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SUMMARY ~~~ - 

~~

Let X1 , i—1 ...,k be independent Bernoulli variables, with

X~ — B(l,p~). Let Y — ~~~ and consider a uiultinomial experiment based

on a independent, identically distributed observations

This model is identifiable in the ordered parameter vector

where P(j_l) < ~~~~ and arises in reliability experiments in which k

components in parallel have potentially different probabilities of failure.

The family of multinomial distributions with the structure described above

is properly contained in the family of general uzultinomial distributions

with (k.i-l) classes . Maximum likelihood estimation for this family is

considered , and it is shown that for sufficiently large n, the maximum

likelihood estimate of 
~~(1)’

•••’
~~(k)~ 

may be identified with high proba-

bility from the roots of a kth degree polynomial whose coefficients are

consistent estimates of the elementary symmetric functions of the ratios

9(i) ~~~~~~~~~~~~ 
A simulation study for the case k 2 sheds light

on the sample size required.

I. II~TRODUCTION

Let X~, ial ...,k be independent Bernoulli random variables with

potentiall; different probabilities of success i l,..., k. We ~~~~~~~~ IV • ‘

— 
- V

~denote thie situation by X~ .4B(l~P~)~ i—1,...,k. Let Y i l  ~~~ and 
P 1.

assume that a random sample y
~,Y

’,...,Y is availab le. The coumon dis-
k’

tribu tion of these Y ’s is the k-fold convolution to be denoted ’ * B(l .P~ ) .

This note concerns the estimation of the parameters of this convolution

based on the Y sample via the method of maximum likelthood .

--V - - - ~V - V~~VV ~~~~~ -- - - - - V - -  
— —- -
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Estimation problems for convolution models have been considered

by several authors. For example, Gaf fey (1959) constructed a consistent

estimator for the distribution of one component of a continuous convolu-

tion model under the assumption that the distribution of the second

component was known. Sclove and Van Ryzin (1969) derived method of

moments estimators for a variety of convolution models. Maximum likeli-

hood estimation has met substantial resistance for convolution models due

to the cumbersome nature of the likelihood function, which, for discrete

componen ts, consists of a product of sums of products of component

probabilities. Samaniego (1976) used a characterization of convoluted

Poisson distributions to facilitate maximum likelihood estimation of the

Poisson parameter. A similar approach was taken by Samaniego (1977) for

maximum likelihood estimation in convoluted binomial distributions.

Both of these studies have dealt with one-parameter models in which one

component of the convolution has a known distribution. In general,

maximum likelihood estimation for multipara meter problems (with the

exception of the problem treated here) ha.. as yet proven untractable.
k

The convolution * 3(l ,p~ ) is not well defined for estimation purposes ,
1

since the model is not identifiable in the parameter vector £ —

It is clear that any permutation of the components of z gives ri se to the

same distribution. It La easy to verify that this is precisely the extent

of multiplicity in the model , and that the model Li therefore identifiable

in the ordered par ameter vector (P (i).P(2)~ ....P~~)). wher e 
~(j.1) ~ ~~~ 

Yi1

We will consider estimation of the ordered parameter Vector.
k

The model * B(1 p~) arises naturally in reliability experiments.
1

Suppose k components are operating independent ly in an r out of k

system , and their probabilities of operati ng successfully over a specified
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time period are Pj~ i.’l,...,k. The four tires of an automobile yield

an example of components whose life lengths are independent, but are

not identically distributed because of the different stresses experienced

due to tire location. An r out of k system is only as reliable as

its r th best component, and thus it may be of interest to estimate the

ordered parameter vector. The model we deal with assumes that no sub-

system information is available, that is, the X variables from which

the observable Y is constructed are themselves unobservable. Such

an assumption is realized in many biological or engineering systems.

A number of authors of reliability texts have discussed the model
k
* B(l ,p~) as an introductory example (see, for instance, Barlow and
1
Proschan (1975) p. 20 ff.). While many properties of the model are

quite well known, inference questions remain largely uninvestigated.

The estimation problem at hand is tangentially related to the estimation

of parameters of mixtures of binomial distributions studied by Blischke

(1964), and to estimation under order restrictions studied extensively

in Barlow et al. (1972). The problem does not seem to benefit, however,

from either of the approach es used in these studies. An estimation

problem for this model with k a 2 was considered by Buehler (1957).

