AD=A059 79 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON D C F/6 9/2
NMCS INFORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM (N==ETC(U)

NL

SEP 78 C K HILL
UNCLASSIFIED CCTC=CSM=UM=15=-78=VOL=7

COMMAND
& CONTROL

TECHNICAL
CENTER

S ———— —— o —

@ Cere, - L’ NN — 5~ 7 [Y - //

CONNAND AND CONTROL TECHNICAL CENTER

Computer Systes Manual Nuaber CSay Ox 15-78

é J'.// 1 sope-?n /%’-f ol [; ‘;f .
asd Fonir aﬁﬁ%‘*“-m,, oT 5

) Users Nanual . o)

Volume YTY Utility Support (uUT) Faaty

J ‘ N

NNCS aADP

SUBMITTED BY: APPROVED BY:
j .‘Zéi:?(/_ y /Q
| o [HILL C A, ArAY
H Captain U. S. wavy
;; CCTC Project officer Deputy Director

Cepies of this document may be obtained from the Defense

4 . :ocunantation Center, Cameron Station, Alexandria, virginia
; 2314,

rfis document has been approved for public release and sale;
its distribution is unlimited.

e
s~~ , }-

D e e ————

ACKNOWLEDGHENT

This nanual vas prepared under the direction of the
Chief for Prograsming with general technical support
provided by the International Business Nachines Corporation
under contracts DCA 100-67-C-0062, DCA 100-69-C-0029, DCA
100-70-C-0031, DCA 100-70-C-0080 DCA 100-71-C-0087 amd DCA
100-77-C-0065.

ii

SRR

Y

CONTENTS

S hai antl caiaiia il Al o tan Chgead s e

| ‘ Section Page
i i ACKNORWLEDGHENTecec s cecccsccvscoenccccscccece ii E
E :’\ ABSTRACT............".......‘......'.‘.. '
2 TABGBN......“..........................‘ 3
{ 2.1 INPUt ccccevccccvsscceccccccccscscnconcocnce 4
: i 211 Delete Tahle Statement.cccccccccscccscccos 5
E ‘ 2-1-2 Table Identification Statement..cccececee 6
: 2.1.2.1 Keyword Table Identification Statement... 6
; 2.1.2.2 Pixed Format Table Identification
[StatenenNteccccecccsccesscccscsvncncsaccsccse 11
E 2.1.3 Header Statem@Ntcecccccscoccccccscssccsccne 12
E 2.1.4 Comment Statement..ceccececccccccaconsccee 13
[2.1.5 Table Value StatementSccccecccccccccccscasnse 13
2.2 Job Setup.....-.--......-o.o........‘.... 15
2.3 LinitationScececccccscncceccacsccsncoccscoe 16
2. 4 Bxa.pIGSQQQ.oooocoooocoo.oooooo-.oo.ooooo 16
3 SUBLDReccececsccccancccancccascscssssncsnsense 19
3.1 Input..’.............‘................... ‘9
3.2 Job Setup.............o.................. 20
4 DATA CONVERSION:ccoosovoceccsoceccccscncecce 22
4.1 Data Conversion Utilit"UTDlTlC..cooooooo 24
4.1.1 Procedure X360CON..coveccecsocecccccscccnsce 24
4.1.2 Procedure X1410CON. ccvecocevsveccocncssccoe 25

5 PILE LOAD/UNLOAD UTILITIES.cccccvcceccscsece 26
5. 1 SAM to ISAM or VSANM Utility-UTBLDISH..... 26
5.2 ISAN or VSAM to SAN Utility-UTBLDSAM..... 28

? & 5.3 Compression and Compaction of Data Records 32
|
:! 6 UTQRTQDP................................. 3.
! 6.1 INPUteccceevccccccccaccscsccsnccccssssssone 34
g 6.2 RestrictionS..ecececcccccoccsccccccccecces 35
6.3 Job SetUPececcsccsccscoscvevsccccccscncsccnnne 36
| 6.4 Brror Conditions and Processing.ccececccee 37
|
: 7 UTSUBCHK....................‘............ 38
7" Input......‘......'...................... 38
7.2 FPunctioning and RestrictionScccccccecccsees 39
7.3 JOD SetuUpPeccevccoscccccscscsscecscccccsconse 40
8 8 UTDMPLIBeccsccccsassscosscccssssncccsncsce U1
i 8.1 INnpUteccccvsococcscccccscocscccccscsscccnae a1
: iii

Section

"10.5
10.6
10.7
10.8
10.9

1
11.1
11.1.1
11.1.2
11.2
11.3

12

12.1
12.2
12.3

13

13.1
13.2
13.3

W
14.1
14.1.1
14.1.2
14.2
14.3

15

15. 1
15.2
15.3

Job Setnp.........o......-...............

UTCLASSccccocsscsesssnsscscscncccsnscsnscsnncconse
INPUtceccecccccvcccscocveccccccacccccaccvae
ontputooooooooo-ooooooocoooooo..oo.oo...o

Job setnp.oooco.ooooooooo-oooooo-ooo.--oo

SOURCE LANGUAGE STORAGEcecccccccccccscccne
Source Libraries.ccccccccccccecccccccccce
Means of Stoting SOULCR.ecccesesenccvoncone
Conditions of Source Library Update......
Source Control Statementeccccccccocccccee
Source Member NaReSeccccccccvscecscccccscccee
Operation of Source Library Update.......
Sequencing of Source Haterialeccescccccsce
Listing Source Lib:ar’ fieRbOrSccccccccooe

Job set“poo.ooo.ooocoooo.oo.oaoooooo.o.oo

INDEX SPECIPIEBER (UTNDXSPC)ececcccccccccee
UTNDXSPC Input.....--.-o.................
SUB/TAB Cardeececcccscccscccccccsccccncccoe
INDEX Statement.ccccccccccccococccscccccoce
UTNDXSPC Ontpnt.......o..--....-.e...-...
UTNDXSPC Job set“pocovcoo..o.ooo.o.oao..o

INDEX TRANSPER (UTNDXTPR)ccocccccccccccce
UTNDXTFR INPUtecccceccccceccccvccsccscscccce
UTNDXTFR OutpuUtecccecccccoccvcccccccncccoe
UTNDXTPR Job Setlpecescccececvcecrcncocccce

UTPLDSCNuccecscccccccccsococscceccsccncsccce
UTPLDSCN Input..........-.............-o.
UTPLDSCN Output.......-.-..-.........-.o.

Job Setup......................-...o.....

UT”’KAN.'... [EFFFENEN ENENNE N N Y NN NENNENRNNENY X J
INPUtececcsccccncccccccccscccccsccsoevcccoe
FILE StatemeNticcccccvscsccccccscscsccscace
FPIELD StatemoNt.ccccccvecccccccccccrscccoe
OuUtPUtecosscsseccscencscsccncncssvcncscee
Job Setnp.............-.....o............

DICTIONARY MAINTENANCE (UTNDXKAD) cecccvcee
UT.DxRHD Inp.t...........................
OTRDXKMD O“tp‘too.o.ooao-ooo-ooooooqocooo
uT'DxKHD Job m“p...........‘...........

iv

Section

16
16.1
16.2

FORMAT DEFINITION TRANSLATOR (UTODE) .cecee

Iﬁput.ocoooooo..oo-.oooooootoo-o eecvcscces

JOb SetupPeccccccccccsce seccesccceccecccese

DISTRIB“'IO'....l.'.'.......‘............

DD Poras “13.0...0.ooooocooocoo.o eeccoccoe

ABSTRACT

This volume defines the capabilities of NIPS 360 PFS
Utility (OT) components. It describes the fanction of each
utility, its inputs, its outputs, and serves as a reference
for the knowledgeable aser of these coapoments.

This do :ument supersedes CSN UM 15-74, Volume VII.

CSM UM i5-74 Volume VII, is part of the following
additional MNIPS 360 FFPS documentation:

CSM UM "5-78 Vol. I

Vol., II - Pile Structuring (FS)

Vol. III - Pile Maintenance (FPHN)

Vol., IV - Retrieval and Sort Processor (RASP)
vol. V - Output Processor (OP)

Vol., VI - Teraminal Processing (TP)

Vol., YIII - Job Preparation Nanual

Vol. IX - Error Codes

TR 54-7%
Css GD 15-78

Installation of NIPS 360 PFS
General Description

vi

Introduction to Pile Concepts

——

Otility Support (UT)

Section 1

INTRODUCTION

This volume of the User Manual contains an analytical
description of the general utility support functions
provid2d by NIPS 360 PPS. These functions perfora coammon
processing required by all the components. The purpose,
use, 1leck setup, and options of each capability are
presented along with clarifying examples.

This volume is divided into the following sections:

a. TABGEN - Discusses the user conversion table
generator function

b. SUBLDR - Discusses the user conversion subroutine
loader function

Ce pata Conversion - Discusses the data base
conversion function vhich converts a 1410 FFS data
base to an equivalent NIPS 360 PFS data base

d. Pile Load/Unload - Provides the Job Control
Language to transfer files to and from the
Sequential Access Nethod and the Indexed Sequential
Access Method or the virtual Storage Access HNethod.

e. UTQRTQDF - Discusses the creation of a NIPS 360 PPrs
data file from the ansver file (QRT/QDF) produced
by the retrieval processor (RASP)

£. UTSUBCHK - Discusses the user subroutine checkout
function

ge UTDNPLIB - Discusses the capability of printing the
names of reports and/or logic statements currently
residing on the data file

Utility Support (UT)

he.

i.

Je

ke

1.

O.

UTCLASS - Discusses the capability of changing the
classification of a data file

SOURCE LANGUAGE STORAGE - Discusses the 1library
storage of souarce programs to facilitate
housekeeping and program maintenance

UTNDXSPC - Discusses the manner in which indexing
information may be used without running an PS or FM
job

UTNDXTFR - Discusses the capability wvhich persmits
the user to transfer the entire data set, froa one
resident medium to the other

UTFLDSCN - Discusses the source statement field
referance scan function.

UTNDXKAN - Discusses the capability to analyze the
words in fields for which keyword indexing is to be
speci€ied.

UTNDXKMD - Discusses the maintenance of tables and
dictionaries required for keyword indexing.

UTODE = Discusses the editing of user format
definition source statements and their placement on
a user library. /

Utility Support (UT)

Section 2

TABGEN

TABGEN offers the user the capability to generate data
conversion tables that may be used to support input and
output functions for NIPS components.

This technique lends itself to effective utilization of
file storaye space. It also coampleaments the output
processor by expanding the coded internal storage values to
an extarnal readable form. The NIPS retrieval processors
use the reverse technique by permitting the user to express
the longer readable form as a search argument. Table
conversion will change the search value to the internal
storage form for retrieval processinge.

Conversion tables consist of argument/function pairs.
The argument is called the search value and is the data to
be converted. The function is the corresponding converted
value. Arguments and functions may be fixed length or
variable lergth,

Tables which are used to convert file data froa an
internal format to an external format are called Output
Conversion Tables. Tables which are used to convert file
-data from an external format to an internal format are
called Input Conversion Tables. Conversion tables nmay be
created to perform both input and outpat functioas.
_Whatever the function, the table is alvays entered with the
argqument and the function is returned. The tables designed
by the user and linked to NIPS by the TABGEN processor nmay
be used to:

Utility Support (UT)

a. Convert fixed length data to variable 1length data
b. Convert variable length data to fixed 1length data
Ce Convert fixed length data to fixed length data.

TABGEN may also be used to delete a table or tables froa the
user's librarye

2.1 Input

TABGEN will accept as input the following statements in
the order indicated:

a. Delete Table Statement (optiopal) - Stateaent
is used to reguest deletion of a table or

tables from the user's library.

b. Table Ideptification Statemept _(reguired) -
This control statement is used to define the
name and function of the table and to describe
the format of the table value statesments.
TABGEN provides the user with two methods of
coding control stateaents. These are the
keyvord and fixed format methods.

o Keyword - #ith the exception of the table
name, control paraaeters may be
identified in any order. PEach parameter
is coded with its associated operands and
is keyword identifiable.

o FPixed - All paraseters are colunn
assigned for program interpretation.

c. Header Statements _(optjopal) - Headers are
used frequently for title information and will

appear on each page of the TABGEN listing.

d. Conmment Statements (optjopal) - Comments are
often used to describe the purpose of the

table, along with any pertinent remarks the

A -

Utility Support (UT)

user vishes to make. These statements will

appear only on the first page of the TABGEN
listing.

€. Table _Value _Statements _(required) - Table
value statements supply the arqument/function
pairs to the conversion table. The pairs may

be arranged for input to the table in either
a free or fixed format.

o Fixed FPormat - The user is required to
align all arguaent/function pairs im the
same column arrangement, but he has the
option to choose this alignrment as well
as the arguaent/function order. Both

arguments and functions * may contain
esbedded blanks.

o Free Pormat - The user is not bound to
any column alignment constraints for the
table value statesents; however, a
consistent argument/function order must
be maintained in the source statements.
Either the arguaent or the function may
contain embedded blanks. If a value
contains embedded blanks, it =must be
defined as the variable.

2els) Delete Table Statesent

This statement provides the nanme(s) of tables to be

deleted. Any number of cards can be submitted, but they
sust be first in the TABGEN deck.

The format of the DELETE card

DELETE - This keyword which
type, aust be coded in column

a. the name of at least one

is as follows:

indicates the
1 of the card.

statement

table to be deleted wmust
appear on the card before coluan 72.

Ul e

_y.“, i : . ——— ﬁq:;-—------""""'""""""'“‘“““““‘“"

Utility Support (UT)

|
E
|
|
|
|
|
|
|
|
E
|

< EBxasple: DELETE DTGIS

b. If more than one table mame is to be included on
the card, they must be enclosed in parenthesis and
separated by one blank or comma.

Example: DELETE (DTGIS,DTGOS)
i Ce. A table name or a list of table names canmot be

i split between cards, but multiple DELETE cards can
i be submitted.

2.1.2 Table Ydentification Stateaent

This stateament ptovidos coatrol information to the
TABGEN progranm. The paraseters may be keyword or fixed
format.

