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ABSTRACT

Examples of two and three dimensional phase demodulation problems
are presented. Computer realizations for the optimal nonlinear phase
estimator are discussed in detail, with emphasis on parallel computer
architectures. Implementation of the nonlinear filter on various
computer architectures, including the CDC6600/7600, CDC STAR-100, Illiac IV,
the CRAY-1, and the Floating Point Systems AP120B is reviewed. Detailed
Monte Carlo performance analysis is presented for the two-dimensional system,
while partial results are included for the three dimensional case. Impli-
cations concerning the ideal computer architecture for nonlinear filter

realization are discussed.
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I. INTRODUCTION

About nine years ago [6] we initiated a research effort which had as
its objective the actual construction of the optimal nonlinear filter for some
low state dimensional problems. The mathematical problem consisted of solving
a nonlinear partial differential equation of diffusion type driven by a random
process. The natural synthesis tool was a digital computer. Very quickly it
was realized that the serial nature of the machines available at that time
severely limited not only the realization problem but, more significantly, the
error analysis problem. This is because although a highly developed theory
existed, no good error performance bounds were available and error analysis

could only be done by time consuming Monte Carlo simulation analysis.

We soon decided that we should concentrate our efforts on the phase
demodulation problem [9] because of the exceptional amount of research effort
that had been devoted to threshold extension of the classical phase lock loop,
which in actuality is a suboptimal filter for the phase demodulation problem[3]-
Further threshold extension had payoffs which would justify the design of a
special purpose black box to realize the optimal demodulator. Also it became
obvious that some thought should be given to the architecture of the black box
in order that it provide real-time realization as well as effective off-line
error analysis [34] capabilities. We have studied the architecture question by
gaining experience with designing fast software for various parallel, pipeline
and array processors, and along the way documenting the achievable error

variance improvement possible by the use of the optimal demodulator.

Our purpose in undertaking this research effort is to develop a new
technique for system design based on parallel computation and to show in the
case of phase demodulation how the nonlinear filter can improve system per-
formance. To those who believe our results are impractical because of the
number of megaflops necessary to compute the relevant conditional density, we
feel it suffices to note the enormous progress in computer speed and design in
the last nine years, in order to underscore the declining validity of that

argument as a function of time.




II. PROBLEM DESCRIPTION

We model the observation process as the solution of random differential

equations in the sense of Ito [1]:

1 1

dz H(x3) cos (xl) dt + dv

(2.1)

dz2

. 2
H(x3) sin (xl) dt + dv

. c . 1 2
where x. is a phase process, x, is the amplitude process, and V' and Vv are

Browniai motions of spectral dznsity r which are independent of the amplitude
and phase signal processes. Our object is to find optimal estimates of the
current value of phase and amplitude based on past and present observations of
zl and 22. In order to proceed we must model the amplitude and phase processes,

which may also be done in the sense of Ito as

dxl = X, dt
dx2 = dw2 (2.2)
dx3 = -8B X4 dt + dw3

where dw3 and dw2 are white noises with spectral parameters 434 and 9995
respectively. We consider two special cases of (2.1), (2.2): for the two-

dimensional process we replace the H(x3) with unity and eliminate the equation
for Xq from the state equations; for the three-dimensional process we implement

(2.1) and (2.2) as shown with H(x3) = exp(x3).

The solution of the filtering problem involves the determination of
the conditional probability density for the signal process given the present
and past observations. This solution is obtained by solving the following

differential equation:
dp = Apdt + (h-h) R T (dz - hdt)p
(2.3)

with p: R" x R+ — R+ and h: R" — R®

where s=2 and n=3 for the three-dimensional model or n=2 for the two-dimensional

model,
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Equation (2.3) is the Stratonovich-Kushner equation for the solution to the

nonlinear filtering problem (see [4]).

