S — = —— _ _ . " R

AD-A059 699 COMPUTER SCIENCES CORP EL SEGUNDO CA F/6 9/2
AUTOMATED CODE GENERATORS FOR COMPILERS.(U)
AUG 78 E CHU! E HALBs H MCCOY» R MORTON F30602-76-C-0“29
UNCLASSIFIED RADC~=TR=78=157

EN D !
DATE 1

Fu llll

\2 78 -

m" 10 =0 e

2
—ll

Iml .1 “ iz
==

| e
22 s nie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963-4

9

N
dw ‘
N ,
l D RADC-TR-78-157 :
} Final Technical Report 1
. o August 1978
| < i
‘ 53: AUTOMATED CODE GENERATORS FOR COMPILERS 3
, E. Chu a
l E. Halb |
H. McCoy ‘ ¥
R. Morton
Computer Sciences Corporation
>—
5 W
D
)
Ll e
— 3
| B
[)
=
=

Approved for public release; distribution uxilimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

7R

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS)
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR-78-157 has been reviewed and is approved for publication.

APPROVED: WMW

RICHARD M. MOTTO
Project Engineer

APPROVED: ‘T e Cﬁumm/

WENDALL C. BAUMAN
Chief, Information Sciences Division

FOR THE COMMANDER: g’lzbf%‘/

JOHN P, HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (ISIS) Griffiss AFB NY 13441, This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

Szt

UNCLASSIFIED
SECURLW‘Z“&ASSIF|CAY|0~ OF THIS PAGE rWhen Data Entered)
) READ INSTRUCTIONS
') REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
”~ I NUMBER — Lk GOVY ACCESSION NO., 3. RECIPIENT’S CATALOG NUMBER
| © | Ranc \111-78-157% i N/A
N 4. TITLE (and Subtitle) y .';‘ TYPE OF REPORT A PiRcOD’covERE
{ | AUTOMATED CODE GENERATORS FOR COMPILERS ({ 7 VY Final Technical Kepert, Z
o — / | Sep 76 -~ Mar 78
b PERFORMING ORG~RERORT NUMBE R
N/A
ke AUTHORTE — 8 CONIRACT OR GRANT NUMBER's) |
, / i] E. /Chu R /Morton / i Fmepz_m_c_gazgf(./
Wi E./Halb, 12 {
——’ —t
H. McCoy : =
: §5 P ERFORNING ORGANIZATION NAME AND ADDRESS T PROCRAM ELEMENT PROJECT TASK
i Computer Sciences Corporation /
220 Continental Blvd ,9.3_7..28* 1 7] D ¥
El Segundo CA 90245 ~) L [55500843
I. 11. CONTROLLING OQFFICE NAME AND ADDRESS \';__ A2 REDORT DATE
, Rome Air Development Center (ISIS) 7 TAuguse-1978 / /
| Griffiss AFB NY 13441 | I —oweewor BRdEr | . /
: 18 /= / [2o |/
‘ T4 MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) | 15. SECURITY CLASS Mm_.., L&
| Same UNCLASSIFIED
I 15a. DECL ASSIFICATION DOWNGRADING T
CHEDULE
! /&
% | 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Rlock 20, if different from Report)

Same

18 SUPPLEMENTARY NOTES

RADC Project Engineer:
Richard M. Motto (ISIS)

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

JOVIAL
Compilers
Code Generators

20 ABSTRACT (Continue on reverse side If necessary and identify by block number)
This project was undertaken with the intent of devising a method or tool for
automating the production of the code generator portion of compilers. The main
objective was to develop a Quick Code Generator (QCG) that would be capable of
producing JOVIAL compilers in less than 3 months. This generator would develop
“loose™ code for an interim compiler, This effort resulted in developing the
Machine Independent Macro Instruction Code (MIMIC) language. This language
consisted of 113 macros & a QCG was successfully produced for the 5L3nt d)
"L v / i g o,
8

FORM |
DD 1 JAN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE UNCLASSIFIED i
SECURITY CL ASS!FICATION oF THIS PAGE (“'hen Data Entered)

5

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20 (Cont'd)

“HIS 6000 system. However, the effort fell short by not producing macro
definition files for other target machines. It should be noted that RADC's
JOVIAL Compiler Validation System was executed with the original JOCIT
compiler (& the QCG JOCIT compiler & the differences in compilation time,
execution\;imegﬁﬂthe total code /produced were insignificant.