2.1.2.1 Keyword Table Identificatioam Statement

The keyvord statement is the method used to express
control paraseters in free fora. With the exception of the
conversion table name, the user may specify the necessary
control paramseters im any order. Only the table name is
required in the table 4identification stateaent. The
remaining parameters are optiontl and need only be stated if
other than default values ale required. The following
coding conveations apply to keyword table ideatification
statements:

1 a. Keyvwords are separated froa associated operands
vith equal sigas. ;

b. 'xoy-otd/bp.:ald parameters asay be separated froa -
other control paraseters by a coasa or blank(s).

3 Ce Hultiple operasds assigmed to a single keyword will
be enclosed ia parentheses.

1 ' de Hore than one card may be used to identify keyword
: parameters. Code a aonblank character ia card

b A S BAR N A R VA 7

Utility Support (OT)

coluan 72 ¢to indicate continuation of table
identification coatrol stateseats.

e. Do not code parameters beyoad card colusn 71.

f. Do not split keyword/operand 1ists betveen card
boundaries.

The following statemeat exeaplifies the keyword format:

TABLE=0CTEST ARG= (1/1,0NE,P) PUONC=(3/19,T%0,V)
USE=0 PAGE=2K USERNANE

The folloving keyword definitions apply to the keyword
Stateamont:

IABLE - This keyword, which specifies the table name, must
be coded in column 1 of <the table identification carad.
Table names must confora to standard NIPS name rules as
defined in Volume I, Introdaction to Pile Concepts. This is
the only keyword that is always required.

Example: TABLE=0OCTEST

ARG ~ This optional keyword Ray appear anywhere following
the TABLR keyword. This defines the characteristics of the
table argument. The following subparaseters may be coded:

a. hh/11 - This subparameter defines the high- and
lov-order coluans of the arqument in the table
value statement. Since this defines specific
colusn alignment, the table value cards are,
therefore, fixed format.

Example: ARG= (1/1)

b, 11 = Ome to three digits may be used to define the
Baximus length of the argeasat. If arguaent length
is specified rather than bhigh- and low-order
colusns, then the table value cards are free
format,

Exaaple: ARG=1

TE—

o o e

Jr—p—

i

Utility Support (UT)

Ce

d.

If neither argument length nor column alignment is
specified, the table value cards will be considered
free format. The actual argument 1length will be
detersined from the maximus length of the argasments
in the table., If arguamsent length is greater than
30 characters, the maximum length must be entered
ia the PARN field of the BXEBC JCL card. The user
Bay not specify both column alignment and length on
a table identification statesent.

ONE - The subparameter 'ONE' or 'THO' may be coded
to indicate the relative position of the argument
to the function in the table value card. °*ONE' is
the default value for the argument; °THO' is the
default value for the function. However, if the
user overrides either position subparameter, the
remaining subparameter automatically ™flip-flops"
to an opposite default value. If the position
specification is not consistent vith coluan
alignment reguireaments for fixed format table value
cards, the coluan alignment specifications take
precedence.

Examples: ARG=(1/1,0NB)

Specifies fixed format table value card,
vith argumsent preceding function.

ARG= (5, THO)

Specifies free format table value card.
Argument is a saximum of five bytes 1long
and follows the function on the table
value card.

F - The subparameter 'F' indicates the argument is
fixed in length (no embedded blanks). 'ye
indicates the argusent is variable in length. If
this subparameter is omitted, the default for the
argument is °*P*,

Exaaple: ARG= (1/1,08E,P)

Utility Support (UT)

EUNC - This optional keyvord with 4its subparameters iay
appear anywhere on the table identification card following
the TABLE keyword, This defines the characteristics of the

table

Qe

De

Ce

fanction, The followving subparameters may be coded:

bhh/11 - This subparameter defines the high- and
low-order columns of the function in the table
value statesmeat. Since this defines specified
column alignment, the table value cards must be
fixed format.

Exasple: PONC=3/19

111 - One to three digits may be used to define the
maxisum lengths of the fumction. If the function
length is specified rather than high- and low-order
columns, then the table value card must be free
format,

Exanple: PUNC=17

If neither function leagth nor column alignment is
specified, the table value cards will be considered
free format. The actual function length will be
deterained from the saximum length of the functions
in the table. This may not exceed 255 bytes. The
user may nQt specify hoth coluan alignment and
length on a table identification statement.

THO - The subparameter °TWO' or °‘ONE’ may be coded
to indicate the relative position of the function
to the argument in the table value card. °'THO' is
the default value for the function:; 'ONE' is the
default value for the argumsent. However, if the
user overrides either position subparameter, the
remaining subparameter automatically %flip-flops"™
to an opposite default value. If the position
specification is not coasistent with column
alignsent requirements for fixed format table value
cards, the columa aligaseat specificatioas take
precedence.

Examples: PUNC= (3/19,TWO0,V)

I

Utility Support (UT)

This specifies a fizxed format table value
card with the function in coluans 3-19,
The function is variable 1length and
follows the argument on the table value
card.

PUNC= (15,0¥E)

This specifies a free forsmat table value
card with a maxzisum function length of 15
bytes. The function defaults to variable
length and precedes ths argument on the
table value card.

d. V - The subparameter °'V' indicates the function is
variable in 1length. °P* is the user®'s option and
indicates the function is fixed length. If this
function subparameter is not coded, the default
value is °'v,°*

USE - This keyvord parameter may appear anywhere on the
table identification statement card following the TABLE
keyworde The parameter indicates the use of the table for:

I = Input
0 = Qutput
B = Both

If tha keyword is not coded, B is assumed.

PAGE - This keyvord may appear anywvhere following the TABLE
keyword. The subparameter indicates the maximum size of a
page for the table. The user has the option to specify the
following page sizes:

K
2K
4K

If this keyvord does not appear on the table identification
statement, a page size of 1K is assused.

Utility Support (UT)

USERNANE - The user's name may appear anyvhere on the table
identification card after the TABLE keywofd. This paraseter

is optional.

2.1.2.2 Pixed Pormat Table Identification Statement

This statement is used to express control paraseters in
fixed foraat. As in the case of the keyvord table
identification statement the table name and function, as
vell as the format of the table value statesents, will be
defined in this statement. Specific columa alignment of
parameter values is essential for progras interpretation.
The following card colusn alignaent defines input formats
for both fixed and free forsat table value stateaments.

Card Pixed PFormat Table Free Format Table
Columns VYalue Statemeats _ Yalue _Statemepnts
1-5 Contains card identifier Contains card
idemtifier
TABLE TABLE
11-17 Contains name to be given Same

to a fixed-to-variable-
length conversion table

21-27 Contains name to be given Same
to a variable-to-fixzed-
length conversion table

31-32 High-order position of Length of fizxed
fixed length field in length field in the
the table value stateament table value stateaent

34-35 Lov-order position of Blaak

Pixed length field in
the table value stateaent

"

- e -
)
‘.
&
Otility Support (UT)
Card Fized Pormat Table : Free Pormat Table
Columas Yalse Statepents ¥ Yalye Statesents
41-42 High-order positioa of ‘ Length of variable
variable leagth field im length field in the
the table value state- table value statesment
aeat
44-45 Lov-order position of ~ Blamk

variable leagth field in
the table value statement

50 Contaians code desigmating Sase
use of table:
I = Input
0 = Output
B = Both
51 . Blaak Comtains *P* if
the £izxed field is the
first field ia the
table value stateaent;
contains °*°S® if the
fized field is the
second field ia the
table value stateaeat
55 Coatains the user's Same
nase
73-80 Card deck seguemce Same

nuaber if desired

2-1e3 Header Statesent

Header statements are optional amd may be ased vwith
keywvord or fized format comtrol statemeats. For each table
generated by the TABGEN processor, a listimg wvwill be
provided to the user. Up to four user-specified header
lines may be printed oa each page of the generated table
listing. A header stateseat is ideatified by onme, two,

12

Utility Support (UT)

three, or four asterisks left-justified in colusns 1-4
representing the statements (limes) one, two, three, or
four. Data printed on each page of the output listing is
taken from coluans 10-80 of a stateseat. Por example:

card Column

1 10

* THIS IS AN OUTPUT HEADER

% THAT WILL APPEAR IN THIS ORDER
&% ON EACH PAGE OF OUTPUT OF

LE L A TABGEN LISTING.

2. 1.4 Comment Stateaent

A coament statement is identified by an asterisk in
coluan 6. Any nusber of coaaeat statements may be applied
by the user, but they sust follov the header statement and
precede the table value stateasests. The contents of a
coasent statement vill be printed exactly as it appears on
the punched card. FPor exzaaple:

Card Column
6 10

THIS IS A COMHENT STATEHENT

THAT WILL APPEAR OB THE PIRS?T

PAGE ONLY OF A TABGEN LISTING.

THERE NAY BE ANY NUMBER OF

COMNENT STATEHENTS PRIOR TO THE
OUTPUT OF THE TABLE VALUE STATBHENTS.

LR B BE IR 2

2. 1e5 Table Value Statesents

Argument/function pairs are supplied to TABGEN by table
value stateaments. If the keyword table identification
statesent is used, the user say create a table in which the
argument/function pair may have a combined length of 256
characters, If this method is used and the
argumsent /function pair exceeds 71 characters, the table
value statesents should be continued to the next card. A

13

otility Support (UT)

maxisus of four contiawation cards is permitted. A non-
blank character imn colusn 72 will indicate continuation.

"The scam will proceed through columa 71 and contimue with

colusn 1 on the next card.

If the fixed table idemtification statement is eaployed,
the argusent/function pair aust be contained within the
column boundaries of ome punched card.

In either case, table value statements may appear ia one
of tvo forsats; i.e., fixed or free. Examples of each
follow.

a. Pixed Pormat - The user is required to aligs all
argumeent/function pairs in a prescribed coluan
arrangesent. The column aligament and
arguaent/function order are optiomal; however, all
table value inputs must have the sase forsat. For
exasmple, the following table value statesents would
supply argusent/function pairs in fixed foramat to
a "Service Table™:

Card Colusmn

1 3 19
E U0.S. Coast Guard

¥ U.S. Army

J U.S. Air Porce

N U.S. Navy

B U.S. Rarine Corps

Using the fixed forsat table value statemeants, the
high- and low-order positions of the
argusent/function pairs must be specified im the
table identification statement. PFixed foramat table
value statements can contaia blanks in both fixed
and variable leagth fields.

b. Free Pormat - The user is not limited by coluan
boundary restrictions using the free format method
for input of table value statemseats. Data may
start in any card coluan and end iam any card coluasa
betweea columas 1 amnd 71, inclusive, for keyword

14

Utility Support (UT)

table identification control cards, and between
columns 1 and 80, inclusive, for fixed table
identification control cards. The order of
argument/function pairs msust be indicated and
remain consisteant for all imputs to a single table.
For example, the followving table value statements
vould supply argument/function pairs to a "“Service

Table®™:
E U.S. Coast Guard
] U.S. Aray
J U.S. Air Porce
H U.S. Navy

M U.S. Marine Corps

The order of argument/function pairs in the example shown
remains consistent in each table value stateament. Hovever,
column selection of data value placement is free format. 1In
this format the fixed lemgth field camnot contain embedded
blanks, but the variable lemgth field can.

2.2 Job Setup
a. The following job setup is used to execute the

XTABGEN cataloged procedures and aust be organized
in the order shown:

//Jobnane JOB (Standard parameters)
//Stepname BEXRC XTABGER,LIB=yourlib
//TAB.SYSIN DD =

TABLE IDENTIFICATION STATENENT (Required)
HEADER STATEMENT (optional)
COMMENT STATEMBNT (Optional)
TABLE VALUE STATENENTS (Required)
V4

b. More than one table may be generated in a single
job step. If tables are batched and a table
argument length exceeds 30 bytes, TABGER nmust be
informed by stating the maximum argument length in
the PARM field of the BEXBEC card, for example,
PARN=nnn (nnn is any number between 1 and 255).

15

Utility Support (0UT)

c. The gemerated table will become an executable load
module which will reside as a member of a library
that will be identified by the LIB= parameter in
the BXEC card. The user may create his own nevw
library by overriding the folloving symbolic

parameters:
LIBDISP= (NBW,KEEP)
VLIB= (volunme)
LIBSP= (space)
OLIB= {unit)
2.3 Limitations

a. The saximums table size is approxirately 528,000
bytes The maxisus nusber of pages which any table
may comtain is 132.

b. The maximum argusent/function size is:

0. 253 bytes when using keyword table identification
stateaents

0. 80 bytes when using fixed table ideantification
Statements.

2.4 Exaaples

Examples of test rums using keyvord table identification
stateaents.

ae The following TABGEN source deck setup was used to
generate a fixed-to-variable leagth table using
free format table value stateaments. The table name
is CTRYS, and the table comverts a two-character
internal storage code to an output value with a
saximem leagth of 15 characters. The user name is
TABGENTEST and the table page size is 2,000
characters.

16

Utility Support (UT)

b.

//Jobnane JOB (stapdard parameters)
//STERPA BXEC XTABGEN,LIB=yourlib
//TAB.SISIN DD =

TABLE=CTRYS ARG=2 PONC=15 USE=0 PAGE=2K TABGENTEST
* TABLE CTRYS USING FREE FORMAT TABLE
% IDENTIPICATION CARD AND TABLEB VALUE
#x% CARDS.
AA APRICA

AC ATLANTIC OCEANM
'TEEEZEEEEEETET EE K X N I NN BN I BRI BE B B AR 0 B B R B L R B B B0 L B
64 CARIBBEAN

65 PACIFIC ISLANDS

/t
The output listings for this source deck will
appear as follovs:

DATE 71001 TABLE-CTRYS ORIGINATOR TABGENTEST PAGE-001

TABLE CTRYS USING PREE FORNAT TABLE
IDENTIFICATION CARD AND TABLE VALUE
CARDS.