Two alternatives exist for solving (2.3) on a digital computer [2].
One scheme involves the direct replacement of (2.3) with a suitable finite
difference equation which in the continuous limit approaches (2.3), and when
solved yields a solution which also in the limit (hopefully) approaches the
solution of (2.3). A more effective method, however, is to pose and solve

a sequence of discrete filtering problems as

1 3 1 1
z = H(xn) cos (xn) + vn
(2.5)
2 3, . 1 2
z H(xn) sin (xn) + vn
xl = xl_l + A x2_l
n = e (2.6)
2 2 2
. | + wn—l
3 3 3 3
X = x + BAxn 1 + LAY
where E(v;) = r/A, E(wi) = Aqii with A interpreted as the sampling

interval. The solution to the discrete filtering problem evolves according

to the equations [4], [8]




p = S*F_ (2.7)

1 1
= = = . *
F K D «P K D S*F (2.8)

1

where P {F } is the conditional distribution of xl, x2 , and x3 given zi 5
i n n’ . i i i n n n n-1
zn_2 5 coog zo {zn s zn-l’ o3 zo} , * denotes convolution, - denotes point-
wise multiplication. The functions S and Dn are derived from (2.5) and (2.6),
based on assumed probability density functions (Gaussian) for w; and v; R
respectively, and Kn is a scalar which is chosen to normalize Fn to have unit

total mass.

For the two-dimensional special case (i.e., without the amplitude

signal process) the optimal filter recursion of (2.8) becomes
= 2
* 1 (YZ-U) l *
F oGy, = K D (y;) | exp a8 F 1 (yy-Hb,wdu (2.9)
Zo )
where

zi cos (yl) + zi sin (yl)
Dn(yl) = exp ) (2.10)

It can be shown [32], [35] that a cyclically modulated density Fn’ defined as

[s o] (e o]
4 * /A
Fn(yl,yz) = F (yl + 2mk, y, + 27 /A) (2.11)
1=-

k==

with -m Sy <, and -m/A 2y, < m/A, carries all of the information necessary

for nonlinear filtering subject to the cyclic loss function L(sl) =-%(l-cos(€1)),




where €. 1s the error in the estimate of the phase x The modulated density

1
satisfies the recursion relation

1

m/A
—— l — - A
F (0, 1) = —Kn D_(0) S(T-u)F(o-uh,u)du (2.12)
- /A
where
(T-p + Zﬂi/A)2
S(t-p) = exp (2.13)
2q,,A
22
i=_oo

*
It has also been established [32], [35] that the estimate X of xi which

minimizes the cyclic loss function is given by

1 2
x = arg<lE e *n |zi » 2y 1 < n) 3 (2.14)

The optimal filter recursion (2.8) for the three-dimensional
problem can be obtained in an analogous fashion. Using a discrete form
of the representation theorem (see [4]) and following the development of
the two dimensional special case, the density Fn for the filtered amplitude

and cyclic phase processes can be updated recursively as




S - -
F (0,T,0) = K_ D_(o,a) Sl(T a)S, (a-Bn).
-0 =m/A
F 1 (o-pA, w,n)dudn (2.15)
where
i A 1 2 inoo L
D_(0,a) = exp [ ~H(@) (z cos o +z sino -3 H(a))]
1 2Tk e
5, (t-a) = exp [- 0k (t-a + =) ]
22
k:-co
1 2
S,(0=8n) = exp [- 5— (a-Bn)” ]
433

and Kn is again a normalizing constant chosen so as to make Fn integrate to

unity.

As discussed previously, the most convenient and accurate scheme for
solving the continuous~time filtering problem is to solve the corresponding
discrete-time filtering problem for appropriately small A, instead of attacking
the continuous~time problem directly. Indeed, it is interesting to observe
the relationship between (2.3) and the pair (2.7) and (2.8). Solving (2.7) and
(2.8) n times leads to




AA BA AA BA AA BA

) .. (e e ) Po (2.16)

where the operator eAA is convolution with S and eBA is multiplication by Dn'
The infinitesimal generators of the operators eAt and eBt are A (see 2.4) and

B: p »(Efi)'R_l(dEféﬁt)p, corresponding to the terms on the right side of (2.3).
The fact that the relation for Pn approaches the solution P(t,x) of (2.3) is
known as Trotter's formula. Since we replace the continuous—-time problem

with the analogous discrete-time problem, the update relations (2.7) and (2.8)
inherit the properties of P(t,x); in particular, the positivity of P(t,x)
implies the same for Pn. It is of course important to preserve this positivity
relationship when additional approximations are introduced for the‘purpose of

realizing (2.7) and (2.8) on a digital computer.

