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SECTION I

INTRODUCTION

This report introduces new concepts in the verification of
security in computer systems, as well as reinforcing the approach
ESD and MITRE have been using in the past few years. Our security
kernel design methodology is a progression from an abstract model of
a secure system, through more concrete representations of a kernel,
to the binary machine code. This design methodology is associated
with a two—phase security verification approach: first, verify the
security properties of the design; and second, ve~ify that the design
has been implemented correctly in code. The first step is called
property verification; the second step, functional verification.
See Figure 1.

Rigorous verification, in the sense of mathematical proof , is
still a research area. In a few limited applications, however, it
is on the verge of entering the state of the art in computer system
engineering. The three areas where it is becoming practical in
security kernel validation are these:

- . . .• . . 1. p~opqrty ver~fication of, high~ leyel formal • . .

specification;

2. functional verification of high—order-language
code with respect to a high level formal
specification;

3. microprogram vetification.

The third area, microprogram verification , is aimed at estab—
lishing that the machine language instructions are implemented
correctly by the firmware, which uses hardware—implemented register
transfer operations. There is a “verification gap” between the
high—order—language code and its implementation in machine instruc-
tions, and another gap between the register transfer microinstruction
level and the integrated circuit packages. See Figure 2. Medium
scale integrated circuits are simple enough so that they can be tested
exhaustively, but design problems crop up again in large scale inte—
grated circuits, such as microprocessors.

Verification techniques appear to be adequate in principle to
cover the spectrum from high level specifications to gate level
hardware components. Whether it is practical to do the verification

5 
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at each leve l depends primarily on two factors : design discipl ine .
and a combination of tools and techniques . The importance of these
two factors has been demonstrated in the three areas where verifica-
tions have been carried out .

PROJECT COALS

Our p r o l e c t  goals were closely related to the two ver i f ica t ion
gaps. V e r i f ir at i o n  of machine language code was one goal; the second
was to develop te~-hnl ques for  ensuring that  machine code is robust ,
f rom a s e c u r i t y  point  of view , wi th  respec t to hardware des ign flaw s
or failures. The state of the art is disappointing in both  of these
areas .

Rather than attempt to push present technology into jobs for
which i t  was not yet suited , we took a more app l1ca tion .

~
.orien ted rou te:

by considering the specialized requirements of data security , it
appeared poss ible to develop e f f i c ien t tools and techni ques for
answering security questions without performing full machine lar.~uage
progr am ver if ica tions or the ir eq uivalen ts for hardware faul t analysis~
The new approach hinges on identifying a necessary as well as
sufficient condition for security, so that a secure system will not
be imp roperly rejected , rega~rdlèss 6f ho~4 de~ ai1ed

’or lo~—leve
’l a

spec i f ica tion we are given to ver if y .

It was the lack of such a condition that forced us to try to go
through functional verification of machine language code in the first
place. The *_proper ty, being sufficient but not necessary for securi ty ,
usually fa ils when app lied d i rec t ly  to securi ty kernel code or detailed ,
low level specifications .

A necessary and sufficient condition for security against un-
authorized disclosure of information is given in this report. It is
derived from fundamental considerations about the ability to deduce
or infer information about digital system variables . The theory is
set out in a forthcoming working paper at a more elementary level.
This report describes the initial steps in applying the theory in the
context of security testing.

Because this theory identifies information flows, it should be
possible to apply 1’ to hardware design specifications to determine
how variations in component functions or interconnections result in
differen t communication paths between input and output lines , and
hence lead to possible data compromises . This applica tion is still
in a concep tual stage,

8
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SUMMARY OF REPORT

As in the initial Bell—Lapadula reports [8], we re turn in
Section II to the notion of a general system as a common ground to
begin the study of computer systems , Instead of specializing the
system by introducing particular entities like subjects and access
sets , however , we remain at a level at which any computer system ,
secure or otherw ise , can be described.

Compromise of a system object is characterized in Section III
as the ability to deduce something about a high leve l inpu t by
observ ing lower level outputs and controlling various inputs.
Security is just the absence of compromise.

