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PREFACE

This study was conducted by the U. S. Army Engineer Waterways Ex-
periment Station (WES) under Department of the Army Project
No. 4A161101A91D, In-House Laboratory Indpendent Research (ILIR) Pro-
gram, sponsored by the Assistant Secretary of the Army (R&D).

The investigation was conducted by Dr. G. Y. Baladi during calen-
dar years 1976-1978 under the general direction of Mr. J. P. Sale,
Chief, Geotechnical Laboratory (GL), end Dr. J. G. Jackson, Jr., Chief,
Soil Dynamics Division (SDD). Useful suggestions and comments by
Drs. B. Rohani and J. S. Zelasko, SDD, are appreciaeted. The report
was written by Dr. Baladi.

Director of WES during the course of the investigation and prep-

aration of this report was COL J. L. Cannon, CE. Technical Director
was Mr. F. R. Brown.
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AN ELASTIC-PLASTIC CONSTITUTIVE RELATION FOR TRANSVERSE-
ISOTROPIC THREE-PHASE EARTH MATERIALS

PART I: INTRODUCTION

Background

1. Earth materials are multiphase systemsl that consist in gen-
eral of solid particles (possibly cemented), water and gas (air), and
are often found to be inhomogeneous and anisotropic (herein the term
"anisotropic" refers to the dependence of the moduli or strength of the
material upon direction of loading). The intrinsic response of such ma-
terials to externally applied loads is extremely complicated. To model
this response for a particular material, one must resort to the theory
of continuum mechanics and have available an appropriate constitutive
relation. The solution of earth structure problems then becomes a math-
ematical formalism that can be achieved numerically or by other means.

2. During the past few decades, the dramatic growth of computer
technology and the development of new methods of numerical analysis
have been paralleled by an increasing degree of complexity in material
constitutive modeling. Consequently, several quite complicated elastic-

3-5

ideally plastic,2 variable moduli-type, and elastic~-plastic work-

hardening6-lo consticutive models have been developed and used by the
soil and rock mechanics communities. Some of these modelsG-8 are three-
dimensional isotropic and/or transverse-isotropic and can predict shear-
induced volume change; however, they simulate only single phase systems.
The Cambridge model? simulates two-phase (water and sclid) systems and
can also predict shear-induced volume change, but it is formulated only
for two-dimensional geometry, i.e., the intermediate principal stress
equals either the minor or the major principal stress. In 1976, an
isotropic three-dimensional two phase constitutive model for saturated
cohesionless solls was developed at the U, S. Army Engineer Waterways

Experiment Station (WES). 10



3. At present, there is no single general constitutive relation-
ship available that can simulataneously (a) be expressed in terms of a
three-dimensional coordinate system, (b) apply for any state of stress
and deformation, (c) simulate three-phase systems (i.e., partially sat-
urated materials), (d) predict observed shear-induced volume change,
(e) handle both isotropic and anisotropic material behavior, (f) sat-
isfy all of the mathematical restrictions of the theory of continuous
mass media, (g) derive the numerical values of the coefficients in its
response and potential functions from experimental data obtained by use
of essentially conventional laboratory testing technigques, and (h) be
easily incorporated into contemporary finite-element and/or finite-
difference computer codes. The benefits of the availability of such a
constitutive relationship are obvious. It would provide a basis for the
interpretation and orgenization of drained and undrained laboratory test
data for various states of stress and deformation and provide the means
(in conjunction with appropriate computer codes) to perform effective
stress analyses for a wide variety of earth structures problems for

either transient or static-type loading conditions.

ObJective

4. The overall objective of this study was to develop a completely
general, three-dimensional, elastic-plastic work-hardening constitutive
relationship for transverse-isotropic three-phase earth materials. 1In
addition, the constitutive model was desired in a form suitable for use
with current finite-element and finite-difference techniques for the
solution of boundary- and initial-value problems involving a veriety of

natural earth materials and earth structures.

Scope

5. The concepts of effective stress and material anisotropy are
presented in Part II. In Part III, the development of the single-phase

elastic-plastic constitutive model is presented. The application of



this model to treat multiphase systems is outlined in Part IV. The qual-
itive behavior of the multiphase model under triaxial test conditions is
examined in Part V. Part VI summarizes key aspects of the model and fur-
nishes recommendations for its quantitive application. Appendix A re-
views basic concepts from continuum mechenics, and Appendix B describes
the constitutive relations for a linear elastic transverse-isotropic
material. A general description of elastic-plastic constitutive models
is contained in Appendix C. Appendixes A, B, and C are included both
for reference purposes and for future use. The reader is advised to

read these appendixes before reading the main report.

s



PART II: EFFECTIVE STRESS AND ANISOTROPY CONCEPTS

6. Earth material, in its general form, is composed of a complex
assemblage of discrete particles of varying shapes and orientations
in a compact, possibly cemented, array. These may range in magnitude
from the microscopic elements of a clay soil to the macroscopic boulders
of & rock fill. The voids in the array may be filled with water or air
and usually contain both. Before a constitutive model describing the
behavior of these materials under an applied stress can be developed, it
is necessary to consider how this stress is distributed among the sev-
eral components comprising the aggregate and to understand, in general
terms, the mechanical behavior of these assemblages. The emphasis
throughout the remainder of this report will be on earth materials that
are better described as soils than as rocks; however, the model, in

principle, is applicable to both.

Effective Stress

7. The normal stress components st a point in a soil body may be
divided into two pa.rts:ll the stress carried by the solid skeleton,
referred to as the "effective stress," and the stress carried by the
pore fluid, referred to as the "pore pressure." The pore pressure, in
turn, must be divided into two parts: the stress carried by the water
and the stress carried by the air. Mathematically, total stress¥ can

be expressed (in indicial notation®*¥*) aslz-lh

P

O35 = 94y * [Ba - x(Py - P)] &y, (

* Symbols used in this report are listed and defined in +he Notation
(Appendix D).

#¥% Tndices take on values of 1, 2, or 3. A repeated index is to be
summed over its range. A comma between subscripts represents a
derivative. Quantities are referred to rectangular Cartesian
coordinates Xi'



where

oiJ = total stress tensor
OiJ = effective stress tensor
Pa = pore air pressure

x = dimensionless quantity proportional to the pore volume
occupied by the water phase

P = pore water pressure

w
15 B =
Gij = Kronecker delta =
B; ¢4
Equation 1 can be rewritten sas

(2)

0,, =0o!, +us
id

ij iJ

in which u is the total pore pressure representing the combined effect

of the pore air pressure and the pore water pressure, i.e.,

For a fully saturated soil, x =1 ; and for a completely dry soil,
x =0.
8. For a triaxial test performed on a cylindrical specimen (r-6-z

coordinate system), the stresses are (Equation 2):
@ =at + u
z
=! = [ - '
o o Og +u=0, +u (4)

where oz s O, and, oe are, respectively, the axisl, radial, and
tangential total stress components. The mechanical behavior of satu-
rated and partially saturated soils tested under triaxial conditions is

discussed in the following section.

Mechanical Behavior of Soil

9. The mechanical behavior of soils subjected to externally

B3
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applied loads is quite complicated. Unlike most engineering materials,
soil stress-strain properties are greatly affected by such factors as
void ratio, orientation of soil particles (i.e., soil structure), degree
of voids saturation, drainage conditions during loading, loading rate,
loading history, and current stress state. Moreover, the effective
stress is the only part of the total stress that affects soil volume
changes and shear strength.

10. Figures 1 and 2, respectively, show the typical behavior of
an isotropic and a transverse-isotropic soil subjected to hydrostatic
stress. For the isotropic soil (Figure 1), all strains are equal under
hydrostatic states of stress; however, as indicated in Figure 2, in the
case of transverse-isotropic soil, the strain in the plane of isotropy,
€. » is different from that in the axial (symmetry axis) direction,
€, -

11. Figure 3 shows a typical variety of stress-strain-pore pres-
sure response curves manifested by saturated anisotropic soils tested
in undrained shear in a triaxial compression device* (the r6-plane is
the plane of isotropy). The three specimens were first isotropically
consolidated to the same effective mean normal stress level (point 2),
then sheared undrained. At point 2, of course, the strain €, is
different from the strain €, in each case. The shear curves marked
"2 » 3" show the typical response of a normally consolidated clay or a
loose sand. The curves marked "2 + 5" show behavior typical of an
overconsolidated clay or a dense sand. Within the exireme limits of
these loose and dense soil responses, there is a graduated response,
typified herein by the curves marked "2 - 4." The latter response
depends on the state of compaction (consolidation) of the material.

12. Figure b shows typical (qualitative) stress-strain response
curves for the former anisotropic soil sheared under drained triaxial
compression condition, i.e., the curves marked "1" represent dense sand

or overconsolidated clay, while the curves marked "2" depict response

* These tests must include independent measurements of radial
deformaetion.
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isotropic soil under hydrostatic loading and unloading
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typical of loose sand or normally consolidated clay.

13. The mathematical development of a total stress (single-phase)
elastic-plastic transverse-isotropic constitutive relationship that
qualitatively describes the responses shown in Figures 1 through 4 is
presented in Part III. The treatment of a multiphase system is pre-
sented in Part IV.

