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FOREWORD

This report documents an analytical effort for the estimate of the effect
of wall heating on the transition location of the boundary layer in a tube.
This effort complements the DARPA-sponsored flow-tube experiment being
conducted at the Colorado State University. The findings reported herein
clearly identify several critical aspects of the interpretation of the
experimental results acquired in the flow-tube facility. Several rather
favorable comparisons, in contrast to the apparent discrepancies cited in
the past, with the test data are obtained when the present findings are
taken into consideration.

This work was sponsored by DARPA/TTO under ONR Contract N000O14-77-C-0005
(P0002).
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INTRODUCTION

In recent years, several experimental efforts have focused on the use
of surface heating as a means of stabilizing the laminar boundary layer
adjoining a body moving in water. In order to obtain data in a more
controlled, s>teady-state environment, Autonetics/Rockwell International
has initiated a series of tests at the Colorado State University flow-
tube facility. The primary results obtained from this series of ex-
periments are summarized in Figure 1 (Barker, 1977). A substantial
increase in the transition Reynolds number is evident when the surface
overheat, AT, is increased from 0 to 5°C. Above 5°C, the effect

of heating appears to be less consequential and the transition Reynolds
number approaches an apparent upper limit of Rt = 42x106. The theor-
etical predictions of Wazzan et al (1968, 1970) suggested that transi-
tion Reynolds numbers of up to 200x166 may be possible in a zero
pressure gradient boundary layer with surface heating. Dashed lines

in Figure 1 show the results from those predictions for a zero pressure
gradient boundary layer (8=0) and for a boundary layer subjected to a
favorable pressure gradient (B=0.07). The rather significant disparity
between the predictions and the experimental results has been the
primary cause for numerous experimental modifications.

In a recent study, Tzou et al (1977) indicated that the noted discrepancy
between the theoretical predictions and the experimental results might be
attributable to the geometric differences between a flow tube and a flat
plate. These conjectures, however, must be further substantiated by
comparison of the experimental findings with more accurate analytical
predictions of the transition location in a flow tube. The main features
unique to a flow-tube system, such as the effects of transverse surface
curvature, upstream contraction section and boundary-layer displacement
thickness, should be included in these "exact" computations. These main
features unique to a flow-tube are discussed in Section 2. Results of
the calculations for a heated tube with an unheated extension, using this
improved theoretical prediction method, are presented in Section 3. A
summary and several conclusions based on the present results are in
Section 4.
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2, MAIN FEATURES UNIQUE TO A FLOW TUBE

A complete simuiation of a hydrodynamic phenomenon requires that the two
systems be geometrically, kinematically, and dynamically similar. Because
of physical constraints, it is impossible to achieve an exact simulation

P of the flow field around a given external axisymmetric body with an internal i
flow-tube. In order to be able to utilize the experimental results obtained
from a flow tube, a thorough understanding of the flow characteristics
within a tube is essential. Several key elements unique to a flow-tube
system have been identified (Tzou et. al., 1977). These elements need to

be included for more accurate computations and they are briefly discussed
below.

2.1 Transverse Surface Curvature |

Generally, the effect of transverse surface curvature is important only if

the boundary layer thickness, &, is not negligibly small as compared to the body
radius Py Furthermore, the effect is different for internal and external

flows as is discussed below.

In the following sketch "r" represents the distance measured from the body
axis and is related to "ry", the local radius of the body surface (i.e.,

y = 0) through r = s + y cosa for an external flow and r = ro - ¥ cosa for
an internal flow, where o is the angle that the surface makes with the body

axis. A transverse curvature term, t = 3LE¥EL55 , 1S introduced. Then, for

an external flow: o

i o5
r
0

T &4 and (1)

for an internal flow:
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In order to investigate the quantitative effect of this t term in the
boundary-layer equations for an internal flow, the TAPS Code (Gentry & Wazzan,
1976) is modified to include the effect. The effect of transverse curvature

on the evolution of a boundary-layer is illustrated by considering the Rockwell/
Autonetics flow-tube which is circular in cross section with a diameter of

10.16 cm and is 6.10 m long. The flow conditions used for *his demonstration are:

6.10m/sec

=
n

freestream speed

10%¢C

freestream temperature T_

wall overheat B = Tl =5.56°C.

In order to isolate the effects of the transverse surface curvature, the
pressure coefficient, Cp(x), is assumed to be zero for both the internal
flow as well as the equivalent external flow. The computed boundary-layer

characteristics are presented in the following table.

