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I.  INTRODUCTION 

For many years computer specialists have been trying to model 
physical phenomena by using hydrodynamic computer codes. One such 
phenomenon is the shaped charge liner collapse. This report is a 
comparison between -a hydrodynamic computer code and experimental 
results of this phenomenon. 

The hydrodynamic computer code used in this comparison is the 
BRLSC (Ballistic Research Laboratory Shaped Charge) code1. This code, 

a modified version of the HELP code2, is Eulerian formulated; that is, 
a computational grid or coordinate system is fixed in the region of 
interest, and the flow variables are calculated for each cell in the 
grid as the specified material moves through the cells. This code was 
developed specifically for the solution of the shaped charge problem 
which is two-dimensional, unsteady, compressible flow. The BRLSC code 
was developed by System, Science, and Software, Inc. under contract 
with the Ballistic Research Laboratory (BRL). 

The experimental results are from two shaped charge systems. The 
first system, refered to as the '^Smm shaped charge or 43nim cone di- 
ameter", is a hollow, conical, copper liner, driven by a right circular 
cylinder of bare composition B explosive. The second system refered to 
as the "105mm shaped charge" is also a hollow, conical copper liner, 
driven by an unconfined, right circular cylinder of composition B 
explosive. 

The comparisons will consist of various experimental results 
(such as early-time flash radiographs of the liner collapse, jet tip 
velocity, jet and collapse velocity distributions, and jet density 
and temperature measurements), and their relationship to theoretical 
computed data presented in graphical form. Another series of 
comparisons will be presented from a calculated parametric study con- 
cerned with the variations in the equations of state of both liner and 
explosive. A detailed analysis of the calculated results will also 
be presented. 

The objective of this report is to present results which will show 
the warhead designer the accuracy with which the BRLSC code can predict 
the liner collapse and jet formation process. 

^■M.   L.   Gittings}   "BRLSC: An Advanced Eulerian Code for Predicting 
Shaped Charges3   Volume I3" Ballistic Research Laboratories Contract 
Report No.   279,  December 1975.     (AD M022962). 

2L. J. Hageman and J.  M.   Walsh3   "HELP, A Multi-material Eulerian 
Program for Compressible Fluid and Elastic-Plastic Flows in Two 
Space Dimensions and Time,   Volume I,   "Ballistic Research Laboratories 
Contract Report No.   39,  May 1971.     (AD #726459). 



II.  BRLSC CODE DESCRIPTION 

BRLSC is a FORTRAN code which has evolved from the OIL3 hydrodynamic 
code and developed over a 15 year period. 

The system of partial differential equations which is solved by the 
code consists of the balance equations of mass, momentum, and energy 
written with respect to a coordinate system fixed in space (Eulerian), 
These equations along with an equation of state and a stress - strain 
relationship are sufficient for the numerical solution of the detonation 
of high explosive, shaped charge liner collapse, and jet formation. 

BRLSC code is time dependent in two space dimensions with an option 
for either plane (x,y) coordinates or axisymmetric cylindrical Cr,z) 
coordinates. The time increment is based on the Courant stability 
condition and the maximum sound speed, plus the particle velocity in 
the grid. The resulting numerical technique is an explicit, conditionally 
stable, finite-difference system which is used to integrate the governing 
equations. 

Solutions to these shaped charge problems involve the motion of a 
metal liner, which is accelerated by the pressure loading from a 
detonating explosive. The gas-metal interface is separated 
by lines joining massless tracer particles.  These particles move 
across the grid and locate the interfaces and free surfaces of each 
material. Consequently, a Lagrangian effect is introduced into the 
treatment of moving surfaces. 

The BRLSC code, using the Von Mises yield condition, has as an 
option the treatment of material as being elastic - perfectly plastic. 
But for the results reported herein, the liner material is treated as 
being purely hydrodynamic. 

Plotting programs have been developed by the author at BRL 
to display the voluminous data generated during a computer run. 
In those figures, as indicated, the tracer particles were used to 
outline the interfaces and free surfaces of the different materials. 
Since the problems reported here are axisymmetric, only half of the 
various fields are presented. 

3f/o E.  Johnson^   "OIL3 A Continous Ttio-Dimens'tonat Eulerian Hydro- 
dynamic Code"j  Gulf General Atomic,  G AMD-S580 Revised,  January 
1965. 



