
Th — - -_ __ _ _

~D—A 059 79’e COMMAND ANO CONTROL. TECHNICAL CENTER WASHINGTON 0 C F/G 9/2 1NMCS INFORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM (N——ETCH))
SEP 78 C K HILL

UNCLASSIFIED CC TC—C 5M—UM—15—78—VOL—7 NL

_ ~~

0 00 S~

S

~~~ i ~~~~~ ‘~~~~

B~~

Ic * i;•~3 •j ~ 5
COMMAND
& CONTROL
TECHNICAL

Q, Y 1 7 
~~~~~~~~ CENTER

()

~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

NMCS INFORMATION
PROCESSING SYSTEM ~36O

_ _  _ _

~~ FORMATIED FILE SYSTEM
T(NIPS~36O~~I

__ DEFENSE VOLUME VII U11UTY SUPPORT

L 
kMtJN1CATbo

~
~~~~~NT HAS SE EN

~~~~~~~~~~~~~ 1 78 1 0 03 03 ~



-

CO M M AN D AID COP?ROL TECMIICAL Cfl?Zp

Comput er Systes Manua l Musher CSM UN 15—78

L u 1S ~~~~~~~~~~~~ 78

OCT 3 197

~~~~~~~~/ Users Manual •

/ voiuae Utility Support (UT),

SUB MIrr ED BY: APPSOVID BY:

A —
Captain U. S. NavyCC?C Project Officer Deputy Director
RMCS ADP

C1pies of this document say be obtained from the DefendDOcUi~~t~tjo~ Center, Ca~ero~ Station, Alexandria, Virginia22314.

?&Ls docua.~t has been approved for public release and sale;its distribution is unlimited.

U

,‘ s i ;J 0 0

‘~~~~ ~

ACKN OWLEDGINIT

This annual was prepared under the direction of the
Chief t r Proqra..j ng with general technical support
provided by the International Business Machines Corporation
.ad.r contracts DCI 100-67—C-0062 , DCI 100—69—C—0029 , DCI
100—70-C-003 1 , DCI 100—70—C—00 80 DCI 100-71—C-00 7 aid DCI
100—77—c— OO o 5.

tot
V~ ’te

SflS

~1

ii

______________ ‘W

CONTENTS

Section Pa ge

ACXKOVLEDG NENT........ ii

ABSTRACT. •~~ V

1 I$TRODUCT ION.............. 1

2 TA BG~~~N e. 3

~. 1 Input • •
2.1.1 Delete Tabl e Stateaent................... 5
2.1.2 Table Identification Stateaent.... 6
2.1.2.1 Keyword Table Identification Statement... 6
2.1.2.2 Fixed Format Tabl e Identification

Statement.. • .. . 11

2.1.3 Header Statesent........................ . 12
2.1.4 Comment State sent........................ 13
2.1.5 Table Value Stateaents.................. .. 13
2.2 Job Setup..... ~~ 15
2.3 Liaitations. 16
2.4 Exaaples..... 16

3 SUBLD R. 19
3 • 1 Input. 19
3. 2 Job Setup.... • . •. 20

4 DATA COt4VERSION.......................... 22
4.1 Data Conversion Utility—UTDATAC.......... 24
1.1.1 Procedure X360C 0N.. 31$
4.1.2 Procedure XllêlOcOtl....................... 25

S FILE LOAD/UNLOAD UTILXTIES............ ... 26
5.1 SAM to ISAM or VSAM Utility—U?BLDISN..... 26
5.2 ISAN or YSA1I to SAM Uti]ity—UTBLDSAM..... 28
5.3 Compression and Compaction of Data Records 32

6 UTQR TQDP. •. • •. . 34

6.1 Input............... 34
6. 2 Restrictions.• • ... 35

6.3 Job Setup................ 36
6.4 !rror Conditions and Pt oc.ssing.......... 37

7 UTSUBCHK •. • 38
7. 1 Input. • as • • • .• 38

7.2 Functioning and Restrictions.....,....... 39
7.3 Job Setup........ *0

8 UTDMPLIB....... tel
8.1 Input..... 41

iii

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. .  _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- ___________________________

Section Page

8.2 Job Setup.... .. ... .  . . .. . . .• . . . . .• •. • • • •. •  41

9 IJTCL &SS......... .... .............e.. .... . 43
9 • 1 Input. . . . • . . . ... • . . . . .. .. .. . •~~ •• • .... £43
9.2 Output.. ............. ... ... ......... .... 43
9.3 Job Setup....... ........... . . .•..  . .• • . • • •  141$

10 SOURCE LANGUAGE STORAGE.............. .... 446
10. 1 Source Libraries.. . .. .. . • .. . .. . .. ... . . ... *6

10.2 Means of Storing Source.................. 147
10.3 Conditions of Source Library Update...... 147
10.4 Source Control Statneent....... .......... 47

‘10.5 Source Nember Raaes.. ................ .... 48
10.6 Operation of Source Library Update..... .. 49
10.7 Sequencing of Source fiateria l............ £49
10.8 Listing Source Library Neabers....... .... ‘$9
10.9 Job S e tu p . . . . .. . . . . . . . .. . . .. . . .. .e ... .. . .  50

11 INDEX SPECIFIER (UTNDXSPC)............... 51
11.1 UTNDXSPC Input.. ........... .............. 51
11.1.1 SUB/TAB Card.......... ............ .... ... 51
1 1. 1 • 2 INDEX Statement.. . . .. .. .... . .. . . • .. . . . . . • 5*
11.2 UTNDXSPC Output.................. ~ .... ... Si

11.3 UTNDISPC Job Setup............. .......... 57

12 INDEX TRANSFER (UTNDXTfl)........ ........ 59
12.1 UTNDITFR Input ..... ............... ....... 59
12.2 UTRDXT?R Output. ..................... .... 60
12.3 UT$DITPR Job Setup.. ........ ............. 60

13 U TF L D S CN . .. . . . .. . . . . . . . . . . . .. . .. . .. . .. . ..  61
13.1 UTFLDSCN Input........ ................... 61
13.2 UTPLDSCN Output... .................. ..... 62
13.3 Job Setup .................. .............. 63

114 UTI$DXKAM.......... ....................... 68
14.1 Input................ .................... 66
14.1.1 FILE Stateaent. .......................... 67
114.1.2 FIELD Statement.... ........... ....,...... 6$
114. 2 Output... ....... ..... ....... ........ ..... 70
14.3 Job Setup....... ....... ............... ... 71 1 1
15 DICTIONARY NAINTENAIC! (IJTN DXNIID)........ 73
15.1 UTIDXKMD Inpet........ ..........e..... ... 75
15.2 UTNDXKMD Outpst.................... ..... 81
15.3 UTIDXKMD Job S.tup................. ..... . 81

iv I
_ _ _ _ _ _ _ _ _ _ _



Section Pa ge
16 FORMAT DEFINITION TRANSLATOR (UTODE)..... 82- 16. 1 Input.. .. ... . .. . . .. .. .... ~~•. ..  . . . .  . .. ..  82
16.2 Job Setup.,..,..... ....... ........,...... $2

DISTRIBUTIOR.,...... ..................... 84

DD Form 1*73....... ,..... ........ ......, . 88

~~ L1.



-

~
-. . -. -‘,- ------ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - — . . -

~~~~~~

- --- -.. --- -

~~~

A BSTRACT

This volume defines the capabilities of NIPS 360 PP’S
Utility (UT) components. It describes the function of each
utility, its inputs, its outputs, and serves as a reference
for the knowledgeable user of these cospoasets.

This do :Umeflt supersedes CSN UN 15~74, Volume VII.

CSN Un 5—714 Volume VII, is part of the following
additional 9IPS 360 FF5 documentation:

CSN UN 5—78 Vol. 1 — Introduction to File Concepts
Vol. II - File Structuring (PS)
Vol. III - Pile Maintenance (PM)
Vol. IV — Retrieval and Sort Processor (RASP)
Vol. V — Outpu t Processor (OP)
Vol. VI - Terainal Processing (TP)
Vol. VIII - Job Preparation Man ual
Vol. IX - Error Codes

TE 54-7~ — Installation of NIPS 360 PP’S
CSN GD 15—7 8 - General Description

vi

‘I

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. _ .  ~~~~

. 
~~~~~~~~~~~~~~~~~~


r’~ i
.-

~~~
-

~— - ---.-—.———_____ ~~ __ — ---- —

r

Utility Support (UT)

Section 1

INTRODUCTION

This volume of the User Manua l contains an analytical
description of the general utility support functions
provid~d by NIPS 360 PP’S. These funct ions perform common
processing required by all the co~~onents. The purpose,
use, leck setup, an d options of each capability are
presented along with clarifying examples.

This volume is divided into the following sect ions:

a. TARGEN - Discusses the user conversion table
generator function

b. SUBLDR - Discusses the user conversion subroutine
loa der function

C. Data Conversion — Discusses the data base
conversion function which converts a 1410 PP’S data
base to an equivalent NIPS 360 FF5 data base

d. File Load/Unload — Provides the Job Control
Langu age to transfer files to an d from the
sequential Access Method and the Indexed Sequential
Access Method or the virtual Storage Access Method.

e. (JTQRTQDF - DiscusSes the creation of a NIPS 360 FFS
data file from the answer file (QRT/QDF) produced
by the retrieval processor (RASP)

f .  UT SUBCII K — Discusses the user subroutine checkout
funct ion

g. UTDNPLIB - Discusses the capability of printing the
names of reports and/or logic statements currently
residing on the data file

I



F- I 
_ _ _ _  

- -
:

- •
~~~
- —.---- --. —_ — - -----

_ _ _

Utility Support (UT)

h. UTCLASS - Discusses the capability of changing the
classification of a data file

i. SOURCE LANGUAG E STORAGE — Discusses the library
storage of source programs to facilitate
housekeeping and progra. maintenance

j. IJTNDXSPC - Discusses the manner in which indexing
information may be used without running an PS or FM
job

k. LJTNDXTFR - Discusses the capability which permits
the user to transfer the entire data set, from one
resident aediui to the other

1. UT’LDSCN - Discusses the source statement field
reference scan function.

a. UTNDXKAN — Discusses the capability to analyze the
words in fields for whic h keyword indexin g is to be
specified .

n. iJTNDXKMD - Discusses the maintenance of tables and
dictionaries required for keyword indexing.

o. UTODE — Discusses the editing of user format
definition source statements and their placement on
a user library.

2

-~~~~ - . .- . -. . - --. -~~~~~~~~~ . - .“-~~~~~- -~~~-- - -~~~-~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

U t i l i t y  Support  (liT)

Section 2

TABGEN

F A S GEN o f fe r s  the  use r the capability to generate data
conversion tables that may be used to support input and
output functions for NIPS components.

This technique lends itself to effective utilization of
file stora je space. It also complements the output
processor by expanding the coded internal storage values to
an external readable for.. The HIPS retrieval processors
use the reverse technique by permitting the user to express
the longer readable form as a search argument. Table
conv ersion will change the search value to the internal
stora ge for m for retrieval processing .

Conversion tables consist of argument/function pairs.
The arguiext is called the search value and is the data to
be converted. The function is the corresponding converted
value. Arguments and functions may be fixed length or
variable length .

Tables which are used to convert file data from an
internal format to an external format are called Output
Conversion Tables. Tables which are used to convert file
-data from an external format to an internal format are
called Input Conversion Tables. Conversion tables may be
created to pert orn both input  and output functions.
Whatever the function, the table is always entered with the
argumen t and the function is returned. The tables designed
by the user and linked to NIPS by the TADGEN processor may
be used to:

3

- -

~ 

—~~~~~~~~~~~~~~~ -- - -~



Uti l i ty  Support  (UT)

a. Convert  f ixed length data to variable length data

b. Convert variable length data to fixed length data

c. Convert  f ixed  length data to fixed length data.

TA~ GEN m ay also be used to delete a table or tables f r om the
user ’s l ibra ry .

2.1 In p u t

T A B G E H  wi l l  accept as input the following statements in
t h e  o rder  indicated:

a. Qelet,e Tabl e Stat~~ j~~~j 9g~J~ 
— Statement

is used to request deletion of a table or
tables from the user’s library.

b. ~~~~~~~~~~~~~~~~~~~~~~~ tat~i~~t _ 1re~~3J~~ .~j 
-

Th is control statement is used to define the
name and function of the table and to describe
the forma t of the table value statements.
TABGEN provides the user with two methods of
coding control statements. These are the
keyword and fixed forma t methods.

o Keyword — With the exception of t h e  table
name , control para meters may be
identified in any order . Each parameter
is coded with its associated operands and
is keyword identifiable.

o Fixed - All parameters are column
assigned for program interpretat ion.

C. ~~~~~~~~ St~teaan t~ 1optio~a1~ 
- Headers are

used frequently for  title informat ion and will
appear on each page of the TAB GEN listing.

d. cQ~I ~~~~~~~~~~~ jQptJ.~~ LU - Comments are
often used to describe the purpose of the
t able , alon g wit h any  pert inent remarks the