In order to show how the present theory can provide support for
tests of security based on the *_property , it has been proved tha t
a f orm of the *_property , called the mono tonic~~~ condition, stated
in Section IV, is sufficient (though not necessary) for security
against unauthorized information disclosure .

In order to apply the concepts in this report to computer
sys tem valida tion , curren t techniques and theoretical results must
take steps toward oT~e another to meet in the middle . System

- . - - . . ~p~ c1ficatjon languages must be provided with “semantics” , or precise
explana tions , so that the syst~ms tIie~ des~ ribe can be fUl~~ ~tnttl~’ze~i. -
The theory needs to be made more flexible , and to be extended to
eliminate certain assumptions that were made in the first cut to
simp lify it. A discussion of both activities is given in Sec tion V ,
Conclusions.

BACKGROUN D

In its early days , the theory of information security in corn—
puter systems was regarded solely as a matter of access control.
Subjects had read or write access to objects . Subjects had a
natural interpretation in a manual data—processing environment as
people , and objects as documents. When this philosophy was trans-
ferred to computer systems , subjects became processes and objec ts
became files. The process/file level of granulari ty was accep table
for ord inary user programs , bu t turned out to be too coarse for
sys tem programs where e f f iciency is of great importance. The
operating system software that handles access requests , and changes
in access au thoriza tion , was found to be a prime source of the need
to work at a finer—grained level. The subject/object approach is
awkward at this level because there is no natural Interpretation
for subjects .

9
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The reason that procc’sses no longer suffice as subjects can be
illustrated with an examp li~. Consider a program with the two
assignment statemt’nts:

U2 := Ui;

S2 :~ Si;

and let us assume that information flow from Si to U2 is not autho-
rized. The process evidently needs read access to Si and write access
to U2. From a subject—object—access point of view, the situation is
insecure. What makes the difference here is the fact that we know
what the program is, and we can see that it causes no information
flow from Si to U2. How can we formalize this argument?

One way is to introduce new, more abstract, subjects, and say
that the two statements could , in principle, be executed by two
distinct subjects . When subjects are reinterpreted, howeve r , access
also has to be viewed differen tly, and there is less intuitive
assurance that read and write accesses are being interpreted appro-
pr iately in any b ut the simplest situations .

If the primary objective of the analysis is to detect unautho-
rized disclosure of information , an appealing alternative is to
formalize the notion of information flow from one object or variable
to another.

Shannon’s theory of communication Ell] does not seem to be
directly applicable here, primarily because it deals with a single
communication channel. In a computer or computer program, there is
po tentially a channel between any pair of variables, and the useful-
ness of the channel often depends on the current values of other
variables. In this context, also, probability distributions are
usually not known.

There have recently been several papers that have taken infor-
mation flow approaches to computer security. Their common setting
is a deterministic abstract machine whose current state is embodied
in a set of state variables. Information flow from each state
variable to others may result from each transition of the machine.

Jones and Lipton [1] consider a transition as the result of
invoking a program. A program is a function from its input——which
includes global variables and data structures as well as arguments——
to its outputs, which can be stored in global variables or just
viewed. If an output can be determined from some proper subset of
the inputs, then there is no information flow from the inputs not in
that subset to that output .

10
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D. Denning and P. Denning [2~ classify program statements accord-

ing to the information flows that can occur between the variables that
participate In the statement. An assignment statement potentially
transfers information from its right hand variables to its left hand
variable, A conditional statement potentially transfers information
from the condition variables to any variables that can be modified in
its sequel. The flow characteristics or “certification semantics”
of a wide variety of statements are given.

Feiertag [3] has a functional definition like Jones and Lipton ,
but considers the flow only from the past succession of external in.-
puts to a given external output. This yields the most immediate
application to multilevel computer security , since levels are known
a pricri only for external variables. It is then shown that a per—
transition policy based on assigning security levels to internal
state variables is sufficient to protect against unauthorized dis-
closure.

Cohen [4] gives a sufficient as well as necessary condition for
information flow, suggested by Shannon’s probabilistic theory . A
variable B is “strongly dependent” on a variable A over execution
of an operation if variety in the value of A beforehand forces
variety I~ i the value of B afterward. This definition satisfies the
requirement of a functional approach: if an output is determined by
a certain set of variables, it is not strongly dependent on any
variables not in that set, with the exception of those linked by
some relation or invariant to a variable in the set.

