systematic reduction of the problem to a Fredhoim integral equation

via two contact models: i.e. line—contact or area—contact.

The present analysis differs fro” $-~ oIr~ ~n -K~tf~ ~he sheet is

assumed to be cut so that it has a finite rectangular notch at its sur-

face. A perfectly matching rigid , rectangular insert is then bonded

within this notch.

Loading is applied to this embedded insert so that it either

translates without rotation in the vertical or horizontal direction ,

or rotates due to an applied moment. The plane strain case corres-

ponds to an infinite, rectangular block embedded within an elastic

half space undergoing vertical or horizontal translation, or rotation.

It should be noted that Muki and Sternberg have also dealt with

the three—dimensional problem of load diffusion from an axially

loaded rod to a half space [3,4]. In (31 the problem of the axial

force decay in an infinite cylindrical elastic bar bonded to an infinite

medium is dealt with. An approximate solution scheme for cross-

sections of arbitrary shape is developed and compared to the exact

one for the case of a circular bar. This scheme is then used in [4]

to solve the problem of load diffusion from a bar of arbitrary uni-

form cross-section partially embedded in, and bonded to a semi-

infinite solid.

The solution of the considered problem is developed in succes-

sive stages. In Chapter II Green ’s functions are established for a

horizontal and vertical line load beneath an elastic half space.

— V V - —
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This formulation al~ ows the boundary value problem to be written as

having boundary conditions only on the surface of the notch. The

results are derived using integral transf rm techniques , but they can

also be derived by other methods. The primary references used for

these derivations were the book by Sneddon (5], and the tables edited

by Erd~lyi [6].

Chapter III deals with the vertical translation of the finite

rigid rectangular block partially embedded in, and perfectly bonded

to an elastic half space, under an applied load 2P acting in the

negative y-direction. The appropriate boundary conditions are written

by superposing the horizontal and vertical inclusion results. The

boundary conditions become the data for a system of singular integral

equations, which can be solved numerically. It is noted that there

are four points on the block that are singular: the intersection of

the block with the free surface, (±c,O), and the lower corners of the

block, (±c,h). These singularities can be accounted for in the ana-

lysis by the establishment of appropriate corner conditions through

an asymptotic expansion of the governing singular integral equations

in the vicinity of these singularities. It should be noted here

that the solution of the transcedenta]. equation derived for the corners

(±c,h) leads to two negative roots. Therefore, they both lead to

singular contributions. The singular stress field ii dominated by the

largest singularity, and this is the one used in the present analysis .

To the author ’s knowledge, the only work that considers both negative

roots at a corner such as the one encountered here, is a paper by

Westmann, (7 ], which deals with a wedge bonded to a half plane along 

— ~~~~~ - V - - V  •V •~



4

a finite length. The solution for that problem was developed using

Mellin transforms, and numerical results were obtained by use of a

modified finite difference method. However, accounting for both nega-

tive roots is beyond the scope of this dissertation. Finally, in

order to obtain a further estimate of the accuracy of the numerical

results, an analogous problem is formulated. This is the problem of

two rigid vertical inclusions of length equal to the sides of the

rigid block, and separated by a distance equal to the base of the

block, partially embedded in and bonded to an elastic half space,

each loaded by P in the negative y-direction.

The case of horizontal displacement of the rigid block loaded

by 2Q, acting in the negative x-direction, and a moment M is con-

sidered in Chapter IV. The analogous case for the two inclusion prob-

lem is also examined in the same chapter.

Chapter V investigates the rotation of the rigid block under the

action of a moment M. The two inclusion problem subjected to analogous

loading J.s also formulated irs that chapter.

In Chapter VI the method for obtaining numerical results is

discussed. The collocation scheme introduced by Erdogan, Gupta, and

Cook (8] is used to solve the system of singular integral equations

governing each of the problems formulated in Chapters Ill-V. The

method of solution allows the calculation of certain important physi-

cal quantities such as the diffusion of load from the block into the

elastic half space, and also the local stress distribution around the

block , excluding the singular points.

V - - V V - V-- ~~~~~~~~ —-V ~~~~~~~ ~~~~ VV - -
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CHAPTER II

FORMULATION AND BASIC EQUATIONS

HORIZONTAL INCLUSION_IN A HALF SPACE

The equations to be obtained here are for a bonded, rigid inclu-

sion of length 2c located at a depth h beneath the free surface , y 0 ,

of an elastic half space. The inclusion is assumed to have zero thick-

ness and its geometry and coordinate system are shown in Fig. 2. If

the discontinuities in the normal and shear stresses are designated by

A(x) and 5(x), respectively , then the following conditions must be

satisfied:

— — A(x)
yy yy

y — h , -c < x < c. (2.1)
(2) (1)

t - t  — B(x)xy xy

In addition to the above equations, the following continuity

and boundary conditions must be satisfied:

(2) (1)
U — u  — 0x x

y — h , — c < x < c (2 .2 )
- — oy y

Tyy (X~O) 
a t,~,(x O) — 0 , 0 x~ 

< (2.3)

where the superscripts (1) , (2 )  define the regions above and below the

inclusion.

In terms of the stress discortinuities, A(x) and 8(x) defined

above, the displacement derivatives and stresses throughout the half

space are given as

5
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c cx 1
~~~~~

— (x ,y) — 4r( +1) { 5 A(s)I(.~1 (x ,y;s)ds + f B(s)K
s1

(x ,y;s)ds}
—c (2.4 )

Iau C C

~~~~~~~~ (x ,y) — 
4 r (K+ 1 )~~ 

{ f A(s) KN2 (x ,y;s)d s + f B(s)X~~ (x ,y;s)ds}
—c —c (2.5)

Iau c cx 1(x y) — 
4t(K+1)~ 

{ f A(s) K !~3 (x ,y;s)ds + f B(s)K~3
(x~y;s)ds}

—c (2.6)
I c c

(x ,y) — 
~~~(K

1
+1)~ 

{ f A(s)K~~ (x ,y;s)ds + 5 B(s)K~~ (x,y;s)ds}
(2.7)

C C
— 

2r (K +1) {f  A(s)K~5
(x,y;s)ds + 5 B(s)K~5(x~y;s)ds}

— c (2 .8 )

C C
t~~ (x ,y) 1

2~~(K+1) 
{ f A(s)K~6(x~y;s)ds + 5 B(s)K

56
(x y;s)ds}

—c —c (2 .9 )

C C1.
— 
2r(K +1) { f A(s)K~7

(x~y;s)ds + 5 B(s)K s7 (x ,y; s) ds}
(2.10)

The functions KNi and 
~~~~~~~~~ 

i = 1,2 ,... ,7 , are given in Appendix A and

they are rational functions of x and y with both numerators and denomina-

tors being polynomials in x and y.

Equations (2.4) — (2.10) were derived using integral transform

techniques [5,6], but they can also be derived by other methods.

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - V  - - — — ~~~~~~~ a-~-~~



VERTICAL INCLUSION IN A HALF SPACE

Here, the case of a vertical inclusion of length (b - a) perpen-

dicular to the free surface of an elastic half space, y 0, is solved

(Fig. 2). Let the jumps in the normal and shear stresses across the

inclusion be C(y) and D(y), respectively ; then, the following relation-

ships must hold :

~
(2) 

— — C(y) ~XX

~
(2) 

— ~
(1) 

— D(y) 
f 

x c, a < y < b ; (2.11)

Xy xy

(2) (1)
U — U  —x x
(2) (1) 

— ~ 

x * C, a < y < b ; (2.12)

U — uy y

r~~ (x,O) — t (x,O) — 0, y — 0, 0 < x l  < 
~~~
. (2.13)xy

For this case the superscripts ( 1) ,  (2 )  refer to the regions to the

left and right of the inclusion, respectively.

In terms of the stress jumps, C(y) and D(y), defined by Eqs.

(2.11), the displacement derivatives and stresses within the half

space are given as

b~
~~~~~~

— (x ,y) — 
411(K +1)3A 

C( t )L
N1

(x,y;t)d t + 5 D( t)L
si

(x,y;t)dt}
a (2.14)

II b b

~ 
(x ,y) — 

4~~(K~~ l)U {J C(t)LN2 (x ,y;t)dt + I D( t )L sa (x,y;t)dt}
a (2.15)

II b b
(z,y) — 4w (K~41)1~ 

(I C(t)L~~ (z .y;t)dt + 5 D ( t) L~3 (x~~;t)dt}a (2.J.L)

7
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8

II b
~~ (x ,y) — C( t)L.~~(x,y;t)dt + I D(t)L (x,Y;t)dt}

t~~~(x ,y) — — 2iI (K +1) 
C( t)L

N$
(x,y;t)dt + 5

t~~ (x ,y) — 
2~ (~~+1) {~ C ( t)LNG (x,y;t)dt + 5 D(t)L56(x ,y;t)dt}

r~~ (z ,y) — 
2ff(~~+1) ~f C ( t)L~7(x ,y;t)dt + f D(t )Ls7 (x ,y; t)dt }

where the functions I,.~ and L5i~ 
i 1,2,... ,7, are given in Appendix A.

It is noted that the superscript II is used to identify displacement

derivatives and stresses associated with the vertical inclusion at x — c ,

while I was used in connection with the horizontal inclusion located

at y = h. To obtain the equations associated with a vertical inclusion

of length (b - a), located at x — -c, one replaces c by -c in Eqs.

