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INTRODUCT ION

The increasin g use by the A rmy of the various types of electro—opt ical
(EO) devices necessitates a test and evaluat ion program to assess the
performance of these dev ices under a variety of weather conditions —

the most pressing problem being the foggy condition. The presence of
fog seriously degrades the effectiveness of visible and i nfrared
sensors , no matter how wel l designed and engineered the sensors are.
It would be impractical as well as uneconomical to field test and
evalua te each device individually under different atmospheric condi-
tions. A more econom ical and logical approach would be to categorize
and develop phys ical and optical models of fogs through well—conceived
microphysical , meteorological and spectral measurements at selected
spectra l regions , locations , and at different stages of fog and dense
haze evolu tion. Thus , microphysical characterization through modeling
with selective verif ication measurements may aptly be said to be the
basis of optical characterization under various meteorological foggy
conditions.

If the objective of optical characterization is to serve as a rather
general gui de for research , design , and develo pment , a computer pro-
gram such as LOWTRAN 3R [1] may serve the purpose when amended to in-
clude appropriate fog optical models. While this remodeling is not
easy in view of the com plexities of fog microstructure , some generalized
and workable models coul d be derived . In fact , Jiusto [2] has pre-
sented a conceptual structural mode l that specifies the average charac-
teristics of radiation fog and of advectioti fog. More detailed models
depicting fog variable changes with time are now being developed Csee
fog modeling section). Ely suitable adjustment , fogs of any intensities
may be simulated with corresponding changes in visibility . On the
other han d , if the objective is to develop models for testing and eval-
uating the performance of EO weapon systems with a particular battle-
field location in min d and for possible use under varied battlefield
environmental condit ions , then such generalized model s as derived by
Jiusto woul d no longer be adequate , and the fog data published in the
literature would no longer be sufficien t. In uther words , it i s not
possible at present to construct reasonable optical models for fog for
the battlefield EU Systems ~tmospheric Effects Libra ry (SAEL) without
additional data base.

It is the latter objective for battlefield location that this report
addresses. The state of fog microphysics on the basis of materials
drawn partly from Jiusto ’s [2,3] and Plason ’s [4] works will be dis-
cussed briefly. Efforts in numerical modelin g for predicting fog
formation and d issipation in terms of liquid water content will be
mentioned , and investigation of fog microphysics in rel ation to fog
optical properties will be presented. Preliminary findings appear to
suggest that the fog li quid water content , especially when it is
derived from droplet spectra as Is true of the data inspected for this
project, may not be a reliable parameter to be used alone in optical
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characterization. Finally , recomendations for complete microphysical ,
meteorologi cal , and optical measurements together with the criteria for
site selection and data handling will be discussed , and conclusions will
be drawn.

M ICRO PHYSICAL FACTORS
Without some prior knowledge of the characteristics of fogs, to proceed
directly into fog optical characterization is like going to a tailor
and asking him to make a suit with minimal measurements or by visual
Inspection only. If the body happens to be a standard one, the finished
product may fit wi t.. out further ado. Not unl ike human bodi es , the fogs
do come in “different sizes and shapes.” What one hopes to accomplish
in EO SAEL optical characterization is not much different from that of
a men ’s clothing manufacturer. With a limited number of sizes , he hopes
to fit all the men in the worl d. There fore , it is essential that we
gain some understanding of fog characteristics.

Microphysics

Cl oud microphysics , in contrast to an investigation of the characteris-
tic forms, geneses , and dynamics of clouds In meteorology, involves
study of the physical , chemical , and thermodynamic basis of droplets ,
Ice crystals , and nucleation particles as wel l as the distri bution of
these particles which make up an individual cloud.

To a cloud physicist , the fundamental features of the microstructure of
clouds and fogs are :

1. The aggregate state of the cloud particles.

2. The size spectra of the droplets , and the form and size of the
ice particles .

3. The number concentration per unit vol ume and related statisti-
cal parameters.

4. The concentrations of cloud condensation nuclei and Ice nuclei
that promote development of the liquid and solid hydrosol phase.