In that paper , subsystem information was assumed available and a

minl~~mi width confidence interval for the reliability p1p2 
of a ser ies

system was obtained. Our own interest in the problem considered here

originated from an attempt to derive the maximum likelihood estimate of

the parameter vector (p1,p2) in the convolution B(N,p1
) * BQ4,p2) of

two binomial distributions. It is interesting that this model is
k

subsumed by the model * B(l~~~) for k — N + M , so that the c ents
1

developed here in fact apply to the binomial convolution. The approach

V V — - -~~~
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taken here is inefficient for the latter model, however, because the

special structure of the binomial convolution is ignored by this

approach.

II. ThE CASE k — 2

We summarize in this section the derivation of the maximum like-

lihood estimates of the ordered parameters P(l) and P(2) in a two-

component system. The character of the general problem can be gleaned

from this case. Moreover, the solution for k a 2 is complete, whereas

in the general problem, we consider only certain important special

cases. For the case with k — 2, let n~ denote the observed frequency

of the event ‘1 — i, for i—O,l,2, in the sample Yl~ •~ •~
Yn~ 

The likeli-

hood function is given by

L(n0,n1,n2,p1,p2)

,
n~~i ,  ((l..p1)(l-p2))

°
(p1

(l..p2) +

The maximum likelihood estimate of (P(1)~P(2)) is obtained from separate V

~~~im{zation problem . for various possible data configurations, and is

displayed in the table below:

VV -~~ -~~~
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TABLE I: MJ2 for k a 2

Case MLE ( 1~~~~ 2))

1. n~ a 11 (0,0)

2. n1 — a (0,1)

3. n2 
a n (1,1)

4. a0 - 0, n1
.n
2 > 0 ~~~ i)

5. a
1 

- 0, n0
.n
2
> 0 

~~~~ 
n
0+n2
)

6. n
2 

a o, n0~n1 > 0 (o. n0~~ 1
)

,n +2n n +2n
II n~~> 0, n1 <4n0.n2 L 2n ‘ 2n

a +2n
8. U nj > ~ ~~

2 
~ 
4n0.n2 

l.. 2 ± ~~~~~ Jn1
2 

- 4n~.n2

In this estimation problem, the MLE is restricted to the simplex in

the plane bounded by the lines P (l) 
a 0, P(2) — 1 and P(1) P(2)• The

first seven cases in Table I are boundary solutions . Even in the straight-

forward problem ,vaa ined in this section, however, boundary solutions re-

quire some work. For example , in Case 4 above , the likelihood m~ximized

on the boundary P(2) — 1 takes on the value

- - - . -  -

VV 
V —
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while the likelihood maximized on the boundary P(l) p
~2~ 

takes on

the value

n n +2n
,.._n

1~~~
1
1
n
1+2n~~~l 2

L2 
- 

~ .~~ 1
+~~2

) ~2n1+2n~~

The fact that Li > L2 may be inferred from the fact that the function

(1 + y/x)X, for fixed y, increased to e~
’ as x increases from zero

to infinity. In the general prob lem, the simplex over which the likeli-

hood is maximized is bounded by a multitude of hyperplanes , and boundary

searches for the MLE are at the very least quite tedious.

Let us view the estimation problem from another perspective.

Suppose we look for the 1~il~.E in terms of the basic multinomial proba-

bilities (P(Y—0), P(Yal)) subject to the constraints imposed by the

model. We illustrate the outcome in the figures below, in which the dot

represents the location of the unconstrained ~flZ (n0/n, n1/n) and the

box represents (albeit oversimplified) the constrained parameter space.

P(Yal) P (Yal)

_ _  

V~~~~~~~~~~~~~~~~~~~

’>J
6

• I j  P~~aO) ______________ P(Y O)

FIGURE 1 FI GURE II
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P(Y—1) P(Yal)

1 1
Case 7 CaSe 8

— p (7a0) p (yaO)
0 0

,

FIGURE III FIGURE IV

We make several observations. First, we notice that the uncon-

strained !,U~E may lie on the boundary or in the interior of the

parameter space and may be inside or outside of the constrained

space. When it lies outside the constrained space, it is easy to

argue that the constrained )UZ will lie on the boundary of the con-

strained space. When the unconstrained MLE lies within the constraii~ed

space , the MLE for (P (1)~P(2) ) may be obtained, at least in theory, by

the invariance property of MLE ’s. Our fina l observation is one which

we will make more precise in our treatment of the general problem.