We have considered various ways to represent the conditional density
in the update formulae (2.7) and (2.8) by a finite number of finite precision
parameters. The representations will be briefly reviewed in the context of
the two-dimensional phase demodulation problem. In the point-mass representa-
tion (see [18]) the conditional density is characterized by a finite set of
weights placed at discrete points in the domain of the density. A fixed

rectangular grid, consisting of m points in the phase variable x, and n points

1

in the phase rate variable x is defined as follows, with indices (i,j)

2’
corresponding to the state variables (0,T), respectively:

G(i) = - T + 2 n(%) + n(%) . n(1;21 1), (2.17)
i=0,...,m-1

= F+gd + I - FER -, (2.18)
j=0,...,n-1




Note that the phase rate variables, evaluated at the points T(i) may be used
directly in the convolution (2.12), but the a priori conditional density Fn-l
must be interpolated along the phase coordinate such that £(k) = o(i) - At(j),

so that k must correspond to pairs i and j which satisfy
. m m,1 .
k=1i+5-2G+ ) (2.19)

Now if m is arbitrarily taken to be an even integer and n/m is taken to be an
integer then (2.21) may be decomposed into an integer part and a fractional

part as follows.

k = k + Ak, (2.20)
where
k=[i+%-1-30VC)] MOD m (2.21)
1 : n,q,0
Ak =[5+ § MOD() ]/ (2.22)
i=0, ..., m-1, j=0, ..., n-1

DIV is integer division (with discarded remainder)

MOD is the remainder after integer division

The interpolated density point will lie between k and (k+1)MOD m in the phase
coordinate, with weighting Ak on the former and 1-Ak on the latter. It can

be seen from examining (2.19)-(2.23) that interpolation in the phase coordinate
is always required if m is even and n>m. Moreover, if m is odd, interpolation

will also be required unless m=n, in which case

k= (i-j + E;—l) MOD m (2.23)




Previous simulation results [31], [32], [35] have been reported using m

odd with n/m chosen between 4 and 6: The present work takes m to be even (32)
in order to provide the best mapping to machines such as Illiac IV which

have an even number of processing elements. There is no other significance

to this change of realization. In any event, with n/m=4 there must be inter-

polation independent of whether m is odd or even.

The term (2.13) consists of an infinite sum. The values which the
argument may assume consist only of integer multiples of 2m/nA in the discrete

coordinate space, resulting in

(\ 2
= - _Z__ (T | P 4
S(p) ) exp[ : A{A)\H+Q)J (2.24)
/ 22
Q:-m
]pl = 0,1, ..., n-1

The expression (2.24) reveals that S is an even function which is cyclic

modulo n. Further, for small values of 9995 the contribution to the sum (2.24)
of all terms except 2=0 is neglible. A key result for the two-dimensional
problem [41] is that the nonlinear filter performance depends only on a function
of 995 and r; thus, any problem may be scaled by adjusting both r and q,, SO

as to provide a suitably small q,, S0 as to guarantee the validity of the

approximation

2 2
S(p)= exp [;zj(%] (I:I‘ ] , Irl=0,1, ..., n-1 (2.25)

In the examples chosen for this paper, is taken to be 0.0l1, which permits

922
us to ignore all terms for |p|> 5, that is S(p)é 0 for |p|> 5.

The point mass method will be the representation discussed in detail in
this paper because it is accurate, preserves positivity, readily generalizes

to higher dimensions and is easily implemented on a large class of digital com-

puters (see [23], [27], [28], and [29]). We will briefly highlight in the




remainder of this section some other representations which have previously been
studied in connection with this problem (see [5], [7], [11], [13], [14], [16],
[20], [21], [25], [26], [30], [32], [35], [36], [37], [39], [40], and [44]).

The doubly periodic density function Fn(x,y) may be represented by
a finite number of Fourier coefficients {aij(n)}(i,j)es, where S is finite.
Moreover, it is possible to derive a recursive update so that {aij(n+1)} can
be obtained dizectly from {aij(n)}, and the cyclic optimal estimate can be
expressed as x = arg [a_l,o(n)]. For more details, consult [32], [35], [36],
and [44]. Experience has shown that the behavior of the Fourier filter is
very good with respect to the estimates, in spite of considerable negativity
introduced by the truncated series representation. Moreover, for reasonably
low signal-to-noise conditions the filter can be as much as an order of
magnitude faster than the equivalent point-mass filter. The speed advantage
begins to disappear, however, as the signal/noise environment is improved,
and the filter requires the use of complex arithmetic and Bessel functions,

which makes it somewhat more difficult to realize, and unattractive to

vectorize.

