
- I H-78-98

Technical Note 1978-16

New Frontiers
in Nonlinear Filtering

R. S. Bucy

K. D. Senne

26 May 1978

Prepared for the Department of the Air Force
under Electronic Systems Division Contract F19628-78-C-0002 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Approved for public release; distribution unlimited. At)Aos<noz

\) O

The work reported in this document was performed at Lincoln Laboratory, a center
for research operated by Massachusetts Institute of Technology, with the support
of the Department of the Air Force under Contract F19628-78-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the
contractor and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the United States
Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Raymond L. Loiselle, Lt.Col., USAF
Chief, ESD Lincoln Laboratory Project Office

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

NEW FRONTIERS IN NONLINEAR FILTERING

R. S. BUCY

University of Southern California

K. D. SENNE

Group 41

TECHNICAL NOTE 1978-16

26 MAY 1978

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

Examples of two and three dimensional phase demodulation problems

are presented. Computer realizations for the optimal nonlinear phase

estimator are discussed in detail, with emphasis on parallel computer

architectures. Implementation of the nonlinear filter on various

computer architectures, including the CDC6600/7600, CDC STAR-100, Illiac IV,

the CRAY-1, and the Floating Point Systems AP120B is reviewed. Detailed

Monte Carlo performance analysis is presented for the two-dimensional system,

while partial results are included for the three dimensional case. Impli-

cations concerning the ideal computer architecture for nonlinear filter

realization are discussed.

iii

TABLE OF CONTENTS

Page

ABSTRACT iii

I. INTRODUCTION 1

II. PROBLEM DESCRIPTION 2

III. CANDIDATE COMPUTER ARCHITECTURES 12

A. Assessment of Required Computations 14

B. The Illiac IV Algorithm 14

C. The CDC-STAR Algorithm 20

D. CDC 6600 Program 27

E. The AP-120B Algorithm 30

F. The CRAY-1 Algorithm 37

IV. EXPERIMENTAL RESULTS 40

V. CONCLUSIONS 46

ACKNOWLEDGMENTS 48

BIBLIOGRAPHY 49

I. INTRODUCTION

About nine years ago [6] we initiated a research effort which had as

its objective the actual construction of the optimal nonlinear filter for some

low state dimensional problems. The mathematical problem consisted of solving

a nonlinear partial differential equation of diffusion type driven by a random

process. The natural synthesis tool was a digital computer. Very quickly it

was realized that the serial nature of the machines available at that time

severely limited not only the realization problem but, more significantly, the

error analysis problem. This is because although a highly developed theory

existed, no good error performance bounds were available and error analysis

could only be done by time consuming Monte Carlo simulation analysis.

We soon decided that we should concentrate our efforts on the phase

demodulation problem [9] because of the exceptional amount of research effort

that had been devoted to threshold extension of the classical phase lock loop,

which in actuality is a suboptimal filter for the phase demodulation problem [3],

Further threshold extension had payoffs which would justify the design of a

special purpose black box to realize the optimal demodulator. Also it became

obvious that some thought should be given to the architecture of the black box

in order that it provide real-time realization as well as effective off-line

error analysis [34] capabilities. We have studied the architecture question by

gaining experience with designing fast software for various parallel, pipeline

and array processors, and along the way documenting the achievable error

variance improvement possible by the use of the optimal demodulator.

Our purpose in undertaking this research effort is to develop a new

technique for system design based on parallel computation and to show in the

case of phase demodulation how the nonlinear filter can improve system per-

formance. To those who believe our results are impractical because of the

number of megaflops necessary to compute the relevant conditional density, we

feel it suffices to note the enormous progress in computer speed and design in

the last nine years, in order to underscore the declining validity of that

argument as a function of time.

II. PROBLEM DESCRIPTION

We model the observation process as the solution of random differential

equations in the sense of Ito DJ:

dz1 = H(x) cos (x) dt + dv1
J (2.1)

dz2 = H(x3) sin (x^ dt + dv
2

1 2
where x.. is a phase process, x~ is the amplitude process, and v and V are

Brownian motions of spectral density r which are independent of the amplitude

and phase signal processes. Our object is to find optimal estimates of the

current value of phase and amplitude based on past and present observations of
1 2

z and z . In order to proceed we must model the amplitude and phase processes,

which may also be done in the sense of Ito as

dx1 = x„ dt

dx2 = dw2 (2.2)

dx = -3 x~ dt + dw~

where dw_ and dw~ are white noises with spectral parameters q~~ and q^«,

respectively. We consider two special cases of (2.1), (2.2): for the two-

dimensional process we replace the H(x„) with unity and eliminate the equation

for x~ from the state equations; for the three-dimensional process we implement

(2.1) and (2.2) as shown with H(x^) = exp(x„).

The solution of the filtering problem involves the determination of

the conditional probability density for the signal process given the present

and past observations. This solution is obtained by solving the following

differential equation:
/\ ■» -| /\

dp = Apdt + (h-h) R (d_z - hdt)p
(2.3)

with p: Rn x R -> R and h: Rn — RS

where s=2 and n=3 for the three-dimensional model or n=2 for the two-dimensional

model,

A = -ßx
3 dx.

+ x
2 di

h =
H(x3) cos (x1)

H(x3) sin (xx)

/ 1\ z

+ 2%3

R =

z =

\;

+ 2^22
3x'

(2.4)

Equation (2.3) is the Stratonovich-Kushner equation for the solution to the

nonlinear filtering problem (see [4]).

Two alternatives exist for solving (2.3) on a digital computer [2],

One scheme involves the direct replacement of (2.3) with a suitable finite

difference equation which in the continuous limit approaches (2.3), and when

solved yields a solution which also in the limit (hopefully) approaches the

solution of (2.3). A more effective method, however, is to pose and solve

a sequence of discrete filtering problems as

z = H(x) cos (x) + V
n n n n

z2 = H(x3) sin (x1) +
n n n

(2.5)

n

2
n

= x

= x

n-1

2
n-1

+ A x
n-1

(2.6)

+ W n-1

x n

2

3 OA 3 3
= x .. + 3Ax . + w .

n-1 n-1 n-1

where E(vX) = r/A , E(w1)
n ' n

Aq . with A interpreted as the sampling

interval. The solution to the discrete filtering problem evolves according

to the equations [4], [8]

P ,-, = S*F (2.7) n+1 n

F=^D«P=-^D-S*F1 (2.8)
n K n n K n n-1

n n

12 3 i
where P {F } is the conditional distribution of x , x , and x given z ., ,

nn... . nn n° n-1
z 0 , . . . , z {z ,z .,..., z }, * denotes convolution, • denotes point-
n-2 o n n-1' o '

wise multiplication. The functions S and D are derived from (2.5) and (2.6),

based on assumed probability density functions (Gaussian) for w and v ,

respectively, and K is a scalar which is chosen to normalize F to have unit r J n n
total mass.

For the two-dimensional special case (i.e., without the amplitude

signal process) the optimal filter recursion of (2.8) becomes

<y2-^
2l

where

Fl «Vy2> " r W j °**\ li^K-K Fn-1 CyrVA.u)dp (2.9)

1 2 z cos (y-) 4- z sin (y.) n Jr n Jl Dn(yi)= exp^ ^-^ ^-> (2.10)

It can be shown [32], [35] that a cyclically modulated density F , defined as

Fn(yl'y2} " /) Fn (yl + 2TTk' y2 + 2TT£/A) (2,11)

with -7T _< y < 7T, and -TT/A £ y? < TT/A, carries all of the information necessary
1

for nonlinear filtering subject to the cyclic loss function L(£..) = y(l-cos(e1)),

where e is the error in the estimate of the phase x . The modulated density

satisfies the recursion relation

V0'T) ■ r Va)
n

TT/A

-TT/A

S(T-y)F(a-uA,y)du

where

S(T-y) = exp

r
I (T-y 4- 2-TTi/A)'

2q22A

1=-°°

(2.12)

(2.13)

It has also been established [32], [35] that the estimate x of x which
n n

minimizes the cyclic loss function is given by

xn = arg

\

1

E e n
1 2 z . , z . i < n)

l —
(2.14)

The optimal filter recursion (2.8) for the three-dimensional

problem can be obtained in an analogous fashion. Using a discrete form

of the representation theorem (see [4]) and following the development of

the two dimensional special case, the density F for the filtered amplitude

and cyclic phase processes can be updated recursively as

where

°° TT/A

Fn(a,i,a) = |- Dn(a,a) I S1(x-a)S2(a-3n).