12



PART III: ELASTIC-PLASTIC CONSTITUTIVE MODEL

14. The fundamental relationships for linear elastic and elastic-
plastic transverse-isotropic constitutive models are derived in Appen-
dixes B and C, respectively. In this part, the most important mathemati-
cal expressions developed for the generalized model in these appendixes
are utilized, but the focus is on specific forms of the model's response
functions. For example, the definitions of the elastic and plastic
pseudo stress invariants as given by Equations Bl3 and Clk, respectively,
and the elastic and plastic pseudo strain deviation increment tensors as
given by Equations Cll and C22, respectively, are required. In addition,
the general elastic description of the model as defined by Equations C6
through Cl2 and the general plastic description given by Equations C13
through C37 are needed. The model's complete generalized elastic-
plastic description is governed by Equation C40. The above-cited
equations are used to describe selected mathematical forms of the vari-
ous response functions contained in the model, which are needed to

simulate the typical soil responses presented in the previous sections.

Elastic Behavior

15. The behavior of the model in the elastic (recoverable) range
is governed by the three constants, aE 1 BE , and YE , (Equation B13
of Appendix B) and by the two response functions, B and S , Equa-
tion C9 of Appendix C. Equation C10 reveals that the parameter cr.E
and the response function B are compressibility-related material prop-
erties, while Equation Cll reveals that the parameters BE and YE
and the response function S are shear-related material properties.
Compressibility-
related material properties

16. The parameter aE defines the ratio between the elastic

strain in the plane of isotropy, €. and the elastic strain normal to
the plane of isotropy, €, » under hydrostatic states of stress (Fig-

ure 2); thus

13



E
er
a” =5 (5)
€
Z

For the ensuing developments, it will be more convenient to work with a
Cartesian coordinate system, Hence, the plane 22, 33 of the Cartesian
coordinate system 11, 22, and 33 is designated as the plane of isotropy

(Figure 5). Equation 5, therefore, becomes

o === = (6)

EE €E
E_ o0 €33
E E
SIS

1 1

The value of aE can be determined experimentally from the slope of the
unloading strain path curve obtained from a hydrostatic compression
test (Figure 5). It is clear from Figure 5 that for an isotropic

material, the value of otE becomes

EE EE

I - e g

o = T EE 1 (7)
SEEE ]

The elastic response function B (B is the elastic bulk modulus for an
isotropic material) describes the unloading stress-strain response of a
hydrostatic compression test (Figure 2). It is suggested that for most
transverse-isotropic earth materials, B can be taken as a function of

the first (elastic) pseudo invariant of stress ¢E , (Figure 6)*

where
Bi = initial value of the response function B (Figure 6)

* The functional form of B can readily include more terms, thereby
providing more flexibility in fitting the behavior of a specific
material. The function B could alsoc be dependent on the plastic
volumetric strain.

1
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Figure 5. Comparison of strain paths for isotropic and transverse-
isotropic materials subjected to hydrostatic loading and unloading
Bl’ B2 = material constants
Equation 8 above together with Equation C10 of Appendix C indicate that
the material constants Bi 5 Bl , and B2 can be readily determined
experimentally from the unloading hydrostatic compression test results,

as illustrated in Figure 7. Equation 8, therefore, can be written as

E
B ag
P EV- 1
B= T =% [% - B, exp (- B, ¢l>] 7 (9)
1 9dell

15



VALUE OF B

VALUE OF .-':E

Figure 6. Elastic respoase function B versus first elastic
pseudo invaeriant of stress (Z%;

Shear-related material properties

17. The elastic shear response function S (S is the elastic
shear modulus for an isotropic material) accounts for the curvature
observed in the stress difference-strain difference results obtained
from triaxial compression tests, (Figure 3). For this report, S is
assumed to be a function of the second (elastic) pseudo invariant of

(Figure 8)*

stress ¢§ » 88 well as the plastic volumetric strain, eik 0

s -
8 =1 _is [l - 8, exp (— SZJQ’—E)]*' EN [l - exp (— 8, e§k>] (10)

i
where
Si = initial value of the response function 8
(Figure 8)
81,82,83,Sh = material constants

# This functional form of S could include more terms, thereby provid-
ing for more flexibility in fitting the behavior of a specific
material.

16
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Figure 7. Elastic transverse-isotropic relationships for
hydrostatic compression test
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Cae 7 0

VALUE OF 5
-

S,

SECOND PSUEDO INVARIANT OF STRESS, '~';

Figure 8, Elastic response function S versus second pseudc
invariant of stress and the plastic volumetric strain
Equation C11 of Appendix C indicates that the material constants Si o
Sl 5 S2 s 83 , and Sh can be readily determined from the slopes of
experimental unloading stress-strain curves obtained from a series of

triaxial tests conducted on a cubical specimen, i.e., & 3-D box type
test, at different confining pressures in which the axial stress is
applied paralled to the 33-axis, i.e.,

=0 = confining pressure

°11 7 %2
(Figure 9). The results of these same tests can be used to determine
the value of BE from the slope of the unloading strain path shown in

Pigure 10:

where EEi: is the elastic pseudo strain deviation tensor defined by

J
Equations Cll and Cl12 of Appendix C. There are several ways of deter-
mining YE . One way is to measure the unloading shear stress-shear
strain response during a direct shear test, or a simple shear test,

(Figure 11). The slope of the ¢ unloading curve is equal to

- €
E E 13 13
2s/y" , from which vy can be easily determined, since the function S

is known from Figures 8 and 9.

18



CUBICAL
SPECIMEN

PLANE OF
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732 ~ CONFINING PRESSURE
[

L L By
Cuw 17 wr 2
II: = COMETANT

PRINCIPAL STRESS DIFFERENCE, Tag = .."!1

<

VALUE OF 3%,,

Figure 9. Suggested method for conducting triaxial tests and plotting
results to quantitatively determine the response function S

Plastic Behavior

18. For the plastic behavior, the loading function § (Equa-

tion C1l3 of Appendix C) is assumed to consist of two parts (Figure 12):

an ultimate failure envelope that effectively limits the maximum shear
stress in the material and an elliptically-shaped strain-hardening
yield surface that produces plastic volumetric and shear strains as it
moves. The failure envelope portion of the loading function is

mathematically described by

f <¢§’ ,\@>=,/¢§ - 8 -k (12)

and the strain-hardening yield surface by

19
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Figure 10, Comparison of lateral strain path results
for isotropic and transverse-isotropic materials sub-
Jected to a triaxial test

r <¢§' N ) = [2y - L)]? + 8% - (x(e) - n(0)P =0 (13)

where ¢§ and ¢g are, respectively, the first and second (plastic)
pseudo inveriants of stress, which are defined by Equation Cl4 of Ap-
pendix C; and paremeters k and ¢ are material constants repre-
senting pseudo cohesive and frictional strength parameters of the ma-
terial (Figure 12); R 1is a parameter which will be defined below;
¥(x) and L(k) define the intersections of the hardening surface with
the ¢§ exis and the failure envelope f(¢i s ¢g
k 1is the hardening parameter, which generelly is a function of the

) , respectively; and

20
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PLANE OF
150TROPY

SHEAR STRESS, T3

5
TE

SHEAR STRAIN, €3

Figure 11. Simple shearing stress-strain response of a
transverse-isotropic material

history of plastic volumetric strain, sik . For most soils, «k can

be chosen as

Equation 14 allows for the elliptic hardening surface to expand and
contract as well as to translate relative to the origin of the ¢§ S
V¢g axes, Note that the hardening surface (Figure 12) was chosen so

21
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ULTIMATE FAILURE ENVELOPE, §

HORIZONTAL TANGENT

STRAIN - HARDENING
ELLIPTIC CAP,F

.~ VERTICAL TANGENT

L (k) M| “1

X {x)

Figure 12. Proposed yield surface for the elastic-plastic
transverse-isotropic model

that the tangent at its intersection with the failure envelope is hori-
zontal. This condition is guaranteed by the following relationships
between «k , L(k), and X(x) :¥*

L(k) if L(x) > 0O
L(k) = (15)
0 if £(x) <0

* The mathematical form of Equation 16 depends on the specific material
being modeled. The author believes, however, that the form presented
by Equation 16 is suitable for modeling most soils when subjected to
a relatively low stress level.
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X(k) = -=1n (1 - &) (16)

1 K

- -5 ln (l - .ﬁ) -Rk

By, = Tl S B (17)
1l + YR 1l + YR

where D is a material constant and W 1is also a material constant
which defines the maximum plastic volumetric compaction that the ma-
terial can experience under hydrostatic loading (Figure 13). The ma-
terial paremeter, R , in Equations 13 and 17, is the ratio of the major

to the minor axes of the elliptic yield surface (Figure 12). The value

|

MEAN NORMAL STRESS, P OR X X)/2

B

]

VOLUMN CHANGE, €y

Figure 13. Behavior of model under hydrostatic compression,
illustrating maximum irreversible volume change
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of R depends on the state of compaction of the material. For a con-
tractive material (i.e., loose sand or normally consolidated clay, Fig-
ure 3 curves marked "2 -+ 3"), the value of R 1is greater than 1/¥,
whereas for a dilative material (i.e., dense sand or overconsolidated
clay, Figure 3 curves marked "2 + 5"), the value of R is less than
1/9. R =1/ corresponds to the curves marked "2 - 4" in Figure 3.
These variations in the parameter R can be accounted for by the fol-

lowing relation:

R
R = - -i-iR {]_ + R, exp [— R, L(K)]} (18)

At

where Ri > Rl » and R2 are material constants that can be determined -
by a trial and error process of fitting the model to a variety of lab-
oratory test data.