III.  COMPARISON BETWEEN BRLSC CODE RESULTS AND 43MM SHAPED CHARGE 
EARLY-TIME FLASH RADIOGRAPHS 

Figure I is a line drawing o£ the 43mm shaped charge, that was 
used in this comparison.  Figure 2 shows the early-time-flash radio- 
graphs of the liner collapse of this charge. These radiographs were 
made by Boyd Taylor of the Ballistics Research Laboratory (BRL).1* It 
begins with the arrival of the detonation wave at the apex of the 
cone, and continues at 2.4, 3.8, 5.6, 6.5, 7.6, 14.6 us. A final 
exposure was made at 20 ps. The simulated shaped-charge liner 
collapse sequence is depicted in Figure 3 at five discrete times. 
These five times agree with those of the radiograph at 3.8, 5.6, 
6.5, 7«6 and 9.6 ps. However, the code calculations do not include 
all of the time sequences from the flash radiographs shown in Figure 2. 
The first radiograph, corresponding to 2.4 ys, is not presented 
because the jet is not clearly defined in the picture. Also, those 
radiographs whose times are greater than 9.7 ys were excluded because 
the computer run time became excessive. The simulated collapse 
sequence agrees very well with those of the flash radiographs with 
which we can make comparisons. 

Figure 4 is a calculational plot of the BRLSC code's results of 
the velocity difference between the tip of the jet and the tail of 
the slug, as a function of time after the detonation wave hits the 
apex of the cone. This difference is depicted by the broken line, 
and hereafter will be referred to as "relative jet tip velocity." 
This figure demonstrates that after approximately 11.5 us, the jet 
tip reaches a constant relative velocity of 6.54ram/us. 

Figure 5 shows a comparison between the calculations of the BRLSC 
code in Figure 4, and the measured distances between the jet tip and 
the slug apex as a function of time, as depicted in Figure 2„ 

The slope of the line passing through the flash-radiograph data 
points is a'constant, 6.54. This slope is the relative velocity of 
the jet tip with respect to the slug's tail, 6.54mm/us. This is in 
agreement with the calculations of the BRLSC code depicted in 
Figure 4. 

However, this graph shows a difference of approximately 1 \is  in 
the movement of the jet tip, between the BRLSC code's results and the 
measurements from the radiograph. This difference is a result of 
either a timing problem in the recording instruments, or numerical 
problems regarding equations-of-state for the explosive, the metal, 
or both. Later in this report, a study of equations-of-state will 
be presented.  

^Pri-vate Communiaations from B,  Taytov,  Battistia Research Laboratory^ 
Aberdeen Proving Grounds^ Maryland. 



COMPOSITION B 

COPPER LINER 

DIMENSIONS 
A « 43 mm 
B > 46 BOB 
C > 73 mm 
D ■ 1.25 mm 

Figure 1. The line drawing of the 43min shaped charge 
dimensions are shown in the table. 

Pertinent 
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TIME   AFTER   DET   WAVE   HITS   APEX^s) 

Figure 4.  BRLSC code results from 43mm shaped charge calculations, 
The relative velocity of the jet tip with respect to 
tail (slug) is shown as the dashed line. 
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Setting aside the small difference previously mentioned, one can 
conclude that the simulation is accurate on the basis of the 
aforementioned comparisons. 

IV.  DETAILED ANALYSIS OF THE CALCULATIONS FROM THE 43MM SHAPED 
CHARGE 

The first graph in a detailed analysis of the 43mm shaped charge 
calculations. Figure 6, illustrates the axial component of velocity 
for liner material along the axis of symmetry as a function of axial 
distance. The time intervals of 8, 10, and 15\xs  are presented. The 
so called "inverse velocity gradient" in the jet is illustrated at the 
time intervals of 8 and 10 ys. This phenomena has been observed5 

and calculated5 earlier by using a one-dimensional model of the 
shaped charge problem. This inverse velocity gradient in the jet is 
finally damped out by 13ps, and the jet tip is equilibrated to a 
velocity of approximately 6.8mm/vis. 