(A.15)— (A.28), C(t) by E(t), and D(t) by F(t) in Eqs. (2.l4)—(2.20).

For this case the superscript III will be used. These equations will

V not be listed here but will be incorporated in the following chapters.

______ -V — - ••_ V _
~~V V V V _ V  - _ V V~



CHAPTER III

STRESS ANALYSIS OF EMBEDDED BLOCK: VERTICAL DISPLACEMENT

VERTICAL TRANSLATION OF RIGID BLOCK

The results of the preceding chapter are now superposed to formu-

late the problem of a rigid block perfectly bonded to an elastic half

space and loaded as shown in Fig. 1. The limits of integration for the

vertical inclusions (solutions II and III) are taken as a 0 and

b = h (Fig. 2 ) .  The boundary conditions for this problem are given

next:

I II IIIau au au
- ~~~~~~~~ (x,h) + ‘~~ (x h) + ~~ (x ,h) — 0

au au’ au 11 au1
~~ 

, —
~~ < X < C , )

~ 
— Ii ;

.
~~~~~~~ 

(x,h) + ~~~

‘ (x,b) + (x,h) 0 (3.1)

I II II Iau au au au
— 

~
i (-c y) + a (—c ,y) + ~~ (—C ,y) — 0

au au 1 auU au
111 , 0 c y < h , x —

I — ~~~ (—c,y) + ~~~ (—c y) + ~~ (—c y) — 0 (3.2)

I II iii:
au au au au

— (c ,y) i- ~~
‘ (c ,y) + (c y) • 0

I II III , 0 < y < h , 1 C .
au au au

— .1 (c ,y) + a~ 
(c ,y) + (c y) * 0 (3.3)

Equations (3.l)-(3.3) represent a system of six singular integral

equations , which are given next:

9
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10

YA(e)x~1 (x,h;e)da + I B(s)K
~1

(x,h;s)ds + I C ( t) L N1(x ,h;t)dt

+ f D(t)L
s1

(x,h;t)dt + f E(t)L .~1(x ,h;t)dt + f F(t)L
~1

(x ,h;t)dt — 0, V
0 0 0

V — c < x < c , (3.4)

c c Iif A( s)K N2 (x ,h; s)d s + f 3(s)Ks2 (x,h ;s)de + f c ( t) L N (x ,h;t )dt

h h h
+ I D(t)L s2 (x ,h; t)dt  + 5 E(t )L~2 (x ,h ;t) + 5 F(t)t~2(x,h;t)dt — 0,

o 0 0
—c < x < c ;  (3 . 5 )

c c h
f A(s)K~3

(_c y;a)ds + f B(s)K
s3

(_C ,y;s)ds + .1’ c(t )LN3
(_c ,y;t)dt

h h
+ 5 D(t)L~ (—c,y;t)dt + 5 E(t)i~~3(—c ,y;t)dt — 0 , 0 < y < Ii; (3.6)

o 0 V

c c h
5 A(s)K

Nk
(_c ,y;a)ds + f B(s)K

~~
(_c ,y;s)ds + 5 c(t)LNI+ (_c ,y;t)dt

—c —C 0
h Ii

+ 5 D(t)L s (—c ,y;t )dt + 5 P(t)L
~~

(_c ,y;t)dt — 0, 0 < y < hs (3. 7) V

o o
C C h
f A(s)K.~3 (c y;e)de + f B(s)K

~3
(c,y;e) ds + f C(t)L~ 3(c ,y;t)dt

h ii
+ 5 E(t)L.~ (c ,y;t)dt + 5 F(t)~~~ (c ,y; t)dt — 0 , 0 < y < h, (3.8)

o 0

c c h
f k(s)K~~(c ,y;s)ds + I B(s)K

~4
(c ,y;s)ds + f D(t)L511

(c ,y;t)dt

+ 5 E(t)L~~(c,y;t)dt + 5 F(t)fSk(c ,y;t)dt — 0, 9 < y < h. (3.9)
0 0

The barred kernels L
~j 

and L~~, i — l,2,...,4, are readily obtained

from the corresponding unbarred kernels given in Appendix A by replacing

c by -c. It is also noted that the boundary conditions for the integral

_ _ _ _  _ _ _  - - -  ,
~
— V
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equations are homogeneous. However, the input data will be given in

the form of subsidiary conditions that involve the load 2P applied to

the block and the constraints, when the symmetry appropriate to the con-

sidered problem is used.

Since Eqs. (3.4)-(3.9) deal with the geometry of corners, their

limit near the corners must produce relationships which hold true in

the neighborhood of such corners. These relationships may be directly

obtained from the governing singular integral equations, after the

contributing parts are isolated from the entire equations. First, the

order of the singularity at the intersection of the free surface with a

vertical inclusion will be established by considering the appropriate

V contributory terms, Adjusting the coordinate system to account for the

right-hand inclusion, the terms leading to the determination of the

singularity at the free surface are given as

f C(t )  (-
~~~~~ 

+ + ]dt — 0, (3.10)

where y is approaching zero. A second equation, identical to (3.10), is

obtained for D(t). Assuming solutions of the form,

C(t) — C(t)th ]
, D(t) • D (t ) t T1 l 

, (3.11), (3.12)

where 0 < r < 1, the following eigenvalue equation is deduced for the

determination of fl:

sin 2 (~~~) — 
(ic+1)2 

— 
1~ 2 (3.13)

Except for a minor change in notation, Eq. (3.13) is identical to that

determined by Williams (9] for a right—angle corner of an elastic plate

in extension with fixed-free boundary conditions. When Eq. (3.13) is

- -—-- - a-~~V V V ~~~~~
V
~~~~~~~
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solved for V — 0.3 (plane strain), the result is

Ti — 0.71117. (3.14)

Conditions at the corners (c,h) and (-c ,h) can be established

in a similar manner through the use of Eqs. (3.4)-(3.9), where the

following asymptotic forms are assumed for the sought functions:

A(s) — A (s)(c2 ~~~~~~ I~(s) —

C( t) — E(t)t ’’ (h—t)~~’,...,F(t) — ~ (t )t ~~
1(h — t ) ~~~’ (3.15)

where 0 < < 1. The corner conditions for (c ,h) are found to be

K cos(n~ )B0 + (K— ~~)cos (1~-)C0 + ~ sin(~~-)D~ — 0 (3.l6a)

K cOs(ir~ )A0 + C Sin(j~)C
0 + (K+C)COS(j~)D 0 

— 0 (3.16b)

~ sin(~j)A0 + (K+C)cos (
2
~~)B0 + K cos(irC)C0 — 0 (3.16c)

(K — C)cos(j~)A0 + C 8in(—~ )B0 + K cos(,C)D0 — 0, (3.l6d)

and for (—c,h)

ic cos(iir)B~ + (K—C )cos(
1
~~)E0 

— ç sin(2~~)F0 — 0 (3.lla)

K cos(,rC)A~ — 
~ sin(~~-)E0 + (K+c)cos(~j)F0 — 0 (3.l7b)

( K — C ) c o 8 (irC)A~ — 
~ sin(~~)B~ + K cos(7IC)F0 — 0 (3.l7c)

—
~~~ sin(~~)A~ + (K + C)cos(1~ -)B , + i~ cos(irC)E~ 

— 0. (3.17d)

In Eqs. (3.16) and (3.17) the following notation is used :

A0 A (C)(2C)~~
h /h~~1 , 

~~ 
—

A~ • ~(—c)(2c)~~
1/h~~

1
, 3~ —

(3.18)

C0, D0, E0, P0 — E(h) , 5(h) , i(h) , F(h) .

— V ~~~~~~~~~~~~~ 
_ _ _  — ~~~~~ - - - —

V V • V



13

Equations (3.16) and (3.17) lead to the same eigenvalue equation,

namely

[K2sin2(~~~.) — C2] [K2gjfl2(i~c~ — C2] — 0, 
(3.19)

where C is determined from

sin(~~~) — ± 
~~

- C, (3.20)

which is in agreement with Williams’ result for a fixed-fixed 3iT/2 -

corner of an elastic plate in extension (9]. If the positive sign

in Eq. (3.20) is chosen and v = 0.3 (plane strain), the result is

= 0.59516 . (3.21)

It should be noted that Eq. (3.20) with the negative sign also yields

~ root in the interval of interest , C = 0.75904; however , since the

numerical scheme used to obtain numerical results [8] can only accom-

modate one of these roots, the gravest one, given by Eq. (3.21) will

be used.

Equations (3.4)—(3.9) represent a system of six singular integral

equations, which along with appropriate subsidiary conditions can be

solved for the six unknown stress discontinuities A(s), B(s), ..., F(t).
However, by taking advantage of the synimetric nature of the problem,

the number of unknowns can be reduced to four, since the following

relationships must hold:

E(y) = —C (y), F(y) D(y). (3.22)

Thus, the subsidiary conditions associated with equations (3.4)-(3.9)

are not needed, and will not be listed here. Equation (3.22) is in-

corporated to write Eqs . (3.4)-(3.5), and (3.8)-(3.9) in the following

form:

_ _  - ~~~~~~~~~ V V

V -
~~~
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L A ( 5
~~Nl 