14



— -— ------ — ---- -- -- -~~~~---- - :-
~~~~~

-- - -
-- - ,

Utility Support (UT)

user wishes to make. These statements will
appear only on the first page of the TABGE~
listing.

e. ~~~~~~~~~~~~~~~~~~~~~~~
_ eqgx~~4j - Table

value statements suppl y the a rgument/ func t ion
pairs to the conversion table. The pairs may
be arranged for input to the table in either
a free or fixed format.

o Fixed Format - The user is required to
align all argument/function pairs in the
sate col umn arrangemen t, but be has the
option to choose this alignment as well
as the argument/function order. Both
arguments and functions may contain
embedded blanks.

o Free Format - The user is not bound to
any column alignment constraints for the
table value statements; however, a
consistent argument/function order must
be maintained in the source statements.
Either the argument or the function ma y
contain embedded blanks, If a value
contains embedded blanks, it must be
defined as the variable.

2.1.1 Delete Table Statement

This statement provides the name (s) of tables to be
deLeted. Any number of cards can be submitted , but they
must be first in the ?ABGEN deck.

The format of the DELETE card is as foUows:

DELETE — This keyword which indicates the statement
type , must be coded in column 1 of the card.

a. the name of at least one table to be deleted must
appear on the card before column 72.

-- - -

Utility Support (UT)

Example: DELETE DTGIS

b. If more than one table ma.. is to be included on
the card, tk.y must b. enclosed in parenthesis and
separated by one blank or comma.

E xample: DELETE (DTGIS,DTGO S)

c. A table nam e or a list of table na•es cannot be
split between cards , but multiple DELZTE cards can
b submitted.

2. 1.2 Table Identif ication Stat ement

This statemen t provides contro l information to the
TABGEN program. The pata..t.ra may be keyword or fixed
format.

2. 1.2. 1 Ke y word Table ~~entificatios Stat sient

V - Tb. keyword statem ent is th. method used to sipr ess
control pat am•ters in free form. Vith th. exception of the
conversion table nsa., th. user say specify the ucsiasry
control parameters La any order. Only the table name I s
required in the table ideetificatiom statement. The
remaining para meter s at. optionel and need oil y be stated if
other than defau lt val ues az. requirsd. Tb. following
coding conventions appl y to k.ysord table identification
statements:

a. L.yword. at. separated from associated oper ands
with equa l sigma .

b. Keyword /operand paraa. tsrs may be separated from
other control psra .st.r s by a comma or blank(s) .

c. Eu ltip le oper ands a..iqm.d to a aimg . keywor d will
be enclose d La par entheses.

d. lot. th is on. cird say be used to ident ify keyword
para neters . Code a nonb i sak ~~ara cter in card

___--_ _

6

- ______

— Util i ty Support (UT)

column 72 to indicite continuation of tableidentification control statement..

• e. Do not cod e Paramete rs beyosd card column 71.
f. Do not split keyword/operand lists between cardboundar ies.

The following statemeat exemplifies the keyword format:
T&BLE~OCTEST ARG— (1/1,on,F) ?VPJC— (3/19,’r,o,,)USExO PAGE—2K USEINIJE
The following keyword definitjoum apply to the keywordstatement :

- This keyword, which specifies the table name, mustbe coded ~n column 1 of the table identification card.Table names must conform to standard NIPS nam e rules asdefined in Yoluae I, Introduction to File Concepts. This isthe only k.yvotd that is always required.
Example: TABL E~ OCT!ST

- This optional keyword may appear anywhe re followingthe TABLE keyword. This defiaei t he characteristics of theta ble argument. The following subpax amet.rm may be Cod.d:
a. hh/ll — This subpara,et.r dsfines the high— andlow—order columns of th. argument in the tablevalue statemeat. Since this d fine. specificcolu.~ alignment, the table value cards are,therefore, fixed format.

Example: ilGz(1,l1)
b. 11 - One to thre. digits say he used to define themaximum length of the arguasat,, If argument lengthis specified rather than hiØ.. and low—ordercolumns, then the tabl. value card. ar• ft..format .

Example: AVG— i

~

- ——- — - -—- —————‘—-

~

,-—-—-—--— -.---

~

-•————---- — ~~~ -~
-
~

—- - —-— —--—--- -———-- -—
~~

--—— -—-- -
~~

-
~

-- --
~

--.-
~ -— ~~~

Utility Support (UT)

It neither argument length nor column alignment is
specified , the table value cards will be consider ed
tree format. The actual argument length will be
determined from the maximum length of the arguments
in the table. If argument length i. greater than
30 characters, the maximum length must be entered
in the PARE field of the EZEC JCL card. The user
may ~~~ specify ~~~~ column alignment and length on
a table identification statement.

C. ONE — The subpara.eter ‘ONE’ or ‘TW O’ may be coded
to indicate the relative position of the argument
to the fu nction in the table value card. ‘OWE’ is
the default value for the argument; ‘TVO ’ is the
default value for the function. However, if the
user overrides either position aubparameter, the
remaining subparaaete r automatically flip—tlops”
to an opposite default value. If the position
specification is not consistent with column
alignment requirements for fixed format table value
cards, the column alignment specifications take
precedence.

Examples: £RG= (i/1,OWE)

Specifies fixed format table value card,
with argument preceding function .

ARGr (5,TIO)

Specifies free format table value card.
Argument is a maximum of five bytes long
and follows the function on the table
value card.

d. P - The subparaset er ‘F’ indicates the argument is
fixed in length (no embadded blanks) • ‘7’
indicates the argument is variable in length. If
this subparameter is oaitt.d, the default for theargument is ‘F ’ .

Example: ARG— (1/1,0IE,r)

H I

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~—
_ _

Ut ili ty Support (0?)

- This optional keyword with its subparaaeters lay
appear anywhere on th. table identification card following
the TABLE keyword. This defines the characteristics of the• table function, The following subparaaeters may be coded:

a. hh/ ll - This subparameter defines the high— and
low-order columns of the function in the table
value statement, Since this defines specified
column a lignmen t , th. table value cards must be
fixed format.

Example: PUNC—3/19

b. 111 - One to three digits may be used to define the
aaxiaua length. of the function. If the function
length i. specified rather than high- and low—order
columns, then the table value card must be free
format,

Exam ple: P01C 17

If’seithsr function length nor column alignment - is
specified, the table value cards will be considered
free format. The actual function length iill be
determined from th. maximum length of the functions
in the table. This may not exceed 255 bytes. The
user may ~~~ specify ~~~~ column al ign ment and
length on a table identification statement.

c. TWO - The subparameter ‘Tb ’ or ‘ONE’ may be coded
to indicate the relative position of the function
to the arg ument in the table value card. ‘TWO’ isthe default value for th. funct ion ; ‘ONE ’ is- the
default value for the argument. However, if the
user overrides either position subparaietet , theremaining sub par aseter astomatically mflip .flops
to an opposit, default vain.. If the position
specification is not consistent with coitsaalignment req uir ements for fixed forma t table valuecards, the column alignment spscificstions takepreced ence .

Examples: PUI Ca (3/19,TVo ,V)

9

- - -
- ——- ——-- —- - -~-—- ——~~- —-—- -—-—— - — - ~~~~~~~~~~ -— - ~~~~~~~~~~~~~~~~~~~ — — - -

- - -~~~~~~-~~~~~~~~~~-—~~~~~-- •~~~~~~~~~~~ -- - - - - . • ~~~~~~~.

Utility Support (UT)

This specifies a fixed format table value
card with the function in columns 3—19.
The function is variable length and
follows the argument on the table value
card.

?UIIC= (15,OIE)

This specifies a free format table va lue
card with a maximum function length of 15
bytes. The function defaults to variable
length and precedes the argument on the
table value card.

d. V — The subparaaeter ‘7’ indicates the function is
variable in length. ‘F’ is the user’s option and
indicates the function in fixed length. If this
function .ubparam.ter is not coded, the default
value is ‘V. ’

- flis keyword parameter may appear anywhere on the
table identification statement card following the TABLE
keyword. The parameter indicates the us of the table for:

I = Input
0 Output
8 Both

If tha keyword is not coded, ‘B’ is assumed.

- This keyword may appear anywhere following the TABLE
keyword . The subpa ram.t.r indicates the maxi•um size of a
page for the table. Tb. user has the option to specify the
following page sizes:

lx
2K
“K

U this keyword does not appear on the table identification
statement, a page size of iN is assumed. *

10

•

_ _ _ _ _ _ __ _ _
—

~~

ut ility Support (UT)

• - The user ’s name may a ppea r anywhere on the table
identification card after the TABLE keywotd. This parameter
is optional.

2.1.2.2 Fixed Format Table Identification Statement

This statement is u..d to express control parameters in
fixed format. As in the case of the keyword table
identification statement the table name and function, as
well as the format of the table value statements , will be
defined in this statement. Specific colusa alignment of
parameter values is easestia l for program interpretation.
The following card column a lignment defines input formats
for both fixed and free format table value statements.

Card Fixed Format Table Free Format Table
cQi9Ia~ flLve St~tememt$

- !11av_~tatfients

1-5 Contains card identifier Contains card
i dastifier

TABLE TABLE

11-17 Contains name to be given Same
to a fixed—to—variable-
length con versio n table

21-27 Contains name to be given Same
to a variable-to—fined—
length conversio n table

31-32 Nigh—order position of L ength of fixed
fixed length field in length field in the
the table value statement table value statement

3’4-35 Low-order position of Blan k
Fixed length field in
the tabl e value statement

ii

---~~~~~~ - - - ~~~~--—


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

Utility Support (UT)

Card Fixed Format Table Free Format Table
c~uu !Il.e Statements Value Statement.

$1 -~ 2 High—o rder position of Length of variable
variable length field is length field in the
the table vale, state- table value statement
meat

S
44-~5 Low—ord er positio n of Blank

variable lengt h field in
the table value statement

50 Contains code designating Sass
use of table:

za lmpst
0 a Output
B a B otk

51 Slash contains ‘F’ if
the fixed field is the
first field is the
table value statement ;
contains ‘5’ if the
fixed fi ld is the
second 1.16 ii the
table value statemeat

55 Contains th. user ’s Same
name

73-80 Card deck sequence Same
number if desired

2.1.3 Header Statement

Header stat•ments are optional and may be used with
keyword or fixed format control statememta. For each table
generated by the TIEGU processor, a list ing will be
provided to th. user. Up to four user—specified header
lines may be printed on each page of the gensrst.d table
listing. A header statement is identified by one, two,

12

_ _  _ _ _ _ _ _ _ ____________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —



Uti l i ty  Support (UT)

Ta
three, or four asterisks left—justified in columns 1-4
representing the statements (lines) one, two, t hree, or
four. Data printed on each page of the output listing is
taken from columns 10—80 of a statement. For example:

card Column
1 10

* THIS IS AN OUTPUT HEADER
** THAT WILL APPEAR IN THIS ORDER

ON EACH PAGE 0? OUTPU T OP
A TABGEN LISTING.

2 . 1 .4  Comment Statement

A comment statement is identified by an asterisk in
column 6. Any number of comment statement s may be applied
by the user, but they must follow the header statement and
precede the table vain, statements. The co~t nts of a
comment statement will be printed e~~ctly as it appears on
the punched catd. For esample:
Card Column

6 10
V

* THIS IS A COHNUT 3?ATUUT
* THAT WILL APPEAR 01 THE FIRST
* PAGE ONLY OF A TADGEP LISTING.
* THERE NA! BE ANY N URSER 0?
* CONNER? STATEHUTS PRIOR TO THE
* OUTP UT OF THE TABL E VALUE STATERENTS.

2.1.5 Table Value Statements

Argument/function pairs are supplied to TABGEN by table
value statements. If the keyword table identification
statement is used, the user nay creete a table in which the
argiament/fenction pair may have a cosbined len gt h of 256
characters. If this method is used anti the
argumeut/fmnction pair exceeds 71 character s, the table
value statements should be continued to the next card. A

13 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


-~ - _____________

C

Util ity Support (UT)

maximu m of four continuation cards is permitted. A non-
blank character in column 72 will indicat, continuation.

- The scan vifl proceed through column 71 and continue with
column 1 on the next card.

If the fixed table identification sta tement is employed ,
the argument/function pai r must be con tained within the
colame boundaries of one pu nched card .

In either case, table value statements may appear is one
of two formats; i.e., fixed or free. Ezanpies of each
follow.

a. Fi xed Format — The user is required to align all
argument/func tion pairs in a prescr ibed column
arrangement. The column alignment and
argument/function order are optional; however, all
table value inputs must ha ve the sass format. For
example, the following table valu, statements woul d
supply argument/function pairs in fixed format to
a ~Service ?able~:

Car d Column

1 3 19
E U.S. Coast Guard
V U.S. Army
J U.S. Air Force
N U.S. Navy
N U.S. Narine Cor ps

Using the fixed format table value statements, the
high— and low—order positions of the
argument/function pairs nuat be specified in the
table identification statement. Fixed format table
value statements can contain blanks in both fixed
and variable length fields.

b. Free Format — The user is not limited by column
boundary restrict ions using the free format method
for input of table value statements. Data may
start in any card column and end in any card colu m
between columns 1 and 71 , inclusive, for keyword

I

Uti l i ty Suppo rt (UT)

table identification control cards, and between
columns 1 and 80, inclusive, for fixed table
identification control cards. The order of
argument/function pairs must be indicated and
remain consistent for all inputs to a single table.
For exa mple, the fol lowing table value statements
would supply argument/function pairs to a uService
?able~:

E U.S. Coast Guard
V U. S. Army

J U.S. Air Fo rce
N U .S. Navy

N U .S. Marine Corps

The order of argument/function pairs in the example shown
remains consistent in each table value statement. However,
column select ion of dat a value placement is free format. In
this format the fixed length field cannot contain embedded
blanks, but the variable length field can.

2.2 Job Setup

a. The following job setup is used to execute the
ITASGEN cataloged procedures and suet be organized
in the order shown:

//Jobname JOB (Standard parameters)
//Stepname EXEC X?A SGU,LIB=yourlib
/ /T AB . S Y SI N DD $
T A B L E IDENTIF I CATIO N STATEM ENT (Required)
H E A D E R STATE ME NT (Optional)
CONNER? STATEMENT (Optional)
TABLE VALUE STITENUTS (Required)
‘C

b. More than one table may be generated in a single
job step. If tables are batched and a table
argument length exceeds 30 bytes, ¶IBGZN must be
informed by stating the maximum argument length in
the PUN field of the USC card, for example,
PARN ~nnn (nun is any number between I and 255).

15

~~‘ ,~~~
-

~~~~~~~~~~~ -
=

~~~~~~~
- - - --- —=~

-- - -

~~~~~~~

-

~~~~~ 
-

~~~~~
-

~~~~~~~~~~

--

~~

— - - _ _ _ _

Utility Suppo rt (I?)

c. The generated table will become an executable load
module which will reside as a member of a library
that will be ident if ied by the LIB~~ parameter in
the RISC card. The user say create his own new
library by overriding the folloi’ing symbolic
parameters:

LIBDISP~ (N1W,KREP)
TLIB= (volume)
LISSP= (space)
ULIR~ (unit)

2.3 Limitations

a. The maximum table size is approxirately 528,000
bytes The maximum number of pages ~ihich any table
may contain is 132.

b. The maximum argument/function size is:

o. 2Sá bytes when asing keyword table identification
statements

o. 80 bytes when using fixed table identification
statements.

2.1$ Examples

Examples of test runs using keyword table identification
statements.

a. The following ?ABGE$ source deck setup was used to
generate a fixed—to-variab le length table using
free format table value statements. ike table name
is CTRTS, and the table converts a two-character
internal storage code to an output value with a
maximum length of 15 characters. The user name is
?ABGRITEST and the table page s ize is 2,000
characters.

16

Ut i l i t y Support (UT)

• ffJobname JOB (standard parameters)
//ST!PA EZEC ZTADGEN,LIB~7ourlib
//TAB.S!SIN flU
TABL E*CTRYS ARG= 2 PUWC~15 USE~0 PAG5 25 TABGENTEST
* TABL E CTRYS USING FREE FORMAT TABLE
*~ IDHITIPICATION CUD AND TABLE VALUE
~~~ CARDS.
AL AFRICA

AC AT LANTIC OCEAN
• •  • S 5 S  S s 5 ,  • S ~~~~•••~~~~~~ •~~• ~•• • 5~~~~ e•~~~• • • s  • • ~ •s  5 • •S • e •  • . 5 •.

6 4  C AR I B B E AN
65 PACIFIC ISLANDS

‘C

The output listings for this source deck will
appear as follows:

DATE 71001 ?ABLE—CTRYS ORIGINATOR TASGENTEST PAGE-O01

TABLE C?RYS USING FREE FORM AT TA BLE
IDENTIFICATIO N CARD AND TABLE VALUE
CARDS.

LR GU N E $T FUNCT ION

LA AFRICA
AC ATLAN TIC OCEAN

. . . . . .... .. .... . . ... . s . ..
64 CA RIB EEAN
65 PACIFIC ISLANDS

b. The following TABGEN source deck setup was used to
generate a variable—to—fixed length conversion
table using fixe d format table value statements.
The table name is UNLYS I , and the table is used to
convert an external value with a maximum length of
15 characters to an inpu t storage code with a
maximum length of three characters. The user name
is TLBG EN? EST and the table page size is 1,000
bytes:

//Jobname JOB (standard parameters)
//STEPA RIEC XTABG!N,LlBryourlib

17

- 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

_ _ _ _ - -

Utility Support (UT)

//TAB.SYSIN DD *
TABLE~UILYSI ARG= 1 O/2 4 FU NC I/3 USE= I TASGEBTEST
* TABLE UNLYS USING KEYWORD TABLE IDENTIfiCATION
CC STATEMENTS AND FIXED FOR MAT TABLE VALUE
CCC CARDS.
A NUMBERED AR MY
LCD ACADEMY
.. s•• •. e e S . s • . .* . s e S. . e

U UNI T
USS US SHIP
HG WING
‘C

The output listing for this source deck will
appear as follows:

DATE 71007 TABLE—UNLVSI OEIGINATOR—?ABGENTEST PAGE-001

TABLE UNLYS USING KEY~~RD TABLE IDENTIFICATIONSTATEMENT AND FIXED FORMAT TABL E VALUE
CARDS.