19. The material parameters ¢ and k (Figures 12 and 1L, and
Equation 12) can be determined from a series of standard triaxial tests
in which the material is sheared to failure. The material parameters
aP and BP appearing in the definitions of ¢i and ¢g are defined
analogously to their elastic counterparts, except that they involve the
plastic strains instead of the elastic strains, i.e., (see Figures 5

and 10, and Equations 6 and 11):

o = == == (19)

€11

P P
P Eo20 €33

P~ P

1 11

=P

e
12—
B =5 (20)

€22
where Eid is the pseudo plastic strain deviation tensor that is

defined by Equations C22 and C23 of Appendix C. The parameter YP

cannot be expressed analogously to its elastic counterpart (Figure 11),
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because it involves the plastic stress-strain relation,

i.e.,
P
de
YP - 21 (21)
ax _ _af
- = Yz
”n
) ¢23 ¢2

The parameters aP

and BP affect the shape of the tailure and
hardening yield surfaces.

This can be seen most clearly in prineipal
stress space (Figure 14).

In the octahedral plane, the trace of the

“11
] k
LEGEND

TRANSVERS - ISOTROPIC
FAILURE SURFACE

emasas (SOTROPIC
FAILURE SURFACE

P31

Figure 1bh.

Isotropic and transverse-isotropic failure
surfaces in octahedral plane
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failure surface defined by Equation 12 is shaped like an ellipse (Fig-
ure 14). The dashed circle in Figure 14 represents the trace of a

failure surface for which aP = BP = 1,

20. In summary, there are five potential functions (two elastic,
three plastic) and six material parameters (the a's , B's and y's)
that describe the complete behavior of the proposed model. These are
summarized in Table 1. Twenty-one material constants are used in the
present model. The treatment of a multiphase system using the proposed

model is presented in Part IV.
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PART IV: THE TREATMENT OF A MULTIPHASE SYSTEM

21. To model the behavior of a multiphase system, two separate
sets of material constants, such as those shown in Table 1 are required.
The first set should reflect the effective stress properties, i.e.,
those of the soil skeleton along, and should be determined by testing
the material under drained conditions. The second set should reflect
the total stress properties, i.e., those of the soil skeleton and water
and air mixture, which should be determined by testing the material un-
der undrained conditions. The resulting two sets of model parameters
are summerized in Table 2. By use of these two sets of parameters, the
complete pore pressure and total and effective stress response of a
multi-phase system subjected to given stress or strain increments can
be readily calculated by one of the following procedures:

&. If stress increments are given,

1. Calculate the undrained volumetric strain using the
second set of response functions and material con-
stants listed in Table 2.

2. Impose the above volume change on the drained model
(i.e., the first set of response functions and mate-
rial constants listed in Table 2) and calculate the
resulting stress path and associated material re-
sponse. This stress path is the effective stress path
that the material will experience during this un-
drained load application. The pore pressure is sim-
ply the difference between the total and the effec-
tive stress paths.

This procedure is illustrated in the diagram on page

28.

b. If strain increments are given,

1. Calculate effective stresses using the first (drained)
set of response functions and material constants
listed in Table 2.

2. Calculate total stresses using the second set of re-
sponse functions and material constants listed in
Table 2. The pore pressure during this undrained
load application is simply the difference between the
total and effective normal stresses.

The diagram on page 29 illustrates this procedure.
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The response of & multiphase material tested under undrained standard
triaxial test conditions is calculated using one of the above-mentioned

procedures in Part V.,

gy
(GIVE

USING MIXTURE
PROPERTIES (TABLE 2)
AND EQUATION C 40

dE

?

USING SKELETON
PROPERTIES (TABLE 2)

ND EQUATION C 40

NOTE dsj = ds)

mri"l d"EI_j ” ﬂf’]J - ﬁ”{j
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USING MIXTURE
PROPERTIES (TABLE 2)
AND EQUATION C 40

{

USING SKELETON
PROPERTIES (TABLE 2}
AND EQUATION C 40

dgil

uuS,J = dojp - doy
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2.

phase system can be more clearly understood if the model is examined

PART V:

BEHAVIOR OF THE MULTIPHASE CONSTITUTIVE MODEL
UNDER TRIAXIAL TEST CONDITIONS

The ability of the model to simulate the response of a multi-

under particular laboratory test boundary conditions.

Since most of the

mechanical testing of soils for engineering purposes is performed with

the triaxial test (TX) apparatus, it is appropriate to investigate the

model under both drained and undrained TX conditions.

axis of a cylindrical coordinate system (z ,

Adopting the z-

r , and ©) as the axis

of symmetry of both the material and the soil sample (i.e., the plane

r6 1is the plane of isotropy of the material), the total and effective

stress tensors, and the strain tensor associated with this configuration

become:

The variables

\E
nF ., o

ij
]
cij
ei,j
J1 5 Ji ’
P ¢,P
b 5 and ¢

P
l 2

P E
IR

(22)

?

associated with the above-mentioned stress

and strain tensors take the following forms:

J. =

+
1 oz 2or

30

[ o 0 7
z
- r
0 0] o
- r -
1]
[t 0 0 ]
=10 o! 0
]
= % |
L 0 0
z
= |0 0
r
0 0 €
L r
- = E E
J2 b} Jé ] ¢l b ¢]'- ] ¢
kk

(25)
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where

[

o &
o= -

*Q
=

>

] |+ L
Jl = oz 20r

2 2

:i - '
3 (0; or)

=
fae)

n
Q
+
n
[+
Q

AN
[

first invariant of the total stress tensor

first invariant of the effective stress tensor
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(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

second invariant of the total or effective stress devia-

tion tensor

elastic first pseudo invariant of total stress
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¢'E = elastic first pseudo invariant of effective stress

1

¢i = plastic first pseudo invariant of total stress

]'_P = plastic first pseudo invariant of effective stress
¢g = elastic second pseudo invariant of total stress

éE = elastic second pseudo invariant of effective stress
¢12> = plastic second pseudo invariant of total stress

éP = plastic second pseudo invariant of effective stress
Crx = volumetric strain

The triaxial test generally has two phases: the hydrostatic phase and
the shear phase. Both phases can be conducted either drained or un-

drained. These phases are discussed below.

Hydrostatic Phase

Drained condition
23. During the drained hydrostatic phase of a triaxial test, the

pore pressure is zero and

(37)

ek = €, + 2er (38)

where €9 = €, - The relation between the elastic volumetric strain in-
crement and the increment of the first pseudo invariant of effective

stress is given as (see Equation C10 of Appendix C and Table 2)

9B

d¢iE = —2_ ge (39)

E
l+2a§ kk

where the response function Bs is given by Equation 8 or 9. Equa-
tion 8 1s substituted into Equation 39 and the resulting expression is
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integrated to provide the following relation between the elastic volu-

. E E.
metric strain €k and ¢l :

E E
1+ 2a 1-8B exp (ﬁ @ ) - B
CE = S 1s 1n 28 1 1ls (L‘O)

kk 9 st Bis 1- Bls

In view of Equation 5, the elastic radial and vertical strains can be

written as
E B
E_% (1~ By exp (st 9 )‘Bls
* 75 \B, %, " 18 1)
28 "is 1s
and
l1-B exp (B ¢'E)- B
) I 1s 2s 1 1ls
€ = s \s 3 1in 1 — B (k2)
= 2s “is 1s

The relation between the plastic volumetric strain, ellzk , and ¢iP is
given by Equation 16, where «k for this phase of the test is 611:1: and

X(k) 1is ¢1P , thus:

511:1; =W, [l - exp (— D, ¢iP)j| (43)

By the use of Equations Bl3 and Cly, the relationship between ¢iE and
¢iP under a hydrostatic state of stress is

P
1l + 2a
P s E
g = —= |0 (L44)
& 1+ 2a§ 1

Substitution of Equation 44 into Equation 43 yields

ef:k =W {1 - exp [- (1 + 2a§) D, ¢iE/(1 + 2a§)]} (45)
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The plastic radial and vertical strains can be obtained by the combina-
tion of Equations 19 and 45:

P
2o tee {m - (ugag)psq,f/(mdg)]} (6

1+ 2a
s

and

e: ————l isguz {l - exp [ (l + 20 )D ¢' /(l + 2a§)]$ (47)

The total (elastic plus plastic) strains can be easily obtained by the
addition of Equations 41 and 46 for radial strain, Equations 42 and 47
for vertical strain, and Equations 40 and 45 for volumetric strain--

which gives:

- E) -
r s \98,, B;, 1 -8B
P E 1)
l—exp—l+2as D, #17 /(2 + 2o (48)
1+ 2a
0 = B exp (B ¢'E)
B 1 - B,
1ls
1 - exp [- (1 + 2a§) D, ¢iE/(1 + 2a§>]} (L9)
l + 2oz
and
1-B exp(B ¢'E)-B
c = (l + 2(’.E) (____i_g_) 1n 28 1 1ls
kk ] 9B2s BiS ) l - Bls .