-°° -TT/A

F (a-uA, y,n)dydn (2.15)
n-l

D (a,a) = exp [— H(a) (z cos a + z sin a - y H(a))]

oo

51(T-a) = y exp [- ^—T (i-a + -7-)]
2q22A

k=-°°

1 2
S0(a-ßn) = exp [- -r-—T- (a-Bn)]
'2-- — 2<,33A

and K is again a normalizing constant chosen so as to make F integrate to

unity.

As discussed previously, the most convenient and accurate scheme for

solving the continuous-time filtering problem is to solve the corresponding

discrete-time filtering problem for appropriately small A, instead of attacking

the continuous-time problem directly. Indeed, it is interesting to observe

the relationship between (2.3) and the pair (2.7) and (2.8). Solving (2.7) and

(2.8) n times leads to

, AA BAX , AA BAN P « (e e) (e e) •
1 2

, AA BA, _
. (e e) P (2.16)

n

where the operator e is convolution with S and e is multiplication by D .

The infinitesimal generators of the operators e and e are A (see 2.4) and

B: p -*(h-h)"R (dz-hdt)p, corresponding to the terms on the right side of (2.3)

The fact that the relation for P approaches the solution P(t,x) of (2.3) is

known as Trotter's formula. Since we replace the continuous-time problem

with the analogous discrete-time problem, the update relations (2.7) and (2.8)

inherit the properties of P(t,x); in particular, the positivity of P(t,x)

implies the same for P . It is of course important to preserve this positivity

relationship when additional approximations are introduced for the purpose of

realizing (2.7) and (2.8) on a digital computer.

We have considered various ways to represent the conditional density

in the update formulae (2.7) and (2.8) by a finite number of finite precision

parameters. The representations will be briefly reviewed in the context of

the two-dimensional phase demodulation problem. In the point-mass representa-

tion (see [18]) the conditional density is characterized by a finite set of

weights placed at discrete points in the domain of the density. A fixed

rectangular grid, consisting of m points in the phase variable x1 and n points

in the phase rate variable x„, is defined as follows, with indices (i,j)

corresponding to the state variables (a,x), respectively:

0(1) = - 7T + 2 TT(-) + TT(-) = 7T(^^ -1) ,
mm m

i=0,...,m-l

/ .\ -T 2TT A N , 1\ ,1.
AC n ;>

(2.17)

(2.18)

j=0,...,n-l

Note that the phase rate variables, evaluated at the points i(i) may be used

directly in the convolution (2.12), but the a priori conditional density F

must be interpolated along the phase coordinate such that £(k) = a(i) - Ax(j),

so that k must correspond to pairs i and j which satisfy

k=i+f-f(|+j) (2.19)

Now if m is arbitrarily taken to be an even integer and n/m is taken to be an

integer then (2.21) may be decomposed into an integer part and a fractional

part as follows.

k = k + Ak, (2.20)

where

k - [i + ~ - 1 -j DIV(-)] MOD m (2.21)
— z m

Ak = [i+ j MOD<£)]/£ (2.22)
L mm

i=0, ..., m-1, j=0, ..., n-1

DIV is integer division (with discarded remainder)

MOD is the remainder after integer division

The interpolated density point will lie between k and (k+l)M0D m in the phase

coordinate, with weighting Ak on the former and 1-Ak on the latter. It can

be seen from examining (2.19)-(2.23) that interpolation in the phase coordinate

is always required if m is even and n>m. Moreover, if m is odd, interpolation

will also be required unless m=n, in which case

k = (i-j + ~) MOD m (2.23)

Previous simulation results [3l], [32], [35] have been reported using m

odd with n/m chosen between 4 and 6. The present work takes m to be even (32)

in order to provide the best mapping to machines such as Illiac IV which

have an even number of processing elements. There is no other significance

to this change of realization. In any event, with n/m=4 there must be inter-

polation independent of whether m is odd or even.

The term (2.13) consists of an infinite sum. The values which the

argument may assume consist only of integer multiples of 2ir/nA in the discrete

coordinate space, resulting in

(2.24)

The expression (2.24) reveals that S is an even function which is cyclic

modulo n. Further, for small values of q99, the contribution to the sum (2.24)

of all terms except £=0 is neglible. A key result for the two-dimensional

problem [4l] is that the nonlinear filter performance depends only on a function

of q„~ and r; thus, any problem may be scaled by adjusting both r and q»„ so

as to provide a suitably small q__ so as to guarantee the validity of the

approximation

S(p)= exp
-2

1^22

TT

A 1Ä
P
n |p|= 0,1, n-1 (2.25)

In the examples chosen for this paper, q is taken to be 0.01, which permits

us to ignore all terms for |p|> 5, that is S(p)= 0 for |p|> 5.

The point mass method will be the representation discussed in detail in

this paper because it is accurate, preserves positivity, readily generalizes

to higher dimensions and is easily implemented on a large class of digital com-

puters (see [23], [27], [28], and [29]). We will briefly highlight in the

remainder of this section some other representations which have previously been

studied in connection with this problem (see [5], [7], [11], [13], [14], [16],

[20], [21], [25], [26], [30], [32], [35], [36], [37], [39], [40], and [44]).

The doubly periodic density function F (x,y) may be represented by

a finite number of Fourier coefficients {a (n)K. ,x c where S is finite.

Moreover, it is possible to derive a recursive update so that {a..(n+l)} can

be obtained directly from (a..(n)}, and the cyclic optimal estimate can be

expressed as x = arg [a n(n)]. For more details, consult [32], [35], [36],

and [44]. Experience has shown that the behavior of the Fourier filter is

very good with respect to the estimates, in spite of considerable negativity

introduced by the truncated series representation. Moreover, for reasonably

low signal-to-noise conditions the filter can be as much as an order of

magnitude faster than the equivalent point-mass filter. The speed advantage

begins to disappear, however, as the signal/noise environment is improved,

and the filter requires the use of complex arithmetic and Bessel functions,

which makes it somewhat more difficult to realize, and unattractive to

vectorize.

If F is represented by a linear combination of a finite number of
n

splines under tension, the update formula (2.12) can be used to obtain a

corresponding recursive updating formula for the spline coefficients. The

spline filter can be made to operate as fast as the Fourier filter and the

positivity of the densities can be assured by appropriate (experimental)

adjustment of the tension coefficients. The implementation of the spline

filter, however, requires considerable nonvectorizable overhead so that

implementation of filters on highly parallel or vectored computers would not

provide significant speed improvement.

Another class of representations involves fitting densities with

Gauss-Hermite polynomials or by sums of Gaussian densities. These methods

show the greatest promise when the signal/noise environment is rather good.

The choice of the appropriate number of terms and the placement of the terms

(in the case of Gaussian sums) requires a good deal of experimentation and

10

nonvectorizable computation as the signal to noise ratio drops well below

the threshold of the phase-locked loop.

After much study, therefore, the point-mass filter has evolved

to a standard of comparison for other techniques. Moreover, as computer

evolution continues a higher premium is being placed upon regularity and

parallelizability of computation, so that the comparative importance of the

point-mass method will continue to grow (see also [17]). Since the point

mass filter also enjoys uniform convergence (as the density of the grid

increases) and overall simplicity of implementation it is natural to do a

computer architecture tradeoff in the context of the point-mass filter.

1]

III. CANDIDATE COMPUTER ARCHITECTURES

As discussed in the previous section, it is possible to increase the

computational efficiency of some examples of our problem by up to an order of

magnitude by the use of sophisticated numerical techniques. The standard for

performance comparison, however, remains the point-mass filter which, coinci-

dentally, also has a simple and highly regular realization. Since performance

analysis for nonlinear filters requires extensive Monte Carlo simulations, and

the point-mass filter is a reference standard, the point-mass filter must be

efficiently implemented. Thus, our attention has concentrated on the subject

of computer architectures which can exploit the regularity and parallelizability

of the point-mass filter. We are of course interested both in the suitability

of the architecture and the ease of programmability for our class or problems.

The majority of commercially available computers are essentially

single thread or Single-Instruction-Single-Data (SISD) architectures. Never-

theless, some reasonably fast machines of this type have been built. By

employing ever faster memories, high-speed cache memories, instruction fetch-

decode-execute overlap, fast multipliers, etc. various serial machines have

become quite competitive for this problem, at least for the two-dimensional

version. Examples of such machines are the IBM 370/168 and the PDP 11-70, both

of which have been used in this study. On the other hand, extension of the

study of nonlinear filter performance to problems of higher dimension clearly

requires more powerful architectures (see also [22], [24], [38], [43]).