ARGUNENY FUNCTION

AA AFRICA

AC ATLANTIC OCEAN
64 CARIBBEAN

65 PACIFIC ISLANDS

The following TABGEN source deck setup was used to
generate a variable-to-fixed 1length conversion
table using fixed format table value statements.
The table name is UNLVSI, and the table is used to
convert an external value with a maximum length of
15 characters to an input storage code with a
saximsum length of three characters. The user nase
is TABGENTEST and the table page size is 1,000
bytes:

//Jobname JOB (standard parameters)
//STEPA EXEC XTABGEN,LIB=yourlib
17

otility Support (UT)

//TAB.SYSIN DD =
TABLE=UNLVSI ARG=10/24 FUNC=1/3 USE=I TABGENTEST
* TABLE UNLVS USING KEYWORD TABLE IDENTIFICATION

** STATEMENTS AND PIXED FORMAT TABLE VALUE
% CARDS.

A NUNBERED ARAY

ACD ACADENY

1] UNIT
UssS US SHIP
¥G WING

/¥

The output listing for this source deck will
appear as follows:

DATE 77007 TABLE-UNLVSI ORIGINATOR-TABGENTEST PAGE-001

TABLE UNLVS USING KEYWORD TABLE IDENTIFICATION
STATENENT AND FIXED FORMAT TABLE VALUE

CARDS.
ARGUNENT FUNCTION
NUMBERED ARMNY A
ACADENY ACD
UNIT 0
US SHIP Uss
WING WG

18

utility Support (UT)

Section 3

SUBLDR

SUBLDR is used to transfer a conversion subroutine in
load wmodule form from a work library to the NIPS library.
This procedure establishes the proper linkage for the
interface between the NIPS 360 FPS and the user subroutine.
Th2 subroutine should have been tested previously by the
user. The conventions required in writing the subroutine
have been outlined in Volume I, Introduction to File
Concepts.

3.1 Input

Input for the cataloged procedure XSUBLDR comes from two
sources: a user-supplied statement in the job deck defining
the attributes of his subroutine, and the subroatine in locad
module form. The location of this load module is identified
by a symbolic parameter supplied by the user.

The free format control statement defines the
suproutine, and is punched on a card. The parameters must
be in their stated order but may be separated by blanks or
commas and may start in any card colunmn. The nine
parameters used in the control statement are as follows:

a. Statement Ydentifier - SUBRT
b. Conversion Subroutine Name - Name to be wused in
NIPS 360 FFS statements vhen invoking the

subroutine. This name aust confora to
specifications outlined in Volume I, Introduction

19

Otility Support (OT)

Ce

f.

Je

i.

3.2

to File Concepts, and must be unigue in the ¥NIPS
library wvhere the subroutine is stored.

Haxisum Argusent Size in Bytes - Decimal npusber
(saximus) to be accepted by the subroutine.

Baximus Panction Size in Bytes - Decimal ausber
(saxiaus) to be supplied by the subroutine.

Conversion Subroutine Type
I - 1Input conversion
0O - Output coaversion
B - 1Iaput/output coaversiosn.

Argumsent Hode - Por input data to the subroutise.

A = Alphameric mode
B - Bisary mode
C = Coordinate node
D - Decimal mode

Punction Node - One of the characters 1listed in
parameter (f) defines the mode of output data from
the subroutine.

Subroutine Load MHodule Wame - As it exists om a
work 1library, this nase aust be the same as the
load module entry point mame. This mase may be the
Same as that ased im parameter (b) but not
Recessarily. The name used may aot be greater than
seven characters ias leagth. .

User Base - Writer of the subroutine. Up to 18

Ccharacters say be used, with 20 eabedded blanks.

Periods say be used to separate imitials.

Job Set 3
P))

The followiag statesests illustrate the deck setwp wsed
to execute the ISUBLDR procedure. :

S D T

S

Utility Support (UT)

//30BNANE JOB (standard paraseters)
// EXEC XSUBLDR,LIB=yourlib, NODLIB=TENP
//75UB.SYISIN DD s
Control statemeat defining subroutine
as described in 3.1.
Vi

The LIB symbolic parameter defines the library wvhere the
executable subroutine load module is to be stored. This can
bte a user's private library or an installation NIPS library.

The HODLIB symbolic parameter provides the work library
name vhere the subroutine 1locad module is located.

This library can be the installation progras library or

a private library built by the user when the subroutinme is
assembled, link edited, and tested by the auser.

Sample Control Statesent
SUBRT, CTRYS, P2, 15, 0, A, A, HODES, USERNANE

This gontrol stateaent defines the ¥IPS subroutine CTRYS
as an output subroutine accepting two alpha argument bytes

and 'goueratynq 15 alpha bytes output, The load module
created hy(the aser has name and eatry poimt NODNN.

21

b i

i

Utility support (UT)

Section &

DATA CONVERSION

The data coaversiom utility allows the user/analyst to
convert 1810 PPS data bases to NIPS 360 FPS format. NIPS
360 PPS data bases can be recomverted to 1810 PPS foraat.
In either sode, the coaversion pProcess produces a logically
ideatical file coataiaiag all of the appropriate elesents of
information for the wode. The process 1is esseatially
automatic, requiriag the amalyst to provide am PPFT for each
of the tvo modes of files, but reguesting no control data.

Data coaversion occurs at the field level, peraitting
rearrangesent of data elements withia a periodic subset or
fized set. New fields may be added and old flelds say be
dropped. The variable set (VSET) of a 1810 file may not be
dropped when coavertiag to a BIPS 360 PPS formsat.
Repositioaing of the data fields within the subset or fixed
Set peraits change of the record coamtrol group conteats.
The systea senses aay variatioa in the segquence of the naew
ttlo.dald Prints aa error sessage vhen the file sust be
sorcted.

The 1810 weode coordimate fields are automatically
converted by the systea oaly whea the length specificatioa
is the 1410 FPY is equal to 13. Siace this is the mormal
isternal format for 1810 data buses, 1o probles should
result from this coastraiat.

A listiag of all field msames, amd their disposition,
will be priated at the bogianiang of the rua to aid the
analyst ia determining sew file comteats. At the end of the

22

e — .

Utility Support (UT)

run, a space allocation print-back is included to assist in
loading the data base onto direct access devices. The
conversion process is tape-to-tape whenm going to NIPS 360 |
5 format and disk-to-tape vhem going to the 1410 foraat. |

e i i

DD cards used in the utility (UTDATAC) are:

DDNANE Eile Described
SYSIN 1410 object PPT
DATAPILE 360 ISAN PPT (and data base if 360 to 1410)
PILB1410 1410 data base (optional, see below)
NEWPILE Output data base froa conversion
SYSPRINT)
) Printer
SYSOUT)

Direction of coaversion will be determined by the presence
of the FILEL410 DD card; if it is present, the conversionm is
froa the 1410 to the 360.

Description of data sets:

{ SYSIN = 1410 PPT in object deck fora.

: DATAFILE - 360 ISAM PPT/data base.

. PILE1410 - 1410 data base, usually a 7-track, 556 bpi,
evaen-parity tape vith aonstandard labels. The following

exa-pl: is for the SOPAL data base which is cataloged on
the 360:

//FILE1410 DD DISP=0LD, DSNANB=SOPFAAXXX, LABEL=(, NSL), c

V{4 DCB= (DEN=1, TRTCH=ET)

23

utility Support (UT)

NEWFPILE - Output file froa the conversion utility. Por
the 1410 to 360 coanversioam, this will describe a
SAH file om 9-track tape.

,/UBWFILE DD UNIT=2400,DISP=(,CATLG) ,DSNANE=SOPFAA
For the 360 to 18410 coaversion, this will describe a
seven-track tape with aoastandard 1labels. The
BLKSIZE aust be supplied in the DCB parameters.
//UENFILE DD UNIT=2400-2,DISP=(,KEEP) ,DSNANE=SOFAAXXX, C .
/7 LABEL=(, NSL) ,DCB=(DEN=1, TRTCH=RT,BLKSIZE=2704)

SISPRINT AND SYSOUT - These describe the systea output
vriters.

4.1 Data Conversion Utility - UTDATAC

This utility vill convert a 1410 PFS data base to a NIPS
360 PPS data base. It will recoavert a NIPS 360 PPS data
base to a WIPS 1810 PPS data base.

4.1.1 Procedure X360CON

This procedure will coavert a 1810 FFS data base to a
NIPS 360 FPS data base. The 1810 PPS file is assuaed to be
on a 7-track tape and the new data base is to be writtea on
a 9-track tape. Using syabolic paraseters for this
procedure, one would use the followiag JCL:

//JOBEANE JOB {standard paraseters)

+/ EXBC X360C0N, ISAN=aaaaaaa, VISAE="SER=bbbbbb’ , X
/7’ PL1810=cccec, V1810='SER=444444°, b ¢
V{4 SAE=eeceeee, VSAR='SER=LL£LLFL*

//SYISIB 1) /) L4

(FPT object deck of 1810 PPS)

oo

Otility Support (UT)

vhere
aaaaaaa = NIPS 360 PPS ISAM data base nase on disk
bbbbbb = disk serial number for the ISAN data base
ccccee = 1410 FPS tape data base name
dddddd = tape serial number for the 1410 data base
eeceeeee = NIPS 360 PPS tape data base naae
ffffff = tape serial number for the 360 data base.

4.1.2 Procedure X1410CON

This procedure will convert a NIPS 360 PPS data base to
a 1410 PFS data base. The ¥WIPS 360 FPS data base is assumed
to be on a 2314 disk pack and the converted data base is
vritten on a 7-track tape with nomstandard labels. Using
symbolic parameters for this procedure, one would use the
folloving JCL:

//JOBNANE JOB (standard paraseters)
// EXEC X1410CON,ISAN=aaaaaaa,VISAN=*SER=bbbbbb’,
// SAH=eeeece, VSAN=*SER=fffL£f"

//SISIN DD *

(1810 FPS FFT object deck)
/t
where

aaaaaaa = NIPS 360 Frs ISAN data base name on disk
bbbbbb = disk serial number for the ISAN data base
eceee = data base name for the 1810 FPS tape
fLfLELf = tape serial nuaber for the 1410 data base.

25

e S

Utility Support (UT)

Section 5

FILE LOAD/UNLOAD UTILITIES

The following paragraphs provide the job coatrol
language and necessary isformatiomn required to traasfer
files to amd fros the Sequeatial Access aad Indexed
Sequeatial Access Hethods (SA: and ISAH) and to and from the
Sequeatial Access aad Virtual Storage Access Hethods (SAHN
and VSAH). These utilities are effectively automatic and
require oaly the JCL streas for coatrol.

5.1 SAB to ISAB or VSAN Utility - UTBLDISH

This utility builds aa NIPS ISASN data base or a UNIPS
VSAN data base from a NEIPS SAN data base. Under control of
the CC syabolic paraseter om the BXIEC card it can optionally
build the ISAN or VSAN data base in the compressed and/or
compacted foram or reverse the process to produce the ISAH or
VSAN data base in the stasdard fora (see sectiom 5.3).

The JCL DD cards used are:

//DATAPILE DD Paraneters defiaiag the nmew ISAN

data base

//SARFILE DD Paraseters definiag the existing Ssan
data base

//VSAFILE DD Paraseters definiag the aew VSAB
data base.

The nev ISAN NIPS data base vill be created with the
following attributes: msaster index, cylinder overflow,
independent overflow, delete option, write check and
feedback reorganizatiom criteria.

utility Support (UT)

The procedure XSTOIS is used to build a NIPS 360 PFPS
ISAM or VSAM data base from a NIPS 360 PPS SAH data base.
It is assumed that the existing NIPS SAM data base resides
on a 9-track tape, and that the ISAM data base will reside
on a 2314 disk pack with a disposition of KEEP. If output
.s to be a VSAM data base, it must have been previously
uefined via the VSAM service routine IDCAMS and cataloged on

a VSAM user catalog. Using symbolic parameters for this
procedure, one would use the following JCL:

//JOBNANE JOB (standard parameters)

// BXEC XSTOIS,ISAN=aaaaaaa, VISAN="'SER=bbbbbb*, X

/7 PRINEB=cc, INDEX=d, SAN=eeeeecee, VSAN="SER=ffffff?,

// CC=g9g99999

/t

where:

aaaaaaa = name used for the new ISAM data base

bbbbbbb = disk serial nuamber for the new ISAM data base

cc = number of cylinders of prime space for the new
ISAN data base

d = size of index needed for the new ISAN data base

eceeceee = name of the existing SAM data base

1333334 = serial number of the tape that contains the
existing SAN data base,

999999 = parameter option for data record transformsation

(COMPRESS, CONPACT, EXPAND or both CONPRESS and
CONPACT) and pad record suppression (NOPAD).
Nultiple values must be separated by coanmas

and the vhole paraaseter eanclosed in silqle
quotes. (see sectiom 5.3).

Por SAA to VSANM, replace the ISAN parameters
with:

VSCAT=aaaaaaaa,¥SDSW=bbbbbbbb,NONVSN=*DUNNY, *

27

[SRS

Utility Support (UT)

vhere:
aaaaaaaa = name of the VSAN user catalog

bbbbbbbbd = name of the VYSAM data base to
be loaded.

Normally, after the file has been copied to disk, the
remaining prime space will be filled with pad records.
These are ISAN records with valid keys which have the delete
byte set on. These records make it possible to add records
to the end of the file during later update and still resain
in the prime area.

If the user does not vant these pad records, he may
include the NOPAD keyword in the symbolic parameter CC on
the EXEC card.

An example might be a SAN file that is dumped to disk
for use with TP, In this case, it would be desirable not to
pass all of the pad records for a gquery, wvhile the user is
waiting at the terminal.

Upon completion of UTBLDISH, the user will receive
either the message,

'NIPS ISAM (VSAM) DATA PFILE HAS BEEN SUCCESSFULLY
CREATED®

if the job was successful, or a USER 0200 ABEND if the job
vas unsuccessful.

5.2 ISAB or VSAHN to SAM Utility - UTBLDSANM

This utility builds a SAN data base from either am ISAN,
a VSAE or another SAN data base. Uader control of the CC
symbolic parameter oa the EXEC card, it cam optionally build
the output SAE data base im the coapressed amd/or coampacted
fora.

The JCL DD cards used are:

28

——

Utility Support (UT)

//DATAFPILE DD parameters defining existing ISAN data file
//VSHPILE DD parameters define existing VSAN data file

//SAMFILE DD parameters defining existing SAN data file

//SAMOUT DD parameters defining mew SAN data file
The procedure XISTOS is used to build a NIPS 360 FFS SAN
data file from an ISAM or VSAM data file or copy a NIPS 360
SAM data file. It is assumed that the existing ISANM data
tile resides on a 2314 disk pack or that the existing SANM
cdata file resides on a 9-track tape with standard label, If
input is a VSAM data file, it must be cataloged om a VSAM
vser catalog. It is also assumed that the output SAM data
file will be written on a standard label 9-track tape.
Using symbolic parameters for this procedure, one would |
use the following JCL:
//J30BNAME JOB(Standard parameters)
// EXEC XISTOS,ISAM=aaaaaa,VISAN=*SER=bbbbbb*, ,
// SAM=eeeeee, VSAM="SER=f£ffff?,K CC=gggggy .
/*
where:
aaaaaa = npame of the existing ISAM data file
bbbbbb = serial number of the disk volume vhere the
ISAM data file resides
> eeceece = pname used for the new SAM data file
fEELfE = serial number for the new SAN data
s file
499999 = parameter option for data record transforsation

(COMPRESS, COMPACT, EXPAND or both COMPRESS and
COMPACT separated by a conma) and pad record
suppression (NOPAD). MNultiple values must be |
separated by commas and the vhole parameter
enclosed in single guotes.