5, The liquid water content and the total moisture content of the
air.

The Loca l Character

Fogs are essentially ground—based stratus clouds . As such , the local
dependence of fog physical characteristics has been well known for a

~ 

_ -~~i~~~ ~~~~~- .-



- -- -- ~~~~~~~~~-—.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ —

ERRATA SHEET FOR ASL- TR-OOll

~i-IE MICROPI-IYSICAL BASIS OF FOG

OPT ICAL CHARACTERIZATION

Page 9, third full paragraph on page

Change lines two and three to read as fol l ows:

“since the beginnin g of this century (such as those cited in
aufm Kampe ’s paper [16]) have sought a . .

Page 11 , second full paragraph on page , 11th and 12th lines in paragraph

Change to read as follows :

“one correspondence at these two wavelengths. Had the
authors of previous reports had some perception of the nature
of fog microphysics , • .“

/ 2 .i ~~~ ~
)

_ _ _ _ _ _ _ _ _ _ _ _ _



r -

~

. --—

~~~~~~~~~~~

—,

long time . Although not compl etely divorced from the prevailing syn-
optic situation , the formation and dissipation of fogs are highly in-
fluenced by local conditions — especially the local terrain and boundary
l ayer environment. Fog forecasting often demands that the forecaster
work out a forecast technique specifically for each fog at each station.
Generally, fogs may be separated into two types : radiation and advec—
tion . Their microphysical characteristics would be different , and fogs
at two different places even though classified as of the same type
(radiation or advectionL may have entirely different microstructures.
For instance , the niicrostructure of the radiation fogs observed at
Travis Air Force Base [5] at the western edge of the San Joaquin Valley ,
California , is quite different from that taken at the Skelly Field [6]
near Fort Ruc ker , Alabama . The former place is more polluted than the
latter.

Cloud Condensation Nuclei

The basic ingredients of a cloud droplet are liquid water (or ice) and
condensation nuclei (or ice nuclei in the case of an ice cloud). These
nuclei generally belong in the family of large and giant particles ;
i.e., their diameters are equal to or greater than 0.1 micrometer and
are nearly always at least partially hygroscopic. For a nucleus to grow
Into a dropl et, the air must have attained a certain degree of super-
saturation. At low supersaturations , only those nuclei which are large
enough and hygroscopic enough will ever go across the hump of the so—
called K~ihler curve (Fig. 1). Once over the hump (i.e., the so—called
critical size or critical supersaturation), these nuclei formally become
cloud droplets and can in theory grow to any size , provided a small
amount of supersaturation is maintained. Those failing to make the hump
are called haze particles.

A NaCl nucleus of 0.1 micrometer in radius has a mass of about l O h 4  g.
The mass of the liquid water of a haze particle may be about the same
order of magnitude as its nucleus mass or at most three orders of magn i-
tude greater, depending on the degree of ambient supersaturation in the
air [7]. The mass of the liquid water of a droplet is at least three
orders of magnitude greater and may exceed eight orders of magnitude
for raindrops . While there is little doubt that a fog droplet can be
regarded as a water droplet , there could be appreciable doubt about
taking a haze particle as a water droplet , especially at very low super—
saturations such as may often exist in a fog. Howeve r, it should be
pointed out here that the existen:e of a large number of haze particles
In a fog, while seriously attenuating the visible transmission , contrib—
utes little to the total water content; for exampl e, a 10—micrometer
dropl et contains a thousand times more water than a 1—micrometer drop—
let and ten thousand times more than a 0.1—micrometer haze particle. 
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Figure 1 . The equilibrium supersaturation as a function of droplet radius
for solution droplets containing the indicated masses of sodium
chloride (from Mason , 1971).
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No fog or haze would exist in an atmosphere free of any nuclei . The
presence of these nuclei in different number concentrations at differ-
ent places would have a definitive influence on the fog microstructures
at these places . Here, the local environment becomes an Important fac-
tor in both formation and microstructure . Given the sane degree of
supersaturation , the fogs in polluted areas tend to be thick and their
size spectra narrower since more condensation nuc lei would compete for
