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M ELASTIC-PLASTIC CONSTITUTIVE RELATION FOR TRANSVERSE- 

ISOTROPIC THREE-PHASE EARTH MATERIALS 

PART I:     INTRODUCTION 

Background 

1, Earth materials are multiphase systems    that  consist in gen- 

eral of solid particles   (possibly cemented), water and gas   (air), and 

are often found to be inhomogeneous and anisotropic   (herein the term 

"anisotropic" refers to the dependence of the moduli or strength of the 

materiell upon direction of loading).    The intrinsic response of such ma- 

terials to externally applied loads is extremely complicated.    To model 

this response for a particular material, one must resort to the theory 

of continuum mechanics and have available an appropriate constitutive 

relation.    The solution of earth structure problems then becomes a math- 

ematical formalism that can be achieved numerically or by other means. 

2. During the past few decades, the dramatic growth of computer 

technology and the development of new methods of numerical analysis 

have been paralleled by an increasing degree of complexity in material 

constitutive modeling.     Consequently, several quite complicated elastic- 
2 3-5 

ideally plastic,    variable moduli-type,        and elastic-plastic work- 

hardening '      constitutive models have been developed and used by the 
/ro 

soil and rock mechanics communities.    Some of these models        are three- 

dimensional isotropic and/or transverse-isotropic and can predict shear- 

induced volume change; however, they simulate only single phase systems. 

The Cambridge model-* simulates two-phase  (water and solid)  systems and 

can also predict shear-induced volume change, but it  is  formulated only 

for two-dimensional geometry,  i.e., the intermediate principal stress 

equals either the minor or the major principal stress.     In 1976, an 

isotropic three-dimensional two phase constitutive model for saturated 

cohesionless soils was developed at the U.  S. Army Engineer Waterways 
10 

Experiment Station  (WES).' 



3.    At present,  there is no single general constitutive relation- 

ship available that can simulataneously  (a) be expressed in terms of a 

three-dimensional coordinate system,   (b)  apply for any state of stress 

and deformation,   (c)  simulate three-phase systems   (i.e., partially sat- 

urated materials),   (d) predict observed shear-induced volume change, 

(e) handle both isotropic and anisotropic material behavior,  (f)  sat- 

isfy all of the mathematical restrictions of the theory of continuous 

mass media,   (g)  derive the numerical values of the coefficients in its 

response and potential functions from experimental data obtained by use 

of essentially conventional laboratory testing techniques, and (h) be 

easily incorporated into contemporary finite-element and/or finite- 

difference computer codes.    The benefits of the availability of such a 

constitutive relationship are obvious.    It would provide a basis for the 

interpretation and organization of drained and undrained laboratory test 

data for various states of stress and deformation and provide the means 

(in conjunction with appropriate computer codes) to perform effective 

stress analyses for a wide variety of earth structures problems for 

either transient or static-type loading conditions. 

Objective 

k.    The overall objective of this study was to develop a completely 

general, three-dimensional,  elastic-plastic work-hardening constitutive 

relationship for transverse-isotropic three-phase earth materials.     In 

addition, the constitutive model was desired in a form suitable for use 

with current finite-element and finite-difference techniques for the 

solution of boundary- and initial-value problems  involving a variety of 

natural earth materials and earth structures. 

Scope 

5. The concepts of effective stress and material anisotropy are 

presented in Part II. In Part III, the development of the single-phase 

elastic-plastic constitutive model is presented.  The application of 



this model to treat multiphase systems is outlined in Part IV.    The qual- 

itive behavior of the multiphase model under triaxial test conditions is 

examined in Part V.    Part VI summarizes key aspects of the model and fur- 

nishes recommendations for its quantitive application.    Appendix A re- 

views basic concepts from continuum mechanics, and Appendix B describes 

the constitutive relations for a linear elastic transverse-isotropic 

material.    A general description of elastic-plastic constitutive models 

is contained in Appendix C.    Appendixes A, B, and C are included both 

for reference purposes and for future use.    The reader is advised to 

read these appendixes before reading the main report. 



PART II: EFFECTIVE STRESS AND ANISOTROPY CONCEPTS 

6. Earth material, in its general form, is composed of a complex 

assemblage of discrete particles of varying shapes and orientations 

in a compact, possibly cemented, array. These may range in magnitude 

from the microscopic elements of a clay soil to the macroscopic boulders 

of a rock fill. The voids in the array may be filled with water or air 

and usually contain both. Before a constitutive model describing the 

behavior of these materials under an applied stress can be developed, it 

is necessary to consider how this stress is distributed among the sev- 

eral components comprising the aggregate and to understand, in general 

terms, the mechanical behavior of these assemblages. The emphasis 

throughout the remainder of this report will be on earth materials that 

are better described as soils than as rocks; however, the model, in 

principle, is applicable to both. 

Effective Stress 

7» The normal stress components at a point in a soil body may be 

divided into two parts:   the stress carried by the solid skeleton, 

referred to as the "effective stress," and the stress carried by the 

pore fluid, referred to as the "pore pressure." The pore pressure, in 

turn, must be divided into two parts: the stress carried by the water 

and the stress carried by the air. Mathematically, total stress* can 

be expressed (in indicial notation**) as 

a. = a'  + TP - x(P - P )1 5., 
ij   ij  La  AX a   w'J ij 

(1) 

* Symbols used in this report are listed and defined in the Notation 
(Appendix D). 

** Indices take on values of 1, 2, or 3. A repeated index is to be 
summed over its range. A comma between subscripts represents a 
derivative. Quantities are referred to rectangular Cartesian 
coordinates X. . 



where 

a  = total stress tensor 

a' = effective stress tensor 
*• J 
P = pore air pressure 
a 
X = dimensionless quantity proportional to the pore volume 

occupied by the water phase 

P = pore water pressure 

6.. = Kronecker delta = 

1,  1 = J 

0,  i ^ J 

Equation 1 can be rewritten as 

a.     = a!,  + u 6., (2) 
ij ij iJ 

in which u is the total pore pressure representing the combined effect 

of the pore air pressure and the pore water pressure, i.e., 

U = Pa - x(Pa " V (3) 

For a fully saturated soil,    x = 1 ">  and for a completely dry soil, 

X = 0 . 

8. For a triaxial test performed on a cylindrical  specimen (r-S-z 

coordinate system), the stresses are  (Equation 2): 

o    = o'  + u z        z 

a.  = a    = o' + u = a' + u {h) 6        r        6 r 

where    a    ,    a     and,    afl    are, respectively, the axial, radial, and 

tangential total stress components.    The mechanical behavior of satu- 

rated and partially saturated soils tested under triaxial conditions is 

discussed in the following section. 

Mechanical Behavior of Soil 

9. The mechanical behavior of soils subjected to externally 

."^L.- i-   .:■li&^-i-.^r-i'jJ-fiW'- 



applied loads is quite complicated. Unlike most engineering materials, 

soil stress-strain properties are greatly affected by such factors as 

void ratio, orientation of soil particles (i.e., soil structure), degree 

of voids saturation, drainage conditions during loading, loading rate, 

loading history, and current stress state. Moreover, the effective 

stress is the only part of the total stress that affects soil volume 

changes and shear strength. 

10. Figures 1 and 2, respectively, show the typical behavior of 

an Isotropie and a transverse-isotropic soil subjected to hydrostatic 

stress. For the isotropic soil (Figure l), all strains are equal under 

hydrostatic states of stress; however, as indicated in Figure 2, in the 

case of transverse-isotropic soil, the strain in the plane of isotropy, 

e  , is different from that in the axial (symmetry axis) direction, 

e 
z 

11. Figure 3 shows a typical variety of stress-strain-pore pres- 

sure response curves manifested by saturated anisotropic soils tested 

in undrained shear in a triaxial compression device* (the re-plane is 

the plane of isotropy). The three specimens were first isotropically 

consolidated to the same effective mean normal stress level (point 2), 

then sheared undrained. At point 2, of course, the strain e  is 

different from the strain e  in each case. The shear curves marked 
z 

"2 -*• 3"  show the typical response of a normally consolidated clay or a 

loose sand.    The curves marked "2 -*• 5" show behavior typical of an 

overconsolidated clay or a dense sand.    Within the extreme limits of 

these loose and dense soil responses, there is a graduated response, 

typified herein by the curves marked "2 •* k,"   The latter response 

depends on the state of compaction (consolidation) of the material. 

12. Figure h shows typical  (qualitative) stress-strain response 

curves for the former anisotropic soil sheared under drained triaxial 

compression condition, i.e., the curves marked "1" represent dense sand 

or overconsolidated clay, while the curves marked "2" depict response 

*    These tests must include independent measurements of radial 
deformation. 
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Figure 1. Typical behavior of a dry or undrained isotropic soil under 
hydrostatic loading and unloading 
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Figure 2. Typical behavior of a dry or drained transverse- 
isotropic soil under hydrostatic loading and unloading 
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Figure h.    Typical mechanical response curves obtained for 
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typical of loose sand or normally consolidated clay. 

13. The mathematical development of a total stress (single-phase) 

elastic-plastic transverse-isotropic constitutive relationship that 

qualitatively describes the responses shown in Figures 1 through k  is 

presented in Part III. The treatment of a multiphase system is pre- 

sented in Part IV. 