+ WS {l -~ exp [— (1 + 2(11;) Ds ¢:'LE/(1 + 2(12)]} (50)

34



Equations 39 through 50 provide & complete specification for the defor-
mation response of the material subjJected to a drained hydrostatic test
(i.e., isotropic consolidation).

24k, The qualitative behavior of the model during a drained hydro-
static test is shown in Figure 15. The slope of the ¢]'_E - € and

kk
J]'_ - ekk curves during virgin loading can be obtained from Equation 50:
ag: ®
- (51)
kk
where
a = 2

9B

(1 + 2a§)71 - Bls) [l B Bls et (- B2s ¢iE)]

1l + Eu]: p - B
———t = =
a2 HSDE B exp [ (l 4+ Eus) Elﬂ {H'l /(1 + Eus):l
8

L + 2a

The combination of Equations 8, 45 and 51 results in:

el 1
= 5 (52)
kK 1+ 2

Lo (), - )

9 = Bs s\1 + 2a§ s kk
1l+ 2a
s
The slope of the J]'_ - €k curve can be easily obtained from Equa-

tion 52 by recognizing that the value of ¢iE for hydrostatic states of

stress can be written as (see Equation Bl3 of Appendix B).
B E EN
] = L + 1
¢l (l & 2as) oz (l 2“3) J1/3 (53)

Substitution of Equation 53 into Equation 52 leads to:



(uo13BPITOSUOD owmo.apom.“wv uotssoxdmod
919873S0IPAY PSUTBJIP Ja9pun TSpoWl ayy JO JoTABYsyg ‘ST aaInI1g

b2

¥

3 3

4

fo—

36



oo VA £ e RS A AT SRRt o

ag: .
LI L . = X (54)
de ; s
kk 1+ 2a
3 8 kk

where KS is the apparent bulk modulus of the anisotropic material
under drained hydrostatic loading. The second term in the denominator
of Equations 52 and 54 produces a softening of the apparent bulk modulus
due to plastic volumetric compaction. At high pressures, the softening
term goes to zero (i.e., Eik =W ) and the apparent modulus is ap-
proaches the elastic bulk modulus, K_ = [9/(1 + 2as)2]BS . Also, if a
sample is first isotropically consolidated (from point 1 to point 2 in
Figure 15), then unloaded (point 2 to point 3), and then reloaded

(point 3 to point 2), the model dictates that the unloading-reloading
behavior is purely elastic.

Undrained condition

25. During an undrained hydrostatic loading, the effective
stresses generally are not zero. The total stress-strain relations for
this drainage condition can be obtained in a manner similar to that used
to derive Equations 40 through 50, except that they will involve the
total stresses (Equations 25, 27, 28, 30, 32 and 34) instead of the ef-
fective stresses, and the model coefficients will have the subscript m

(mixture) instead of the subscript s (skeleton) (Table 2); thus:

E
EE _ 1+ 2am 1l - Blm = exp ( ) lm (s5)
kk 9 B2m Bim 1- B
E E
g a 1l- Blm exp (B2m ¢l) = Blm
©="% \s_ B 1n = o (56)
em im 1m

Bl

T grrERT——y

T



and

P _ W
2 1+

E
RUERMETR R

S |
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za§> {l o [' (1 + 200) % &/ 2&51)]} (60)

(63)



Computation of effective
stress and pore pressure

26. The effective stresses and the pore pressures generated during
undrained hydrostatic loading can be computed by the assumption that the
volumetric strains from Equations 50 and 63 are equal (procedure a of

paragraph 21), thus:

E .E>
1+ 2as 1l - Bls . exp (st ¢l - Bls
9 B2s Bis & S Bls
P JE E
+ ws {l - exp [— (l + 2as) Ds ¢l /(l + 2(18)]
E E
+ - —
i 1 eam 1-B, r exp (B2m ¢l B,
9 B2m Bim 1l - Blm

‘i {1 - exp [ (2 +2df)p_ o /(1 + 2ai):| (64)

from which ¢iE can be obtained as a function of ¢}313 . The effective

stresses and the pore pressure, u , become (see Equations 4 and 29)

E
@1
1
g!' = ¢ = ———— (65)
z r 1+2aE
s
u=g -0'=¢g -g¢' (66)
z z r r

Note that when the material is fully saturated (i.e., a two-phase sys-
tem) and the water is assumed to be incompressible, the right sides of
Equations 63 and 64 become zero, i.e., ¢iE is independent of ¢§: and
Equation 64 can be satisfied if and only if ¢iE is equal to zero.
This means that all of the applied load is carried by the water.
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Shear Phase

27. During the shear phase of a conventional triaxial test, the

cell pressure is maintained constant:
o.* constant = Pc (67)
dg_ =0 (68)

where Pc is the confining pressure at the end of the hydrostatic com-
pression phase. If it is assumed that the hydrostatic compression phase
that preceded the shear phase was drained, the confining pressure, Pc 3
is effective and is equal to Pé , the effective confining pressure.

Drained condition

28. During the subsequent drained shear phase, effective and total
stresses are equal (i.e., the effective stress path is known and is
identical to the total stress path). The material response is deter-
mined from Equation C40 of Appendix C by use of the response functions

end the materisl parameters listed in Table 2 for the drained condition;

thus,

P
A 2 n!. 6
e B B 1 B Sl S P LJ S (69)
degy = gp- 90 Ajy + 55 dngy gl o € = =
2 1 2 Y@L 3 Vi
where
1 0
af=io B g (70)
1) s E
0 o
s
ag! E
ni? = 80? (see Equations Bll and Bl5 of ('72)

iJ Appendix B)
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f=]
F(%ip . 1‘¢ér , Ks> on the hardening surface
i = (72)
P P
f@':'l_ ) ﬁ’ 'ﬁé ) on the failure surface
1 0
Aip =|0 aP 0 (73)
J s P
0 o
8
and
P
1
9 e (74)
: 1
il aoij

Equations C38 and C39 of Appendix C can be used to calculate As and
;S » respectively, using the material parameters for the drained condi-
tion (Table 2).

29. The volumetric strain can be obtained from Equation 69 by mul-

tiplication of both sides by the Kronecker delta, 6,

i :
E
1+ 2a A 94
- S i E s P S
de, 5 ag: = + 3 (1 + 2as) 5 (75)
s s 3¢1

Typical (qualitative) results predicted by the model for a drained shear
test are shown in Figure 16.

Undrained condition

30. During an undrained shear test (following isotropic consolida-
tion) only the total stress path and, consequently, the total stresses
are known. The materiel response for this phas¢ can be determined in a
manner similar to that used to develop Equations 69 through 75, except
that they involve the total stresses (Equations 25, 27, 28, 30, 32
and 34) instead of the effective stresses, and the model coefficients
will have the subscript m (mixture) instead of the subscript s

(skeleton); thus,
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P
A ] ?
de,, = —=—agf AE, + Lol + -2 —&AP +—J—ni —6m (76)
iJ QBm 11y QSm 1J Cm 3¢P iJ J_P P
1 2Ng, avg
2 2
and the volumetric strain increment is
1+2<:z;‘:31 I o\
Yo = T T (L +2f) = (17)
m B¢l
where
1 0 0
E _ E
Aij 0 Gm 0E (78)
0 0 o
m
B 8¢E
n.j o~ (see Equations Bl4 and B1lS of (79)
% i} Appendix B)
P p
F <?l ’ "¢2 . Km) on the hardening surface
§ = (80)
= 13 P
f (?l . ¢2 ) on the failure surface
1l 0
P _ P
Aij- 0 a oP (81)
0 0 o
m
and
e W
"iy T 3 (62)
iJ

Equations C38 and C39 of Appendix C can be used to calculate Am and
cm , respectively, using the material parameters for the undrained condi-
tion (Table 2).
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Effective stress and
pore pressure computations

31. During the undrained shear test, the effective stresses and the
pore pressure at the end of each loading increment can be computed by
the assumption that the total volumetric strain increments obtained from
Equations 75 and 77 are equal (i.e., procedure a of paragraph 21);

thus,

E E
1+ 24 A 34 1+ 24 A 2,
s . E S ; P) s_ _ m .E m ( P)
—oE e (1 +20 ) —Sp = ——Ragy + 2 (1420} (83)
5 a¢l m m 3¢1

from which ¢J'_E can be obtained as a function of ¢1]‘_3 . The pore pres-

sure and the effective stresses then become (see Equations 4 and 29):

E JE p P
cz+2u.o 1) oz+2asor-¢l

s r 1
u = = (8k4)
1+ 2aE 1+ 20.P
S S
o' =g -u (85)
z zZ
g' =g =-u (86)
r r

Since the effective stresses are known, the total strain increment ten-
sor for the undrained condition can be computed from Equation 69. Typi-
cal (qualitative) results predicted by the model for undrained shear are
shown in Figure 17. Figure 17 also depicts qualitatively the effects
of the parameter R on the stress-strain-pore pressure response during
a conventional undrained triexial shear test.