the available moisture in the air , whereas the fogs over rural areas or
the oceans , presumably much cleaner , tend to be moderate and their size
spectra somewhat broader. Such infere~ces can be easily drawn from thestudies by Jiusto [2,31, Mack and Pille L 5 i 1 and Low ~G] in which theconcentrations of cloud condensation nuclei were observed at regular
intervals .

-licrophysic al Evolution

Like any other weather element , a fog goes through different stages of
development from formation through di ssi pation. The same fog at the
same place will exhibit different microphysical properties during
different phases of its evolution. The mere fact that throughout the
duration of droplet growth such riicroprocesses as collision , coalescence ,
and sedimentation go on continuousl y in addition to the usual micro-
meteorolo gical fl uctuations , the constant turbulent exchanges of heat
and moistur e inside the fo~ itself as well as between the fog and th~ground below and the dry air above make it self—evident that the fo-~has a life of its own .

Not until quite recently has the cloud physicist realized the importance
of examining a fog ’s entire life microphysically when attempting to
categorize the fogs. Pilie et a). [8] first noticed the distinct
changes with time size spectra , liquid water contents , droplet concen-
trations , and visibility as the fogs in the Chenrnung River Valley near
Elmira , New York , evolved from mere ground fogs through formation ,
maturity , and dissipation (rig. 2). They estimated that about one
quarter of a fog ’s life used in formation , two quarters in maturit y ,
and one quarter in dissipation. Low ’s analysis [f.] of the fogs at the
Skelly Field near Fort Rucker , Alabama , and those at the Redwood Valley
near Arcata , California , appears to support their observations. More
recently, in Goodman ’s investigat ion [9] of the advection fogs at a
mountain top In the center of the San Francisco area in California , the
life cycles of those fogs did not appear to be as wel l —organized . This
is not too surprising since the mean wlndspeed varied from 3 to 10 m s~~,
reaching a maximum when fogs were advected over the sampling site.

Microphysical Measurements

Examination of some 50 fog drop-size distributions from the open litera-
ture cited in various places in this report is admittedly not extensive

7 
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or exhaustive . If the quality of these measurements is any indicati on
of the type of fog data to be expected and adopted for optical charac-
terization in the EO SAEL , it seems that no more effort is needed to
garner more of the same.

Most of the researchers collected these data with mechanical impactors
of various desi9ns, while following somewhat different techniques in
data reduction (see [4] and [10] for cloud physics instrumentation).
Five researchers (Houghton and Radford [11], Webb [12], Eldridge [13],
May [14], and Kunkel [15]) seemed interested more in testing their new
droplet sampling devices than In fog properties or meteorol ogical
factors giving rise to fog formation . Pili~ et al. [8], Low [6], andGoodman [9] explored such properties; fog niicrophysical evolution in
each case was described In some detail together with supporting mete-
orological observatIOns leading to fog formation either in the paper
itsel f or In cited references. A number of the other investigators did
not give their sampling sites. Most seem to be trying to characterize
fogs through either the calculated or the observed parameter of vlsi-
b iii ty.

It is entirely conceivable that fogs having the same visibility value
of 1 km may possess different microstructures , as will be discussed in
the next section. The microphys-Ical parameter of liquid water content
was used In some cases in an effort to establish its relationshi p to
visibility. Yet only Pilie et a). [R] made independent measurernent~ ofthe liquid water contents of their fogs at regular intervals in conjunc-
tion with other microphysical observations .

Fog visibility has been so elusive that generations of meteorologists
at the beginning of this century (such as those cited in auffli Kampe ’s
paper [16]) sought a definitive relationshi p between liquid water content
and vis ibi lity . Still , such a relationsh ip defies clear—cut resolution.
It may be obvious by now that while fog visibility may be used asa
convenient parameter to grade fog intensity , it does not necessarily
follow that the visibility value can be readily translated into some
designation of fog niicrostructure under all circums tances , thereby