If Fn is represented by a linear combination of a finite number of
splines under tension, the update formula (2.12) can be used to obtain a
corresponding recursive updating formula for the spline coefficients. The
spline filter can be made to operate as fast as the Fourier filter and the
positivity of the densities can be assured by appropriate (experimental)
adjustment of the tension coefficients. The implementation of the spline
filter, however, requires considerable nonvectorizable overhead so that
implementation of filters on highly parallel or vectored computers would not

provide significant speed improvement.

Another class of representations involves fitting densities with
Gauss-Hermite polynomials or by sums of Gaussian densities. These methods
show the greatest promise when the signal/noise environment is rather good.
The choice of the appropriate number of terms and the placement of the terms

(in the case of Gaussian sums) requires a good deal of experimentation and

10




nonvectorizable computation as the signal to noise ratio drops well below

the threshold of the phase-locked loop.

After much study, therefore, the point-mass filter has evolved
to a standard of comparison for other techniques. Moreover, as computer
evolution continues a higher premium is being placed upon regularity and
parallelizability of computation, so that the comparative importance of the
point-mass method will continue to grow (see also [17]). Since the point
mass filter also enjoys uniform convergence (as the density of the grid
increases) and overall simplicity of implementation it is natural to do a

computer architecture tradeoff in the context of the point-mass filter.

11




) G5 B i § CANDIDATE COMPUTER ARCHITECTURES

As discussed in the previous section, it is possible to increase the
computational efficiency of some examples of our problem by up to an order of
magnitude by the use of sophisticated numerical techniques. The standard for
performance comparison, however, remains the point-mass filter which, coinci-
dentally, also has a simple and highly regular realization. Since performance
analysis for nonlinear filters requires extensive Monte Carlo simulations, and
the point-mass filter is a reference standard, the point-mass filter must be
efficiently implemented. Thus, our attention has concentrated on the subject
of computer architectures which can exploit the regularity and parallelizability
of the point-mass filter. We are of course interested both in the suitability

of the architecture and the ease of programmability for our class or problems.

The majority of commercially available computers are essentially
single thread or Single-Instruction-Single-Data (SISD) architectures. Never-
theless, some reasonably fast machines of this type have been built. By
employing ever faster memories, high-speed cache memories, instruction fetch-
decode-execute overlap, fast multipliers, etc. various serial machines have
become quite competitive for this problem, at least for the two-dimensional
version. Examples of such machines are the IBM 370/168 and the PDP 11-70, both
of which have been used in this study. On the other hand, extension of the
study of nonlinear filter performance to problems of higher dimension clearly

requires more powerful architectures (see also [22], [24], [38], [43]).

The vector processing machines which have been studied for this report
include two broad categories: the array processor and the linear vector pipe-
line processor. An array processor such as the Illiac IV makes use of many
identical processors to create a Single-Instruction-Multiple-Data (SIMD) environ-
ment. By contrast, vector pipeline machines such as the CDC STAR and TI ASC
make use of memory paging and segmented arithmetic functional units to increase
the rate of throughput of multiple identical computations on the corresponding
elements of vector operands. The vectors for pipeline processors may be obtained

from sequential memory locations or from linearly related memory locations, in

12




general, forming what has come to be referred to as a linear vector. The
vectors might also be taken from arbitrary memory locations by vector

indexing, but any potential advantage of memory paging might thereby be lost.

As experience with advanced architectures accumulates (see [42]), it has
become apparent that a multiplicity of architectural features must be simulta-
neously present in order to create a truly general purpose environment. The
earliest examples of this trend were the look ahead machines such as the CDC
6600/7600 which incorporated a finite instruction stack with multiple
functional units scheduled by means of an automatic reservation system. More
recently, Floating Point Systems has introduced the AP120B which employs user-
generated horizontal microcode to permit the simultaneous execution of a number
of parallel activities, including a floating point add, a floating multiply

and several register-register and register-memory transfers.