Utility Support (UT)

For VSAH to SAN, replace the ISAN parameters with:
VSCAT=aaaaaaaa, VSDSE=bbbbbbbb
vhere:
aaaaaaaa = name of VYSAHM user catalog
bbbbbbbb = name of exisitng VSAM data file.

For SAM to SAHN one would use the following JCL:

//JOBNANE JOB (Standard parameters)
/7 EXEC lIS!OS,OLDSA!=aaaaaa,0LDVSI!='SBR=bbbbbb',
// SAfi=eeceeee, VSAN='SER=ff£fff*, PARA=9ggggg
shere:
aaaaaa = name of the existing SAN data file
bbbbbb = serial number of the volume vhere the SANM
data file resides
ceeeee = name used for the newvw SAN data file
ffffft = serial number for the new SAM data file
gg9gggg = parameter option for data record transformation

(COBPRESS, CONPACT, EXPAND or both COMPRESS and
COAPACT separated by a comma). Multiple values

maust be separated by commas aad the whole parameter
enclosed in single quotes. (see section 5.3).

Keyvords in the PARN are used to designate the fora of
the output SAN data base irrespective of the fora of the
input ISAN, SAR or VSAN data base, The keyvords for the
PABN and their implicatioans are the same as those for the
SAN to ISAN utility.

Upon successful coapletion of UTBLDSAN, the user will
receive the message:

‘NIPS SAM DATA FPILE HAS BEEN SUCCESSFULLY CREATED'.

Utility Support (UT)

Prior

The first line of statistics printed gives the file
serial number, date, time, and page nuamber.
Then information is primted concerning the sets,

name,

There are seven columns of information displayed, with
headings, as follows:

a.

b.

Ce

Ce

to

volume

SET

MININON
SUBSET
SIZE
(BYTE)

BAXINMUN
SUBSET

SIZE
(BYTES)

NUMBER OF
SUBSETS
PER DATA
RECORD
MINIMUM
MAXMIMUN

TOTAL
NUNMBER
OoF
SUBSETS

SIZE OF
LARGEST
SET

termination of the wutility, it will print
statistics that are beneficial for the user/analyst.

g St i

The first entry is ®FIXED SET" and follow¥ing
is each periodic set with the nuaber specified
in the FFT.

Shows the size, in bytes, of the smallest subset :
within the specified set, fixed or periodic. If J
a variable field is specified, the minimum and

maximum size will not be the sanme.

Shows the size, in bytes, of the largest subset 4
within the specified sat, fixed or periodic.

If a variable field is specified, the min-
imum and maximum size will not be the sanme.

These two columns reflect the minimum and
maxisum number of subpsets within a periodic i
for the total record., The fixed set would be
1 for minimua and maximum. The absolute
ainimum for periodics would be # and the
maxizum, any variable number.

The total number of subsets in each periodic
set for the entire file is printed here.

The number primnted for the fixed set is the
total nuaber of data records in the file.

This field shows the maximsum size in bytes
of the indicated set for any record in the
file.

n

—

Utility Support (UT)

For the ISAM file, the above-mentioned statistics are
printed along with information on the organization of the
ISAM file.

The number of PRINE, OVERFLOW, DELETE, and PAD records
is calculated and printed. Also informatiom from the DSCB
is printed. The DSCB information concerns the INDEX, PRIAE,
and OVBRPLOWY cylinder/track allocation and usage. The
column headings are MCYL/TRACKS ALLOCATED," "TRACKS
UTILIZED,™® and “PRRCENT <TRACKS UOYILIZED.™ The number of
t-acks in each cylinder overflow area is also provided.
With this information the user can calculate the amount of
space needed for his job. This alleviates wunnecessary pad
records that are added if any prime area resains.

S.3 Coapression and Compaction of Data Records

Compression and compaction provide a means for the
re luction of intersediate storage requiremeats for data
Without altering the integrity of the data. This data
reinction sScheme is particularly suited to data files that
contain strings of identical characters or a large quantity
nf alphabetic data.

i string of identical characters 1is compressed by
tra. . :ting it to tvo bytes. The first byte is a control
ivte which indicates that compression has been applied and

" a2s a count of the number of identical consecutive bytes
«aat were in the original string. The second byte is
iientical to those in the original string.

A string of alphabetic characters is compacted by
‘nslating it to a control byte followed by a string of
:+i»d characters. The control byte indicates that
arpaction has been applied and gives a count of the coded
‘rsracters. Each coded character represents a coabination
of tvwo adjacent alphabetic characters.

Other NIPS components recognize compressed/cpapacted

.a and expand it prior to processing. File HNaintenance
.it) will recompress and/or recoampact an updated record
L2fore writing the record to the data file.
Compression/compaction offers redaction in I/O time and

32

Utility Support (UT)

space requirements for the data file at the expanse or
processing overhead.

Keywords in the PARM parameter (specified by the CC
symbolic parameter) are used to designate the form of the
output ISAM or VSAM data bAse irrespective of the fora of

ne input SAM data base. The keywords for the PARM and
their implications are as follows:

COMPRESS -~ compression is applied to the output data
records,

COMPACT - compaction is applied to the output data
records.

COMPRESS, - a combination of compression and compaction

COMPACT is applied to the output data records.

EXPAND - compiession and/or compaction is reversed

to produce standard fore data records,

1f none of the parameters is specified, no data
transformation takes place, i.e. the ouatput ISAM or VSAM
data base form will be the same as the input SAM data base
form.

33

sy

Utility Support (97T)

M“‘ : i\

UTQRTOD?

The utility progras UTQRTQDF allows the user/amalyst to
create. a NIPS 360 PFPS data file froa the ansser file
(QRT/QDF) produced by the retrieval processor (RASP). The
outpat from this utility rum is a sequential access sethod
(SAN) file vhich is identical to a file generated usiang the
file maintenance processor. The copy process is cosplete,
carrying forward all of the logic statemeats associated with
the original file as well as the Pre. :

6ol Iapat

Input for the cataloged procedure IQRTQD? coaes froa two
sources. The first source is the paired data sets, QRT aad
(DF which are the norsal output of RASP. The job setuwp
description provides the proper assigaseat of these data
sets to the utility. The second source is a single coatrol
card. This control card is free format, im that the
paraseter string wmay be initiated in any card coluam, aad
the parameters are separated by blanks or commas. Only one
control card is peraitted for each execution of the utility.
The parameters provided on the coatrol card are either one
cr tvo keyvords and their correspoadiang operands. The first
keyvord is QUERYNO=. This keyword may be eatered in any of
the followiag foras:

QUERY NO=
QUERY=
oa

aad aust be imsediately followed (a0 interveaimg blaak) by
tae retrieval nuaber (answer ideatificatioa nusbher)

A R AT AT S R PRI

Utility Support (UT)

‘Eibcifiéd in the retrieval rum creating the answer data
. Sets. The guery number is limited to four digits in size.
' Leading zeros may or say not be iascluded im the auaber.

; The second Xkeyword parameter is RITID=, and may be
entered in any of the following foras:

RITID=
RIT=
: ?ng;

and must be immediately folloved by the report instruction

 table identification (RITID). This keyword and its operand

may be omitted if the specific answer set desired did not
use the RITID parameter for identification in the original
RASP run.

The following exaaples indicate the types of control

. Statements expected by the processor., First, an exaaple of

the input required to identify retrieval nuaber (query

.mumber) 3 of a batched retrieval run, but with no RITID
. specified in the retriever input streaas:

QUERYNO=3
or
QUERYNO=0003
or
QUERYNO=003 RITID=

Second, an example of the use of the RITID stateaent:

QUERYNO=3 RITID=UNANEIT

6.2 Restrictions

The user may not attesmpt to output a data file from an
ansver stream formed under the following conditions:

a. RASP execution vas a multifile rua.

otility Support (UT)

b. A sort wvas specified for the amsver set ideatified.

C. Hultiple IP comdition stateseats were iacluded in
the retrieval nusber/RITID ideatified aasver set.

d. Hultiple SELECT stateasats were included ia the
retrieval ausber/RITID ideatified aaswer set.

Any batched retrieval coadition that would cause
resequencing of the resultant aasver set, or aay retrieval
coanditioa that vwvould cause deplicate output records
identified by a commoa retrieval assber/RITID may aot be
used to create a file through the use of this atility.

6.3 Job Setwp

The following -t-ton-ti illustrate the job setup used
to execute the XQRTQDF procedure:

// EXEC XRASP, paraseters for user's file

//BASP.SYSIN DD *
(RASP statement conforaing to rules outlined
sader 6.1 for aasver set to be processed by
UTQRTQDP)
Vil
/7 BEKEC XQRTQDPF,SAN=ATFILE
//QRTQDP.SYSIN DD ¢
(Coatrol statememt defiming input as
described in 6.1 and 7.1.1)
/®

The user obtaims his aev data file (HYFILE) om a
standard-labeled, 9-track tape written according to the
installation assigned deasity. The user may overrcide the
syabolic paraseters to obtainm input and output data sets
differing from the procedure-specified standards.

The XQRTQDP procedure may be executed in a separate job
from the RASP if the QRT asd QDF are saved. In this case,

ERSNTE—

Utility Support (OT)

the (QRTFILE and QDFILE symbolic parameters would bave to be
specified with the appropriate values.

6.4 Brror Conditions and Processing
All error conditions sensed by this program will cause

termination with a “user™ abnormal end code of 1, 2, or 3.
These codes are always accoapanied by an error message
uniguely identifying the error condition encountered. The
foli wing material is included as a gquick reference of error
listings. For full wmeaning of the error aessages, see
Volume IX, Error Codes.

INVALID KEY WORD - RUN TERMINATED

NO ANSWER SET FOR QUERYNQ/BITID

QRT/QDF IS HULTIFILE PRODUCT - ERROR

NO FILE RECORD ON QRT - BAD INPUT

ONLY ONE CONTROL CARD PERNITTED

BAD RECORD TYPE FOUND ~ RUN TERMINATED

EOD FPOURD COPYING FFT AND LS - NO DATA

USER-SPECIFIED SORT - CAR'T PROCESS

MULTIPLE IF/SELECT STATEMENTS USED WITH
QUERY/RITID SPECIFIED - RUN ABORTED

ERROR READING QRT - ERROR ABEND
PHYSICAL EODAD ON QDF -~ ERROR ABEND.
B0 RECORD FOUND - RUN TERMINATED

RECID SPECIFIED IN QRT CANNOT BE PFOUND
IN QDFP

WARNING - THIS FILE BUILT FROM QRT/QDPF
WITHOUT AN FPT

e

BT

Utility Support (UT)

Section 7

UTSUBCHK

The UTSUBCHK utility can be wused to check out user-
vrittea subroutines (ALC, FORTRAN, COBOL) written to
supplement NIPS applications. SUBCHECK links to the user-
designated subroutines stored as a mesbher oa a partitioned
data set in 1load fors, prints user rea specificatioas,
prints subroutine input and output, and relates the success
of the subroutine for each user impat.

UTSUBCHK sisulates the call initiated by the varioss
NIPS application sodules. The conditioms, described in
Volume I, Introduction to File Concepts, Developaeat of
Coaversion Subroutines, are duplicated.

7.1 Input

Input to SUBCHECK is on punched cards. The first card
in relates the rua control parameters as follows:

Card Columps
1-8 (REQUIRED)

10 (OPTIOMNAL)

12-14 (OPTIONAL)

(fixed length
arguasent)

Description

User subroutine name, left-justified with
trailing blanks as required.

Blanks - Alphameric input; do not coavert.

B - Convert data to bimary prior to sub-
routine link.

A 3-digit rumber {use leadiag zeros
if necessary).

If coluan 10 is blank, nuaber=leagth of
data, starting ia colusa 1 of data cards,
to get and pass.

B

2 PR G

Utility Support (UT)

If column 10 contains a "B", number =
length of data, starting in coluamn 1
of data cards, to get and comvert.

7.2 Punctioning and Restrictions

If the card contains only the subroutine name, UTSUBCHK
will assume variable 1length data input (not to exceed 80
bytes in length) wvith no conversion to binary required. In
this case the argument length is deterained by a scan, right
to left, of each data card for the first nomblank character.
If binary conversion is reguired, the resultant argument
will be one full word in all cases.

All user data cards follow the control card. The data
used for the argument must start in column 1. To allow for
trailing blanks, the fixed Jlength entry in control card
coluans 12 through 14 can be used.

The parameter 1list built starts with a half-word
containing the binary length of the argument. A 256-byte
intermediate work area is set up for the arguaent and
function, contiguous to this length eatry. This means that
while either the argument or the function leagth may be up
to 255 bytes, the sum of their lengths amust be less than or
egual to 256 bytes.

The entire input (unconverted) argument is printed out
for each data card. Immediately following each of these
entries, the subroutine output and results follow
respectively.

Because the input can be up to 255 bytes several inmput
cards might be required for each input argument. Por fixed
length arguments the sase nuaber of input cards are required
for each argument (i.e., for a 173-byte argumeat three data
cards are required for each arguseant - use blank cards as
filler if necessary).

Otility Support (UT)

7.3 Job Setup

The following statemeats illustrate the job setup used
to execute the XISUBCHK procedure:

// BXBC XSUBCHK, LIB=TESTER
//SUBCHK.SISEN DD *

{Control card defimimg imput as described ia 7.1)

data card(s)
/%

The LIB symbolic paraseter defines the partitiosed data set
vhere the subroutine’s executable load aodule is stored.
Th2 library need mot be a WIPS file library, but it should
have the same DCB attributes,

Sasple Comtrol Card

MYSOB 099

Sample data cards ia the above case

Col 80
12345676890AQPT86789ABCB 123796

7890567893BCBDBPGHQ
1379654321BDLCB67689DPQC 5693268

8432976843APQDRTGHQ

Otility Support (UT) ?