We note that among the seven cases in which the nonzero ni are consecutive

integers, only in Case 7 does the unconstrained ~~.E lie outside of the

constrained space. We thus conclude that the 1il.E for (P(1))P(2) ) may

be found by the invariance property of MLE’s in almost all cases in

which the integers i for which ni is nonzero are consecutive.

III. THE GENERAL CASE

k
Let Y1,..., Y be i i.d. according to the distribution * B(lpp

i
) ,

i l
and let be the observed frequency of the event Y — i for i—O ,1,... k.
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The likelihood function may be written as

L(n,Z) = ~~~~ ,c_l 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. .ç~1) (3.1)

Maximizing L with respect to is a difficult problem for several

reasons. First, there are 2~°~~ - 1 different data configurations (where

certain n~ are zero and the rest are positive), and the function L to

be maximized is different for each. Secondly, the likelihood equations

L a Q, ial,...,k, form a system of k equations each of which

involves all k parameters in a nontrivial way. Another approach to

maximum likelihood estimation is maximization of L with respect to the

multinomial probabilities (P(Yai)J, subject to the constraints on the se

probabilities imposed by the model. The difficulty with Lagrangian

maximization in this problem is that the constraints are extremely complex

and , for practical purposes defy description. We will pursue a third

approach, one that cannot be guaranteed to produce the MLE for any fixed

sample size a, but which produces the z~~ with limiting probability one

when the parameters 
~~~~ 

i.’l,..., k are distinct.
k

We first consider data configurations for which U n~ > 0. We
Lao

attempt to f ind the ?~~~ for the ordered parameter vector

by the invariance property of MLE ’s ,  that is, by solving the system of

equations
a V k

0 *  A
— — P(Y—0) a fl (l-p, .~

)
i—i ‘I

k
— P(y”i) 

~ 
fl (14, ~

)
fl i_I ~ 

,~~~~~~~~ \ i/ (3.2)

nk k
— a~~~(Ti.k)~~. fl~~a
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The system (3.2) consists of k+l equations, but is determined by any k

of them. We divide the last k equations by the first to obtain an

equivalent system

~~
ial P(j)J n0

E 

~~ 
) 

(J
~~~~J) ) ~2

i<j ~~ti) 
P(j) 

n~

(3.3)

~ (n ~P))=~~~ii=l j~
j ~~P(j)

~~

i—l ~~~~~ 
n
0

We recognize the left hand side of (3.3) as the elementary syimnetric

I P(j) .\
functions in ~~ _ l ~~, which implies that if the system (3.3) has ap

solution (P(1)~ ...~P~~))~ it is unique and may be obtained as

P(j) — 
ial ,... k (3.4)