making it possible to deduce its transmission property at some other
wavelength.

Eldridge ’s analysis [171 of Arnu lf and Bricard ’s [18] haze and fog data
may offer some insight into a possible approach to the probl ems of
optical characterizatinn in the EO SAEL . The latter observed that the
shapes of the distr ibution curves changed little in their so—called
“nonevolving ” fogs. Seizing upon such observation , Eldrldge derived
an expression relating visibility to liquid water content. However,
he noted that the constants in his expression would be different when
applied to dense haze and the so—called “selective” fogs. This seems

9
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to suggest that one type of fog at one particular site may obey such an
exponential law having a particular set of constants . Furthermore , this
may impl y that the shapes of the distribution curves of one fog type at
a place reriiaii~ within narrow bounds despite spectra l broadening or
narrowing. If more or less true, this may explain why Houghton and
Radford [il l were able to draw a beautiful straight -line relationship
between visibility and liqui d water content on a log—log scale , and so
was Eldri dge 119 1 ; yet their lines do not coincide.

Numerical Modeling

The state of fog modeling is still at an experimental stage. The effort
has been mainly directed toward formulating a general scheme for pre-
dicting fog evolutipn in terms of li quid water content wi thout regard
to dynamics , size spectra , or terrain and environmental effects. The
physica l foundation for fog modeling was laid by Rodhe [201 in a classi-
cal paper delineating the thermodynamics of the saturated and unsaturated
processes as wel l as the turbulent transfer of heat and moisture in the
formation of mixing (or advection ) fog.

Fisher and Caplan [21] first demonstrated the feasibility of simulating
the formation and dissipation of advection fogs. Following them, Mack
et al. [22] developed a two—dim ensional numerical model . In a con-
tinuing effort, Rogers and Eadie [23] made further improvement upon
this model and subjected it to field tests. In modeling the radiation
fogs, Zdunkowski and Nielson [24] formulated a rather complicated model
in which the transport of long-wave radiation leading to fog formation
was handled in great deta il. Simplif ying this approach to radiative
transfer calculations while retaining the essential physical processes,
Plli~ et al. 1251 developed a one—dimensional prediction modaL Incor-
porating the desirable featur i~ of Zdunkowski and Niel son ’s model as
well as those of Pi1i~ ’s, Lala et al . [26] formulated a model of their
own to test the sensitivity of the various micrometeorological variables
ii the prediction of occurrence or nonoccurrence o.f radiation fogs.

The above discussion briefly summarizes the state of fog modeling.
These model s are rather general in character and may be a valuable aid
to fog forecasting and modification. Unless further developed to in-
clude droplet-size spectral evolution , they would not be too useful in
optical characterization at present.

FOG OPTICAL PROPERTIES IN THE 0.55- AND 10.5—MICROMETER REGIONS

In cloud physics books (e.g., Borov i kov [27] and Mason £4]), f t has
been suggested that cloud and fog dropl et size spectra can be ade-
quately represented by one or both of the two statistical functions:
the log normal distribution and the gamma distribution. Other proposed

10
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distribution functions such as Best’s [28] and Khrgian and Mazin ’s [29]
have not received as wide attention , the former being somewhat too
complicated to use and the latter a special case of the gama distri-
bution. Careful inspection of the shapes of approximately 50 fog
drop—size measurements on hand appears to show that some fog samples
are better fitted with a gamma distribution and others with a lognornal
distribution.

To elucidate in genera l the fog optical properties and examine in detail
the effects of different spectral shapes and widths on such properties ,
six distribution curves have been constructed , three each for the gamma
and the lognormal distributions having different spectral widths. The
liquid water content has been restricted to the same value of 0.1 g m 3
In the hope that this analysis may offer some guidance to the efforts
in the optical characterization program of the EQ SAEL and may provide
some Insight in the requirements of the field measurements . Figure 3
depicts the three histograms based on the gamma distribution , and Fig. 4