ARGUMENT FU NCT ION

NU M BERED ARMY A
ACADEMY ACO
• S 5 S S e~~~ s e ~~ • 5 S e S % ~~~ % s 5 s s 5• e ~~~ e • ~~~ e S e 5 .5

UNIT U
US SHIP USS
WING VG

18

— -

~

— - -

~

-- - -~~~~~~~ - -~~~~-~~ - —---- - - - --- -~~~~~~~~-~~~~-~~~~~~-~~~ -- .- - .

r~
‘—

~

:------ — —
---- — —- -

~~

-
—--—‘

-~~

Uti l i ty Support (UT)

Section 3

StJBLDR

SUBLDR is used to transfer a conversion subroutine in
lo~td nodule form from a work library to the NIPS l ibrary.
Th is procedure establishes the proper linkage for the
interface between the NIPS 360 ?FS and the user subroutine.
Th-~ subroutine should have been tested previously by the
user. The conventions required in writing the subroutine
ha ve been outlined in Volume I~ Introduction to File
Co n cepts.

3.1 Input

Input for the cataloged procedure XSUBLDR cones from two
so urces: a user-supplied statement in the lob deck defining
the attributes of his subroutine, and the subroutine in load
mod ule form. The location of this load m odule is identified
by a symbolic parameter supplied by the user.

The tree format control statement defines the
subroutine , and is punched on a card. The parameters must
be in their stated order but may be separated by blanks or
commas and may start in any card column. The nine
parameters used in the control statement are as follows:

a. Statement Identifier — SUBRT

b. Conversion Subroutine Name - Na m e to be used in
NIPS 360 FF5 statements when invoking the
subroutine. This name must conform to
specifications outlined in Volume I, Introduction

19

_ _ _ _ _ _ _ _ _ _

A

_ _ _ - - -

-

H

-

. - Utility Support (UT)

to File Concepts, and must b. unigue in the NIPS
library where th. subroutine is stored.

- - C. Raximan Argument Size in Bytes Decimal number
(maximum) to be accepted by the subroutine.

d. Naximum Function Size in Bytes — Decimal number
(maximum) to be su pplied by the subroutine.

e. Conversion Subroutine Type

I - Input conversion
0 - Output cam version
B - Input/output conversion.

I. Argument Rode - For input dat, to the subroutine.
4- A - Alpkauerlc mode

B - Binary mode
C - Coordinat, node
D - Decimal mode

g. Function Node - One of the character, listed in
parameter (f) defines the mode of output data from
the subroutine.

h. Ssbroi tiae Load Module Na.. - As it exists on a
work library, this name -.dat be th. sam e as the
Loa d noduls entry point emme. This ins. say be thesame as that s a d is parameter (b) but sotnecessarily, Th. ease •s.d may sot be greater thanseven characters ii l.agtb.

i. Ussr lame — In ter of th. subroutine. Up to 18characters nay b e used, sith no mbsdded blauka.
Periods say be used to naparats initials.

3.2 J ob setup
-

The following statement s illuatru te the deck setup seedto execute the ISUILDS pa~ocedure.

• -

-

-
~~

“
-

—

-

-

.—

~
- -

I - --
_

~./
•

_ ;--

—- ----_---- •‘ / - --- —-—--—

-

-

~~L ~~~~~

_ ~~~~- - ~~~~~~ ~~~~~~~-~~~~~~~ --

Utility Suppo rt (UT)

// JO RNAN E JOB (standard paraaetsrs)
// EZEC XSUBLD 1,LIB~1O.rILb,MODLIB.T!IP
//$tJB.S!SIII DD *• Control statement defining subrout ine
as descr ibed ii 3.1.

‘a

The LID symbolic parameter defines the library where the• executable subroutine load module is to be stored. This cante a user’s private library or an installation NIPS library.
The RODLIB symbolic paramet er prov ides the work libraryname where the subroutine load nodule is located.
This library can be the installation progra. library ora private library built by the user vken the subroutine is- assembled , link edited, and tested by the user.

Sample Control Statea.nt
-

SUBRT, CTHS, 92, 15, 0, A, A, RODNI , JSZRIARE

— This control statement defines the NIPS subrouti ne CTBTSas an output subroutin, accepting two alpha argunent bytesand gsa eratl1ng 15 al*a bytes output. The loa d nodulecreated by the user has sane and entry point flODNN.

‘ -f -
/

-

-
-

• - - - - 21

__ -

_~~~~~~~
_
~~~~ •_~~~~

__ 
- -



Utility Support (UT)

S.ction *

DATA COIVERSION

The data csu•rsios uti lity allows the user/analyst toconvert 1*10 FF3 data bases to lIPS 3d0 FF3 format. NIPS360 113 data bess. can be reconverted to 1*10 FF3 format.
In either node, the conversion process produces a logicallyidentica l file containing all of the appropriate .l•sents of
inforaatio* for the nod. • The process is essentiallyautomatic, requiring the analyst to provi de an FPT for eachof the two modes of fi les, but requesting no costrol data.

t 

Data conversion occurs at th, field level, penaittiagrearr asqea.nt of data elements within a periodic subset orfixed set, I.. fields nay bi added and old fields nay be
• dropped. Tb. variable set (YSE?) of a 1*10 file nay not bedropped when converting to a RIPS 3~0 IFS format.Dapositioniiq of the data fields ~ithia the subset or fixedset permits change of th. recor d control group contents.The system senses any varia tion in the sequenc. of the sewti Le and prints an error ness.,. when the file must besorted.

The 1*10 node coordinat, field .. are automaticallyconverted by tb. syst omly when the length specification -is the 1*10 FE? is equal to 13. Siecs this i. the mormalinterni format for 1*10 data buses, so problen ~~os14• result fre, this coastrajut.
A listing of all field manes, and their dispo.it Loswill be printed at the beginning of the run to aid tb.analyst in det.nmt ninq v fU contests. At the end of the

22 

___________ — •,_ — . _ _ :~ _ . : . :.~ _ _ _ ‘‘ . ‘‘‘

-

~~ - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
— —U J



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~ - - - - —--•--- — •

Utility Support (U?)

run , a space allocation print—back is included to assist in
loading the data base onto d irect access devic.s. The
conversion process is tape — to-tape when going to NIPS 360
format and disk—to-tap, when going to tA. 1*10 format.
DD cards used in the utility (UTDAT AC) are:

~i1e Describe4

1410 object P?T

DATAFILE 360 ISlE F!? (and data bane if 360 to 1410)

FILE14IO 1410 data base (optional, see below)

NSl?ILZ Output data base from conversion
SYSPRINT )

)Printer
SYSOUT )

Direction of conversion will be determined by the presence
of the PILE.1410 DD card; if it i. present, the conversion is
from the 1410 to the 360.

Description of data sets:

SYSIN — 1410 FIT in object deck torn.

DA 1’AFILE — 360 ISlE FIT/data base.

FILE1~s10 - 1*10 data base, usually a 7—track, 556 bpi,
even-parity tape with oonatandard labels. The followingexample is for the SOFAA data ban, which is cetaloged on

• the 360:
- 

-
~~

- //FILE1SILO DD DISP~ OLD,D SRANE ~SOFAAUX.LA 8!L1.(.NSL) , C

// DC3~~ (D!Ia l,TPTCH~~5T)

23

_ _ _ _ _ _ _ _ _ _ _ _  

-

—— —-—-~~~~~~~~~ — ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



-~~-~~~—-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Utility Support (UI)

IENFII.E — Output file fro m the conversion utility. For
the 1410 to 360 conversion, this will describe a
SAN file on 9-track tape.

, /NEVF ILI DD UNITa2*00,DISP*(,CATLG) ,DSRA EN-SOFIA

For the 360 to 1*10 conversion, this will describe a
seven—track tape with nonstandard labels. The
BLASIZE m ust be supplied in the DCB parameters.

//REV?XLE DD 0NIra2*00~2,DXSPa(,EEIP),DSRA1E~5OFAAZIX, C -
// LABEL~(, NSL) ,DCR~(DE$*1,TRTCft=ET,BL~SIZ!~270*)

SYSPRIRT AID SYSOUT — Ties. describe the system output
writers.

4.1 Data Conversion Utility - UTDATAC

This utility will convert a 1*10 IFS data base to a RIPS
• 360 VP’S dat a base. It will reconver t a NIPS 360 IFS data

bass to a NIPS 1*10 FF3 data base.

4. 1.1 Procedure 1360c0N

This procedire will convert a 1*10 FF5 data base to a
NIPS 360 IFs data base. Tb. 1*10 FF3 file i. assumed to be
on a 7-track tap. and tb. ne. data bess is to be written on
a 9-track tsp.. Using symbolic paraneters for this
procedure, one would use the foUouiag Xis

//JO BNUI 101 (standard paraast.rs)
, / ZINC 1360C01, I3&I—aaaaaaa, FISIl~’ SIR—bbbbbb’ • I
/1 PL1*10—ccccc, 11410- ‘SIN-dIdddd ’, I
// SAN-s sssse,VS*RalSflaff ffff I
//SYSIN DO *

(m obj.ct deck of 1*10 FF3)

1* -

2*

—

______________ ~~~~~~~~~~~~~~~

F ~~~~~~~~~~

-- -

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Utility Support (UT)

w here

aaaaaaa = NIPS 360 FF5 ISAN data base name on disk
• bbbbbb disk serial number for the ISlE data base

ccccc = 11310 IFS tape data bass name
dddddd = tape serial number for the 1*10 data base
eeeeeee lIPS 360 IFS tape dat a base mane
ffff ft = tape serial number for the 360 data base.

4.1.2 Procedure I1dI1OCOI

This procedure will convert a RIPS 360 IFS data base to
a 11310 FF5 data base. The lIPS 360 IFS data base is assumed
to be on a 2314 disk pack and the converted data base is
written on a 7—track tape with nonsta ndard lab.ls. Using
symbolic parameters for this procedure, one would use the
following JCL:

//JOBIANE JOB (standard parameters)
I 

- II ZZEC I1*l0CO l,I SAE~aaaaa aa ,yISA n~ ssNRabbb bbb s ,
1/ SAflzeeeee ,VSA E =S SNR= fffff f l
//SYSIN DD *

(1410 IFS F?? object deck)

where

aaaaaaa NIPS 360 FF5 ISlE data base name on disk
• bbbbbb = disk serial number for the 15kB data base

eeeee — data base nan. for the 1*10 FF3 tap e
ffffff tape serial number for th. 1*10 data base.

25 

-•• -~~~~~~~~ — -•

~~~~~~~~~ A


Utility Support (UT)

Section 5

FILl LOAD/UNLOAD UTILI PI IS

The following paragraphs provide th. job control
lan gua ge and necessa r y information re quired to transfer
fil es to and from the Sequential Access and Indexed
Sequential Access lethods (SAl and TSAR) and to and from the
Sequestial Access and Virtual Sterage A~~ess Nethods (SAl
and TSAR) . These utilit ies are effect ively automatic and
require only tie JCL stream for control .

5.1 SAn to ISlE or TSAR Utility — DTRLDISB

This utility builds as RIPS TSAR data base or a NIPS
YSAN data base from a NIPS SAN data bsse. Under control of
tae CC synbo lic parameter on the IXIC card it can optionall y
build th e T SAR or TSAR data base in the compressed and/or
compacted for m or reverse the proce ss to prod uce the T SAR or
TSAR dat a base in tie standard form see section 5.3) .

The JCL OD cards used are:
/1DATAI ILI DO Para meters def ining the new ISlE

data base
//SARIft2 DD Parameters defining the existing SAN

data bass
//V5RIILE DO Parameters defining th. new TSAR U

data base.

The new TSAR RIPS dat a base will be created with the
foliosing att ributes: nanter index, cylinder overflow,
independent overflow, delete option, write check and
feedback reorganization criter ia.

26

I

_________ -~ — - - - - - - - - - -— — — -----------------~~~~ - —---- -~~- ---—-—-------

r~~
T

~~~~~~~~~~~~

Uti l i ty  Support  (UT)

• The procedure ISTOIS is used to build a NIPS 360 ??S
ISAB or YSAN data base from a NIPS 360 IFS SIR data base.
it is assumed that the existing NIPS SAB data base resides
on a 9—track tape, and that the ISlE data base will reside
on a 23113 disk pack with a disposition of KEEP. If output
.~s to be a VSAN data base, it must have been previously
aefined via the YSAB service routine IDCAMS and cataloged on
a Y SAIl user catalog. Using symbolic parameters for this
F rocedure, one would use the following IC!.:

//JoBlAfl! JOB (standard parameters)
// EXEC XS?OIS,ISAR—aaaaaaa,VISAN= ’SER=bbbbbb’, I
1/ PRIEN=cc, T$DEIa4,SAfl=eee.e.e,YSAN= ’SEl ffffff’,,

CC=gggggg
‘C

where:

aaaaaaa = name used for the mew ISAP~ data base

bbbbbbb = disk serial number for the new ISlE data base

cc = number of cylinders of prime space for the new
ISAB data base

d = size of index needed for the  new ISlE data base

eeeeeeee = nawe of the existing SAN data base

fffftf = serial number of the tape that contains the
existing SAN data base.

gggggg = parameter option for dat a record transformation
(COMPRESS , COIIPACT , EX PAND or both COMPRESS and

COMPACT) and pad record su ppression (NOPAD) .
Multiple values must be separated by commas
and the whole parameter enclosed in single
quotes. (see section 5.3).

For SAM to TSAM , replac, the ISlE parameters
with:

VSCAT=aaaaaaaa ,TSDSN=bbbbbbbb ,N OI VS M = 1 D UM N Y ,’

27 - 
-

2;

~

- _~~~~-~~~~~- _ ~~~~~~ _~~~~~- -  —-— - -_ - • -- -~~~~~~ -~~~~~ - - - -~~~~~~



_ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

Utility Support (UT)

where:

aaaaaaaa = name of the YSAN user catalog

bbbbbbbb = name of the ISlE data base to
be loaded.

Normally, after the file has been copied to disk, the
zemaining prime space will be fill ed with pad records.
These are TSAR records with valid keys which have the delete
byte set on. These records make it possible to add records
to the end of the file during later update and still remain
in the prime area.

If the user does not want these pad records, he may
include the NOPAD keyword in the symbolic parameter CC on
the EXEC card.

An example might be a SAN file tha t is dumped to disk
for use with PP. In this case, it oul d be desirable not to
pass all, of the pad records for a qmery, while the user is
waiting at the terminal.

Upon completion of UTBLDISR, the user will receive
either the message,

‘NIPS 15kM (TSAR) PITA FILE 015 BEEN SUCCESSFULLY
CREATED ’

if the job was succesaf*l, or a USER 0200 ABEND if the job
w4s unsuccessful.

5.2 ISlE or TSAR to SAN Utility — DTBLDSAE

This utility builds a SAN data base fron either an TSAR.
a TSAR or anoth er SIR data base. Under control of ti. CC
symbolic parameter on the IZIC card, it cam optionally build
the output SIR data base in the compressed and/or compacted
fore.

The JCL DD cards used are:

20

_ _ _ _  -- ~~
-