775 8

"\

\
\

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Evaluation

1. This effort, entitled "Automated Code Generators for
Compilers" is an attempt to produce a Quick Code Generator (QCG)
for an interim compiler which will permit the use of this
compiler until a permanent, more efficient code generator is
developed. The output of the QCG is assembly language for the
target machine rather than the object code normally associated
with code generators. RADC's JOCIT JOVIAL Compiler was the
subject of this effort and the approach taken was to replace
the JOCIT Code Generator and Editor with a QCG and Macro
Assembler (MAS), respectively. Communication between these
two phases was accomplished via the macro language, MIMIC.
MIMIC is an acronym for Machine Independent Macro Instruction
Code and 1is a generalized assembly-type language, designed

to easily map into most existing assembly languages. The user
ifs required to write a Macro Definition File (MDF) that is to
interface with MIMIC.

2. This effort was successful in developing a QCG for JOCIT

for the HIS 6000 Series, but several problems are still to

be resolved. Mainly, the QCG will not operate with the JOCIT
Optimizer, nor will the compiler function correctly if a
cross-reference listing is requested or the DIRECT Code Option

is used. Problems still exist with internal data representations,

but it should be noted that tests comparing the original JOCIT

iii

L . " . —— . " T I P R

JOVIAL Compiler and the QCG JOCIT Compiler revealed the difference
in compilation time, execution time and total code produced
was insignificant.

- Watls—

R ARD M. MOTT
Project Engineer

iv

INTRODUCTION AND SUMMARY

The "Automated Code Generators for Compilers' contract F30602-76-C-0429 was

begun in September, 1976. It was one of a series of contracts to provide the Air

: Force with an advanced JOVIAL (J3) compiler capability. Earlier contracts have
resulted in a system called JOCIT which is an acronym for JOVIAL Compiler Imple~
mentation Tool. JOCIT consists of a JOVIAL compiler, a SYMPL compiler,

GENESIS processor and an executive which interfaces with the host operating system
(in this case, Honeywell 6000 GCOS). Most of the modules of the JOVIAL compiler
and the SYMPL compiler are written in the SYMPL language. SYMPL is a procedure-
oriented programming language whose emphasis is on ease of expression of "System"
programs. S8YMPL is in many ways similar to both FORTRAN and JOVIAL. GENESIS
is a Computer Sciences Corporation proprietary system for producing language syntax
tables suitable for use in certain types of syntax-directed compilers from a convenient

syntax description language.

The primary purpose of this contract was to further automate the task of producing
a JOCIT-built compiler code generator. There was no expectation that the code
generator produced by this effort would equal the quality or efficiency of the code
generators produced by an experienced compiler writer. However, if the result

of this effort could rigidly and inexpensively produce a code generator of acceptable
(not defined) quality, then a significant advance would be made to the state-of-the-
art. The code generators thus produced would presumably be used temporarily in
new operational environments until a more permanent, efficient code generator was

written for the particular target computer.

A number of approaches were investigated, but the final design consisted of the
""code generator'' producing macros for an assumed very basic computer. For
example, the computer was assumed to have one accumulator, one index register,
one single precision floating point register, etc. The macro code file thus gen-
erated is machine independent or nearly so. This macro code file is then processed
by the ""macro assembler' which essentially takes the place of the editor in a con-

ventional compiler. The '"macro assemblier" itself is also machine independent

but accesses a machine-dependent ''macro definition file''. Each new target machine

requires the production of its macro-definition file.

The macro definition file essentially defines each of the macros which can be pro-
duced by the '"code generator' in terms of assembly language attributes of the tar-
get machine. The macro assembler, then, as it processes the macro code file,
produces a new output file of a target machine assembly language program. This
assembly language program can then be assembled on the target machine to produce

object code for execution.

Therefore, in order to produce a new ''code generator' for a target machine, an
individual would have to have a good working knowledge of the assembly language of
the target machine and the purpose for each of the macros that are possible. Cur-
rently, the ''code generator'' can produce approximately 113 macros. However,
many are similar in nature and would require only minimal changes in their defini-

tions.

The final result of this contract is a working ''quick code generator''. A macro
definition file for the Honeywell 6000 series computer was written and several test
programs were run through the new code generator. Assembly language programs
were produced and subsequently assembled by the GMAP assembler at RADC and
executed. There was not sufficient time to generate macro definition files for
other possible target machines. However, it is believed that a person familar with
a target machine and some study of the Automated Code Generator User Manual

could produce a macro definition file in less than three months.

