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ABSTRACT 

Examples of two and three dimensional phase demodulation problems 

are presented.  Computer realizations for the optimal nonlinear phase 

estimator are discussed in detail, with emphasis on parallel computer 

architectures.  Implementation of the nonlinear filter on various 

computer architectures, including the CDC6600/7600, CDC STAR-100, Illiac IV, 

the CRAY-1, and the Floating Point Systems AP120B is reviewed.  Detailed 

Monte Carlo performance analysis is presented for the two-dimensional system, 

while partial results are included for the three dimensional case.  Impli- 

cations concerning the ideal computer architecture for nonlinear filter 

realization are discussed. 
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I.        INTRODUCTION 

About nine years ago [6] we initiated a research effort which had as 

its objective the actual construction of the optimal nonlinear filter for some 

low state dimensional problems.  The mathematical problem consisted of solving 

a nonlinear partial differential equation of diffusion type driven by a random 

process.  The natural synthesis tool was a digital computer.  Very quickly it 

was realized that the serial nature of the machines available at that time 

severely limited not only the realization problem but, more significantly, the 

error analysis problem.  This is because although a highly developed theory 

existed, no good error performance bounds were available and error analysis 

could only be done by time consuming Monte Carlo simulation analysis. 

We soon decided that we should concentrate our efforts on the phase 

demodulation problem [9] because of the exceptional amount of research effort 

that had been devoted to threshold extension of the classical phase lock loop, 

which in actuality is a suboptimal filter for the phase demodulation problem [3], 

Further threshold extension had payoffs which would justify the design of a 

special purpose black box to realize the optimal demodulator.  Also it became 

obvious that some thought should be given to the architecture of the black box 

in order that it provide real-time realization as well as effective off-line 

error analysis [34] capabilities.  We have studied the architecture question by 

gaining experience with designing fast software for various parallel, pipeline 

and array processors, and along the way documenting the achievable error 

variance improvement possible by the use of the optimal demodulator. 

Our purpose in undertaking this research effort is to develop a new 

technique for system design based on parallel computation and to show in the 

case of phase demodulation how the nonlinear filter can improve system per- 

formance.  To those who believe our results are impractical because of the 

number of megaflops necessary to compute the relevant conditional density, we 

feel it suffices to note the enormous progress in computer speed and design in 

the last nine years, in order to underscore the declining validity of that 

argument as a function of time. 



II.       PROBLEM DESCRIPTION 

We model the observation process as the solution of random differential 

equations in the sense of Ito DJ: 

dz1 = H(x ) cos (x ) dt + dv1 
J (2.1) 

dz2 = H(x3) sin (x^ dt + dv
2 

1     2 
where x.. is a phase process, x~ is the amplitude process, and v and V are 

Brownian motions of spectral density r which are independent of the amplitude 

and phase signal processes.  Our object is to find optimal estimates of the 

current value of phase and amplitude based on past and present observations of 
1     2 

z and z .  In order to proceed we must model the amplitude and phase processes, 

which may also be done in the sense of Ito as 

dx1  = x„ dt 

dx2  = dw2 (2.2) 

dx  = -3 x~ dt + dw~ 

where dw_ and dw~ are white noises with spectral parameters q~~ and q^«, 

respectively.  We consider two special cases of (2.1), (2.2): for the two- 

dimensional process we replace the H(x„) with unity and eliminate the equation 

for x~ from the state equations; for the three-dimensional process we implement 

(2.1) and (2.2) as shown with H(x^) = exp(x„). 

The solution of the filtering problem involves the determination of 

the conditional probability density for the signal process given the present 

and past observations.  This solution is obtained by solving the following 

differential equation: 
/\   ■»       -|      /\ 

dp = Apdt + (h-h)  R   (d_z - hdt)p 
(2.3) 

with     p:  Rn x R -> R and h: Rn  — RS 

where  s=2 and n=3 for the three-dimensional model or n=2 for the two-dimensional 

model, 



A = -ßx 
3 dx. 

+ x 
2 di 

h = 
H(x3) cos (x1) 

H(x3) sin (xx) 

/ 1\ z 

+ 2%3 

R = 

z = 

\; 

+ 2^22 
3x' 

(2.4) 

Equation (2.3) is the Stratonovich-Kushner equation for the solution to the 

nonlinear filtering problem (see [4]). 

Two alternatives exist for solving (2.3) on a digital computer [2], 

One scheme involves the direct replacement of (2.3) with a suitable finite 

difference equation which in the continuous limit approaches (2.3), and when 

solved yields a solution which also in the limit (hopefully) approaches the 

solution of (2.3).  A more effective method, however, is to pose and solve 

a sequence of discrete filtering problems as 

z  = H(x ) cos (x )  + V 
n       n       n     n 

z2  = H(x3) sin (x1)  + 
n      n      n 

(2.5) 

n 

2 
n 

=  x 

=  x 

n-1 

2 
n-1 

+ A x 
n-1 

(2.6) 

+ W n-1 

x n 

2 

3    OA 3       3 
= x .. + 3Ax .  + w . 

n-1     n-1     n-1 

where E(vX)  = r/A , E(w1) 
n        '   n 

Aq .  with A interpreted as the sampling 

interval.  The solution to the discrete filtering problem evolves according 

to the equations [4], [8] 



P ,-,  = S*F (2.7) n+1       n 

F=^D«P=-^D-S*F1 (2.8) 
n    K  n  n  K   n     n-1 

n n 

12       3       i 
where P  {F } is the conditional distribution of x , x  , and x given z  ., , 

nn... . nn       n°     n-1 
z  0 , . . . , z   {z  ,z  .,..., z }, * denotes convolution, • denotes point- 
n-2        o   n   n-1'      o  ' 

wise multiplication.  The functions S and D are derived from (2.5) and (2.6), 

based on assumed probability density functions (Gaussian) for w and v  , 

respectively, and K is a scalar which is chosen to normalize F  to have unit r      J n n 
total mass. 