~~~~~ 
- -

~~~
--—-

~~ 
— -

~~~~~
- --

~~~~~

-—-

~
~-



. -

~

--

~

----

~ 
-.

p22

Ut ility Support (UT)

/ / DAT AFILE DD parameters defining existing ISlE data file

//VSMFIL~ DD parameters define existing ISlE data file

~/SANFILE DD parameters defining existing SAN data file

1/SAMOUT DO parameters defining new SIB data file

Th e procedure XI STOS is used to build a NIPS 360 FF5 SAM
data file f ro .  an ISlE or ISlE data file or copy a NIPS 360
SAM data file. It is assumed that the existing ISlE data
tile resides on a 23113 disk pack or that the existing SAM
cata file resides on a 9—track tape with standard label. If
input is a ISlE data file, it must be cataloged on a ISlE
user catalog. It is also assumed that the output SAN data
tile will be written on a standard label 9—track tape.

Using symbolic parameters for  this procedure , one would
use the following JCL:

//JOBN&ME JO8(Standard parameters)
// EXEC XISTOS,ISAM=aaaaaa,V1515 ’SER bbbbbb’,
1/ S&II=eeeeee , VSAM = ’SER=f ff f ff ’,CC=ggg ggg
1*

where:

aaaaaa = name of the existing ISlE data file

bbbbbb = serial number of the disk volume where the
ISlE data file resides

eeeeee = name used for the new SA M data fil e

t f f f f f  = serial number for the new SAM data
file

I.

gggggg = parameter option for data record transformation
(COMPRESS, COMPACT, EXPAND or both COMPRESS and

COB PAd ’ separated by a comma) and pad record
suppression (NOPAD) . Multiple val ues must be
separated by commas and the  whole parameter
enclosed in single quotes.

29

- --—. - - -~~~-•-~~~~ - --—- _~~~-~~~~- --- ~~~~~~ -~~~--- - ---~~~~~ ----—



Utility Support (UT)

For YSAR to SAN , replace the ISAN paranetets with:

TSCAT=aaa aaa aa , VSDSN=bbbbbbbb

where:

aaaaaaaa = name of TSAR user catalog

bbbbbbbb = name of exisitug ISlE data file.

For SIR to SA N one would use the following JCL:

//JOBI&NE JOB (Standard parameters)
// EIEC XISTOS,OLDSAM=aaaaaa,OLDVSAR= SER=bbbbbb’,
// SAN ~eeeeae,VSAM~~’SEB= ff f ff f ’, PLRE= gggqgg

where:

aaaaaa = name of the existing SAN data file

bbbbbb = serial number of the volume where the SAN
data file resides

eeeeee = name used for the new SAM data file

ftffff = serial number for the new SIN data tile

gggqgg = parameter option for data record transformation
(cORPRESS, CONPACT, EXPAND or both CONPRESS and
CONPACT separated by a com ma). Multiple values
must be separated by commas and the whole parameter
enclosed in single quotes. (see section 5.3).

Keywords in the PARR are used to designate the torn of
the output SAN data base irrespective of the form of the
inp ut T SAR , SAM or YSA M data base . The keywords for the
PARE and their implications are the sa me as those for the
SAR to T SAR utility.

Upon successfu l complet ion of UTBLDS AN , the user will
receive the message:

‘NIPS SAM DATA FILE lAS BED $U~~ESS?ULLY CREATED’.

30



- ~~~~~~~~~~~~~~ ~~~~~ - - 7

Utility Support (UT)

Prior to termination of the utility, it will print
statistics that are beneficial for the user/analyst.

The first line of statistics printed gives the file
name , volum e ser ial num ber, date, time , and page number.
Then information is printed concerning the sets.

There are seven colum ns of information displayed, wit h
headings, as follows:

a. SET The first entry is FIXED SET” and following
is each periodic set with the number specified
in the FPT.

b. MINIMUM Shows the size, in bytes, of the smallest subset
SUBSET within the specified set, fixed or periodic. If
SIZE a variable field is specified, the minimum and
(BITE) max imum size viii not be the same.

C. MAXIMUM Shows the size, in byt es, of the largest subset
SUBSET within the specified set, fixed or periodic.

SIZE If a variable field is specified, the mm-
(BITES) imum and maximum size wil l not be the same.

d. NUMBER OF These tvo columns reflect the minimum and
SUBSETS maximu m number of subsets within a periodic
PER DATA for the total record. The fixed set would be
RECORD 1 for minimum and maxinum . The absolute
MINIMUM minimum for periodics would be 0’ and the
EAX EINUM maximum , any variable number.

e. TOTAL The total number of subsets in each periodic
NUMBER set for the entire file is printed here.
OF The number printed for the fixed set is the
SUBSETS total number of data records in the file.

f. SIZE OF This field shows the maximum size in bytes
LARGEST of the indicated set for any record in the
SET file.

31

_



T ‘:•- 
- —

Lit ility Support (UT)

For the I SAM f i le , the  above — ment ioned  statistics are
printed along with information on the organization of the
ISAM file.

The number of PRIME, OVERFLOW . DELETE, and PAD records
. . -~ calculated and printed. Also information fro. the DSCB
is printed. The DSCB information concern s the INDEX , PRIME.
and OVERFLOW cylinder/track allocation and usage. The
column headings are “CTL/TRAC~S ALLOCATED ,” “TRACKS
UTILIZED ,” and “PERCENT TRACKS tJTILIZED.” The number of
t:acks in each cylindei overf low area is also provided.
With this information the user can calculate the amount of
space needed for his job. This alleviates unnecessary pad
records that are added if any prime area remains.

5.3 Compression and Com paction of D&~a R~cotds

Compression and compaction provide a means for the
rc~ ~uction of intermediate storage requirements for data
w 4 . t h o ut al tering the integrity of the data.  This data
re ~‘ction scheme is particularly suited to data files that
contain strings of identica l charac ters or a large quantity

~t -~Lpha betic data.

~ string of identical characters is compressed by
tr a. - tting it to two bytes. The first byte is a control
-it.’ - which indicates that compression has been applied and

~ count of the number of iden tical consecutive bytes
~~1dt were in the original string. The second byte is
i.~~2tica1 to those in the original string.

A string of alphabetic characters is compacted by
‘~~sLati ng it to a control byte  foll owed by a string of

~~1~~i characters. The control byte indicates that
‘~‘ L~~ction has been applied and gives a count of the coded
i .-~racters. Each coded character represents a combination

o~
? two adjacent alphabetic characters.

Otner MIPS components recognize compressed/cpmpacted
.a and expand it prior to processing. File Maintenance

- ti) will recompress and/or recoapact an updated record
H~fo~~ writing the record to the data file.
Lonpress~on/compaction offers reduction in I/O time and

32



- -

~

--- .

Utility Support (UT)

space requirements for the data tile at the expanse or
processing overhead.

Keywords in the PARN pa rameter (specified by the CC
symbolic parameter) are used to designate the form of the
(‘utput ISAN or VSAN data b~se irrespective of the for, ofne input SAN data base. The keywords for the PARM and
t heir implications are as follows:

COMPRESS - compression is applied to the output data
records.

COMPACT - compaction is applied to the output data
records.

COMPRESS , - a combination of compression and compaction
COMPACT is applied to the output data records.

EXPAND - conp~ession and/or com paction is reversedto produce standard form data records.

if none of the parameters is specified, no data
transformation takes place, i.e. the output ISA~1 or VSAN
data base form will be the same as the input SAN data base
form .

33



_____ ~~~~~~~~~~~~~~~ ~~ 
-

~ 
—•---—

~~
—

~

- .
-

~~~ H 
~~~

-- . - -:

JtiUty Support (S?) -

Section 6 .

~

UTQflQD? ~ k ~

- Th e utility progran D~QlTQDF allows the seer/analyst to
create a RIPS 360 PPS data ~~~

- fUn from the- assner tile
(QRT/QDP) produced by the retrieval procesaor (RASP) • The
outpnt from this utility ren is a seguemtiai access method

- - - (Ski) file which is i4.nt~~ al to a file q.Mtat ed uslag the
~~‘ ~Ll. maintenance - proc essor. The copy process is complete,

carr ying forward all of the logic stat ememts associated with
the origisal file as vefl as the FIT. - -

Input

Input for the cataloged procedure IQETQ*V comes fro m two
sources. The first soar ce is the pai red data set., Qi? and
~DF which are the mor sel outp ut of RASP. The job setup
description provi des th~ proper assignment of thene data
sets to the utility. Th. second source is a single control
card. This control card is free for mat , in that the
parameter string nay be iaitiatsd in any card column, and
the parameters are separated by blanks or commas. Only one
control card is pernitt.d for each execution of th• utility.
The parameters provided on the control catd are either one
or two keywords and their corresponding op.randa. ?b. first
keyvord is QUflYIO~. This keyword may be metere d in any of
t~ie following forms:

QUIRTIO~

QUflI~

a id must be inm.diate ly I olio.ed (no intervening blank) by
t ie retrieval aumber (answet identification number)

3,

________________________________ _ _  



‘a,

~~~~~~~

-1-

-

~~~~~~~~~~ ,7~~/

- , 

- 
Utility Support (UT)

- -
~~~~~

-
~pecified ~n the- retrieval run creating the answer data

-
~~~:

— set~. The query nunber is limited to tour digits in size.
Leading zeros may or may not be included in th. number.

-
. 

- 
The second keyword paca m•ter is RITI D ~ , and may be

- entered in any of tbe following forms:

- 
- 

- - - RITIDa

-

‘ ~

- 
- 

_ - R1T

-~~ - — 
-

-
“ 

- 

- 
-

- and must be immediately followed by the report instruction
- table identification (RITID). This keyword and its operand
way be omitted if the specific answer set desired did not
use the RITID parameter for identification in the original
RASP run .

The following examples indicate the types of control
statements expected by the processor. Pirst, an example of-

~ - 
- 

- - - - the input required to identify retrieval number (qumry
- -~number) 3 of a batched retrieval. run e but with no RITIDspecified in the retriever input stream:

- -~ : -~ Q05R1M0 3
or

QUMRYMO=0003
or

- -- QtJ !RTNO~~0O3 RITID

Second, an exam ple of the use of the RITID statement:

QUERTNO=3 RXTID=UNANEXT

6.2 Restrictions

The user may not attempt to output a data file iron ananswer stream formed under the following condition.:

a. RA SP execution was a multifile r un.

35

~~~~~~ ~~~~~~~ - -



~~~ -I

Utility Support (UT)

b. A sort was sp.cified for th. answer set identified .

c. Rialtiple I? condition statenents wer, included in
th. retrieval nu.ber/RZflD identified answer set. - - 

-

1. Mult iple SELECT statmemets were included La the
retrieval annb r/l!?!D identified aasver set.

My batched retr ieval conditioi that would cause
resequencing of th. res ultant answer set, or any retrieval
condition that would cause d plicate output records
identified by a conno. retrieval number/I1TID may not be
used to creat, a Lii. through the use of thi s utility.

6.3 Job Setup

Th, following statement s illustrat, the job setup need
to execute the IQSTQDP proceder.:

/1 ERIC h ASP, parameters for user’s file
//USP.UShN DD *

(R ASP statement conforming to rules outlined - 

-

under 6.1 far answer set to be proce ssed by
?Q1?QDF)

‘C
/9 ERIC XQR?QDP,SANaR!FILE
~/QflQOF.5YShR DD •

(Control statement defining input as
de.~~ibed in 6.1 and 7.1.1)

The user obtains hi. mew data file (ElIXiR) on a
st andard-J.abel.d, ~—tra~~ tape wr itten according to the
installation assigned density. Th. user may override the
symbolic paramet ers to obta in input and output data sets
differing from the proc edure-specified standar ds.

The XQRTQDV proced ure nay be executed in a separat e job
iron the RASP if the Qi? aid QDF are awed. In this cnn.,

36

- -~~-~~~~~—-~~~
--

- - ~~~~~~~~~



~ --— —~ ~~~~~~~~~~~
-
~~~~-~~

--- -— - - - - - -
~

----- - - - -

Uti l i ty Support (UT)

the QRTFILE and QDFILE sym bolic parameters would have to be
specified with the appropriate values.

6.~$ Error Conditions and Processing

Lii error con d itions sensed b y this pr ogram will cause
termination with a ~user” abnor mal end code of 1, 2. or 3.
These codes are always accompanied by an error message
uniquely identifying the error condition encountered. The
tol.L wing material is included as a quick reference of error
listings. For ful l meaning of the error messages, see
Volume IX , Error Codes.

INVALID KEY WORD — RIJN TERMINATED

NO ANSW ER SET FOR QUER YNO/R ITID

QR T/QDF IS I iULTIFILB PRODUCT — ERROR

NO FILE RECORD ON QRT — BAD INPUT

ONLY ONE CONTROL CARD PERNITTED

BAD RECORD TYPE FOUND - RUN TERIIINATED

EOD FOUND COPYING FFT AND LS — NO DATA

USER—SPECIFIED SORT - CAN’T PROCESS

MULTIPLE IF/SELECT STATEMENTS USED WITE
QUE RY/ RIT I D SPEC IFIED — RUN ABOR TED

ERROR READING ORT — ERROR ABEN D

P HY SICAL EOD A D ON QDF — ERROR ABIND.

NO RECORD FOUND — RUN TERM INATED

R E d O SPECIFIED IN QRT CANNOT BE POUND
• IN QDF

RAI N IN G - THIS FILE BUILT FROM QRT/QD?
• WITHOUT AN ?PT

37

_ _
.• ~~~~~~~~~~~~~~~~~~~~~~~~~~

Ut ility Support (11?)

Section 7 - -

UTSUICEK - I -

Tb. UTSIJ BCRK utility can be u.d to check out user-
written subroutines (ALC, FORTRAN, COBOL) written to
supplemsnt NIPS appli cations. SUDCEICK Unks to the mast-
designated subroutines stored as a member on a partitioned
data set in lou d form, prints user run specifications,
prints subroutin, input and output, and relate, the success
of the subroutine for eac h user input.

UTSUBCNK simulates the call initiated by the various
i~ips application modules. The conditions, described in
Volume I, Introduction to Vile Concepts, Development of
Convers ion Subroutines , are duplicated.

7.1 Input

Input to SIJ ECHICK is on punched cards. Tb. ~~~~~ card
in relates the run control paramet ers as follows:

F c~rd_C~~~ pj~
1-8 (REQUIRED) User subroutine mane, left—justified with

trailing blanks as required.

13 (OPTIONAL) Blanks — Alphameric input; do not convert.

B — Convert data to binary prior to sub-
routine link.

12—14 (OPTIONAL) I 3—digi* ‘~s b er (use leading zeros
(fixed length if necessary).
a~ gument)

If column 10 is blank, number—length of
data, starting in column I of data cards,
to get and pass.

38


~~~~~~~~~~~~~~ J JJIT TTT T~ - - •-

Utility Support (UT)

If column 10 contains a •3 , number ~length of data , starting in column I
of data cards, to get and convert.

7.2 Functioning and Restrictions

If the card contains only the subroutine name, UTSUBC HK
will assume variable length data input (not to exceed 80
bytes in length) with no conversion to binary required. In
this case the argument length is determined by a scan, right
to left, of each data card for the first monhiank character.
If binary conversion is required, the resultant argument
viii be one full word in all cases.

All user data cards follow the control card. The data
used for the argument must start in column 1. To allow for
trailing blanks, the fixed length entry in control card
columns 12 through 14 can be used .

The paramete r list built starts with a half-word
containing the binary length of the argument. A 256—byte
intermediate work area is set up for the argument and
function, contiguous to this length entry. This means that
while either the argument or the function length may be up

* to 255 bytes, the sum of their lengths nust be less than or
equal to 256 bytes.

The entire input (unconverted) argument is printed out
for each data card. Immediately following each of these
entries, the subroutine output and results follow

- respectively.

Because the input can be up to 255 bytes several input
cards might be r.quired for each input argument. For fixed
length arguments the same n umber of input cards are required
for each argument (i.e. , for a 173—byte argument three data - -

cards are required for each argument - use blan k cards as
filler if necessary).