The "quick code generator'' was integrated into JOCIT, so that one JOVIAL com-
piler can use either the ''quick'" or the 'normal'' code generator. This is accom-
plished by the use or non-use of the QUICK option in the JOVIAL control card. It
is also possible to select four different macro definition files, if they are available,

to produce code for different target machines.

In order to complete a working version of the new code generator in the time avail-

able, a number of features permitted with the normal code generator are not possi-

ble currently with the "quick' code generator. These include "direct code' and
2

FECESY

* Telape

global optimizations. Furthermore, the cross-reference capability cannot be
correctly executed. During the course of this contract a parallel effort was per-
formed on JOCIT to add double precision capability. This complicated the effort
on the "'quick'' code generator, but the double precision capability is operational

now for the ''quick'' option as well.

AUTOMATED CODE GENERATORS FOR COMPILERS

The purpose of the JOCIT Automated Code Generator (ACG) is to help automate the
retargeting of the JOCIT compiler, The ACG provides a means for the rapid develop-
ment of a new compiler "back end", producing code for a desired target machine.

The goal is to make a compilation facility available early, so that a user considering
the use of the JOVIAL High Order Language (HOL) will not have to wait up to a year
for the handcrafting of a code generator to fit his needs. If a high degree of code
efficiency is important, then a special code generator has to be constructed, but at
least a coding and checkout environment will be available through the ACG several

months before the final code generator is ready.

The first design decision made for the ACG was to output assembly language code

for the target machine's assembler, rather than to produce binary code. The reason
for this decision was the elimination of the target machine's relocatable format and
linker requirements from consideration in the retargeting effort, as well as internal

instruction and data representations.
STRUCTURE OF THE ACG

Structurally, the ACG consists of (1) a modified version of the Code Generator phase,
called the Quick Code Generator (QCG), (2) a new phase in lieu of the Editor phase,
called the Macro Assembler (MAS), and (3) a group of procedures supplied by the
retargettor, called the Macro Defirition File (MDF).

QUICK CODE GENERATOR

Providing a suitable set of MDF procedures is the principal effort of retargetting;
each of these procedures has a specified task in the production of the assembly code
output, In determining what these tasks should be, many computers and their assem-
bly languages were studied. Among the architectural features considered were
addressibility, register usage, word sizes, and alignment requirements. Assembler
considerations included formats, naming conventions, special features, pseudo-ops,
etc, The result of these studies was the MIMIC (Machine Independent Macro Instruc-
4

g

tion Code) 'language', which drives the generation of the output assembly code.
MIMIC is the internal language (IL) form of the program produced as output by the
QCG. Essentially, it is "machine code' for a hypothetical and very simple computer,
The architecture of the MIMIC computer has been carefully chosen to avoid present-
ing any impossible situations in representing its functions on a real computer. The

MIMIC machine has the following characteristics:

® Single address instruction format

@ One fixed point or integer accumulator register

@ One single precision floating point accumulator register

@ One double precision floating point accumulator register

® One index register

® Access to all types of data

° Arithmetic operations in integer, single floating, and double
floating modes

° Comparisions in integer, single floating, and double floating
modes

® Full word addressing with optional index register address
modification

° Although difterent MIMIC instructions are used to load each
of the three accumulator registers, the QCG assumes that
these registers overlap, so that a load of any one of them

destroys the contents of the others.

The full MIMIC language is documented elsewhere, but: an example,is appropriate
here. A simpie JOVIAL replacement statement might produce the following sequence
of MIMIC instructions:

LOAD operand AA (Load the integer accumulator)
SCLL 2 (Scale left by 2)

ADDI operand BB (Add to the integer accumulator)
STORE operand CC (Store the integer accumulator)

The QCG generates into the Code File a sequence of MIMIC instructions represent=
ing the executable part of the source program, together with MIMIC pseudo-ops
declaring data reservations, external references and definitions, etc., obtained

by scanning the JOCIT Symbol Table.

The task of the retargettor is to determine, for each MIMIC "macro' (instruction
or pseudo-op), what lines of assembly code should be produced for the target machine.
This includes the related design tasks of determining how to use the target machine's

registers, what linkage conventions will be followed in procedure calls, how the

target machine assembler's location counters will be used, etc. Then the user

must supply, in the MDF module, a procedure entry point for each MIMIC macro.