,h;5)ds + f BJs)K51
(X,h;5)ds

+ f C(t)(L
N1
(x ,h;t) — LN1 (X,h;t) ] dt

h
+ f D(t) EL (x,h;t) + L (x ,h ;t ) ] d t = 0 , -c < x < c ; (3 .23 )

0 
SI Sl

~~~~~~~~~~~~~~~~~~ 
+

+ f C(t)[L
N2
(x ,h;t) - (x,h;t)Jdt

h
+ f D(t) EL (x,h ;t )  + L52(x,h;t)]dt = 0, —c < x < c ; (3 .24 )

0 S2

+ I B(s)i’~53 (c ,y ;s)ds

h
+ 5 C(t) LLN3 (c~y;t) 

— L
N3

(c ,y ; t) ] dt
0

h
+ 5 D (t ) L  3

(c ,y; t)dt 0 , 0 ( y < h ; (3.25)
0

+ f B(s)K54(c
,y;s)dS

h
+ 5 C(t)E-L 4(c,y;t)JdtN

_ _ _ _  _ _ _ _ _ _ _ _ _ _  - ..V~~~-V V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --

_ _ _  
-V



15

+ f D(t) 1L54 (c ,y;t) + L
~4

(c
~
y;t)]dt = 0 0 < y < h. (3.26)

Note that Eqs. (3.6)-(3.7) are eliminated as unnecessary. It is also

clear that A (x) must be symmetric and B(x) antisynunetric in the range

-c < x < c. The~;e properties will be incorporated in the numerical

analysis.

Since the unknown stress discontinuities, A(s), B(s), C(t), and

D (t ) , have integrable singularities at the end points, in addition to

Eqs. (3.23)—(3.26), they must also satisfy the following subsidiary

conditions [8]:

c h
I A(x)dx + 2 5 D(y)dy = 2EV 1 (3.27)
—c 0

C

I E—~i dx = 0 ; (3.28)
0 ax y—o

c au h 3u
5 (~~~~~ ) dx - 5 [——i] dy = 0 ; (3 .29 )
0 ax ~—o ~

5(0) = 0 . (3.30)

The choice of Eqs. (3.27)-(3.30) as the subsidiary conditions

appropriate for this problem warrants a brief discussion. It was

found that extreme care must be exercised in selecting the correct

combination of conditions from several available relationships which

could , conceivably , serve as subsidiary conditions. The task is to

prescribe conditions which supplement the boundary conditions in

describing the problem, without using redundant ones, and, of course,

without violating any of the elasticity rules that apply to mixed

_ _ _- - —V  ~~~~~~~

V V .  -~~ - -~~
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boundary value problems. Including redundant conditions has the same

effect as using the same equation twice (i.e. renders the matrix of

coefficients singular), while the subtle manner in which certain fac-

tors enter the problem creates the danger of violating fundamental

elasticity rules, such as overconstraining the problem by pr.~scrthing

tractions and displacements along the same direction.

The governing singular integral equations (Eqs. 3.23 - 3.26)

ensure that the base and the sides of the block do not rotate and do

not elongage (shrink). Equation (3.27) represents the global equili-

briuxn for the rigid block in the vertical direction. Equation (3.30)

is a statement requiring B(x) to be antisymmetric. This, along with

Eq. (3.22) which requires that E(y) = —C(y), satisfies the equation

of equilibrium in the horizontal direction. Equations (3.28) and

(3.29) impose kinematic restrictions on the problem. Equation (3.28)

fixes the sides of the block at x = + c , while Eq. (3.29 )  requires that

the base and the sides of the block do not move- relative to each other

in the vertical direction.

Equations (3.23)—(3.30) are therefore the relationships appro-

priate for the solution of the problem of a rigid block embedded in an

elastic half space and undergoing vertical displacement.

V ~ V_ - •~ V ~~_ -- ~~~~ ~~~ ~~~~~~~~~~~~~~~~~ V



THE TWO-INCLUSION PROBLEM: VERTICAL TRANSLATION

The integral equations associated with the vertical line inclu-

sions embedded in an elastic half space, which were derived in Chppter

II, are used in this section to formulate a problem which is analogous

to the rigid block one, although much simpler. This j.q the problem of

two inclusions of length h, parallel to each other, perpendicular to

the free surface of the elastic half space and located at x c and

x — —c , respectively. Furthermore, these two inclusions are thought

of as being rigidly connected to each other above the surface , so that

they cannot move relative to each other. A load P acting in the nega-

tive y-direction is applied to each of them, and they are to translate

vertically without rotation.

The boundary conditions appropriate for this problem are given

next:

II IIIau aux x x
= —

~~
--— ( c ,y)  + (c,y) — 0

II , 0 < y < h , x = C ;  (3.31)
au au au

= —
~~~~~

— (c ,y) + (c ,y) a 0

II III
au 3u aux x x

—
~~~~-- (—c,y) + ay (—c ,y) 0

II III , 0 < y < h , x — -c.

—~~~~ 
~~~~~~~~~ 

(—c,y) + (—c,y) 0 
(3.32)

Equations (3.31) — (3.32) represent a system of four singular

integral equations. However, the symmetry conditions given in Eq.

(3.22) also apply to the two-inclusion problem. Therefore, it is only

necessary to solve for two of the unknown stress discontinuities.

17
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Equation (3.22) and the results of Chapter II are incorporated to

write Eqs. (3.31) in the following form:

J C(t)[L~3
(c?y;t) - ~~3

(c,y;t)Jdt

+ J D(t) L
s3
(c,y;t)dt — 0 , 0 < y < h 7 (3.33)

C(t)(~~~4
(c~y;t)Jdt + I D(t)(L54 (c ,y ; t )  + L

54
(c , y ;t ) J d t  = 0,

O < y < h .  (3.34)

The kernels appearing in Eqs. (3.33)-(3.34) are as defined earlier.

Equations (3.33)-(3.34) may be solved for the unknown stress din-

continuities, C(t) and D(t), provided that the subsidiary conditions

listed next are satisfied:

I:
D (Y ) d Y  — P; (3.35)

C

dx 0. (3 . 3 6 )
~ 

3x ~—o

The physical significance of Eqs. (3.35)-(3.36) is clear. Equa-

tion (3.35) is the equation of equilibrium in the y-direction, while

Eq. (3.36) fixes the inclusions at x — +c. Note that the equation of

equilibrium in the ic—direction is also satisfied, since E(t) ~~C(t).

Concerning the order of the singu~~rtties at y — O ,h , it should be

noted here that while the one at the free surface, (+ c,O), remains

unchanged and is determined from Eq. (3.14), T~ 
a 0.71117, the singularity

at (+c,h) appropriate for the two-inclusion problem is square root.

_ _  - - - -  a-.-V~~~~~
V . .

~~~~~~
__-V_ -V_

~~
-V -
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CHAPTER IV

STRESS ANALYSIS OP EMBEDDED BLOCK, HORIZONTAL DISPLACEMENT

HORIZONTAL TRANSLATION OF RIGID BLOCK

The problem investigated in this section is that of a rigid

block partially embedded in an elastic half space and forced to trans-

late in the negative ic-direction without rotation, under the action of

a horizontal load 2Q, and a n~aent M, as shown in Fig. 3.

The boundary conditions appropriate for this problem are the

same as those given in Chapter III, Eqs. (3.l)—(3.3), for the vertical

translation of the rigid block problem, and they are repeated next:

au
—

~~~~~ 

= 0 , = 0; -c < x < c, y — h; (4.1)

= 0, —~~~~ = 0; 0 < y < h , x = ic. ( 4 . 2)

Equations (4.1) — (4.2) represent a system of six singular

integral equations in the unknown stress discontinuities A(s), B(s),

C(t), ..., F(t), which were defined in chapter II. The symmetry of

the problem requires that the following relationships hold:

E(y) = C(y), F(y) — —D (y); (4.3)

A(x) —A(—x), 5(x) — B (— x) . (4 .4)

Equation (4.3) reduces the number of unknowns from six to four,

thereby allowing the elimination of two of the governing singular

integral equations. Equation (4.4) will be incorporated in the

numerical analysis.
19
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Using Eq. (4.3) the four governing equations are now written

in the following form:

+ 1_
~
8 

51
,h;s)ds +

+ I C(t)[LN1(x,h;t) + L
N1

(x ,h;t)]dt +

+ J D(t) [L51(x,h;t) - L
51

(x ,h;t)]dt = 0 , -c < x < C; (4.5)

~1 
B(s)K52(x,h;s)ds +

h
+ 5 C(t )  (L N2 (x ,h ;t )  + L

N2(*,h;
t)Jdt +

0

+ f D (t )  [L
82

(x ,h ; t)  — 152 (x , h ;t ) ]d t  a 0 , —c < x < C; (4.6)

+ 1  B(s)X53(c,y;s)ds +

h
+ 5 C(t ) (LN3 (c ,y ;t )  + L~3

(c~y;t)]dt +
0

h
+ f D(t) (-L53

(c,y;t)]dt 0, 0 < y < h~ (4 .7 )
0

V - -— — .  - -V V V V - V — - _ _ _ _ _ _- V - _ _ _ _
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f A(s)KN4(c ,y;s)ds ~ 1 B(s)K54(c,y;s)ds +

h
+ 5 C (t ) L N4 (c

~Y ; t)dt  +

0

h
+ f D(t) [L 4(c,y;t) — L 4 (c ,y ; t ) l d t  0 , 0 < y < h. (4 .8 )
0

The kernels K
N .? ~~~ LNj~ 

and ~~~~ 
j = 1, . . . ,  4, are given in

Appendix A. The barred kernels LNj~ 
Lsi~ 

i = 1, ... , 4, are obtained

from the corresponding unbarred kernels by replacing c by -C.