For the two-dimensional special case (i.e., without the amplitude 

signal process) the optimal filter recursion of (2.8) becomes 

<y2-^
2l 

where 

Fl  «Vy2>  " r W j     °**\ li^K-K   Fn-1  CyrVA.u)dp (2.9) 

1 2 z     cos   (y-)  4-    z     sin   (y. ) n Jr n Jl Dn(yi)=    exp^ ^-^ ^-> (2.10) 

It can be shown [32], [35] that a cyclically modulated density F , defined as 

Fn(yl'y2} " /    )    Fn (yl + 2TTk' y2 + 2TT£/A) (2,11) 

with -7T _< y < 7T, and -TT/A £ y? < TT/A, carries all of the information necessary 
1 

for nonlinear filtering subject to the cyclic loss function L(£..) = y(l-cos(e1)), 



where e  is the error in the estimate of the phase x .  The modulated density 

satisfies the recursion relation 

V0'T) ■ r Va) 
n 

TT/A 

-TT/A 

S(T-y)F(a-uA,y)du 

where 

S(T-y)   = exp 

r 
I (T-y  4-   2-TTi/A)' 

2q22A 

1=-°° 

(2.12) 

(2.13) 

It has also been established [32], [35] that the estimate x of x which 
n    n 

minimizes the cyclic loss function is given by 

xn = arg 

\ 

1 

E e n 
1   2 z . , z . i < n) 

l   — 
(2.14) 

The optimal filter recursion (2.8) for the three-dimensional 

problem can be obtained in an analogous fashion.  Using a discrete form 

of the representation theorem (see [4]) and following the development of 

the two dimensional special case, the density F for the filtered amplitude 

and cyclic phase processes can be updated recursively as 



where 

°°  TT/A 

Fn(a,i,a) = |- Dn(a,a) I       S1(x-a)S2(a-3n). 

-°°  -TT/A 

F   (a-uA, y,n)dydn (2.15) 
n-l 

D (a,a) = exp [ — H(a) (z  cos a + z sin a - y H(a))] 

oo 

51(T-a) = y   exp [- ^—T  (i-a + -7- ) ] 
2q22A 

k=-°° 

1 2 
S0(a-ßn) = exp [- -r-—T- (a-Bn)  ] 
'2--   —  2<,33A 

and K is again a normalizing constant chosen so as to make F integrate to 

unity. 

As discussed previously, the most convenient and accurate scheme for 

solving the continuous-time filtering problem is to solve the corresponding 

discrete-time filtering problem for appropriately small A, instead of attacking 

the continuous-time problem directly.  Indeed, it is interesting to observe 

the relationship between (2.3) and the pair (2.7) and (2.8).  Solving (2.7) and 

(2.8) n times leads to 



, AA BAX , AA BAN P « (e e ) (e e ) • 
1      2 

, AA BA, _ 
. (e e ) P (2.16) 

n 

where the operator e  is convolution with S and e  is multiplication by D . 

The infinitesimal generators of the operators e  and e  are A (see 2.4) and 

B: p -*(h-h)"R  (dz-hdt)p, corresponding to the terms on the right side of (2.3) 

The fact that the relation for P approaches the solution P(t,x) of (2.3) is 

known as Trotter's formula.  Since we replace the continuous-time problem 

with the analogous discrete-time problem, the update relations (2.7) and (2.8) 

inherit the properties of P(t,x); in particular, the positivity of P(t,x) 

implies the same for P .  It is of course important to preserve this positivity 

relationship when additional approximations are introduced for the purpose of 

realizing (2.7) and (2.8) on a digital computer. 

We have considered various ways to represent the conditional density 

in the update formulae (2.7) and (2.8) by a finite number of finite precision 

parameters.  The representations will be briefly reviewed in the context of 

the two-dimensional phase demodulation problem.  In the point-mass representa- 

tion (see [18]) the conditional density is characterized by a finite set of 

weights placed at discrete points in the domain of the density.  A fixed 

rectangular grid, consisting of m points in the phase variable x1 and n points 

in the phase rate variable x„, is defined as follows, with indices (i,j) 

corresponding to the state variables (a,x), respectively: 

0(1)    = - 7T + 2 TT(-) + TT(-) = 7T(^^ -1) , 
mm      m 

i=0,...,m-l 

/ .\    -T   2TT A N , 1\ ,1. 
AC  n    ;> 

(2.17) 

(2.18) 

j=0,...,n-l 



Note that the phase rate variables, evaluated at the points i(i) may be used 

directly in the convolution (2.12), but the a priori conditional density F 

must be interpolated along the phase coordinate such that £(k) = a(i) - Ax(j), 

so that k must correspond to pairs i and j which satisfy 

k=i+f-f(|+j) (2.19) 

Now if m is arbitrarily taken to be an even integer and n/m is taken to be an 

integer then (2.21) may be decomposed into an integer part and a fractional 

part as follows. 

k = k + Ak, (2.20) 

where 

k - [i + ~ - 1 -j DIV(-)] MOD m (2.21) 
—      z m 

Ak = [i+ j MOD<£)]/£ (2.22) 
L mm 

i=0, ..., m-1, j=0, ..., n-1 

DIV is integer division (with discarded remainder) 

MOD is the remainder after integer division 

The interpolated density point will lie between k and (k+l)M0D m in the phase 

coordinate, with weighting Ak on the former and 1-Ak on the latter.  It can 

be seen from examining (2.19)-(2.23) that interpolation in the phase coordinate 

is always required if m is even and n>m.  Moreover, if m is odd, interpolation 

will also be required unless m=n, in which case 

k = (i-j + ~)  MOD m (2.23) 



Previous simulation results [3l], [32], [35] have been reported using m 

odd with n/m chosen between 4 and 6.  The present work takes m to be even (32) 

in order to provide the best mapping to machines such as Illiac IV which 

have an even number of processing elements.  There is no other significance 

to this change of realization.  In any event, with n/m=4 there must be inter- 

polation independent of whether m is odd or even. 

The term (2.13) consists of an infinite sum.  The values which the 

argument may assume consist only of integer multiples of 2ir/nA in the discrete 

coordinate space, resulting in 

(2.24) 

The expression (2.24) reveals that S is an even function which is cyclic 

modulo n.  Further, for small values of q99, the contribution to the sum (2.24) 

of all terms except £=0 is neglible.  A key result for the two-dimensional 

problem [4l] is that the nonlinear filter performance depends only on a function 

of q„~ and r; thus, any problem may be scaled by adjusting both r and q»„ so 

as to provide a suitably small q__ so as to guarantee the validity of the 

approximation 

S(p)= exp 
-2 

1^22 

TT 

A 1Ä 
P 
n |p|= 0,1, n-1 (2.25) 

In the examples chosen for this paper,  q  is taken to be 0.01, which permits 

us to ignore all terms for |p|> 5, that is S(p)= 0 for |p|> 5. 