An early design decision was made to have these MDF procedures coded in SYMPL,
‘,»_ The alternative was to provide a new language, with a preprocessor to convert the
new language into an interpretable form. A new language was indeed designed and
3 studied, but was rejected on two grounds. First, its advantages over SYMPL as a

coding language were not felt to be striking enough to justify the effort and expense

of producing an additional processor and interpreter. Second, it was a less power-
ful language than SYMPL, and it was not clear that anything less powerful than a
full algorithmic language could be guaranteed to solve any unforseen problems
which might arise in a specific retargetting effort. Using SYMPL, the MDF pro-
grammer is free to have global variables which pass information from one MIMIC

macro procedure to another, as well as lower-level procedures for common functions.

In deciding how to implement the Quick Code Generator (QCG), several dlternative
approaches were considered for various aspects of the design. The first, and

most critical alternative concerned the overall approach, Here, the options were:

1. Write a completely new code generator, or

2. Create new modules using exigting code generator modules.

CSC's decision was to use the existing modules as a base on which the QCG would

be built, since this approach (1) would yield a code generator which was very similar
to the existing code generator, (2) would save considerable time, and (3) would
simplify maintenance, In making this transformation, several previously-undetected

errors in the compiler were found and corrected,

A second major consideration concerned the handling of direct code. The options

considered were:

1, Modifying all of the current modules which handle direct

code processing.
2. Prohibit the inclusion of direct code by the QCG.

In arriving at our decision to prohibit direct code, we took into consideration several

factors:

T In any retargetting effort, the direct code must be rewritten
for the target machine and could, therefore be called as an

external subroutine instead of appearing in line,

2, The existing programs which process the IL would require

modification to pass source code through to the QCG.

3. The new optimizer under concurrent development would have

been impacted.

4, The total benefit as weighed against the implementation time required

was minimal.,

The QCG contains a set of predetermined code sequences for producing frequently
used functions. For example, the JOVIAL statement A = B could cause a LOAD
macro and a STORE macro to be generated. The code sequences are table driven
and register dependent. For example, given the statement A = B + C, if either

B or C already exists in a register based on a previous computation, the QCG
recognizes the fact and, instead of loading the register, uses the already computed

value to generate the ADD and STORE instructions. The type of register to be used

7

i o st i

is one of the parameters passed; therefore, only one sequence exists, and it is

valid for integer, single precision, and double precision data. This single code
sequence of the QCG is a departure from the regular code generator which uses a
separate set of sequences for integer, single precision, and double precision data.
The processing of character data is also slightly different from the regular code
generator. The MIMIC language does not provide for string manipulation macros
and, therefore, all character data is handled through subroutine calls to the run-
time library. This approach required that a set of arguments be generated to
adequately define the data for the subroutine so that the subroutine could operate
properly. This approach was taken to relieve the macro writer of the burden of
developing string handling macros. Such macros can be come quite complex when
implemented on word oriented hardware. To facilitate the retargetability of these
subroutines, they were written in JOVIAL. The regular code generator produced
in-line code, when possible, to handle character data. When this was not possible,

subroutine calls were generated.

Near the end of the project, it was discovered that some test cases would not com-
pile correctly through the ACG if the Optimizer was requested. Rather than spend
the short time remaining on solving the problem, it was decided that optimization
would not be allowed if the ACG was to be run. The two major reasons for this
were: first, the new optimizer being developed had not yet been interfaced with the
ACG and similar problems would likely appea-r there as well, causing further delays
in the project; second, given the limited scope of use of the ACG (i.e., as a '"'stop
gap'' measure during the writing of a target machine dependant code generator), and
given the limited characteristics of the hypothetical machine upon which MIMIC is
based, optimization would have little or no major affect on the code produced. Ad-

ditionally, the quality of code is to a great extent, dependent upon the level of ex-

pertise of the macro writer.

Because of its more general design the QCG generates more temporary space for the
computation of intermediate results. The management of this space is critical in
keeping the size of this temporary space to a minimum, Also, failure to release
temporary space when no longer needed often results in compiler errors, incorrectly
allocated space, or both, Persons maintaining this compiler must be aware of this

critical area so that compiler errors are not introduced.
MACRO ASSEMBLER PHASE

The MAS phase consists of two levels: a driver for the MDF procedures, and a
group of utilities to serve the MDF procedures. The driver level, after initialization,
reads the MIMIC macros from the Code File in sequence and, for each, invokes the
corresponding MDF procedure, passing the MIMIC operand as an argument. In the
inftialization step, the MDF programmer has an opportunity to specify a number of
parameters of his assembler, e.g., the character which introduces a comment, the
maximum name length, etc. This information will be used by the MAS utility proce-
dures. The MDF programmer can also specify the order in which he wants to pro-

cess the various segments of the program, such as code, local data, external declar-

ations, etc.

