
/*D—AOs9 719 FLORIDA UNIV GAINESVILLE DEPT OF INDUSTRIAL AND SYS——ETC F/a 12/2
A NOTE ON THE VALUE OF INTERCHANGE METHODS IN SCHEDULING PRORLE——ETC (U)
SEP 78 T .J 1400650W. C S LOVFLANfl NOOO1~4—76—C—OO96

UNCLASSIFIEO RR—78—12 HI I
~~~~ .

__  

__  

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_IjflJfl 
END
flTE_ Içi L  I

I
I
I

II



II ~ ~28 ~2 5
H I .LI ~
II ___________ 

;~: III .2
;~. 1~~~~ 

=

_______ 

llll~a IIIII~liii!’ .25 iIIll~ . IIitt~
MICROCOPY RESOLUIION T~SI LMAcI

I 1



T~~~LEYE~~~’~
I ~

r~m~m 
~\\RESEARCH

REPORT
H __

Industrial & Systems
Engineering Department

University of Florida
Gainesville, FL. 32611

78 10 10 019

A



~~1 ~~ij~~~~ ~~ z - -—- - --- -, .—

t~
.

A NOTE ON THE VALUE OF INTERCHANGE
METHODS IN SCHEDULING PROBLEMS

Research Report No. 78—12

by r m f l~~~
Thom J. Hodgson fl~

, 
~~~~~~~~~~~~~~~~~~~~~~~~

C. Stafford Loveland
OCT

September , 1978

c-~
— Department of Industrial and Systems Engineering

University of Florida
Gainesville , Florida 32611

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported in part by the Office of Naval
Research , under contract number N00014—76—C—0096.

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE NAVY POSITION, UNLESS SO DESIGNATED BY OTHER
AUTHORIZED DOCUMENTS.

~~

_____________________ --
~~~~

-
~~~~

-—

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wh.n D.f. Enf.,. d)

D~~DADT r~Af’IIu~~biYATIOH PACE READ INSTRUCTIONS
“~~~ ‘ ~~u” ~~~~~~~~~~~~~ I BEFORE COMPLETING FORM

I. REPORT NUMBER 2. 3OVT ACCESSION HO 3. RECIPIENT S C A T A L O G NUMBER

78— 12 __________________________________

4. TITLE (t d Sub~IU.) 5. TYPE OF REPORT 6 PERIOD COVERED

A Note on the Value of Interchange Methods in
TechnicalScheduling Problems .

~~~PERFO~ pI.ING ORG. REPORT N U M B E R

I 
~ 
.

~~~~ ~~ ..38—12 1

j 7. AUTpIOR (I)
--

— S. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/ 1) Thom J~ 1Hod~ son --—

c• S t a f f o r d/ ”Loveland /~
/ N TØØ 96P

6. PERFORMING ORGANIZATION NAM E AND ADDRESS - 10. PROGRAM ELEMENT. PROJECT . TASK
,. - . - ~~~~~~ & WORK UN NUMBERS
Industr ial and Systems Engineering 2006 1102A 14D / Rsch in &
University of Florida - ---. -

• Gainesville , Florida 32611
AppI o App lied Math.

II. CONTROLLING OFFICE NAME AND ADDRESS ,- 12.

Office of Naval Research
Septa~~er, ~~78~

\.~~_...— !1.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Arlington , VA 22

.14.- MONITORING AGENCY NAME A AOORESS(SI dUf.c.fl ~ ft.. Conlr.llind OtIS c.) IS. SECURITY CLASS. (of thu r.port)

~
. 