Section 8
UTDAPLIB

The utility program UTDNPLIB allows the user/analyst to
print the names of reports and/or logic stateaments
associated with a NIPS 360 PPS data file. The output from
this utility is a formatted listiang. The input data file
may be in Sequential Access Method (SAN), Indexed Sequential
Access Method (ISAM) or Virtual Storage Access Hethod (VSAN)
form.

8.1 Input

Input for the cataloged procedure XDHPLIB consists of
the user's file (SAN, ISAN or YSAM) and a single control
card. The control card is in a fixed format in that it sust
begin in card coluan 1 and parameters must be separated by
cosmas. The control card is to be prepared as follows:

PRINT, REPORT, XXXXXXX

vhere XXXXXXX will contain one of the following parameters:

ALL - provides a listing of all report
names and all logic statements.

LIST - provides a list of all report naaes.
(Report ID) - provides a listing of all logic state-

ment names for the report ID specified.

Be2 Job Setup

‘The following statements illustrate the job setup required

to execute the XDNPLIB procedure:

81

Utility Support (UT)

// EXEC XDHPLIB, ISAR=TESTER
//UTDUP.SYISIN DD =
PRINT,REPORT,ALL

/%

The preceding example 1lists all report and statesent
names on a cataloged ISAN data set named TESTER.

// BXEC XDMPLIB, VSCAT=°*MNIPS.CAT®,ISAN="VSAN.TESTER®
//UTDHP.DATAFILE DD AHNP=°ANORG®

//UTDHP.SYSIN DD =

PRINT,REPORT,ALL

/%

The preceding example lists all report and stateasent
names on the VSAN file VSAM.TESTER cataloged on NIPS.CAT.

// EXEC XDMPLIB,ISAR=TESTER,VISAN='SER=FFSLIB®
//UTDHP.SYSIN DD =

PRINT, REPORT,REPTA

/%

This example lists associated logic statement names for
a report entitled REPTA included in the uncataloged ISAN
data set TESTER residing on a 2314 volume labeled FPSLIB.

/7 EXEC XDHNPLIB,SAN=TESTER,VSAN='SER=N12345"
//UTDHP.SYSIN DD ¢

PRINT,REPORT,LIST

/%

The preceding example provides a listing of all report
names contained vithin the data set TESTER vhich resides on
a 9-track, 800 bpi tape with the volume serial nuaber of
N12345,

The XDNPLIB procedure may be executed in a separate job
or as a step of, for example, an FH update. It is to be
noted that all routines used in conjunction vith the
execution of this procedure reside on PFS.JOBLIB.

42

Utility Support (UT)

Section 9

UTCLASS

The progras UPCLASS provides the wuser with the
capability of changing the classification of a NIPS 360 FFPS
ISAN, SAM or VSAM file. A single card is required which
will contain only the new classification of the file.

9.1 Input

The program UTCLASS requires a single input card
containing the nevw classification of the data file. The
card is free forsat amd the new classification will be left-
justified with trailing blanks, if reguired, when vritten
out to the file. The length of the classification field is
32 characters and truancation vill be performed to the right.

To change classification of the file to blanks, that is,
no clussification, the input card sust contain at least one
blank enclosed in apostrophes. This is the only case in
vhich an apostrophe vhich is entered on the input card does
not become part of the actual file classification. £ 8

9.2 Qutput

Two outputs are produced by a successful run of this
program:

ae The updated data file containing the new
classification.

be A listing on the printer imdicating successful or

unsuccessful updating and the newv classification if
successful.

43

Otility Support (UT)

9.3 Job Setup

The folloving statements illustrate the deck setup used
to execute the UTCLASS procedure.

// EXEC XCLASS, ISAN=TESTER,
// VISAA=*SER=PPSLIB"
//CLASS.SYSIN DD *

(User-supplied card containing nevw
classification)

Vs

The preceding examples vwill change the classification on
an uncataloged ISAN file.

// EXEC XCLASS,SAN=TESTER,VSMOUT='SER=TSTVOL',
/7’ SANOUT=

(User-supplied card containing new
classification)

Vid

The preceding example vill change the classification of
a cataloged SAN file om tape.

// BXEC XCLASS, SAN=TBSTER,
7/ USAN=2314,VSAN=" SER=FPSLIB®
//CLASS.SYSIN DD *

(User-supplied card containing new
classification)

/*

The preceding example will change the classification on
an uncataloged SAn file on disk.

44

Jtility Support (UT)

// EXEC XCLISS,VSCIT='IIPS.CAT',ISAH='VSAH.TBSTBR'
//CLASS.DATAPILE DD ANP=°'ANORG?
//CLASS.SYSIN DD =

(user-supplied card containing new classification)
/t

The preceding example will change the classification of
the VSAM file, VSAN.TESTER, cataloged on NIPS.CAT. y

Utility Support (UT)

Section 10

SOURCE LANGUAGE STORAGE

Source programs for NIPS coaponents may be stored om a
library to facilitate housekeeping and program maintenance.
maintaining a library will ensure ¢that a single, current
version of the source program is always available. The
Source Program Library can be updated by batch jobs, or by
the EDIT component if on-line terainals and the NIPS TP
component are available. PEDIT capabilities are described in
volume VI of the NIPS 0User MHManuals, Terainal Processing
(TP).

10.1 Source Libraries

Two types of libraries can be utilized for storage.
Both types are direct-access partitioned data sets, The
first type of library is normally used to store 80-character
card images. This library is siamilar to a Procedure or
Macro Library and has fixed length, 80-character records,
normally blocked to am efficient blocksize vwhich is a
multiple of 80,

The second type of library is the File Library. This
library has records of undefined length and is normally used
to store the compiled, executable ¥NIPS user prograas
(Retrievals, RITs, etc.). Source programs vill be stored on
this library im 800O-character blocks, containing 10 card
images each. 0S utilities may not be used to modify source
on this type of 1library, but NIPS components may as
discussed below.

Each source program meamber stored on a library by a NIPS
language component or utility vill contain an indicator as
to which NIPS 1language component (RASP, PN, etc.) is
involved. This will enable a terminal user ¢to scan a
library for RITs, logic statements, etc.

46

Utility Support (UT)

13.2 Means of Storing Source

From the batch, source programs may be stored a
library by eitber of two means. The NIPS component i
compiles the source program can be requested to place
source on a specified library, or the program, UTSOURC, u y
be exccuted as a stand-alone utility.

10.3 Conditions of Source Library Update
Source will be stored on a 1library by the UTSOURC

utility and the NIPS langquage components if the folilowing
two conditions are met:

Eit A DD statesment specifying the userfs library and
having a DDNAKE of SOURCLIB is present in the job
step JCL.

b. A source control card is placed imaediately in

front of the source progra= in the input strean.

The SOURCLIB DD statement is included in each RNIPS
procedure which allovs compilation or structuring of source
material. It is also included in the XUTSOURC procedure
which executes the UTSOURC utility. The user's library naame
is specified through use of symsholic parasmeters.

10.4 Source Control Statement

The source control card follows the general format of
IZBUPDTE wutility control cards. Any number of blanks may
separate the fields. The format is as follows:

ADD s QP
./ |REPL [NanE=xxxx] FE QUIP
DELETE RASP

The ./ must be coded in columms 1 and 2. These two
characters identify this card 1image as a source control
Statement.

47

Utility Support (UT)

Bither ADD, REPL, or DELETE must be coded if NAHE is
coded. ADD says that this is a new source meamber that is to
be added to the library. If a member already exists vith
the same name, a diagnostic message will be primted, and no
library actiom will take place. BEPL vill replace a meaber
on the library with the new source which follows the control
card. If no meaber presently exists with the sase nanme, it
will be added. DELETE will delete the member with the name
specified.

NAMBE gives the name Oof the source program assigned by
the user. The name sust follow standard 0S 360 rules for
library mesber names and say be up to eight characters in
length.

The last operand on the control statement is used to
specify the NIPS coaponent to vhich the source number is
related. That is, a source RIT will have OP coded in its
source control statement. This field is optional when a
NIPS language coamponeat is used to update a source library
since the appropriate component ID will automatically be
included. It sust be included if the stand-alone utility is
used and NIPS source Bmaterial is bheing stored. If other
data is being stored, the 4-byte value entered is copied so
that classes of data can be accessed by EDIT.

The existence of a source control card containing no
operands (blank except for ./ in columns 1 and 2), will
sidnal the end of a source aeaber and can bhe used wvwhen
additional source material exists that will not be added to
the librarye.

10.5 Source HNeaber Names

The name given to the source on the source control card
does not have to be the same as that assigmned on the TITLE,
CREATE, or ADD statement card within the source. It is
suggested that the user adopt a naming comvention such as
adding an S suffix to the name of the WIPS progras. This
vill provide a ready recognition of the source amember.

48

Utility Support (UT)

10.6 Operation of Source Library Update

The input streaa to a NIPS language component or tke
utility may consist of ome or more source programs to be
stored on a library. The library action vequested by the
source control cards is perforamed as the input streas is
read initially. ¥o library action is taken on data in the
input stream until a source control card is encoantered. If
the control card specifies a delete action, it is perforaed
impediately and readiag of the input resumes. If am ADD
statement is encountered, the 1library is checked for
existence of a member with the same name. If onme is found,
a diagmnostic is printed, and no library action is taken with
that wseaber. 1If a duplicate member name is not found or a
REPL action 1s specified, the following cards of the inmput
stream, up to the next source control card or end of input,
sre placed on the 1library and given the meamber name
cpecified.

¥hen using a WIPS language component to update a source
library, the source control cards will not be passed to the
language translator phases and will thus not interfere with
normal compilation or action of NIPS components.

1.7 Sequencing of Source Material

All. source material that is added to a library will be
saguenced in colusns 73-80 and printed during the library
action. If a NIPS language componment is being used, the
n2vly sequenced source will be passed to the language
translator phase.

10.8 Listing Source Library Members

The UTSOURC utility may also be used to 1list a source
meaber from a source library. This is done by specifying
the library using sysbolic parameters and the names of
seabers to be listed using the PARN value.

49

Ll

o

"

Otility Support (UT)

10.9 Job Setwp

If a NIPS laaguage coapomeat is wused, the procedure
coatains the SOURCLIB DD stateaeat. Specify the nase of
your library through use of the syabolic paraseters as
outlined ia Volume VIII, Job Preparatioa.

The input streas say be a sember ia your library. If
S0, use the syambolic pataseter NANE to specify the member
nase. Othervise override the XUTSOURC SYSIN DD statemeat to
define the inpst stream. BNote that SYSIF is igaored for
list fuactioas.

If the stamd-alome atility is wused, the followiag
statements illustrate the deck setup used to ypdate a source
library:

//J0BNANME JoB (Installatioa Paraseters)
//JOBLIB DD (Iastallatioa JOBLIB Parameters)
//0PD BXEBC XUTSOURC, SOURCL=YOURLIB
//SOURC.SYISIN DD *

Source control stateaents and source sesbers
/t

The folloving statements illustrate the deck setup used
to list a meaber fros a source library:

//JOBNANE JOB (Installation Paraseters)
//JOBLIB 1)) (Installation JOBLIB Paraseters)
//LIST EBXBC XUTSOURC,SOURCL=YOURLI B, PARN. SOURC=SRCNAR
/t

Utility Support (UT)

Section 11

INDEX SPECIFIER
(UTRDXSPC)

The Index Specification utility allows a user to specify
indexing information for a data file without running a File
Structure or File HNaintenance job. The user can add and
delete indexes in the same run. Por each index added, all
information necessary to amake that index operational is
generated and placed in the Index Data Set.

Any fixed-length fjeld defined in the €file may be
specified as a secondary index. Any variable field,
variable set or fixed-length alpha field defined in the file
may be specified as a keyword index., A fixed-length field
may not be specified as both a secondary and keyword index.

UTNDXSPC acts as the driver to perform the functions of
calling Index Specification to insert or delete Index
Descriptor Records in the data file, and of executing Index
Maintenance to correlate the Index Descriptor Records in the
data file with the Index Control Records in the Index Data
S2t and to update the latter accordingly. UTNDXSPC operates
on an ISAM, SAHM or VSAN data file.

1.1 UTNDXSPC Input

UTNDXSPC accepts SUB/TAB and INDEX statements as input.
These statements amust be subaitted through the SYSIN device.
Further discussion of 1Index Specification may be found in
Volume II, File Structuring.

17.1.1 SUB/TAB Card

A SUB/TAB card is used to describe a subroutine or table
to be used by secondary indexing. A subroutine or table may
be a conversion routine, to convert data from an internal
data file format to a separate index format. On the other

51

sl

B

ST P

S e Wi A Pt AL DN b 7 52 et

Utility Support (UT)

hand, a subroutine or table may be am amalyzer rostiase,
designed to analyze the parameter 1list of a FUBCTION
operator to detersmine index wsage aamd provide a 1list of
values for index gualificatioa.

Por a keyvord imdexed field, a subroatise or table
defines options that direct the selection of keyword valees.
It may designate a stop word table which is a 1list of
irrelevant (noise) vwords, a dictiomary which is a list of
all noa-literal keywords, or a user scaa rostiase, which is
a subroutime provided by the user to process the keyword
indexed fields.

One SUB/TAB card smust be subaitted for each subroutiae
referred to by the INDEI stateseats. A subroutine or table
may be defined for ome functioa oaly ia aa Iadex
Specification rus, amd each unigue subroutiae or table sanse
may be submitted oaly omce per rum.

All SUB/TAB statesents asust appear first ia the iaput
streas, before the INDEX stateaseats.

The SUB/TAB statememt is free-format. The operands must
be in order, each separated froa the others by at least ome
hlank. A period is required after the last entry to sigaify
the end of the statement.

STOP
SuB DICT
SUBROUTINE subnase SCAN

TAB
TABLE ANALYZE ALPHA
CONVERY(nnn-nn BINARY
COORD
'|DECINAL

a. Statement Identifier
SUB or SUBROUTINE - subroutime stateaent
TAB or TABLE - table stateaent

52

i
¥

TR

Utility Support (UT)

b. subname - subroutine or table name
Ce Function Identifier
FPor Keyword Indexes:
STOP - subname to be used with Stop Word Table

DICT (or DICTIORARY) - subname to be used with
Dictionary

SCAN - subname is a user scan routine
This is the last operand for a Keyword
SUB/TAB statement.