32. When the material is fully saturated (i.e., two-phase system)
and the water is assumed to be incompressible, the right sides of Eque-
tions 77 and 83 become zero; i.e., ¢iE is independent of ¢f . This
means that the effective stress path is independent of the total stress
path applied to the material. This behavior is also predicted by the

isotropic model reported in Reference 10.
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PART VI: SUMMARY AND RECOMMENDATIONS

Summary

33. A three-dimensional, elastic-plastic work-hardening constitu-
tive relationship for transverse-isotropic three-phase earth materials
has been developed. Within the elastic range, the constitutive rela-
tionship contains three dimensionless parameters and two response func-
tions. 1In the plastic range, it contains three dimensionless parame-
ters and three potential functions. The numerical values of the elastic
and plastic parameters, as well as the values of the coefficients in
the response and potential functions, can be determined experimentelly
using essentially conventional soil testing techniques.

34, The constitutive relationship is capable of simulating the
drained and undrained behavior of typicel earth materials subjJected to
both spherical and deviatoric states of stress. Moreover, it reduces
to its isotropic counterpart without any chenge in the forms of its
mathematical functions.

35. The behavior of the model under drained and undrained triexial
test conditions has been examined and a method for obtaining the effec-
tive and total stresses, as well as the pore pressure of & multiphase

soil for given total stress or strain paths, has been outlined.

Recommendations

36. It is recommended that this constitutive model be incorporated
into a numerical computer program that simulates cylindrical and cubical
triaxial test boundary conditions so that the behavior of the model can
be correlated with experimental data for three-phase isotropic and/or
transverse-isotropic earth media. Such a computer program is necessary
for studying the effects of the individual model parameters on the
behavior of the model.

37. It is further recommended that the constitutive relationship
be incorporated into a suitable numerical computer code for use in per-
forming effective stress analyses of earth structures boundary-value

problems.
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APPENDIX A: BASIC CONCEPTS FROM CONTINUUM MECHANICS

1. From a microscopic point of view, physical bodies are composed
of discrete molecules interconnected by some internal forces of mutual
attraction and repulsion. The concept of stress within a body requires
that boundary distances and/or loaded arcas be large in comparison with
distances tetween molecules and/or the size of the individual molecule.
This, in effect, transforms a body composed of discrete molecules into
a statistically macroscopic equivalent amenable to mathematical analysis.
Since most engineering problems deal with macroscopic phenomenz and
involve boundary distances and lcaded areas very large compared with
individual molecules, it appears reasonable and convenient to {nvoke
the mechanics of continua as the h»asis for analytical consideration of
these problems.

2. The theory of continuous media is built upon two strong founda-
tions: Dbasic balance and conservaticn laws and constitutive theory.

The basic balance and conservation laws of any continuvum are

8. Conservation of mass

b. Conservation of energy

c. Balance of linear momertum
d. Balance of angular momentum

€. Inadmissibility of decreasing entropy
When thermal effects are neglected, the above basic axioms of continuum

mechanics lead to the following continuity equation:¥

9P
e =
St (pvl),* 0 (A1)
and the equations of motion:
+ - = o
Gij o3 Fi Oai 0] (A:.)

¥ Indices take on values 1, 2, or 3. A repeated index is to be summed
over its range. A comma between subscripts represents a derivative.
Quantities are referred to rectangular Cartesian coordinates Xi 0

Al



where

p = masg density

t = time
vi = components of velocity vector
oij = oji = gymmetrical stress tensor
Fi = components of body force
ai = components of acceleration vector

3. Equations Al and A2 are called field equations. They consti-
tute four equations that involve ten unknown functions of time and space.
Therefore, the system resulting from Equations Al and A2 is indetermi-
nate. These unknown functions are: the mass density, p , the three
velocity components, vi , and the six independent stress components,
ciJ .

acceleration components, as are expressible in terms of the velocity

The body force components, Fi , are known quantities and the

components, vi . To overcome the indeterminacy and make the system
complete, six additional expressions relating the ten unknown variables
are required. In continuum mechanics, such relations are stated by
constitutive equations (or material models), which relate stresses to
deformation and history of deformation. The difference between consti-
tutive equations and field equations (Equations Al and A2) is that the
latter contain both space cocrdinates and time, and are applicable to
all materials, whereas the former are independent of space coordinates
(for homogeneous materials) and represent the intrinsic response of a
particular material or class of materials and, as such, are mathematical
idealizations of the mechanical behavior of real materials.

4. The general form of a constitutive equation may be expressed
by the following functional form:

(b ,r ) =0 (A3)

Hij mn q_p’ers’ozk’p

where the deformation-rate tensor, Dmn , and the spin tensor, rqp 5

are related to the components of the velocity vector, vi s by

A2
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and the infinitesimal strain tensor, ers s 1s related to the components

of displacement vector, ui s, by

€ =%—(u +u_ ) (A5)

Equations Al through A3 constitute ten equations involving ten unknown
variables. These equations will lead, in conjunction with the kine-
matic relations given by Equations A4 and A5, and the appropriate
boundary conditions, to a complete description for the solution of a
boundary-value problem.

5. In general, materials having the same mass and geometry
respond differently when subjected to identical external effects.
Therefore, a variety of constitutive theories has emerged, each of
which describes a limited number of physical phenomena decided on at
the outset for a given material. In Appendix B of this report, the
constitutive theory for a linear elastic transverse-isotropic material
is documented. In Appendix C the constitutive theory for an elastic-

plastic transverse-isotropic material is presented.

A3
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APPENDIX B: LINEAR ELASTIC TRANSVERSE~-
ISOTROPIC CONSTITUTIVE MODEL

1. Linear elastic constitutive models have been widely used to
approximate the mechanical behavior of a large number of engineering
materials, This type of constitutive model implies that the state of
stress is proportional to the current state of strain. The most general

form of such a linear relationship is

€55 = Cigxe e (B1)
where Egjkl = the elastic compliances (moduli) of the material, which
are 81 in number . The coefficients Eijkl in Equation Bl generally

vary from point to point within the medium. If, however, the cijkl

are independent of the position of the point, the medium is termed

"homogeneous.”" Equation Bl is a natural generalization of Hooke's law,

and it is used in all developments of the linear theory of elasticity.
2. Since the stress and strain tensors are symmetric, the indices

i and J 1in Equation Bl can be interchanged, which reducesl6* the num-

ber of independent compliances from 81 to 54; i.e., the relation

Cijkz B Cjikz (B2)

represents 27 equalities. Furthermore, the indices k and & can be
interchanged, which reduces the number of independent relations by 18,

as expressed by the equalities

Cigke = Cijex (33)

Hence, the maximum number of independent constants contained in Equa-

tion Bl is at most 36.

*¥ Raised numbers refer to items listed in the References at the end of
the main text.

Bl



3. The number of independent elastic constants in Equation Bl can

be further reduced from 36 to 21 whenever there exists a functionl6

= _ 1
] = ==
W 5 oij Cij (BL)
with the property that
oW
€,, = (B5)
iJ Boij

The potential function, W , is called the "complementary energy func-
tion." 1Its existence for isothermal and adiabatic processes has been
argued on the basis of the first and second laws of thermodynamics. For
the most general case of a linear anisotropic elastic body, the number
of independent elastic constants (Equation Bl) is 21. If the medium is
elastically symmetric in certain directions, the number of independent

constants, , can be even further reduced.

c,.
13k

L, For a linear elastic transversely-isotropic material that has
equivalent properties in all directions in the 22-33 plane of a 11-22-33

coordinate system, i.e., where the ll-axis is an axis of symmetry of an
17

infinitely large order (Figure 5), it can be shown™ that only five in-

dependent compliances exist. For such a material, Kcuation Bl becomes

(93] [C1 €2 Cp O O 0 [0y ]
€2 G2 Co2 C3 0 O - C %20
e33] (G2 Co3 Cp O O 0 L )
€12 : g e Cpy O o 912
es| [0 0 0 0 oy 0 05
eps| [0 0 0 0 0 -yl
where Cpy = Cppp s Cpp =00 = 1133 0 Cop = Copp = Cy333 -
023 = C2233 s and Chh = 01212 = C1313 . The remaining Cijkz coeffi-

cients are zero.