12 



PART III:     ELASTIC-PLASTIC CONSTITUTIVE MODEL 

Ik.    The fundamental relationships for linear elastic and elastic- 

plastic transverse-isotropic constitutive models are derived in Appen- 

dixes B and C,  respectively.    In this part, the most important mathemati- 

cal expressions developed for the generalized model in these appendixes 

are utilized, but the focus is on specific forms of the model's response 

functions.     For example, the definitions of the elastic and plastic 

pseudo stress invariants as given by Equations B13 and Clh, respectively, 

and the elastic and plastic pseudo strain deviation increment tensors as 

given by Equations Cll and C22, respectively, are required.     In addition, 

the general elastic description of the model as defined by Equations C6 

through C12 and the general plastic description given by Equations C13 

through C37 are needed.    The model's complete generalized elastic- 

plastic description is governed by Equation C^O.    The above-cited 

equations are used to describe selected mathematical forms of the vari- 

ous response functions contained in the model, which are needed to 

simulate the typical soil responses presented in the previous sections. 

Elastic Behavior 

15. The behavior of the model in the elastic  (recoverable) range 
E E E      / 

is governed by the three constants,    a    ,    ß    , end    y    , (Equation B13 

of Appendix B)  and by the two response functions,    B    and   S  , Equa- 
E 

tion C9 of Appendix C.     Equation CIO reveals that the parameter    a 

and the response function   B    are compressibility-related material prop- 
E E 

erties, while Equation Cll reveals that the parameters    B      and    y 

and the response function   S    are shear-related material properties. 

Compressibility- 
related material properties 

E 
16. The parameter a  defines the ratio between the elastic 

strain in the plane of isotropy, e , and the elastic strain normal to 

the plane of isotropy, e , under hydrostatic states of stress (Fig- z 
ure 2); thus 

13 



E 

a    =T (5) 
e z 

For the ensuing developments, it will be more convenient to work with a 

Cartesian coordinate system.    Hence, the plane 22, 33 of the Cartesian 

coordinate system 11, 22, and 33 is designated as the plane of isotropy 

(Figure 5).    Equation 5» therefore, becomes 

E E 
E „ e22 _ e33 (^ a - "E—r (6) 

e
ll  ell 

E 
The value of    a      can be determined experimentally from the slope of the 

unloading strain path curve obtained from a hydrostatic compression 

test (Figure 5).     It is clear from Figure 5 that for an isotropic 
E 

material, the value of    a     becomes 

E E 
E      e22      e33 _ , /7x a   =- r= 1 (7) 

ell      ell 

The elastic response function B (B is the elastic bulk modulus for an 

isotropic material) describes the unloading stress-strain response of a 

hydrostatic compression test (Figure 2). It is suggested that for most 

transverse-isotropic earth materials, B can be taken as a function of 

the first (elastic) pseudo invariant of stress    0    ,  (Figure 6)* 

B. 
B=   1 

1-B1 
- B1 exp (- Ba0* (8) 

where 

B. = initial value of the response function B (Figure 6) 

* The functional form of B can readily include more terms, thereby 
providing more flexibility in fitting the behavior of a specific 
material. The function B could also be dependent on the plastic 
volumetric strain. 

11* 



PLANE OF 
ISOTROPY 

TRANSVERSE - ISOTROPIC 
MATERIAL 

— ~—    ISOTROPIC MATERIAL 

STRAIN NORMAL TO THE PLANE OF ISOTROPY, C 11 

Figure 5»    Comparison of strain paths for isotropic and transverse- 
isotropic materials subjected to hydrostatic loading and unloading 

B  , Bp = material constants 

Equation 8 above together with Equation CIO of Appendix C indicate that 

the material constants    B    ,    B    , and    B      can be readily determined 

experimentally from the unloading hydrostatic compression test results, 

as illustrated in Figure 7.    Equation 8, therefore,  can be written as 

B. 
B = 1 - B, 1 - B    exp B2 0 

:)' 

d0' 

9de 11 

(9) 

15 



Figure 6.    Elastic response function    B    versus  first elastic 
pseudo invariant of stress    0E 

Shear-related material properties 

IT.    The elastic shear response function    S    (S is the elastic 

shear modulus for an isotropic material) accounts for the curvature 

observed in the stress difference-strain difference results obtained 

from triaxial compression tests, (Figure 3).    For this report,    S    is 

assumed to be a function of the second (elastic) pseudo invariant of 
E P 

stress    02 , as well as the plastic volumetric strain,    e      , (Figure 8)* 

S = 1-8. 1- S1 exp  l-S^A + s. 1 - exp   |- S,, e 1* ekkj (10) 

where 

S.  = initial value of the response function   S 
1      (Figure 8) 

S  ,S?,S-,S.   = material constants 

This functional form of    S   could include more terms, thereby provid- 
ing for more flexibility in fitting the behavior of a specific 
material. 

16 
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SECOND PSUEDO INVARIANT OF STRESS, - 2 

Figure 8.    Elastic response function    S   versus  second pseudo 
invariant of stress and the plastic volumetric  strain 

Equation Cll of Appendix C indicates that the material constants    S.   , 

S1   ,    Sp ,    S_ , and    Si     can be readily determined from the  slopes of 

experimental unloading stress-strain curves obtained from a series of 

triaxial tests conducted on a cubical specimen,  i.e.,  a 3-D box type 

test, at different confining pressures in which the axial stress is 

applied paralled to the 33-axis,  i.e.,    o      = a?p = confining pressure 

(Figure 9).    The results of these same tests can be used to determine 
E the value of    6      from the slope of the unloading strain path shown in 

Figure 10: 

6
E- 

"11 

'22 

(11) 

where    e. .     is the elastic pseudo strain deviation tensor defined by 
ij 

Equations Cll and C12 of Appendix C.    There are several ways of deter- 
E mining   y    .    One way is to measure the unloading shear stress-shear 

strain response during a direct shear test, or a simple shear test. 

(Figure 11).    The slope of the    a., 
E E 

2S/Y    , from which    y      can b« 

is known from Figures 8 and 9- 

,.,t^  - € _    unloading curve is  equal to 
E E 

2S/Y    , from which    y      can be easily determined,  since the function    S 

18 
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Figure 9- Suggested method for conducting triaxial tests and plotting 
results to quantitatively determine the response function S 

Plastic Behavior 

18. For the plastic behavior, the loading function (f (Equa- 

tion C13 of Appendix C) is assumed to consist of two parts (Figure 12): 

an ultimate failure envelope that effectively limits the maximum shear 

stress in the material and an elliptically-shaped strain-hardening 

yield surface that produces plastic volumetric and shear strains as it 

moves. The failure envelope portion of the loading function is 

mathematically described by 

(fx '$)'$- ♦ "i - (12) 

and the strain-hardening yield surface by 

19 
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Figure 10.    Comparison of lateral strain path results 
for Isotropie and transverse-isotropic materials sub- 

jected to a triaxial test 

fe  ,>/0^,  K\  =  [^ - L(K)]2 + R20^ - [X(K)   - L(K)]2 = 0       (13) 

P P 
where    0     and    0?    are, respectively, the first and second  (plastic) 

pseudo invariants of stress, which are defined by Equation Clk of Ap- 

pendix C; and parameters    k    and    if»      are material constants repre- 

senting pseudo cohesive and frictional strength parameters of the ma- 

terial  (Figure 12);    R    is a parameter which will be defined below; 

X(K)    and   L(K)    define the intersections of the hardening surface with 

the    0      axis and the failure envelope    ff0     »\/^p ) '  respectively; and 

K    is the hardening parameter, which generally is a function of the 

20 



SHEAR STRAIN, € 13 

Figure 11.    Simple shearing stress-strain response of a 
transverse-isotropic material 

history of plastic volumetric strain,    e ,   .    For most soils,    K    can 

he chosen as 

K   =   E 
kk 

ilk) 

Equation lU allows for the elliptic hardening surface to expand and 
p 

contract as veil as to translate relative to the origin of the 0.. , 

y0     axes. Note that the hardening surface (Figure 12) was chosen so 

21 
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Figure 12.    Proposed yield surface for the elastic-plastic 
transverse-isotropic model 

that the tangent at its intersection with the failure envelope  is hori- 

zontal.    This condition is guaranteed by the following relationships: 

between    K  , L(K), and    X(K)   J* 

L(K) = 

(1{K)  if £(tc)  > 0 

,0        if 1{K)  < 0 

(15) 

* The mathematical form of Equation 16 depends on the specific material 
being modeled. The author believes, however, that the form presented 
by Equation 16 is suitable for modeling most soils when subjected to 
a relatively low stress level. 
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X{<)  = - ^ In (1 - -j) 

ii<)  = XiKl " Rk = 
-^ln(1-0-Rk 

1 + ij;R 1 + ij^R 

(16) 

(IT) 

where D is a material constant and W is also a material constant 

which defines the maximum plastic volumetric compaction that the ma- 

terial can experience under hydrostatic loading (Figure 13). The ma- 

terial parameter, R , in Equations 13 and 17, is the ratio of the major 

to the minor axes of the elliptic yield surface (Figure 12). The value 

VOLUMN CHANGE, e^ 

Figure 13. Behavior of model under hydrostatic compression, 
illustrating maximum irreversible volume change 
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of R depends on the state of compaction of the material. For a con- 

tractive material (i.e., loose sand or normally consolidated clay. Fig- 

ure 3 curves marked "2 -> 3"), the value of R is greater than 1/^», 

whereas for a dilative material (i.e., dense sand or overconsolidated 

clay. Figure 3 curves marked "2 -> 5"), the value of R is less than 

1/^. R = l/^ corresponds to the curves marked "2 ■*■ h"  in Figure 3. 

These variations in the parameter R can be accounted for hy the fol- 

lowing relation: 

= TTT^ I1 + Ri exp [" R2 L(K)]| (18) 

where R,. » R-i » and R2 are material constants that can he determined 

by a trial and error process of fitting the model to a variety of lab- 

oratory test data. 