Note that the order of the singularities at the surface, (+c,0),

and at the corners, (+c ,h), remains unchanged and is as given in

Chapter III, Eqs. (3.14) and (3.21). Of course, the same holds true

for the corner conditions, and the ones appropriate for the corner

(c,h) are given by Eq. (3.16).

Equations (4.5)—(4.8) can be solved for the unknown stress dis—

continuities A(s), B(s), C(t), and D(t), provided that a set of sub-

sidiary conditions is also satisfied. The need for additional condi-

tions is due to the fact that A(s), ..., D(t) have integrable singu-

larities at the end points, as explained in Chapter III. The sub-

sidiary conditions associated with Eqs. (4.5)—(4.8) are given next:

c h
5 B(x)dx + 2fC (y)dy — 2Q ; (4.9)
—c 0

~ au
5 (...~X.] dx = 0 ; (4.10)
o xy’O

- —  •~V a-~ 
V~~~~- - VVVV -
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C au h 3u

~ ~1~~yao 
d x -  f 

~~~~~~ 
dy = 0 (4.11)

A(0) = 0 . (4.12)

The discussion presented in Chapter III concerning the subs i-

diary conditions (3.27)-(3.30), also applies to the selection of Eqs.

(4.9)—(4.l2) as the correct set of conditions needed to supplement the

governing singular integral equations, Eqs. (4.5)-(4.8), and will not

be repeated here.

It suffices to state that Eqs. (4.9) and (4.12), the latter in

association with Eq. (4.3), represent the global equations of equili-

brium for the block in the x- and the y- directions, respectively.

Equation (4.10) ensures that the sides of the block do not translate

vertically, while Eq. (4.11) requires that the base and the sides of

the block do not move relative to each other in the horizontal direction.

I
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THE THO-INCLUSION PROBLEM: HORIZONTAL TRANSLATION

In chapter III the two-inclusion problem was described, and for-

mulated for the vertical translation case. The present section con-

siders the two-inclusion problem undergoing horizontal translation,

under the action of a load 2Q in the negative x-direction. As pre-

viously, the rigid inclusions are thought of as being rigidly connec-

ted to each other above the surface, and they are to translate without

rotation.

The boundary conditions for this problem are identical to the

ones given by Eqs. (3.3l)—(3.32), and are repeated next:

au
—~~~ 0; —~~~ = 0; 0 < y < h, x = +c (4.13)
ay ay — — —

The syninetry relationships given in Eq. (4.3) are incorporated

to write the governing singular integral equations, at x = c, in the

following form :

+ 
~N3

(c ,y; t ) ]d t  +

h
+ f D(t) E—L53(c,y;t)]dt = 0 , 0 < y < h; (4.14)

0

h
f C(t) L 4(c,y;t)dt +

0 N

h
+ 5 D(t)(L (c,y;t) - L (c,y;t)]dt = 0 , 0 <  y < h .  (4.15)

0

23
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The stress discontinuities C(t) and D(t) were defined in Chapter II,

Eq. (2.11), while the kernels L~3,4 and L5 3 4  are given in Appendix A.

Recall that the barred kernels are obtained from the corresponding

unbarred ones by replacing c by -C.

The functions being sought, C(t) and D(t), have integrable sin-

gularities at the end points; therefore, besides equations (4.l4)-(4.15)

they must also satisfy the following subsidiary conditions:

C(y)dy = Q ; (4.16)

~

f (....~X.] dx 0. (4.17)x y O

Equation (4.16) is the equation of equilibrium in the x-direc-

tion, while equilibrium in the y-direction is also satisfied by vir-

tue of the symmetry of the problem, Eq. (4.3). Equation (4.17) requires

that the rigid inclusions do not translate in the y-direction.

In regard to the order of the singularities for this problem,

note that the singularity at (+c ,h) is square root, while that at the

surface , (+c ,O ) ,  remains unchanged , T) a 0.71117.

- - V - - - - - ~~ — - - a-— V- - -
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CHAPTER V

STRESS ANALYSIS OF EMBEDDED BLOCK: ROTATION

ROTATION OF RIGID BLOCK

This chapter investigates the problem of a partially embedded

rigid block that rotates through an angle a under the action of a

moment M, as shown in Fig. 3. Here, the tangential load Q is set

equal to zero. The boundary conditions for this problem are given next:

—

~~~~ 
= 0, —

~~~~~ 
a a; -c < x < c, y = hi (5.1)

au au
—

~~~~ 

= -a, -j~ 
0; 0 < y < h, x ±c. (5.2)

Substitution of the horizontal and vertical inclusion results

derived in Chapter II in Eqs. (5.l)-(5.2) leads to a system of six

governing singular integral equations with generalized Cauchy kernels.

However, the symmetric nature of the problem allows for the elimina-

tion of two of the unknown stress discontinuities, since the relation-

ships given next must be satisfied:

E(y) = C(y); F(y) — —D(y). (5.3)

Therefore , only four of the equations represented by Eqs. (5.1)-(5.2)

are necessary for the solution to this problem. Note that the syin-

metry of the problem also requires that A(x) is antisynenetric, and

B(x) symmetric in the range —c < x < C.

25
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Equation (5.3) is incorporated to write the equations represented

by Eq. (5.1) and those of (5.2) at x a c in the following form;

4wfr+l ) i i  ~ ~~~~~~~~~~~~~~~~~~ 
+ f B(s)K~1

(X,h;S)ds

h
+ f C(t)[LN1(x,h;t) + L

Nl
(x
~
h;t)]dt

0

h
+ f D(t) tL51(x,h;t) — Ls1 ,hpt) Jdt) = 0, -c < x < C;  (5.4) V

0

C c
1 {f

41? (K#1)~ —c 
A( s)KN2

(x ,h; s)dS + 

~L B(s)Ks2(x,h;s)ds
h

+ 5 C(t ) (LN2 (x ,h ; t) + L
N2

(x ,h ;t ) J d t
0

h
+ 5 D(t) [L52(x,h;t) — L52

(x ,h;t)]dt~ a, -c < x < c; (5 .5 )
0

C C
1 

q4ir(K+l)~i —

~~ A(s)K~3
(c~y;s)ds + 5 B(s)K83(c,y;s)ds-c

h
+ f c(t) (LN3 (c ,y;t) + L~3

(c ,y;t)]dt
0

h
+ 5 D(t )  (— L

53
(c ,y ;t ) 3dt }  a -a, 0 < y < hi (5.6)

0

a-~~~~~~~~V VV ~~~_ -

V V — V -V -
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4w (K+1)I~ ~~~~~~~~~~~~~~~ 
+ 

~c 
B( s )K 4 (c ,y ; s)

h
+ I C (t ) L N4 (c ,Y ;t )dt  +

0

h
+ / D ( t )  EL 4(c,y;t) 

— L (c ,y; tfldt } = 0, 0 < y < h. (5 .7 )
0 S

The kernels appearing in Eqs. (5.4)-(5.7) are as defined previously .

Note that the corner conditions for this problem are given by Eqs.

(3.16), for the corner (c,h). The order of the singularities at the

points (+c ,O), and (+c ,h) was derived previously, and is given by

Eqs. (3.14) and (3.21), respectively.

The unknown functions A(s) ,B(s), C(t), and D(t) have integrable

singularities at the end points. Thus, Eqs. (5.4)-(5.7) must be sup-

plemented by additional conditions, and the ones appropriate for this

problem are given next:

c h
f B(x)dx + 2f C(y) dy = 0 ; (5.8)
—c 0

c au
f (—~] dx = c a ; (5 .9 )
0 9 x y 0

c au h au

~ 
(~~~ly_Ø dx - f 

~
—
~~~x’.’O 

dy — ha ; (5.10)

A(0) — 0. (5.11)

Equation (5.8) represents the global equilibrium equation for the

rigid block in the x-direction. Equilibrium in the y-direction is

V V~VV V ~ V - V _ V  _______________ V. - — V V V  V~~~~~~ - V. - V - — V
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satisfied by Eq. (5.11), which requires that A(x) is antisyznmetric,

in association with Eq. (5.3), requiring that F(y) a -D ( y ) . Equa-

tions (5.9)-(5.lO) impose kinematic restrictions on the problem.

Equation (5.9) prescribes the translation of the corner (c,0) of

the block in the y—direction, while Eq. (5.10) gives the relationship

between the horizontal displacements of points (c,0) and (0,h) on the

block. It should be noted that the usual small angle approximations

have been employed in writing Eqs. (5.9)-(5.lO).

- - - VV ~~~ V~~~~~~~~~~~~~~ V _ _- - - 
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ThE TWO-INCLUSION PROBLEM: ROTATION

The problem considered in this section is that of two vertical

rigid inclusions, partially embedded in an elastic half space and per-

fectly bonded to it, as described earlier in Chapter III, and loaded

in such a manner , so that they both rotate through an angle a.

The boundary conditions for this problem are given next:

au au
~ i = _ c &, _~1 O; 0 < y ~~~h, x +c. (5.12)
ay ay — — —

The symmetry conditions given in Eq. (5.3) reduce the number of un-

known stress discontinuities to two; hence, only two of the four

singular integral equations represented by Eq. (5.12) are needed for

a solution.

Equation (5 .3 )  is used to write the equations governing this

problem, at x = c, in the following form:

4w (K+l)~ 
{ C(t) tLN3

(c
~
y;t) + 

~N3
,y;tfldt

+ D(t) [-~53
(c,y;t)]dt} —a , 0 < y < h; (5.13)

41r(K+l)~ ~ 
C ( t ) L N4 (c ,y; t )dt

+ D( t )  (L
54

(c ,y ; t) - ~54
(c,y;t)]dt} = 0 , 0 < y < h . (5.14)

Equations (5.l3)-(5.l4) may be solved for the unknown functions

C(t) an3 D(t), provided that the subsidiary conditions given next are

satisfied:
29
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h

f C(y)dy = 0 ; (5.15)
0

c 3u
/ [~~1] dx ca . (5.16)
0

Equation (5.15) is the equation of equilibrium in the x-direction,

while Eq. (5.16) is identical to Eq. (5.9), which was written for the

rigid block problem , and it prescribes the displacement in the y-

direction of the point (c ,0) of the block relative to the midpoint

at the surface.

As in the previous cases of the two-inclusion problem, the singu-

larities are of order (n-i) at the surface points (+c,0), and (0.5—1)

at the points (±c,h ) ,  where r~ = 0.71117.
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CHAPTER VI

NUMERICAL ANALYSIS AND DISCUSSION

NUMERICAL ANALYSIS

The objective of the numerical analysis is to solve numerically

the systems of governing singular integral equations with the corres-

ponding subsidiary conditions , derived in the previous three chapters,

for the unknown stress discontinuities.

The equations are normalized by introducing the following variable

changes:

x = cx , s~~ c ;  (6.1)

y a 
~ (l+y) , t = ~~(1+t) . (6.2)

In addition , the stress discontinuities are given forms that reflect

their correct singularities at the corners (and the surface). For the

case of vertical displacement of the rigid block the following substi-

tutions are made:

A(s) A (s) (l_s 2) ~~~ B(s) — ~i~(;) (l—s~) ~~
1; (6.3)

C(t) C(t) (l—t) ~~~~~~

h (6.4)
D(t) = -

~~~~~ D(t) (1—t)

Equations (6.l)—(6.4) also apply to the horizontal translation of

the rigid block problem, provided that P is replaced by Q. Note that

Eqs. (6.2) and (6.4) are also employed to normalize the equations

derived for the two—inclusion problem, for the vertical and horizontal

translation cases.
31
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To normalize the equations derived for the case of rotation of

the rigid block (see Chapter V) the following substitutions are needed :

A(s) — 
27r(K+l)~Iac A(s) (l_s

2)~~~ ;
(6.5)

B ( s)  = 
21T (K+1)~jac B(s)(l—s2)~~~

1
;

C(t) — 
2iv (K+l)Uah c:( ) (l_t)c l (l+t)n h

;

(6.6)

o(t) = 
21?(~c+l)pah

The substitutlorEgiven in Eqs. (6.1)-(6.2) also apply to this problem.

Equations (6.2) and (6.6) are also used to normalize the equations

associated with the two-inclusion problem undergoing rotation.

Equations (6.l)-(6.6) will appropriately normalize the governing

singular integral equations and the subsidiary conditions so that the

numerical analysis may be conducted. An adjustment is required in

Eqs. (6.1) for normalizing Eqs. (3.28)—(3.29), (3.36), (4.lO)— (4.ll),

(4.17), (5.9)—(5.lO), and (5.16); instead of x = cx, take

x a c(l+x)/2. (6.7)

For convenience, the parameter y is introduced, and is defined as

y — c/h. (6.8)

It should be noted that for the case of rotation of the rigid block,

it becomes necessary to assign a specific numerical value to either

c or h. Thus, for that problem h is given unit length, and therefore

y becomes equal to c.

The numerical scheme to be used in this analysis is that described

in Erdogan, Gupta, and Cook (8J , and is a collocation scheme based

upon formulas for Gaussian integration (see Stroud and Secrest (10)).

The integration points, 9i’ tk~ 
and the collocation points, Xjc 

~~~
‘
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are defined as the roots of the Jacobi polynomials as follows:

a 0; 
~N-l~~~~~~~j~ 

a 0; (6.9)

V 

PN
(t
k
) = ~~~ 

~N-1~~~~~~~l~ 
= 0. (6.10)

The corresponding weights are obtained from the Gauss-Jacobi integra-

tion formula (see (10]).

Note that since the subsidiary conditions which impose kinematic

restrictions on all problems require integrations to be performed

along y = 0 and x = 0, additional integration points and weights are

needed. The integration points appropriate to the interval (0,c)

along y=0 are obtained from

= 0, (6,11)

while the ones for (O,h) along x = 0 are obtained from the Legendre

polynomials, as the Gauss formula for numerical integration may be

used in this case, since there are no singularities at the end points

of the interval. The zeros of the Legendre polynomials (integration

points), and the weights associated with the Gauss formula can be

obtained from several sources (see e.g. Abramowitz and Stegun Ill]).

The corner conditions are in the forms given by Eqs. (3.16)-

(3.17), where, for the cases of vertical and horizontal translation,

the following relationships are valid:

A0 — A(l)/2~~~, Ø~ 
=

(6.12)

A0 = A (_ l ) / 2 fly C , B0 
—

C
0IDØ

,E
0
,F0 = C(1), D(l), E(l), F(l). (6.13)

For the rotation of the rigid block problem Eq. (6.12) is replaced by:
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A0 
a 2

l
~~

1
~y
2
~~A ( l ) , B

0 
=

(6.14)

A0 = 2l_fl y 2_~~~(..1), 
~~ 

a 2
11y2~~B(—l).

The barred quantities in Eqs. (6.l2)-(6.14) have already been defined.

The procedure for obtaining solutions is the same for all three

types of loading applied to the rigid block, and is as follows. The

symmetries of A(s) and B(s) are used to collapse the parts of the

normalized equations containing them, thereby eliminating N of the

unknown quantities. The problem is thus reduced to finding the solu-

tion to a system of 3N simultaneous algebraic equations in the 3N

unknowns A(s ), B(s), c(t~), and D(tk)? 
where i = l,2 ...,N/2, and

k = 1,2,... ,N. The governing singular integral equations provide

3N-4 equations, and the subsidiary conditions supply four more for

a total of 3N. It is also noted that in Eqs. (3.30), (4.12), and

(5.11) the unknowns are expressed as polynomials with N/2 terms by

the use of Lagrange ’s interpolation formula (see e.g. Davis ( 1 2) ) .

Similarly, the two—inclusion problems formulated in chapters III-

V lead to sets of 2N algebraic equations which are solved for the

non-dimensionalized quantities C(tk) and D(tk), where k —

- V. •_ V ~~~_  _V_ ~~~__ V V V V V V V _ _ V V _ • _ _ V V  - V~~~~ - V~~ _•~ _ _ _ _ _ _-



RESULTS AND DISCUSSION

The numerical analysis was completed for a range of the geo-

metric parameter y (0.05 < < 8), and for Poisson ’s ratio (plane

strain) of v = 0.3. The rate of convergence was tested by varying

the number of points used at eight point intervals, from N = 16 to

N = 48. The convergence of the global results appeared satisfactory

and will be discussed in detail later. All results presented in

this dissertation will be given for N = 48.

The results for the respective problems of vertical displacement,

horizontal translation without rotation, and rotation of an embed-

ded rectangular block will be given next.

Vertical displacement. The load diffusion curves for several

values of y are shown in Fig. 4 for the case when the block moves ver-

tically without rotation. The load acting on the block at a distance

y below the surface is given as a fraction of the total load, where

both load and distance have been put in dimensionless form. The load

given by the intersection of the load-diffusion curves and the y = h

axis represents the load carried by the base of the block for each ‘I.

Analogous to the block problem is that of two parallel inclusions,

each subjected to a vertical load P and having no rotation. The

results for this problem can be compared with those of the vertical

displacement for the block. The load diffusion, calculated for the

two—inclusion case, is shown in Fig. 5, where it is compared to the

rigid block results; the solid lines represent values obtained from

Fig. 4, and the dashed lines represent the two-inclusion case. These

35

— V - V V 
V -



36

latter curves go to zero at y h, since there is no base to carry part

of the load. Furthermore, the dashed and solid curves are relatively

close provided that 0 < y < 0.8h. Thus, for relatively slender blocks,

a solution which ignored the base would give approximately valid re-

sults. Figure 6 shows the percentage of the applied load P carried

by the side of the rectangular block as a function of c/h. As ex-

pected, when c/h is small most of the load is carried by the sides; as

c/h increases the base carries a larger share of the load. When y is

approximately equal to 0.42, the sides and the base each carry half

the load.

Figures 7 and 8 show the variations, respectively, of the discon-

tinuities in the normal stresses along the base of the block, and those

in the shear stresses along the sides for several values of c/h. Since

a zero stress state prevails throughout the rigid block, these stress

discontinuities represent the actual stress distributions along the

walls of the elastic body surrounding the block, as is evident from

the definitions of A (x), 0(x), C(y), and D(y). Also, since the norma l

stresses are symmetric along the base, they are plotted only for

0 < x < c and exhibit singular behavior at the end x c. The shear

stresses are plotted for 0 < y < h, and singular behavior is noted

near both ends, y = 0,h. It is further observed that the magnitudes

of both A(x) and D(y) vary proportionately with the amount of load

carried by the base and the sides, respectively. Thus , the magnitude

of A(x) increases with ‘y, while the magnitude of D(y) decreases as y

increases.

One estimate of the accuracy of the results may hc obtained by

calculating the displacements in the y-direction along the surface of

V V - V - V - - - -  - - V ——
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the block y a 
~~~, relative to the midpoint (0,0). Since the block