B2
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5. To ensure uniqueness of solution for a boundary-value problem
involving the material described by Equation B6, the complementary energy
function (Equation Bl4) must be positive and definite. This is ensured
if, and only if, the determinant of the coefficients of Equation B6 and

all of its principal minors are positive, i.e., the following conditions

must hold:r(
\
Cll >0
022 >0
Chpy >0
f (BT)
Cop = Cp3 >0
2 2
022 - 023 >0
(c..+C..)C -202 >0
22 23 11 12

6. Equation B6 may alsc be written in the fcllowing familiar

f‘orm:17

T 1Ly Ly M

€11 i g "y g © 0 0fjoy,
v'! 1 v

€02 "% § ~“¥ O 0 0o,
v'! v 1

€33 ~gr g g 0 0 Offoy

= (B8)
1
€5 0 0 0 56" 0 0 995
1
€13 0 0 0 0 oG 0 913
1
eos] | 0 0 00 0 g7||on]

B3



Conditions BT become

(59)
i

where

v = Poisson's ratio that characterizes the transverse
reduction in the plane of isotropy (the 22-33
plane, Figure 5) due to stress in the same plane

v' = Poisson's ratio that characterizes the transverse
reduction in the plane of isotropy due to stress
normal to it

E = Young's modulus in the plane of isotropy

E' = Young's modulus in a plane normal to the plane of
isotropy

G = E/2(1 + v) = sihear modulus for the plane of isotropy

G' = shear meodulus for a plane normal to the rlane of
isotropy
For an isotropic materiasl (v'=v , E'=E and G' = G), Equation B8

reduces to the familiar form (Hooke's law):

6. . i= S (0,, = VO~ . = Vo)
11 E 11 22 33

n b
€0 = (- Vo, * Oy - vo33)
>, W i (- vo,, = vo.. + 0..)
33 E 11 22 33

1 4 (B10)

€12 7 26 %12
Base g
13 2G 13
e J
23 2G 23

BY

R
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and the complementary energy function (Equation B4) takes the form

A
W= 18K + 2_0'_ (B11)
where
Jl = the first invariant of the stress tensor
J. = the second invariant of the stress deviation tensor =
2 1/2 s8,,. 8
iJ 7ij
SiJ = the stress deviation tensor
K = the bulk modulus of the material
G = the shear modulus of the material
Equation B10 can then be written in tensorial form as
_ L L do
€15 T o, | oK 15 833 T ag Py (B12)
where
1, i=
Gij = Kronecker delta =
0, 1#13

7. Equation Bl2 expresses the strain tensor in terms of the first
invariant of the stress tensor and the stress deviation tensor. This
form of stress-strain relation is very convenient for use in a finite-
difference or finite-element code calculation of a boundary-value prob-
lem. The objective of this section is to find a constitutive relation
similar to Equation Bl2 for linear elastic transverse-isotropic mate-
rials. This can be done by defining the complementary energy function,

f , in a form analogous to that of Equation Bll; i.e.,

E\2 E
) %
=188 *2s (813)
where8
¢E = elastic pseudo invariant analogous to Jl
=g, + aE(o +0..)
11 22 33

B>



¢E elastic pseudo invariant analogous to 3;
E 2 2 < 2
B7/6 [(0y) = 0,5)" + {0y = 033071 + (0, = 0g5)

]

/6

2 2 , E, 2
+y (012 + 0y, ) + (2 + B) 023/3

Blg IS5 @l & BE and YE in the above equations are five independent
material parameters that fully describe a linear elastic transverse-
isotropic medium. The strain-stress relations for this material can be

easily obtained from Equation Bl3 as

PR ) R — ) Ll E
€43 7 b0, OB B ALy * 28 iy (B14)
where
0 0
E | _ . .o E
Aij = g material property matrix ={ O ] 0
E
0 o
E
g _ % L
"4 20y, N5y © M4 Nii

The term n? is a pseudo stress deviation tensor and can be related to

J

the stresses as

E e \
nyp = 37 (20y - 0pp = 053)
3
E _ _ B~ 1
Nop = = 37 (o) = 055) *+ 3 (05, = 055)
E
E _ _ B8 - - B
N33 3 (99y = 933) = 5 (055 - 953)
» (B15)
E _ E
g = " 9y
E _ E
LT
E
E _[(2+8
o3 ( 3 )°23 /



8.

Note that Equation Bll, the general constitutive equation for a

linear elastic transverse-isotropic material, has a form analogous to
1 , Equation Bllk

that of Equation Bl12, In fact, when aE =

reduces to the isotropic relation, Equation B1l2; i.e., ¢f

B

E

:'Y =

becomes J., ,

1

B becomes K

(the shear

E = = E
¢2 becomes J2 s, §$ becomes W, AiJ becomes éij 5
(the bulk modulus of the material), and S becomes G
modulus of the material).

9. By use of Equations Bllh and Bl15, strain-stress relations anal-

ogous to Egquation B8 can be written as
-
] =(;_+B_E_c +(9E_6_E_)0 ,,(ﬁ_ﬁ)c
11 9B 35/ "11 9B ~ 635/ 22 9B -~ 68/ 33
& _(E_ﬁ_ﬁ)o +[(E)2 BE+1]0 +[(0,E)2_1_]0
29 98 ~ 65/ 11 9B 68 B2 9B 65} "33
- -(ﬁ_ﬁ)o . (aE22_1]0 - (E)Q‘;&xEu](J
33 9B  6S/ 11 9B 6S | 22 9B 6s ] "33
F(Bl6)
il
€12 ¥ 25 %10
r
B3 78 %3
. =2_+_f£)o
23 6s 23 J

A comparison of Equations B8 and B16 indicates that the following rela-

tions hold between the five independent material parameters, B, S ,

E F E
o, B, v

E' y, v,

, and the customary independent material parameters, E ,

v'! and G' (and the dependent parameter, G):

B7



E_E (Q-y) v w
E(1-2v') "1~2nv
E'\2 2 vy EV
BE_r 2(E) (J_-r\))+(l+\))(1—h\))E
[’E"‘(l v) - ur|P e B B ]
¥ - “’] i I°® l"’)*l“’)]
2 ]
: 2(5('}2 (1-v)+ (1-bv) 5
, ,
6[%" (1 - v)-v']2+6vg—'-[ g—'-(l- v) +1 - lw']
, f(Bl?)
%L(l-v)+%'-(l-uv-)
B =
(1 - 2v1)2
()2
2 = (L -v)+E" (1 = Lv')
P |2+ 6B |2 £ by
[E (l-v)-v] +\)-E-[2i—(l-\))+l-v] J
Equation Bl7 can be inverted to give
gt = —IBS )
3BBE+S
5o 1885
3B (8F + 1) + 28 (oF)?
3B - 25 (oa&)°
i E E2
3B (g +1) + 28 (a)
y (B18)
oo 3B 8" =25 o
6BBE+2S
=S
¢ =5
y
38
G = —m
2+BE /

B8



Accordingly, conditions B9 become

98BS 3 g
3B BE + 8
- 18BS — > 0
3B (B +1) + 28 (o)
o
Y
; (B19)
E3S S @
B+ 2
3B - 28 jaE)E
R E Fo <1
3B (B~ +1) +28 (a)
3B g5 + s (oF)° 2 <3B 8" - os aE)2 ¥
6B BE + 25 6B sE + 28 )
. E__E_ E _
As was pointed out previously, when o =8 =y =1, B becomes K

(the bulk modulus of the material), S becomes G (the shear modulus
of the material) and Equation B1l8 reduces to the following well known

relations:

gt o= 98BS _ _9KG
3B+S 3K +GC
(B20)
_.3B-25 _ 3K-2G
2(3B+8) 2(3K + G)

10. For the convenience of the reader, the bulk modulus of the
transverse-isotropic material, K , the constrained modulus in the plane
of isotropy, M , and the constrained modulus in a plane normal to the
plane of isotropy, M' , can be determined from the strain-stress rela-

tion (Equation Blk) as

B9
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K:—-—L b
(1 + 20%)2
we— 98  12a°8" (140f) +601+8") (321)
E.2 E E.2 E f
(1 + 207) B” (1L +2a )" (24 87)
R R 1 (-
E2 TR E.2
(1 + 207) 8" (1 + 2a) J

11. It is sometimes convenient to write Equation Bll in terms of

hydrostatic and deviatoric components of strain; i.e.,

. -ltod
kk 9B 1
? (B22)
E
p =1__iai%
i 25 3o,
J 13 ]
where
ekk = first invariant of the strain tensor
Eij = pseudo strain deviator tensor
Hence, the total strain, Eij , becomes
13
e, = —K& _JE 2 (B23)

TR T R

The pseudo strain deviator tensor, e, , is related to the strain

iJ
deviator tensor, eij , 85 follows:
) 5. A
Sy =gyt =l Al (B2k)
o 1+ 2a

Equations B22 through B24 indicate that aE and B are compressibility-
related material properties, and that BE q yE , and S are shear-

related material properties.

Bl1O



12. With a clear understanding of the above general constitutive

relationships for a linear elastic transverse-isotropic model, the deriva-

tion of a corresponding elastic-plastic transverse-isotropic model
should be easy to follow.

Bll



APPENDIX C: GENERAL DESCRIPTION OF ELASTIC-PLASTIC
CONSTITUTIVE MODELS

Introduction

1. The basic premise of elastic-plastic constitutive models is
the assumption that certain materials are capable of undergoing small
plastic (permanent) as well as elastic (recoverable) strains at each
loading increment. Mathematically, the totel strain increment is
assumed to be the sum of the elastic and plastic strain increments; i.e.,
E

- P
deiJ = deiJ + deiJ (c1)

where
deiJ = components of the total strain increment tensor
defJ = components of the elastic strain increment tensor
dt»:I;'j = components of the plastic strain increment tensor

2. Within the elastic range, the behavior of the material can be

described by an elastic constitutive relation similar to Equation Bl:

deiJ = Eijkﬁ (omn) dau (e2)

where

dokﬂ
The behavior of the material in the plastic range can be described

= components of the stress increment tensor

within the framework of the generalized incremental theory of plastic-
ity. The mathematical basis of the theory was established by Drucker19
who introduced the concept of material stability, which has the follow-
ing implications:

a. Yield surface (loading function) should be convex in
stress space.

b. Yield surface and plastic potential should coincide
(which results in an "associated" flow rule).