Our approach uses a particular static representation of a
system in terms of “prime constraints”, which are analogous to prime
imp licants in switching theory . A prime constraint characterization:

1. describes the system as a whole, rather than
single operations , programs, or statements;

2. exhIbits security compromises transparently ;

3. exists for nondeterministic systems.

The prime constraints of a system are derivable from non—
procedural transition specifications such as those Introduced by
Parnas [9] and used by MITRE [10] and SRI [3] in security verifica-
tions, A way to generate a set of prime constraints sufficient for
security analysis will be suggested .

11
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The main result in this paper is the statement that a certain
condition on transitions , similar to the *_property , is sufficient
to guarantee security against unauthorized disclosure. 
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SECTION II

PRELIMINARI ES

SYSTEM CONCEPTS

The concept of a system is often presented In terms of a state
space and a set of possible trajectories through It. The state
space can be pictured as a cloud—shaped area within which individual
states are represented as dots.

space

A trajectory is a mapping of a time Interval Into the s tate
space; it can be pictured as a directed curve embedded In the state
space.

A major dichotomy in the treatment of systems is the continuous/
discrete decision. A fully discrete system has a finite or countably
infinite space, and time intervals are represented by sequences of
consecutive integers. For analysis of algorithms and higher level
hardware logic design, a discrete formulation is productive and
reasonably safe , because digital computers are designed to foster
an illusion of discreteness.

Trajectories in discrete systems are called simulations. A
simulation is pictured below. The arrows between states arè
transitions from state to state.

DISCRETE simulation

finite state space

13
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A causal (discrete) system can be described completely by its
set of possible transitions . A sequence of states is a simulation
if and only if each state is followed by one to which there is a
possible transition .

S O~~

g

S IMIJ LAT IONS :

b g gabop

I 
bogagop

The state of a digital system can often be characterized by the
individual states of certain objects or variables embodying the
“memory” of the system. At the gate level, the objects are f lip—
flops; at the processor level, they are registers ; at the high—order
software level, they are program variables.

Besides holding the state of a system , objects are useful in
describing input and output behavior. The output of a system Is
simply the state of a subset of the objects , called outputs or
visible objects. Inputs are objects whose states are “free”, or
independent of the system. That is, if there is a transition from
system state q to q ’, there will also be a transition from state q
to any state which differs from q ’ only in the states of the inputs.
Since the system does not constrain input states, we may imagine
that their states are determined externally by the “user”.

CONSTRAINTS

Constraints are built up out of conditions . If a is a
variable and v is a possible value for a, then a is a condition.

The condition a is satisfied by a state q if a = v in q.

A term is a conjunction of conditions in which each variable
occurs at most once. The symbol 1 is used to denote a term in
which no variable occurs. Examples of terms are a , a b , b c e0 u v  1 0 3

14 
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One may form symbolic cross products of terms, of the form

tl x ... x tn.

Such a product is satisfied by a state sequence q1,.. . ,q~ If , for
all i, satisfies every condition in t~~. A symbolic product is

a constraint if it is not satisfied by any simulation .

A constraint is prime if deleting any condition results in a
symbolic product that is not a constraint. Given any constraint ,
one can find a prime constraint from it by deleting conditions
until the result would no longer be a constraint. A prime constraint
obtained this way is said to cover the given constraint.

As an example, consider the system with two binary variables
whose transition set is described by the assignment statement

b := a

with the understanding that a is free. The system has four possible
states:

a0b0 
a1b0

a0
b1 

a1b1

Each of the terms above , because it has a condition from every
variable , is satisfied by exactly one s tate;  it Is of ten  convenient
to use such terms to represent states .

15
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The product

a0b 1
x a

1b 1,

which is sa t is f i ed  by j u s t  one state pair , is a constraint because
It  is not prime , however , because

a0 
x b

1

is also a constraint. In fact, a0 
x b1 

is prime.