19. The material parameters i|> and  k (Figures 12 and ih,  and 

Equation 12) can be determined from a series of standard triaxial tests 

in which the material is sheared to failure. The material parameters 
P      P P      P 

a  and ß  appearing in the definitions of 0      and 0? are defined 

analogously to their elastic counterparts, except that they involve the 

plastic strains instead of the elastic strains, i.e., (see Figures 5 

and 10, and Equations 6 and 11): 

eil  eil 

-P 

ßP = ^ (20) 
e22 

_p 
where e. . is the pseudo plastic strain deviation tensor that is 

ij p 
defined by Equations C22 and 023 of Appendix C. The parameter y 

cannot be expressed analogously to its elastic counterpart (Figure 11), 

2k 



15 
because it involves the plastic stress-strain relation,      i.e., 

P de21 
Y    = d\ 3£ (21) 

2^ aV^ 
'21 

P      P 
The parameters a  and ß  affect the shape of the failure and 

hardening yield surfaces. This can be seen most clearly in principal 

stress space (Figure ih),    In the octahedral plane, the trace of the 

LEGEND 

■ i     M      TRANSVERS - ISOTROPIC 
FAILURE SURFACE 

mm^mmm     ISOTROPIC 
FAILURE SURFACE 

Figure ih.    Isotropie and transverse-isotropic failure 
surfaces in octahedral plane 
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failure surface defined by Equation 12 is shaped like an ellipse (Fig- 

ure lU). The dashed circle in Figure lU represents the trace of a 
P   P 

failure surface for which a = ß =1. 

20. In summary, there are five potential functions (two elastic, 

three plastic) and six material parameters (the o's , ß's and y's) 

that describe the complete behavior of the proposed model. These are 

summarized in Table 1. Twenty-one material constants are used in the 

present model. The treatment of a multiphase system using the proposed 

model is presented in Part IV. 
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PART IV:    THE TREATMENT OF A MULTIPHASE SYSTEM 

21.    To model the behavior of a multiphase system, two separate 

sets of material constants, such as those shovn in Tahle 1 are required. 

The first set should reflect the effective stress properties,  i.e., 

those of the soil skeleton along, and should be determined by testing 

the material under drained conditions.    The second set should reflect 

the total stress properties, i.e., those of the soil skeleton sind water 

and air mixture, which should be determined by testing the material un- 

der undrained conditions.    The resulting two sets of model parameters 

are summarized in Table 2.    By use of these two sets of parameters, the 

complete pore pressure and total and effective stress response of a 

multi-phase system subjected to given stress or strain increments can 

be readily calculated by one of the following procedures: 

a. If stress increments are given, 

1. Calculate the undrained volumetric strain using the 
second set of response functions and material con- 
stants listed in Table 2. 

2. Impose the above volume change on the drained model 
(i.e., the first set of response functions and mate- 
rial constants listed in Table 2) and calculate the 
resulting stress path and associated material re- 
sponse.    This stress path is the effective stress path 
that the material will experience during this un- 
drained load application.    The pore pressure is sim- 
ply the difference between the total and the effec- 
tive stress paths. 

This procedure is illustrated in the diagram on page 
28. 

b. If strain increments are given, 

1. Calculate effective stresses using the first (drained) 
set of response functions and material constants 
listed in Table 2. 

2. Calculate total stresses using the second set of re- 
sponse functions and material constants listed in 
Table 2.    The pore pressure during this undrained 
load application is simply the difference between the 
total and effective normal stresses. 

The diagram on page 29 illustrates this procedure. 
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The response of a multiphase material tested under undrained standard 

triaxial test conditions is calculated using one of the above-mentioned 

procedures in Part V. 

USING MIXTURE 
PROPERTIES (TABLE 2) 

AND EQUATION C 40 

USING SKELETON 
PROPERTIES (TABLE 2) 

\ND EQUATION C 40 
(NOTE   dSy   «    ds,.) 

AN 
(N 
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USING MIXTURE 
PROPERTIES (TABLE 2) 

AND EQUATION C 40 

USING SKELETON 
PROPERTIES (TABLE 2) 

AND EQUATION C 40 

du8 M 
daij " dag 
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PART V:     BEHAVIOR OF THE MULTIPHASE CONSTITUTIVE MODEL 
UNDER TRIAXIAL TEST CONDITIONS 

22.    The ability of the model to simulate the response of a multi- 

phase system can be more clearly understood if the model is examined 

under particular laboratory test boundary conditions.    Since most of the 

mechanical testing of soils for engineering purposes is performed with 

the triaxial test  (TX)  apparatus,  it is  appropriate to investigate the 

model under both drained and undrained TX conditions.    Adopting the z- 

axis of a cylindrical coordinate system  (z  ,    r  ,  and    G) as the axis 

of symmetry of both the material and the soil sample  (i.e., the plane 

r9    is the plane of isotropy of the material), the total and effective 

stress tensors,  and the strain tensor associated with this configuration 

become: 

a z 
0 0 

01J = 0 a 
r 

0 

0 0 a 

z 
0 0 

°h'- 0 a' 
r 

0 

0 0 a 
; 

"e 
z 

0 0 

e, .  = 0 e 0 
ij 

r . 

(22) 

(23) 

{2k) 

'i '   Ji '   '■ 

C   '     02  '     02P   '  anä    ekk 

The variables    J, 2  ' J2 01   ' KE> *l' *1P' 02   . 
associated with the above-mentioned stress 

and strain tensors take the following forms: 

J, = a + 2a 
1   z    r 

(25) 
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J' ■ a' + 20» 
1       z r 

^'tk-i^-'Z-iK-v* 

0, = a   + 2o   a 
1       z m   r 

0'E « a' + 2aE a* 
1 z s    r 

P P 
0, = a   + 2ot    a 

1       z m    r 

0'P = a' + 2oP a» 
1 z s    r 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

4 4 <*z - v2 (32) 

(lE   =  _i   ^„f    _   «• \2 

3    x   Z 
(a' - a')' (33) 

«I?       a / N2 
02 = F (öz " ar) (31+) 

J.p = -2.(a' - a')2 

2        3       z        r 

e,,   = e   + 2e 
kk       z r 

(35) 

(36) 

where 

J,  = first invariant of the total stress tensor 

J' = first invariant of the effective stress tensor 

Jp = J'  = second invariant of the toted or effective stress devia- 
tion tensor 

-E 
0. = elastic first pseudo invariant of total stress 
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E 
0'    = elastic first pseudo invariant of effective stress 

p 
0   = plastic first pseudo invariant of total stress 

p 
0'    = plastic first pseudo invariant of effective stress 

E 
0? = elastic second pseudo invariant of total stress 

E 
0p    = elastic second pseudo invariant of effective stress 

p 
09 = plastic second pseudo invariant of total stress 

p 
0p    = plastic second pseudo invariant of effective stress 

e.,   = volumetric strain 

The triaxial test generally has two phases:    the hydrostatic phase and 

the shear phase.    Both phases can be conducted either drained or un- 

drained.    These phases are discussed below. 

Hydrostatic Phase 

Drained condition 

23.    During the drained hydrostatic phase of a triaxial test, the 

pore pressure is zero and 

(37) 

e,     = e    + 2e (38) 
kk       z r 

where    e. = e    .    The relation between the elastic volumetric strain in- 9        r 
crement and the increment of the first pseudo invariant of effective 

stress is given as (see Equation CIO of Appendix C and Table 2) 

d0'E 3-T^t (39) 
1       1 + 2aE     ^ 

s 

where the response function B  is given by Equation 8 or 9- Equa- 
s 

tion 8 is substituted into Equation 39 and the resulting expression is 
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integrated to provide the following relation between the elastic volu- 
E        E 

metric strain e..  and 0' : 

'1 + 2o \/l - B Is 
'kk 

2s is) 
In 

exp ks *iE) - B Is 
1 - B Is 

(iiO) 

In view of Equation 5» the elastic radial and vertical strains can be 

written as 

9 \B2a
BlJ 

In 
exp (^E)- Is 

1 - B, Is 
(M) 

and 

\ 2s is/ 
In 

exp k<)- B, Is 
1 - B Is 

(^2) 

P P 
The relation between the plastic volumetric strain, e.. , and 0|  is 

given by Equation l6, where < for this phase of the test is E.  and 
P 

X(K) is 0^ , thus: 

4 = Ws ^ - ^ (" Ds K?)] {k3) 

E 
By the use of Equations B13 and Clk,  the relationship between 0'  and 

p ■'■ 
0'  under a hydrostatic state of stress is 

P> 
1 + 2a 

0 i -v1 + 2aEr:i 
s 

^l0.E ikh) 

Substitution of Equation kk  into Equation k3 yields 

4 = Ws f - eX* [" i1  + 2as) Ds 0iE/(: 
1 + 2a »I (1*5) 
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The plastic radial and vertical strains can be obtained by the combina- 

tion of Equations 19 and 1+5: 

^IrtiH1--!-(--: [-(it2<KnE/(i + 0]l w 
and 

--(^[-^[-i^^h^/i1*2*-. {hi) 

The total (elastic plus plastic) strains can be easily obtained by the 

addition of Equations hi and h6 for radial strain, Equations h2 and h"] 

for vertical strain, and Equations ^0 and 1+5 for volumetric strain— 

which gives: 

E f  1 " Bls . , 
er = a

S    9B0    B.    I ln 

2s    is, 

eXP (B2s n') - Bl£ 
1 - B Is 

^jjl-exp^l^^D^^l^a^) m 

1 - B 
e    = 

Is 
z     \9B0   B. 