~~
• , 

~~
- - I Unclassified

- 
- — IS. DECLAS SIFICATION/DOWNGRADING

& SCHEDULE

16. DISTRIBUTION STATEMENT (of thu Ripen)

Approved for public release; distribution unlimited . J~,
) 

~~~~~

17. DISTRIBUTION STATEMENT (of A. .b.tract .nt.r.d In Block 20, Ii dSll.r.n l from R.pott)

N/A

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnu. on r.v.r .. .ld. if n.c.awJ ond ld.ntify by block nst.b.r)

Scheduling
Heuristics

20. AB STRACT (Contlnu. an r.v.r.. .id. It n.c ... v and Sd.n(IIy by block numb•r)

Consider a multi—ma r~hine scheduling problem in which the jobs (of unit
duration) may have non—zero release times, monotonic increasing deferral costs ,
and general precedence relationships between them . In general , efficient op-
timal solution techniques do not exist for problems of this type , and , typ icall’
realistically sized problems must be solved using heuristics , ,~W~~presGn-~ an
efficient method for implementing job interchange techniques,~ for improving
heuristically derived schedules .~ —~~~~~~ , c ~~~~~

t DD , ~~~~~~~ ~473 EDITION OF I NOV 65 IS O•SOLETE UNCLASSIFIED

I SECURITY CLASSI FICATION OF THIS PAGE (lIhon D.ta SnI.r. d)

cY 9’ ~~~~~~ /

______ - . .. —~~~~~-..—-- . —~-.—-----.---..- .~~~~~~~~~~~~~~~~~~~._ Ti IT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•-- -

~
-- —- -

~--~~~
-- -—-

~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIFI ED
SECURITY CLASSIFICATION OF THIS PAGE(1Than D.t. Rnt.r.~~

20. (cont’d)

~
‘The method is tested on over 200 randomly generated (NP—comp lete) problems .

98.5% of the problems are solved optimally. Finally, it is noted that the
quality of the solution technique does not appear to be limited by computation
costs, but rather by the (one time) developmental cost of the interchange
computer code.

y.
~ 

4r~
~ ~~~t~~.L’I . pç~’tIO0

\~ ~~~~~~~ 
~~~~~~~\ ~~~~~~~~~~~~~~ —..

\~~

• ‘ - ‘
-

.. -

,I
~~~~~~

\ J ~~t .? 
—

\~~~±~~~~~~~~~~~

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(W ~i.n Data &it.r .d) 

-- . - -,~~~~-



T ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE OF CONTENTS

AI~STRAC’I’

SEC’I~1ONS

l i l t r o d u c t Ion 1
MU I t I ~) I t. I IlL L’r4 II lngt’s 2
A Mu I t I 1>11’ I nt t.’ reIIangt~ Met hod 6
A let-i L I’ roh I em for I xper Iment at  Ion 7
Tite Heur i s t i c s  8
Testing and Results 9

REFERENCES 17



- .- 
~~~~~~~~~~~~~ 