39

____________________________________________ 
—4-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - - —-—--~~~ - - -  ~~~ --~~~ - --- ~~ -~~~~~~~~~~~ --

Utility Support (UT)

7.3 Job Setup

The following state nts illustrate the job setup used
to execute the ISUICU procedure:

// UIC ISUECIK, LU-TESTER
//SDBCU.STSU DD *

(Control card defining input as described in 7.1)

data card (5)

The LIB symbolic parameter defines the partitioned data set
where the subrouti ne’s executable load model, is stored.
The library need sot be a NIPS Lii. library, bet it should
have the same DCI attributes,

Sample Control Card

HYSUB 0~9

Sample data car ds in the above case

Col 80
123*567890AQfl8676 ~A1C$ 123796

7890567893IC~~EVGBQ
- • 137965e321$DLcU78~~fQc S~~~~32*

84329768;3ap~~IeqiiQ

$0

A

Utility Support (UT)

Section 8

UTDNPLIB

The utility program OTDMPLIB allows the user/analyst to
print the names of reports and/or logic statements
associated with a NIPS 360 FFS data file. The output from
this ut i l i ty is a formatted listing. Th. input data file
may be in Seq uential Access Method (SAM) , Indexed Sequential
Access Method (tEAM) or Virtual Storage Access Method (75kB)
form.

8.1 Input
-

Input for the cataloged procedure XDMPLIB consists of
the user’s file (SAM, 15kM or V$Afl) and a single control
card. The control card is in a fixed format in that it must
begin in card column 1 and parameters must be separated by
commas . The control card is to be prepared as follows:

PR INT ,R RPO RT ,XUXIZX

where IXIXUI will contain one of the follouing parameters:

ALL — provides a listing of all report
names and all logic statements.

LIST — provides a list of all report names.

(Report ID) — provides a listing of all logic state-
ment names for the report ID specified.

8.2 Job Setup

The following statements illustrate the job setup required
to execute the IDNPLIB procedure:

—

~

-

~

. _ --- - ~~~~~~~~~~ --- ~~~_~ - ~~-—- ~~- _ _

Utility Support (UT)

// EZEC IDflPLIB,ISAR~TESTER//UTDIIP.SYSIN DD *
PRINT , UPORT ,ALL
‘S

The preceding example lists all report and statement
names on a cataloged 15111 data set named TESTER.

// EXEC XDNPLI B, VSCAT=’IIPS.CAT’,ISAII~’VSAfl.TEST!R’
//UTDMP.DATAFILE OD 1flP ’AHORG’
//UTDM P.SI SIW DD S
PRINT ,REPORT,ALL
/5

The preceding example lists all report and statement
nam es on the YEAR file YSAN.TEST!R cataloged on NIPS.CAT.

// EXEC IDNPLIB,ISAM=TESTER, VISAfl ’ SER—flSLIB’
//UTDIIP.SYSIN DD *
P91 N T, REPORT ,9!PTA

This example lists associated logic statem ent names for
a report entitled REPTA included in the uncataloged 151$
data set TESTER residing on a 2314 volume labeled FFSLIB.

/1 EXEC XDNPL ID, SAM— ’TESTER,VSAM=’SER=112345’
//UTDMP.SYSTN DD *
PRINT, REPORT,LIST
‘S

The preceding example provides a listing of all report
names contained within th. data set TESTER which resides on
a 9-track, 800 bpi tape with the volume serial number of
N 12345.

The IDIPLIB procedure may be executed in a separate job
or as a step of , for example , an FM update. It is to be
noted that all routines used in conjunction with the
execution of this procedure reside on FFS.JOBLIB.

*2

_- —-- - ~~

- _ - -

Utili ty Support (UT)
- -

Section 9
-

UTCLASS
-

. - —

-rhe program UTCLLSS provides the user with the
capability of changing the classification of a RIPS 360 FF5
tSAR , SAM or YSAM file. A single card is required which
will contain only the new classificatioa of the file.

9.1 Input

The program tJTCL*SS requires a single input - card
containing the new classification of the data file. The
card is free format and the new classification will be left-
justified with trailing blanks, if required, when written —

out to the file. The length of the classification field is
32 characters and truncation will, be performed to the right.

To change classification of the f ile to blanks, that is,
no cL..ssification , the input card must contain at least one
blank enclosed in apostrophes. This is the only case in
which an apostrophe which is entered on the input card does
not become part of the actual file classi ficatiom. - -

~~-‘

9.2 Output

Two outputs are produced by a successful run of this
program:

a. The updated data file containing the new
classificat ion .

b. A listing on the printer indicating successful or
unsuccessful updating and the new classification if
successful.

43

- - ------~~--- - -

Utility Support (UT)

9.3 Job Setup

Tb. following statements illustrate the deck setup used
to execute the UTCLASS procedure.

/f HEC ICLASS,ISAM TESTER,
II YIS&1 ’ S!R~?FSLIB’
//CLASS.SYSIR DD S

(Ussr—supplied card containing new
classificat ion)

‘S

The preceding examples will change the classification on
an uncataloged tSA R file.

// NIEC ICLASS,SAN TESTER,VSMOUT ’ SER=TSTVOL’,
// SANOU T

(Ussr—supplied card containing new
classification)

‘S

The pr.c.dimg example will change the classification of
a cataloged SAN file on tape.

// EXEC ICLA SS,SAN TESTER,
// USAN~231*,VSLNz’SEE=FFSLIB’
//CLASS.STSIN DD *

-
(Ussr—supplied card containing new
classification)

/5

Ths preceding example will change the classification on
an uncatalog.d SAN file on disk.

414

- - - - — - - - ~~

r’-~
-- r~ ~

--

~~~~~~~~~~~~~~~~ — ~~ —

J t i li ty  Support (UT)

// EX EC XCLASS ,V SCAT=S NIP S.CAT$ ,ISAM ~~ YSA N TESTER ’//CLA SS.DAyA?ILE DO AM P~ ’AMORG ’// CLASS,SYSIN DO *
(user—supplied card containing new classification)/5

The preceding exampl e will change the classification ofth e VSA$ f i le, VS AN .T ESTRR , cataloged on IIPS.CAT.

45

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



-- - 

~~~~~~~~~~~ ~~~~~ 
- --

~~~~
-•
~~~~~ 

- -

Utility Support (UT)

Section 10

SOURC E LANGUAGE STORAGE

Source programs for NIPS components may be stored on a
l ibrary to faci l itate hous ekeeping and program maintenance.
Raintaining a library will ensure that a single, current
version of ~ the source program is always available. The
Source Program Library can be updated by batch jobs , or by
the EDIT component if on—line terminals and the NIPS TP
component are available. EDIT capabilities are described in
Volume VI of the NIPS User Manuals, Terminal Processing
(TP) .

10.1 Source Libraries

Two types of libraries can be utilized for storage.
Both types are direct—access partitioned data sets. The
first type of library is normally used to store 80—character
card images. This library is similar to a Procedure or
Nacro Library and has fixed length, 80—character records,
normally blocked to an efficient blocksize which is a
mu ltiple of 80.

The second type of library is the File Library. This
l ibrary has records of un defined length and is normally used
to store the compiled, executable NIPS user programs
(Retrievals , RITa, etc.). Source programs will be stored on
this library in 800—character blocks, containing 10 card
images each. OS utilities may not be used to modify source
on this type of library, but NIPS components may as
discussed below.

Each source program member stored on a library by a NIPS
language component or utility viii contai n an indicator as
to wh i ch NIPS language component (RASP , FM , etc.) is
invol ved. This will enable a terminal user to scan a
litrary for RITa, logic state•enta, etc.

46

_ _ _ _ _ - - - - -~~~~~~~~~~~~~~-~~~~

J- —-~~ -- -- — - -~
-

~~~~
--- — --- - --

~~
-—- --—

Utility Support (UT)

1J.2 Means of Stor ing  Source

From the batch , source programs nay be stored
l ib r a r y  by e i t ber  of two means.  The NIPS componen t  ~~~~

cumpiles the source program can be requested to place -

sou rc~ on a specified libra ry ,  or the program , tJTSOURc , y
be e~~ cut e~ as a s tand—alone ut i l it y .

10. 3 Conditions of Source Library Update

Source  w i l l  be stored on a library by th~ TJTSOU.~
utility a n d  the N I P S  l anguage  compon ents if the ~~~lovin~
two conditions are met:

a. A DO statement specifying the u ser ’s l ib ra ry  an~
hav in g a DD $~~ E of SOURCLI B is present in the jo~
step JCL.

b. A source contcol card is ~~aced iaaed i~ tel~ in
fron t of t he  source progra m in the input strear..

The SOURCLIB 00 stat ement is included in each NIPS
pt ocedure which allows compilation or structuring of source
material. It  is also included in the XUTS0~~ -; ~irocedure
which -~recu te5 the [J T SOURC ut ili t7 .  The use r ’s library name
is specified through use of symbolic parameters.

10.~1 So~ rce Control Statement

rh~ source COn t~ -’l card fo~~- c- es the general format of
I~~3u P D r ~ utilit ;r c.’rtro l cai s. Any n umber of blanks aa~
separate I-he fields. The format is as follows:

1ADD - r~s o~~~1
./ ~R E P L  QUIP~

LD~~ ETEJ LRASP J
The ./ must be coded in columns 1 and 2. These tvo

characters identify this card image as a source control
St r i t em  en t.



-~

Util i ty  support (UT )

Eit her ADD , REPL , or DELETE m ust be coded if N AM E is
coded. ADD says that this is a new sour ce member that is to
be added to th. library. If a member already exists with
the same na me, a diagnostic message will be printed, and no
library act ion will take place. *EPL will replace a member
on the l ibrary with the n•w sourc. which follows the control
card. If no memb er presently exists with the same name , it
will be added. DELETE wil l d.l.t. the memb e r with the name
specified.

NAME gives the name of the source program assigned by
the user. rh. name must follow standard OS 360 rules for
library member names and may be up to eight characters in 

—

length.

The last operand on the control statement is used to
spec ify the NIPS component to which the source number is
related. That is, a source RI? will have OP coded in its
source control statement. This field is optional when a
NIPS language component is used to update a source library
since the appropriate component ID will automatically be
included. It must be included if the stand—alone utility is
used and NIPS source material is being stored. If other
data is being st~~ed, the i—byte value entered is copied so
that classes of data can be accessed by EDIT.

The ezistmecs of * source control card containing no
operands (blank except for ./ in columns 1 and 2 ) ,  viii
si4nal the end of. a source member and can be used when
additional source material exists that wi ll not be added to
the library.

— 10.5 Sourc• Nsaber lames

The naa • given to the source on the source control card
does not have to be th. same as that assigned on the TITL E,
CREATE , or ADD statement card within the source. It is
s4ggested that the user adopt a naming convention such as
adding an $ suffix to the name of the RIPS program. This
v A il  provid , a r .ady r .coguition of the source member.

48 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ I~
’
~ -

I(Itility Support (UT)

10.6 Operation of Source Library Update

Th. input stream to a NIPS language component or the
utility may consist of ome or m~~. source programs to be
stored on a library. The libcsry act ion requested by th.
source control cards is performed as th. input stream is
read initially. No library action is taken on data in the -

input stream until a source control card is encountered. If
the control car d specifies a delete action, it is performed
immediately and reading of the input resumes. If an ADD
statement is encountered, the library is checked for
existence of a member with the same name. If one is found ,
a diagnostic is printed, and no library action is taken with
that member . If a duplicate member name is not found or a
BEPL act ion is specified, th. following cards of the input
stream , up to the next source control card or end of input,
tire placed on the library and given the member name
~ pecified.

When using a RIPS language com ponent to update a source
library, the source control cards will not be passed to the
language translator phases and will thus not interfere with
normal compilation or action of NIPS components.

13.7 Seguencing of Source Material

Al1. source material that is added to a library will be
sequenced in Columns 73-10 and printed during the library
action . If a NIPS Language component is being used, the
newly sequenced source will. be passed to the languag e
translator phase.

10.8 Listing Source Library Mesbers

The UTSOURC utility may also be used to list a source
member from a source library. This is done by specifying
the library using symbolic paramet ers and the names ofmembers to be listed using the PARE value.

49

L

Utility Support (UT)

10.9 Job Setup

If a NIPS language couposent is used, the procedure
contains the SOURCLIB DD stat smust. Specify the man. of
your library through uso of th. symbolic para meters as
outlined La Voisms VIII . Job Preparation.

The input str eam may be a imeber in your library. If
so, use the symbolic patam.ter IAn to specify the member
mane. Otherwise o~errid. the ZUTSO~~ C SYSII DD statommet to
define the in pet strens. lot. thet SYSU is ignored fat
list functions.

If th. stand—alone utility is used, the following
statements illustrate ta. d.ck setup used to u4i~ a source
library:

//JO~JANE JOE (Installat ion Paru.ters)
//JOBLIB DD (Installation 401111 Pstasetecs)
//UPD ERIC ZUTSOVRC, SO UUCL. 1001111
//SOURC.SISII DO *

Source control statements and source musbors
1*

The following statements illustrat, the dock setup us.d
to Jj~~ a member from a sourc. library:
//JOSNANE JOB (Installation Par n tsrs)
//JOBLIB DD (Installation 401111 Parameters)
// LIST EZIC VJ?SOUIC,SO01CLI!O01L~I, PAIR. 3OUIC~SlClU,*

so

• Uti l i ty Support (UT)

Section 11

INDEX SPECIFIER
(U TNDISPC)

The Index Specification utility allows a user to specify
indexing information for a data file without running a File
Structure or File Maintenance job. The user can add and
delete indexes in the same run. For each index added , a ll.

— informa tion necessary to sake that in dex oper ational is
—

generated and placed in the Index Data Set.

Any fixed—length field defined in the file may be
specified as a secondary index. Any variable field,
v iriable set or fixed—length alpha field defined in the file
may be specified as a keyword index . A fixed—length field
m ay not be specified as both a secondary and keyword index.

UTNDXSPC acts as the driver to perfor m the functions of
calling Index Specification to insert or delete Index
Descriptor Records in the data file, and of executing Index
Maintenance to correlate the Index Descriptor Records in the
data file with the Index Control Records in the Index Data
Set and to update the latter accordingly. U?IIDISPC operates
on an ISAN , SAM or YSAM data file.

11.1 UTNDXSPC Input

(JTNDXSPC accepts SUB/TAB and INDEX statements as input.
• These statements must be submitted through the SYSIN device.

Further discussion of Index Specification may be found in
Vol ume II , File Str ucturing .

i .i.i SUB /TAB Card

— A SUB/TAB card is used to describe a subroutine or table
to be used by secondary indexing. A subroutine or table may
be a conversion routine, to convert data from an internal
data file format to a separate ind.x format. On the other

51

IlIII_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~— ___________________________________ -



- 

Utility Support (U?)

hand, a subroutine or table nay be an analyzer rosti~~,designed to analyze the para.•t.r list of a P1JICTIOR
operator to determine index usage and provide a list of
values for index qualification.

For a keyword indexed field, a sebrost ine or table
defines options that direct the selection of keysord vales..
It may designate a stop word table which is a list of
irrelevant (noise) vord s, a dictionary which is a list of
all non-literal keywords, or a user scan routine, which is
a subroutine provided by the ussr to process the keyword
indexed fields.

one SUB/TAB card nest be subm itted for each subroutine
referred to by the INDEX statements. £ subroutin e or table
may be defined for on. function only is an Index
Specification run, and each unique subroutine or table ease
may be submitt •d only once per run.

£11 SUB/TAB stat•msnts must appear first in the input
stream, before the INDEX statements.

The SUB/TAB statement is free—format. The operands must
be in order, each separated from the others by at least one
t~1 ank. A period is required after the last entr y to signify -

the end of the statement.

ISTOP
SUB ~DICT
SUBROUTINE subnams ISCAN
TAB
TABLE J AIALT ZI( IILPHA

jC0IT*~~( ann—na IBINAPY
I J ICOORD

~~ICIIAL

a. Statement Identifier

SIJE or SUBROUTINE — subro utine stat.me nt

TAB or TABL E — table statement

52

- -



—-, 
- - — --