'     2s    isj 
In 

exp (B2s 01E) - Bi£ 

1 - B. 
is 

-^_j jl - exp [- (l . 2^) Ds ^/(l * 2«] 
;) 

and 

(^ ^ ^ (tfe) e..   « (1 + 2d kk      \ s In 
e^ (B2s 0iE): Bis 

1 - B Is 

+ Ws /I - exp    - ^1 + 2as [-(1 + 2%)DS^
E/(1 + 2as) 

(1»9) 

(50) 
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Equations 39 through 50 provide a complete specification for the defor- 

mation response of the material subjected to a drained hydrostatic test 

(i.e., Isotropie consolidation). 

2h.    The qualitative behavior of the model during a drained hydro- 
E 

static test is shown in Figure 15.    The slope of the    0'    -  e .     and 
X KK 

Jl  - e..     curves during virgin loading can be obtained from Equation 50: 

<     i 
de,,       dl + d2 (51) 

where 

dl = 

gj-—^ [. - Bls e. (- B2s *•*)] 
11 + 2oE 

3 

The combination of Equations 8,  1+5 and 51 results in: 

< 

dEkk , /l + 2aP 
(52) 

^ * ^      S 

The slope of the J' - e.,  curve can be easily obtained from Equa- 
KK _ 

tion 52 by recognizing that the value of    0'      for hydrostatic states of 

stress can be written as  (see Equation B13 of Appendix B). 

0^ = (l + 2^) a; = (l + 2af) Ji/3 (53) 

Substitution of Equation 53 into Equation 52 leads to: 
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m 0 w—iwwm WP^W»:»^ 

dJi 
de kk 

(-3^) 

+ D 

= 3K (5M 

'kk/ 

where    K      is the apparent bulk modulus of the anisotropic material 
s 

under drained hydrostatic loading.    The second term in the denominator 

of Equations 52 and 5^ produces a softening of the apparent bulk modulus 

due to plastic volumetric compaction.    At high pressures, the softening 
P ~ 

term goes to zero (i.e. ,     e      = W    )  and the apparent modulus    K      ap- 
kK        s i- p-i s 

proaches the elastic bulk modulus,    K    =    9/(l + 2o )    B    .    Also, if a 
^      L s    j s 

bfunple is first  isotropically consolidated (from point 1 to point 2 in 

Figure 15), then unloaded (point 2 to point  3), and then reloaded 

(point  3 to point 2), the model dictates that the unloading-reloading 

behavior is purely elastic. 

Undrained condition 

25.    During an undrained hydrostatic loading, the effective 

stresses generally are not zero.    The total stress-strain relations for 

this drainage condition can be obtained in a manner similar to that used 

to derive Equations 1*0 through 50, except that they will involve the 

total stresses  (Equations 25, 27,  28,  30, 32 and 3^)  instead of the ef- 

fective stresses,,and the model coefficients will have the subscript    m 

(mixture) instead of the subscript    s    (skeleton) (Table 2); thus: 

1 + 2a- 

'kk 

1 - B 
1m 

2m    im; 
'In 

exp (^)- 1m 
1 - B 1m 

(55) 

exp i^L lm 
1 - B lm 

(56) 
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9 V^m Bim/ 

exp 
In 

k. 0 - Jljn 

1 - B 
(57) 

Im 

'kk 
= Win |l. exp  [-(l + 2a^)Dra 0^/(1 + 2af) (58) 

P _ 
e    - Wmjl-eXp[-(l + <)Bm0?/(l-4l     ^ 

a + 2a 
P M1 " exp I "  V1 + 2am 
my 

'_-{>* OA/k* <)]] (6o) 

2m   im- 

exp (VJÜ- Jlm 
1 - B 

1m 

il + 2a H1 U
mam.\!,       .„LA  .^D   0EJ(l*2aS) 

i/   m    1/ \ m/ ..I - exp    - (1 + 2a (61) 

m/ 

9   \B 

- B. 1m 
B^_ B. 2m.    im 

In 
exp (^ 0 - !a 

1 - B 1m 

W 
m 

1 + 2a 
1 - exp ;-(-^K*I/(I+2^ (62) 

m, 

and 

"kk 9        AB2m Bim; 
In 

exp {^ *l) Jlm 
1 - B 

1m 

+ W   ^1 - exp |- (1 + 2d 
m ':i^<>A/^<). (63) 
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Computation of effective 
stress and pore pressure 

26.    The effective stresses and the pore pressures generated during 

undrained hydrostatic loading can be computed by the assumption that the 

volumetric  strains   from Equations 50 and 63 are equal (procedure a of 

paragraph 21), thus: 

ri + 2o;u1-Bis 
B0 B. 
2s isi 

In 
exp (Bg3 O - Is 

1 - B Is 

+ Ws 1 - exp I- ^1 + 2as [-(l + 2<)DX/(-^)]j 

a, + 2am^l-Blm 

2m imj 
In 

exp K <) - 1m 
1 - B 1m 

+ "s i1" ^ - K1 * *\ [i^K)^l/{\^4 (Sk) 

E E 
from which    0'       can be obtained as a function of    0.   .     The effective 

stresses  and the pore pressure,    u  , become  (see Equations k and 29) 

i.E 

a' 
z 1 + 2a 

(65) 

u=a    -a' =a    -a' 
z        z        r       r 

(66) 

Note that when the material is fully saturated (i.e., a two-phase sys- 

tem)  and the water is assumed to be incompressible, the right sides of 

Equations  63 and 6k become  zero,  i.e.,    0'       is  independent of    01     and 
E 

Equation 6k can be  satisfied if and only if    0'       is equal to zero. 

This means that all of the applied load is carried by the water. 
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Shear Phase 

27.     During the shear phase of a conventional triaxial test, the 

cell pressure is maintained constant: 

a    = constant = P 
r c 

da    = 0 
r 

(67) 

(68) 

where    P      is the confining pressure at the end of the hydrostatic com- 

pression phase.    If it is assumed that the hydrostatic compression phase 

that preceded the shear phase was drained, the confining pressure,    P    , 

is effective and is equal to    P'   , the effective confining pressure. 

Drained condition 

28.    During the subsequent drained shear phase, effective and total 

stresses are equal (i.e., the effective stress path is known and is 

identical to the total stress path).     The material response is deter- 

mined from Equation ChO of Appendix C by use of the response functions 

and the material parameters listed in Table 2 for the drained condition; 

thus. 

s s s 

..p Hc 

**1      1J      2^3^? 

(69) 

where 

1 0 0 
.E E '      s 0 ex U 
ij s 

0 0 a E 
(70) 

90 .E 

.   ,     (see Equations Blh and B15 of 
ij        Appendix B) 

(71) 

ho 



L = 
0'     , K   I on the hardening surface 

on the failure surface 

(72) 

ij 

0 

0 (73) 

and 

^ 

30^ 

3a:, ilk) 

Equations C38 and C39 of Appendix C can be used to calculate A  and 

C , respectively, using the material parameters for the drained condi- 

tion (Table 2). 

29- The volumetric strain can be obtained from Equation 69 by mul- 

tiplication of both sides by the Kronecker delta, 6  : 

de kk 

1 + 2a 
 E 

9B„ 

31 
1  ?» V   s/ **. 

(75) 
30' 

Typical (qualitative) results predicted by the model for a drained shear 

test are shown in Figure l6. 

Undrained condition 

30.    During an undrained shear test  (following isotropic consolida- 

tion) only the total stress path and, consequently, the total stresses 

are known.    The material response for this phasii can be determined in a 

manner similar to that used to develop Equations 69 through 75, except 

that they involve the total stresses  (Equations 25, 27, 28,  30, 32 

and 3^) instead of the effective stresses, and the model coefficients 

will have the subscript   m    (mixture)  instead of the subscript    s 

(skeleton); thus, 

hi 
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. _1     ,ME AE     .    1    , E    ,    m 
deiJ = 9B- d!*l AiJ  + is" dr1iJ  + T 

mm m 
»1    ^      2^3^ 

(76) 

and the volumetric strain increment is 

where 

1 + 2a 
l£ick 

m 
9B. m 

d0j+f (l + 2/)^ 1       Sn ^ m/ ^ 
(77) 

AE    = 
ij m 

0 

0 

m 

(78) 

E m 
(see Equations Blh and B15 of Tin 

ij        Appendix B) 
(79) 

i. K • M 
<*' 

-) 
on the hardening surface 

lr (^ . V?) on the failure surface 

(80) 

and 

*ij 

'l 0 
p 

0 ' 

0 a 0 
m p u 0 a 

mj 

p 4 
a 3^, 

(81) 

(82) 

Equations C38 and C39 of Appendix C can be used to calculate   A      and m 
C    , respectively, using the material parameters for the undrained condi- 

tion (Table 2). 
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Effective stress and 
pore pressure computations 

31.    During the undrained shear test, the effective stresses and the 

pore pressure at the end of each loading increment can be computed by 

the assumption that the total volumetric strain increments obtained from 

Equations 75 and 77 are equal (i.e., procedure a of paragraph 21); 

thus, 

1 + 2aE        _      A     . „v  3if 1 + 2aE      „      A     . „v   3i5 

E E from which    0'       can be obtained as a function of    0    .    The pore pres- 

sure and the effective stresses then become (see Equations 1* and 29): 

a    + 2aE a   - 0'?     a    + 2ctP a    - 0'P 

z s    r 1       z s    r        1 u = =  
1 + 2a 1 + 2a s s 

(8*0 

(85) 

(86) 

Since the effective stresses are known, the total strain increment ten- 

sor for the undrained condition can be computed from Equation 69.    Typi- 

cal (qualitative) results predicted by the model for undrained shear are 

shown in Figure 17«     Figure 17 also depicts qualitatively the effects 

of the parameter    R    on the stress-strain-pore pressure response during 

a conventional undrained triaxial shear test. 