The vector processing machines which have been studied for this report

include two broad categories: the array processor and the linear vector pipe-

line processor. An array processor such as the Illiac IV makes use of many

identical processors to create a Single-Instruction-Multiple-Data (SIMD) environ-

ment. By contrast, vector pipeline machines such as the CDC STAR and TI ASC

make use of memory paging and segmented arithmetic functional units to increase

the rate of throughput of multiple identical computations on the corresponding

elements of vector operands. The vectors for pipeline processors may be obtained

from sequential memory locations or from linearly related memory locations, in

12

general, forming what has come to be referred to as a linear vector. The

vectors might also be taken from arbitrary memory locations by vector

indexing, but any potential advantage of memory paging might thereby be lost.

As experience with advanced architectures accumulates(see [42]), it has

become apparent that a multiplicity of architectural features must be simulta-

neously present in order to create a truly general purpose environment. The

earliest examples of this trend were the look ahead machines such as the CDC

6600/7600 which incorporated a finite instruction stack with multiple

functional units scheduled by means of an automatic reservation system. More

recently, Floating Point Systems has introduced the AP120B which employs user-

generated horizontal microcode to permit the simultaneous execution of a number

of parallel activities, including a floating point add, a floating multiply

and several register-register and register-memory transfers.

The latest and (to date) most impressive hybrid machine architecture

to be developed is the CRAY 1, which combines the look-ahead reservation concept

with a large variety of registers, vector registers, and multiple segmented

functional units to achieve a very general purpose machine. The segmentation

of all of the functional units permits pipelining from vector registers which

in turn can be filled with linear vectors from memory. Functional unit

reservations permit chaining of nonconflicting sequential operations, thereby

combining overhead from several pipeline operations into one chained operation.

Another hybrid architecture involving the array concept is being developed by

Burroughs (the BSP [54]).

In the remainder of this section we review the computational require-

ments of the point-mass filter and summarize the impact of the various computer

architectures on the realization of this filter.

13

A. Assessment of Required Computations

The various manipulations of the pointmass densities which are

necessary in order to perform the convolution by S are depicted in Figures 1

and 2. Before the convolution can be done it is necessary to develop an

interpolated F density as follows: imagine the cyclic density attached to a

elastic cylinder with axis aligned along the phase-rate coordinate (see Fig. 1).

The coordinate transformation leading to the interpolated F is imagined as

follows: fasten the ends of the elastic cylinder to parallel flat plates; now

rotate the plates in opposite directions each one-half revolution; next compute

the interpolated density along lines parallel to the cylinder axis. The

interpolated density on the resulting cylinder is fitted with a gaussian

sleeve (i.e., height equal to amplitude of S), and the cylinder is joined end-

to-end, forming a torus. The convolution operation produces a new density

function by replacing the ring under the center of gaussian sleeve with the

integral of the product of the sleeve height with the original density under

the sleeve (see Fig. 2). The final operations in the implementation of the

cyclic nonlinear filter are the multiplication by D and the normalization by

K . The estimates are computed by collapsing the resulting density along the

phase-rate dimension, multiplying the resulting ring by sine and cosine of

phase and integrating, and finally by computing the arctangent of the ratio of

the results.

The computations required to implement the two-dimensional point

mass filter are summarized in Table 1, as a function of m and n. The sensor

terms are the only ones which require math functions (exponentials). Since

only m exponentials are required, this computation is generally insignificant

compared with the overall filter update, so no special effort has been expended

to optimize the required computations.

B. The Illiac IV Algorithm

The primary considerations for programming the Illiac IV array are

the proper utilization of all of the 64 Processor Elements (PEs) and minimiza-

tion of data routing between PEs (see [33], [46], [50]). In order to accomplish

the efficient use of the PEs, the values of m=32 and n=128 were selected and

14

0-

PHASE RATE
0

CONSTANT
PROBABILITY

CONTOURS

L
t-
\

FASTEN DENSITY TO CYLINDER

Fig. 1. First step in convolution process.

15

18-4-19396

ROTATE
BOTH ENDS
CLOCKWISE

ONE-HALF TURN

ELASTIC CYLINDER

FASTEN
ENDS

TOGETHER

Fig. 2. Phase rotation and phase-rate convolution.

16

TABLE 1

FLOATING-POINT OPERATIONS FOR FILTER

Function

Numb er of Operations

Multiples Adds Divisions Exponentials

Sensor Terms 2m m 0 ■

Interpolation mn 2mn 0 i
Convolution 5mn lOmn 0 o

Row Sums 0 mn-m 0 o

Estimates 3m 3m-3 1 0

Normalization mn-hn 0 0 0

Total 7mn+6m 13mn+3m -3 1 IT

Example 28864
N.

53341 1 32

m = 32

-%•■-

n = 128 82206

17

utilized for all machine examples. On the Illiac, two rows of PE storage were

used for each value of the phase samples in F . The interpolation and convolution

were accomplished in a totally parallel fashion, using all 64 PEs, except for the

operation depicted in Fig. 3. It is necessary to perform a cyclic rotation of each

phase row to accumulate the terms for the convolution (a cyclic rotation to the

right is combined with a cyclic rotation to the left at each step). Since a

cyclic routing on Illiac IV involves only one row at a time, it was necessary

to form the two-row rotation by two single-row rotations, followed by an end-

element switch (involving three transfers with only one PE enabled).

The overall effectiveness of the Illiac IV algorithm is evident from

the fact that so few operations are required which involve fewer than 64 PEs

enabled. The sensor terms are computed with only 32 PEs enabled, but this

operation only involves about 5% of the estimate update. The single PE trans-

fers and the convolution are also only responsible for about 5% of the computa-

tion time. Finally, the row sums are done logarithmically with a PE utilization

efficiency of 16.7%, and they account for another 5% of the estimated computa-

tion time. Thus, the net PE utilization efficiency of this algorithm is 87.5%.

Although the Illiac IV algorithm is capable of utilizing all of the

PEs 85% of the time, it remains to estimate what percentage of the PE time is

devoted to floating point computation. The Illiac architecture permits only

one floating point operation to be in progress at one time in each PE. At

least one operand fetch from memory can be overlapped with computation, however,

so that throughput can be maximized by chaining multiple arithmetic operations

in series and retaining intermediate results within PE registers. Assuming

two operands must be fetched at 10 cycles each to start a chain and that one

result must be stored for 10 cycles to end the chain, then the megaflop rate

(i.e., millions of floating point operations per second) for a chain of N

identical 10-cycle operations (e.g., floating point multiplies) is given by

_ 6400 _N_, n n R- c (N+3) (3.1)

18

18-4-19397

PE,
DESIRED ROTATION

PE
63

• • •

STEP 1= ROW ROTATION

G • • • D

G • • • D
Ä STEP 2=PEft EXCHANGE

Fig. 3. Cyclic Rotation Modulo 128
on Illiac.

19

where C is the cycle time in nanoseconds. This working expression is plotted

in Figure 4.

The code for the Illiac was prepared in GLYPNIR, an ALGOL-based

language with no automatic optimization features. Thus, although assembly

language listings were used to minimize unnecessary overhead, no effort was

expended to introduce any arithmetic chaining since that would have required

extensive machine dependent code. Furthermore, the timing was done with the

clock rate set at approximately 80 nanoseconds per cycle. Thus, the measured

time of 9 milliseconds for the approximately 83K floating point operations

corresponds to a raw rate of 9.2 MFLOPS which, corrected for the 85% PE utili-

zation is equivalent to 10.8 MFLOPS of full PE utilization versus 20 MFLOPS

achievable with no chaining or 54% of the maximum achievable arithmetic rate.

Assuming that the 46% overhead is retained, but that chaining is introduced to

an effective chain length of N = 3 on the average, then the achievable Illiac

rate would be 18.4 MFLOPS for C = 80 nanoseconds or 29.4 MFLOPS for the design

value of C = 50 nanoseconds.

C. The CDC-STAR Algorithm

The pipeline architecture (see [49], [51], [52]) is unconstrained by

small fixed resources (i.e., 64 processors). On the other hand, efficient

utilization of the pipeline requires detailed attention to prearrangement of

vectors to allow for streaming from consecutive memory locations. This consid-

eration is particularly important for STAR, which has a relatively slow memory

cycle time. Since the nonlinear filter is recursive, it is necessary to

include the vector rearrangement as part of the filter update and therefore

the rearrangement constitutes the major overhead of the STAR program. The

operations on the matrix F to precondition it for the convolution are shown

in Figures 5 and 6. First, the column-ordered F matrix is column-shuffled

with itself to produce a matrix which has two copies of every phase variable

in each column. Then, a scrambled F can be formed which has the property

that each row in the final convolved matrix can be generated by operating on a

suitable interpolation between the two adjacent rows of the scrambled F .