The next graph in the analysis. Figure 7, contains three relations 
as functions of the axial position, for liner material, along the 
axis of symmetry. These three relations are ratios of density, p/p ; 

specific internal energy, I/I ; and pressure, P/P . Where the 

following are the normalizing units used in the above relationships 
as well as those in the remainder of this report unless otherwise 
stated: 

a. po = 8,9 Mg/m 

4 
b, I = 10 joules/g 

Co  P = 1.0 Mbar. 
o 

In the vicinity of the jet tip, the density. Figure 7a, is 50% of the 
liner's initial density.  The sublimation energy level, (I on the 

graph) Figure 7b, indicates that the calculated specific internal 
energy of the same region, i.e., jet tip, is six times greater. Also, 
eighty-three per cent of the liner material along the axis of symmetry 
has specific internal energy greater than I .  This indicates the liner 

material has undergone vaporization, i.e. the expanded hot state, when 
p/p < 1 and I>I'  and transition state, when p/p < 1 and I < I< I' . 
OS 0 S b 

rfl, DiPersio and J.  Simon^   "An experimental Method of Obtaining 
Cottapse  Vetooity of the Inner Walls of a Liner Shaped Charge Liner," 
Ballistic Research Laboratory Memorandum Report No.   1696, Aberdeen 
Proving Ground, MD,  Sep 1966.    CAD #478326) 

6A.  Kiwan and H.  Wisniewski,   "Theory and Computations of Collapse and 
Jet Velocities of Metallic Shaped Charge Liners," Ballistic Research 
Laboratory Report No.  1620, Aberdeen Proving Ground, MD,  Nov 72. 
(AD #907161) 
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t = 10/18 t=8/i.t 

20 30 40 50 

AXIAL   POSITION (mm) 

Figure 6,  BRLSC code results of the axial velocity for the liner 
material along the axis of symmetry at 8, 10, and 13ys 
from the 43mm shaped charge with apex angle of 45°. The 
jet tip is on the left. 
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Interjected here are experimental observations regarding the continuous 
jet region, the leading pellet, for typical shaped charges. First, sample 
observations and densitometer measurements made from flash radiographs 
of the jet in free flight indicate that the density of the continuous 
jet is less than the initial density of the liner by about 15 to 20 
percent.7'8 This density corresponds to a temperature of 1500oC which 
is above the melting point of copper. Thus, the liquid state 
of the continuous jet is not ruled out, but these measurements 
do not take into account the possibility of voids along the 
jet's axis of symmetry which would result in lower density readings. 
Jamet claims that the jet breaks up in the solid state. 
Second, radiometry measurements of the jet's temperature were observed to 
be less than the melting point of the liner material.9 These measure- 
ments were taken from both the side on and the front end view of the 
jet tip region. These experiments, conducted at the BRL, indicate 
that the continuous jet (tip) is cooler than the rest. Other experi- 
mental evidence10 indicates that the tip region of the copper jet 
breaks up sooner than the following parts. The breakup time is faster 
for higher strength material11 and the cooler jet tip would be expected 
to have more strength. Calculations show that the variation in tem- 
perature, from the jet elongation process, is negligible between 
jet formation and particulation.11 The preponderant evidence indicates 
that the continuous jet tip is solid. 

Figure 8 a, b, and c are the calculated results from the 43mm 
shaped charge depicting the ratio of density, P/P ; ratio of specific 

internal energy, I/I ; and jet velocity respectively for the jet tip 

as functions of time after the initiation of the explosive. Examining 
these three relationships we observe the following:  first, the material 
density ratio goes thru a maximum compression with rapid acceleration 
and increase in specific internal energy for approximately 2MS; second. 

^Private oommunisation from R.  Jameson3 Batlistia Research Laboratory, 
Aberdeen Proving Groundj MD. 

aF. Jometj   "Mesure de la dens-it'e d'un jet de charge creuse en 
cuivre par radiographic - e 'ctair, " Saint-Lout-Sj Rapport - 
Beriaht R 101/76,  9.1.1976. 

^W.  G.   Von Holle and J.  J.  Trimble,   "Temperature Measurement of Copper 
and Eutectic Metal Shaped Charge Jets," Ballistic Research Laboratory 
Report No.  2004, Aberdeen Proving Ground, MD, August 1977,   (AD #B021338L) 

i010P.  C.  Chou and J. Carleone,   "Calculation of Shaped Charge Jet 
Strain, Radius and Breakup Time, " BRL Contract Report CR246,  July 
1975, prepared by Dyna East Corp.,  Wynnewood, Pennsylvania. 
(AD#B0072406J. 

11R, R. Karpp and J.  Simon,   "An Estimate of the Strength of a Copper 
Shaped Charge Jet and the Effect of Strength on the Breakup of a 
Stretching Jet," BRL Report No.   1893,  June 1976.     (AD#B012141L). 

18 
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the material density ratio levels off to a constant with a gradual 
increase in specific internal energy and velocity while equilibrating 
the inverse velocity gradient for a period of approximately 5us; and 
finally, steady flow. 