¢. Work~softening should not occur.

C1



These three conditions can be summarized mathematically by the following
inequality:
do,, de, >0 (c3)
33 i} —
The above-mentioned conditions allow considerable flexibility in the
choice of the form of the loading funciton, 4§ , for the model, which
gserves as both a yield surface and the plastic potential. In general,

the yield surface may be expressed as

The hardening parameter, «k , generally can be taken to be a function
of the plastic strain tensor, Eij . The yield surface of Equation Ch
may expand or contract as « increases or decreases, respectively.

3. Conditions a, b, and ¢ above, taken in conjunction with Equa-
tion ClW, result in the following plastic flow rule for isotropic

materials:
ax 2 if §=0
P 994 4
de;., = (es)
0 if §<0
where dA is a positive scalar factor of proportionality, which is

nonzero only when plastic deformations occur, and is dependent on the

particular form of the loading function.

Derivation of FElastic-Plastic Transverse-
Isotropic Constitutive Relations

4. Within the yield surface, § , the material behavior is
transverse-isotropic elastic. In view of Equation BllL, the elastic

strain increment tensor, de§3 , takes the following from:

E _1 EE .1 E
deyy = gp 40, Ay, + 33 dny; (cé)

ce



in which

E
]}

E 2 E _ E E _

ni‘j aci,j’nij n.ji, and gy 0 (c7)

1 0 0
A = |o o 0 (c8)
iJ E
0 0 o
The elastic behavior is governed by the three elestic constants, aE 5

BE , and YE , and by the two response functions, B and S .

In order to introduce nonlinear behavior in the elastic range, the

response functions may be expressed as
E
B (ﬁl . K)

(c9)
S=8 ( @g F K)

Note that in view of the existence of the complementary energy function

o<}
L]

Q@ (Equation B13), the model is path indenpendent during purely elastic
deformation.T’zo
5. The hydrostatic and deviatoric components of strain can be

easily obtained from Equation C6, respectively, as

E
E _1+ 2a E
ey = 55— d¢l (c10)

and

-E _ 1 .E
deiJ o= dnij (c11)

where deik is the increment of elastic volumetric strain and dEEJ

is the pseudo elastic strain deviation increment tensor. The elastic

C3



strain deviation increment tensor, de? , 1s related to dE? through

i} iJ
the following relation (see Equation B2L4):
E E Giﬁ A? E
de,, = déij o ———JL—jg de, (c12)
1+ 20
E E E_ . R
Note that when o~ =8 =y =1, the above equations reduce to their

isotropic counterparts and the response functions, B and S , become
the isotropic bulk and shear modulus response functions, respectively.
6. The plastic strain increment tensor is given by Equation C5

where the loading function £ may be expressed as (Figure Cl)

6<¢§ ,JBEZ , x) z10 (c13)

in which ¢P and ¢12> are defined similarly to ¢§ and ¢g (Equa-

1
tion B13):

QU
ja o)
i

p
g =%y o (322 * °33)

¢1; %1-)- [(cll - 022)2 + (cll - 033)2] > (c1h)

2
g o 1
22 - %53 P( 2 2y , [2.+8 2
* 3 U (“12 * 913 ) ¥ < 3 ) %23

The hardening parameter « can be cne of the following functions:

K =g (eik) (c15)

kK=& [(eik) ma.x] (c16)

ck



The use of Equation C15 permits the hardening surface to move back to-

ward the origin (Figure Cl) when a point on the failure envelope is

reached (which produces dilatancy of the material). This feature of the

model 1s useful for controlling the amount of dilatancy that can occur.

The use of Equation Cl6, on the other hand, only permits the hardening

surface to move away from the origin, thus ensuring full dilatancy on

the failure envelope while still permitting hysteresis in a hydrostatic

load-unload cycle.

VALUE OF ng

7. The plastic loading criteria for the function § are given by

> 0 loading
0 neutral loading (ciT)

< 0 unloading

o
b0, do,

FAILURE ENVELOPE

#@h Nef)=0 o
-
- —
> ™~
sl F(+] -\""I_;--"z)'“/}\\
K, * K \

-

STRAIN - HARDENING
SURFACE

f(f N . q)0

ELASTIC REGION

VALUE OF ¢!

Figure Cl. Typical yield surface for transverse-
isotropic elastic-plastic model
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Plastic strains will occur only when d§ is positive and §=0.
During unloading or neutral loading, as well as for § < O , the mate-
rial will behave elastically. The prescription that neutral loading
produces no plastic strain is called the "continuity condition." Its
satisfaction leads to coincidence of the elastic and plastic constitu-
tive laws during neutral loading.lg’zl
8. As with the elastic relation, the plastic stress-strain rels-
tion can be expressed in terms of the hydrostatic and deviatoric com-
ponents of strain. Application of the chain rule of differentiation to

the right side of Equation C5 yields

a¢P 8\’¢P
P _ g 1 38 2
N = et 30
. r— »
a¢l ltj 3 ¢; 1u
or
deij = dA Q-ﬁl;Aij P S S nI;J (c18)
) 2 ‘J¢§ 3 ‘J¢g
where
1 0 0
£o=lo & o (c19)
i) P
0 o
and
P
L)
P _ "2 P _
"iy = 5 and n,. =0 (c20)
iJ
Both sides of Equation (18 are multiplied by the Krcnecker delta, Gij -
to give
aef = ar (1 + 2a°) 3 (ca1)
kk 3¢P

1
cé



The pseudo plastic strain deviation increment tensor, dég , can be

i)
written as
P
de
déf = delip - —kkP— AI; (c22)
J J (1 + 2a ) J

Substitution of Equations C18 and C21 into Equation C22 yields

geh o =S 0 F (c23)

but, analogously to Equation C1l2, the plastic strain deviation incre-

P :
ment tensor, dei , can be written as

J
o] AP
P _ 5P AL _ 1) }aF
deiJ deiJ 3 " zaP dekk (c2h)

Consequently, substitution of Equations C21 and C23 into Equation C2L,
leads to

P
deP axr 1 _Bﬁ__nP + AP _l_+_2_g__5 _3_6_ (ces)

1] et R ) e
NG NF o

n

9. To use Equations C18 through C25, the proportionality factor,
dA , must be determined. This can be accomplished in the following men-
ner. From Equations C13 and C15 or C16 the total derivative of §

becomes

Y/ \fi; P * 8eP
1 2 ¢2 3 ¢2 kk
CT

s



P P E BE P
The values of d¢l and d¢2 in terms of d¢l . "i,j , and niJ can be

obtained from Equations B13, Bl5, and Clk as

P P E
P 1 +2 E 3 - E
af, =35 % - JEm_—m}zL 2| (car)
1+ 2 (1 + 2a”)
P 3 P 3 P E
ag, = n dn_. + n dn . + n dn
2 By, gF) 1111 o [22 22 33 33]
2 P E P E 6 P E

= ; [“12 dn,, * M4 d“ls] H (2 " BE) o3 9My3 {0e8)

In view of Equations Cl0 and Cll, Equations C27 and C28 become

P P E
af = o el af, - ————-—-62(“ = “E) 4zt (c29)
(1 +2a7) B7(1 + 2a07)
P 65 P -E 6s [P _E P -E]
., = —————— 1., de.. + —————— In._de-. + n.. de
2 BE(2 " BE) 11 11 (2 + BE) 22 22 33 7733
hs [P E _ P -E] 128 P _-E
+ — |n de +n de e N de (C30)
.YE 12 12 13 13 (2 + BE) 23 23
The relationship between de de de o deP BEe
5 P 1 * Tk %1y 0wk v %0 %y
and dei 3 can be easily obtained from Equations Cl, C6 through Cl2,
€22, and C24 as
AP AY
de,, = défJ + déi. + —U—-E— dei:k + -——13—3 d{k (c31)
1 I 1 % 2g
and
E P E
A s A, A,
de, . iasf s ash, o[ —2d_ O3 e | SE Lt )t (cs2)
i} iJ i 1+ 2aE 3 kk & 2ap 1 + .?aE kk
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The substitution of Equations C31 and C32 into Equations C29 and C30
results in

(1+207) _bs(a® - a®)(a"-1) |,
(1 + 2d5)° 881 + 2d5)° Kk

P_
g, = |9B

P E P BE
_6Sa-a de +6S$<x-u.2d-P

e
BE(l + 2aE) = BE(l + 2aE) s
(1 + 2d5) 128(a" - of)° P
= E2 " E 2 £.2 | Yk (c33)
(1 + 2a7) B7(1 + 2a )(1 - 2a7)
and
of =B o -1 SEe Gl Pl
2 BE o ooEf] 11 kK BE(2 . BE) 11 11
6S P P s | P
+ de + 7 de + — In de + n,. de
(2 + 8E) 22 22 33 733 YE 12 12 13 13
; P E
12S P [$15] o - o P P
+ n de == n de
o BE 23 23 BE (1 + QGE)(l o 2aP) 11 ~kk
63 P P 6S P _-P P _-P
-———— ., de., - —=— In._ de. . + n.. de
E
BE(2 N BE) 11 11 (2 + &&) 22 22 33 733
s | P _-P Py =P 128 P _-P
- In..de. . +n._ de..| - —=2—n._ de (c3k)
2
YE 122 1 13 13 (2 + BE) 23 23
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Substitution of Equations C21 and €23 into the above two equations gives