The latest and (to date) most impressive hybrid machine architecture
to be developed is the CRAY 1, which combines the look-ahead reservation concept
with a large variety of registers, vector registers, and multiple segmented
functional units to achieve a very general purpose machine. The segmentation
of all of the functional units permits pipelining from vector registers which
in turn can be filled with linear vectors from memory. Functional unit
reservations permit chaining of nonconflicting sequential operations, thereby
combining overhead from several pipeline operations into one chained operation.
Another hybrid architecture involving the array concept is being developed by

Burroughs (the BSP [54]).

In the remainder of this section we review the computational require-
ments of the point-mass filter and summarize the impact of the various computer

architectures on the realization of this filter.

13




A. Assessment of Required Computations

The various manipulations of the pointmass densities which are
necessary in order to perform the convolution by S are depicted in Figures 1
and 2. Before the convolution can be done it is necessary to develop an

interpolated Fn density as follows: imagine the cyclic density attached to a

~ 1
elastic cylinder with axis aligned along the phase-rate coordinate (see Fig. 1).

The coordinate transformation leading to the interpolated Fn— is imagined as

follows: fasten the ends of the elastic cylinder to parallel %lat plates; now
rotate the plates in opposite directions each one-half revolution; next compute
the interpolated density along lines parallel to the cylinder axis. The
interpolated density on the resulting cylinder is fitted with a gaussian
sleeve (i.e., height equal to amplitude of S), and the cylinder is joined end-
to-end, forming a torus. The convolution operation produces a new density
function by replacing the ring under the center of gaussian sleeve with the
integral of the product of the sleeve height with the original density under
the sleeve (see Fig. 2). The final operations in the implementation of the
cyclic nonlinear filter are the multiplication by Dn and the normalization by
Kn' The estimates are computed by collapsing the resulting density along the
phase-rate dimension, multiplying the resulting ring by sine and cosine of
phase and integrating, and finally by computing the arctangent of the ratio of

the results.

The computations required to implement the two-dimensional point
mass filter are summarized in Table 1, as a function of m and n. The sensor
terms are the only ones which require math functions (exponentials). Since
only m exponentials are required, this computation is generally insignificant
compared with the overall filter update, so no special effort has been expended

to optimize the required computations.
B. The Illiac IV Algorithm

The primary considerations for programming the Illiac IV array are
the proper utilization of all of the 64 Processor Elements (PEs) and minimiza-
tion of data routing between PEs (see [33], [46], [50]). 1In order to accomplish

the efficient use of the PEs, the values of m=32 and n=128 were selected and

14
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Fig. 1. First step in convolution process.

15




18-4-19396|

ELASTIC CYLINDER N

ROTATE
BOTH ENDS
CLOCKWISE

ONE-HALF TURN

FIT WITH GAUSSIAN

FASTEN SLEEVE

ENDS
TOGETHER

Fig. 2. Phase rotation and phase-rate convolution.
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TABLE 1

FLOATING-POINT OPERATIONS FOR FILTER

Number of Operations

Function Multiples Adds Divisions Exponentials
Sensor Terms 2m m 0 m
Interpolation mn 2mn 0 0
Convolution S5mn 10mn 0 0
Row Sums 0 mn-m 0 0
Estimates 3m 3m-3 1 0
Normalization mn+m 0 0 0
Total 7mn+6m 13mn+3m-3 1 m
Example 28864 53341 1 32

m = 32

n = 128 82206

17




utilized for all machine examples. On the Illiac, two rows of PE storage were

used for each value of the phase samples in Fn' The interpolation and convolution
were accomplished in a totally parallel fashion, using all 64 PEs, except for the
operation depicted in Fig. 3. It is necessary to perform a cyclic rotation of each
phase row to accumulate the terms for the convolution (a cyclic rotation to the
right is combined with a cyclic rotation to the left at each step). Since a

cyclic routing on Illiac IV involves only one row at a time, it was necessary

to form the two-row rotation by two single-row rotations, followed by an end-

element switch (involving three transfers with only one PE enabled).