X(m) & (mm) 6 (mm) H
Internal Flow 6.10 5.6541] 0.6909 Z2eie
External Flow 6.10 5.6616 0.7874 2.40




Note that the effect of flow geometry on the boundary-layer thickness is
quite small even when the ratio of the boundary-layer thickness, &, to
the radius of the tube, A is about 0.11 at this location. The effect on

the momentum thickness, €, and the shape factor, H, is, however, significant.
It is also interesting to reveal that the transverse surface curvature causes

an internal flow to have a higher value of shape factor (H = 2.72) than its
external flow counterpart (H = 2.40).

2.2 Upstream Contraction Section

In the cited flow-tube experiments, a contraction section exists upstream

of the flow tube in order to reduce the 60.96cm diameter supply pipe to

the 10.16cm diameter test section. As shown in Figure 2, the boundary-layer
displacement thickness in the contraction section varies with the flow
conditions. Therefore, for an accurate calculation of the flow characteris-
tics in the tube, calculations should begin upstream of the contraction
section.

2.3 Boundary Layer Displacement Thickness

Because of the physical constraint of the boundaries in an internal flow, a
much stronger effect on the freestream flow is expected than for its external
flow counterpart. Since the flow rate Q is constant along the flow tube but
the effective cross-sectional area, mr? = n(ro-ﬁ*)z, decreases in the down-
stream direction (see sketch below) as a result of boundary-layer growth, the
"freestream" speed must change according to:
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U r ¢
I (r(-)d*) : (3)

We note that, for the present purposes, simple one-dimensional flow relations
are used. The effect of this speed charnige on the pressure coefficient, Cp,
can be expressed as

U 2 r 4
1 f-CF 5 | < (4)
¢, =1 (Uo) 1 [ro?G*J :

Figure 3 shows the variation of Cp along the Autonetics flow-tube for two

different conditions. Without applying the displacement thickness correction
on Cp, it is customary to assume Cp = 0 throughout the flow-tube. With such

a correction, Cp at the end of a 6.10m flow tube is -0.13 when U0 = 6.7Im/sec,
AT = 16.67°C and C, s -0.27 when U, = 1.83n/sec, AT = 0. It is significant
to note that the general assumption of either a zero pressure gradient or

a constant pressure gradient flow within the tube is definitely incorrect.

Since the displacement thickness, &%, is a consequence of the particular
pressure distribution in the flow-tube, an accurate estimation of &* can be
obtained only by an iterative procedure. To initiate such an iterative
calculation, it is assumed that &* can be first estimated by (See Figure 4)

(S* = c M (5)
Uo

where Xo is the length of the contraction section, A is the distance from

a virtual origin to the beginning of the flow tube test section. It should
be noted that this simplification was only used to start the computation and
that the actual calculation of &*(X) was used for subsequent iterations.
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A flow diagram showing the iterative procedure to account for &* correction

on Cp in the boundary layer flow calculation and the subsequent stability
analysis is described below in conjunction with Figure 5. Note that all three
features discussed in the section are included in these computations.

1. The computation requires input data such as the tube geometry
X, ro and the flow conditions Uy, AT, Te and v.

2. Use equation (5) to calculate the initial &* value by assuming ;
C1=1.5, X,=1.37m and A=0.27m

v(X-Xg*A)

G?O) R Uo

3. Use equation (4) to obtain the corresponding variation of Cp
along the flow tube

e 4 *
LN : -[ ro = 8o }

4. Perform Boundary layer flow calculation to obtain calculated 5?1)

; 5. Compute new Cp(i+1) from the calculated 5?1)

c =1 i ]4

6. Calculate the convergence parameter e,

gy [ Co(i+1) - Sp(h) ]
1

Co(i+1)




=

(a) If the iteration i < 3 or the convergence parameter €5 > 0.005,
the procedure return to step (4) for the next iteration (i+1).

(b) If i >3 and €5 < 0.005 the calculation proceed to the next
step.

Perform stability analysis based on the results of boundary layer
flow calculation from last iteration.

Determine the Loge (A/Ao) for the corresponding flow conditions
specified in step (1) from the spatial amplification factor map.
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<>

Input Geometry x , r, &
Flow Conditions Uy, AT, Tw, Vv

‘5’(0 )=C1 / \)( X- X0+A)/Uo

Cp=1.5, X,=1.37m, A=0.27m

Cp(ay1- [ro/ (ro-60))]*

l
DO THRU o
<:::; for i Iter.
I

TAPS Boundary Layer §Ij)

Cogian) ™I [ro/ (ro~o))'

€= (Co(iv1)Co(3) ) Cpis)|

i<3 or €;>0.005

i=i+]

€§<0.005

TAPS Stability Analysis

find Amp. Factor
Logy (A/Aq)

E1d. 5.