The point mass method will be the representation discussed in detail in 

this paper because it is accurate, preserves positivity, readily generalizes 

to higher dimensions and is easily implemented on a large class of digital com- 

puters (see [23], [27], [28], and [29]).  We will briefly highlight in the 



remainder of this section some other representations which have previously been 

studied in connection with this problem (see [5], [7], [11], [13], [14], [16], 

[20], [21], [25], [26], [30], [32], [35], [36], [37], [39], [40], and [44]). 

The doubly periodic density function F (x,y) may be represented by 

a finite number of Fourier coefficients {a  (n)K. ,x c where S is finite. 

Moreover, it is possible to derive a recursive update so that {a..(n+l)} can 

be obtained directly from (a..(n)}, and the cyclic optimal estimate can be 

expressed as x = arg [a  n(n)].  For more details, consult [32], [35], [36], 

and [44].  Experience has shown that the behavior of the Fourier filter is 

very good with respect to the estimates, in spite of considerable negativity 

introduced by the truncated series representation.  Moreover, for reasonably 

low signal-to-noise conditions the filter can be as much as an order of 

magnitude faster than the equivalent point-mass filter.  The speed advantage 

begins to disappear, however, as the signal/noise environment is improved, 

and the filter requires the use of complex arithmetic and Bessel functions, 

which makes it somewhat more difficult to realize, and unattractive to 

vectorize. 

If F is represented by a linear combination of a finite number of 
n 

splines under tension, the update formula (2.12) can be used to obtain a 

corresponding recursive updating formula for the spline coefficients.  The 

spline filter can be made to operate as fast as the Fourier filter and the 

positivity of the densities can be assured by appropriate (experimental) 

adjustment of the tension coefficients.  The implementation of the spline 

filter, however, requires considerable nonvectorizable overhead so that 

implementation of filters on highly parallel or vectored computers would not 

provide significant speed improvement. 

Another class of representations involves fitting densities with 

Gauss-Hermite polynomials or by sums of Gaussian densities.  These methods 

show the greatest promise when the signal/noise environment is rather good. 

The choice of the appropriate number of terms and the placement of the terms 

(in the case of Gaussian sums) requires a good deal of experimentation and 

10 



nonvectorizable computation as the signal to noise ratio drops well below 

the threshold of the phase-locked loop. 

After much study, therefore, the point-mass filter has evolved 

to a standard of comparison for other techniques.  Moreover, as computer 

evolution continues a higher premium is being placed upon regularity and 

parallelizability of computation, so that the comparative importance of the 

point-mass method will continue to grow (see also [17]).  Since the point 

mass filter also enjoys uniform convergence (as the density of the grid 

increases) and overall simplicity of implementation it is natural to do a 

computer architecture tradeoff in the context of the point-mass filter. 

1] 



III.      CANDIDATE COMPUTER ARCHITECTURES 

As discussed in the previous section, it is possible to increase the 

computational efficiency of some examples of our problem by up to an order of 

magnitude by the use of sophisticated numerical techniques.  The standard for 

performance comparison, however, remains the point-mass filter which, coinci- 

dentally, also has a simple and highly regular realization.  Since performance 

analysis for nonlinear filters requires extensive Monte Carlo simulations, and 

the point-mass filter is a reference standard, the point-mass filter must be 

efficiently implemented.  Thus, our attention has concentrated on the subject 

of computer architectures which can exploit the regularity and parallelizability 

of the point-mass filter.  We are of course interested both in the suitability 

of the architecture and the ease of programmability for our class or problems. 

The majority of commercially available computers are essentially 

single thread or Single-Instruction-Single-Data (SISD) architectures.  Never- 

theless, some reasonably fast machines of this type have been built.  By 

employing ever faster memories, high-speed cache memories, instruction fetch- 

decode-execute overlap, fast multipliers, etc. various serial machines have 

become quite competitive for this problem, at least for the two-dimensional 

version.  Examples of such machines are the IBM 370/168 and the PDP 11-70, both 

of which have been used in this study.  On the other hand, extension of the 

study of nonlinear filter performance to problems of higher dimension clearly 

requires more powerful architectures (see also [22], [24], [38], [43]). 

The vector processing machines which have been studied for this report 

include two broad categories: the array processor and the linear vector pipe- 

line processor.  An array processor such as the Illiac IV makes use of many 

identical processors to create a Single-Instruction-Multiple-Data (SIMD) environ- 

ment.  By contrast, vector pipeline machines such as the CDC STAR and TI ASC 

make use of memory paging and segmented arithmetic functional units to increase 

the rate of throughput of multiple identical computations on the corresponding 

elements of vector operands.  The vectors for pipeline processors may be obtained 

from sequential memory locations or from linearly related memory locations, in 

12 



general, forming what has come to be referred to as a linear vector.  The 

vectors might also be taken from arbitrary memory locations by vector 

indexing, but any potential advantage of memory paging might thereby be lost. 

As experience with advanced architectures accumulates(see [42]), it has 

become apparent that a multiplicity of architectural features must be simulta- 

neously present in order to create a truly general purpose environment.  The 

earliest examples of this trend were the look ahead machines such as the CDC 

6600/7600 which incorporated a finite instruction stack with multiple 

functional units scheduled by means of an automatic reservation system.  More 

recently, Floating Point Systems has introduced the AP120B which employs user- 

generated horizontal microcode to permit the simultaneous execution of a number 

of parallel activities, including a floating point add, a floating multiply 

and several register-register and register-memory transfers. 

The latest and (to date) most impressive hybrid machine architecture 

to be developed is the CRAY 1, which combines the look-ahead reservation concept 

with a large variety of registers, vector registers, and multiple segmented 

functional units to achieve a very general purpose machine.  The segmentation 

of all of the functional units permits pipelining from vector registers which 

in turn can be filled with linear vectors from memory.  Functional unit 

reservations permit chaining of nonconflicting sequential operations, thereby 

combining overhead from several pipeline operations into one chained operation. 

Another hybrid architecture involving the array concept is being developed by 

Burroughs (the BSP [54]). 

In the remainder of this section we review the computational require- 

ments of the point-mass filter and summarize the impact of the various computer 

architectures on the realization of this filter. 

13 



A. Assessment of Required Computations 

The various manipulations of the pointmass densities which are 

necessary in order to perform the convolution by S are depicted in Figures 1 

and 2.  Before the convolution can be done it is necessary to develop an 

interpolated F   density as follows: imagine the cyclic density attached to a 

elastic cylinder with axis aligned along the phase-rate coordinate (see Fig. 1). 