For Secondary Indexes:

ANALYZE - specifies conversion of data to
index format

CONVERT - specifies analysis of index usage

The following operands are required for the CONVERT
tunction.

d. ann One-, 2-, or 3-digit field specifying the
length in bytes of the input to the table or
subroutine.

e. ann One- or 2-digit field specifying the length in
bytes of the output produced by the table or
subroutine (maximum is 30).

fe ALPHA
BINARY Hode of data output by the subroutine or
COORD table
DECINAL

Example of a CONVERT statement:

SUB convsub CONVERT 17 2 ALPHA.

ytility Support (UT)

Example of an ANALYZE statement:
SUB analsub ANALYZE.
Example of a DICTIONARY stateaent:

TAB DICTMANE DICT.

11.1.2 INDEX Statement

An INDEX statement must be provided for each data file
field to be designated as an index and for each index field
to be deleted. The delete operation does not remove the
f.eld from the file; it merely eliminates the option of
indexing the file on the contents of that field.

Like the SUB/TAB statement, the INDEX statement is free-
format. Unless othervise indicated the operands are order-
d=pendent. Each must be separated from the others by at
least one blank. A period is reguired after the last
oprerand to signify the end of the statesent.

INDEX fieldname [ADD]

DELETE convsubname analysubaane

KEYWORD stopnase dictnase scammame [SEPARATE

DROP
RETAIN
a. Stateameat Idemtifier - INDEX
b. fieldname FPT name of field or grouwp to
be indexed

Ce Actioa Imdicator

ADD - field is to be added as an index. This
is the default value. However, it is
required. If a coaversion amd/or

T ———

Utility Support (UT)

analyzer subroutine/table, or KEYWORD
indexing is defined.

DELETE~- field is to be removed as an index. the
data field itself is not affected,
This is the last operand required for
delete action.

The following tvo optional operands are used only with
secondary indezxes.

d. convysubname Name of the table or
subroutine to convert
data data from datafile
foraat to index data set

format.

e. analysubname Name of subroutine to be
used to analyze a
FUNCTION operator
parameter list and

determine index usage.

NOTE: If both conversion and analyzer subroutines are
specified, the conversion subroutine =must be
specified first, If only omne is specified, its
function will be determined from the parameters on
the SUB/TAB statement. An analyzer subroutine or
table may not be used as a conversion routine, and
a conversion subroutine or table may not be used as
an analyzer routine in the same Index Specification
run.

The remaining operands are used only when defining
keyvord indexed fields:

f. KBYWORD Required to differentiate
between the two types of
indexed €ields

ge stopnanme nase of the Stopword
Table (optional)

55

1

Utility Support (UT)

he dictnanme
ie scannaae
Je Hyphen Option

TEXT

SEPARATE

DROP

BRETAIN

name of the Dictionary
(optional)

name of user scam routine
(optional)

o text editing. Hyphens
remain as they appear in
the text. The default is
TBXT.

Byphens are always
treated as word
separators and are

replaced with blanks.
Hypenated vords are
treated as tvo or sore
separate words.

Hyphens are alvays
dropped. If a hyphen is
preceded by a text
character and followed by
a text character or ome
or more blanks and a text
character, the hyphenated
text is connected to the
folloving text string
without the hyphen.

The opposite of DROP.

Hypheans are alvays
retained. As with DROP,
hyphenated text is

connected vith following
text, but thy hyphen is
retained as an embedded
character of the whole
vord.

T ——— T — T Y T T T ¥ "

utility Support (UT)

Any combination of stopname, dictname, scanname and hyphen
option may be specified in any order.

Example of an Add Index Action:
INDEX HMEQPT ADD CONSUB.

Example of a Delete Index Action:
INDEX CNTRY DELETE.

Example of an Add Keyword Index Action:

INDEX ANABNE ADD KEYWORD RETAIN
SCANNER STOPPER KEYWDS.

1.2 UTNDXSPC Output

UTNDXSPC builds and inserts Index Descriptor Records
into the data file for indexes added and deletes Index
Descriptor Records for indexes deleted. It then calls Index
Maintenance to either generate or update the Index Data Set.
UTNDXSPC also lists a summary of actions performed plus any
error conditions encountered.

1.3 UTNDXSPC Job Setup

The following JCL examples can be used to invoke the
cataloged procedure XSP which will either generate or update
a disk-resident Index Data Set based on the ISAN, SAN or
VSAN data file.

The first example illustrates a situation in which an
index data set is to be regenerated. The uncatalogued SAM
data file, MYFILE, resides on a 9- track tape with standard
labels and system default density. It contains Index
Descriptor records in the PFPPT from previous runms. The new
Index data set must have the same name as the data file (the
systea will suffix an X). The nev index will have the
dafault blocksize of 560 and default number of blocks of

57

Utility Support (UT) |

200. Blocksize amust be between 560 and 1020 bytes and at
least 50 blocks must be allocated. i

//SANPLE1 JoB (standard paraseters)
//STEP1 EXEC XSP,SAN=NYFILE,VSAN=°SER=NYTAPE®’,
// INDEX=NYFILE, XVOL=*SER=NYDISk® XDISP=NEW,
// SANOUT=,PARN=GEN
//SYISIN DD ®

(Index Specification statemsenats)

/*

NOTE SANOUT=, is required for SAN runs. PARN=GEN is required
vhen generating a nev Index Data Set and Imdex Descriptor
records exist in the data file FPT.

In the folloving example, index specifications on the
catalogued index data set HNYFILEX and the ISAN data file
MYFILE will be updated:

//SAMPLE2 JOB (standard paraaseters)]

// EXEC ISP ,ISAN=HYPILE,XINDEX=NYPFILE
//SYSIN DD *

(Index Specification statesents)
/¥

The following will update the index specification for
the VsANM file, VSAM.NYFILE, catalogued on NIPS.CAT:

//SAMPLE3 JOB (standard parameters)
/77 EXEC XSP,ISAN='VSAM.NYFILE®',XINDEX=NYFILE,
// VSCAT='NIPS.CAT®

//UTXSP,NEWFILB DD AHNP=' ANORG'
//SYSIN DD =*

(Index Specification statements)
/‘

58

it A ki

Utility Support (UT)

Section 12

INDEX TRANSPER (UTNDXTFR)

An Index Data Set may reside on a direct-access device
or on tape, but only the disk-resident medium can be used by
any NIPS component. Index Transfer (UTNDXTPR) permits the
user t> transfer the entire data set, from one resident
medium to the other.

The primary use of UTNDXTFR is to reorganize the disk-
resident indexes. Initially, a disk-resident Index Data Set
is packed with index information. As the indexes are
maintained, gaps or unused areas may occur in the data set
as records are deleted and others are added. By using
UTNDXTFR, the user can transfer the disk-resident data (only
the valid information is transferred) to tape, and again
from tape back to disk. This operation condenses the data
set. The tape so created may be retained as a backup.

In the disk to tape mode of operation, a statistical
printout of unique values (for secondary indexed fields) and
keyvwords (for keyword indexed fields) and their occurrences
are optionally developed. Binary values will be converted
to decimal for ease of reading. However, any dictionary
fields using conversion subroutines or keyword fields having
synonyms in the dictionary, will be printed in the converted
form, just as they appear in the Index Data Set.

12.1 UTNDXTFR Input

Two cataloged procedures are available for invoking the
UTNDXTFPR utility. XTRDISK will transfer a disk-resident
Index Data Set to a sequential access medium, vhile XTRTAPE
will reconstruct an 1Index Data Set from a previously
unloaded tape version of the disk data set.

59

Utility Support (UT)

12.2 UTNDXTFR Output

UTNDXTFR produces an Index Data Set on the residence
nedium indicated.

12.3 UTNDXTFR Job Setup

The following statements illustrate the deck setup used
to unload the TESTERX Index data set from a 2314 disk pack
to a 9-track unlabeled tape.

//JOBNAME JOB (standard paraaeters)

//STEPNANE EXEC XTRDISK,XPNANE=TESTERX,

// XPVOL=*SER=MYPACK® ,XTNANE=INXSAN,
// XTVOL=*SER=MYTAPE'

The following example illustrates the deck setup to be
used for a VSANM file, VSAN.MYFILE, cataloged on NIPS.CAT:

//JOBNAME JOB (standard parameters)

//STEPNANE EXEC XTRDISK,XFNANE='VSAM.NYFILE®,

// XPVOL=*SER=MYPACK® , XTNANE="' VSAN.INISAN®,
/7/ XTVOL=*SER=HYTAPE®' ,VSCAT="NIPS.CAT®

//XTR.DATAFILE DD ANP='ANORG'

The following example illustrates the deck setup to be
used to reconstruct a disk resident index data set from a
previously unloaded version of index data set.

//JOBNAME JOB (standard parameters)
//5TEPNANE EXEC XTRTAPE,XTNANB=TESTERX,
// XTVOL='SER=MYPACK®,

// XFPNANE=INXSAN,XFVOL='SER=NYTAPE"®

60

Utility Support (UT)

Section 13

UTFLDSCN

UTPLDSCN scans the NIPS components source statements and
provides the user with the count of data fields referenced
in the source statements. This utility is useful in helping
the analyst to determine the activity of his data fields.
This will assist the user in deteramining which fields are
candidates for index fields in the Secondary Indexing
capability.

The utility processes source statements pertaining to a
single file in one execution. Multifile RITs and wmultifile
queries will be accepted as input; however, only the data
fields of the input data file will be processed. All other
files will be ignored. In order to completely process
multi-file RITs and multifile queries, it would be necessary
to include the source statements in an execution for each
file referenced.

UTFLDSCN outputs a listing of the source input
statements followed by a listing of the count of references
for the data fields and a suammary listing of data field
reference count for eack batch component. A transaction
record will also be output for each data field referemnced in
a single source input statement.

13.1 UTFLDSCN Input

Input to the utility consists of a KIPS data file in
SAM, ISANM or VSAM format, a control card, and the source
input statements and/or members of a partitioned data set.

The format of the input control card is as follows:

+/ SOURCE COMP=XXXX,NAME=SNANE,NEMNBER=MNANE

vhere ./ must be in columns 1 and 2 followed by one or
blanks.

61

e e k' s

B e . L -

Utility Support (UT) 3

COMP=XXXX where XXXX may be PN, RASP, OP, or QUIP
to identify the coaponent.

NAME=SNANE vhere SNANE is the name of the source
statement. If the source is a logic statesent,
the name must be the report name and logic
statement names enclosed in quotes. If the
report name is less than seven characters, it aust
be padded wit: blanks to seven characters.

MENBER=HNANE vhere HNAME is the meaber name of the]
source statement on a partitioned data set. '
If this operand is used, a partitioned data set
aust be included in the job stream. If this
operand is omitted, the source statements must
follov the control card in the input streas.

13.2 UTPLDSCN Output
The outputs from UTFLDSCN are as follows:

Source Listing - The source input records in input
order.

Field Listing - This output consists of a header
for each source deck indicating file
name, coaponent nase, source name, and
meaber name, if any. The body of the
listing consists of only those
fields referenced and the count of
references. This will follov the
source listing for each source module.
After all source modules have beea
processed, a summary listing will be
provided containiag the couat of the
field references per component.

Transaction - The transaction data set will be S0

Data Set characters long with amn °S® ja columa
one to be used as a logic stateaseat
name. The format is as follows:

62

Utility Support (UT)

Coluan 1 = CHARACTER °S°*
2-8 = PILE NAME
9-12 - CONPONENT NANB
13-25 - SOURCE NODULE NANE
26=-33 =~ FIELD NAME
34-36 - SET NUNBER, DECIMAL
37-42 - COUNT OF REPERENCES, DFCIMAL
43-48 - DATE - MEDDYY
49-50 - UNUSED

Parameters may be entered in the PARM field on the BXIEC
card to suppress output. They are as followus:

NS - Suppress printing of source inpat

NL - Suppress field and summary listing
NT - Suppress transaction output.
13.3 Job Setup

The utility is executed by a procedure, XUTFSCAN. If
the input statemsents are aembers of a partitioned data set,
the data set must be included in the job streaa. The
folloving statements illustrate the job setup used to

execute the XUTPFSCAN procedure against the ISAN data file
TEST360:

// EXEC XUTFSCAN,ISAN=TEST360,LIB=TEST360
//7SYSIN DD =
o/ SOURCE COHNP=FM,NAME="TESTO A',NENBER=TESTA
o/ SOURCE COMP=RASP,NARE=TESTO1

RASP (Query Stateaments

«/ SOURCE CONP=OP,NANB=TESTPFF
OP RIT Statements

o/ SOGICI COii‘QUIP.llﬂl‘QTBST.lBHB!I!QTBSTI
/*

63

Utility Support (UT)

i The following JCL could be used to execute the XUTPSCAN Jz
: procedure against the VSAR data file VSAN.TEST360:

// BXEC XUTPSCAN,ISAE=*VSAN.TEST360°,LIB=TEST360,
/7’ VSCAT=°'NIPS.CAT®
//UTFLDSCN.DATAPILE DD ANP=°ANORG®
//UTPLDSCN.SYSIN DD ¢

(field scan coantrol stateaeats)

Vil

64

Utility Support (UT)

Section 14
UTNDXKAN

UTNDXKAN provides the user with the capability to
analyze the words in fields for vhich keyvord iadexing is to
be specified. The results of the analysis caa be used to
determine the contents of stop word tables and dictiomaiies
that are to be associated vwith those fields. If the systea
scan subroutine does not recover wvords as the user desires,
a user-written scan subroutine can be used with this
utility. All the words contained in a data base field can
be displayed, or those words which are irrelevant (noise
wvords) can be selected and compared to the vords im the
system stop word table. If that table is not adequate, the
Dictionary Maintenance utility can be used to build a auser
stop word table. Then this utility is able to list all
relevant (nonstop) words which can be used to determine
dictionary requiresents. If a dictionary is not eaployed,
the words not in the stop word table wvwill all appear as
keyword entries in the index data set. Through dictionary
application, synonomous vords and words vith varying
suffixes can be collected under one Index Data Set entry,
and the synonym or suffixed form can still be used in a
query statement. The Dictionary Naintenance utility can be
used to build a dictionary so that this utility can produce
a list of the vwords which will become Index Data Set entries
together with the keywords (including synonyas and suffixed
vords) associated vith them vhich can be used as query
arguments.