20

18-4-19398

0 12 3456789 10 11 12

EFFECTIVE CHAIN LENGTH (flops)

Fig. 4. Maximum computation rates for Illiac IV.

21

-7T

+ 7T -

ORIGINAL DENSITY
oooooooooooooooo

oooooooooooooooo

oooooooooooooooo
oooooooooooooooo

18-4-19399

COLUMN SHUFFLING EXPANDEDxPENSm

IDENTICAL
^^>ROWS

7T-CA-

Fig. 5. Scrambling of phase variables modulo 2TT.

22

REARRANGED DENSITY

oooooooo "^-^^^
oooooooo ^^
oooooooo

\

18-4-19400

EXPANDED VIEW SHOWING INTERPOLATION

-e- if -©- -8"
-o- -8"

^ur U- ^^ -©"
O

INTERPOLATED DENSITY
/
®@®®©®@®
©®©®@®©© ^^

UNNECESSARY EXTRA ROW

Fig. 6. Interpolation of scrambled matrix.

23

The interpolation which does this is depicted in Figure 6 . This inter-

polation may be done by vector operations of length (m+l)n, or 4224. The row

corresponding to m+1 in the result may be compressed out of the final result

to reduce the subsequent calculations.

The cyclic convolution is shown in Figure 7. First, the end columns

of the interpolated F are cyclically copied to produce a matrix from which

each of the terms of the convolution may be obtained as m x n matrices.

The production of a 5-term symmetric convolution is done in parallel for all

4096 points by a sequence of 10 vector adds and 5 vector multiplies, all of

length 4096.

The only computations which are done on the STAR that are less than

100% efficient are the vector sums and the determination of the estimates.

This is reflected in Table 2, which gives the breakdown of the various functions

in the STAR program.

The measured execution time of 5.17 milliseconds for the STAR version

of the filter corresponds to an overall processing rate of about 16 MFLOPS.

The rate for required arithmetic only (only 63% of the total time) would be

25.3 MFLOPS. Now the STAR is capable of producing vector sums at a 50 MFLOPS

rate and vector multiplies at the 25 MFLOPS rate and, from Table 1, we find

that 64.9% of the floating point operations required are additions and 35.1%

are multiplies. Furthermore, although the ratio of compute to compute plus

start-up cycles in Table 2 suggests 95.6% efficiency for multiplies and 90.4%

efficiency for additions, when account is taken of the unnecessary adds and

multiplies introduced in order to force vector arithmetic, the asymptotic

computation rates for this problem are corrected downward to 16.8 MFLOPS and

39.1 MFLOPS for multiplication and addition, respectively. On the whole,

however, if the running times are corrected down to the estimated minimum

achievable 4.70 milliseconds then the arithmetic results would be produced at

The Figures 2 and 3 are shown with m=4 and n=16 for illustrative purposes
on! v. only.

24

18-4-19401

NTERPOLATED DENSITY

SYMMETRIC
ACCUMULATION
FOR CONVOLUTION

CONVOLVED DENSITY

Fig. 7. Convolution operation.

25

TABLE 2

STAR PROGRAM BREAKDOWN

Operations

Cycles

% of Total Start-ups Compute Required

Vector Arithmetic 63.4 5174 76793 78.5%

12 Multiplies 33.3 1908 41152 70.1%

46 Adds 26.4 3266 30861 86.4%

1 Exponential 3.7 — 4780 100.0%

Vector Rearrangement 31.3 1233 39292 83.7%

1 Vector Transfer 5.8 1001 6464 68.0%

2 Indexed Transfers 22.1 144 28480 100.0%
(Block lengths 32 & 33)

1 Vector Compress 3.4 88 4348 0%

Scalar Arithmetic — — 79 100.0%

1 Divide 46

3 Adds 33

Subroutine Overhead 4.1 — 5142 0%

3 Calls

Miscellaneous 1.2 — 1537 100.0%

Memory Conflicts, etc.

TOTAL 6407

5%

122843

95%

5.17 msec

Minimum Achievable 6224 111296 4.70 msec

26

a rate which is 52.1% of the asymptotic rate for this problem (i.e., without

counting overhead or unnecessary computations), and, discounting vector rearrange-

ment, 77.1% of the asymptotic rate. We conclude, therefore, that the nonlinear

filter utilizes the STAR about as efficiently as could be expected for any

practical problem.

The CDC STAR was programmed in a vectorized form of FORTRAN IV with

the use of assembly language listings to aid in optimization. It was necessary

to insert two inline machine instructions to implement the vector block transfers

for the rearrangement process. These instructions were not as yet supported

by the FORTRAN system. Moreover, we were compelled to replace one machine

instruction which was supported (the SUM instruction, which accumulates the

sum of components of a vector) by an entire vector subroutine in order to in-

crease execution speed. Since these changes were anything but obvious we view

the language support to be somewhat deficient for this particular exercise,

although clearly not so difficult to use efficiently as the Illiac IV language.

D. CDC 6600 Program

The CDC 6600 (and 7600) has instruction look-ahead and multiple

arithmetic functional units which provide a partial overlap parallelism. The

most efficient 6600 programs contain many tight loops instead of complicated

computations within large loops. By recoding the vectorized STAR program in

analogous FORTRAN for the CDC 6600, we were able to achieve efficient utiliza-

tion of the available resources with functional loops which are for the most

part contained within the 8-word instruction stack.

The basic data flow of the CDC 6600 is illustrated in Figure 8.

Reads from memory are accomplished by setting the A Registers A1-A5 with the

appropriate address; writes are obtained by loading A6-A7. The B Registers

are used for incrementing and address computation.

The breakdown of the computations for the CDC 6600 is shown in

Table 3. Note that the major overhead is for reading and writing and miscella-

neous waiting. It is interesting to note also that the ratio of multiply rates

27

18-4-19402 X OPERAND
(60 bits)

OPERANDS
-►^

RESULTS

XO
XI
X2
X3
X4
X5
X6
X7

DATA

A ADDRESS
(18 bits)

CENTRAL
MEMORY

OPERAND
ADDRESSES

RESULT J
ADDRESSES

AO
Al
A2
A3
A4
A5
A6
A7

ADDRESSES

B INCREMENT
(

10 PROCESSOR UNITS

BOOLEAN (B0)
SHIFT (S)
FLOATING ADD (FA)
LONG ADD (LA)
BRANCH (B)
2 INCREMENT (11,12)
2 MULTIPLIER (M1,M2)
DIVIDER (D)

8 bit

BO
Bl
B2
B3
B4
B5
B6
B7

8 WORD STACK
(up to 32 instructions)

Fig. 8. CDC 6600 CPU architecture.

28

TABLE 3

CDC6600 PROGRAM BREAKDOWN

Function
(% Cycles) Multiplies Adds Divisions Reads Writes Exp. Notes

Sensor Update
(~0)

2m m 0 3m m m Not in
stack
(extn.
refs.)

Interpolation
(-16)

nm 2mn 0 4nm+3n ran 0 Outer
loop not
in stack

Expansion
(-0)

0 0 0 10m 10m 0 Instack

Convolution
(-74)

5mn lOmn 0 16mn+15 6mn 0 Instack

Row Sums
(-4)

0 mn-m 0 mn+m m 0 Instack

Estimates
(-0)

3m 3m-3 1 4m+ll 3 0 Instack

Normalization
(-6)

mn+ra 0 0 mn+2m mn 0 Instack

Approx. Totals 7mn 13mn 0 22mn 8mn 0

Approx. No. of
Minor Cycles 70mn 91mn 0 66mn* 24mn* 0

Summary: Minor Cycles (Approx,)

Arithmetic:
Read/Write:
Waiting:

_61mn
90mn
9 Iran

47.1%
26.3%
26.6%

Measured: }42mn 100.0%

(m « 32, n = 128 for test case] Measured time = 140 msec/est.

The reads and writes are partially overlapped in time, however the total

overhead of 52.9% is accurate.

29

between STAR and 6600 is 25 to 1, while the add-rate ratio is 35 to 1 (including

normalization on 6600). Thus, for arithmetic alone, STAR would be expected to

be 31 times faster than the 6600 on this problem. The achieved speed-up of 27

is therefore reasonable.

The CDC 6600 was programmed in standard FORTRAN IV for this problem.