The coordinate transformation leading to the interpolated F   is imagined as 

follows: fasten the ends of the elastic cylinder to parallel flat plates; now 

rotate the plates in opposite directions each one-half revolution; next compute 

the interpolated density along lines parallel to the cylinder axis.  The 

interpolated density on the resulting cylinder is fitted with a gaussian 

sleeve (i.e., height equal to amplitude of S), and the cylinder is joined end- 

to-end, forming a torus.  The convolution operation produces a new density 

function by replacing the ring under the center of gaussian sleeve with the 

integral of the product of the sleeve height with the original density under 

the sleeve (see Fig. 2).  The final operations in the implementation of the 

cyclic nonlinear filter are the multiplication by D and the normalization by 

K .  The estimates are computed by collapsing the resulting density along the 

phase-rate dimension, multiplying the resulting ring by sine and cosine of 

phase and integrating, and finally by computing the arctangent of the ratio of 

the results. 

The computations required to implement the two-dimensional point 

mass filter are summarized in Table 1, as a function of m and n.  The sensor 

terms are the only ones which require math functions (exponentials).  Since 

only m exponentials are required, this computation is generally insignificant 

compared with the overall filter update, so no special effort has been expended 

to optimize the required computations. 

B. The Illiac IV Algorithm 

The primary considerations for programming the Illiac IV array are 

the proper utilization of all of the 64 Processor Elements (PEs) and minimiza- 

tion of data routing between PEs (see [33], [46], [50]).  In order to accomplish 

the efficient use of the PEs, the values of m=32 and n=128 were selected and 

14 
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Fig. 1.  First step in convolution process. 
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Fig. 2.  Phase rotation and phase-rate convolution. 
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TABLE 1 

FLOATING-POINT OPERATIONS FOR FILTER 

Function 

Numb er of Operations 

Multiples Adds Divisions Exponentials 

Sensor Terms 2m m 0 ■ 

Interpolation mn 2mn 0 i 
Convolution 5mn lOmn 0 o 

Row Sums 0 mn-m 0 o 

Estimates 3m 3m-3 1 0 

Normalization mn-hn 0 0 0 

Total 7mn+6m 13mn+3m -3 1 IT 

Example 28864 
N. 

53341 1 32 

m = 32 

-%•■- 

n = 128 82206 

17 



utilized for all machine examples.  On the Illiac, two rows of PE storage were 

used for each value of the phase samples in F .  The interpolation and convolution 

were accomplished in a totally parallel fashion, using all 64 PEs, except for the 

operation depicted in Fig. 3.  It is necessary to perform a cyclic rotation of each 

phase row to accumulate the terms for the convolution (a cyclic rotation to the 

right is combined with a cyclic rotation to the left at each step).  Since a 

cyclic routing on Illiac IV involves only one row at a time, it was necessary 

to form the two-row rotation by two single-row rotations, followed by an end- 

element switch (involving three transfers with only one PE enabled). 

The overall effectiveness of the Illiac IV algorithm is evident from 

the fact that so few operations are required which involve fewer than 64 PEs 

enabled.  The sensor terms are computed with only 32 PEs enabled, but this 

operation only involves about 5% of the estimate update.  The single PE trans- 

fers and the convolution are also only responsible for about 5% of the computa- 

tion time.  Finally, the row sums are done logarithmically with a PE utilization 

efficiency of 16.7%, and they account for another 5% of the estimated computa- 

tion time.  Thus, the net PE utilization efficiency of this algorithm is 87.5%. 

Although the Illiac IV algorithm is capable of utilizing all of the 

PEs 85% of the time, it remains to estimate what percentage of the PE time is 

devoted to floating point computation.  The Illiac architecture permits only 

one floating point operation to be in progress at one time in each PE.  At 

least one operand fetch from memory can be overlapped with computation, however, 

so that throughput can be maximized by chaining multiple arithmetic operations 

in series and retaining intermediate results within PE registers.  Assuming 

two operands must be fetched at 10 cycles each to start a chain and that one 

result must be stored for 10 cycles to end the chain, then the megaflop rate 

(i.e., millions of floating point operations per second) for a chain of N 

identical 10-cycle operations (e.g., floating point multiplies) is given by 

_  6400 _N_, n n R-  c  (N+3) (3.1) 

18 
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Fig. 3. Cyclic Rotation Modulo 128 
on Illiac. 
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where C is the cycle time in nanoseconds.  This working expression is plotted 

in Figure 4. 

The code for the Illiac was prepared in GLYPNIR, an ALGOL-based 

language with no automatic optimization features.  Thus, although assembly 

language listings were used to minimize unnecessary overhead, no effort was 

expended to introduce any arithmetic chaining since that would have required 

extensive machine dependent code.  Furthermore, the timing was done with the 

clock rate set at approximately 80 nanoseconds per cycle.  Thus, the measured 

time of 9 milliseconds for the approximately 83K floating point operations 

corresponds to a raw rate of 9.2 MFLOPS which, corrected for the 85% PE utili- 

zation is equivalent to 10.8 MFLOPS of full PE utilization versus 20 MFLOPS 

achievable with no chaining or 54% of the maximum achievable arithmetic rate. 

Assuming that the 46% overhead is retained, but that chaining is introduced to 

an effective chain length of N = 3 on the average, then the achievable Illiac 

rate would be 18.4 MFLOPS for C = 80 nanoseconds or 29.4 MFLOPS for the design 

value of C = 50 nanoseconds. 

C.  The CDC-STAR Algorithm 

The pipeline architecture (see [49], [51], [52]) is unconstrained by 

small fixed resources (i.e., 64 processors).  On the other hand, efficient 

utilization of the pipeline requires detailed attention to prearrangement of 

vectors to allow for streaming from consecutive memory locations.  This consid- 

eration is particularly important for STAR, which has a relatively slow memory 

cycle time.  Since the nonlinear filter is recursive, it is necessary to 

include the vector rearrangement as part of the filter update and therefore 

the rearrangement constitutes the major overhead of the STAR program.  The 

operations on the matrix F   to precondition it for the convolution are shown 

in Figures 5 and 6.  First, the column-ordered F   matrix is column-shuffled 

with itself to produce a matrix which has two copies of every phase variable 

in each column.  Then, a scrambled F   can be formed which has the property 

that each row in the final convolved matrix can be generated by operating on a 

suitable interpolation between the two adjacent rows of the scrambled F   . 
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The interpolation which does  this is depicted in Figure 6 .  This inter- 

polation may be done by vector operations of length (m+l)n, or 4224.  The row 

corresponding to m+1 in the result may be compressed out of the final result 

to reduce the subsequent calculations. 