P P E,E P _
d¢§’ = Jon 20“E)” } hS(g e Mmae =2 i ~ 61?(“ g ey
(1 +2a)° B™(1 + 2a7) B (1 + 2a7)

a
- |98 ==
1+ 2a B (1 + 2aE)2 a¢§’
P
o 38l - o ax 3g P (C35)
E 11
B (1 + 2a7) P a\oP
A
and
P_25 fa" -1 P 63 P
ag, = n de
2 BE1+2aE) 11  kk s(2+s)ll 11
65 P us [ »
+ n de,.,, +n de + — |In., de +n da
(2 + &%) [22 22 33 33] JE [12 12 13 13]
P
- 3
[ “53‘123*6—2 == ‘““1—&5
2+ 8 8 1+ 2a 3¢‘l
3S ax (P )2 3S ax [(nP )2 5 (nP )2] 1
E E 22 33
B-(2 + 87) \/ 2+B \,P P
) ¢2 a‘l;-

(c36)

25 _[( )2 (np )2] o 65 _ah (np )2 A
- E 13 E 23
\/'2 g (2+8) \@ a\[{,g

2

when Equations C35 and C36 are substituted into Equation C26, which is
solved for dA , this produces
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a =2 (c37)
3
in which
A=|9B (1 + 2aP) 3 hS(aP - aE)(o,E - 1) 3§
E\2 P E E.2 E
(1+2a) 3¢, B(1 + 2a) o0,
s [of - L P 6s(a® - oF) of
"11| Exx T E By oP 9ty
BE ¢gl+2° a\’ BY(1 + 2a7) 3
35 _ | P P P 2 26
P B [BE M1 9epy * Mpp depp * Mg de33] = -
¢ 2 Vg
2
+2—:- |E]§2 de12 + nli3 de ]_.L_. _36___
g P
! Vi, 2o

6s_\_ 1
8
+(2+B)\/—_ 233\/— dens (c38)

and

- [9B(l+2 F)? 4 388 (0P _ E)Q] (%)2
3

C——.—.—.———.—
E\2
B

(1L + 22°)

6S< aE>l B4 3f
3 0B \/—pll\l_paqj

() b e )]

2(2 + 8%) 8 \, Vg7 | L8
2

ra(g) [ 6]
" 38 1 (P Y/ 3f \_ . _.L_ﬁ_
(2 . sE> g () <a\@> {4 cecg a¢ e (39)
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10. The total strain increment tensor can be obtained by the com-
bination of Equations Cl, €6, C18, and C37; thus,

o, =Ll o aF oL aE LA [ 2 2 3 P\ (4
1% 78 T T | P = \,—P- i)
\ 1 2 ¢28 ¢2

Equation C40 is the general constitutive equation for an elastic-plastic
transverse-isotropic material. To use these equations, it is only neces-
sary to specify the functional forms of B, S, « , and 4§ and, of
course, to determine experimentally the numerical values of the co-
efficients in these functions as well as the values of the parameters

P P E
GE,G,BE,B ,Y,&ndYP-
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APPENDIX D: NOTATION

Components of acceleration vector

Elastic material property matrix

Plastic material property matrix

Elastic bulk response function

Initial value of the response function B

Maximum value of response function B

Material constants

Elastic compliances of the material

Pseudo elastic strain deviation increment tensor
Components of the total strain increment tensor
Components of the elastic strain increment tensor
Components of the plastic strain increment tensor
Hydrostatic component of strain or volumetric strain

Positive scalar factor of proportionality; appears in
the flow rule

Components of the stress increment tensor
Material constant

Deformation-rate #ensor

Void ratio

Strain deviation tensor

Pseudo strain deviation tensor

Elastic pseudo strain deviation tensor
Plastic pseudo strain deviation tensor
Young's modulus in the plane of isotropy

Young's modulus in a plane normal to the plane of
isotropy

D1
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L{k)

Failure envelope

Loading function

Strain-hardening elliptic cap
Components of body force

Shear modulus for the plane ~f isotropy

Shear modulucz for a plene normal to the plane of
isotropy

First invariant of the stress tensor
First invariant of the effective stress tensor
Second invariant of the total stress deviation tensor

Second invariant of the total or effective stress
deviation tensor

Pseudo cohesive strength parameter of the material
Bulk modulus of the materiel

Bulk modulus of anisotropic material under drained
hydrostatic unloading

Apparent bulk modulus of anisotropic material under
drained hydrostatic unloading

Intersection of the hardening surface with the failure
envelope f((bP y ¢¢1§)

Subscript used to indicate "mixture"
Constraired modulus in the plane of isotropy

Constrained modulus in a plane normal to the rlane of
isotropy

Total mean normal stress
Effective mean normal stress
Pore air pressure

Confining pressure at the end of the hydrostatic
compression phase of a triaxial test

Effective confining pressure at the end of the
hydrostatic compression phase of a triaxial test
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Pore water pressure
Spin tensor
Cylindrical coordinate system

Ratio of the major to minor axes of the elliptic
hardening surface

Material constants

Subscript used to indicate "skeleton"
Flastic shear response function

Initial value of the response function S
Stress deviation tensor

Material constants

Time

Pore pressure representing the combined effect of the
pore air pressure and the pore water pressure

Displacement vector
Components of velocity vector
Volumetric strain

Maximum plastic volumetric compression that the mate-
rial can experience under hydrostatic loading

Complementary energy function for isotropic materials
Cartesian coordinate system
Intersection of the hardening surface with the ¢§ axis

Material constant; appears in the definition of the
first elastic pseudo invariant of stress

Material constant; appears in the definition of the
first plastic pseudo invariant of stress

Materisl constant; appears in the definition of the
second elastic pseudo invariant of stress

Material constant; appears in the definition of the
second plastic pseudo invariant of stress
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E
p
3
E’ n
Yy Material constant; appesrs in the definition of the
second elastic pseudo invariant of stress
h=]
Y Material constant; eappears in the definition of the
second plastic pseudo invariant of stress
(I Kronecker delta
-
Eij Total strain tensor
afj Elastic strain tensor
»
s;k Flastic volumetric strain
ef Flastic radial strain component
65 Flastic vertical strain component
e% Elastic tangential strain component
f e?l Flastic strain component normal to the plane of isotropy
é 553 Tlastic shear strain component
g 522 or e§3 Elastic strain component in the plane of isotropy
€k Total volumetric strain
ezj Plastic strain tensor
eik Plastic volumetric strain ]
ez Plastic radial strain component ?
eZ Plastic vertical strain component
ez Plastic tangential strain component
eil Plastic strain component normal to the plane of isotropy
ei3 Plastic shear strain component :
3
eg? or 523 Plastic strain component in the plane of isotropy
€. Total radial strain, strain in the plane of isotropy
L™ Total vertical strain, strain normal to the plane of
isotropy
€1 Total strain normal to the plane of isotropy
513 Total shear strain |
i
Db
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€

22

or 833

iJ

niJ

Total strain component in the plane of isotropy
Elastic pseudo stress deviation tensor

Plastic pseudo stress deviation tensor

Hardening parameter

Poisson's ratio that characterizes the transverse re-
duction in the plane of isotropy due to stress in the
seame plane

Poisson's ratio that characterizes the transverse re-
duction in the plane of isotropy due to the stress
normal to it

Mass density

Total stress tensor

Effective stress tensor

Total radial stress

Effective radial stress

Total axial stress

Effective axial stress

Total tangential stress

Effective tangential stress

First elastic pseudo invariant of total stress
First elastic pseudo invariant of effective stress
Second elastic pseudo invariant of total stress
Second elastic pseudo invariant of effective stress
First plastic pseudo invariant of total stress
First plastic pseudo invariant of effective stress
Second plastic pseudo invariant of total stress

Second plastic pseudo invarinat of effective stress
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Dimensionless quantity proportional to the pore volume
occupied by the watcr phase

Pseude frictlional strength parameter

Complementary energy function for transverse-isotropic
materials

D6



In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Baladi, George Youssef

An elastic-plastic constitutive relation for transverse-
isotropic three-phase earth materials / by George Y, Baladi.
Vicksburg, Miss. : U, S. Waterways Experiment Station ;
Springfield, Va. : available from National Technical
Information Service, 1978.

48, ‘331 pP. : 111, ; 27 em. (Miscellaneous paper - U. S.
Army Engineer Waterways Experiment Station ; S-78-14)

Sponsored by Assistant Secretary of the Army (R&D),
Department of the Army, Washington, D. C., under Project
No. 4A161101A91D.

References: p. 47-48,

1. Anisotropy. 2. Constitutive models. 3. Elastic media.

4, Elastic plastic behavior. 5. Saturated soils. 6. Stress-
strain relations. 7. Three-phase media. 8. Transverse-
isotropic materials. I. United States., Assistant Secretary
of the Army (Research and Development). 1II. Series: United
States. Waterways Experiment Station, Vicksburg, Miss.
Miscellaneous paper ; S-78-14,

TA7.W34m no.S-78-14

LT A