32.    When the material is fully saturated (i.e., two-phase system) 

and the water is assumed to be incompressible, the right sides of Equa- 

tions 77 and 83 become zero; i.e. ,    0,E  is independent of   0    .    This 

means that the effective stress path is independent of the total stress 

path applied to the material.    This behavior is also predicted by the 

isotropic model reported in Reference 10. 
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PART VI:     SUMMARY AND RECOMMENDATIONS 

Summary 

33.    A three-dimensional, elastic-plastic work-hardening constitu- 

tive relationship for transverse-isotropic three-phase earth materials 

has been developed.    Within the elastic range, the constitutive rela- 

tionship contains three dimensionless parameters and two response func- 

tions.     In the plastic range,  it contains three dimensionless parame- 

ters and three potential functions.    The numerical values of the elastic 

and plastic parameters, as well as the values of the coefficients in 

the response and potential functions, can be determined experimentally 

using essentially conventional soil testing techniques. 

3^.    The constitutive relationship is capable of simulating the 

drained and undrained behavior of typical earth materials  subjected to 

both spherical and deviatoric states of stress.    Moreover,   it reduces 

to its isotropic counterpart without any change in the forms of its 

mathematical functions. 

35. The behavior of the model under drained and undrained triaxial 

test conditions has been examined and a method for obtaining the effec- 

tive and total stresses, as well as the pore pressure of a multiphase 

soil for given total stress or strain paths, has been outlined. 

Recommendations 

36. It is recommended that this constitutive model be incorporated 

into a numerical   computer program that simulates cylindrical and cubical 

triaxial test boundary conditions so that the behavior of the model can 

be correlated with experimental data for three-phase isotropic and/or 

transverse-isotropic earth media.    Such a computer program is necessary 

for studying the effects of the individual model parameters on the 

behavior of the model. 

3T.    It is further recommended that the constitutive relationship 

be incorporated into a suitable numerical computer code for use in per- 

forming effective stress analyses of earth structures boundary-value 

problems. 
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APPENDIX A:     BASIC  CONCEPTS FHOM CONTINUUM MECHANICS 

1. From a microscopic point of view, physical bodies are composed 

of discrete molecules interconnected by some internal forces of mutual 

attraction and repulsion. The concept of stress within a body requires 

that boundary distances and/or loaded areas be large in comparison with 

distances between molecules and/or the size of the individual molecule. 

This,  in effect, transforms a body eomposed of discrete molecules into 

a statistically macroscopic  equivalent  amenable to mathematical analysis, 

Since most  engineering problems deal with macroscopic phenomena and 

involve boundary distances and loaded areas very large compared with 

individual molecules,  it appears  reasonable and convenient to  invoke 

the mechanics of continua as the basis   for analytical consideration of 

these problems. 

2. The theory of continuous media is built upon two  strong founda- 

tions:    basic balance and conservation laws and constitutive theory. 

The basic  balance and conservation laws of any continuum are 

a_.     Conservation of mass 

b_.     Conservation of energy 

c_.    Balance of linear momentum 

d.     Balance of angular momentum 

e_.     Inadmissibility of decreasing entropy 

When thermal effects are neglected,  the above basic axioms  of continuum 

mechanics  lead to the following continuity equation:* 

t+(pv.)5i=0 (Al) 

and the equations of motion: 

a., , + F. - pa. = 0 (A2) 

*    Indices take on values 1,  2,  or  3.     A repeated index is to be summed 
over its range.    A comma between subscripts represents  a derivative. 
Quantities are referred to rectangular Cartesian coordinates    X.   . 
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where 

p  = mass density 

t = time 

v.   = components of velocity vector 

a,.  = a  . = symmetrical stress tensor 

F.   = components of body  force 

a.   = components of acceleration vector 

3.    Equations Al and A2 are called field equations.    They consti- 

tute four equations that involve ten unknown functions of time and space. 

Therefore,  the system resulting from Equations Al and A2  is  indetermi- 

nate.     These unknown functions  are:     the mass density,    p   ,  the three 

velocity components,    v.   ,  and the six independent  stress  components, 

a       .     The body force components,    F.   ,  are known quantities and the 

acceleration components,    a.   ,  are expressible in terms of the velocity 

components,    v.   .    To overcome the indeterminacy and make the system 

complete,  six additional expressions relating the ten unknown variables 

are required.    In continuum mechanics,  such relations are stated by 

constitutive equations   (or material models), which relate stresses to 

deformation and history of deformation.     The difference between consti- 

tutive equations and field equations   (Equations Al and A2)   is that the 

latter contain both space coordinates  and time, and are applicable to 

all materials, whereas the former are independent of space coordinates 

(for homogeneous materials)  and represent the intrinsic response of a 

particular material or class  of materials and, as  such,  are mathematical 

idealizations of the mechanical behavior of real materials. 

h.    The general form of a constitutive equation may be expressed 

by the following functional form: 

H.,   (D      , r       ,  E       , a,.   , p) = 0 (A3) 
ij      mn        qp        rs        -ck 

where the deformation-rate tensor, D  , and the spin tensor, r  , 
mn qp 

are related to the components of the velocity vector, v. , by 
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D = J (v   + v  ) ran 2  m,n   n,m 

and (AU) 

r = — (v   - v  ) 
OP 2  q,p   p,q' 

and the infinitesimal strain tensor, e  , is related to the components 

of displacement vector, u. , by 

c  = i (u   + u  ) (A5) rs  2  r,s   s,r 

Equations Al through A3 constitute ten equations involving ten unknown 

variables.     These equations will lead,  in conjunction with the kine- 

matic relations given by Equations A^ and A5, and the appropriate 

boundary conditions, to a complete description for the solution of a 

boundary-value problem. 

5.     In general, materials having the same mass and geometry 

respond differently when subjected to identical external effects. 

Therefore, a variety of constitutive theories has emerged, each of 

which describes a limited number of physical phenomena decided on at 

the outset for a given material.    In Appendix B of this report, the 

constitutive theory for a linear elastic transverse-isotropic material 

is documented.     In Appendix C the constitutive theory for an elastic- 

plastic transverse-isotropic material is presented. 
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APPENDIX B:  LINEAR ELASTIC TRANSVERSE- 
ISOTROPIC CONSTITUTIVE MODEL 

1.  Linear elastic constitutive models have been widely used to 

approximate the mechanical behavior of a large number of engineering 

materials.  This type of constitutive model implies that the state of 

stress is proportional to the current state of strain. The most general 

form of such a linear relationship is 

eiJ = Cijk£ ak£ (B1) 

where C..,  = the elastic compliances (moduli) of the material, which 

are 81 in number . The coefficients C     in Equation Bl generally 

vary from point to point within the medium.  If, however, the C. . . 

are independent of the position of the point, the medium is termed 

"homogeneous." Equation Bl is a natural generalization of Hooke's law, 

and it is used in all developments of the linear theory of elasticity. 

2. Since the stress and strain tensors are symmetric, the indices 
16* 

i and j  in Equation Bl can be interchanged, which reduces   the num- 

ber of independent compliances from 8l to 5^; i.e., the relation 

Cijk£ = CJik£ (B2) 

represents 27 equalities. Furthermore, the indices k and i can be 

interchanged, which reduces the number of independent relations by l8, 

as expressed by the equalities 

hm = W (B3) 

Hence, the maximum number of independent constants contained in Equa- 

tion Bl is at most 36. 

* Raised numbers refer to items listed in the References at the end of 
the main text. 



3.     The number of independent  elastic  constants in Equation Bl can 

be  further reduced from 36 to 21 whenever  there exists a  function 

77      1 W = — a.,   e., (Bl*) 

with the property that 

■ij  "  ^ 
(B5) 

The potential  function,    W  ,  is called the  "complementary energy func- 

tion."    Its  existence for  isothermal and adiabatic  processes has been 

argued on the basis of the  first and second laws of thermodynamics.     For 

the most general case of a linear anisotropic elastic body,  the number 

of independent  elastic constants   (Equation Bl)   is 21.     If the medium is 

elastically symmetric  in certain directions,  the number of independent 

constants,     C... .   ,  can be even further reduced. 

h.     For  a linear elastic  transversely-isotropic material that has 

equivalent properties in all directions in the 22-33 plane of a 11-22-33 

coordinate system, i.e., where the 11-axis is an axis of symmetry of an 
17 infinitely large order (Figure 5),   it can be shown      that only five in- 

dependent compliances exist.     For such a material. Equation Bl becomes 

reiii 
e22 

e33 
| 

= 1 
el2 

e13 

Le23. 