where 9(i) ’ i— l ...,k are the ordered roots of the polynomial

k 
~ k i

p (x) — E (—1) n~x • (3.5)
Lao

The maximum likelihood estimate of 
~~~~~~~~~~~~~~ 

may be identified from

(3.4) only when the polynomial p(x ) has k nonnegative roots. It is of
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course possible for p(x) to have some complex roots, or for some of the

roots of p(x) to be negative. However, ou— can show that when

0 < < P~2~ < ••
~~ < 

~(k) 
< ~

k
u r n  P(f II n~ > 0) fl (p (x) has k roots > 0)) 1. (3.6)

n-.~~ 0

Thus, for large samples, we expect to be in the case considered above,

and we expect to be able to identify the MLE by equations (3.4). We

briefly sketch a proof of (3.6). The fact that

k
P(U n~ > 0) -. 1
0

is clear from the Bonferroni inequality , since

k k
P(fl[n

~~
3
~~
0J )�1- ~~P(n~~— 0 )i_b i.0 -

k
— 1 — E (1 P (Y j ) )

fl

Lao

This latter expression clearly tends to one as n tends to infinity. Since

k
P(p(x) has k roots � 0~ 11 u~ > 0) - P ( p ( x)  has k roots 2 0)

0

tends to zero as a tends to infinity, it suffices to show that

P(p(x) has k roots > 0) 1. (3.7\

To see this, we focus on the polynomial

if n0 >0
f(x) — ~

L 1 L f n 0
aO.
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The coefficients of f(x) are consistent estimates of the elementary
p4.,

symmetric functions of the ratios — , i— l , . . ., k) .  Since

P(n0 > 0) — 1, we have that for each fixed x , f (x) will converge in probability

to the polynomial with roots 9(l)’•~
•’9(k) • If P(l) < P(2) < “ <

V these k roots are distinct. It is thus possible to choose points Xj~

iaO,...,k such that Xi_ l < 9 (i) < X~~, and the limiting polynomial takes

alternat ing signs at successive x ’s. We may choose N sufficiently large

so that f(x) has alternating signs at successive x’s with arbitrarily high

probability, establishing (3.7) which implies (3.6).

It is not possible to obtain the same result if the parameter vector

is on the boundary of the parameter space. In that case, the limiting

polynomial mentioned above has some roots of multiplicity greater than

one. It is possible that a sequence of polynomials converges to such a

polynomial, and yet no polynomial in the sequence has any real roots. For

example, the polynomials (g~(x) a - (6 - ~)x3 + 13x2 - l2x + 4) have

no real roots, yet converge to the polynomial g(x) a (x-l)
2(x-2)

2
. It is

a fortunate fact, however, that a sequence of random polynomials does not

behave like a sequence of deterministic polynomials. Thus f or large n,

we find that the MLE may be identified from the roots of the polynomial

(3.5) with reasonable frequency even in the case of a boundary parameter

vector. The simulation results suii~n rized in the next section will make

this remark clearer. Thus, although the method proposed here does not

succeed in identifying the MLE with limiting probability one for boundary

parameter vectors as it does for vectors in the interior of the parameter

space, the method may still be attempted and will produce the t~fl~E with

some positive probability -- the exact value of which depends on the

exact for m of the limiting polynomial.
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k
While it is true that P(fl flj  > 0) tends to 1 as n •, provide d

0
0 < P(l) ~ ~(k) 

< 1, the speed of this convergence will depend on the

exact size of the parameters. There are cases of practical importance

in which maximum likelihood estimation is of interest for sample sizes
k

for which P01 n~ — 0) is quite high. Of particular importance are
0

problems in which several p
r
’s are very large and/or several Pt’s are

very small. As Buehler (1957) has noted, such problems occur with

considerable frequency in reliability experiments. It is interesting
k

to note that the method proposed here for the case 11 n~ > 0 tends to
0

work nicely for problems in which the integers with nonzero observed

frequencies are consecutive - - precisely the expected data configuration

for the problem of interest. We suninarize below the details of the

extension of the method to this problem.

Let us suppose that the observed frequencies from a sample

are as follows:

nO — ... — 
~r-l 

— 0 — — •~~ • —

5 
(3.8)

with Ilnj>O ~
i—r

where 0 <r < s~~~k, and n_ l z O z n k÷l . Then, an attempt to use the

invariance property of MLE’s to identify the MLE for

that is, an attempt to solve the system (3.2), yields

and

~(k-r+l) — — ~ (k) — 1,

with the remaining estimates being identified as
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P(j) l+~ (J) 
jak-B+l,...,k-r

where 9(k-s+l)’” ’9(k-r) 
are the ordered roots of the polynomial

5 i-t s—ip(x ) — E n~(-l) x , (3.9)
i—r

provided this polynomial has (s-r) nonnegative roots. For the case k • 2

considered in the last section, the polynomial (3.9) is linear in the two