-,-.—-
~~~~~~~~~~~~~~~~~~ 

-
~ 

- .

Abstract

Consider a multi—machine scheduling problem in which the jobs (of unit

duration) may have non—zero release times, monotonic increasing deferral costs ,

and general precedence relationships between them. In general, efficient op—

— 
timal solution techniques do not exist for problems of this type, and , typi-

cally , realistically sized problems must be solved using heuristics. We

present an efficient method for implementing job interchange techniques for

improving heuristically derived schedules.

The method is tested on over 200 randomly generated (NP—complete) prob—

lems. 98.5% of the problems are solved optimally. Finally, it is noted that

the quality of the solution technique does not appear to be l imited by com-

putation costs, but rather by the (one time) developmental cost of the inter-

change computer code.

_ _ _ _ _ _ _  
—- - -



Introduction

Consider a multi—machine (parallel processor) scheduling problem in

which the jobs have monotonic increasing deferral costs, may be partially

ordered by a set of general precedence constraints , and may have non—zero

release times. The scheduling objective is a function of the job deferral

costs. It is assumed that jobs are scheduled for discrete periods (i.e.,

all jobs have unit processing time) and that the setup time either takes

place between periods or is included in the processing time.

This is a reasonably general problem description and includes several

problems that have been shown to be NP—complete [8]. For many problems of

this type, the best available solution procedure may be a heuristic. Often

there is room for improvement in the solutions found by these methods. The

purpose of this note is to present a methodology for improving heuristic solu-

tions to these scheduling problems. The methodology used is simply that of

interchanging jobs in the heuristically derived schedule to see if a better

schedule can be found. In theory, this could result in the evaluation of all

possible combinations of jobs in the schedule. However, it is not necessary,

typically , to evaluate all possible combinations to find the optimal schedule

(or a nearly optimal schedule), and , if one is clever, the computational effort

can be minimized.

In succeeding sections, we first define a multiple interchange method-

ology which can be used to search for improved schedules. We show how

the computational effort -for the higher order interchanges (involving several

jobs) can be reduced, and develop a general structure for an open ended inter-

change procedure. The procedure is then tested on over 200 randomly generated

problems. For the randomly generated problem two results are apparent: first,

the procedure is very effective (98.5% of the problems were solved optimally);

and second , computational effort does not appear to he t h e  l i m i t i n g  I i w t o r  to  £

the approach .

1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


Multiple Interchang~es

After creating a schedule with a heuristic , it can be beneficial to try to

improve the solution by interchanging two or more jobs. What follows is a de—

scription of the forms which interchanges may take. It is seen that

some of the forms of three and four—way interchanges may be decomposed

into lower order interchanges each of which Improve the objective function. The

mechanics of the decomposition of three—way interchanges receive closer examination.

A two—way interchange of jobs 1 and 2 in a schedule would replace job 1 on

its machine with job 2 and place job 1 on the machine formerly occupied by job 2.

An example of a two—way interchange is presented in Figure lB in which jobs 1 and

2 are interchanged .

The standard three—way interchange is demonstrated in Figure lÀ. Job 1 re-

places job 3 in period t3. Job 3 replaces job 2 in period t2 which, in turn,

replaces job 1 in period U. The only other three—way interchange (a mirror image)

occurs when job 1 replaces job 2 in period t2; job 2 replaces job 3 in period t3;

and job 3 replaces job 1 in period U.

The standard three—way interchange can be divided into four cases each of which

improve the solution . Of those four cases, three can be decomposed into two two—way

interchanges which improve the solution at each interchange. Thus, only one case

requires an actua l three—way interchange be performed to accomplish its goals.

(As will be seen later , this can result In considerable computational savings.)

Case 1 involves either a precedence constraint between jobs 2 and 3 or a higher

deferral cost for job 2 than job 3. In this case both jobs 2 and 3 have higher

costs than job 1. Therefore, the Interchange can be decomposed into the two—way

interchange of Figure 1B, followed by that of Figure 1C. Both two—way interchanges

improve the solution.

Case 2 involves no precedence constraint between jobs 2 and 3 and a higher de-

ferral cost for job 3 than job 2. Since job 3 also has a higher Coti t than job 1 , 1 114’

two—way interchange of Figure iD would be more adva n tageous an d would save the

2

- -

Time Jobs

Figure lA. Standard 3—way interchange

Time
Jobs

Figure lB. Stai~dard 3-way Interchange—first step

rip. - - — - —— ~~
. _. 2_Z z 4-- C_ t~~Z_ _ - — _

~~
._ __ __

~
_ . • - _ . — ---—.- -— -—,—— _,_ __

Time Jobs

tl

Figure 1C. Standard 3—way interchange—second step

Time Jobs

Figure 1D. Standard 2—way interchange

4

--- i~~~~~~ ~~~~~- - - -- --- - - - -~~~~~~~~~~~~--~~~~

- r
- - - -

~~~~~

inevitable interchange of jobs 2 and 3.

Case 3 involves a deferral cost for job 3 no greater than that of job 1. In

this case, the two—way interchange of Figure lB accomplishes the improvement

and saves a possible interchange of jobs 1 and 3.

Case 4 is the genuine non—decompt . able three—way interchange -of Figure lÀ.