~~~
-
~~~~~~~~~~~~~~~~ --~~~

- - ___________

Utili ty Support (UT)

• - b~ subu ame - subroutine or table name

c. Function Identif ier

For Keyword Indexes:

STOP — subname to be used with Stop Vord Table

DICT (or DI CTIONARY) — subname to be used with
Dictionary

SCAN - subnane is a user scan routine
This is the last operand for a Keyword
SUB/TAB statement.

For Secondary Indexes:

ANALYZE — specifies conversion of data to
index format

CONVERT — specifies analysis of index usage

The following operands are required for the CONVERT
tuaction.

d. nnn One—, 2—, or 3—digit field specify ing the
length in bytes of the input to the table or
subroutine.

e. nun One— or 2— digit fie ld specifying the len gt h in
bytes of the output produced by the table or
subroutine (max imum is 30).

t. ALPHA
BI NA RY Node of data output by the subroutine or
COORD table
DECIMAL

Example of a CONVERT statement:

SUB convsub CONVERT 17 2 ALPHA.

53 

-~~~~~~ ——— ——--~~~-



-- — - 
_ _ _  -~

‘itility Support (UT)

Example of an ANALYZE statement:

SUB analsub ANALYZE.

Example of a DICTIONARY statement :

TAB DICTIANE DICT.

11.1.2 INDEX Statement

An INDEX statement must be provided for each data file
field to be designated as an index and for each index field
t be deleted. The delete operation does not remove the
field iron the file; it merely eliminates the option of
iudexing the file on the contents of that field.

Like the SUB/TAB statement, the INDEX statement is free-
format. Unless otherwise indicated the operands are order-
d’~pendent. Each must be separated fro. the others by at
least one blank. & period is required after the last
o~erand to signify the end of the statement.

ItIDEX fielduame fj ~~~~~~ 1 -

LDEL!TEJ convsubname analysubaa.e

1~izL 1
KEYWORD stopname dictname scannaae ISIPARATE I

JDROP
Ll~ &1m

a. Statemen t Identi fier — INDEX

b. fieldname F?? ass, of field or group to
b. indexed

c. Action Indicator

ADD - field is to be added as an index. This
is the defa ult vain.. lowever, it is
required. If a conversion aid/or

5,



- - - -

Uti l i ty  Support  (UT )

analyzer subroutine/table, or KEYWORD
indexing is defined.

DELET E— field is to be removed as an index , the
data field itself is not affected ,
This is the last operand required for
delete action.

The fo l lowing  two optional operands are used only with
secondary i ndexes.

d. convsubname Name of the table or
subroutine to convert
data data from datafile
format to inde x data set
format.

e. an alysubu ame Name of subroutine to be
used to analyze a
FUNCTION operator
parameter list and
determine index usage .

NOTE: It both conversion and analyzer subroutines are
specified, the conversion subroutine must be
specified first. If only one is specified, its
funct ion will be determin ed from the parameters on
the SUB/TAB statement. An analyzer subroutine or
ta b le may not be used as a conversi on routine , and
a conversion subro utine or table may not be used as
an analyzer routine in the same Index Specification
run.

The remaining operands are used only when defining
keyword indexed fields:

f.  K EYWORD Required to differentiate
between the two types of
indexed fields

• g. stopname name of the Stopword
Tabl e (Opt ional)

55

-~----- --— -- -~~- - -- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -



-  -

Utility Support LU?)

h. dictna me name of the Dictionary
(optional)

i, scanna me name of user scan routine
(optional)

). Hyphen Option

TEXT No text editing. Hyphens
remain as they appear in
the text. The default is
TEXT.

SEPARATE Hyphens are always
treated as word
separators and are
replaced with blanks.
Bypenated words are
treated as two or more
separate words.

DROP Hyph ens are always
dropped. If a hyphen is
preceded by a text —

character and followed by
a text character or one
or more blanks and a text
character, the hyphenated
text is connected to the
following text string
without the hyphen.

RETAIN The opposite of DROP.
Hy phens are always
retained. As with DROP,
hyphenated text is
connected with following
text , but thy hyphen is
retained as an embedded
character of th. whole
word.

56

~

-

~

-

~

-- -

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - — -  ~~- --



~~~~~~~~~~~~~ ~~~
_J __

~~~
_
~~~~~~~ I

Utility Support (UT)

Any combinat ion of stopuame , dictname , scanname and hyphen
option may be specified in any order.

Example of an Add Index Action:

I N D E X NE QPT ADD CON SUB.

Liample of a Delete Index Action:

INDEX CNTR! DELETE.

Example of an Add Keywor d Index Action:

INDEX AN A B E ADD KEYWORD RETAIN
SCANNER STOPP ER KEY N DS.

11.2 UTWDXSPC Output

UT N DXSPC builds and inserts Index Descriptor Records
into the data file for indexes added and deletes Index
Descriptor R ecords for inde xes deleted. It then calls Index
Main tenance to either generate or update the Index Data Set.
U ?NDXSPC also lists a summ ary of act ions performed plus any
error conditions encountered.

11.3 UTNDXSPC Job Setup

rA e fol lowing JCL examples can be used to invoke the
cataloged proced ure XSP which will either generate or upda te
a disk—resident Index Data Set based on the I SAM , SAN or
V SA H data file.

The first example illustrates a situation in which an
index data set is to be regenerated. The uncatalogued SAM
data f i le, MYF IL E, resides on a 9— track tape with standard
la bels and syste m defa ul t density. It contain s Index
Descriptor records in the FFT f rom previo us runs. The new
Index data set must have the same name as the data file (the
system viii suffix an I). The new index will have the
d-,fault biocksize of 560 and default num ber of blocks of

Utility Support (UT)

200. Blocksize must be between 560 and 1020 bytes and at
least 50 blocks must be allocated.

I/SAMPLE 1 JOB (standard parameters)
//STEP1 EXEC XSP,SAM~~~PILE,YSA1aUSER~lYTAPE’,
1/ IIDE1 N TFtLE,flOL ’SER~NTDISk’ ,XDISP~ IEV ,
// SAN OUT =,PARMaGER
//STSIN DD *

(Index Specification statements)
‘S

NOTE SAN OU T = , is required for SAM runs. PA RM~GEN is requiredwhen generating a new Index Data Set and Index Descriptor
records exist in the data file F??.

In the following example, index specifications on the
catalogued index data set NYFIL NI and the I SAN data file
futILE will be updated:

// SANPLE2 JOB (standard parameters)
1/ EXEC ISP ,ISAM~flYPILE,XIIDEI~MYFILE//SYSIN DD *

(Index Specification statements)
IS

The following will upda te the index specif ication for
the VS& M f i le , VSA N .NY? ILE , catalogued on NIPS.CAT:

/ / SANP LE 3 JOB (standard pa rameters)
/1 EXEC XSP,I SAM = ’Y SAN .f l Y TILE ’,IINDEI~ MY FILE,
// VSCAT Z I M I P S . C A T I

// U T X S P . N E W f I L E DD AflP~ ’Afl ORG ’
//SYSIN DD *

(Index Specification statements)
‘S

58

A

Utility Support (UT)

Section 12

INDEX TRANSFER (UTNDITFR)

An Index Dat a Set may reside on a direct—access device
or on tape , but only the disk—res ident medium can be used by
any NIPS compone nt . Index Transfer (UTNDIT?R) permits the
user t3 t ransfer the entire data set , from one resident
medium to the other.

The p r i m a r y use of UTNDXTFR is to reorganize the disk-
resident indexes. In i t ia l ly , a disk—resident Index Data Set
is packed with index information. As the indexes are
mainta ined , gaps or unuse d areas may occu r in the data set
as records are deleted and others are added. By using
UrNDXTFR , the user can transfer the disk-resident data (only
the valid information is transferred) to tape, and again
fr om ta pe back to disk. This operation condenses the data
set. The tape so created may be retained as a backup.

In the disk to tape mod e of operati on, a statistical
printout of unique values (for secondary indexed fields) and
keywords (for keyword indexed fields) and their occurrences
are opt ional ly developed. Binary values wil l be converted
to decimal for ease of reading. Howe ver , any dict ionary
fields using conversion subroutines or ke yword fields having
synonyms in the dictionary, will be printed in the converted
fo r m , j ust as they appear in the Index Data Set.

12.1 UTNDXT FR Input

Two cataloged procedures are available for invoking the
UTNDXTFR utility. XTRDISH will transfer a disk—resident
Index Data Set to a sequential access med ium, while XTRTAPE
will reconstruct an Index Data Set fro. a previously
unloaded tape version of the disk data set.

-~~~ - - _ —~~~~~~~ - —-~

59

_ _ _
_ _ _

_ _ _ _ _ _

Utility Support (UT)

12. 2 U T MD I T F R Output

UTNDXTFR produces an Index Data Set on the residence
nediun indicated.

12.3 UTNDXTFR Job Setup

The following statements illustrate the deck set up used
to unload the TESTER I Index data set from a 2314 disk pack
to a 9—track unlabeled tape.

//JOBNAN E JOB (standard parameters)
//STEPNAME EXEC XT RDI S H ,XFNA!E~TE STERX ,
II IFYOL~ ’SER NYPACK’ ,XTUNE INXSAN ,
1/ XTYO L

The fo l lowing example illustrates the deck setup to be
used for a YSA N file, YS& M .NY P I LE . cataloged on WIPS.CAT :

//JO b N A M E JOB (standard parameters)
// STEPN AN E EXE C XTRDISK ,XFNANE= ’YSAN. MYFILE’,
1/ XFVOL=’SER=$!PACK’ ,ITNAME ’VSAN .INXSAM ’,
/f XTVOL= ’SER= JIY TA PE ’ ,VS CAT~ ’NI PS.CAT ’
/ / X T R.DATLFIL E DD A N P ’AN ORG ’

The following example illustrates the deck setup to be
used to reconstruct a disk resident index data set from a
previously unloaded version of index data set.

//JOBNAME JOB (standard parameters)
//STEPNA ME EXEC X TR TAPE 1 XTNANR ~TESTE RX,
// ZTYOL= ’SER ~ N !PACK ’,
1/ I F N AN E = IWX SAN ,X?Y OL ’

60

utility Support (UT)

Section 13

DTFLDSCN

UTFLDSCN scans the NI PS components source statements and
provtdes the user with the coun t of dat a fields referenced
in the source statements. This ut i l i ty is useful in helping
the analyst to determine the activity of his data fields.
This wil l assist the user in deter mining which fields are
cdndidates for index fields in the Secondary Indexi ng
capability.

The utility processes source statements pertaining to a
single file in one execution. Multifile RITs and au l t ifi l e
queries will be acce pted as inpu t ; however , only the data
fi elds of the input data file will be processed. All other
fi les will be ignored. In order to completely process
mu l t i - f i l e RITs and mul t i f ile queries, it would be necessary
to include t h e source state .ents in an e xecution for each
t i le referenced.

UTPLDSCN outputs a listing of the source input
s tatements followed by a listing of the count of references
for the da ta fields and a summary listing of data field
r eference count for each batch component. A t ransaction
record will also be output for each data field referenced in
a single source input statement.

13.1 U TPLDSCN Input

Input to the u t i l i ty consists of a NIPS data file in
SAN, ISAN or YSAN format, a control card , and the source
input statements and/or mem bers of a part itioned data set .

The fo rma t of the input control card is as fol lows:

./ SOURCE CONP=XXXX ,NANE=SNANE,N!N BERZNNANE

where ./ must be in columns 1 and 2 followed by one or
bl anks.

61

—-----

~
—-

~~~~~~~ 

-__—~—~~~~~—~~~~~
_ _

:i.~~~ ~~~~~ -~~~~~—-—~~~——- - _

Utility Support (UT)

COflP~ XXIX where XXIX may be FM . liSP, OP. or QUIP
to identify the component.

NANE=SNANE where SNAM E is the nam e of the source
statement. If the source is a logic stateaent,
the name must be the report ma ne and logic
statement names enclosed in quotes. If the
report name is less than seven characters, it inst
be padded wit .~ blanks to seven characters.

MENBER=NNANE where NNAME is the member name of the
source statement on a partitioned data set.
If this operand is used, a partitioned data set
must be included in the job stream. If this
operand is omitted , the source statements aunt
follow the control card in the input stteaa.

13.2 U TFLD SCN Output

The outputs from UTFLDSCN are as follows:

Source Listing — The source input records in input
order.

Field Listing - This output consists of a header
for each source deck indicating file
name, component name, source na me, and
member nane , if any. The body of the
listing consists of only those
fields referenced and th. count of
references . This •ill follow the
source listing for each sour ce module.
After all sonrce modules have bean
processed, a summary listing will be
provided containing the count of the
field references par cnmponent.

Transaction - The transaction data set .ill be 50
Data Set characters long with am ‘5’ in column

one to be used as a logic statement
name, The format is as follows:

62

~ 

_ - - -~~~—— ~~~ -- ~~--~~~ -~ ~~~~~~~ --~ --—-



_ _

Utility Support (UT)

Col umn I — CHARACTER ‘5’
2—0 — FILE PARE
9—12 — COMPONENT RARE

13—25 — SOURCE NODULE NAME
26—33 — FIELD NAME
314—36 — SET NUMBER, DECIMA L
37-42 - COUNT OF RE?ERUCES, DECIMAL
143—48 — DATE — MMDDYT
49—50 — UNUSED

Parameters any be entered in the PARR field on the EIEC
card to suppress output . T hey are as follows:

RS — Suppress printing of source input

NL — Suppress field and sum mar y listing

NT — Suppress transaction output.

13.3 Job Setup

The utility is executed by a procedure, IUTFSCAR . If
the input statements are meabers of a partitioned data set,
the data set must be include d in the ~ob stream. The
following statements illustrate the Job setup used to
execute the IUTVSCAR procedure against the ISAM data fi le
TE5T360:

// EXEC XUTFSCAI,ISAR~11ST360,LIBa TEST36O
//SYSIN DD *

• ./ SOURCE CORP=FN,RAN1~ ’TESTO A’,flERBER~TESTA./ SOURCE COMPZ *ASP ,WANE *TESTO 1
RA SP Query Statements

./ SOURCE COMPZOP,RARE*TESTFTF
OP lIT State ments

• ./ SOURCE CORPsQUIP,N AN~~~QTEST ,fl Efl8EpaQTE$T&
‘S

63

~ 

• . ~~~~~~~~~~~~~~~~~~~~~~~~~~ -- — ——-—- • -~~-



U --
~~~~~~~

-

-~ ~
• —--

~~~ 

—--

~~

--•--- —•

~~~

——
~~~ 

—

~~

- — —

~

- —

Utility Support (UT)

The following JCL coeld b ised to ezecete the XUTFSCAN
pr ocedure agaim st the TSAR data file YSAM.TU?360:

// EXEC IUT? $CAI , ISAR S’TSAR.TES? 360’ .L13 113?Ed0.
VSCAT.’RIPS.CA?’

//UT FLDSC N.DATAFIL I DD AMP.’ AM ON G ’
- //UTFLDSCN.STSII DD *

- 
(field ecan control statements)

I 

‘a

61$

I

~~~ i ~~~~~~~~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ • • ~~~~~~~~~ 
_ _ _ _ _ ______ -~~~--- -— - • - -~~~•- ------.-- — •- •

I

Utility Support (UT)

Section 1*

UTIDIXAP

UT I DXKA N provides th. user with the capability to
analyze the words in fields for which keywor d indexing is to
be specified. The results of th. analysis can be used to
determine the contents of stop word tables and dict ioaai.iee
that are to be associated with those fields. If the system
scan subroutine does not recover words as the user desires,
a user-written scan subroutine can be used with this
util i ty. All the words contained in n data base field can
be displayed , or those words which are irrelevan t (noise
words) can be selected and conpared to th. words in the
system stop word table. If that table is not adequate, the
Dictionary Maintenance utility can be used to build a user
stop word table. Then this utility is able to list all
relevant (nonstop) words which can be used to determine
dictionary requirements. If a dictionary is not emplo yed .
the word s not in the stop word table wi ll all appear as
keywor d entries in the index data set. Through dict ionary
ap plication , synonomous words and words with varying
suffixes can be collected under one Index Data Set entry.
and the synonym or suffixed form can still be used in a
query statement. The Dictionary Maintenance utility can be
used to build a dictionary so that this utility can produce
a list of the words which will become Index Data Set entries
together with the keywords (including synon yms and suffixed
words) associated with them which can be used as query
arguments.