The cyclic convolution is shown in Figure 7.  First, the end columns 

of the interpolated F   are cyclically copied to produce a matrix from which 

each of the terms of the convolution may be obtained as m x n matrices. 

The production of a 5-term symmetric convolution is done in parallel for all 

4096 points by a sequence of 10 vector adds and 5 vector multiplies, all of 

length 4096. 

The only computations which are done on the STAR that are less than 

100% efficient are the vector sums and the determination of the estimates. 

This is reflected in Table 2, which gives the breakdown of the various functions 

in the STAR program. 

The measured execution time of 5.17 milliseconds for the STAR version 

of the filter corresponds to an overall processing rate of about 16 MFLOPS. 

The rate for required arithmetic only (only 63% of the total time) would be 

25.3 MFLOPS.  Now the STAR is capable of producing vector sums at a 50 MFLOPS 

rate and vector multiplies at the 25 MFLOPS rate and, from Table 1, we find 

that 64.9% of the floating point operations required are additions and 35.1% 

are multiplies.  Furthermore, although the ratio of compute to compute plus 

start-up cycles in Table 2 suggests 95.6% efficiency for multiplies and 90.4% 

efficiency for additions, when account is taken of the unnecessary adds and 

multiplies introduced in order to force vector arithmetic, the asymptotic 

computation rates for this problem are corrected downward to 16.8 MFLOPS and 

39.1 MFLOPS for multiplication and addition, respectively.  On the whole, 

however, if the running times are corrected down to the estimated minimum 

achievable 4.70 milliseconds then the arithmetic results would be produced at 

The Figures 2 and 3 are shown with m=4 and n=16 for illustrative purposes 
on! v. only. 
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TABLE 2 

STAR PROGRAM BREAKDOWN 

Operations 

Cycles 

% of Total Start-ups Compute Required 

Vector Arithmetic 63.4 5174 76793 78.5% 

12 Multiplies 33.3 1908 41152 70.1% 

46 Adds 26.4 3266 30861 86.4% 

1 Exponential 3.7 — 4780 100.0% 

Vector Rearrangement 31.3 1233 39292 83.7% 

1 Vector Transfer 5.8 1001 6464 68.0% 

2 Indexed Transfers 22.1 144 28480 100.0% 
(Block lengths 32 & 33) 

1 Vector Compress 3.4 88 4348 0% 

Scalar Arithmetic — — 79 100.0% 

1 Divide 46 

3 Adds 33 

Subroutine Overhead 4.1 — 5142 0% 

3 Calls 

Miscellaneous 1.2 — 1537 100.0% 

Memory Conflicts, etc. 

TOTAL 6407 

5% 

122843 

95% 

5.17 msec 

Minimum Achievable 6224 111296 4.70 msec 
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a rate which is 52.1% of the asymptotic rate for this problem (i.e., without 

counting overhead or unnecessary computations), and, discounting vector rearrange- 

ment, 77.1% of the asymptotic rate.  We conclude, therefore, that the nonlinear 

filter utilizes the STAR about as efficiently as could be expected for any 

practical problem. 

The CDC STAR was programmed in a vectorized form of FORTRAN IV with 

the use of assembly language listings to aid in optimization.  It was necessary 

to insert two inline machine instructions to implement the vector block transfers 

for the rearrangement process.  These instructions were not as yet supported 

by the FORTRAN system.  Moreover, we were compelled to replace one machine 

instruction which was supported (the SUM instruction, which accumulates the 

sum of components of a vector) by an entire vector subroutine in order to in- 

crease execution speed.  Since these changes were anything but obvious we view 

the language support to be somewhat deficient for this particular exercise, 

although clearly not so difficult to use efficiently as the Illiac IV language. 

D.  CDC 6600 Program 

The CDC 6600 (and 7600) has instruction look-ahead and multiple 

arithmetic functional units which provide a partial overlap parallelism.  The 

most efficient 6600 programs contain many tight loops instead of complicated 

computations within large loops.  By recoding the vectorized STAR program in 

analogous FORTRAN for the CDC 6600, we were able to achieve efficient utiliza- 

tion of the available resources with functional loops which are for the most 

part contained within the 8-word instruction stack. 

The basic data flow of the CDC 6600 is illustrated in Figure 8. 

Reads from memory are accomplished by setting the A Registers A1-A5 with the 

appropriate address; writes are obtained by loading A6-A7.  The B Registers 

are used for incrementing and address computation. 

The breakdown of the computations for the CDC 6600 is shown in 

Table 3.  Note that the major overhead is for reading and writing and miscella- 

neous waiting.  It is interesting to note also that the ratio of multiply rates 
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TABLE 3 

CDC6600 PROGRAM BREAKDOWN 

Function 
(% Cycles) Multiplies Adds Divisions Reads Writes Exp. Notes 

Sensor Update 
(~0) 

2m m 0 3m m m Not in 
stack 
(extn. 
refs.) 

Interpolation 
(-16) 

nm 2mn 0 4nm+3n ran 0 Outer 
loop not 
in stack 

Expansion 
(-0) 

0 0 0 10m 10m 0 Instack 

Convolution 
(-74) 

5mn lOmn 0 16mn+15 6mn 0 Instack 

Row Sums 
(-4) 

0 mn-m 0 mn+m m 0 Instack 

Estimates 
(-0) 

3m 3m-3 1 4m+ll 3 0 Instack 

Normalization 
(-6) 

mn+ra 0 0 mn+2m mn 0 Instack 

Approx. Totals 7mn 13mn 0 22mn 8mn 0 

Approx. No. of 
Minor Cycles 70mn 91mn 0 66mn* 24mn* 0 

Summary:  Minor Cycles (Approx, ) 

Arithmetic: 
Read/Write: 
Waiting: 

_61mn 
90mn 
9 Iran 

47.1% 
26.3% 
26.6% 

Measured: }42mn 100.0% 

(m « 32, n = 128 for test case] Measured time = 140 msec/est. 

The reads and writes are partially overlapped in time, however the total 

overhead of 52.9% is accurate. 
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between STAR and 6600 is 25 to 1, while the add-rate ratio is 35 to 1 (including 

normalization on 6600).  Thus, for arithmetic alone, STAR would be expected to 

be 31 times faster than the 6600 on this problem.  The achieved speed-up of 27 

is therefore reasonable. 