It requires a precedence constraint between jobs 2 and 3 and a deferral cost no

higher for job 2 than for job 1, or it requires a deferral cost no higher for

jobs 2 and 3 than for job 1 wi th  the  sum of deferral costs for jobs 2 and 3

greater than for job 1. It Is this case and its mirror image which the three—

way interchange routine is programmed to detect.

Where the three—way interchange has two standard forms (including a mirror

image), the four—way interchange has five standard forms (including a mirror

image). Two of the forms, and part of a third , can be shown to decompose into

sets of two—way interchanges which improve the solution at each interchange, or

a combination of two and three—way interchanges which improve the solution at

each interchange . Clearly, this analysis could be extended to higher levels of

interchange if one was willing to evaluate the increasingly complex combinatoric

structure .

The result of all of this is that when programming the search for three, four,

or k—way interchanges that will improve the solution , many combinations can be

explicitly eliminated from considerac ion . This will reduce the computational re-

quirements to less than complete enumeration . The question is: How much?

5

— — - - —~~~~~ — —— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -— -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

A Multiple Interchange Method

It appears from the discussion of the previous section that there may be a

savings in computation time to be realized from decomposing multiple interchanges

into lower order interchanges . A logical way to implement this approac’h when the

interchange procedures have been developed up to some level k is as follows :

Step 1. Set I = 2 and make all nondecomposable i—way interchanges of

jobs which improve the solution.

Step 2. If i < k, set i = 1+1. Otherwise, stop .

Step 3. If a nondecomposable i—way interchange which would improve the

solution exists, make it and go to Step 1. Otherwise, to to

Step 2.

By the time the interchange method has been completed , there are no two—

way through k—way interchange improvements that can be made in the solution.

6

_ _ _

-~~~~~--- - - - - -~~~~~~~~~ - - ~~~~~~~~~~ . -

~1’
A Test Problem for Experimentation

In order to test the multiple interchange method , an experimental problem

was chosen . The experimental problem is a parallel processor problem with serial

precedences placed on groups of jobs. Each job I has an availability time

and a linear deferral cost c1 which differs from job to job. Lenstra [81 showed

that the problem is NP—comp lete. Elmaghraby and Sarin [3] developed bounds on a

heuristic for a relaxed version of the problem. Loveland [9] also dealt with

the problem.

Other papers deal with further relaxations of the problem in which each job

has the same availability time and there is a single machine . Horn [6] considers

the case in which the precedences are sets of arborescences (forests). Adolphson

and Hu [11 solve Horn’s problem for a single arborescence in worst case time

0(n log n) and shorten Horn ’s proof. Lawler [7] solves a problem in which the

precedences involve parallel series of jobs and realizes a worst case time of

0(n log n). Sidney [10] develops an algorithm which decomposes and solves gen—

eral, acyclic networks of jobs.

Hodgson and Loveland [4, 51 address a multi—machine problem which has similar

structure but minimizes the completion time of the latest job. Martin—Vega , and

Ratliff J2] survey parallel processor scheduling problems.

-- - -~~~~~~ -~~~~~~~~~~~~~ .-
_ ..__ : _ _ _~.__~_ . __ ~ - --

The Heuristics

In order to have an initial feasible solution as a starting point for test—

ing the multiple interchange method , two heuristic techniques are used. The two

individual heuristics analyze the strings of jobs defined by the serial precedence

constraints. A feasible substring of such a job string consists of the first avail-

able job on that string and the rest of the consecutive jobs from that string which

are available to the machines immediately succeeding that first available machine.

Each heuristic uses a form of the feasible substring.

The first heuristic, called SCHED1, schedules one job at a time. It is

based on a measure of the potential penalty of not scheduling a given job on the

first available machine. The calculation is made for the first job, if available,

of each job string. The potential penalty is the sum of the deferral costs of

those jobs on the feasible substring which would be forced into a later period ,

if the first available job is scheduled on the second available machine. The

job having the greatest potential penalty is scheduled on the first available

machine . The analysis is then repeated for each job string , until all the jobs

are scheduled.