translates as a rigid body along y, these displacements should be

small when compared to those obtained from the solution of the two-

inclusion problem undergoing vertical displacement. The results of

this comparison are given in Table 1. It is noted that the displace-

ments at the corner x a c for the two inclusion problem vary from

being approximately 18 times greater than the block displacements

(for y = 0.3), to being 175 times greater (for y = 4). The dis-

placements obtained for the rigid block problem tended to oscillate

about zero, while the ones for the two inclusion problem grew with

distance from (0,0), as expected. It should be added that for

y < 0.3, the value of the ratio lu /u ( approaches unity. That is,

~
‘b ~

‘2
as the block becomes slender, the presence (or absence) of the base

has little or no effect on the results calculated near the surface.

Therefore, a comparison of those results for the purposes of Table 1

would have little meaning, since the surface displacements are already

small to within the accuracy of the solution.

Horizontal displacement without rotation. Figures 9-12 present

results obtained from the solution of the embedded block undergoing

horizontal displacement. Figure 9 shows the variation with y of the

percentage of the total load that is carried by the side of the rigid

block. In this case, the point at which half of the load is carried

by the sides and half by the base is approximately Y = 1.5.

The shear stress distribution along the base of the block, and

the normal stress distribution along the side x = c of the block are

shown for several values of y in Figs. 10 and 11, respectively. The

results showing the variation of the magnitudes of the stresses with

V V - V VV -V~~~ V - - V - -
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y are analogous to the results for the vertical displacement case; the

magnitude of the stresses tends to increase with the amount of load

carried by the surface of the block upon which they act. V

Since the block translates horizontally without rotation, an ap-

plied moment, M, in addition to a horizontal load, 2Q, must be ap-

plied to prevent the block from rotating. The ratio M/Qh is plotted

in Fig. 12 as a function of c/h. At the limit, as c/h approaches zero, V

the results are in agreement with the result obtained from the solu-

tion for a single inclusion perpendicular to the free surface, y = 0,

and loaded by a horizontal force, 2Q, and a moment, M, such that the

inclusion translates in the negative x-direction without rotation.

Rotation. Results obtained for the problem of rotation of the

embedded rigid block are presented in Figs. 13-17. The normal and

shear stresses acting on the base of the block are given in Figs. 13- V

14 as functions of the distance from the midpoint, for several values

of c/h. The normal and shear stress distributions along the sides of

the block for 0 < y < h, are plotted, respectively , in Figs. 15—16. The

curves show the variation of the magnitude and sign of the stresses

with y. A better understanding of the mechanics of the problem can be

obtained by examining the moment equilibrium equation for the block,

which is given next:

c c h
M = _ f A(x)x dx+h JB(x ) dx + 2f C(y)y dy

—c —c 0
h

—2c / 0(y) dy. (6.15)
0

In writing Eq. (6.15) use has been made of Eq. (5.3). Using the sym-

metries of A(x) and B(x) appropriate for the rotation problem, and

V V .——-_  V 
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incorporating Eqs. (6.l)—(6.2), and (6.5)—(6.6), Eq. (6.15) is

written in the normalized form given next:

1 M  
— 

1T (K+l) 
[—4y 3 f A x )  ~ (l_x 2)~~~d~

+ 4y2 f B(x ) (l—x 2)~~~ dx

+ 

~l 
E~~ (l+~) ~~~~~~~~~~~~~~~~

2~ / D(y) (1...~ )c l (1~~)n l  
dy]. (6.16)

—1

Equation (6.16) may be written as

(6.17)

V where the definitions of the quantities As~ ~~~~~~~~~ 
D~ are readily ob-

2tam ed by comparing Eqs. (6.16) and (6.17). The ratio M/~ih a repre-

sents a measure of the rotational stiffness of the partially embedded

rigid block. Therefore, the quantities A
8, B8

, C8, and D5 
represent

the contribution made to the stiffness by the stresses A(x), 0(x),

C(y)~ 
and D(y), respectively. Table 2 shows the variation of these

quantities with ‘y. Note that the contribution of the normal stresses

acting on the base of the block becomes significant only for y ) 1,

while the opposite is true for the normal stresses acting on the

sides (their contribution becomes more important as I becomes smaller).

It is also observed that the contribution of the base shear stresses

to the total stiffness remains proportionately low for all values of

y, while that of the side shear stresses increases with y.

By dividing M/~ih
2a by y 2, one obtains a new ratio, namely M/~ic

2cz.

These two ratios are plotted as functions of y in Fig. 17. There are
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two limiting tests for these results: 1) as c/h tends to zero, the

results for M/j~h
2
c& tend to the single inclusion result; 2) as c/h

becomes large the results may be compared to the one obtained by

Muskhelishvili for the rotation of a rigid stamp bonded to an elastic

body (see (13], p. 492, Eq. 114.19a). As may be seen in Fig. 17,

the two limiting cases seem to support the accuracy of the calculated

results.

The corner conditions derived for the corner (c,h) were checked

by calculating the values of the stress discontinuities at that

corner, and substituting in Eqs. (3.16). The corner values were cal-

culated by a quadratic extrapolation applied to the three points

nearest that corner. It was found that the corner conditions were not

satisfied; the size of the error was generally of the same order of

magnitude as some of the individual terms. Even though an allowance

must be made for the error introduced by the quadratic extrapolation ,

this size error is still considered large for the present type of

analysis . To correct this discrepancy , and more importantly , to check

the accuracy of the global results, three of the corner conditions

given in Eqs . (3.16) were incorporated in the system of 3N equations,

by removing the equations closest to the corner (c,h) from the cor-

responding boundary conditions. This new system of equations yielded

results which, away from the corner (c,h) matched the results pre-

viously obtained very closely (to four significant figures), and in

addition, satisfied all the corner conditions. Moreover, the global

results obtained using this new system of equations varied slightly

from the ones obtained previously , as it will be shown later. To

further test the sensitivity of the global results to the collocation

- - V - V a-.- - - - -
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scheme used, the order of the singularity at (c,h) was changed from

C - 1 = -0.40484 to -0.5, and the calculations were repeated with

N = 48. Lastly, the singularities at (c ,h) and (c,0) were set equa l

to —0.5, and a new set of results obtained for N = 48. A comparison

of some of the results obtained from these solutions is given in

Tables 3-4. An examination of these tables shows that the global

results remain relatively unaffected by small changes in the order of

the corner singularities.

It shoulo be noted that when the order of the singularities at

both (c,h) and (c,0) was taken as -0.5, the related Jacobi polynomials

reduced to the Chebyshev polynomials of the first kind (see e.g. [11]).

Numerical solutions of Cauchy—type singular integral equations with

regular kernels obtained by use of the Gauss-Chebyshev integration

formula, have been shown to converge to the correct results by Erdogan

and Gupta [14], and Xalandiya (15]. Furthermore, Kalandiya states in

[15] that this method was also successfully applied to problems with

generalized kernels. Of course, as the singularities used here are

not of the correct order, this method cannot be expected to yield cor-

rect results at the corners. However, the fact that the global re-

sults obtained by use of the Gauss-Chebyshev integration formula match

closely those obtained using the Gauss-Jacobi integration formula, as

may be seen in Tables 3—4, is supportive of the validity of the

global results.

Although the accuracy of the global results obtained by use of

the collocation scheme introduced in (8] has been shown to be satis-

factory, the accuracy of the results in the vicinity of the corners is

not certain. There are two reasons for this: 1) A second root is

a-- — -
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present at the corner (c ,h) and is not taken into account ; this root

has a singular contribution of order 0.75904-1 = -0.24096 near that

corner . As pointed out by Westmann in [7] ,  although the stress field

in the vicinity of the corner is dominated by the largest singularity ,

the presence of two singular terms may be important to the problem.

2) In two recent papers, [16, 17], Theocaris and loakimidis suggest

that the collocation points as determined for the Gauss-Jacobi method

may not be the correct ones. In (16], it is suggested that the rate

of convergence of the results can be improved by a different choice of

collocation points associated with the Gauss—Jacobi integration rule,

or by using a different scheme such as the Lobatto rule. The colloca-

tion points for the case of real singularities are, respectively , the

roots of the Jacobi—functions, and of their derivatives (see Elliot

(18]). In (17], the problem of an antiplane shear crack terminating

at a bimaterial interface solved by Erdogan and Cook (19], was recon-

sidered, and numerical results were obtained by using the modified

Gauss-Jacobi and the Lobatto-Jacobi methods discussed in (16]. It

was found that while in general the results of [17] matched closely

those of (19], the value of the stress intensity factor at the inter-

face obtained by Theocaris and Ioakimidis was in much better agree-

ment with the theoretical result than that obtained by Erdogan and Cook.