It was necessary to code all two-dimensional arrays as one-dimensional arrays

and to make several iterations with assembly language listings produced by the

FTN 4.6 level 428 optimizing compiler before the final running time of 130

milliseconds per estimate, which corresponds to 0.63 MFLOPS, was achieved. It

should also be acknowledged that the present 6600 program does not make use of

the second multiplier, since to do so would force the affected loops out of

the stack. In fairness to the 7600, however, which has a larger stack, we

might be able to increase the 7600 running speed by as much as 10% by using

both multipliers. Nevertheless the CDC 6600 and 7600 serve as good benchmarks

for comparison of achieved efficiencies and software development difficulties.

The three-dimensional problem is intractable for the 6600, however, so no

sttempt has been made to characterize its performance. We are currently study-

ing the three-dimensional problem on the 7600. This problem requires array

storage in excess of 65K, which leads to complicated memory management

considerations.

E. The AP-120B Algorithm

The Floating Point Systems AP120B architecture (see [47] and [55]) is

illustrated in Figure 9. There are sufficient data paths to permit a number

of essentially independent operations to proceed in parallel. Microcode for

the AP120B is included in 64-bit microinstructions, as shown in Figure 10,

which are programmed and cross-assembled in a Macro assembly language for a

host mini-computer. Although the software development for the AP120B must be

considered tedious by comparison with the larger machines, the AP120B can

nevertheless provide competitive performance at very low cost. Thus, we have

optimized a two-dimensional example for the AP120B to show its performance in

the most competitive light, even though we have not expended equivalent effort

in optimization for other machines.

30

18-4 -19403 HOST

LO

TABLE
MEMORY

INTERFACE

ACCUMULATOR
BLOCK 1

vMl V

ACCUMULATOR
BLOCK 2

I/O
PROCESSOR PERIPHERAL

MAIN DATA
MEMORY

M2

CONTROL

PROGRAM
MEMORY

\A1

FLOATING
POINT
MULTIPLIER

FLOATING
POINT
ADDER

16-BIT
INTEGER ALU

J

Fig. 9. AP-120B processor block diagram.

18-4-19404

i i i 1 i i 1

0 13 14 22 23 31

B SOP SH SPS SPD FADD Al A2 COND DISP

S-PAD GROUP ADDER GROUP BRANCH GROUP

SOP1 FADD1

SPEC OPER I/O

i i L i i

32 38 39 50 51 55 56 63

DPX DPY DPBS XR YR XW YW M Ml M2 MI MA DPA TMA

DATA PAD GROUP MULT.
GROUP MEMORY GROUP

VALUE

Fig. 10. AP-120B microcode format.

32

The initial code for the AP120B was derived by translating the CDC

6600 FORTRAN IV code described in the previous section. The only modification

introduced was to implement the convolution in a one-dimensional pipeline, as

suggested by Randy Cole of USC/ISI. This original program required 22.8 msec

per estimate and utilized three times as much memory as was required to

store the density information. An alternative formulation, taking into account

the intrinsic odd/even memory paging constraints, was eventually developed,

resulting in a computation time of 13.88 msec per estimate. This latter,

essentially minimal, program is the subject of the present discussion.

The various conditional densities can be visualized as 32 x 128

matrices of weights representing the appropriate probabilities, with the (i,j)th

weight associated with the ith phase and jth phase rate weight, even though

in the machine this matrix is stored as a 4096-element vector made up of the

ordered columns of the matrix. The code which realizes update of the one-step

predictor P , -> P is broken into two parts P , •+ 1 . and .. -*■ P
n-1 n r n-1

F . and F _
n-1 n-1

which are respectively column-oriented and row-oriented operations.

We describe first the passage from the predictor to scrambled filter

density, P .(x-y) F ..(x-Ay,y). Assume that P . has been stored unnormalized n-1 J J n-1
(i.e., not divided by K .). Then, (1/K ,) D _(x.) is written on ith place n-1 n-1 n-1 1
of both Data Pad X (DPX) and Data Pad Y (DPY) (See Fig. 9). Next, starting

from the last column of P , the column elements are written alternately on n-1 J

DPX and DPY in the positions corresponding to their order in the column,

starting with DPX or DPY depending upon whether the largest a with x - Dy.

>_ x is odd or even for the jth column. This interweaving of the values of a

column of P is necessary because the AP120B microcode permits at most one

access to each of DPX and DPY in one instruction. Thus, for the jth column,

P _1(x0,y.) in DPX(£) and P .(x^.^y.) in DPY(£+1) are replaced by (1/K)
n x X/ j n— 1 X/T1 J n—1

Vi <V- Pn-1 (xr V and (1/K„-l> Dn-1 <W Vl (5W yi}' respectively,

while P (xo.2>y-) and p(xo+v
y*^ are read from main data memory into

DPX(£+2) and DPY(£+3). Next, the interpolation of the contents of DPY(^-l)

and DPXW are written into P^ (x£_a> yj+1) and P^ (x^+1_a, yj+1), respec-

33

tively. During the above operations ß = a + 1, a+3, ..., a + 31 and these

indices are interpreted modulo 32 by masking out all but the last 5 bits. We

have described the situation when a is even; if a is odd the DPX and DPY are

interchanged. The result of the P , ->-F - operation, the scrambled values of
n-1 n-i

F reside in main data memory overlapping the old P _ but shifted to the

right by one column (i.e., 32 locations).

The next part of the update consists of the convolution of the

scrambled values of F n with a gaussian kernel to produce P . Because of the
n-1 ö r n

mathematical structure of our problem the convolution task is row-oriented;

that is, 32 one-dimensional convolutions, one for each row of the scrambled

filter density.

We will illustrate the convolution for a general problem where the

convolution kernel a. has finite support, i.e., a. = 0 for |i|>5. Denote k.

as the input sequence and I. as the convolved output, then

Ä. =) a. k. .

i=-5

This noncausal tapped delay line is implemented as a pipeline (see Figure 11)

within the registers of the AP120B as follows: ten registers are used to store

the partial convolutions for ten consecutive values of j. Then the k. are

inserted serially into the pipeline.

34

Fig. 11. Convolution flowgraph for AP-120B.

35

The pipeline is charged up according to the sequence below, which

produces £_ at the output:

Step Compute sd Terms

1 k-4a5

2 k-3a5 k-3aA

3 k-2a5 k-2a4
k +a
-2a3

+ + +
11 k6a5 k6a4 k6a3 "k6a-5

Instructions Flops

1 1

2 3

3 5

11 21

66 121

Thereafter, until I ir., £. is produced in 11 instructions with 21 FLOPS n-10 l
(11 multiplies and 10 adds). After k is inserted into the pipeline, then

kn, k.. , ..., k^ must be inserted again to complete the calculation. During

the last 10 iterations the pipeline may be shut down in a manner analogous

to the above build-up, so that the last 10 £. are produced in a total of 55

instructions, or 100 FLOPS. Thus, in summary we can produce 128 convolution

terms with 110 + 118 (11) = 1408 = 11 (128) instructions and 200 + 118 (21)

= 2678 FLOPS, for an overall arithmetic efficiency of 95%. On the other hand,

if we note that a. = a_. and a = 1, we see that the total required computations

for this operation equals 128 (10 ADDS + 5 MULTIPLIES) = 1920 FLOPS, so that in

reality the convolution cannot be made anymore than 68% efficient, since 1408

instructions will ideally permit 2816 FLOPS. The fact that AP120B achieves

5.9 MFLOPS, then, instead of the theoretical 12 MFLOPS, is partially explained

on the basis of unnecessary arithmetic operations which are introduced to

produce the fastest overall computation speed and to code a general convolution

loop for nonsymmetric kernels. This is analogous to the vectorization of some

functions on the STAR wherein superfluous computations were introduced in

order to achieve the minimum overall computation time.

36

AP12QB Code for the 3-D Problem

The software for the 3-D Problem used the described 2-D code as a

subroutine as follows: P (x,y,z) for each fixed amplitude z is first updated

by the 2-D microcode described above with sensor density different for different

z to obtain P ..(x,y,z), x and y take values on a fixed 16 x 96 grid while z

has value on a moving grid centered at the conditional amplitude mean and

with mesh proportional to the conditional amplitude standard deviation.

The conditional distribution P (x,y,z) is obtained from P -(x,y,z)

by convolving over the z direction. See [10], [12], [15], [18], [19], for

details on how convolution is performed on a moving grid. This final convolution

is achieved by a software pipeline as in the case of the previous convolution.