UTNDXKAN processes either a SANM, an ISAN or a VSAM data
file. The fields that are to be processed are specified by
control statements, Por each field specified, the utility
obtains from the control statement or from the file itself
the names of the scan subroutine, stop word table and
dictionary required to process that field. It scans all
values in the data base (unless the namber of records to be
processed has been limited by the user), optionally aatches
the recovered words to a stop vord table, them optionally
matches the remaining words to a dictionary. The actual

65

Utility Support (UT)

functions performed are controlled by accepting names to PFT
entry specifications or by specifying BIYPASS. Override
names or BYPASS must be specified for all functions if the
FPT entry does not indicate keyword indexing.

UTNDXKAN displays word lists with record fregquency
couats or, optionally, record idemtifications for each field
processed or for all fields as a group. Freguency couant
reflects the nuaber of NIPS records in vhich a vord appears
at least once. '

14.1 Input

UTNDXKAN accepts FILE and PIELD control statements. The
FILE statement is optional. At least one field statszent is
required. Control statements are coded on cards or as card
images and are contained in colusns 1 through 71. BEach
statement must begin in a nev record vwith the stateament
identifier PFILE= or FIEBLD= in colasn 1 of that record. The
file or field name shall iammediately follow the statesent
identifier, A stateament that exceeds 71 characters can be
continued on one or wmore additional cards in columms 1
through 71. A nonblank character must be placed on coluan
72 to indicate continuation. A control statement can be
interrupted after any cossa or blank., Words may not be
split betveen records. Column 72 of the last or omly record
of each control statement must be blank. Columns 73-80 of
all cecords are ignored.

A control stateaent operand is made up of tvo or more
keyvord parameters. Bach operand mast be preceded and
folloved by one or more blanks or commas unless an operand
termipates in colusa 71, in vhich case a coantinuation
character (im column 72) may follow the operand. If
multiple values are specified for an operand, at least one
blank or cossa must separate each value and the group of
values must be enclosed in parentheses. The operands can be
coded in any order. No extra commas are required to
indicate omitted operands.

Utility Support (UT)

14.1.1 FPILE Statement

The PILE statement may be omitted. It applies to file
processing and affects all the fields to be processed. If
used, it may appear only once and amust be the first
statement. Its operands allov control of file access and

output merging.

The format of the PILE statesent is as follows:

FILE=filename

STOP
MERGE=YES BYPASS= | NONKEY
KEYWORD
SYNONYN
SUFFIXES

SKIP=nnnn STOPAFT=nnnnn

a. Statement Identifier

FPILE=filename - naust be coded imn coluan 1;
specifies the name of the file.

be MERGE=YES

Specifies that the word lists froam all fields
should be merged into one group of lists that
reflects the entire file.

Ce BYPASS=(option1,option2,...)

Defines the word lists to be suppressed for
all fields and overrides the FIELD stateament
BYPASS operand. Only valid if NERGE=YES is
specified. The display list identified by the
folloving terms are oamitted froa the output
for all fields:

STOP stop-vord table matches

NONKEY stop-vword table and dictionary

67

Utility Support (0T)

non matches

KEYSORD dictionary satches iacluding
synonya sublists

SYRON YN keyvord sublists
SUPFIXES dictionary non matches which are
coaposed of keywords with valid
suffixes; the keywords appear
in the keyword list.
de SKIP=nannn

A number betwveen 1- 32,767 of NIPS logical
records to skip before processing any fields.

€. STOPAFT=nnnnn
A number between 1- 132,767 which specifies the
maximus nusber of NIPS 1logical records to
process before stopping.
14,1.2 FIELD Stateament
The FIELD statement identifies a field to be analyzed.
+ least one FIELD statement is required and up to S0 are
ailowved.

The format of the PIELD statement is as follows:

FIELD=fieldname

SCAN=name STOP= |BYRASS
name
DICT= |BYPASS HYPEN=| TEXT
name DROP
RETAIN
SEPARATE
68

Utility Support (UT)

STOP

BYPASS= |NONKEY RECID=NO
KEYNORD ES
sYmowyn
SUPFIXES

de

b.

Ce

d.

e,

Statement Identifier

PIBLD=fieldname - must be coded in colusan 1,
Specifies the name of the field or variable
set to be analyzed.

SCAN=nanse

Identifies the scan subrcatine to be used
instead of the FPT scan subroutine or the
system scan subroutine.

sTOP= [ugggg

overrides the PPT stop-word table
specification or specifies BYPASS to cause the
stop-word table match function to be omitted
for the field in vhich case all recovered
vords are nonstop words. The default is
BYPASS.

DICT= lzu_g;;g

name

Overrides the PPT dictionary specifications or
specifies BYPASS to cause the dictionary match
function to be omitted for this field im which
case all nonstop words are keywords. The
default is BYPASS.

HYPEN= |TEXT
DROP
RETAIN
SEPARATE

69

Utility Support (UT)

Overrides the PPT option specification.
Default value is TEXT. Discussion of HYPEN
options may be found in section 11.1.2 of this
volunme,

f. BYPASS=(optioni,option2...)

Not applicable if BYPASS was specified on a
PILE statement. It defines the word lists to
be suppressed for the field. The display
lists identified by the following teras are
omitted from the output for the field.

STOP stop-vord table matches

NONKEY stop-word table and dictionary
non matches

KEYWORD dictionary matches including synonym
sublists

SYNONYN keyvord sublists

SUPPIXES dictionary non matches vhich are
comnposed of keyvords with valid
suffixes; the keyvords appear in
the keyword list.

Ge RECID= |RO
YES
Specifies that record identification are to be
shown in the wvord lists instead of frequency
counts. The default is NO.

14,2 Output

UTNDXKAN displays one 1list of wvords with either
frequency counts or major record identifications for each
fi21d processed or for all fields as one group if the naerge
oxtion 1is specified. A 2-character code associated with
esch word identifies its type. Words from types for vhich

70

-

Utility Support (UT)

bypass is specified are omitted from the list. If a
dictionary vas specified and a data word satched a convert
synonym or was suffixed, the dictionary word which wvill be
substituted for the data wvord is inserted after the data
vord at an offset.

14.3 Job Setup

The following JCL statements illustrate the deck setup
used to invoke the XKA cataloged procedure for a cataloged
15AM file and a cataloged user library:

// EXEC XKA,ISAM=filename,LIB=libname

//XKA.SYSIN DD *
(user-supplied control statesents)

/#
where
filename - name of the NIPS ISAN data file

libnanme = name of library containing user scan
subroutines, stop word tables and
dictionaries.

The following JCL statements illustrate tha deck setup
used to invoke the XKA cataloged procedure for an
uncataloged SAM file and an uncataloged user library:

// EXEC XKA,SAM=filenase,VSAN='SER=aaaaaa’,
// LIB=libname,VLIB=*SER=bbbbbb*

//XKA.,SYSIN DD *
{user- supplied control statements)

/%
where

filename - name of the NIPS SAN data file

aaaaaa - serial nuamber of the SAM data file

n

B L e ey T PR e

Utility Support (UT)

libname - name of the library coataiaiag user

scan subroutines, stop word tables, asd

dictionaries

bbbbbb - serial nuaber of the sser library.

The followving JCL statements illustrate the deck
satup used to invoke the IKA cataloged procedsre for
a VSAHM data file cataloged on a NIPS.CAT;

// EXEC XKA,VSCAT=°*NIPS.CAT®,
/7 ISAn=filename,LIB=1ibnane
//7XKA.DATAFPILE DD ARBP='ANORG’
//XKA.SYSIN DD =

(user-supplied control stateseats)
/t

viere:
filename - name of NIPS VSAH data file
libname - name of the library comtaining

user scan subroutises, stop wvord
tables, and dictionaries.

72

Utility Support (UT)

Section 15

DICTIONARY MAINTENANCE (UTNDXKHD)

UTNDXKMD creates, updates, and displays stop-word tables

and dictionaries. During one execution it processes any
nusber of tables provided all tables are stored in the same
library. It accepts as input table statements which define
functions to be performed and value statememts which provide
data for create and update functions. Each table stateaent
defines one of the following functioms.

- add stop wvords
- delete stop vords (update)
- add keyvords

- add suffixes

- add synonyas

- delete keyvords (update)

- delete suffixes (update)
- delete synonyms (update)
- display stop word table
- display dictionary

In addition, a table statement =may include parameters
wvhich define a table page size (create), dictionary display
options, and value statement display and sequence check
options, Since a table statement defines only one function,
more than one table statement with its associated value
statements will probably be required to create a dictionary
or to update any table, For ease of reference, a table
statement and its value statements vill be called
collectively a function stateament.

73

TS —

Otility Support (UT)

Table Creation

Only one function statement, ADD=STOPWORDS, is reqaired
(or permitted) to create a stop word table. Value statement
words should be those words which appear many times (high
frequency) or which the user wvill mever use as search teras.
If the amount of data is ssall, a stop word table vwill
probably not be required. If the amount of data is very
large, the user would benefit by executing the Keyword
Analysis utility to obtain word frequency counts. VYords
vhich appear in more than 25 percemt of the data file
records are good stop word table candidates.

Three function statements say be used to create a
dictionary ~-- add keywords, add suffizxes, and add synonyas.
However, all three statements nmay be used to define
dictiomary wvords with suffix specifications. If no syaonyas
are to be defined, omly the add keywords statesent need be
used; if only synonyas are to be defined, only the add
synonya statement need be used. On the other hand, all
three stateameats may be used to define the same vword as a
keyword (add keyvords) wvhose ending changes vwhen it is
suffixed (add suffixes) and that is synonomous with another
word (add synonyss). If more than one function statesent is
used, the statements may appear in any sequence in the impat
stream. Ia fact, function statements and display stateaents
from any nuauamber of tables may be intersixed. The only
sequence restriction occurs when the user chooses to have
UTNDXKND sequence check the value statemeats in a function
statement. UTEDXKHND processes the inpat im phases: it
processes each function statement as an independeat uamit,
then it processes each unique table vord from all fuactioa
statements,

Dictionary words should noraally be those words which
change their form when seffixed or which are to be grouped
under one term in the Index Data Set. Rovever, 1low
frequence vords in a very large data base aight also be
included. The decisioa to exclude vords by usiag a stop
vord table or to inclede thea by using a dictiomary is
arbitrary. Using a stop vword table should increase rma
time, However, whemn both tables are wsed, both must be
changed to include a word which is a stop word.

RL

b —

Utility Support (UT)

Table Update

Add stop-word and delete stop-word statements are used
to update a stop-vord table. All other function statements
are used to update a dictonary. The difference between
create and update is that during update all input words are
matched against existing tables. Note that an existing
table may be created; in create mode, UTNDXKMD does not test
for the existence of a table -- it creates a new table fronm
input data that replaces the existing table.

UTNDXKMD does not include a delete-table function. Use
the 0S5 utility IEHPROGN to scratch each page (member).

Dictionary delete function statements are more specific
than add statements. A delete keywvord statement removes
that word from a table; it also removes all changed-fora
suffix entries and synonym entries associated with the word.
A delete suffixes statement removes oaly changed-form suffix
entires; the root word and synonyam entries remain unchanged.
A delete synonyma statement removes only synonym entries.
Another difference between add and delete statements is that
add synonym vords must be grouped in parentheses to show
synonomous relationships; delete synonym vords are
independent and require no parentheses.

15.1 UTNDXKND Input

UTNDXKMD accepts table and value statements froam the
SYSIN device, Formats confora to general NIPS
specificatioas. Statement entries are punched in free
format im positions 1-71. Position 72 is used for table
statement continuvation (value statements are not continued).
Positions 73-80 of value statements will be optionally
sequence checked vithin each function. Blanks, coamas, and
parentheses are used as entry delimiters and may not be part
of an entry; the equals syabol is used to identify table
entries and wmsay not be used for any other purpose. All
other characters are assumed to be part of entry teras;
literals are not recognized as such because they are
irrelevant table entries.

75

Otility Support (WT)

Table Statemeats

Table statemeat eatries are coaposed of keywords aad
operands separated by am egquals sysbol. WSith the exception
of the display keyword, all operamds are siagle teras. If
tvo teras are used ia the display keyword operand they mast
be enclosed im parentheses; otherwmise no special motatioa is
required with amy operand.

The table type keyword (SYOPSORD, DICTIONARY) ideatifies
the beginming of a table statement. It mast be punched
beginning in columa 1 of the imput record. All other
keywords and operamnds say be punched in any positioa ia
coluans 1-71. It is peraissible to punch a keyvord ia oae
record, an equals syabol in a secomd record, aad the operamd
in a third record. No keyword or operasd may be split
between records, however. Any namber of blamnks aad commas
may appear between terss and arouad the egquals syabol (and
a parentheses if aay are reguired). All records except the
last (or only) record that contaia table stateseat terss
must iaclude a monblank punch im position 72 to iadicate
that the record is not the 1last (or oaly) ose for the
stateamenat.

The table type keyvord and the mode keyword (CREATE,
UPDATE, DISPLAY) are required in all table stateseats. The
operation keyword (ADD, DELETE) is required im all create
and update mode table statesents.

All other keywords are optional. Imn create nmode, the
user camn specify a saximus table page size (PAGE). If he
does not, a 1K default size will be aused. Note that if
input data for a table does not completely fill oae page,
the actual page size will be equal to the space used, mot
the maximum size. However, the maximuas size will be carried
in the table directory amd will be coasidered each time the
table is updated. Imn create aad update mode stateaeats, the
user cam request that all value statemeats ke segueace
checked (SEQCK) amnd/or displayed for diagaostic refereace
(PIAGHOSTIC). Im display mode for a dictiomary, the user
Can select various wsord lists (DISPLAY).

76

Ty

T T———

Utility Support (UT)

A table cannot be created and updated in the same run.
It is impossible to display a table before it is updated in
the same run (statements are sorted before they are
processed). Only one display mode statement may be present
for a stop vword table; any number ray be preseant for a
dictionary provided the DISPLAY keyword operands for each
are unigue.

The format of table statement entries is &as follows:

CREATE
STOPWORD= table name MODE= |UPDATE
DICTIONARY= DISPLAY
ADD= STOPHORDS PAGE=nnk
DELETE KEYWNORDS
SUOFPPIXBS
SYNONYNS
KEYWORD
SEQCK=NO _ DIAGNOSTIC=NOLIST DISPLAY= |SUPFIXES
YES LIST SYNONYHNS

a. Stateament Identifier

STOPY¥ORD= or DICTIONARY= aust be first
keyvord, aust begin in coluamn 1.

b. table name

table name - must be less than 8 characters in
length; smust being with an alphabetic
character and can not end vith zero.