The second heur is t ic, called SCHED2, is an adaptation of Sidney ’s algorithm

[10] for the single—machine problem in which all jobs have the same availability

time . This heuristic schedules complete substrings of jobs at a time . It con-

siders each substring of every feasible substring (i.e., the first job, the first

and second jobs, etc.). Since each job has a unit processing time, the figure

of interest is the ratio of the sum of the deferral costs of the job in the sub—

string to the number of jobs in the substring. The substring having the highest

ratio is scheduled. The analysis is then repeated for all the substrings of the

feasible substrings , until all the jobs are scheduled.

8

—~~~~~~~~ ~~

- .- -

Testing and Results

To evaluate the efficiency and the potential contribution towards optimality

in the interchange method , over 200 test problems were randomly generated. Avail-

ability times were randomly spaced over the first 25 periods. The problems were

divided into two categories: in the first each problem had two machines and 30

jobs; and the second category had four machines and 50 jobs per problem (the

number of jobs used was limited by the computational limits of an enumeration al—

gorithm which was used to find optimal solutions to the test problems).

The heuristics were applied to each test problem to provide starting points

for the interchange method. Two, three, and four—way interchanges were used on

each solution in order to determine the relative effectiveness of each. The

statistics gathered were the percent of problems solved optimally , the average per—

cent error for all problems, the maximum percent error, and the average execution

time. (Note that the execution time is in units of 10 2
seconds).

Table 1 contains the results of the two—machine problems. Table 2 contains

the corresponding results of the four—machine problems. The interchange method

shows a steady improvement in accuracy for the individual heuristics as the level

of inte’~changes used increases. Figures 2 and 3 are based on the combined data

from the two and four—machine problems. Both of these figures appear to m di-

cate that regardless of its starting point the interchange method rapidly (in

terms of level of interchange) becomes quite accurate . In addition , by taking

the best solution for each problem the joint results also show an improvement.

(In other words, using several starting points for the multiple interchange pro—

cedure helps in getting around local minima).

Figure 4 demonstrates that the execution time appears to be no worse than

a linear function of the level of interchange . Figure 5 shows -iat the develop-

mental cost of the interchange method (as measured by the number of statements

9

- - - —-- - - .—-

~

-— .- ----- —~~~~~~~~~~~~~ -

V

-~~ -l
z . . -

~~0 it’t (‘4
z -~~ Co

(‘4
>1 0
4:

00
‘.0(0 0

_ _ _ _
-.4

—
-~~

0 >4 0” .-.4 -~
‘~~ -~ 0” 0 0

00 0 O~Co Q~
.0 —

o r— 00
>4 0’. p.4 0’o .* a c

Co 00 0 0’.
.
~
. 0’ _____ ____

‘0
0
0”

14~ 0’ -~~ (“1

4) 0 ‘-4
S Z -.~~ CO
‘.4 _____ _____ _____ _____

.5o 0’.. 0
>4 0’. C.-

4: 0 (0
(‘4

(‘1 (‘4 ,-.4
00 (0

_____00 —
S 0’>4 C’-. 00

~~
‘-9 -~~ a

.5 -~ 0
Co

4) (0
1-4 >4 .~~ 1-4 0’.
.0 4: 0’ r .4 0 (‘4o . . . “I14 N- 0 0’0. 0’.
CO — — _ _ _-