A Flow Diagram for

the Boundary Layer

and the Stability
Calculations Including
&* Correction on Cp.
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3. RESULTS - A HEATED FLOW TUBE WITH AN UNHEATED EXTENSION

A11 the effects discussed in Section 2 have been incorporated

into the boundary-layer component of the TAPS Code to compare with
the experimental results obtained with one unheated extension

tube and a laminar flow nozzle that are shown in Figure 6. Four of
these "best" experimental flow conditions (solid circles in

Figure 6) are selected for further analytical study.

Flow Tube Inlet : 1.37m
Heated Tube : 6.10m
Unheated Tube : 1.22m

Ambient Temperature : T, = 10°C

AT(oC) Rt (Figure 6) Uo (m/sec)
0.00 12.0 x 105 2.06
2.78 25.0 x 10° 4.29
5.56 40.0 x 10° 6.86
8.33 40.3 x 10° 6.89

Following the procedure described in the flow diagram (Figure 5),
three iterations were required to satisfy the convergence
criterion of €, < 0.005 for the four selective cases. As shown
in Table 1 and also in Figures 7 and 8, the iteration of the
calculation converge very rapidly. Therefore, the initial selec-

tion of the coefficients C;, A and X, in equation 5 is not so
critical in the computation. In this study, same coefficients
C; = 1.50, A = 0.27m and Xo = 1.37m are used. for initiating
the calculations.

Variations of boundary-layer characteristics in the flow tube . 4

are illustrated in Figures 9 through 11.
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Figure 9 shows the variation of the pressure gradient parameter B

(defined as g = %E_%gg , where £ is the transformed distance parameter,
see Gentry & wazzgn, 1976) in the flow tube for various operating con-
ditions. We note that the computed values of g8 depend strongly on the

flow speed and increase considerably in the downstream direction. The
flow in the tube is neither a zero pressure gradient flow (B = 0) nor
a constant pressure gradient parameter flow. Hence analytical results
based on either of those assumptions would not be strictly legitimate.
It is also noted that parameter B has a sudden jump at the joint of
heated and unheated sections.

Figure 10 shows the variations of shape factor H (H = 6*/8) in the flow
tube. In the cases of heated flow conditions (AT = 2.78°C and

AT = 8.33°C), the shape factors increase considerably in the unheated
extension tube, indicating the boundary-layer has become more unstable.

Figure 11 shows the variations of the displacement thickness in the
flow tube for various flow conditions. As can be seen in the figure,

a lower flow velocity has a higher displacement thickness and, in turn,
has a much larger pressure gradient parameter B.

The boundary-layer stability analyses have been performed for the
selected flow conditions. The computed spatial amplification factors
for various disturbance frequencies are shown in Figures 12 to 15. A
summary of the results is presented in Table 2.

At the experimental transition location, end of the flow tube with one

extension, the corresponding amplification factors vary from en'6 to

815.8 14.0-

with a mean value of e A11 of these amplification factors

are much higher than the traditional "eg" criterion which was proposed
by Smith (Jaffe, 1969).
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TABLE 2

Amplification Factors At The End Of One Extension Tube

. Non-Dimensional AT=0°C AT=2.78°C AT=5.56°C AT=8.339C
Frequency
w x 10° Uy=2.06m/sec | U,=4.29m/sec | U,=6.86m/sec | U,=6.89m/sec
2.25 7.63
2.00 8.50 f
1.75 9.41 |
1.50 10.83 6.43 ,
1.25 * 12.91 7.70 3.11 0.07 f
1.00 11.08 9.50 4,37 0.49
0.90 9.14 10.87 5.29 1.00
| 0.80 6.76 12.14 6.05 1.51
0.70 4.20 * 15.76 7.31 2.21
0.60 15.37 9.04 3.45 3
0.50 11.77 15.68 10.79
| 0.40 6.28 * 15.73 * 11.60
| 0.30 1.23 8.91 6.37
0.20 1.32

* The maximum value of the Amplification Factor.
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In an attempt to establish the "en" criterion for the flow tube system,
another set of the analytical calculation has been performed for flow
conditions AT = 0°C to 16.67°C and Ug = 1.83 m/sec to 6.71 m/sec.