The validity of separation of the update in this way depends on the statistical

independence of the amplitude and phase processes.

F. The CRAY-1 Algorithm

The CRAY-1 (see [48], [53], [56]) represents a logical extension of

many of features of the CDC6600 system. It may be viewed in a global sense as

a multifunctional unit machine with lookahead scheduling. On the other hand,

closer inspection reveals a number of innovations which extend the generality

of the design and which go a long way toward eliminating unnecessary constraints

(see Fig. 12). Probably the most significant improvement is to provide segmen-

tation of all functional units so that functional unit reservation need only

wait until the input and output registers are free, independent of the amount

of time required to compute the function. In addition, two new features

significantly impact the applicability of the CRAY-1 for vector processing.

First there are sight vector registers which may be filled by any set of

operands composing any linear vector in main memory of length less than or

equal to 64. The vector registers may be used to provide inputs or outputs to

any of the floating point functional units at an 80 megaflop rate. Second,

and even more significant, the output results from one vector operation can be

*Memory bank access conflicts only occur if the consecutive operands occupy
memory locations separated by a multiple of 16 locations.

37

11 8 4-19406 1 VECTOR
FUNCTIONAL

UNITS

ADD,
SUBTRACT,

SHIFT,
LOGICAL

VECTOR
MASK

FLOATING POINT
FUNCTIONAL

^ VECTOR
SECTION

UNITS

ADD,
SUBTRACT,
MULTIPLY,

RECIPROCAL
APPROX.

s

VECTOR
LENGTH REGISTERS ^

MEMORY
256K-1M

64-BIT WORDS
(up to 8M bytes)

50-nsec
CYCLE

16 BANKS
ERROR

CORRECTING

8 REG.
64 WORDS
PER REG.

4096 BYTES SCALAR L SCALAR
r SECTION

T REGISTERS

UNITS
c 5 REGISTERS ADD,

SUBTRACT,
LOGICAL,

POPULATION
FIRST ZERO

s1

64 REG.
512 BYTES |

8 REG.
64 BYTES

i i

B REGISTERS i \ REGISTER« N

ADD,
SUBTRACT,
MULTIPLY

S

64 REG.
192 BYTES

8 REG.
24 BYTES

L ADDRESS
r SECTION

INSTRUCTION l k

l INSTRUCTION

BUFFERS
 ►
 ► 4 BUFFERS

256 BYTES
CONTROL \

 ► \ (to all sections) / f SECTION

Fig. 12. CRAY-1 register block diagram.

38

chained with inputs from a third vector register as they appear, thus avoiding

a second start-up delay. Thus, with addition chained with multiplication, the

CRAY-1 is asymptotically capable of producing up to 160 megaflops.

The architecture of the CRAY-1 therefore has considerable potential.

What we were concerned about was the accessibility of this to the potential user.

We are encouraged to report at this time that it appears that a truly no-nonsense

exploitation of this resource is readily available. In fact, we were able

to write a very simple program in standard FORTRAN-IV which was able, with only

minor modifications, to achieve over 22 megaflops for the demodulation problem.

The simplicity of this program is characterized by the following code which

produces a convolved matrix JN from an interpolated and cyclically rotated

matrix JN1:

35

40

DO 40

DO 35

JN(I,J)

DO 40

DO 40

JN(I,J)

I = 1, 32

J = 1, 128

JN1(I,J+10)

K = 1, 5

J = 1, 128

JN(I,J) + A(K)*(JN1(I,J-K+10)+JN1(I,J+K+10))

What is noteworthy about this example is that the first generation CRAY-1

compiler is capable of isolating the linear vectors JN(I,.) and JN1(I,.), where

the column index is a constant offset (in the inner loop) from the inner loop

index J. Furthermore, the compiler is capable of using addition and multipli-

cation chaining in line 40. The only inefficiencies introduced by the compiler

in this example are associated with loop set-up and control.

Since the results obtained to date on the CRAY-1 indicate considerable

promise for the development for vector-optimized compilers, we feel that the

CRAY-1 architecture is very likely to be very attractive as a model for

versatile, general-purpose computers of the future. In particular, the use

of multiple, segmented functional units and a variety of general purpose

registers appears to provide desirable flexibility.

39

IV. EXPERIMENTAL RESULTS

For the 2-D phase demodulation problem, extensive Monte Carlo runs

have been made at a variety of input signal to noise ratios, and the phase

error modulo 2TT for the phase lock loop and the optimal cyclic estimator have

been evaluated. The results of these Monte Carlo runs are given in Fig. 13,

where each point on the optimal curve resulted from averaging the squared

errors of three million estimates with three-standard-deviation confidence

intervals of + .034 dB about each point. The experimental design consisted of

producing 30,000 independent sample paths, with each path consisting of 130

samples in time of the phase error mod 2TT. The first 30 errors were discarded

as we were interested in steady state performance. These results were obtained

using the AP120B array processor in conjunction with the PDP-11-55 with the

multi-user operating system RSX11M version 3. Each point on the curve represents

two days of computer time. Of this total one day represents overhead of the

the operating system of the PDP-11. The other day is the array processor

time. The array processor is achieving a little more than one quarter of its

theoretical 12 megaflops (i.e., millions of floating point operations per

second). New software for the array processor has been designed which achieves

5.9 megaflops. For these experiments a fixed grid of 32 x 128 was used (i.e.,

32 subdivisions in phase and 128 in phase rate). The resulting performance

curve Fig. 13 should be compared with the analogous curve in [32] where the

grid was 21 x 105 and 200 sample paths were used to find the error.

The problem of combined phase and amplitude demodulation was first

considered in a program for the STAR-100 at NASA Langley and is described in

[45], Originally with H linear (see (2.5) and (2.6)) for a number of output

signal to noise ratios, the abssica of Fig. 13, with the amplitude being

normal mean 1 and variance .05 and generated by (2.6), Monte Carlo runs showed

that unknown amplitude reduces performance only slightly. When H is exponential

and lnH(A) has variance 0.1 again performance closely resembles the fixed

amplitude case. We are currently investigating the case where lnH(A) has

variance about 2 and H is exponential, as this seems to be a physically

40

18-4-19407

EFFECTIVE OUTPUT N/S (dB) (^/z r^q1"

Fig. 13. Monte Carlo performance summary

41

interesting case. At the moment assembly code is being developed for the 3-D

phase demodulation problem using the AP120B. For the 3-D problem we expect

less impact from the PDP11 system overhead because a larger proportion of time

will be spent in the AP120B.

In Table 4, the results of ongoing timing studies for various machines

for the 2D phase demodulation problem are given. In the case of each machine

extensive considerations of the blending of algorithm structure to fit machine

architecture were used to develop fast code. Generally the software seems to

fit into three groupings; 1) parallel; Illiac 2) one big main loop; CRAY-I

and 120B; 3) a large number of small loops comprising the main loop for 6600,

7600 and STAR-100. Categories 2) and 3) above are illustrated in Figures 14

and 15 which show the software division in the 2-D phase demodulation algorithm,

each box represents a multi-loop. Category 1) is discussed in the section

describing the Illiac coding. It is apparent that assembly language coding

could produce faster times for the larger machines with a corresponding

increased software development time.

In reviewing the results of Table 4, it is possible to draw some

general conclusions. On the one hand we see that the vector architectures can

achieve substantial increase in speed, resulting in correspondingly lower

facility cost per performance. On the other hand there is in general a

corresponding increase in software development time for the vector machines,

so that if experimental code is desired it may turn out to be just as expensive

to develop and run on a vector machine as on a conventional machine. There

are two obvious standout cases, however, which deserve special mention: for

the AP120B the observation is extremely low cost (by an order of magnitude)

for performance, which implies low production cost; the CRAY-1, with its

FORTRAN compiler, may turn out to be the best of both worlds when experimental

code is being both written and tested. Moreover, as the problem dimension

increases the practicality of the AP120B for extended Monte Carlo analysis will be

diminished, since, for example, we estimate that 23 days of continuous running

42

18-4-19408

NEW DATA
Zn+ 1 —

n

i
SCRAMBLE

INTERPOLATE

CONVOLUTION
PHASE AND
AMPLITUDE

n + 1

NORMING AND
ESTIMATES

NORMALIZATION

Wpn+1

Fig. 14. Recursive filter

18-4-19409

NEW DATA
1 "n- Li

SCRAMBLE
INTERPOLATE

NORMALIZE

.1

CONVOLUTION
PHASE, AMPLITUDE

NORMING, ESTIMATES

n+1

Fig. 15. Recursive predictor

43

TABLE 4

COMPARATIVE PROCESSOR

COST/PERFORMANCE FOR DEMODULATION PROBLEM

Machine

Time
per
Iteration
(msec)

Achieved
Megaflops*

Approx**
Cost
(Dollars/
Flop)

Max
Theory
Megaflops

Software
Develop.
Time

(man-months)

CRAY-1 3.5 23.5 0.33 60-140 0.5

STAR-100 4.9 16.8 0.48 20-40 2.0

Illiac IV 9.0 9.1 1.10 40-80 3.0

AP120B 13. 9+ 5.9 .03 12 6.0

CDC7600 25.0 3.3 .91 10 1.1

IBM370-168 110.0 0.75 2.67 3 1.0

CDC6600 130.0 0.63 1.59 2 1.0

PDP11-70 870.0 0.09 1.67 0.2 1.2

**

Assumes 82.2K Flops per iteration.

k

Assumed installation costs of (production) systems:
CRAY-1 - $8M, STAR-100 - $8M, Illiac-IV - $10M, AP120B - $150K,
CDC7600 - $3M, IBM370-168 - $2M, CDC6600 - $1M, PDP11-70 - $150K.