UT N U IK AN processes eit her a SAN , an tSAR or a YSAN data
file. The fields that are to be processed are specified by
control statements. For each field specified, the utility
obtains from the control statement or from the file itself
the names of the scan subroutine, stop word table and
dictionary required to process that field. It scans all
values in the data base (unless the number of records to be
processed has been limited by the user) , optionally matches
the recovered words to a stop word table, then optionally
matches the remaining words to a dictionary. The actual

65

--~~~~~ - - - ~~~~ .- - -~~~~~~~~~~~~~~~ -~~~~~~~~~ -~~~~~~~~-- - ~~~~~- - •~~~~~~~~~~ --~~~~ -—- ~~ -

_ _ _ _ ~~~

- - -

Uti l i ty Support (UT)

functions performed are controlled by accepting names to F??
entry specifications or by specifying BYPASS. override
names or BIPASS must be specified for ’ all functions if the
YET entry does not indicate keyword indexing.

UTNDXKAN displays word lists with record frequency
counts or, optionally, record identifications for each field
processed or for all fields as a group. Frequency count
reflects the number of NIPS records in which a word appears
at least once. -

1~4.I Input

U TN D I K AN accepts FILE and FIELD control statements. The
FILE statement is optional. &t least one field statement is
required . Control statements are coded on cards or as card
images and are contained in columns 1 through 71. Each
statement m ust begin in a new record with the statement
identifier ?ILE= or FI!LD= in column 1 of that record . The
file or field nam, shall immediately follow the statement
identifier. A statemen t tha t exceeds 71 characters can be
continued on one or more additional cards in columns I
through 71. A nonbia sk character must be placed on column
7~ to indicate continuation . A control statement can be
interrupted after any comma or blank, lords may not be
split bstw.en records, Col umn 72 of the last or only record
of each control statement must be blank. Columns 73—80 of
all, recor ds are ignored.

A control statement operand is made up of two or more
keyword paramete rs . Each operand must be preceded and
followed by one or more blanks or commas unless an operand
terminates in column 71, in which case a continuation
character (im column 72) may follow the operand. If
multiple values ar. specified for an operand, at least one
blank or comma must separate each value and the grcup of
values must be enclosed in parentheses. The operands can be
coded in any order. No extra commas are required to
indicate omitted operands.

66

~

~~~~~~~~~~.‘, ~~~~~~~

Util i ty Support (UT)

114.1.1 FILE Statement

The FILE statement may be omitt ed . It applies to file
processing and affects all the fields to be processed. If
used, it may appear only once and must be the first
statement. Its operands allow control of file access and
output merging.

The fo rmat  of the FIL E statement is as follows:

YILE=filename

r~Top
ME R G E2YES BYPASS I M ON K EY

I KEYWORD
I SYNON YM
LSUFFIEES

SK IPznnnn STOPAPT=nnnnn

a. Statement Identifier

FILE=filen3ne - must be coded in column 1;
specifies the na me of the file.

b. NEBGE !ES

Specifies that  the wo rd lists from all fields
should be merged into one group of lists that
reflects the entire f ile.

C. BYPASS= (option l,option2,... )

Defi~tes the word lists to be suppressed for
all fields and overrides the FIELD statement
BYPASS operand. Only valid if AERGEZYES is
specified. The display list identified by the
following terms are omitted from the output
for all fields:

STOP stop—word table matches

MONKEY stop—word table and dictionary

67

~

, _ _ _ _ _ _ _  _ _ _ _ _ _ _



Uti l i ty  Support (UT) 
—

non ma tches

KE YW ORD dictionary matches including
synonym sublists

SYNONYM keyword sublists

SUFFIXES dictionary non matches which are
composed of keywords with valid
suffixes; the keywords appear
in the keyword list.

d. SKIP=nnnnn

A nu m ber between 1- 32,767 of MIPS logical
records to skip before processing any fields.

e. STOPAfl=nnnnn _

A num ber between 1- 32,767 which specifies the
maximum number of NIP S logical records to
process before stopping.

lu .1.2 FIELD Statement

The FIELD statement identifies a fiel d to be analyzed .
..east one FIELD statement is required and up to 50 are

a~. loved .

The format of the FIELD statement is as follows:

• FIELD=fieldnam e

SCANSUaSe STOP= 1iui~~ilLna*e J

DICT NYP ER
.!ame J 1Db ?

I R ETAIN
L5

~~~~~~~~~~~ 

ATE

68

-- _ _ _ - ------~

-~~~~-~
_ _

Utili ty Support (UT)

I TOP 1

BYPAS Sz lOIN!! I RECID”~QL~ iSUFFIXES

a. Statement Identifier

FIELD=fieldna’.e — mus t be coded in column 1.
Specifies the name of the field or variable
set to be analyzed.

b. SCA RZU aSe

Identifies the sca n subrc~ tine to be used
instead of the PET scan subroutine or the
system scan subroutine.

c. STOP [LU4~ I
Lname J
Overrides the F?? stop—word table
specification or specifies BYPASS to cause the
stop—word table match function to be omitted
for the field in vhich case all recovered
words are n onstop words. The default is
BYPASS.

d • DICT {ii~.a~i1Luame J
Overrides the PET dictionary specifications or
specifies BYPASS to cause the dictionary natch
funct ion to be omitted for this field ii which
case all nonstop words are keywords. The
default is BYPASS.

e. ffY P !$=1~!!TI DROP
(RETAIN
LSEPARA?E

69

T~~~~~~

Uti l i ty Support (UT)

Overrides the F?? option specification.
Default va lue is TEXT. Discussion of HYPE M
options may be found in section 11.1.2 of this
volume.

f . BY P A SS = (option l ,option2...)

Not applicable if BYPASS was specified on a
FILE statement. It defines the word lists to
be suppressed for the field. The display
lists identified by the following terms are
omitted from the output for the field.

STOP stop—word table matches

MONKEY stop-word table and dictionary
non matches

KEYWORD dictionary matche s including synonym
sub]ists

SYNONYM keyword sublists

SUFFI XE S dictionary non ma tches which are
composed of key words with valid
suffixes; the keywords appear in
the keyword list.

g. RECID= 112_i
LYESJ

Specifies that record identification are to be
show n in the word lists instead of frequency
counts. The default is NO.

1 4 .2 Output

UTNDXKAN displays one list of words with either
frequenc y counts or major record identifications for each
fi e l d processed or for all fields as one group if the merge
o~ tion is specified. A 2—character code associated with
edch word identifies its type. Words from types for which

70

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _

Utility Support (UT)

bypass is specified are omitted from the list. If a
dictionary was specified and a data word matched a convert
synonym or was suffixed , the dictionary word which will be
substituted for the data word is inserted after the data
word at an offset .

114.3 Job Setup

The following JCL statements illustrate the deck setup
Lsed to invoke the IKA cataloged procedure fo r  a cataloged
:SAN f i le  and a cataloged user library:

/1 EXEC XKA ,ISAN=fJlename,LIB=libname
//XKA.SYSIN DD * 

-

(user—supplied control statements)
‘a

wiiere

fi lena me — name of the NIPS ISAN data file

li~bname — na me of librar y containing user scan
subroutines, stop word tables and
dictionaries.

The following JCL statements illustrate the deck setup
u sed to invoke the IR A cataloged proced ure for an
ulicataloged SAN file and an uncataloged user library:

// EXEC IkA,SAN=filena me,YSAN~’SER=aaaaaa ’,
If LI8=libname,VLIB= ’SER=bbbbbb’
//XKA.S!SIN DD *

(user— supplied control statements)
‘a

where

filename — name of the MIPS SAW data file

aaaaaa — serial number of the SAM data file

71 

---- .~~~~~~~~— - -.“—“-— -~~~ -~~~



_ _  - -~~~~~ ---~~~~~~— ---~~~~~~~ --~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _

Utility Support (UT)

libname - name of the library coataiaimg user
scan subro utines , stop word tables, aM
dictionaries

bbbbbb — serial number of the sear library.

The following JCL statements illustrate the deck
setup used to invoke the 1Kb cataloged proosdars for
a YSAN data file cataloged on a NIPS.CAT;

II EXEC XKA ,YSCAT=’NIPS.CAT’,
// IS&M=filename,LIB~lthna.e//UA.DATAFILE DD ANPr’AMORGI
/,‘XK A.SY SIN DD *

(user-supplied control statements)
I.

w Lere:

filename - name of NIPS VSAW data file

libuame - name of the library containing
user scan subroutines, stop word
tables, and dictionaries.

72



• - - - ~~~~~-__- - -  _

Utility Support (UT)

Section 15

DICTIONARY MAINTENANCE (UTNDXKMD)

UTNDXKND creates, updatan, and displays stop-word tables
and dictionaries. During one execution it processes any
number of table s provided all tables are stored in the same
library. It accepts as input table statements which define
functions to be performed and value statements which provide
data for  create and update functions. Each table statement
defines one of the followin g func tions.

— add stop words

- delete stop words (update)

— add keywords H

- add suffixes

- add synonyms

- delete keywords (update)

- delete suffixes (update)

- delete synonyms (update)

- display stop word table

— display dictionary

In addition , a table statement nay include parameters
which define a table page size (create), dictionary display
options , and value statement displa y and sequence check
options. Since a table statement defines only one fun ction,
more than one ta ble sta tement with its associated value
statements will probabl y be required to create a dictionary
or to update any table. For ease of reference, a table
statement and its value statements will be called
collectively a function statement.

73

I



_ _ _ _ _ _ _  _ _

Utility Support (UT)

Table Creation

Only one function statement, ADD~ STOPUoRD S, is required
(or permitted) to create a stop word table. value statement
wordr should be those words which appear many times (high
frequency) or whic h the user will never use as search terms.
If the amount of data is snail, a stop word tab le will
probably not be required. If the amount of data is very
large , the user would benefit by •zecnti*g the Keyword
Analysis utility to obtain word frequency counts. lords
which appear in more than 25 percent of the data file
records are good stop word table candidates.

Three function statements may be used to create a
dictionary —- add keywords, add suffixes, and add synonyms.
Movever, all three statements may be used to define
dictionary words with suffi x specifications . It no synonyms
are to be d*fined , only the add keywords statement need be
used ; if only synonyms are to be defined, only the add
synonym statement need be used. On the other hand, all
three statements may be used to define the same word as a
keyword (add keywords) whose ending changes when it is
suffixed (add suff ixes) and that is syn onomous wit h another
word (add synonyms). If more than one function statement is
used, the statements way appear in any sequence in the input
stream. In fact, function statements and display statements
f rom any number of ta bles may be inter mixed. The only
sequence restriction occurs when the user chooses to have
UTNDXKND sequence check the value statements in a function
statement. UTIDUWD processes th. input in phases: it
processes each function statement as an independent unit,
then it processes each unique table word from all function
statements.

Dictionary words should normally be those words which
change their form when suffixed or which are to be grouped
under one term in the Index Dat a Set. However , low
trequenc. words in a very large data base might also be
included. The decisiow to exclude words by using a stop
word table or to includ e them by using a dictiomary is
ar bitrary. Using a stop word table should increase rue
time. However, when both tables are need, both must be
changed to include a word which is a atop word.



~~

——

~~~~~~

- — -
~~~

-

Utility Support (UT)

Table Upda te

Add stop—word and delete stop—wor d statements are used
to update a stop-word table. All other function statements
are used to update a dictonary. The difference between
create and update is that during update all input words are
natched against existing tables. Note that an existing
table may be created; in create mode, UTN DIKMD does not test
tor the existence of a table —— it creates a new table from
input data that replaces the existing table.

U T N D X K M D  does not include a delete—t able function . Use
the OS utility IEHPROGM to scratch each page (member).

Dictionary delete function statements are more specific
than add statements. A delete keyword statement removes
tba t  word f r o m  a table ; it also r emoves all changed—form
suffix entries and synonym entries associated with the word .
A delete suffixes statement removes only changed—for m suffix
entires; the root word and synonym entries re.ain unchanged.
A delete synonym statement re moves only synonym entries.
Another difference between add and delete statements is that
add synonym words must be grouped in parentheses to show
synonon ous relationships; delete synon ym wor ds are
independent and require no parentheses.

15.1 UTNDXKWD Input

UTNDXKND accepts table and value statements from the
SYSIN device. Format s confor m to gene ral NIPS
specifications. Statement entries are punched in free
format in positions 1—71. Position 72 is used for table
statement continuation (val ue statements are not continued) .
Positions 73—80 of value statements will be optionally
sequence checked within each function. Blanks, commas, and
parentheses are used as entry delimiters and may not be part
of an en try ;  the equals symbol is used to iden t i fy  table
entries and may not be used for any other purpose. All
other characters are assumed to be part of entry  terms ;
literals are not recognized as such because they are
irrelevant table entries.

75

- -  -~~~~ -— —-~~~~~-



‘I

Utility Support (IT)

Table Statene its

Table statement entries are composed of keywords and
operands separated by ma equa ls symbol. lith the exception
of the display keyword , all opera nds are single terms. If
two terms are used in the display keyword operan d they must
be enclosed in par•ntheaes; otherwise no special notation is
required with any op.ranL

The table type keywor d (STOPHOED, DICTIOUIT) identifies
the beginning of a tabl e statement • It mast be punched
beginning in column 1 of the iapet record. All other
keywords and operands say be punched in any positio. ii
com mas 1-71. It is pernianibl. to punch a keywor d in one
record, am equals symbol in a second record, and the operand
in a third record. Ho keywor d or opera nd nay be split
between records , however. Any nnmber of blank s aid com~~~nay appear between ter ms and around the equals symbol (and
a parentheses if any are requIred). LU records .zc.pt the
last (or only) record that contain table statement trms
must include a woablank punch in positiom 72 to indicate
that tie record is not the last (or only) owe for the
Statement.

The table type keyword and the mode keyword (CHEATE,
UPDATE , DISPLAY) are required in all table stat enents. The
operation keyword (ADD, DELETE) is required ii all create
and update node table stat•aents.

&ll other keywords are optional. In create node , the
user can specify a mazinun table page size (PAGE) • If be
does not , a 1K default size will be used. lote that if
input data for a table does not completely fill one page,
the actual page size will be equa l to the space used, net
the maxinni size. However, the anr ian. size viii be carried
in the tabl e ~irectoty and viii be considered sack tine the
table is npdated. In create and upd at. node statenen ts, the
user can request that all value statenents he se~~nece
checked (SI QCN) and/Or diuplay.d for dingaostic r.far L.
(DIAGIOST IC) • Lu display ..d. for a dictionary, the near
can select various word lists (DISPLAY) .

76

----—----~-•--~~~~



_ _  ___ -~~~~

Utili ty Support (UT)

A table cannot be created and updated in the same run.
It is impossible to display a table before it is updated in
the same run (statement s are sorted before they are
processed). Only one display mode statement may be present
for a stop word table; any nu mber may be present for a
dictionary provided the DISPLAY keyword operands for each
are unique.