However, the rate of convergence was not satisfactory . The authors

attributed this to the existence of a second singularity of positive

order near the interface. A technique is proposed for accounting

for both singularities in the analysis, and this results in a much

faster convergence of the results to the theoretical value. However,

it should be realized that this technique could not be applied to the

V V 
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present analysis, since it deals with singularities of opposite signs.

In view of the arguments just presented , the accuracy of th.~ cor—

ner values of the stress discontinuities obtained in the present ana-

lysis, by use of the collocation scheme introduced in [8], is uncer-

tain. However, for completeness, a discussion of these values is pre-

sented in Appendix B.

To investigate the rate of convergence of the global results, the

number of points taken was varied at eight point intervals, from

N=16 to N=48. Several of the calculated global results are presented

in Tables 5-7. Tables 5-6 show the calculated values for the portion

of the load carried by the sides of the block for the vertical and

horizontal displacement cases, respectively . The variation of the

ratio M/~ih
2
a with N, is shown for several values of c/h in Table 7.

It is seen that the rate of convergence of these representative global

quantities is quite satisfactory.
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CHAPTER VII

CONC LOS IONS

The formulation of the boundary value problem of a rigid rec-

tangular block partially embedded in, and perfectly bonded to an

elastic half space led to a system of singular integral equations ,

whose unknowns were the discontinuities in the stresses between the

bonded surfaces. Three separate loading conditions were applied

causing the block to 1) translate vertically without rotation ,

2) translate horizontally without rotation , and 3) rotate about an

axis in the z-direction.

A numerical solution for the systems of equations governing

each problem was obtained by using the collocation scheme introduced

by Erdogan, Gupta, and Cook. Results were computed for several

values of the geometric parameter y c/h.

The accuracy of the results was checked in several ways , and

it proved quite satisfactory for global quantities such as:

1) Load diffusion from the block into the elastic half space

(vertical displacement problem);

2) Percentage of load carried by the sides and the base of the

block (vertical and horizontal displacement problems);

3) Ratio of applied moment to horizontal load (horizontal dis-

placement problem);

4) Moment stiffness (rotation problem);

5) Normal and shear stress distribution along the sides and

base of the block , excluding the vicinity of the corners

(+c,h) (all problems).
44
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Since the corner conditions and the singular behavior near the

corners (+c,h) were not satisfied , local qualities such as the shear

and normal stresses are only valid away from these corners.
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lu /u Ix/c 
~
‘b ~

‘2

c/h 0.3 0.5 1 2 4

0.,2 0.3092 0.0547 0.0018 0.0028 0.0016

04 0.0154 0.0119 0.0101 0.0011 0.0010

0.6 0.2421 0.0461 0.0051 0.0002 0.0007

0.8 0.0258 0.0132 0.0092 0.0047 0.0015

1 0.0544 0.0178 0.0149 0.0081 0.0057

TABLE 1 Vertical Displacement: Comparison of the y-displacewen ts

relative to the midpoint at the surface y = 0 of the rigid

block (u ) and the two-inclusion (u~ ) problems for several
Yb ‘2

values of y = c/h.
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c/h A
s 

B
5 

C
S

0.05 —0.002 —0.236 1.232 — U .061

0.1 —0.006 —0 .505 1.550 0.147

0.2 —0.020 —1.026 2.115 0.372

0.3 —0.036 -1.568 2.739 0.664

0.5 0.002 —2.091 3.350 1.356

1 1.123 —0.083 1.738 2.913

2 6.424 2.680 —0.255 6.656

4 27.685 4.369 —0.959 18.175

“ABLE 2 Rotation: Variation of the contributions of the stresses

to the rotational stiffness of the embedded block with y.
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Fig. 1 Geometry and coordinate system for a partially embedded
finite rigid block undergoing vertical translation.
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Fig. 2 Superposition solution.
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Fig. 3 Geometry and coordinate system for an embedded block

undergoing horizontal translation without rotation.
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Fig. 4 Vertical Displacement: Load diffusion for various values of c/h.
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Fig . 5 Vertical Displacement: Comparison of load diffus ion curves
for the rigid block and the two-inclusion problems.
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Fig. 6 Vertical Displacement: Percentage of the applied load P

carried by each side of the rectangular block as a
function of y — c/h.
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Fig. 7 Vertical Displacement : Normal stresses acting on base of
block vs. distance from center for several values of c/h.
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Fig. 8 Vertical Displacement: Shear stresses acting on side of
block vs. distance from free surface for various values
of c/h.
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Fig. 9 Horizontal Displacement: Percentage of the applied shear load

carried by the sides of the rigid block as a function of y — c/h.
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Fig. 10 Horizontal Displacement: Shear stress distribution along

base of rigid block shown for 0 < x < c for several values

of y = c/h.
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Fig. 1]. Horizontal Displacement: Normal stress distribution along
side of block (0 < y < h) for several values of ‘r = c/h.
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Fig. 12 Horizontal Displacement: The ratio M/Qh as a function of

y = c/h.
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Fig. 13 Rotation: Normal stress distribution at y h , 0 < x < C ,

for various values of c/h.
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Fig . 14 Rotation: Shear stress distribution at y = h, 0 x -
~ c, for

various values of c/h .
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Fig . 15 Rotati on :  Normal stresses acting on the side of the
block for rj < y < h, for several values of c/h.
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Fig. 16 Rotation: Shear stress distribution along the side of the

block for 0 < y < h, shown for several values of c/h.
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Fig. 17 Rotation: Stiffness for moment applied to rigid block

(curve I: right ordinate, upper abscissa; curve II:

left ordinate, lower abscissa).
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APPENDIX A

The functions , L - ,  and L , I = l ,2,..,,7, are given as1 Si Ni. Si

— 
2(h — y)((h — y)2 .- (x— ~)2] (K2—l )(h+ y)K~1

(x ,y;s) 
((h— y)2 + (x—s)2]2 

+ (h+ y) 2 + (x — s)2 (A.l)

+ 2K(h — y)[(h+ y)2— (x— ~)2) 
— 

8hy ( h + y ) [ (h +y) 2— 3(x—s)2]

[(h+y)2 + (x— s)2]2 [ (h + y ) 2  + (x _s)2]3

2 [( i~ — 2 ) ( h — y) 2 + K(x— s)21 (K 2 + 1)K
51

(x ,y;s) — ( x — s ) {  [(h — y) 2 + (x— s)2J 2 
+ (h+ y)2 + (x-s)2

4K(h+y)2 8hy[3(h+ y)2— (x— ~)2] V
- [(h + y)2+ (x- g)2]2 + [(h+y)2 + (x- s)2)3 (A.2)

2[(K+2)(h — y)2+K (x— ~)2) + 
(,2 + 1)

~~2 (x ,y; s)  = (x-  s) { [(h - y )2  + (x-  s)2 ]2 (h+ y )2 + (x-  ~)2

+ 4K( h + y) 2 8hy[3(h + y) 2 — (x —  ~) 2 J
(A. 3)[(h+ y)2+ (x- s)2]2 + [(h+y)2 + (x- s)2]3 }

— 
2(h — y)((h— y)2— (x— ~)2) 

— 
(K 2 — 1 ) (h + y)

(A.4)K 52 (x ,y;s )  [(h — y) + (x— s) L ] h  (h+ y)~ +(x— s)~

+ 2K(h— y)((h+ y)2 — (x -- ~) 2] 
+ 8hy ( h + y) [ (h + y) 2— 3 ( x — ~)2)

(h+y)2 + (x_ s)z]3[(h-I- y) + (x — s) )~

21 (li — y
~
2 

— ~x— ~ )2 ] 
— 

(K 2 + 2K — 1) 
~~K~3 (x ,y;s) — (x_ s) {

[(h _ Y) +(x - 8)2]2 (h+ y)2 +(x - s)2

4(h + y) [ 2 h+ K ( h — y)~~ 8hy [3(h + y) 2— (x— ~) 2 J
— 

((h+y)’ + (x—s)’] + ((h+y)~ + (x
_ s)z]3 )

‘.