Cll C12 C12 0 0 0   1 Kll 
C12 C22 C23 

0 0 0 
I22 

C
12 C23 

C22 
0 0 0 a33 

0 0 0 CUk 0 0 
I12 

0 0 0 0 ckk 0 013 

0 0 0 0 0 C22 ~ C23j L023j 

(B6) 

where J^ - C1111 , C12 = C1122 = C1133 , C22 = C2222 - C3333 , 

C23 = C2233 ' 
cients are zero. 

and Ckh =  C1212 = C1313 The remaining C. .,„ coeffi- 

B2 
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5.    To ensure uniqueness of solution for a boundary-value problem 

involving the material described by Equation B6, the complementary energy 
1 o 

function  (Equation B^) must be positive and definite.    This is ensured 

if,  and only if,  the determinant of the coefficients of Equation B6 and 

all of its principal minors are positive,  i.e., the following conditions 
17 

must hold: 

Cll   >0 

c22  >0 

C^   >0 

CL„ - C„^   > 0 
22 23 

2 2 
C22 -C23>0 

(C22 + C23)  Cll " 2C12   > 0 

(BT) 

form: 

6.     Equation B6 may also be written in the  following familiar 
IT 

'11 

'22 

'33 

'12 

'13 

'23 

r   1 -   .-   -F      0 0 0 

E' 
1 
E 

E'    ~ E 

E 

1 
E 

20* 

0 0 
1 

20' 

0 0 0 0 0       rrz 

o] I"'11! 
0 

\22\ 

0 

I33 

0 

I12 

0 CT13 

1 
GJ L^sJ 

(B8) 
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Conditions B7 become 

E > Ü 

E' > 0 

G' > 0 

G > 0 

- 1 < V < 1 

E'd - v) 
E - 2 (v')2 > 0 

(B9) 

where 

v = Polsson's ratio that characterizes the transverse 
reduction in the plane of isotropy (the 22-?3 
plans, Figure 5) due to stress in the same plane 

v' = Poisson's ratio that characterizes the transverse 
reduction in the plane of isotropy due to stress 
normal to it 

E = Young's modulus in the plane of isotropy 

E' = Young's modulus in a plane normal to the plane of 
isotropy 

G = E/2(l + v) = rjiiear modulus for the plane of isotropy 

G' = shear modulus for a plane normal to the plane of 
isotropy 

For an isotropic material (v* = v , E' = E and G' = G), Equation B8 

reduces to the familiar form (Hooke's law): 

ell = E (011 " Va22 " V033) 

e22 = E (- Vall + a22 - Va33) 

e33 = E (- V011 " W22 + a33) 

e12 
s 1 

2G 012 

el3 
s 1 

2G G13 

e23 
s 1 

2G a23 

(BIO) 

BU 
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and the complementary energy function (Equation BM takes the form 

2   — 
-  Jl   J2 

where 

J^ = the first invariant of the stress tensor 

J? = the second invariant of the stress deviation tensor = 
1/2 S.. S., 

S, = the stress deviation tensor 

K = the hulk modulus of the material 

G = the shear modulus of the material 

Equation BIO can then he written in tensorial form as 

where 

eij=^: = kJiöij+iGsij (B12) 

1,    i = J 
6,,  - Kronecker delta = 

[0,    i ^ J 

7.     Equation B12 expresses the strain tensor in terms of the first 

invariant of the stress tensor and the stress deviation tensor.    This 

form of stress-strain relation is very convenient for use in a finite- 

difference or finite-element code calculation of a boundary-value prob- 

lem.    The objective of this section is to find a constitutive relation 

similar to Equation B12 for linear elastic transverse-isotropic mate- 

rials.     This  can be done by defining the complementary energy function, 

n ,   in a form analogous to that of Equation Bll;   i.e.. 

«f   % 
l8B   2S 

where" 
E 

0 = elastic pseudo invariant analogous to J 

= 011 + aE(a22 + a33) 

B5 

+ S (B13) 



0 = elastic pseudo invariant analogous to J0 

= 8
E/6 [(c^ - o2/ Ma11 - a33)

2l Mo?; - c33)
2/6 

* yE (oi22 + "12 ) * (2 + 6E) "as'3 

B  ,     S  ,    a '  ,     ß      and    y      in the above equations  are five independent 

material parameters that fully describe a linear elastic transverse- 

isotropic mediiun.     The strain-stress relations  for this material can be 

easily obtained from Equation E13 as 

dil        1    „.E  .E        1      E 
:ij s^=9t0lAi3 +isnij 

i3ik) 

where 

K]' a material property matrix = 

1 

0       a 

0 0 
E 0 

0       0a 

E Wr 

So, 
1J 

E E ^      E 
n.,= n..    and   n.. 
ij Ji ii 

=  0 

The term    n..     is  a pseudo stress deviation tensor and can be related to 
ij 

the stresses as 

E 0E  /0 N 
nll = 3~ (2all " a22 " a33) 

n22 = " 3~ (all " ö22) + 3  (a22 " a33) 

E ßE 1 
n33 = " ~ (all " a33) " 3  (a22 - a33) 

\2 = Y    al2 

E E 
nl3 = Y    013 

'23 -iH1) '23 

(B15) 
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8.  Note that Equation Blh,  the general constitutive equation for a 

linear elastic transverse-isotropic material, has a form analogous to 

that of Equation B12. 
TJ1 TP Tf 

In fact, when    a    =  ß    = y    = 1   ,  Equation Blh 

reduces to the isotropic relation. Equation B12;  i.e.,     0      becomes    J 
r>   _ g 

0  becomes J„ , P    becomes W , A becomes B becomes K 2 ,  ..   .. , ...j     -.j 

(the bulk modulus of the material), and S becomes G (the shear 

modulus of the rraterial). 

9.  By use of Equations Blh  and B15, strain-stress relations anal- 

ogous to Equation B8 can be written as 

'11 -\9E+3ä) 011 +\9B-Ss) a22 + l9l " 6S j a33 

'22 " V 9i - 6S j all + L~9B      4 ~TS~\ a22 + tW 
Ev2 

'33 

E 
Y 

£ =   ■'—  O 
12      2S    12 

E 
E      - ■*— a 
13      2S    13 

23 -(H/) J23 

1_ 
6b Ju33 

/  E       0E\ [,  Ev2      ,   "I I",  Ex2       QE  .   . 

" V9B ~ 6S / all + L 9B      ~ 6sJ a22 + [ 9B 6S J33 

> (Bl6) 

A comparison of Equations B8 and Bl6 indicates that the following rela- 

tions hold between the five independent material parameters,    B  ,    S  , 
^ F F 

6,7,  and the customary independent material parameters,    E  , 0    , 

E'   , and    G'   (and the dependent parameter,    G) 

B7 



E _ E'   (1 - v) v' 
a    " E  (1 - 2^')  " 1 - 2 v' 

ßJ = 
2(|^)2  (1 - v2) + (1 + v)(l - J+v') f- 

(E1)2 

2 E' + V 2 1^- (1   -  v)   +  1   -  l4V')l 
- 2 

Y   = -r 
2^f-(l.v) + (l-Uv.)ff 

B = 

f- (1 - v)-v]2 + 6v|^ [2 |Ml - v)  + 1 - Uv' 

^|^(1-  v)  +^-(l-liV) 

(1 - 2v•)2 

^(B17) 

2 
2 ■^- (1 - v) + E'   (1 - Uv') 

S = -r. 
"f- (1 - v)-v]2 + 6v|^ [2 1^- (1 - v) + 1 - Uv'] 

Equation BIT can be inverted to give 

E» = 

E = 

v = 

9BS 

3B 3    + S 

18BS 

3B  (3E + 1) + 2S  (aE)2 

3B - 2S (aE)2 

3B (ßE + 1) + 2S  (a
E)2 

v' = 3B gE - 2S aE 

6B ßE + 2S 

G'  = 

G = 3S 
I 

2 + 6 

(B18) 
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Accordingly, conditions B9 become 

9BS "I 
> 0 

3B 3 + S 

18BS 

3B (ßE + 1) + 2S (a
E)2 

> 0 

Y 

3S 

ßE + 2 

- 1 < 
3B - 2S (aE)2 

3B (ßE + 1) + 2S (ciE)2 

> 0 

< 1 

3B ßE + kS   (a
E)2 - 2 (^^-2saEy > ° 

6B ß + 2S       \ 6B ß + 2S  / 

(B19) 

TT     T?     TT 
As was pointed out previously, when    a   =ß    =Y    

=1>    B    becomes    K 

(the bulk modulus of the material),    S   becomes    G    (the shear modulus 

of the material) and Equation Bl8 reduces to the following well known 

relations: 

=    TTt    - E = E 9BS    _      9KG 
3B + S " 3K + G 

SB - 2S   _    3K - 2G 
2(3B + S) " 2(3K + G) 

(B20) 

10.    For the convenience of the reader, the bulk modulus of the 

transverse-isotropic material,    K , the constrained modulus in the plane 

of isotropy,    M , and the constrained modulus  in a plane normal to the 

plane of isotropy,    M*   ,  can be determined from the strain-stress rela- 

tion (Equation Bl^)  as 

B9 
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K = 

M 

(1 + 2aE)2 

9B    | 12 a
5 ßE (1 t  «E) t  6(1 + ßE) 

(1 + 2aE)2     ßE (1 + 2a
E)2 (2 + ßE) 

M' -2L 12(aE)2 

(1 + 2oE)2      3E (1 + 2aE)2 

(B21) 

11.    It is sometimes convenient to write Equation Bli+ in terms of 

hydrostatic and deviatoric components of strain;  i.e.. 

'kk 9B 
1 + 2aE 0E 

985. 
e. ij      2S 9a. 

ij 

where 

e,,   = first invariant of the strain tensor 
_kk 
e.    = pseudo strain deviator tensor 

Hence, the total strain,    e..   , becomes 
ij 

(B22) 

kk      AE    ^ - e. .  =  =• A. . + e. . 
U       ! + 2aE    U        ij (B23) 

The pseudo strain deviator tensor,    e..   , is related to the strain 

deviator tensor,    e..   , as follows: 

i  = e  + (-Ü -  AiJ  ) e 
^ iJ  V:   l + 2a

E/kk 
(B2lt) 

E 
Equations B22 through B2l+ indicate that a  and B are compressihility- 

related material properties, 

related material properties. 