V.  105MM SHAPED CHARGE ANALYSIS 

The 105mm, unconfined shaped charge data12 is a valuable source 
for comparing calculated results. Figure 9 a and b are the line draw- 
ings of the test charge and the initial configuration used in the 
BRLSC solution respectively. Several reports have been written 
regarding these data and various calculational techniques13'14. This 
report is the second effort to compare an Eulerian, two-dimensional, 
finite-difference, hydrodynamic calculational technique against these 
data. Comparisons between all currently existing calculated data 
and experimental results will be shown, as well as, calculated 
equations-of-state variations in a parametric study of this shaped 
charge. 

Figure 10 illustrates the classical collapse and jet velocities as 
functions of relative distance from the apex of the cone.  The 
respective final jet tip velocities of experiment and calculation are 
7.0mm/ys and 6.8mm/ys.  This demonstrates the major focal point of 
comparison between experimental and calculated results. 

The procedure used in obtaining the calculated collapse and jet 
velocity data will be presented. First, the collapse velocity as a 
function of initial position along the liner, was obtained by monitor- 
ing the center line tracer at each time increment. As is illustrated 
in Figure 11, the center line tracer is the third tracer, from five 
tracers, denoted, as T. thru TO., initially spaced in even increments 

across the liner. The value of the collapse velocity depicted in 
Figure 10 is taken when this monitored tracer reaches its maximum as 
a function of time. Then the jet velocity, as a function of initial 
position along the liner, was obtained by monitoring the inside 
tracers, (for example, T. and T in Figure 11), at each time 

12.F. E.  Allison and R.   Vitali,   "An application of the Jet-Formation 
Theory to a 105mm Shaped Charge," Ballistic Research Laboratories 
Report No.   1165,  Aberdeen Proving Ground,  MD,  March 1961 
(AD§277 458). 

1%. L.  Gittings,  R.   T.  Sedgwick,  and J.  M.   Walsh,   "Numerical Analysis 
of Jet formation from Lined Shaped Charges, " Ballistics Research 
Laboratories Contract Report No.   51,  Aberdeen Proving Ground,  MB, 
August 1971.      (AD #889631L) 

ll*J.  T.  Harrison and R. R.  Karpp,   "Terminal Ballistic Application of 
Hydrodynamic Computer Code Calculations, " Ballistic Research 
Laboratory Report No.   1984,  Aberdeen Proving Ground,  MB,  April 1977. 
(AD #A041065) 
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Electric p 
Detonator    i   t'l .. 

Tetrylbooster 
Pellet 

CoBposition B 

Copper Liner 

DIMENSIONS 
A = 83 mm 
B = 86 mm 
C = 152 mm 
D = 2.69 mm 

Figure 9a.  The 105mm unconfined 
test charge used at the Ballistic 
Research Laboratory.  Pertinent 
dimensions are shown in the table. 
This figure is from Ref.12. 

Figure 9b.  Initial configuration 
used in BRLSC solution of the 
BRL-105mm unconfined test charge. 
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increment. Therefore, the calculated data contained on Figure 10 is 
the inside of the liner tracer's velocity distribution at the final 
computed time increment, which was 30MS after the initiation of the 
explosive. The calculation was terminated at that time increment 
due to initial grid boundary -.onstraints. At this point, however, 
only approximately 45% of the initial liner had collapsed onto the 
axis of symmetry. The data is presented as it now stands. Collapse 
velocities were obtained from the entire liner since the detonation 
wave has traversed the liner at this time. Enough data are available 
to indicate that the calculated lead pellet or jet tip is projected 
from the first 18% of cone's distance from the apex, where as, 
experimental results show that the lead pellet emerged from the first 
39% of the cone's distance from the apex. This difference is 45% 
of the experimental result. This is illustrated on Figure 10 as a 
constant jet velocity at the apex of the liner. 

As another measure, we are able to compare the experimental and 
computed radial component of collapse velocity as a function of time 
after initiation of the explosive. This is illustrated on Figure 12 
as the experimental, dashed lines, and computed, solid line.  The 
experimental data were obtained by Randers-Pehrson15.  These data points 
are on the inside surface of the liner at various initial radii 
positions monitored as a function of time after the initiation of the 
explosive. The computer code calculations are obtained by monitoring 
the inside passive tracer, for example T. and T,. on Figure 11, as a 
function of time after the initiation of the explosive from which the 
radial component of the collapse velocity was extracted. 