The overall effectiveness of the Illiac IV algorithm is evident from
the fact that so few operations are required which involve fewer than 64 PEs
enabled. The sensor terms are computed with only 32 PEs enabled, but this
operation only involves about 5% of the estimate update. The single PE trans-
fers and the convolution are also only responsible for about 57 of the computa-
tion time. Finally, the row sums are done logarithmically with a PE utilization
efficiency of 16.7%, and they account for another 5% of the estimated computa-

tion time. Thus, the net PE utilization efficiency of this algorithm is 87.5%.

Although the Illiac IV algorithm is capable of utilizing all of the
PEs 857 of the time, it remains to estimate what percentage of the PE time is
devoted to floating point computation. The Illiac architecture permits only
one floating point operation to be in progress at one time in each PE. At
least one operand fetch from memory can be overlapped with computation, however,
so that throughput can be maximized by chaining multiple arithmetic operations
in series and retaining intermediate results within PE registers. Assuming
two operands must be fetched at 10 cycles each to start a chain and that one
result must be stored for 10 cycles to end the chain, then the megaflop rate
(i.e., millions of floating point operations per second) for a chain of N
identical 10-cycle operations (e.g., floating point multiplies) is given by

6400 , N

R= 222 (

C E;g) (3.1)
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where C is the cycle time in nanoseconds. This working expression is plotted

in Figure 4.

The code for the Illiac was prepared in GLYPNIR, an ALGOL-based
language with no automatic optimization features. Thus, although assembly
language listings were used to minimize unnecessary overhead, no effort was
expended to introduce any arithmetic chaining since that would have required
extensive machine dependent code. Furthermore, the timing was done with the
clock rate set at approximately 80 nanoseconds per cycle. Thus, the measured
time of 9 milliseconds for the approximately 83K floating point operations
corresponds to a raw rate of 9.2 MFLOPS which, corrected for the 857% PE utili-
zation is equivalent to 10.8 MFLOPS of full PE utilization versus 20 MFLOPS
achievable with no chaining or 54% of the maximum achievable arithmetic rate.
Assuming that the 467 overhead is retained, but that chaining is introduced to
an effective chain length of N = 3 on the average, then the achievable Illiac
rate would be 18.4 MFLOPS for C = 80 nanoseconds or 29.4 MFLOPS for the design

value of C = 50 nanoseconds.
C. The CDC-STAR Algorithm

The pipeline architecture (see [49], [51], [52]) is unconstrained by
small fixed resources (i.e., 64 processors). On the other hand, efficient
utilization of the pipeline requires detailed attention to prearrangement of
vectors to allow for streaming from consecutive memory locations. This consid-
eration is particularly important for STAR, which has a relatively slow memory
cycle time. Since the nonlinear filter is recursive, it is necessary to
include the vector rearrangement as part of the filter update and therefore
the rearrangement constitutes the major overhead of the STAR program. The

operations on the matrix Fn— to precondition it for the convolution are shown

1

in Figures 5 and 6. First, the column-ordered Fn_1 matrix is column-shuffled

with itself to produce a matrix which has two copies of every phase variable

in each column. Then, a scrambled Fn_ can be formed which has the property

1
that each row in the final convolved matrix can be generated by operating on a

suitable interpolation between the two adjacent rows of the scrambled Fn—l'
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Fig. 5. Scrambling of phase variables modulo 2w,
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*
The interpolation which does this is depicted in Figure 6 . This inter-
polation may be done by vector operations of length (mtl)n, or 4224, The row
corresponding to m+l in the result may be compressed out of the final result

to reduce the subsequent calculations.

The cyclic convolution is shown in Figure 7. First, the end columns

of the interpolated Fn are cyclically copied to produce a matrix from which

=il
each of the terms of the convolution may be obtained as m x n matrices.

The production of a 5-term symmetric convolution is done in parallel for all
4096 points by a sequence of 10 vector adds and 5 vector multiplies, all of

length 4096.

The only computations which are done on the STAR that are less than
100% efficient are the vector sums and the determination of the estimates.
This is reflected in Table 2, which gives the breakdown of the various functions

in the STAR program.