E    E 
related material properties, and that ß , Y , and S are shear- 
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12. With a clear understanding of the above general constitutive 

relationships for a linear elastic transverse-isotropic model, the deriva- 

tion of a corresponding elastic-plastic transverse-isotropic model 

should be easy to follow. 
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APPENDIX C:     GENERAL DESCRIPTION OF ELASTIC-PLASTIC 
CONSTITUTIVE MODELS 

Introduction 

1. The basic premise of elastic-plastic constitutive models is 

the assumption that certain materials are capable of imdergoing small 

plastic (permanent) as well as elastic (recoverable)  strains at each 

loading increment.    Mathematically, the total strain increment is 

assumed to be the sum of the elastic and plastic strain increments; i.e. . 

de., = deB, + dti , (Cl) 
IJ 1.5 ij 

where 

de.    = components of the total strain increment tensor 
i J 
E de.    = components of the elastic strain increment tensor 
p 

de.    = components of the plastic strain increment tensor 

2. Within the elastic range, the behavior of the material can be 

described by an elastic constitutive relation similar to Equation Bl: 

de1?, = C... A  (a     ) do. » (C2) ij ijkt     mn        kt 

where 

do  » = components of the stress increment tensor 

The behavior of the material in the plastic range car. be described 

within the framework of the generalized incremental theory of plastic- 
19 ity.    The mathematical basis of the theory was established by Drucker 

who introduced the concept of material stability, which has the follow- 

ing implications: 

a. Yield surface (loading function) should be convex in 
stress space. 

b. Yield surface and plastic potential should coincide 
(which results in an "associated" flow rule). 

c_.    Work-softening should not occur. 

Cl 



These three conditions can be summarized mathematically "by the following 

inequality: 

do  de! >. 0 (C3) 

The above-mentioned conditions allow considerable flexibility in the 

choice of the form of the loading funciton, ($ , for the model, which 

serves as both a yield surface and the plastic potential. In general, 

the yield surface may be expressed as 

i  (o.j ,O=0 (CU) 

The hardening parametar,    <  , generally can be taken to be a function 
p 

of the plastic strain tensor,     e       .    The yield surface of Equation CU 

may expand or contract as    K    increases or decreases, respectively. 

3.    Conditions a, b, and c_ above, taken in conjunction with Equa- 

tion CU, result in the following plastic flow rule for isotropic 

materials: 

P    ,ax^T lf < = 0 
de

p. = (      lj (C5; a 
0 if    i$ < 0 

where    dX    is a positive scalar factor of proportionality, which is 

nonzero only when plastic deformations occur, and is dependent on the 

particular form of the loading function. 

Derivation of Elastic-Plastic Transverse- 
Isotropic Constitutive Relations 

H.    Within the yield surface,     &  , the material behavior is 

transverse-isotropic elastic.     In view of Equation Bl1*, the elastic 
E 

strain increment tensor,    de, .   , takes the following from: 

, E        1     ,wE  .E 1    J E /„/-v 
deiJ = 9B d0l AiJ + 2S dniJ (C6) 
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in which 

E ^2      E 
\l =  3^-'  niJ 

E ,       E 
^i.  and    nii (C7) 

where    T\,.    is the pseudo stress deviation tensor (Equation B15),  and 

ij 

1 

0        ct 

0        0 

0        0 
E 

a 

(c8) 

The elastic behavior is governed by the three elastic constants,    a    , 
E E 

(3     , and    y    .  and by the two response functions,    B    and    S  . 

In order to introduce nonlinear behavior in the elastic range, the 

response functions may be expressed as 

B = B 

S = S 

(C9) 

Note that in view of the existence of the complementary energy function 

9.    (Equation B13), the model is path indenpendent during purely elastic 
7 20 

deformation.   ' 

5.     The hydrostatic and deviatoric components of strain can be 

easily obtained from Equation C6, respectively, as 

de: 
E    _ 1 + 2a 
kk 9B 

d0: E (CIO) 

and 

deiJ  = 2S dniJ (Cll) 

E —E 
where    de,,     is the increment of elastic volumetric strain and    de., 

kk ij 
is the pseudo elastic strain deviation increment tensor.    The elastic 
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strain deviation increment tensor,    de..   ,  is related to    de.,    through 

the folloving relation (see Equation B2k): 

de.. = de.. ij i, E (C12) 
1 + 2a 

"f?   v   v 
Note that when a = g = Y = 1 , the above equations reduce to their 

isotropic counterparts and the response functions, B and S , become 

the isotropic bulk and shear modulus response functions, respectively. 

6. The plastic strain increment tensor is given by Equation C5 

where the loading function ^ may be expressed as (Figure Cl) 

M 0-, ' ^0o « < = o (C13) 

P       P E       F 
in which 01  and 0? are defined similarly to 0  and 0? (Equa- 

tion B13): 

0l  = |-!fö,,, - a [(ail - 02^2 + {ail -  a33)2] 2 " r Vail " a22 >  (ClM 

^r^- * vp (<.12
2 + «132)+ (H^ "23 

The hardening parameter    K    can be one of the following functions: 

<   =   &r 

= gl  (eL) 

|(eP   \       "] 
L\ kk/ maxj 

(C15) 

(ci6) 

cu 



The use of Equation C15 permits the hardening surface to move back to- 

ward the origin (Figure Cl) when a point on the failure envelope is 

reached  (which produces dilatancy of the material).    This feature of the 

model is useful for controlling the amount of dilatancy that can occur. 

The use of Equation Cl6, on the other hand, only permits the hardening 

surface to move away from the origin, thus ensuring full dilatancy on 

the failure envelope while still permitting hysteresis in a hydrostatic 

load-unload cycle. 

7.     The plastic loading criteria for the function    (5    are given hy 

i> 0 loading 

= 0 neutral 

< 0 unloading 

|O.CM 

u. 
o 
tu 

J < > 

9a^~ da        (= 0 neutral loading (CIT) 
1J 

FAILURE ENVELOPE 

VALUE OF  <^ 

Figure Cl.    Typical yield surface for transverse- 
isotropic elastic-plastic model 
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Plastic strains will occur only when    diJ    is positive and    & = 0 , 

During unloading or neutral loading, as well as for    |( < 0  , the mate- 

rial will behave elastically.    The prescription that neutral loading 

produces no plastic strain is called the "continuity condition."    Its 

satisfaction leads to coincidence of the elastic and plastic constitu- 
19 21 tive laws during neutral loading.     ' 

8.    As with the elastic relation, the plastic stress-strain rela- 

tion can be expressed in terms of the hydrostatic and deviatoric com- 

ponents of strain.     Application of the chain rule of differentiation to 

the right side of Equation C5 yields 

de. , = dX ü-!i 
901      iJ 

UL 

3\0 

VS! 3^0 

P   9ai.1 

or 

de. , = dX ^_AP    + 
il 

■VZaVZ 
'ij 

(C18) 

where 

AP    = 

0 

0 (C19) 

and 

P        % P 
niJ = ^ and ^i = 0 (C20) 

Both sides of Equation Cl8 are multiplied by the Krcnecker delta,    6. .   , 

to give 

def,   = dX (1 + 2aP) -^ 
kk 

(C21) 
Wn 
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_p 
The pseudo plastic strain deviation increment tensor,    de-    , can be 

written as 

-P P 
deJ. = de 

de 
kk 

U U      (l+2aP3    U 
(C22) 

Substitution of Equations Cl8 and C21 into Equation C22 yields 

,-P         dA        H        P de.    = u— n., 
1J    ^a^1J 

(C23) 

but, analogously to Equation C12, the plastic strain deviation incre- 
p 

ment tensor,    de..   , can be written as 

de.    = de., - I — 
U iJ      I  3 

11 de: 
1 + 2a PI     kk 

(C2it) 

Consequently,  substitution of Equations C21 and C23 into Equation C2h, 

leads to 

= dX 

2<1*<I 
P       i.   /AP 

— n. < + |A,. - i+_2«16   \ liL 
3     w **{ 

(C25) 

9.    To use Equations Cl8 through C25, the proportionality factor, 

dX   , must be determined.    This can be accomplished in the following man- 

ner.    From Equations C13 and C15 or Cl6 the total derivative of    fa 

becomes 

drf . 94dcSP + _i 9i_dösP + M.l 
^      1      2<l*<l 

d0: 2  8K34 kk 

de,,   =0 'kk 
(C26) 
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P P T*1 K P 
The values of    d01    and    d0?   in terms of    döL   ,    n..   . and   n,      can be 

obtained from Equations B13, B15, and ClH'as 

1      \l + 2aE/      1      ßE(l + 2aE)      11 
(C2T) 

d02 = 3 r(2 + B ) f: nIiävi E + 3   r 
11     2 + BE  L; 

P E P        E 
22 äT122 + ^33 dri33 

>[ 
P E P E 

ni2 dni2 + nl3 dnl3l j-fe) P    ^ E 
n23 dT123 

(C28) 

In view of Equations CIO and Cll, Equations C2T and C28 become 

**?      OT, (1 + 2a        3 E        6s(a    - a )   ,-E d0    = 9B -^ ^ de      - -f f- de 
1 (1 + 2aE)2      ^      ßE(l + 2aE)      11 

(C29) 

d0? = — 2      „E 
6S 

3^(2 + ßE)    11     11      (2 

63   f P    ^-E     ,    P    ,-E 1 
—^ |n22 de22 + ,133 de33j 

kS  f P     ,-E    ,    P     ,-E 
^12 del2 + ^3 del3 

1 + -22S. 
J      (2 + C 

     P    d-E 

(2 + ßE)     23      23 
(C30) 

E P —E 
The relationship between    de      ,    de      ,    de.     ,    de      ,    de      ,    de. .   , 

•p lj KK Ij K.K KK Xj 

and    de. .    can be easily obtained from Equations Cl,  C6 through C12, 

C22, and C2U as 

de.    = di11,  + diP. +  ^ deE    +  ^ de^ 
ij ij U      ! + 2aE      kk      1 + 2aP     kk (C31) 

and 

de. ,  = deT,  + de^,  + | -^-r - -|^ )de. .   +1 —-^■ «e.,  + de., 
ij ij iJ 1  + 2aE        3   y    kk     Vl + 2a-       1 + 2a 

A . , A . , i      •n 
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The substitution of Equations C31 and C32 into Equations C29 and C30 

results in 

d0j = 9B 
(1 ± 2aP)   _ ks{a? - a

E)(aE - l) 

(1 + 2a
E)2 "        ^(1 + 2aE)2 

lekk 

6s(aP - cxE) de      + 6s(aP - a
E) diP 

ßE(l + 2a
E)      11      ßE(l + 2a

E)      11 

9B 
(1 + 2aP)     ,        12S(aP - a5)2 

(1 + 2aE)2      ßE(l + 2aP)(l - 2aE)2 
de: 

kk (C33) 

and 

AMP      2S f aE - 1   \   P    ,        ^ 6S P     . i02= i rm v dekk+ JZ : ^ nii deii ß   11 + 2a f{2 + n 

6S 

(2 + ßE) 4 de22 + n33 de33 M '12 del2 + ^13 del3 ■1 
12S  \ : P    fl        + '^S aP - aE p    rl p 

23    e23       ßE (1 + 2a
E)(l + 2/)   ^     ^ 

6s 
n,,   de. 