The CDC 6600 was programmed in standard FORTRAN IV for this problem. 

It was necessary to code all two-dimensional arrays as one-dimensional arrays 

and to make several iterations with assembly language listings produced by the 

FTN 4.6 level 428 optimizing compiler before the final running time of 130 

milliseconds per estimate, which corresponds to 0.63 MFLOPS, was achieved.  It 

should also be acknowledged that the present 6600 program does not make use of 

the second multiplier, since to do so would force the affected loops out of 

the stack.  In fairness to the 7600, however, which has a larger stack, we 

might be able to increase the 7600 running speed by as much as 10% by using 

both multipliers.  Nevertheless the CDC 6600 and 7600 serve as good benchmarks 

for comparison of achieved efficiencies and software development difficulties. 

The three-dimensional problem is intractable for the 6600, however, so no 

sttempt has been made to characterize its performance.  We are currently study- 

ing the three-dimensional problem on the 7600.  This problem requires array 

storage in excess of 65K, which leads to complicated memory management 

considerations. 

E.  The AP-120B Algorithm 

The Floating Point Systems AP120B architecture (see [47] and [55]) is 

illustrated in Figure 9.  There are sufficient data paths to permit a number 

of essentially independent operations to proceed in parallel.  Microcode for 

the AP120B is included in 64-bit microinstructions, as shown in Figure 10, 

which are programmed and cross-assembled in a Macro assembly language for a 

host mini-computer.  Although the software development for the AP120B must be 

considered tedious by comparison with the larger machines, the AP120B can 

nevertheless provide competitive performance at very low cost.  Thus, we have 

optimized a two-dimensional example for the AP120B to show its performance in 

the most competitive light, even though we have not expended equivalent effort 

in optimization for other machines. 
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The initial code for the AP120B was derived by translating the CDC 

6600 FORTRAN IV code described in the previous section.  The only modification 

introduced was to implement the convolution in a one-dimensional pipeline, as 

suggested by Randy Cole of USC/ISI.  This original program required 22.8 msec 

per estimate and utilized three times as much memory as was required to 

store the density information.  An alternative formulation, taking into account 

the intrinsic odd/even memory paging constraints, was eventually developed, 

resulting in a computation time of 13.88 msec per estimate.  This latter, 

essentially minimal, program is the subject of the present discussion. 

The various conditional densities can be visualized as 32 x 128 

matrices of weights representing the appropriate probabilities, with the (i,j)th 

weight associated with the ith phase and jth phase rate weight, even though 

in the machine this matrix is stored as a 4096-element vector made up of the 

ordered columns of the matrix.  The code which realizes update of the one-step 

predictor P  , -> P  is broken into two parts P  , •+  1  . and    .. -*■ P 
n-1   n r     n-1 

F  . and F  _ 
n-1     n-1 

which are respectively column-oriented and row-oriented operations. 

We describe first the passage from the predictor to scrambled filter 

density, P  .(x-y) F ..(x-Ay,y).  Assume that P . has been stored unnormalized n-1   J   J n-1 
(i.e., not divided by K .).  Then, (1/K ,) D _(x.) is written on ith place n-1 n-1  n-1  1 
of both Data Pad X (DPX) and Data Pad Y (DPY) (See Fig. 9).  Next, starting 

from the last column of P  , the column elements are written alternately on n-1 J 

DPX and DPY in the positions corresponding to their order in the column, 

starting with DPX or DPY depending upon whether the largest a with x - Dy. 

>_ x is odd or even for the jth column.  This interweaving of the values of a 

column of P is necessary because the AP120B microcode permits at most one 

access to each of DPX and DPY in one instruction.  Thus, for the jth column, 

P _1(x0,y.)   in  DPX(£)   and  P     .(x^.^y.)   in  DPY(£+1)   are  replaced  by   (1/K       ) 
n  x     X/    j n— 1    X/T1    J n—1 

Vi <V- Pn-1 (xr V and (1/K„-l> Dn-1 <W Vl (5W yi}' respectively, 

while P   (xo.2>y-) and p(xo+v 
y*^ are read from main data memory into 

DPX(£+2) and DPY(£+3).  Next, the interpolation of the contents of DPY(^-l) 

and DPXW are written into P^ (x£_a> yj+1) and P^ (x^+1_a, yj+1), respec- 
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tively.  During the above operations ß = a + 1, a+3, ..., a + 31 and these 

indices are interpreted modulo 32 by masking out all but the last 5 bits.  We 

have described the situation when a is even; if a is odd the DPX and DPY are 

interchanged.  The result of the P , ->-F - operation, the scrambled values of 
n-1  n-i 

F reside in main data memory overlapping the old P _ but shifted to the 

right by one column (i.e., 32 locations). 

The next part of the update consists of the convolution of the 

scrambled values of F  n with a gaussian kernel to produce P .  Because of the 
n-1       ö r       n 

mathematical structure of our problem the convolution task is row-oriented; 

that is, 32 one-dimensional convolutions, one for each row of the scrambled 

filter density. 

We will illustrate the convolution for a general problem where the 

convolution kernel a. has finite support, i.e., a. = 0 for |i|>5. Denote k. 

as the input sequence and I.   as the convolved output, then 

Ä.  =   )     a. k. . 

i=-5 

This noncausal tapped delay line is implemented as a pipeline (see Figure 11) 

within the registers of the AP120B as follows: ten registers are used to store 

the partial convolutions for ten consecutive values of j.  Then the k. are 

inserted serially into the pipeline. 
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Fig. 11.  Convolution flowgraph for AP-120B. 
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The pipeline is charged up according to the sequence below, which 

produces £_ at the output: 

Step Compute sd Terms 

1 k-4a5 

2 k-3a5 k-3aA 

3 k-2a5 k-2a4 
k +a 
-2a3 

+ + + 
11 k6a5 k6a4 k6a3 "k6a-5 

Instructions Flops 

1 1 

2 3 

3 5 

11 21 

66 121 

Thereafter, until I     ir., £. is produced in 11 instructions with 21 FLOPS n-10  l 
(11 multiplies and 10 adds).  After k   is inserted into the pipeline, then 

kn, k.. , ..., k^ must be inserted again to complete the calculation.  During 

the last 10 iterations the pipeline may be shut down in a manner analogous 

to the above build-up, so that the last 10 £. are produced in a total of 55 

instructions, or 100 FLOPS.  Thus, in summary we can produce 128 convolution 

terms with 110 + 118 (11) = 1408 = 11 (128) instructions and 200 + 118 (21) 