The computed spatial amplification factors for boundary-layer disturbances
are shown in Figures 16 to 22. Three different criteria (namely, ampli-
fication ratios of eg, ell, and e14) have been used to estimate where the

boundary layer would undergo transition. A summary of these results is

presented in Figure 23.

It is noted that the experimentally quoted transition Reynolds number is
based on the assumption that the boundary layer begins at a virtual origin
30.5 cm upstream of the test section. In the present study, a more real-
istic assumption is made in that the boundary layer is assumed to begin

at the upstream side of the contraction section. Therefore, the experi-
mental data in Figure 23 have been corrected from those shown in Figure 1

by this difference in origin in order to compare with the analytical results.

In general, the analytical curves predict the same trend as the experimental
data. For surface overheats, AT, less than 79C, the e14 curve appears to
have a better agreement with the experimental data which leads to the same
conclusion as the previous analytical results. Since the increases in
transition Reynold's number in this flow tube facility have been achieved by

increasing the flow velocity while the basic geometrical parameters of the

facility remain the same, the limitation of the "maximum" achievable Reynold's
number in the flow tube may also be a result of increasing freestream distur-
bance level as the flow velocity increases (a unit Reynold's number effect).
This conjecture needs to be further substantiated or reputed in the future.

It is also of interest to note that the unstable range of Tollmien-Schlichting
waves with the flow-tube boundary layer is in the low frequency region, ranging
from 5Hz to 25Hz.
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The dependence of the transition Reynolds number at large surface overheat
may be better understood by a close examination of the spatial amplification
results for various surface overheat conditions (Figure 16 to 22). These
results show that the contribution to the amplification factor in the unheated
section becomes more important as AT increases. Based on the e]4 criterion,
the percentage contribution from both the heated and unheated portions of the
flow tube are presented in the following table.

Surface Percentage Percentage
Overheat Amplification from Amplification from
aT (%) Heated Tube Unheated Tube
0.00 74 26

2.78 66 34

5.56 64 36

8.33 34 66

11.11 9 91

13.89 0 100

16.67 0 100

We note that the effectiveness of surface heating reduces to zero beyond 12°%.
To illustrate the improvement in transition Reynolds number which might be
realized if the extension tube were heated, calculations were performed by
assuming the same surface overheat in the extension tube. The computed
amplification ratios for AT = 5.56°C and AT = 8.33°C are shown in Figures 24
and 25, respectively. As shown in the table below, at the end of the exten-
sion tube, as much as a 45% decrease in amplification factor may have been
achieved when AT = 8.33°C. Therefore, a significant improvement of the ex-
perimental performance in the tube test may be expected by heating the
extension tube.
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At End of One Extension Tube
X/D = 85.5
Surface Freestream
Overheat Speed Loge(A/Ao) with Loge(A/Ao) with
AT (°C) Uo(m/sec) Unheated Ext. Heated Ext.
Tube Tube
5.56 5.80 14.2 10.8
8.33 6.41 10.8 5.9
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4.  SUMMARY AND CONCLUSIONS

This report documents a complementary analytical study to the Colorado
flow-tube experiment. The main conclusions are:

] An improved analytical method for analyzing boundary-layer transition
in the flow tube has been developed. The method includes the effects
of transverse curvature and upstream contraction on the boundary-layer
development, coupled with an iterative technique to account for the

§ displacement thickness correction to the pressure distribution in the

flow tube.

{ 0 A series of calculations has been performed to simulate the flow-tube
experiment, a heated test section with one unheated section. At the
experimental transition location, the computed amplification factors
vary from eu'6 to els'8 with a mean value of e14'0 which is much higher

than the traditional "e9" criterion.

0 Based on the "el4" criterion, reasonably favorable comparisons with the
experimental results are obtained with this more accurate computation
scheme. The calculations provide the explanation, at least partially,
of the apparent reduced effectiveness of surface heating at large AT. §
The explanation rests upon the role of the unheated section and the
effects unique to a tube boundary layer.

0 Further calculations indicate that a significant improvement of the tube
performance may be obtained by heating of the extension tube. These re-
sults, however, do not explain the experimental findings of Barker. Bear
in mind that this report only covers the analytical study dealing with main
features unique to a flow tube. Several other features which might limit
the transition Reynold's number in a flow tube, such as the effects of free
stream turbulence, unsteadiness of the mean flow, buoyancy forces, surface
roughness, surface waviness, suspended particulate, or the influence of

downstream exit conditions are not included in this study.
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