16 
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SECTION III

DEFINITION OF SECURITY

DEDUCTIONS

One can use a constraint , p lus knowledge of the value of all but
one of the variables appearing in it , to deduce something about the
value of the remaining variable . For examp le , the constraint

a
0b1 

x

together with the knowledge that b = 1 in state q and c 0 in the
next state q ’ , permits the deduction that a # 0 in q. Knowledge about
b and c has led to a conclusion about a.

If the constraint is prime , we can guarantee that the events
b = 1 in q, and c = 0 in q’ are possible , since

b X c
1 o

cannot be a constraint. Thus, a prime constraint is suff ic ient  to
make a deduction about any one of the variables occurr ing in it , if
one can control or observe the others.

Prime constraints are also necessary for a deduction of this
type. Suppose that one observes and/or causes a series of events
expressed by the product

p1
x... X p

5
.

We shall say that one can “deduce something about ” a variable a if
he can exclude at least one possible value u for a at some time i
(relative to the series of events) . There is no loss of generality
by assuming that 1 < i < n , since the product can always be extended
by annexing observations of the universal event 1. The conclusion
that  a cannot have value u at time i implies that

17
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p 1 ... p~a

is a constraint. This constraint might not be prime , but there is
some prime constraint covering it. Furthermore , any prime constraint
covering it still contains the occurrence of au, since p1 ..~ X

is not a constraint —— it expresses events that have occurred in
some simulation.

In summary , a necessary and sufficient condition to deduce some-
thing about the value of a variable on the basis of access to other
variables is the existence of a prime constraInt with an occurrence
of the variable in question , such that all other variables occurring
in it are accessible. (This statement would have to be refined
somewhat to take into consideration access capabilities that change
in time.)

SECURITY CONSIDERATIONS

In defining security , we consider only those constraints in-
volving solely input and output variables . Any control or observation
of system variables by a user must be managed via inputs and outputs ,
and those are the only variables for which security levels are given.

Although a user can directly observe outputs at his own level
or lower , he can sometimes control inputs at higher or incomparable
levels. One way to do so is by introducing a “Trojan Horse” Into the
system software. This higher—level control ability can be limited
or eliminated in some environments , but only the worst case of un-
limited ability to control all inputs is treated below .

Of course , it does not help a penetrator to control all the in-
puts to a system, since he will learm nothing he did not already
know , but we do not exclude the possibility that he will control all
but one , or as many as he needs , to learn something about one
particular input still controlled by a high level user,

For example , if there is a prime constraint of the form a0
b0

x c~ ,

where a and b are secret inputs and c is an unclassified output, we
would identify a possible compromise of a (with a Trojan Horse
controlling b) or of b (with a Trojan Horse controlling a).

18 
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Secur ity compromises are not limited to deductions involving
two consecutive states . A value entered in some input at the “Secre t ”
level should not p redi ctab ly reappear as the value of an “Unclassified”
output at ~~~ later time. The definition of security, therefore ,
involves n—term rather than just  two—term constraints.

Security levels are defined fot  inputs and ou tputs  only , and ,
in this paper , are assumed constant in time . Security levels do
change in real systems , but it is possible to regard a variable as
a collection of “virtual” variables of constant security level, and
then prove later that the virtual variables are multiplexed correctly
into the single real one. The ability to virtualize away certain
complexities for purposes of security analysis is one of the
advantages of using a high level, formal transition specification [5].

We define an external security level assignment as a function

A:  XUY— ’L

where X is the set of input variables , Y is the set of output
variables , and L is a f in i te  lattice of security levels . A
lattice is a partially ordered set (some pairs of elements are
incomparable) such that each f ini te  subset has a leas t upper bound
and a greatest lower bound in the lattice.

THE DEFINITION

A system is secure agains t an authorized disclosure in a
Trojan Horse environment if no user at level s can deduce
something about the value of an input of a higher or incomparable
level , on the basis of observations of external variables at level
s or lower and/or control of inputs at any level. By the above
arguments, a system is secure in this sense if and only if , for

19
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any prime constraint in which only inputs and outputs occur,
the least upper bound of the input levels is greater than or
equal to the least upper bound of the output levels. (Otherwise ,
let the least upper bound of the output levels be s; there must
be an input of level greater than or incomparable to s , ab ou t which
a user at level s could deduce something.)