U’,
0’ (‘4

N. 00a 0 . .
o 0 • CO
14 Z 0 00 00
‘4-4

_____ -

S 1-4o >4 ‘.0 0
4: 0’ 00 N- ‘.01-4 . . . 00

S i—4 0’. Co U’, CO
~1.4 (‘4 ‘.0 -e
i-I — _ _ _ _ _ _ _ _ _ -_ _ _

12] Il’,
U’, (‘1U 4: Co C— (0 0

0’ 0 (‘4 -*(0 00
I-. _____ _____ _____ _____

004) 0’
‘-4 00 .-i 00
.0 4: 00 ,-4 0 ‘.0
(~ . . . U’,F-’ ‘.0 0 0’,

~~
. o~

S
0
w w

‘-4 U p-I
0 1~~ t0

00 ‘4-4 11 4)
U 5 0 >‘-. 0 . 1 4
‘.4 ~ U~~,-4 O Q ~i-i a 4) ’~-~~H El.’ ~~~~~~S U 00 4)
‘.4 1’ W~~- 4 E ~~~1i ’-4 E Q j I.4 (~~~~~N14 4) U . 0 ’.4 14 0 .0 .rl C) O 4’4
5 iJ 1 40 i . ’ 0) 1 4 0)C 14 14 0) 1 4 0
4) 0) 1 4 ~~~W 1 4
~ — 0 .0 . ~~~~~4 1~

10

~

-- . - - - ~~ - . - - -

~

— 1
0’ 0’ 0’ Iz • . . I

0 CO (‘4
CO

_ _ _

>4 (0
4: 0 I
3 (‘4 N- a’ I

>4 (‘..1 0
• I

Z 00 _ _ _
(0 _ _ _

— — Co
0 0’ -~0’ 0’ N-

4: N- (‘4 ‘0 C’-)

00 0 -~ -.1
(0 00

S
.0 ‘0
0 >4 00 00

~1~~) 4: -4 0’ Ui
3 Co 0 N- U’,

LI’, -~~ o .-4 ‘-I
0’ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

‘0 — —C
Co I

0’ 0 0’ I
S z . . . I
0) 0 CO ‘.0 (‘4a CO -.3

_ _ _

‘.4
.5o >4
5 4: CO I

3 ,-4 0 0’

-3 (‘.4 c-.a 0’. -.4 -e
C’- CO _____

00 — —

S 0
‘.4 >4 ‘.0 0

U 4: C’-) N- 0’ ‘.05 00 3 •
.5 ii’, 0 -e

CO 00 Co
S _ _ _ _a 00
41 00 CO

‘0 N- (‘4
.0 4: 0 ~ 4 N-
0 3 .
14 ‘.0 0 -e
0. -3 0’
Il’,
-4
-.4 Ui • I

0 • 0’ Ia o • -~ N-
0 Z 0 0’ (0
$4 _ _ _ _

%4.4

S >4 CO
U 4: N- 0’. ‘.0
‘.4 3 . . .
4.’ p-I if’, 00 CO I
5 (‘.4 Ui N

-

•1-4 —
00 0

S >4 ‘0 —1
1.’ U 4: .-I -.3 -.0 N-
00 00 3 . . . ‘.0

‘.0 Co ‘0
(0 ‘.0 (‘4

(‘4
— — —

00
-3

0) >4 CO Co
1.4 4: 0 LI’, -~ 00
.~~ 3

-3 0’- 1-4

.5 4.’
0) 5 0)

41 ,-I p.4
-.4 0 .-I 41,0

4) 0 1 4 4 :
00 ‘e4 00 4)

U 5 0 >-. 0 . 1 4
.1.4 5 S- . 4 O S 00
1.I .0 4J ~~~~~ 4 0) ’ 4 I E 0 4 . ’
S U 5 0) 5 00 4) 00
‘4 14 W - 4 8 5 1 4 . - I 0 0) 1 4 5
14 0) U . 0 ’.I 1 40 . 0 ‘ . 4 00 14
5 l-~ 1 4 0 4 . ’ 0) 1 4 0 ~~~1 4 $ 4 01 14 0
4) 5 0) 1 4 0 . ~~~1 4 M 5 4) 1 4 > 0 - 4
~~ ‘-4 0 . 0 .0 4 : 0 0 0 . Z 0 .W 4 : I’~~~-’