The format  of table statement entries is as follows:

(
J STOPWO R D = ( table name NODE= (UPDATE
1~ ICT NA

J 
[~ISPLAY

IADD= 1. 1~TOPWORDi1 PAG E=nnk
~DELETE ’( JKE!WORDS I
t ) (SUFFIXES I

~~Y HOUMSJ

rKETW0RD1
SEQCKZIQ. .. DIAGNOSTIC IQLIST DISPLAY ISUFFIXES I

YES LIST [~YNON !HSj

a. Statement Identifier

STOPVORD= or DICTIONARY~ mus t be first
keyword, must begin in column 1.

b. table name

table name — must be less than 8 characters in
length; must being with an alphabetic
character and can not end with zero.

c. NOD E identifier

CREATE, UPDATE or DISPLAY

77 

- -



- —

Uti l i ty  Support (UT )

d. Operation Keyword=word type

Required for CREAT E/UPDATE nodes; specifies
whether keyword table is being added or
deleted; and the t ype of keyword being
process.d.

JADD 
~

l 1 ~~
T

~~J 
operation

[STOPHOEDS1
I~ ETVORDS word type
SUFFIXES

e. PAGE=nnk

One or two digits in range of 1—32K; default
size is 1K

f. SEQCK*J9
YES

Specifies whether a sequence check is to be
performed; default is 10.

g. DIAGROSTIC= 1OLIS?
LIST

Specifies whether diagnostic reference listing
is to be printed; default is NOLIST

b. DISPLAY=word type

Specif ies the type of word lists that are to
be printed in the DISPLAY mod.; the default is
all word types.

78



— 
-- - ,~~~~~~~~~~- --,~~T ~~~~~~~~~F~ - - -

Utility Support (UT)

rKEYW0R DS 1
ISUFFIIESI word type
LSY1O111NSJ

If two terms are selected, they muSt be
encl osed in parentheses

e.g. DISPLAY= (KEYW ORDS ,SU?FIUS)

Value Statements

Value words are punched in tree format in coluans 1—71.
Column 72 is ignored. Columns 73—80 may optionally contain
a record sequence number. A word may not be split bet ween
two records. A suffix specification (explained below) nay
not be split between two records. A suffix specification
need not appear in the sane record as its root word. The
parentheses which delimit suffix specifications and add-
synonyms may appear anywhere including separate cards. Any
num ber of blanks or commas may separa~ e words, parentheses,
and su f f ix  specifications. All cha racters except the blank,
comma , paren thesis, and equals syM oi are considered to be
pa rt of a word , Words are stored in a table exactly as they
appear in the input. -

Stop Word Table Entries

// Simple word s are stored in stop wore tables. Suffix and
synony m notation does not apply.

• Dictionary Entries

All words are stored in the dictionary exactly as they
appear is the input. In addition , a changed for m of the
input word sill be stored if a suffix specification follows
the input word. Both forms of a word may be flagged as
synonyas but the ir form is not chan ged.

Suff ix  $p ci f ication

This notatio n is used with words whose endings change
when they are suffixed. Three such words are:

79

________________________ -



_ _ _ _ _ _  

_ _ _ _  
- - --

Utility Support (UT)

ARE! -AREIES (changed the Y to I).
PLAN —PLANNED (add an N).
ARGUE—ARGUSEIT (drop the E).

The specification consists of a 1—byte delete count
(always a number) and zero or more characters that are to be
added after deletion occurs. The specification (one or mor e
separated by blanks or commas) must follow its root word and
be enclosed in parentheses.

ARE! (1!) delete 1(T), add I —— ARE!
PLAN (ON) delete none, add N —— PLAINARGUE (1) delete 1 (E), add none —— ARGU

When a changed form dictionary word (ARE!, PLANK , ARGU)
matches the significant characters of an argument word and
when the remaining argument characters are a valid suffix,
the root word (ARE!, PLAN , ARGUE) is substituted for the -

argument.

Synonyms

Synonomous relationships between words are defined by
enclosing the related words in parentheses in an add—synomym
functiou statement. Any number of vords (two or more) nay
appear in one group. The same word may appear in any number
of groups, which has the effect of combining the words in
the common groups into a single group internally. UTIDIKED
collects all related words and selects the lowest in
sequence to represent the group in the Index Data Set. This
word is called the base word; all other words are called
convert words. When an argument word matches any convert
word, the base word is substituted for the argument.

If any of the words in an input group of synonyms is
already a synono. in an existing table, the bass word for
the existing group will be used for the new group; i... , all
input words which are not synonyms will be stored in the
dictionary as convert words in the existing group.

80

S 

~~~~~rn— ~~~~~~~~~~~~~~~~~~~~~~~~~~


Util i ty Support (UT)

15.2 U TND XK! D Output

For each fil.e processed, UTIDIKED lists all input
statements with notes to indicate the action taken for the
statements.

For each DISPLAY function, UTNDXKND lists the contents
of the table or dictionary in ascending alphanumeric
sequence. It flags all convert words and suffixed words.
It also shows all convert words as sublists with each base
word so the user can see synonym groups.

15.3 UTIDIKED Job Setup

The following JCL cards are used to invoke the cataloged
proced ure IKE which viii maintain stop word tables and
dictionaries.

//jobname JOB (standard parameters)
//stepname EXEC XKN,LlBziibnane
//XKE .SISIN DD *

(user—supplied con t rol stat ements)

where

libname is the name of the library containing stop word
tables and dict ionaries to be maintained.

81

• p - .-

•~~~~~~~~ •~~~~~
_

~~~~~~~~~~~~~~~~~~~~~ • _~~~• • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  
•

~~~~~~~~~~~~~~~

Utility Support (UT)

Section 16

FORMAT DEFINITION TRANSLATOR UTILITY (UFODE)

UTODE is used to place format definitions on a user
library. A format definition gives a description of a CRY
display format and the Input Message Que ue records to be
created from data entered on the display. Before a user can
call for the display format at a CR? termina l, the for mat
definition must reside on the user library. UTODE creates
skeleton and IEQ table control blocks from the format
definition source statements an d wr ites the control blocks
into the user library using the display format name as the
member name .

16.1 Input

Input to UTODE consists of one or more format
definitions. The forma t definition source statements are
described in Section 6 (FORMATTER) of the Terminal
Processing Users Manual. The input source statements may be
in punched cards or in card image records stored in a
partitioned data set.

16.2 Job Setup

The following JCL statements illustrate the deck setup
used to execute UTODE. In the first setup, the input
detinition source statements are in punched cards.

//IA EXEC IUTODE,LIB=TEST36O,YLIB SSERZMTPACI’
//SYSIN DD *

Definition source statement cards.

The following JCL would be used if the input were card
image records stored in a library.

82

i i
_ _ _ _ _ j

~~-

~

Util i ty Support (0?)

• f/ lB EXEC XU?ODE,LIBzTEST36O,!LIB~’SER~flYPACK’
//SYSIN DD DSN zII YLIB (?ORMAT I) ,VOL SER NTPACK2 ,
// DISP~ (SNR , KEEP) ,UI!Tz231*,
// DCB~ (RECPB.FB,LRECL 8 O,BLKSIZE*800)
,*

83

I

•

~

• ~~~~~~~~~~~~~ • • •

~ 1 ~~~
--—— _ _ - --——----- --- - •- --

~~~ 

-

~~~~~~~

---_ ---• - -

~~

-

~~

--_

~~~~ 

--_---_-_—-- --_-_-_-_ •- - • - --, —------

~

---•_ -—---•

DISTlt[rWTION

CCTC CODCS COPIES

C 124 (Reference and Record) 3
C 124 (Record Copy) Stock .  6
C2 ’t O 20
C315 1
C34 1 (Maintenance Contractor) 10
C3111 (Stock)- 70

EXTERNAL

Director of Administrative Services, Of f i ce of
the Joint Chiefs of Staff
Attn : Chief , Pei:sonnel Division , Room 1A724 , The
Pentagon Washington , D.C. 20301 1

Director for Personnel , J-1 , Off ice  of the Joint
Chie fs of Staff , Attn: Chief , Data Service Office,
Room 1B738C , The Pentagon , Washington , D.C.
20301 1

Director for Operations, J—3 , Off ice of the Joint
Ch iefs  of Staff , Attn : P & AD , Room 2B870 , The
Pentagon , Washiagton , D .C. 20301 I

Direc:~or for Operations, J-3 , Office of the Joint
Chiefs of Staff , Attn : Deputy Director for
Operat ton3 (Reconnaisance and Electronic Warfare)
Room 2D921 , The Pentagon , Washington , D.C.
20301 1

Director for Logistics , J-L4 , Office of the
Joint Chiefs of Staff , Room 2E828, The Pentagon ,
Washington , D.C. 20301 1

Chief , Studios Analysis and Gaming Agency , Attn:
Chief , Force Analysis Br~inch, Room 1D928A , The
Pentagon, Washington, D.C. 20301 1

Automatic Data Proces~;ing , Liaison Office
National flhlitary Command Center , Room 2D901A ,
The Pentagon , Washington , D.C. 20301 1

84 

-~~~— - ~~~~- -~~~~~~~~~-—



r -

EXTER~AL COPIES

Automatic Data Processing Division 
-

Supreme Headquarters Allied Powers , Europe
Attn : SA & P Branch , APO New York 0905’ 1

Director , Defense Communications Agency,  Office
Of MEECN System Engineering , Attn : Code 960T ,
Washington , D.C. 20301 1

Director , Defense Communications Engineering
Center , Hybrid Simulation Facility , 1860
Wiehi Avenue,. Reston , VA 22070 1

Director , Defense Intelligence Agency
Attn : DS - 5C2
Washington , D.C. 20301 - - 5 -

Commander-in-Chief , Pacific, Attn : J6331 ,
FPO San Francisco, 96 610 1

Commander-in-Chief , US Army Europe and
Seventh Army ATTN : OPS APO New York 091403--— 1

Commanding General , US Army Forces Command ,
Attn: Data Support Division , Building 206 ,
Fort McPherson , GA 30303 1

Commander , Fleet Intelligence Center , Europe,
Box 18, Naval Air Station, Jacksonville ,
Florida 32212 1

Commanding Off icer , Naval Air Engineering
Center, Ground Support Equipment Departmen c ,
SE 31L~, Building 76—1 , Philadelphia , PA 19 1 12 1

Commanding Officer, Naval Security Group
Command , 3801 Nebraska Avenue , N.W. Attn : GP22,
Washington , D.C. 20390 1

Commanding Of f icer , Navy Ships Parts Control
• Center , Attn: Code 712 , Mechanicsburg , PA 17055 1

Headquarters , US Marine Corps , Atth: System
Design and Programming Section (MC-JSMC-7)
Washington , D.C. 20380 1

85

~



r 

- ! 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

-

~~~~

- -

~~~~

--

EXT~ RNAL. COPIES

Commanding Of f icer, US Army Forces Command
Intelligence Center , Attn : AFIC-PD, Fort
Bragg , NC 28307 1

Commander , US Army Foreign Science and
Technology Center, Attn: ANXSJ—CS, 220
Seventh Street NE, Charlottsville, VA 22212—— 1

Commanding Officer, US Army Security Agency,
Command Data Systems Activity (CDSA) Arlington
Hall Station, Arlington, VA 22212 1

Commanding Officer , US Army Security Agency
Field Station - Augsburg, Attn: IAEADP,
APO New York 091158 1

Commander, Fleet Intelligence Center, Atlantic,
Att:’: DPS , Norfolk, VA 23511 1

Commander , Fleet Intelligence Center, Pacific,
Box 500, Pearl Harbor , HI 96860 1

Air Force Operations Center, Attn: Systems
Division (XOOCSC) Washington, D.C. 20301 I

Commander, Armed Forces Air Intelligence
Training renter, TTMNIM (360 FFS), Lowry
AFB, Co 80230 1

Commander , Air Force Data Services Center,
Attn : Director of System Support , Washington ,
D.C. 20330 1

Commander-in-Chief , US Air Forces in Europe ,
At tn : ACDI APO New York 09332 1

Commander , USAF Tactical Air Command, Langley
AFB , VA 23665 1

Commander , Space and Missile Test Center, Attn:
(ROCA) Building 7000 , Vandenberg, AFB , Cit
93437 1

86

~

--

~~~~~~~~~~~~~~ _ _ __J _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- -—

EXTI:RNAL COPIES

flaval Air Systems Command , Naval Air Station,
Code 13999 , Jacksonville, Florida 3221 2 1

Commanding General , US Army Computer Systems
Command , At tn : Support Operat ions Directorate,
Fort Belvoir , VA - 1

Defense Documentation Center , Cameron Station ,
Alexandria , VA 22314 12

TOTAL 159

a

87

__

SECU RI T’. CtASSIFICAT IUW OF T,,SS PAGE (~~~
.0 D~~. E~~I.. 4 ___________________________________

nrfl.U~~r nr,, IIL1,lIrA~~1f%kJ OAI’ C READ INSTRUCTIONS
iwr ’ji’i IJU’...UMII~ U ~~ ~~~~ ~~ “i’- - BEFORE COMPLITING FORM

r~~~~,’.T sUNIaEA 7 GOVT ACCESSION NO L R* CIPILNI S CATA l OG NUNUIN

CSM UM 15-78 , VOLUME VII
—

4 . T~Tt £ (...4 ScklUi.)
S. TYPE or REPORT A PERIOD COVERCO

NMCS Information Processing System 360 Formatted
File System (NIPS 360 FFS) - Users Manual

Vol VII — Utility Support (UT) S. PERFORMING ORO- REPORT RUNNER

1. AUTNOI(.) S. CONTRACT OR GRANT NUMSLR(.)

DCA 1 00—7 1—C — 0065 ’

IIF OI.MING ORGANIZAT ION NAM E ANO ADDRESS I IS. PROGRAM ELEMENT. PROJECT . T ASk
ARED.S yORE UNIT WUMNERS

International Business Machines , Corp.
Rosslyn, Vir ginia

H. cONTRULLING O~~PICE NAME AND ADDRESS It. At PORT DATE

Natio!!al Military Comman d System Support Center i September 1978
The Pentagon, Washington , D.C. 20301 ~~~~~~~ *~ EA oV PM~tS

—

- - 94
S1~~NONIT(-KINO AG ENCY NAME A AOURESS(l(dH(., .nI ~~~~ Coni,.Uui~~ OliIc.) 15. SECURITY CLASS. (.1 NIl. ,.p.N)

- Um lass ified
IS.. O~ CL *sS,PICATION/DOWNGRADING

SCHEDULE

1 . OISTI.IOUTION STATEMENT (.1 WAS . Kap.rS)

Copies of this document may be obtained from the Defens e DocLinentation Center,
Cameron Station, Alexandri a, Vi rginia 22314.
This document has been approved for public release and sale; its distribution
is unlimited.

17. OIUAIRUTI~~N STATEMENT (of WA . abah.ct .iet.,.d In RIock 30. It dii t.r.,i tr.~ R.p..i)

IS. $UPPLEuE~iTAf iY NOTES

9S KEY W~~RE (Conii,.u. n s,•,a, old. ii n.c... ~~y ~ .d Id.n t I f y by block nia,b.r)

‘N
~~~~~ A~ STRACT(CanlInu. . ~~~~~ .I~~ Ii ...~~ ~~4 S~~n~l~~ b7 block 

-

This vol ume defines the capabilities of NIPS 360 FFS Utility (UT) components.
It describes the function of each utility, Its Inputs , its outputs, and
serves as a reference for the knowledgeable user of these components.A
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ - - - —
~~~~~~

--
~~~~~~~~

I’ — This document supersedes CSM UM 15—74 , Voltwte VII .

DO ~~~~~~~~ 1473 EOITIOM O, ‘NOVSI ,5 O.~oL,tE UNCLASSIFIED
88 socumtv C*.AISIPICATION 0, IRIS PAGE (Nh.n D.,. ia .t.~~~ 

- -—~~~~~~~
- -

~~~~~~
-- -

~~~
-— -