20
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SECTION IV

A SUFFICIENT CONDITI ON FOR SECURIT Y

COVERS

In practice , it is desirable to draw conclusions about security
by analyzing some small—as—possible presentation of a system, such
as a program listing or a formal specification. In more abstract
terms, we wish to analyze the transition set of a system without
having to generate simulations (or constraints) of greater length
than two. Rather than look at the transition set directly, we shall
work with a cover. A cover is a set of two—term prime constraints
such that each non—transition (state pair) satisfies some constraint
in the cover.

A cover consisting of prime constraints is called a prime
cover.

Covers, even prime covers, are not unique, but one can always
produce a cover simply by listing all state pairs that are not
transitions, representing each state by the conjunction of the
conditions that  hold for  it .  Then a prime cover can be found by re—
placing each constraint by a prime constraint that covers it.

The results in this paper app ly to systems coverable by con-
s traints  of a restricted form:  those with single conditions on the
r ight .  We call a constraint simple if it is of the form

p x a .

A simple system is one possessing a simple cover (a cover consisting
of simple constraints) .  This category of sys tems includes all
systems that would be considered deterministic.  Let us define a
system to be structurally deterministic if the value of every non—
f ree variable is determined by the previous state.

The unqualified term “deterministic” should probably be reserved ,
in a security context, for structurally deterministic systems
whose free variables are all inputs .
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The practical  question of how to produce such a cove r depends ,
for  i ts  answer , on the way in which the system is presented or
specified. Some discussion on how to generate a simple prime cover
from an established specification format is given in the Conclusions
Section.

THE MONOTONICITY CONDITION

The Bell—LaPadula *_property [6] requires that if a subject has
read access to an object a and write access to an object b in the
same state, the security level of a must be dominated by the level
of b. The idea is that no information could be transferred from a
to b in a single transition without the accesses indicated.

The nearest equivalent in the present context is the following
monotonicity condition. Given an external security level assignment
A, an extension ~ of A to all variables is monotone with respect to
a simple cover if, for all variables a and constraints p x b

~ 
in the

cover,

‘Sif a occurs in p then A (a) ~ A (b) .