on the lognorma l distributi on. The relevant statistical and optical
parameters are summarized in Tabl e 1.

Before the table is discussed , howev er, two figures prepared by Stewart
[30] will be inspected . Figure 5 shows the vari ations of the efficiency
factors for extinction with water droplet radii in the 0.55— and 10.5—
micrometer regions. Fi gure 6 is a scatter diagram of visibility versus
attenuation at 10.5 micrometers . Having computed the total volume ex-
tinction coefficients of approximately 60 fog spectra at these two
wavelengths , Stewart tried to correl ate visibility with infrared at-
tenuation. The correlation is not exactly encouraging, contrary to
Roberts ’ [31] findings in his GrafenwShr fog data. The point to be
noted here is that there does not , in general , appear to be a one—to—
one correspondence at these two wavelengths. Had the authors of the
present report had some perception of the nature of fog microphysics ,
they would have recognized immediately that such one—to—one correspon-
dence , provided that the fog data are creditabl e, is at best a special
case for reasons al ready discussed in the preceding section ,

Attention is now directed to some of the symbols in Table 1. It has
been realized since the beg inning of the century , according to
Middleton [321 , that there should be an inverse relation between the
visual range in a fog and the mass of liquid water. aufm Kampe [16]
gave Trabert ’s formula as

V~ = 2CR/W (1)

11
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where Vt is the visual range according to Trabert , C a constant to be
determined ’. R some mean droplet radius , and W the 1Iquid water content.It is not clear from au fm Kampe’s text as to what central measure of a
distribution function R is referred. Nevertheless , aufin Kainpe and
Weickmann [33] later showed that Trabert’s formula should properly begiven by

Vt = 2.608 R~/WR~ (2)

wher e R
~ 

is the mean—volume radius and R
~ 

the root—mean—square radius.
In the above expression , it is understood that the efficiency factor
for extinction is set equal to 2. aufm Kampe and Weickmann concluded
that, for the equation to hold, knowledge of the complete droplet spectrum
was necessary . Thereupon , McCartney [34] defined an effective radius as

Re = R~/R~ (3)

and asserted that the use of Re enables one to handle , for a relatively
narrow size distribution, scattering problems of a polydispersion In
terms of an equivalent monodispersion . In other words , the followi ng
expression for the total volume extinction coefficient for water spheres
in the visible should then be valid for relatively large drops:

2N’irR~ (4)

B* (for efficiency factor 2) is used in distinction from B which is
calculated exactly for the visibl e wavelength.

Other symbols are defined as follows : N is the number concentration
per cc , Bir the total volume extinction coefficient for the 10.5-
micrometer wavelength , V the visual range given by the well—known
Koschmteder formula (V = 3.912/B ) ,  ~ the percentage deviation of B~from B, and ~V the percentage deviation of V,~ from V. For the purpose

of compar ison , the normal distribution is included in the tabl e, which
is separated into three portions. The left—most portion contains , amon g
others, the optical parameters which have been calculated strictly ac-
cording to the Mie theory. The middle portion gives these parameters
according to Eqs. (2)—(4) where the efficiency factor for extinction is
taken to be 2. The right—most portion shows the deviations. Table 1
will be examined ‘In the following categories:
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Liquid Water Content Versus Visibility

Given the same liquid water content of 0.1 g m 3, the visual range may
vary from 76 m to 433 n, a factor of nearly six inc luding the normal
distribution , or to 327 m , a factor of greater than four excluding it.
When the distribution is narrow , the visual range given by the gama
distr Ibution is almost twice that given by the lognormal distribution ,
but It is almost the same as that given by the normal distribution. In
contrast , when the spectral width is broad , the gama and the lognormal
distributions appear to produce comparabl e visual ranges , a difference
of about 10 percent in our examples ; their similarity may also be seen
in Figs. 3 and 4 .

With the Trabert formula ‘In Eq. (2), an error up to 10 percent may be
incurred . It appears , however , that the broader the spectrum ‘is the
less the percentage error , irrespective of the distr ibution function .

Exact Extinction Versus Extinction of Monodispersion