= 2678 FLOPS, for an overall arithmetic efficiency of 95%.  On the other hand, 

if we note that a. = a_. and a = 1, we see that the total required computations 

for this operation equals 128 (10 ADDS + 5 MULTIPLIES) = 1920 FLOPS, so that in 

reality the convolution cannot be made anymore than 68% efficient, since 1408 

instructions will ideally permit 2816 FLOPS.  The fact that AP120B achieves 

5.9 MFLOPS, then, instead of the theoretical 12 MFLOPS, is partially explained 

on the basis of unnecessary arithmetic operations which are introduced to 

produce the fastest overall computation speed and to code a general convolution 

loop for nonsymmetric kernels.  This is analogous to the vectorization of some 

functions on the STAR wherein superfluous computations were introduced in 

order to achieve the minimum overall computation time. 
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AP12QB Code for the 3-D Problem 

The software for the 3-D Problem used the described 2-D code as a 

subroutine as follows: P (x,y,z) for each fixed amplitude z is first updated 

by the 2-D microcode described above with sensor density different for different 

z to obtain P ..(x,y,z), x and y take values on a fixed 16 x 96 grid while z 

has value on a moving grid centered at the conditional amplitude mean and 

with mesh proportional to the conditional amplitude standard deviation. 

The conditional distribution P   (x,y,z) is obtained from P  -(x,y,z) 

by convolving over the z direction.  See [10], [12], [15], [18], [19], for 

details on how convolution is performed on a moving grid.  This final convolution 

is achieved by a software pipeline as in the case of the previous convolution. 

The validity of separation of the update in this way depends on the statistical 

independence of the amplitude and phase processes. 

F.  The CRAY-1 Algorithm 

The CRAY-1 (see [48], [53], [56]) represents a logical extension of 

many of features of the CDC6600 system.  It may be viewed in a global sense as 

a multifunctional unit machine with lookahead scheduling.  On the other hand, 

closer inspection reveals a number of innovations which extend the generality 

of the design and which go a long way toward eliminating unnecessary constraints 

(see Fig. 12).  Probably the most significant improvement is to provide segmen- 

tation of all functional units so that functional unit reservation need only 

wait until the input and output registers are free, independent of the amount 

of time required to compute the function.  In addition, two new features 

significantly impact the applicability of the CRAY-1 for vector processing. 

First there are sight vector registers which may be filled by any set of 

operands composing any linear vector in main memory of length less than or 

equal to 64. The vector registers may be used to provide inputs or outputs to 

any of the floating point functional units at an 80 megaflop rate.  Second, 

and even more significant, the output results from one vector operation can be 

*Memory bank access conflicts only occur if the consecutive operands occupy 
memory locations separated by a multiple of 16 locations. 
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chained with inputs from a third vector register as they appear, thus avoiding 

a second start-up delay. Thus, with addition chained with multiplication, the 

CRAY-1 is asymptotically capable of producing up to 160 megaflops. 

The architecture of the CRAY-1 therefore has considerable potential. 

What we were concerned about was the accessibility of this to the potential user. 

We are encouraged to report at this time that it appears that a truly no-nonsense 

exploitation of this resource is readily available.  In fact, we were able 

to write a very simple program in standard FORTRAN-IV which was able, with only 

minor modifications, to achieve over 22 megaflops for the demodulation problem. 

The simplicity of this program is characterized by the following code which 

produces a convolved matrix JN from an interpolated and cyclically rotated 

matrix JN1: 

35 

40 

DO 40 

DO 35 

JN(I,J) 

DO 40 

DO 40 

JN(I,J) 

I = 1, 32 

J = 1, 128 

JN1(I,J+10) 

K = 1, 5 

J = 1, 128 

JN(I,J) + A(K)*(JN1(I,J-K+10)+JN1(I,J+K+10)) 

What is noteworthy about this example is that the first generation CRAY-1 

compiler is capable of isolating the linear vectors JN(I,.) and JN1(I,.), where 

the column index is a constant offset (in the inner loop) from the inner loop 

index J.  Furthermore, the compiler is capable of using addition and multipli- 

cation chaining in line 40.  The only inefficiencies introduced by the compiler 

in this example are associated with loop set-up and control. 

Since the results obtained to date on the CRAY-1 indicate considerable 

promise for the development for vector-optimized compilers, we feel that the 

CRAY-1 architecture is very likely to be very attractive as a model for 

versatile, general-purpose computers of the future.  In particular, the use 

of multiple, segmented functional units and a variety of general purpose 

registers appears to provide desirable flexibility. 
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IV.       EXPERIMENTAL RESULTS 

For the 2-D phase demodulation problem, extensive Monte Carlo runs 

have been made at a variety of input signal to noise ratios, and the phase 

error modulo 2TT for the phase lock loop and the optimal cyclic estimator have 

been evaluated.  The results of these Monte Carlo runs are given in Fig. 13, 

where each point on the optimal curve resulted from averaging the squared 

errors of three million estimates with three-standard-deviation confidence 

intervals of + .034 dB about each point.  The experimental design consisted of 

producing 30,000 independent sample paths, with each path consisting of 130 

samples in time of the phase error mod 2TT.  The first 30 errors were discarded 

as we were interested in steady state performance.  These results were obtained 

using the AP120B array processor in conjunction with the PDP-11-55 with the 

multi-user operating system RSX11M version 3.  Each point on the curve represents 

two days of computer time.  Of this total one day represents overhead of the 

the operating system of the PDP-11.  The other day is the array processor 

time.  The array processor is achieving a little more than one quarter of its 

theoretical 12 megaflops (i.e., millions of floating point operations per 

second).  New software for the array processor has been designed which achieves 

5.9 megaflops.  For these experiments a fixed grid of 32 x 128 was used (i.e., 

32 subdivisions in phase and 128 in phase rate).  The resulting performance 

curve Fig. 13 should be compared with the analogous curve in [32] where the 

grid was 21 x 105 and 200 sample paths were used to find the error. 

The problem of combined phase and amplitude demodulation was first 

considered in a program for the STAR-100 at NASA Langley and is described in 

[45],  Originally with H linear (see (2.5) and (2.6)) for a number of output 

signal to noise ratios, the abssica of Fig. 13, with the amplitude being 

normal mean 1 and variance .05 and generated by (2.6), Monte Carlo runs showed 

that unknown amplitude reduces performance only slightly.  When H is exponential 

and lnH(A ) has variance 0.1 again performance closely resembles the fixed 

amplitude case.  We are currently investigating the case where lnH(A ) has 

variance about 2 and H is exponential, as this seems to be a physically 
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interesting case.  At the moment assembly code is being developed for the 3-D 

phase demodulation problem using the AP120B.  For the 3-D problem we expect 

less impact from the PDP11 system overhead because a larger proportion of time 

will be spent in the AP120B. 