Does not include PDP11-55 overhead.

44

time would be required to produce the four million estimates for the Monte

Carlo analysis of the 3-D phase demodulator. Thus, even with restartable soft-

ware, such research would push the reliability limits of the AP120B. It is

clear, then, that the CRAY-1 and its descendents will usher in a new generation

of research computer performance, while the AP120B will provide a prototype

for low-cost dedicated-applications computation.

45

V. CONCLUSIONS

In this paper we have presented a summary of our results on the phase

demodulation problem, both for the three dimensional and two dimensional cases.

In the latter case extensive and definitive Monte Carlo error analysis runs

have been made for both the phase-locked loop and the optimal phase demodulator.

These results document the performance improvement achievable by synthesis

of the optimal demodulator and serve as a bench mark against which prospective

suboptimal designs can be judged.

Another facet of our research is the effect of various machine

architectures on the speed of estimate production, and to some extent to deter-

mine the architecture most suited to our problem of phase demodulation, and

hopefully more generally the one most suited to general synthesis of nonlinear

filters. Our conclusions in this regard depend on price/performance. Clearly

the CRAY-1 is the machine most suited for general research on examples of

our problem, however economic considerations dictate the choice of the AP120B

as the cost effective compromise for production runs. Thus, at the present

time the AP120B can provide an inexpensive, albeit difficult, opportunity to

run Monte Carlo simulations for two-dimensional nonlinear filtering problems.

There does not appear to be any inherit reason, however, for precluding the

possibility of the evolution of CRAY-1 type capability and software accessibility

to machines of more modest size in the near future. The popularity of the

AP120B illustrates the market for specialized high-speed processors as add-on

boxes for minicomputers. Perhaps the evolution of minicomputer architecture

in the direction of the CRAY-1 or its successors will indeed be feasible

in the future. In the meantime, accessibility to the AP120B will be greatly

enhanced if some form of optimizing (FORTRAN?) compiler can be developed,

although it remains to be seen whether this is feasible. Also, it is likely

that extensive use of the CRAY-1 for important near-term developments of non-

linear filtering realizations will be profitable.

46

In pursuing the machine speed comparison we devoted some time to

designing software for each machine which took advantage of the architecture

of each machine. So far the guidelines for developing software for each machine

are empirical rules of thumb gained by some experience and some hearsay. It

has been observed, for example, that the 7600's running time for our problem

could be reduced 10% by assembly language coding but because of limited machine

access and cost we have not been able to do this. We should acknowledge,

however, that considerable insight into the computational requirements for the

demodulation problem was obtained by successively transforming according to the

special requirements of each of the candidate architectures.

It is apparent that nonlinear filtering problems of state dimension

three or higher for the point mass seem to tax the capabilities of most of the

fourth generation machines in terms of speed and memory requirements (i.e.,

the 65K vector length limit on the STAR-100, and the 2K P.E. memory of the

Illiac, the direct reference to 65K words of memory without paging on the

AP120B). It is conceivable, however, that with code developed for optimal use

of the CRAY-1 we could handle a four dimensional nonlinear filter with up to

400K mass points.

47

ACKNOWLEDGMENTS

Several individuals have contributed significantly

to the benchmarking on the various machines: for the CDC6600

Herb Spies of Eglin Air Force Base and George Shannon of Lincoln

Laboratory; for Illiac IV Alan Birholtz and Gerald Marin of the

Institute of Advanced Computation, Sunnyvale, CA; for CDC STAR

100 Jim Ortega, Ed Fondriat, Evert Johnson, Richard Hofler,

Illona Howser, and John Knight of the NASA Langley Research

Center, for CRAY-1 Lee Higbie of Cray Research, Inc.; for the

AP120B Randy Cole of USC/ISI, Alan Charlesworth and Woody Wittmayer

of Floating Point Systems. In addition, a number of other persons

have contributed actively to the research described here, especially

Jack Mallinckrodt of Communications Research, Hussein Youssef of

Lockheed Aircraft, and Feramara Ghavanlou and Tom Bleakney of USC.

48

r

BIBLIOGRAPHY

[1] K. Ito, On Stochastic Differential Equations (Memoirs
American Math Society 4, 1951).

[2] F. B. Hildebrand, Introduction to Numerical Analysis
(McGraw-Hill, New York, 1956).

[3] A. J. Viterbi, Principles of Coherent Communication
(McGraw-Hill, New York, 1966).

[4] R. S. Bucy and P. D. Joseph, Filtering for Stochastic
Processes with Applications to Guidance (Wiley Inter-
science, New York, 1968).

[5] H. W. Sorenson and A. R. Stubberud, "Non-Linear Filter-
ing by Approximation of the A Posteriori Density,"
International J. Control 8, 33-51 (1968).

[6] R. S. Bucy, "Bayes Theorem and Digital Realizations for
Non-Linear Filters," J. Astro. Sei. 17, 80-94 (1969).

[7] A. H. Jazwinski, Stochastic Processes and Filtering
Theory (Academic Press, New York, 1970).

[8] R. S. Bucy, "Linear and Nonlinear Filtering," Proc.
IEEE, 58, 854-864 (1970).

[9] A. J. Mallinckrodt, R. S. Bucy, and S. Y. Cheng,
"Final Project Report for a Design Study for an Opti-
mal Non-Linear Receiver/Demodulator," NASA Contract
NAS5-10789, Goddard Space Flight Center, Maryland (1970).

[10] K. D. Senne and R. S. Bucy, "Digital Realization of
Optimal Discrete-Time Nonlinear Estimators," Proc. Fourth
Annual Princeton Conf. on System Sciences, Princeton,
March 1970, 280-284.

i

[11] K. Srinivasan, "State Estimation by Orthogonal Expansion
of Probability Distributions," IEEE Trans. Auto. Control
AC-15, 3-10 (1970).

[12] R. S. Bucy and K. D. Senne, "Realization of Optimum
Discrete-Time Nonlinear Estimators," Proc. Symp. on
Nonlinear Estimation Theory and Its Applications, San
Diego, September 1970,6-17.

49

[13] D. L. Alspach, "A Bayesian Approximation Technique for
Estimation and Control of Time Discrete Stochastic
Systems," Ph.D. Dissertation, Univ. of California,
San Diego (1970).

[14] D. L. Alspach and H. W. Sorenson, "Approximation of
Density Functions by a Sum of Gaussians for Nonlinear
Bayesian Estimation," Proc. Symp. on Nonlinear Estimation
Theory and Its Applications, San Diego, September 1970,
19-31.

[15] R. S. Bucy, R. A. Geesey, and K. D. Senne, "Passive
Receiver Design via Nonlinear Filtering Theory," Proc.
Third Hawaii International Conf. on System Sciences,
Vol 1, (1970) 477-480.

[16] H. W. Sorenson and D. L. Alspach, "Recursive Bayesian
Estimation Using Gaussian Sums," Automatica 7, 465-479
(1971).

[17] E. Tse, "Parallel Computation of the Conditional Mean
State Estimate for Nonlinear Systems," Proc. Second Symp.
on Nonlinear Estimation Theory and Its Applications, San
Diego, September 1971, 385-394.

[18] R. S. Bucy and K. D. Senne, "Digital Synthesis of Non-
linear Filters," Automatica 7, 287-298 (1971).

[19] R. S. Bucy and K. D. Senne, "A Two-Dimensional Passive
Ranging Experiment using Optimal Nonlinear Filtering,"
Air Force Weapons Laboratories Computer Films No.
71-0330-02, March 1971.