Ce MODE identifier

CREATE, UPDATE or DISPLAY

77

Utility Support (UT)

d.

€.

f.

Qe

h.

Operation Keyvord=word type

Required for CREATE/UPDATE nmodes; specifies
vhether keyword table is being added or
deleted; amnd the type of keyvord being
processed.

ADD=
DELETE=| operation
STOPNORDS
KEYWORDS word type
SUPPIXES
|SYNONYNS
PAGE=nnk

One or tvwo digits im range of 1-32K; default
size is 1K

SEQCK=H0
YES

Specifies whether a sequence check is to be
performed; default is NO.

DIAGNOSTIC=NOLIST
LISsT

Specifies vhether diagnostic reference listing
is to be printed; default is NOLIST

DISPLAY=vword type

Specifies the type of word lists that are to
be printed in the DISPLAY mode; the default is
all vord types.

Utility Support (UT)

KEYWORDS
SUFFIXES vord type
SYNONYNS

If two terms are selected, they aust be
enclosed in parentheses

@.g. DISPLAY= (KEYWORDS ,SUFFIXES)

Value Statements

Value vords are punched in free formsat in coluasas 1-71,
Coluan 72 is ignored. Columns 73-80 may optionally contain
a record sequence number. A wvord may not be split between
two records., A suffix specification (explained below) »may
not be split between two records. A suffix specification
need not appear in the same record as its root word. The
parentheses vhich delimit suffix specifications and add-
synonyas may appear anyvhere including separate cards. Any
nunber of blanks or commas may separace vords, parentheses,
and suffix specifications. All characters except the blank,
conmma, parenthesis, and equals symbol are considered to be
part of a vord, Words are stored in a table exactly as they
appear in the input. ;

siop Word Table Entries

Simple vords are stored in stop woré tables. Suffix and
synonya notation does not apply.

Dictionary Entries

All words are stored in the dictionary exactly as they
appear ia the input. In addition, a changed fora of the
input vord will be stored if a suffix specification follows
the iamput vord. Both forms of a word may be flagged as
synonyas but their form is not changed.

Suffix Specification

This notation is used vith vords vhose endings change
shen they are suffixed. Three such words are:

Utility Support (UT)

koot

ARMY -ARMIES (changed the Y to I).
PLAN -PLANNED (add an N).
ARGUE-ARGUNENT (drop the E).

The specification consists of a 1-byte delete couat
{alvays a number) and zero or more characters that are to be
added after deletion occurs. The specification (one or more
separated by blanks or commas) must follow its root word and
be enclosed in parentheses.

ARMY (1I) delete 1(Y), add I -- ARAMIX
PLAN (ON) delete none, add N =-- PLANN
ARGUE (1) delete 1(E), add nome -~ ARGU

when a changed form dictionary word (ARMI, PLANN, ARGU)
matches the significant characters of an argument word and
vhen the remaining argument characters are a valid suffix,
the root word (ARNMY, PLAN, ARGUE) is substituted for the
argumeat.

Synonyas

Synonomous relationships betveen words are defined by
enclosing the related words in parentheses in an add-synonya
function stateaent. Any number of words (twvo or more) may
appear in one group. The same wvord may appear in any number
of groups, vhich has the effect of combining the words in
the common groups into a single group internally. UTNDXKHND
collects all related words and selects the lovest in
sequence to represent the group in the Index Data Set. This
word is called the base word; all other words are called
convert wvords. When an argusent word matches any convert
vord, the base word is substituted for the argquaent.

If any of the words in an inpst group of synonyms is
already a synonom in an existing table, the base wvord for
the existing group wvwill be used for the new group; i.e., all
input words which are not synonyas vill be stored in the
dictionary as convert words in the existing group.

Utility Support (UT)

15.2 UTNDXKND Output

For each file processed, UTNDXKND 1lists all input
statements vith notes to indicate the action taken for the
stateaents.

For each DISPLAY function, UTNDXKND lists the conteats
of the table or dictionary in ascending alphanumeric
sequence. It flags all convert words and suffixed words.
It also shovs all convert vords as sublists with each base
word so the user can see sSynonya groups.

15.3 UTNDXIKHMD Job Setup

The following JCL cards are used to invoke the cataloged
procedure XKM which wvwill nmaintain stop word tables and
dictionaries.

//jobname JOB (standard parameters)
//stepname EXBEC XKHM,LIB=libname
//XKH.SYSIN DD *

(user~-supplied control statements)
/#

vhere

libname is the name of the library containing stop word
tables and dictionaries to be maintained.

Utility Support (UT)

Section 16

FORMAT DEFINITION TRANSLATOR UTILITY (UTODE)

UTODE is used to place format definitions on a user
library. A format definition gives a descriptiom of a CRT
display format and the Input Nessage (Queue records to be
created froam data entered on the display. Before a user can
call for the display forsat at a CRT terminal, the format
definition must reside on the user library. UTODE creates
skeleton and INQ table control blocks from the forsat
definition source statesents and vrites the coatrol blocks
into the user library using the display forsat name as the
member nanme.

16.1 Iaput

Input to UTODE consists of one or more format
definitioas. The format definition source statements are
described imn Section 6 (PORNATTER) of the Terminal
Processing Users Manual. The input source statements say be
in punched cards or in card image records stored in a
partitioned data set.

16.2 Job Setup
The following JCL statements illustrate the deck setup
used to execute UTODE. In the first setup, the input

detinition source statements are in puached cards.

//AAR BEXEC XUTODE,LIB=TEST360,VLIB=°SER=AYPACK*
//SISIN DD *

Definition source statement cards.

/*

The following JCL wvould be used if the input wvere card
image records stored in a library.

82

B :M-‘[M &

Utility Support (UT)

//AB BXEC XUTODE,LIB=TEST360,VLIB=' SER=NYPACK®
//SYSIN DD DSN=MYLIB(FORMAT1) ,VOL=SER=NYPACK2,

// DISP=(SHR,KEEP) ,UNIT=2314,

// DCB= (RECPB=PB, LRECL=680, BLKSIZE=800)

/%

83

DISTRIBUTLION
CCTC CODCS COPIES
C124 (Refercence and Record) ——-———————————=——=== 3
€124 (Record Copy) Stock—=~——swr=e- o 6
C280 rersmmmr e o - ————————— e 20
C315 Fmie g i s ier 5 175 57 5 ol S e S o 1
C341 (Maintenance Contractor)=<=r—ss=r-=c=—=e- 10
€31 (SEock) e R SRR s iinis s e e o 70

.

EXTFRMAL

Director of Administrative Services, Office of

the Jecint Chiefs of Staff

Attn: Chief, Personnel Division, Room 1A724, The
Pentagon Washington, D.C. 2030fi-——--——=-—==—=—=—=- 1

Director for Personnel, J-1, Office of the Joint
Chiefs of Staff, Attn: Chief, Data Service Office,
Room 1B728C, The Pentagon, Washington, D.C.

2030 1= = mm o e e 1

Director for Opesrations, J-3, Office of the Joint
Chizfs of Staff, Attn: P & AD, Room 2B870, The
Pentagan, Washington, D.C. 2030)-———r-——=—s—m=— 1

Directior for Operations, J-3, Office of the Joint
Chicfs of Staff, Attn: Deputy Director for
Orerations (Reconnaisance and Electronic Warfare)
Room 20921, The Pentagon, Washington, D.C.

Director for Logistics, J-4, Office of the
Joint Chiefs of Staff, Room 2E828, The Pentagon,
Washington, DeC. 2030l—ss==wc=—=sna=easacasacns 1

Chief, Studies Analysis and Gaming Agency, Attn:
Chief, Force Analysis Branch, Room 1D228A, The
Pentagon, Washington, D.C. 203QJ ——————————————— 1

Automatic Data Processing, Liaison Office

National Military Command Center, Room 2D9C1A,
The Pentagon, Washington, D.C. 20301-==---=cwe-- 1

84

EXTLERNAL COPILES

Automatic Data Processing Division
Supreme Headquarters Allied Powers, Europe
Attn: SA & P Branch, APO New York 09055~==--- 1

Director, Defense Communications Agency, Office
Of MEECHN System Engineering, Attn: Code 960T,
Washington,; D.C. 20301-=m——a-r-—smo=esosmmene 1

Director, Defense Communications Engineering
Center, Hybrid Simulation Facility, 1860
Wiehl Avenue, Reston, VA 22070-====—===—=====- 1

Director, Defense Intelligence Agency
Attn: DS - 5C2
Washington, D:C. 203(l-—pro=rseccnmmumm—s=mase - .

Commander-in-Chief, Pacific, Attn: J6321,
FPO San Francisco, 96610~—==—==—emmeee—eeer—— 1

Commander-in-Chief, US Army Europe and
Seventh Army ATTN: OPS APO New York 09403--- 1

Commanding CGeneral, US Army Forces Command,
Attn: Data Support Division, Building 206,
Fort MoPhexgon, G& J0I03~==sem-scacconcasuns 1

Commander, Fleet Intelligence Center, Europe,
Box 18, Naval Air Station, Jacksonvilile,
Florida 322]3~~s-sceicamscibsnsacaccnbacmans 1

Commanding Officer, Naval Air Engineering
Center, Ground Support Equipment Department,
SE 314, Building 76-1, Philadelphia, PA 19112 1

Commanding Officer, Naval Security Group
Command, 3801 Nebraska Avenue, N.W. Attn: GP22,
: 2 ‘-’ashington, D.C. 20390-=~=———m—mm e c e e ———— 1

Commanding Officer, Navy Ships Parts Control
Center, Attn: Code 712, Mechanicsburg, PA 17055 1

Headquarters, US Marine Corps, Attn: System

Design and Programming Section (MC-JSMC-7)
wWashington, D.C. 2038(==—c=vmcacrscnascnacana 1

85

EXTEZRNAL . COPIES

Commanding Officer, US Army Forces Command
Intelligence Center, Attn: AFIC-PD, Fort
Bragg, NC 28307-- = 1

Commander, US Army Foreign Science and
Technology Center, Attn: AMXSJ-CS, 220
Seventh Street NE, Charlottsville, VA 22212-- 1

Commanding Officer, US Army Security Agency,
Command Data Systems Activity (CDSA) Arlington
Hall Station, Arlington, VA 22212--—-—-———==-—- 1

Commanding Officer, US Army Security Agency
Field Station - Augsburg, Attn: IAEADP,
APO New York 09458--————-————— = 1

Commandar, Fleet Infelligence Center, Atlantic,
Att: : DPS, Norfolk, VA 23511 1

Commander, Fleet Intelligence Center, Pacific,
Box 500, Pearl Harbor, HI 96860 — 1

Air Force Operations Center, Attn: Systems
Division (XOCCSC) Washington, D.C. 20301-—---—- 1

Commander, Armed Forces Air Intelligence
Training Center, TTMNIM (360 FFS), Lowry
AFB, Co 80230- 1

] Commander, Air Force Data Services Center,
Attn: Director of System Support, Washington,
D.C. 20330—————- -

Commander—in—Chief, US Air Forces in Europe,
Attn: ACDI APO New York 09332--v————w—————e=e— 1

Commander, USAF Tactical Air Command, Langley
AFB, VA 23665--——————=———=———c

Commander, Space and Missile Tést Center, Attn:
(ROCA) Building 7000, Vandenberg, AFB, CA .

93437--————~ e i e e e i s e s

86

EXTi:RNAL COPIES

Naval Air Systems Command, Naval Air Station,
Code 13999, Jacksonville, Florida 32212-===—- 1

Commanding General, US Army Computer Systems
Command, Attn: Support Operations Dlrcctorate,
Fort Belvoir, VA------————mem e 1

Defense Documentation Center, Cameron Stai:ion,
Alexandria, VA 22314-——-=~—mcmmmm e 12

TOTAL 159

—_—
SECUYMITY CLASSIFICATION OF Ti{1S PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORF. COMPLLETING FORM

CSM UM 15-78, VOLUME VII

. REPOI'Y NUMNER 2. GOVY ACCESSION NO.

3. A CIPIEN1'S CATALOG NUMBER

&. TITLE (end Subtitie)

File System (NIPS 360 FFS) - Users Manual
Vol VII - Utility Support (UT)

NMCS Information Processing System 360 Formatted

S. TYPE OF REPORY & PERIOD COVERED

€. PERFORMING ORG. REPORY NUMBER

7. AUTHO!(e)

8. COHTRACY OR GRANT NUMBER(s)

DCA 100-77-C-0065"

9. PERFOIMING ORGANIZATION NAME AND ADDRESS
International Business Machines, Corp.
Rosslyn, Virginia

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTRULLING OFFICE NAME AND ADDRESS

The Pentagon, Washington, D.C. 20301

National Military Command System Support Center

12. RLPORT OATE

1 September 1978

3. NUNBER OF PAGES

94

Yi MONIT(-HING AGENCY NAME & ADURESS({f different from Contreiling Office)

1Sa, D: CL&.’;SI{ICA‘I’ION’DO'MGRAD!IG

1S. SECURITY CLASS. (of this report)

Unclassified

$C

10. DISTRIGUTION STATEMENT (of thie Report)
Cameron Station, Alexandria, V1rgln1a 22314.

is unlimited.

Copies of this document may be obtained from the Defen<e Documentation Center,

This document has been approved for public release and sale; its distribution

17. DISTRIBUTICN STATEMENT (of the absiract entered In Block 20, it diflerent from Roport)

18. SUPPLEMENTARY NOTES

i
H
b
=
|

19. KEY WORDS (Continue on revecse alde I necessary and (dentify by block number)

\{% ABSTRACT (Continue an reverse olde I neceseary and Identify by bleck mamber)
This volume defines the capabilities of NIPS 360 FFS Utility (UT) components.
It describes the function of each utility, its inputs, its outputs, and
! serves as a reference for the knowledgeable user of these component

— e

B amE

(»Thlb document supersedes CSM UM 15-74, Volume vVII.

\

DD ,an'y 1473 eoimion oF t wov es 15 oesoLeTE

UNCLASSIFIED

88 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

. S P - cana

Sy