The table seems to indicate that the so—called effective radius recom-
mended by McCartney [34] Is not meaningful , even for the normal distri-
bution. Nonetheless , note that when the lognormal distribution is narrow
there is only a 6 percent deviation from true extinction. On the other
hand , when the distribut ion is indeed narrow it is then doubtful whether
one should use 2 at all for the efficiency factor in the visible.

Visible Extinction Versus rnfrared Extinction

Some positive relationship apparently exists between the visible and
the infrared extinction coefficients , however , bearing in mind Stewart’s
[30] scatter diagram in Figure 6. As the spectrum broadens , both coef-
ficien ts decrease , except for the one in the l ognormal distribution .
Stewart’s findings suggest that it is risky to proceed to relate visible
extinction or visibility to infrared extinction without some prior knowl -.
edge, or some actua l measur emen t, of the shape of the size spectra.

CONCLUSIONS

Six synthetic histograms depicting the gamma and the lognormal distri-
butions having different spectral widths have been used to illustrate
the probl ems involved in deriving and correlating the fog optical prop-
erties at the two wavel engths of 0.55 and 10.5 micrometers in relation
to fog liquid water content. From the discussion presented, the
following conclusions may be drawn:

1. Although coupled to the preva iling synoptic situations, fogs
possess strong local characters. Even -if of the same type, two fogs
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at two different places may have different microstru ctures and hence
different optical properties.

2. Data analyses may result in misleading and/or erroneous con-
clusions if one attempts to characterize or model fog microphysica l and
optical properties with observation s limited to a small segment of a
fog ’s entire life.

3. The same amount of liquid water found in a variety of fogs
does not imply that they all have the same visibility. Therefore ,
liquid water content alone may not be a reliable measure of visibility
in general . As yet , there exists no off—the—shel f liquid water content
instrument to make an independent measurement.

4. The so—called effective radius for scattering calculations
may not be useful.

5. However , there seems to exist some limited evidence that the
same type of fog at a place may share similar niicrostructure ; that is ,
the same distribution function with different spectral widths nay hold
for this particular fog . If so , it may then be possible to establish
a certain empirical relation among liquid water content , visib ility ,
and infrared attenuation for that place . Such a relationshi p ‘is , how-
ever, not expected to hold universally.

6. Transmittance measurements through fog at the same time that
microphysical and meteorological measurements are made are essential
for devel opment of optical model s and their validation . This type of
data is currently lacking and the co.rrection of this data deficiency
should be given high priority in any field measurement atmospheric
program.

R ECOMMEND ATI O NS

As noted in the introduction , generalized fog models are already in
existence. By suitable adjustment of nicrophysical parameters , it is
possible to simulate fogs of different intensities with corresponding
changes In vis ibility. If the E0 SAEL is to be designed for the pur-
poses of testing and evaluating weapon systems in a particular battle-
field location and/or for possible use under varied battlefield environ-
mental conditions , then fog physical and optical model s must be
generated for that particular battlefield scenario since the general-
i zed models will onl y supply misinformation. In the case of Germany
(both East and West),  which has a total area of about 182 ,000 square
miles cha racterized by severa l climatic zones , it is quite conceivable
that fog nicrostructures would differ in different zones . Fog micro-
physics in Stuttgart may not be the same as those in Hamburg or Berlin.
In this sectiofl, a genera l outline will be presented as to where , what ,
and when to measure , and how to evaluate the mass of fog microphys ical
(and micro meteorologi cal ) data .
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Site Selection

The climatic zones of Germany , as presently classified , may or may not
be appropriate for fog character ization. An examination of fog cl ima-
tology with reference to the present classification should indicate
whether the present one is adequate. If not, a fresh effort in classi-