[20] R.J.P. deFigueiredo and Y. G. Jan, "Spline Filters,"
Proc. Second Symp. on Nonlinear Estimation Theory and
Its Applications, San Diego, September 1971, 88-89.

[21] C. Hecht, "Digital Realization of Non-Linear Filters,"
Proc. Second Symp. on Nonlinear Estimation Theory and
Its Applications, San Diego, Sept. 1971,152-158.

[22] R. S. Bucy, M.J. Merritt, and D.S. Miller, "Hybrid
Computer Synthesis of Optimal Discrete Nonlinear Filters,"
Proc. Second Symp. on Nonlinear Estimation Theory and Its
Applications, San Diego, Sept. 1971, 59-87.

50

[23] K. D. Senne, "Computer Experiments with Nonlinear
Filters," Proc. Second Symp. on Nonlinear Estimation
and Its Applications, San Diego, 1971, 314-324.

[24] D. S. Miller, "Hybrid Synthesis of Optimal Discrete
Nonlinear Filters," Ph.D. Dissertation, Univ. of Southern
California, 1971.

[25] J. L. Center, "Practical Nonlinear Filtering of Discrete
Observations by Generalized Least Squares Approximation
of the Conditional Probability Distribution," Proc.
Second Symp. on Nonlinear Estimation Theory and Its
Applications, San Diego, Sept. 1971, 88-99.

[26] H. L. Weinert and T. Kailath, "Stochastic Interpolation
and Recursive Algorithms for Spline Functions," Annals of
Statistics, 2,4, 787-794 (1974).

[27] R. S. Bucy, "Realization of Non-Linear Filters," Proc.
Second Symp. on Nonlinear Estimation Theory and Its
Applications, San Diego, Sept. 1971, 51-58.

[28] R. S. Bucy, "Building and Evaluating Non-Linear Filters,'
Proc. Symp. on Appl. Match.; Stochastic Diff. Eqns.,
Amer. Math. Soc., April 1972.

[29] K. D. Senne, "Bayes Law Implementation: Optimal Discrete-
Time Phase Estimation," Proc. SWIEEECO Conf., Dallas,
April 1972.

[30] C. Hecht, "Synthesis and Realization of Nonlinear Filters,"
Ph.D. Dissertation, Univ. of Southern California, 1972.

[31] R. S. Bucy, C. Hecht, and K. D. Senne, "Optimal Phase
Demodulation via Discrete Nonlinear Filtering," Air Force
Weapons Laboratory Computer Films No. 72-0401-01, Apr. 1972.

[32] R. S. Bucy, C. Hecht, and K. D. Senne, "An Engineers
Guide to Building Nonlinear Filters," Final Report SRL-
TR-72-0004, Project 7904, Frank J. Seiler Research Labora-
tory, USAF Academy, Colorado, (1972), DDC-AD-746921/2.

[33] W. J. Bouknight, et al, "The Illiac-IV Systems," Proc.
IEEE 60, 369-388 (1972).

[34] K. D. Senne, "A Machine Independent Monte Carlo Evaluation
of the Performance of Dynamic Systems," Stochastics, 1, 3,
215-238, (1974).

51

[35] R. S. Bucy, C. Hecht, and K. D. Senne, "New Methods for
Nonlinear Filtering," Rev. Francais d'Automatique, J-l,
3-54 (1973).

[36] R. S. Bucy and H. Youssef, "Fourier Realization of the
Optimal Phase Demodulator," Proc. 4th Symp. on Nonlinear
Estimation Theory and Its Applications, San Diego,
(Western Periodicals, 1973) 34-38.

[37] R. S. Bucy, M. J. Merritt, and D. S. Miller, "Hybrid
Synthesis of the Optimal Discrete Filter," Stochastics,
1, 151-211 (1974).

[38] L. Basanez, P. Brunet, R. S. Bucy, R. Huber, D. S. Miller,
and J. Pages, "Hybrid Computer Optimal Filter," Proc. 6th
Symp. on Nonlinear Estimation Theory and Its Applications,
San Diego, California, 1975.

[39] H. M. Youssef, "Suboptimal Phase Demodulation," Proc. 6th
Symp. on Nonlinear Estimation and Its Applications, San
Diego, California, 1975.

[40] H. Youssef, "Interpolative Spline Filters," Ph.D. Thesis,
Aerospace Eng. Dept. Univ. of Southern California (1975).

[41] R. S. Bucy and H. Youssef, "Dependence of the Optimal
Phase Demodulator on Statistical Parameters," IEEE Trans.
Autom. Contr., AC-2Q, 2, 259-260 (1975).

[42] D. A. Calahan, W. N. Joy and D. A. Orbits, "Preliminary
report on results of matrix benchmarks on vector processors,"
Report #94, System Engineering Laboratory, Univ. of Mich.
(May 1976).

[43] L. Basanez, P. Brunet, R. S. Bucy, R. Huber, D. S. Miller,
and J. Pages, "Simulation and Implementation of a Hybrid
Computer Algorithm for an Optimal Nonlinear Filtering,"
Proc. 9th Symp. on System Science, Honolulu, Hawaii, 1976.

[44] R. S. Bucy and H. Youssef, "Optimal phase demodulation,"
IEEE Trans. Autom. Contr., AC-21, 5, 732-736 (1976).

[45] R. S. Bucy, K. D. Senne and H. Youssef, "Parallel, Pipeline
and Serial Realization of Optimal Demodulators," Stochastic
Control, Editors Roxin and Sternberg (Marcel Dekker,
New York, 1977).

52

[46] System Guide for the Illiac IV User, Institute for Advanced
Computation, Ames Research Center, Moffett Field, CA 94035.

[47] Processor Handbook, Software Development Packages, Floating
Point Systems AP-120B, 7259-02, Beaverton, Oregon.

[48] CRAY-1 Computer Reference Manual 220004, Cray Research, Inc.
Bloomington, Min. (1976).

[49] STAR Reference Manual, NASA Langley Research Center,
Hampton, Va.

[50] D. Casseres, "Illiac IV Machine Reference Manual for the
Programmer," Inst. for Advanced Comp. Doc. PG-11700-0000-A,
(June 1975).

[51] STAR-100 Computer System Reference Manual, Control Data
Corporation, Publication No. 602560000, 1975.

[52] STAR Programming Manual, NASA, Langley Research Center,
Hampton, VA (March 5, 1976).

[53] P. M. Johnson, "An Introduction to Vector Processing,"
Computer Design, 89-97 (Feb. 1978).

[54] C. Jensen, "Taking Another Approach to Supercomputing,"
Datamation, 159-172 (Feb. 1978).

[55] W. R. Wittmayer, "Array Processor Provides High Through-
put Rates," Computer Design, 93-100 (Mar. 1978).

[56] L. Higbie, "Applications of Vector Processing," Computer
Design, 139-145 (April 1978).

53

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-78-98
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4- TITLE (and Subtitle)

New Frontiers in Nonlinear Filtering

5. TYPE OF REPORT & PERIOD COVERED

Technical Note

6. PERFORMING ORG. REPORT NUMBER
Technical Note 1978-16

7. AUTHORS

Richard S. Bucy and Kenneth D. Senne

8. CONTRACTOR GRANT NUMBERS

F19628-78-C-0002

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Lincoln Laboratory, M.I.T.
P.O. Box 73
Lexington, MA 02173

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Program Element No. 65705F
Project No. 649L

11. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Systems Command, USAF
Andrews AFB
Washington, DC 20331

12. REPORT DATE

26 May 1978

13. NUMBER OF PAGES
60

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

Electronic Systems Division
Han scorn AFB
Bedford, MA 01731

15. SECURITY CLASS, (of this report)

Unclassified

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

phase demodulation computer architectures
Monte Carlo performance analysis parallel computer architectures
nonlinear filter

?0. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Examples of two and three dimensional phase demodulation problems are presented. Computer
realizations for the optimal nonlinear phase estimator are discussed in detail, with emphasis on parallel
computer architectures. Implementation of the nonlinear filter on various computer architectures, in-
cluding the CDC6600/7600, CDC STAR-100, Illiac IV, the CRAY-1, and the Floating Point System AP120B
is reviewed. Detailed Monte Carlo performance analysis is presented for the two-dimensional system,
while partial results are included for the three dimensional case. Implications concerning the ideal com-
puter architecture for nonlinear filter realization are discussed.

DD F0RM 1473 UU 1 JAN 73
EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