Since simple two—place prime constraints express the intuitive idea
of information transfer, the monotonicity condition says that in-
formation is never t rans f er re d down in security level, but only
(monotonically) up or on the same level. It is shown in [12] that

~~~ystem is secure against unautohrized disclosure in a Trojan horse
environment if there exists a monotone extension of the external
leve l assignment.

Although this result is perhaps not surprising, it is difficult
to prove. The key fact is that any prime constraint linking inputs
to outputs, for example:

a0
X 1 X 1 ) ~ b 1,

implies the existence of a staircase of two—place constraints, for
example:

e
1 

x b 1
f
0 

x b 1
d 1c0

x f 1
d
0c0

x e
0

a
0

X c
1 

- 
_1__ ~ ~~~~~~ _ - -_  - -
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which , together, imply the long constraint (by extended consensus
[7] ,  assuming that c , d , e , and f are binary) . The monotonicity
condition applied to the two—place constraints allows us to conclude
easily, then, that the security level of the input variable a must
be dominated by the level of the output variable b.
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SECTION V

CONCLUSIONS

APPLICATIO N

To test a system for security using the tnonotonicity condition ,
a simple prime cove r mus t be found.  While a “constructive” proof of
the existence of such a cover was given for structurally deterministic
systems , a practical technique for producing them has not yet been
implemented. Some ideas on how to do so are presented in this
section .

Constra ints  can be viewed as a means of expressing the semantics
of other , more convenient , spec i f ica t ion  languages . Formal t ransi t ion
specifications , like some of those suggested by Parnas t9i , lend
themselves to this treatment.

A simple , but not untypical , transition specification for an
operation to copy one element of an array into another with a greater
or equal index is given below:

0—funct ion  copy(i , j )

exception

i>  j
effect

m(j) := m ( i)

The first step in translating this type of specification into
a simple prime cover is to ident if y the variables. First , the
arguments i and j  are stored in some variables, say a and b. The
array m is composed of the variables m( 1) , m (2) ,

The assignment statement in the effect , considered in isolation,
suggests the constraints

m (i) x m(j) (u ~ v) (1)

24 
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where u € V ( m ( i ) )  and v € V ( m ( j ) )  are understood , and it it assumed
that m(k) exists for all kEV(a) = V(b).

The const rain ts specifi ed by (1) app ly only when I and j  are
the argumen t values , and the exception condition does not hold.
Hence, the function as a whole has constraints

a1b~ m(i) x m(j) (u ~ v, i~~j) (2)

When the exception condition holds , m ( j )  is n ot modified~
Hen ce , we have also:

a
i
b
j
m (
~
)
~ 

* m(j) (u ~ v, i >~j) (3)

Finally, no element of m other than m(j) is ever modified ;
this gives

b .m(k) x m(k) (u ~ v, k ~ j )  (4 )

There are no constraints with a or b on the right because a
and b , whi ch hold argumen ts of the call , are inputs , and could
change arbitrarily fo r the next call.

The fact that a constraint cover is for a whole system , while
fo rmal specifications are presented function by function , is not
an obstacle . Assume that we have a collection of covers R1,. .. ,R ,

each of which specifies one function. Let us introduce a new
variable e with values 1,.. .,n to “choose” the function. Replace
each constraint f x g  in R . by e

~
f x g. The collection of all of

the new constraints is a cover for a system in which any of the
n functions may be chosen freely.

The copy example above also provides an easy demonstration of
a security validation. Suppose that a and b are at the minimum
security level and that the level of m(k) is k. The monotonicity
condition can be verified by inspection of (2) — (4).

25
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SITht’~ARY

A system comprises var iables , whose combined values express the
system state , and transitions . Systems are not necessarily deter-
ministic or even structurally deterministic. Products have been
defined as certain sets of state sequesces. A constraint is a
product containing no simulations . The transition set of a system
can be expressed with a cover , which is a set of two—place con-
straints. A cover of simple prime constraints , which express strong
dependencies , can be found for structurally deterministic systems.
A prime constraint of any length is the extended consensus of
extensions of elements of a cover .

Security is defined in terms of prime constraints , regardless
of length , involving inputs and outputs , relative to a given ex-
ternal security level assignment . A monotonicity condition for
any extension of the level assignment , applied to a simple prime
cover , is sufficient for security .

A possible way of constructing simple prime covers in practice
starts with a formal transition specification .

EXTENTIONS

Three simplifying assumptions were made that could be relaxed
to extend the theory in natural directions .

Nothing was assumed known about the initial state of a system.
In practice , however , there are typically some “invariants” of the
system state that are guaranteed initially and preserved by every
transition. As Cohen* points out , this additional knowledge can
affect information flow, and hence security, since it makes certain
observations unnecessary. Invariants could be expressed as con-
straints of length one, i.e., Boolean products containing only
“illegal” states . Such constraints would have to be included in a
cover , and the inonotonicity condition would probably have to insist
that variables in the same one—place constraint have the same level.
Actual validations have not used such invariants to estimate in-
formation flow, but have used them in connection with non—constant
security level assighments.

* See Reference 4.
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No n—constan t security level assignments allow the security level
of a variable to be a function of the current state. They can be
handled by defining secur ity in terms of simulations , and exp ressin g
the monotonicity condition in terms of transitions. High level
specif icat ions can be used to trade this complication fo r a p roof of
correct imp lemerit~ition , but such proofs can be very di f f icult if the
system has not beet designed to faci l i tate  them.

The worst—case assumption of complete control by arbitrarily
high level inputs by uncleared users can be relaxed by weakening the
definition of security. If there were no Trojan Horses, for example ,
one could admit a compromise of an input variable only when all other
variables in a prime constraint, rather than just all non—inputs ,
are bounded by a lower or incomparable security level. The
monotonicity condition would then still be sufficient , but one might
look for a weaker condition of comparable simplicity.
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