The measured execution time of 5.17 milliseconds for the STAR version
of the filter corresponds to an overall processing rate of about 16 MFLOPS.
The rate for required arithmetic only (only 637% of the total time) would be
25.3 MFLOPS. Now the STAR is capable of producing vector sums at a 50 MFLOPS
rate and vector multiplies at the 25 MFLOPS rate and, from Table 1, we find
that 64.97 of the floating point operations required are additions and 35.17%
are multiplies. Furthermore, although the ratio of compute to compute plus
start-up cycles in Table 2 suggests 95.6% efficiency for multiplies and 90.4%
efficiency for additions, when account is taken of the unnecessary adds and
multiplies introduced in order to force vector arithmetic, the asymptotic
computation rates for this problem are corrected downward to 16.8 MFLOPS and
39.1 MFLOPS for multiplication and addition, respectively. On the whole,
however, if the running times are corrected down to the estimated minimum

achievable 4.70 milliseconds then the arithmetic results would be produced at

*
The Figures 2 and 3 are shown with m=4 and n=16 for illustrative purposes
only.
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TABLE 2

STAR PROGRAM BREAKDOWN

Cycles
Operations % of Total Start-ups Compute Required
Vector Arithmetic 63.4 5174 76793 78.5%
12 Multiplies 33.3 1908 41152 70.1%
46 Adds 26.4 3266 30861 86.47
1 Exponential 3.7 - 4780 100.0%
Vector Rearrangement 31.3 1233 39292 83.7%
1 Vector Transfer 5.8 1001 6464 68.07%
2 Indexed Transfers 22.1 144 28480 100.0%
(Block lengths 32 & 33)
1 Vector Compress 3.4 88 4348 0%
Scalar Arithmetic - - 79 100.0%
1 Divide 46
3 Adds 33
Subroutine Overhead 4.1 - 5142 0%
3 Calls
Miscellaneous 1.2 - 1537 100.0%
Memory Conflicts, etc.
TOTAL 6407 122843 5.17 msec
5% 95%
Minimum Achievable 6224 111296 4.70 msec
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a rate which is 52.17% of the asymptotic rate for this problem (i.e., without
counting overhead or unnecessary computations), and, discounting vector rearrange-
ment, 77.1%Z of the asymptotic rate. We conclude, therefore, that the nonlinear
filter utilizes the STAR about as efficiently as could be expected for any

practical problem.

The CDC STAR was programmed in a vectorized form of FORTRAN IV with
the use of assembly language listings to aid in optimization. It was necessary
to insert two inline machine instructions to implement the vector block transfers
for the rearrangement process. These instructions were not as yet supported
by the FORTRAN system. Moreover, we were compelled to replace one machine
instruction which was supported (the SUM instruction, which accumulates the
sum of components of a vector) by an entire vector subroutine in order to in-
crease execution speed. Since these changes were anything but obvious we view
the language support to be somewhat deficient for this particular exercise,

although clearly not so difficult to use efficiently as the Illiac IV language.

D. CDC 6600 Program

The CDC 6600 (and 7600) has instruction look-ahead and multiple
arithmetic functional units which provide a partial overlap parallelism. The
most efficient 6600 programs contain many tight loops instead of complicated
computations within large loops. By recoding the vectorized STAR program in
analogous FORTRAN for the CDC 6600, we were able to achieve efficient utiliza-
tion of the available resources with functional loops which are for the most

part contained within the 8-word instruction stack.

The basic data flow of the CDC 6600 is illustrated in Figure 8.
Reads from memory are accomplished by setting the A Registers Al-A5 with the
appropriate address; writes are obtained by loading A6-A7. The B Registers

are used for incrementing and address computation.

The breakdown of the computations for the CDC 6600 is shown in
Table 3. Note that the major overhead is for reading and writing and miscella-

neous waiting. It is interesting to note also that the ratio of multiply rates
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Fig. 8. CDC 6600 CPU architecture.
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TABLE 3

CDC6600 PROGRAM BREAKDOWN

Function
(% Cycles) Multiplies Adds Divisions Reads Writes  Exp. Notes
Sensor Update 2m m 0 3m m m Not in
(~0) stack
(extn.
refs.)
Interpolation nm 2mn 0 4nm+3n mn 0 Outer
(~16) loop not
in stack
Expansion 0 0 0 10m 10m 0 Instack
(~0)
Convolution S5mn 10mn 0 16mn+15 6mn 0 Instack
(~74)
Row Sums 0 mn-m 0 mn+m m 0 Instack
(~4)
Estimates 3m 3m-3 1 4m+11 3 0 Instack
(~0)
Normalization mn+m 0 0 mn+2m mn 0 Instack
(~6)
Approx. Totals 7mn 13mn 0 22mn 8mn 0
Approx. No. of
Minor Cycles 70mn 91mn 0 66mn* 24mn* 0
Summary: Minor Cycles (Approx.)
Arithmetic: 161mn 47.17%
Read/Write: 90mn 26.3%
Waiting: 91mn 26.67%
Measured: 342mn 100.0%

(m = 32, n = 128 for test case)

Measured time = 140 msec/est.