From the two Figures 10 and 12 we conclude that good agreement 
exists between the experimental and calculated collapse velocity 
distributions and that the jet velocity distributions are of the same , 
general shape.  We further conclude that good agreement was obtained between 
the experimental and calculated jet tip velocity with only a 3% varia- 
tion but the calculated lead pellet's position from the apex of the 
cone is 45% of the experimental result. 

VI.  PARAMETRIC STUDY OF THE 105MM SHAPED CHARGE VARYING THE 
EQUATIONS-OF-STATE 

The last study contained in this report is a parametric analysis 
of the 105mm, unconfined shaped charge with respect to the equation-of- 
state used in this calculational technique. Equations-of-state for 
both the metal liner and the explosive filler were varied parametrically. 

lsPrivate Conmunioation from G. Banders-Pehrson^ Piaatinny Arsenal^ 
flew Jersey. 
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Inside Surface of 
Copper Liner -^ 

Figure 11. Section of copper liner showing the string of passive tracer 
particles employed for predicting collapse and jel velocity 
results. 
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For clarity, the forms and constants of these state equations are pre- 
sented as appendices to this report. The criteria utilized for the 
comparison are correlation of the jet tip velocity to the observed value 
of 7.0mm/ys and the flow field's tracer particle outlines at 20ys after 
the initiation of the explosive. 

Tabulated in Table 1 are both the variable names associated with each 
equation-of-state are their respective jet tip velocity results. 

Table 1. Equations of State and Jet Tip Velocities 

Variation Equation of State Name Jet Tip 
Number H.E.       Metal Liner     Velocity (mm/ys) 

1 y im HEMP 6.2 
2 Y LAW Tillotson 7.3 
3 JWL  •    .    HEMP 6w0 
4 JWL Tillotson 6.8 

Figures 13-16 are the flow field tracer particle outlines of boundaries 
corresponding to numbers 1-4 respectively in Table 1.  Based upon the 
criteria for the comparison, variation number 4 was chosen as the set 
of state equations to represent the best approximation of the physical 
phenomenon. This set of state equations was utilized in the previous 
study, i.e. the 43mm shaped charge study. All plots resulting 
from the calculation of variation number 4 will be presented.  The first 
series of plots. Figures 17-20, are the velocity fields at times of 
0, 5, 10, and 20\is.    The final series of plots. Figures 21-24 are the 
two-dimensional pressure fields at the same respective times as above. 

Having shown that variation number 4 gave the best prediction of jet 
tip velocity, we will compare it to variation number 3, the worst tip 
velocity prediction, in more detail. The data for variation number 3 are 
taken from Figure 25 which shows the results of assuming a hJENP equation of 
state where p=f(p). For variation number 4, Figure 26 shows the results 
for a Tillotson equation of state where p=f(p, 1). 

Table 2 summarizes a comparison of the jet tip properties for 
variations number 3 and 4, giving the maximum and minimum values. It will 
illustrate the differences in the computed results due to the state 
equations. 
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Table 2. Detailed Analysis at the Jet Tip Giving Minimum and Maximum 
Values 

Variation      P/P     Velocity (mm/ys)      p/p       I/I 

Number     (a minimum)     (a maximum)    (a minimum)   (a maximum) 

3 P=fCp)=0 6.0 1,0        1.45 
4 P=f(p,I)=0 6.8 .48        1.45 

This table illustrates that when specific internal energy is used in 
the solution of the pressure equation, P=f(p,I), the jet tip is 48% of 
the initial liner density. However, the jet tip is traveling at a 
velocity which is 97% of the observed value. This table also illustrates 
that by eliminating the calculated specific internal energy, i.e. the 
Hugoniot relationship, will result in a density that is equal to the 
initial liner density, but, the jet tip velocity is 86% of the observed 
value. As an aside, we note that the value of the specific internal 
energy ratio at the jet tip for these two calculations as well as for 
the other calculations in the parameteric study are the same.  This value 
is 10.5 times greater than Is/I0« 

VII.  CONCLUSION AND SUMMARY 

These comparisons show an excellent agreement between calculated 
and experimental results during liner collapse. Also, calculated jet 
and liner collapse velocities compare well with experiments.  But, when 
different forms of equations-of-state were applied in the BRLSC code, 
variations occur in both the jet density and velocity. The specific 
internal energy seems to be the source of the variations in the calcula- 
tions.  If these hydrodynamic computer codes are ever going to be able 
to model the entire physical process with detail and accuracy, then 
additional groundwork must bt accomplished.  We suggest investigatins 
the following: 

a. Check the equations-of-state, 

b. determine if the numerical scheme's zone size is responsible 

for the exaggerated over-thermalization of specific internal energy, 

Co determine whether or not a new numerical scheme, i.e., a second 
order or possibly a simple modification to the existing scheme, will 
bring better results. 