11

- -~~~~~~~

_ _

J07
~~~~~~~~~~~~~~~~~
.7

// / SC1iED

50

40

30

20

10

I I

NONE 2 WAY 3 WAY 4 WAY

Level of Interchan ge

Figure 2. Graph of level of multiple interchange versus

percent of problems solved optimally for combined

data

12



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

10

9

8Average
Percent

Error ‘

\ SCHED
6

5

4

3 SCHED 2

2

NONE 2 WAY 3 WAY 4 WAY

Level of Interchange

Figure 3. Graph of level of multiple interchange versus average

percen t error for all problems for comb ined data

13



_ _  

_ _ _ _  --- -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
~~~~
- -

~~~
—-.

1.5 - :2’
1.0

Execution
Time 

-2
(sec. xlO )

0.5 ‘7
- NONE 2 WAY 3 WAY 4 WAY

- Level of Interchange

Figure 4. Graph of heuristic execution time versus

level of interchan ge

14

.‘tl 
~~~~~~~ -- - - - --- --~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r - - - ---- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _

400

300

Number of 200
FORTRAN

Statements

100 

/

~/

NONE 2 WAY 3 WAY 4 WAY

Level of Interchange

Figure 5. Graph of FORTRAN statements versus level of interchange

15



- - -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

in the FORTRAN code) appears to be an increasing convex function of the level of

interchange. While the form of Figure 5 is certainly to be expected , Figure 4

is not. The indication is that the quality of the solution may be more depend-

ent on developmental effort (in terms of coding increasingly complex higher order

interchanges) than on computational costs. If so, this may point the way for

further work in the development of a general structure for interchange methods,

and for further work in the development of bounds on heuristic solutions which

have undergone k—way interchange. (Note that the FORTRAN code can be obtained

from the authors).

16

*



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~~~~~~~~~~~ - - - - - ~~- ~~~~~-

Re ferences

I . Ado pt t so t~ , 9. and flu, 1. C. , “Opt m l  Linexi r Ord~ ring, ’ SIAM 3 . Appi . Math.
2S (1Q73) 

* 
4(~~—623.

2. Martin—Vega , L., and Ratliff , H. 9., “Scheduling Rules For Parallel Processors”
ATIE Transactions, Vol. 9, No. 4, (1977), 330—337.

3. Elmaghraby, S. E. and Sarin, S. C., “On Scheduling Precedence—Related Jobs
on Parallel Machines: Bounds on the Performance of a Heuristic,” North
Carolina State University , Research Report No. 117, Raleigh, N.C. (1977).

4. Hodgson, T. J. and Loveland, C. S., “A Partial Lagrange Multiplier Approach
to a Resource Constrained C.P.M. Problem,” University of Florida, Industrial
and Systems Engineering Department, Research Report 76—11 , Gainesville , Fla.
(1976).

5. Hodgson, T. J. and Loveland, C. S., “An Analytic Approach for a Capacitated
C.P.M. Problem ,” University of Florida, Industrial and Systems Engineering
Department , Research Report 76—12, Gainesville , Fla. (1976).

6. Horn, W. A., “Single—Machine Job Sequencing with Treelike Precedence Order—
ing and Linear Delay Penalties,” SIAN J. Appi. Math., Vol. 23 (1972), 189—
202,.

7. Lawler, E. L., “Optimal Sequencing of Jobs Subject to Series Parallel Prede—
dence Constraints,” the Mathematical Centre, Amsterdam, Netherlands (1975).

8. Lenstra, J. K., “Sequencing by Enumerative Methods,” Mathematical Centre,
Amsterdam, Netherlands (1976).

9. Loveland, C. S., “Solution Approaches to a Multi—Stage , Multi—Machine , Multi—
Product Production Scheduling Problem,” University of Florida, Industrial
and Systems Engineering Department, Ph.D. Dissertation , Gainesville, Fla.
(1978).

10. Sidney, J. B., “Decomposition Algorithms for Single Machine Sequencing
with Precedence Relations and Deferral Costs,” Operations Research, Vol. 23,
(1975) , 283—298.

1 ’

I-
17 