2(h — y)[K$h — y ) 2 + (K +2)(x — s)2] 
+ 

(K +].)2(h+ y)K s3 (x ,y; 8)  — — 

[(h— y) + (x_s)~~]z (h + y )~ +(z_ s)Z

2 (2h+K~~ +y)][(h+y~
2 — (x— s)21

— 

[(h+y)z + (x— s) ]2 
(A.6)

8hy (h +y)[(h +y)2 — 3(x — ~)2J+ [(h+y) + (x_s )2Ji
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2(h—y)EK~h— y )
2 + (K—2)(x—s)2] + (K — l)2(h+ y)

K~~ (x ,y;s) — — h y )  + (x ..g)z)z (h+ y)Z + (x_ s)Z

2 [2h_K (h+
~
r)1[(h+y)2 _ (x _s)21

[(h + y) A + (x— 5)Z]Z (A.7)

~~8hy(h+y)t(h+ y)2 3(~~~ 8)21
((h+y)~ + (x s)’]~

2((h-y~
2 -(~~--

s)2l (K 2 - 2K -1)
K~ , (x ,y; s)  — (x_ s){[(h Y)L + (x_ s)2]2+ (h+y)Z~~~(x_s)

Z

4(h+y)12h—K (h —~~)~ — 
8hVyV[3(h +~)

2
~~~

(X
~~

S?21 (A 8)+ [(h+y)Z + (x- s) ] [(h+y) + (x-s)~ 13~

— 
( h _ y ) 1(K _ l) (h _j !)2_ ( 5 _ K ) ( X 8) 2J 

+ 
( 3 K — l ) ( h + y ~KNS (x ,y;a)  ((h _ y)Z + (x _ s ) Z ] Z  (h + y5~’+ (x — s)2

÷
2(3h_K~~ 1~h+ y)2 _ (x_s)2] 8hY1~1+Y)[(h+Y)

2 _ 34x_9)Z]

((h+y) + (x_s)ZP [(h+y)’~ + (x—s) 
]3

(A.9)

1(K — l)(h—~)
2+(3+K)(X—s12] (3K + 1)

K55 (x ,y; s) — (x s){ [(h— y) + (1_ 8)2)z +

- 
4(h + y)~~h + Ky) + 

8hy13(h+y) 2 — (x - s]~~~____________________ (A. 10)
[(h+y) +(x_s)~ ]L [(h +y)Z + (x_ s)L] }

K~6(x~y~5 ) 2  
(K+1)(h +y)

[(hWy) ± (x — s)~~~

( (h + y ) 2 + (x_ s)z]~ [(h+y)2 + (x — s)~~]

(A. 11)

(ks —K)(h y)2 (K _l)(x
_ s)2J (K — 1 )

K 56 (x ,y; s) — ( x — s ) {  ((h— y)~ + 
(x_s)2~)

2 + (h+y)Z +(x _ s)2

4(h + y~ (h — KY) 
— 
8hy13(h+y)2 —(x s)~~] } (A. 12)— ( (h + y) + ( x— s Y ] ’  [(h + y) Z + (x s) L ] 3

((3+K)(h -.y)2+ (K—l)5x—a)2] 
— 

(K — 1 )
K
N7

(z ,y ; s)  — (x — a ){ ( ( h — y ’ ) + (x s)~~)

4(h+y2(h— KY) + 
8hyE3(h+y)~

2 — ( x - s )2 ]
— 

[~h+y)  + ( x_ . ) ~~]h ((h + y)z + (z = .) z ] 3  } (A.l3)
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K57 (x ,y;s)__ [ 2
~~~

3+K)(i
~~~8)

21 (K+l)(h +y)
[(h — y)4 + (x—s) ]Z  + (h+ y)2 +(x — s)2

— 
2(h+Ky)((h +y)2 — (x — s) 2) 

+ 
8hy(h +y)[(h+y)2 3(x ...s)2J

( (h + y) + (x— s)~ J~ [(h + y)~ -4- (x_ s)Z]3

(A. 14)

2[(K —2)(7— t)2 + K( C  —x )2] (K 2 + 1)
~~1

(x ,y;t) — ( 
L(Y~~ t)~ + (c

_ x)ZJ~ 
— 

(y+t)~~4-(c_x)Z

4K (y +t)2 
— 

8yt[3(y +t ) 2 — ( c — x) 2 ]
(A. 15)+ 

[ ( +) z (
~~~~~~~~~~~~~z]

V
~ [(y+t)Z + (c_x)Z)~

2(y — t ) [ ( y — t ) 2 _ (c_ x)2) (K2 —l)(y+t) (A. 16)L
si

(x ,y; t) — — 

[(y—t) + (c _ x)2]Z + 
(y+t)Z +(c _ x)z

— 
2K (y — t) ( (y +t ) 2 _ (c _ x) 2] 

— _______________________
[(y+ t) + (c _ x)ZJZ [(y-+t) + (c _ X) Jj

2(y— t)1( — t)2 — (c —x)2J 
— 

(K 2 — l)(y+ t) (A.17)L
N2
(x,y;t) — - 

[(y—t ~’+ (c
_ x)Z]Z (y+t)Z+ (c_x )Z

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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APPENDIX B

The calculated values of A , B, C, and D at the corner (c ,h),

defined in Chapter VI, are given in this Appendix for various

geometries.

The values given In Tables Bl-B3 are based on the nunerica).

results obtained from the solution of the problems formulated ir~

Chapters III-V , respectively. These values were calculated by

means of a quadratic extrapolation based on the three points

nearest the corner (c ,h).

The results presented in Tables B4—B6 are those obtained from

the solution of the coz.sidered problems when three of the corner

conditions are incorporated in the system of equations. Therefore,

these results satisfy all corner conditions exactly.

As stated in Chapter VI the degree of accuracy of these re—

suits is unknown. However, the following general remarks can be

made in association with these results. The corner conditions

were derived by an asymptotic expansion of all singular terms

appearing in the governing equations p this includes both the Cauchy-

type kernels, and the terms of the generalized kernels with singu-

lar contributions near the end-points. Moreover, inclusion of the

corner conditions in the system of equations introduces the

proper interaction between the stress discontinuities in the

vicinity of the corner (c,h). Also, as it was shown previously ,

inclusion of the corner conditions has little effect on the global

results.
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Therefore, it seems that including the corner conditions in

the system of equations besides yielding correct global results,

will also improve the accuracy of the results in the vicinity of

the corners , provided that the difficulties discussed in

Chapter VI have been successfully dealt with.
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c/h A(l) B(l) C(1) D(l)

0.05 0.158 —0.157 0.203 0.153

0.1 0.163 —0.211 0.229 0.162

0.2 0.388 —0.314 0.278 —0.024

0.3 0.599 —0.316 0.192 —0.150

0.5 0.607 —0.253 0.089 -0.168

1 0.551 —0.295 0.144 —0.076

2 0.609 —0.265 0.079 0.012

4 0.678 —0.211 —0.010 0.039

TABLE Hi Vertical Displacement: Calculated values of

A , B, C, and D at the corner (c,h) for different

geometries.
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c/h A(l) B(l) C(l) D(l)

0.05 —0.107 0.364 —0.850 0.146

0.1 —0 .222 0.569 —1.026 0.180

0.2 —0.356 0.779 —0.815 0.134

0.3 —0.273 0.661 —0.435 0.024

0.5 —0.136 0.183 0.199 —0.097

1 —0.150 0.011 0.368 —0.101

2 —0.240 0.440 0.029 -0.103

4 —0.305 0.604 0.040 —0.134

TABLE B2 Horizontal Displacement: Calculated values of

A, B, C, and D at the corner (c ,h) for different
geometries.
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c/h Mi) B(l) C(l) D(l)

0.05 —3.630 —29.868 0.995 —0.244

0.1 5.164 —20.283 1.470 —0.349

0.2 7.262 —16.335 2.296 —0.617

0.3 5.207 —13.074 3.127 —0.866

0.5 2.303 —7.217 3.994 —1.088

1 0.216 -1.016 2.083 —0.536

2 -0.037 0.037 0.044 -0.200

4 —0 .022 0.025 —0.022 —0.337

TABLE B3 Rotation: Calculated values of A , B, C,

and D at the corner (c,h) for different

geometries.
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c/h Ml) 8(1) C(l) D(1)

0.05 0.123 —0.087 —0.445 0.316

0.1 0.144 —0.102 —0.346 0.246

0.2 0.139 —0.099 —0.222 0.157

0.3 0.134 —0.095 —0.167 0.119

0.5 0.131 —0.093 -0.121 0.086

1 0.158 —0 .112 —0.097 0.069

2 0.186 —0.132 —0.075 0.053

4 0.182 —0.129 —0.049 0.035

TABLE B4 Vertical Displacement: Calculated values of

A , B, C, and D at the corner (c,h) for different

geometries (using corner conditions).
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c/h A(1) 8(1) C(i) D(l)

0.05 —0.004 0.003 0.015 —0.010

0.1 —0.019 0.014 0.046 -0.033

0.2 —0 .081 0.058 0.129 -0.092

0.3 —0.12~ 0.089 0.156 -0.111

0.5 -( 0.107 0.139 -0.098

1 -j.,..~j2 0.129 0.111 -0.079

2 —0.327 0.232 0.132 —0.094

4 -0.569 0.404 0.152 -0.108

TABLE B5 Horizontal Displacement: Calculated values of

A , B, C, and D at the corner (c,h) for different

geometries (using corner conditions).
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c/h A(1) B(l) C(l) D(l)

0.05 —58.682 41.616 1.066 —0.756

0.1 —28.960 20.538 1.393 -~~.988

0.2 —10.788 7.651 1.374 —0.974

0.3 —5.418 3.842 1.220 —0.865

0.5 —2.027 1.438 0.935 —0.663

1 — 0.316 0.224 0.385 —0.273

2 —0.032 0.023 0.103 —0 .073

4 — 0 . 0 15 0.011 0.130 — 0.092

TABLE B6 Rotation: Calculated values of A , B, C,

and D at the corner (c,h) for different

geometries (using corner conditions).
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