6S 

ßE(2 +  ßE)    i;L      11      (2 + ßE) 

P      -P P      -P 
n22 de22 + n33 de33 

its r p  -p    p  -p 
12 dei2 + n13 del3 

12S P     ,-P 

17777n23   23 (C3M 
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Substitution of Equations C21 and C23 into the above two equations gives 

d^ = 9B 
(1 + 2aP)    _ kSJaF - a

E)(a
5 - 1) 

(1 + 2aE)2 '      ßE(l + 2aE)2 

6S(aP - aE) 
kk ' ßE(l + 2aE)      ^ 

9B 
1 + 2a? \2 + 12S(üP - aE)2 

1 + 2a 
E 

ß';(l + 2ctE)2 
dX 

90P 

+ 3S(aP - aE)       dA y     P 

eE(l + 2aE)     V^aV^'11 (C35) 

and 

AJ>     2S /a" - 1  \   P    ^       ^ 6s P    , 
d02= -J \7~TT] \I dekk + XZ . X nii deii 8    \1 + 2a ß^Ca + B 

+   6s    L 
(2 + 8E)   L 22 de22 + n33 de33 ]+T[nl2de12+ \3dh^ 

P     . ^63 
n23 de23 + 3 

(aP      aE\ dX n P   !£_ 
11 9< 

6(2 + S  )   -VLP 
2 

dX     /nP ^2     l£      _        33 dX 

?     (2 + ßE)  -vflP (4) 
a^es 

fry2 * fe)2] ^ 
3>«!- 

2S    dX   [/P \2 ^   / P \2l  _3i_ 7^N M^IJ . di_   / P \2 _3JL 

P      (2 + (^23) (C36) 

3N«>; 

when Equations C35 and C36 are substituted into Equation C26, which is 

solved for    dX  , this produces 
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HU -A (C37) 

in which 

A = 9B 
(1 + 2/)    H        4s(aP - aE)(aE - l)   H 

(1 + 2ciE)2  30^ ' BE(1 + 2aE)2 30E 

-s- /"   - M Ji P 
vz\i + ^y aVZ 11 

3^0; 

3S 

2 + e£ 

de 6s^P - a
E)   3i_   de 

^      BE(l + 2aE)    30P        ^ 

^E nil dell + n22 de22 
+ n?33  de33 

_1 ii 
V^sVäf 

2S 

Y      L 

"p   .,       L   P   ^     1   1     _H_ 
ni2      12       nno      ^         13   13JVZ3VZ 

V + 67V£ 
,P    _3i de. 

VZ   23 aV?    " 
(C38) 

and 

(1 + 2o.E)2   L 
9B(1 + 2aP)2 + ^f (aP - aE)2 1JL\2 

6s/aP - aE\   1        P      3^        3j 

3E\i + 2a
E;v7p ^SV^ < 

3S_l_/_3i_\   [1. 

P 
2 

2(2 + 3E)0Pl    V^ > (^L)2 + (^L)2 + (4) 
S    1 ^(-^m^fe)2] 

3L. 
34 

(C39) 
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10.     The total strain increment tensor can be obtained by the com- 

bination of Equations Cl, C6, Cl3, and C37; thus. 

^ = k <A«+ is -1- * f (% C * -fe-^= - .1 '*' 
'■ V3<  "    a^faV^f 

Equation CitO is the general constitutive equation for an elastic-plastic 

transverse-isotropic material.    To use these equations, it is only neces- 

sary to specify the functional forms of    B  ,    S  ,     K   , and    &    and, of 

course, to determine experimentally the numerical values of the co- 

efficients in these functions as well as the values of the parameters 
E P 0E        rP E .      P a    ,    a    ,    6    ,    e     ,     Y    ,  and   y    . 
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APPENDIX D:    NOTATION 

a. Components of acceleration vector 

'ET 
A. Elastic material property matrix 
: p "| 
A., Plastic material property matrix 

B Elastic bulk response function 

B. Initial value of the response function B 

B Maximum value of response function B max 

B^ ,B? Material constants 

C. .. » Elastic compliances of the material 

-E de.. Pseudo elastic strain deviation increment tensor 
ij 

de.. Components of the total strain increment tensor 

E 
de.. Components of the elastic strain increment tensor 

p 
de.. Components of the plastic strain increment tensor 

E 
de,, Hydrostatic component of strain or volumetric strain 

dA Positive scalar factor of proportionality; appears in 
the flow rule 

da. Components of the stress increment tensor 

D Material constant 

D Deformation-rate tensor 
mn 

e Void ratio 

e.. Strain deviation tensor 

e.. Pseudo strain deviation tensor 

—E 
e.. Elastic pseudo strain deviation tensor 

_p 
e. Plastic pseudo strain deviation tensor 

**] 

E Young's modulus in the plane of isotropy 

E' Young's modulus in a plane normal to the plane of 
isotropy 
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f Failure envelope 

$ Loading function 

F      Strain-hardening elliptic oap 

F        Components  of body force 

E 
* 2(1+ )      ^hear modulus for the plane of isotropy 

G'      Shear moduluc for a plane normal to the plane of 
isotropy 

J-      First invariant of the stress tensor 

J'      First invariant of the effective stress tensor 

Jp      Second invariant of the total stress deviation tensor 

Jp = J'      Second invariant of the total or effective stress 
deviation  tensor 

k      Pseudo cohesive strength parameter of the material 

K      Bulk modulus  of the material 

K       Bulk modulus of anisotropic material under drained 
hydrostatic unloading 

Ka     Apparent bulk modulus of anisotropic material under 
drained hydrostatic unloading 

s 

L(K)      Intersection of the hardening surface with the  failure 
envelope    f(0|  ,  S%) 

m      Subscript used to indicate "mixture" 

M      Constrained modulus in the plane of isotropy 

M'      Constrained modulus in a plane normal to the plane of 
isotropy 

P     Total mean normal stress 

P'      Effective mean normal stress 

P        Pore air pressure 

P       Confining pressure at the end of the hydrostatic 
compression phase of a triaxial test 

P'      Effective confining pressure at the end of the 
hydrostatic compression phase of a triaxial test 
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P Pore water pressure 

r Spin tensor 
qp 

r,e,z Cylindrical coordinate system 

R Ratio of the major to minor axes of the elliptic 
hardening surface 

R, ,R1,Rp Material constants 

s Subscript used to indicate "skeleton" 

S Elastic shear response function 

S. Initial value of the response function S 

S., Stress deviation tensor 
ij 

S  ,S?,S_,Si Material constants 

t Time 

u Pore pressure representing the combined effect of the 
pore air pressure and the pore water pressure 

u. Displacement vector 

v. Components of velocity vector 

AV/V Volumetric strain 

W Maximum plastic volumetric compression that the mate- 
rial can experience under hydrostatic loading 

W Complementary energy function for Isotropie materials 

X. Cartesian coordinate system 

X(K) Intersection of the hardening surface with the    0,    axis 

E 
Material constant; appears in the definition of the 
first elastic pseudo invariant of stress 

p 
a       Material constant; appears in the definition of the 

first plastic pseudo invariant of stress 

Material constant; appears in the definite 
second elastic pseudo invariant of stress 

Material constant; appears in the definite 
second plastic pseudo invariant of stress 

D3 





e99 or G-^      Total strain component in the plane of isotropy 

E n..       Elastic pseudo stress deviation tensor 
'ij 
P 

1iJ 

p 
n.. ,  Plastic pseudo stress deviation tensor 

K      Hardening parameter 

v Poisson's ratio that characterizes the transverse re- 
duction in the plane of isotropy due to stress in the 
same plane 

v'  Poisson's ratio that characterizes the transverse re- 
duction in the plane of isotropy due to the stress 
normal to it 

p  Mass density 

a..  Total stress tensor 

al.  Effective stress tensor 
ij 

a        Total radial stress r 

r 

z 

Effective radial stress 

a   Total axial stress z 

Effective axial stress 

a0  Total tangential stress 

a'  Effective tangential stress 
6 

0^  First elastic pseudo invariant of total stress 

F 
0' First elastic pseudo invariant of effective stress 

E 
0p  Second elastic pseudo invariant of total stress 

F 
0' '  Second elastic pseudo invariant of effective stress 
p 

0   First plastic pseudo invariant of total stress 
p 

0' First plastic pseudo invariant of effective stress 
p 

02  Second plastic pseudo invariant of total stress 
p 

01   Second plastic pseudo invarinat of effective stress 

D5 
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X      Dimensionless quantity proportional to the pore volume 
occupied by the water phase 

ty      Pseudo frictional strength parameter 

Ü      Complementary energy function for transverse-isotropic 
materials 
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