The MAS utilities available to the MDF programmer fall into three groups. The first
group consists of editing procedures which assist him in building his output lines by
performing such functions as adding a string of characters to a partially built line,
tabbing to a specified position in a line, and outputting a line and reinitializing. These

utilities handle most of the work of character manipulation and line formatting.

The second group of utilities gives the MDF programmer access to information in
the JOCIT Symbol Table, such as the allocated size of an item, or whether or not
an item is signed. The third group provides such miscellaneous services as generat-

ing unique labels for use if local branches are needed.in the assembly code.

The MAS also provides error checking to assist ir ‘he debugging stage of a new MDF,
The editing utilities detect such errors as runaway line length, and print the current

output line. The symbol table utilities trap an invalid symbol table pointer and

-

identify the called procedure. An error limit may be supplied by the user, to stop

processing after a specified number of MAS errors have been detected.

As a test of the system, an MDF module was designed and implemented to produce
code for the current host machine. A number of programs were compiled, assembled
by GMAP, and successfully executed. However, as noted later, some problems

remain even with this "retargetting''.

A programmer assigned to the MDF portion of a retargetting effort must be very
familiar with his target machine, its assembler, and its various system conventions.
He must also have a working knowledge of the SYMPL language, in which he will be
coding. Then, he must understand the meaning and intent of each MIMIC macro and
its operand, which mu.y involve some understanding of JOVIAL semantics (although
an understanding of JOVIAL syntax is not required). Finally, he must become

familiar with the MAS interface an< the various utilities at his disposal.

The other major effort in retargetting JOCIT is converting the JOVIAL Run-Time
Library. Investigation has shown that the non-1/O library modules can successfully
be written in JOVIAL, and thus are retargettable like any other program, Simple
machine dependencies, such as word and byte size, are handled by JOVIAL DEFINE
declarations, and must be changed in the source to suit the target machine character-
istics, However, the I/O package is so strongly permeated with system and machine
dependencies that it requires a complete recoding in assembly language for each new

target.

A number of problems encountered during the performance of the work remain un-
solved. This situation is due in large part to the schedule constraints, and the fact
that several other JOCIT enhancement activities were going on concurrently, some
with higher priorities than the ACG, These problems were mainly in the area of

incompleteness of JOCIT conversion.

The QCG part of the ACG is essentially an effort to retarget the JOCIT code generator
to the hypothetical MIMIC machine. To a large extent this was successful. However,

the interactions between the code generator and certain other non-essential (but

10

certainly useful) compiler functions have not been resolved. Specifically, the QCG

|
|
|
|

cannot be run with the Optimizer, nor will the ACG compiler function correctly if
a map or cross-reference listing is requested. Although in principle it should be |
even easier to handle target machine DIRECT code when the compiler itself outputs |
assembly language, the necessary modifications have not been made, and the ACG

compiler will not accept DIRECT code. !

Unfortunately, a successful retargetting of JOCIT requires more than Code Generator
work. A specific unsolved problem area outside the scope of the Code Generator is
the question of internal data representations, The current "front-end" of the compiler
converts numeric constants, such as preset values, to Honeywell machine forms.

On the one hand, this seems only reasonable if the compiler, for example, is to do
constant arithmetic on the host machine. On the other hand, however, considerable
difficulties arise in the MAS and MDF in trying to go from a Honeywell bit pattern

to a meaningful source-language constant in a foreign assembly language.

Differences in word size may also invalidate some of the compiler's host-oriented
conversions and operations. This area clearly needs much investigation to produce

a viable solution.

To facilitate retargetting and rehosting efforts in the future, the compiler should be

carefully examined and generalized parameters should replace all machine dependent

values currently hard coded in the programs.

€105 90 9590 9C A5 I I 90 2 A I A N A 9

MISSION
of
Rome Avr Development Center
S

%‘ RADC plans and conducts research, exploratory and advanced
development programs in ca-nnd, control, and communications
(¢3) activities, and in the ¢? areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology.,
: ionospheric propagation, solid state sciences, microwave

8 physics and electronic reliability, maintainability and

3 compatibility.