*
The reads and writes are partially overlapped in time, however the total
overhead of 52.9% is accurate.
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between STAR and 6600 is 25 to 1, while the add-rate ratio is 35 to 1 (including
normalization on 6600). Thus, for arithmetic alone, STAR would be expected to
be 31 times faster than the 6600 on this problem. The achieved speed-up of 27

is therefore reasonable.

The CDC 6600 was programmed in standard FORTRAN IV for this problem.
It was necessary to code all two-dimensional arrays as one-dimensional arrays
and to make several iterations with assembly language listings produced by the
FTN 4.6 level 428 optimizing compiler before the final running time of 130
milliseconds per estimate, which corresponds to 0.63 MFLOPS, was achieved. It
should also be acknowledged that the present 6600 program does not make use of
the second multiplier, since to do so would force the affected loops out of
the stack. In fairness to the 7600, however, which has a larger stack, we
might be able to increase the 7600 running speed by as much as 107% by using
both multipliers. Nevertheless the CDC 6600 and 7600 serve as good benchmarks
for comparison of achieved efficiencies and software development difficulties.
The three-dimensional problem is intractable for the 6600, however, so no
sttempt has been made to characterize its performance. We are currently study-
ing the three-dimensional problem on the 7600. This problem requires array
storage in excess of 65K, which leads to complicated memory management

considerations.

E. The AP-120B Algorithm

The Floating Point Systems AP120B architecture (see [47] and [55]) is
illustrated in Figure 9. There are sufficient data paths to permit a number
of essentially independent operations to proceed in parallel. Microcode for
the AP120B is included in 64-bit microinstructions, as shown in Figure 10,
which are programmed and cross-assembled in a Macro assembly language for a
host mini-computer. Although the software development for the AP120B must be
considered tedious by comparison with the larger machines, the AP120B can
nevertheless provide competitive performance at very low cost. Thus, we have
optimized a two-dimensional example for the AP120B to show its performance in
the most competitive light, even though we have not expended equivalent effort

in optimization for other machines.
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The initial code for the AP120B was derived by translating the CDC
6600 FORTRAN IV code described in the previous section. The only modification
introduced was to implement the convolution in a one-dimensional pipeline, as
suggested by Randy Cole of USC/ISI. This original program required 22.8 msec
per estimate and utilized three times as much memory as was required to
store the density information. An alternative formulation, taking into account
the intrinsic odd/even memory paging constraints, was eventually developed,
resulting in a computation time of 13.88 msec per estimate. This latter,

essentially minimal, program is the subject of the present discussion.

The various conditional densities can be visualized as 32 x 128
matrices of weights representing the appropriate probabilities, with the (i,j)th
weight associated with the ith phase and jth phase rate weight, even though
in the machine this matrix is stored as a 4096-element vector made up of the
ordered columns of the matrix. The code which realizes update of the one-step
predictor Prl g Pn is broken into two parts Pn - Fn

and F - P
n n

-1 -1 -1 -1
which are respectively column-oriented and row-oriented operations.

We describe first the passage from the predictor to scrambled filter
density, Pn_l(x-y) = Fn_l(x-Ay,y). Assume that Pn—l has been stored unnormalized
1). Then, (l/Kn—l) Dn—l(xi
of both Data Pad X (DPX) and Data Pad Y (DPY) (See Fig. 9). Next, starting

(i.e., not divided by Kn— ) is written on ith place

from the last column of Pn— the column elements are written alternately on

1
DPX and DPY in the positions corresponding to their order in the column,

starting with DPX or DPY depending upon whether the largest o with X, - Dyj

Z_xa is odd or even for the jth column. This interweaving of the values of a
column of Pn is necessary because the AP12<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>