As mentioned earlier, these determinations must be made before 
we can proceed with more sophisticated investigations such as strength 
effects and jet breakup. 
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Figure 13. Computed flow field's tracer particle outlines of results 
from case number 1 on Table 1. Results are plotted at 

20ys after initiation of the explosive. 
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Figure 14. Computed flow field's tracer particle outlines of results 
from case number 2 on Table 1. Results are plotted at 20vis 
after initiation of the explosive. 
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Figure 15. Computed flow field's tracer particle outlines of results 
from case number 3 on Table 1. Results are plotted at 20ys 
after initiation of the explosive. 
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Figure 16. Computed flow field's tracer particle outlines of results 
from case number 4 on Table 1. Results are plotted at ZOys 
after initiation of the explosive. 
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Figure 25. Detailed analysis of calculated results of the 105mm 
shaped charge (see number 3, on Table I), along the axis 
of symmetry at 20ys after initiation of the explosive. 
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APPENDIX A 

I. Equations of State for Copper Liner 

There are two forms of the equation of state used for the copper 
liner. The first, used for determining pressures and constant energy 
compressibilities in the liner, is that due to J. H. Tillotson16. 
Only the condensed form of the equation of state is included since the 
liner material should not be shocked enough to cause significant 
vaporization of material. The equation of state formulations are. 

for n > 1 - 2B 

P = 
a + 

lo* 

+ 1 Ip + Ap + Bp , 

and when n < 1 2B 

a +        b ~" 

I +    1 

Ion
2 

I^ 
_A 
4B 

In these equations P, I, and p are pressure, specific internal energy, 

and density respectively, n = — = y + 1, and the constants 
o 

for the copper liner are as follows: 

a = . b 
b = 1.5 

A = 1.39 Mbar 

B = 1.1 Mbar 

.325 x 10    joules/g 

p    =    8.9    Mg/m3 

I    = o 

16J'.   H.   Titlotsorij   "Metatlio Equations of State for Eypervetoeity 
Impaats"}   General Atomic Report GS-3216J  July  1961. 
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The second is taken from the HEMP code report17. The equation-of-state 
formulations are, 

for n 1 1 - fe : 

P = Ay + By2, 

and when n < 1 - -zw '• 

P  .-  t 
4B 

The constants for the copper liner are as follows: 

A = 1.19 Mbar 

B = 4.35 Mbar 

Po = 8.9 Mg/m3 

^Unpublished HEMP User's Code Report from M.  Wilkens,  Lawrence 
Radiation Laboratory. 
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APPENDIX B 

II. Equation of State for Composition B Explosive 

There are two forms of the equation of state used for the grade A, 
composition B explosive.  The first is a modified gamma-law equation 
of state of the explosive. 

P  = (y - l)p  MAX[I  , (I - C • I )] 
min * 

In this equation, P, 1, and p are the pressure, specitic internal 
energy, and mass density respectively. The constants for composition B 
explosive for y, I0. and p and 2.71, 5.034 x 10

3 joules/g, and 1.717 
Mg/m3 respectively.  Imin 

;LS an inPut parameter (usually about 
10~1 joules/g). The variable C is a flag ranging between 0 and 1 which 
determines whether a cell is behind (C = 0), intercepted by (0 < C < 1) 
or ahead (C = 1) of the detonation front.  For details see report 
by M. L. Gittings1. 

The second uses the Jones-Wilkins-Lee18 (JWL) equation of state for 
the grade A, composition B explosive. 

(l-^)' 

+ ap MAX I . , (I 
mm' "• 

Bp. 

where: A = 5=2423 Mbar 

B = .076783 Mbar 

a = .34 

a = 4.2 

3 = 1.1 

1 = 4.95 x 103 joules/g 

P = 1.717 Mg/m3 

The variable C and constant I are used to determine the cells 
intercepted by the detonation front as explained above. 

1&E.  Lee3  M.  Finger3  and W.   Collins3   "JWL Equation of State Coefficients 
for High Explosives^" Lawrence Livermore Laboratory,   UCID-16189, 
January  1962. 
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