In Table 4, the results of ongoing timing studies for various machines 

for the 2D phase demodulation problem are given.  In the case of each machine 

extensive considerations of the blending of algorithm structure to fit machine 

architecture were used to develop fast code.  Generally the software seems to 

fit into three groupings; 1) parallel; Illiac  2) one big main loop; CRAY-I 

and 120B; 3) a large number of small loops comprising the main loop for 6600, 

7600 and STAR-100.  Categories 2) and 3) above are illustrated in Figures 14 

and 15 which show the software division in the 2-D phase demodulation algorithm, 

each box represents a multi-loop.  Category 1) is discussed in the section 

describing the Illiac coding.  It is apparent that assembly language coding 

could produce faster times for the larger machines with a corresponding 

increased software development time. 

In reviewing the results of Table 4, it is possible to draw some 

general conclusions.  On the one hand we see that the vector architectures can 

achieve substantial increase in speed, resulting in correspondingly lower 

facility cost per performance.  On the other hand there is in general a 

corresponding increase in software development time for the vector machines, 

so that if experimental code is desired it may turn out to be just as expensive 

to develop and run on a vector machine as on a conventional machine.  There 

are two obvious standout cases, however, which deserve special mention: for 

the AP120B the observation is extremely low cost (by an order of magnitude) 

for performance, which implies low production cost; the CRAY-1, with its 

FORTRAN compiler, may turn out to be the best of both worlds when experimental 

code is being both written and tested.  Moreover, as the problem dimension 

increases the practicality of the AP120B for extended Monte Carlo analysis will be 

diminished, since, for example, we estimate that 23 days of continuous running 
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TABLE 4 

COMPARATIVE PROCESSOR 

COST/PERFORMANCE FOR DEMODULATION PROBLEM 

Machine 

Time 
per 
Iteration 
(msec) 

Achieved 
Megaflops* 

Approx** 
Cost 
(Dollars/ 
Flop) 

Max 
Theory 
Megaflops 

Software 
Develop. 
Time 

(man-months) 

CRAY-1 3.5 23.5 0.33 60-140 0.5 

STAR-100 4.9 16.8 0.48 20-40 2.0 

Illiac IV 9.0 9.1 1.10 40-80 3.0 

AP120B 13. 9+ 5.9 .03 12 6.0 

CDC7600 25.0 3.3 .91 10 1.1 

IBM370-168 110.0 0.75 2.67 3 1.0 

CDC6600 130.0 0.63 1.59 2 1.0 

PDP11-70 870.0 0.09 1.67 0.2 1.2 

** 

Assumes 82.2K Flops per iteration. 

k 

Assumed installation costs of (production) systems: 
CRAY-1 - $8M, STAR-100 - $8M, Illiac-IV - $10M, AP120B - $150K, 
CDC7600 - $3M, IBM370-168 - $2M, CDC6600 - $1M, PDP11-70 - $150K. 

Does not include PDP11-55 overhead. 
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time would be required to produce the four million estimates for the Monte 

Carlo analysis of the 3-D phase demodulator.  Thus, even with restartable soft- 

ware, such research would push the reliability limits of the AP120B.  It is 

clear, then, that the CRAY-1 and its descendents will usher in a new generation 

of research computer performance, while the AP120B will provide a prototype 

for low-cost dedicated-applications computation. 
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V.       CONCLUSIONS 

In this paper we have presented a summary of our results on the phase 

demodulation problem, both for the three dimensional and two dimensional cases. 

In the latter case extensive and definitive Monte Carlo error analysis runs 

have been made for both the phase-locked loop and the optimal phase demodulator. 

These results document the performance improvement achievable by synthesis 

of the optimal demodulator and serve as a bench mark against which prospective 

suboptimal designs can be judged. 

Another facet of our research is the effect of various machine 

architectures on the speed of estimate production, and to some extent to deter- 

mine the architecture most suited to our problem of phase demodulation, and 

hopefully more generally the one most suited to general synthesis of nonlinear 

filters.  Our conclusions in this regard depend on price/performance.  Clearly 

the CRAY-1 is the machine most suited for general research on examples of 

our problem, however economic considerations dictate the choice of the AP120B 

as the cost effective compromise for production runs.  Thus, at the present 

time the AP120B can provide an inexpensive, albeit difficult, opportunity to 

run Monte Carlo simulations for two-dimensional nonlinear filtering problems. 

There does not appear to be any inherit reason, however, for precluding the 

possibility of the evolution of CRAY-1 type capability and software accessibility 

to machines of more modest size in the near future.  The popularity of the 

AP120B illustrates the market for specialized high-speed processors as add-on 

boxes for minicomputers.  Perhaps the evolution of minicomputer architecture 

in the direction of the CRAY-1 or its successors will indeed be feasible 

in the future.  In the meantime, accessibility to the AP120B will be greatly 

enhanced if some form of optimizing (FORTRAN?) compiler can be developed, 

although it remains to be seen whether this is feasible.  Also, it is likely 

that extensive use of the CRAY-1 for important near-term developments of non- 

linear filtering realizations will be profitable. 
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In pursuing the machine speed comparison we devoted some time to 

designing software for each machine which took advantage of the architecture 

of each machine.  So far the guidelines for developing software for each machine 

are empirical rules of thumb gained by some experience and some hearsay.  It 

has been observed, for example, that the 7600's running time for our problem 

could be reduced 10% by assembly language coding but because of limited machine 

access and cost we have not been able to do this.  We should acknowledge, 

however, that considerable insight into the computational requirements for the 

demodulation problem was obtained by successively transforming according to the 

special requirements of each of the candidate architectures. 

It is apparent that nonlinear filtering problems of state dimension 

three or higher for the point mass seem to tax the capabilities of most of the 

fourth generation machines in terms of speed and memory requirements (i.e., 

the 65K vector length limit on the STAR-100, and the 2K P.E. memory of the 

Illiac, the direct reference to 65K words of memory without paging on the 

AP120B).  It is conceivable, however, that with code developed for optimal use 

of the CRAY-1 we could handle a four dimensional nonlinear filter with up to 

400K mass points. 
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