fication is needed . Otherwise , a place (and preferably another site
far from cities) should be selected as representative of the zone on
the basis of strategic Importance and moderate or high fog incidence.

What to Measure

If the goal is to simply characterize or model the fog microphysical
and optical properti’es for that place , it is perhaps sufficient to
measure as a function of time droplet size distribution s, liquid water
content , aerosol and condensation nucleus concentrations , visibility ,
and infrared transmission in addition to the usual meteorological ob-
servations. For characterizing vertical inhomogeneity , a 300-n or
higher steel tower is needed to provide a stableplatform, and the same
set of measurements taken simultaneously at suitably chosen levels.
The present-day cloud physics instruments call for delicate handling
even on the ground and hence a stable platform up in the air. However,
if the goal is not only to model fog microphysics but also to infer the
processes of fog formation and dissipation in the hope that some pre-
diction scheme or model may be formulated for the place and used in the
EO SAEL , more elaborate meteorological and micrometeorological observa-
tions are then required in addition to microphysica l measurements so as
to enable one to detect and sort out the parameters of particular impor-
tance, local or otherwise, which act in conjunction with the common
physical processes to cause local fog format-ion and dissipation. In
either case, it ‘Is imperative that current weather maps be consulted
and noted .

When to Measure

This report has stressed that the very local dependence of fog calls for
careful observation of a fog’s entire life history ; In other words,
rnicrophysical measurements should be made at frequent intervals from the
beginning of fog formation through dissipation . Since most meteoro-
logical and micrometeoro logical instruments , including aerosol and
condensation nucleus counters ’. can operate on their own without appre-
ciabl e attention, they should be left on all the tir~ at the site.
Detailed soundings over the lowest 200 m above the ground surface should
be taken prior to fog formation , during evolution , and after dissipation
at regular intervals. Of utmost importance is the concurrent measure-
ment of slant path transmission through fog at varying wavelengths. The
spectral regions in such an endeavor should include the visible , 3-5
mIcrometers, 8-14 micrometers, and millimeter bands as a minimum if at
all possible.
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Data Handling

• Depending on the number of sampling sites finally decided upon , the
amount of meteoro logical and microphysical data would , nevertheless , be
quite massive. While data processing may be tedious and time—consu ming,
it is relatively straightforward once a definite and logical procedure
is worked out. The critical phase of data handling is the evaluation of
these data , especially those on fog microphysics in view of the crude
and unreliable state of cloud physics instrumentation . For dropl et
sampling, evidence must be availabl e to show that the instrument has
been accurately calibrated prior to its use and/or that it has produced
fog data compa rable to those of a different design. If the data on fog
droplet spectra should be doubtful , all other supporting measurements
would have lost their values.

The droplet data should be carefully cross -checked for consistency with
liquid water content , visibili ty , and infrared transmission measure-
ments. These measurements should lie wel l within 15 percent of one
another for a samplin g period no greater than perhaps 5— 10 minutes ,
bearing in mind these instruments would have different time constants.
Only in the manner as outlined above , may ‘it be possibl e to properly
delineate and characterize or model the fog microphysical and optical
properties for one place.

Although a program such as the one presented here would be very costly,
when the final total cost of the acquisition of an array of EO weapon
systems for battlefield use is considered , the cost of a well-conce ived
fog characterization program ‘in the battlefield EO SAEL , which is not
only essential to the test and evaluation of these systems but may also
find use under battlefield conditions , is rather insignificant. Current
half—hearted efforts in battlefield fog/optica l characterization will
only produce fog data no better than what is already available in the
literature——adequate for general use but not for battl efield app lica—
tion.
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