cases with a zero observed frequency and consecutive integers with non-

zero frequencies (labeled Cases 4 and 6 there).

IV. DISCUSSION

Maximum likelihood estimation for the parameters of the model
k
* B(l~p~) is a complex problem in which many different likelihood surfaces
1
must be examined, and for which no closed form solution is possible in

general. While numerical methods are always available for searching for

MLE ’s, they tend to be quite unwieldy in multiparameter prob lems. In

Section III, we have demonstrated that the MLE may be found with high

probability from the roots of a kth degree polynomial ‘when n is l arge

and the k parameters are distinct. This leaves , of course , the mumer ical

problem of obtaini ng roots of this polynomial , it this problem is easily

accomplished using standard techniques . It is a sub stan t ially simpler

numerical problem than the problem of “hill-climbing” with a k-variate

criterion function.

The results discussed in Section III are asymptot ic in character , and

it is of interest to examine the question of samp le size requirements . We

present below the result of a very modes t simulation study -- we hope to

- - ~~~~~~~~~~~~ ~~~~~~~~~~~~ 
-
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report on the results of a more ambitious simulation in a future note.

For the presen t , we examine only the case k — 2 and the sample size n — 50.
We conclude from our simulation that n — 50 is a “large sample” in terms of

the level of probability experienced in identifying the MLE by the method

of Section III.

In Table II below, we give, for different parameter values, the

frequency of occurrence of Cases 1 - 8 (see Table I) in 100 samples of

size 50 drawn from the convolution B(l~P(1)) * B(l)P(2)). The last column

tabulates the frequency of occurrence of samples for which integers

with nonzero are consecutive and the MLE could be identified by the

invariance principle.

TABLE II

~aECase 
______ by

P(j~)~ P(2) 1 2 3 4 5 6 7 8 Invariance
.1, .1 55 38 7 62
.1, .2 37 40 23 60
.1, .3 22 24 54 76
.1, .4 15 13 72 87
.1, .5 6 9 85 91

3 3 94 97
.1, .7 1 1 98 99

2 98 100
.1, .9 1 1 98 100
.2 , . 2  20 40 40 60

.2,.3 
— 

6 42 52 58
.2, .4 2 29 69 71
.2, .5 18 82 82
.2, .6 9 91 91
.2,.7 4 96 96

.2, .8 100 100

.2, .9 1. 99 100

.3, .3 49 51. 51

.3, .4 40 60 60

.3, J 34 66 66

(continued on page 16)
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TABLE II (Continued)

Case 
____ ____ by

P(1)I P(2) 1 2 3 4 5 6 7 8 Invariance

.3, .6 27 73 73

.3, .7 5 95 95

.3, .8 100 100

.3, .9 2 98 100

.4, .4 48 52 52

.4, .5 44 56 56

.4, .6 36 64 64

.4, .7 22 78 78

.4, .8 11 89 89

.4, .9 3 97 100

.5, .5 44 56 56

.5, .6 43 57 57

.5, .7 33 67 67

.5, .8 24 76 76

.5, .9 6 8 86 92

.6, .6 40 60 60

.6, .7 44 56 56

.6, .8 2 27 71 73

.6, .9 13 16 71 84

.7, .7 2 56 42 44

.7, .8 4 42 54 58

.7, .9 27 20 53 80

.8, .8 12 40 48 60

.8, .9 37 37 26 63

.9, .9 67 30 3 70

With a sample of size 50 in a two-component system, the likelihood

of obtaining the MLE by the invariance principle ranges (in our simulation)

from 447. to 1007., the higher likelihoods being associated with parameter

values that are fairly well separated . We see that the invariance principle

is not highly reliable when P(l) — P(2)~ as might be anticipated by our

remarks in the previous section. However , there is a reasonable chance of

obtaining the MLE by invariance even in this case. For fixed P(1) —
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this likelihood should be about the same regardless of the sample size.

One further observation -- while our simulation did not involve P(1) < .1
or p2 > .9, 

it is clear that the relative frequency with which the MIE may

be obtained by invariance tends to one as either P(l) — 0 or P(2) 
— 1~

since in either of these circumstances, the probability of the set of cases

(1, 2, 3, 4, 6, 8) in which the invariance principle works tends to one.



18

REFERENCES

Barlow, R. E., Bartholomew, D. J., Bremner, 3. M. and Brunk, H. D. (1972).
Statistical Inference Under Order Restrictions. Wiley, New York.

Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability
and Life Testing - probability Models. Molt, Rinehart and Winston,
New York.

Blischke, W. R. (1964). Estimating the parameters of mixtures of binomial
distributions. j ournal of the American Statistical Association, 59,
510-28.

Buehler, R. 3. (1957). Confidence intervals for the product of two
binomial probabilities. Journal of the American Statistical
Association, 52, 482-93.

Gaf fey, W. R. (1959). A consistent estimator of a component of a
convolution. Annals of Mathematical Statistics 30, 198-205.

Samaniego, F. 3. (1976). A characterization of convoluted Poisson dis-
tributions with applications to estimation. Journal of the American
Statistical Association, 71, 475-79.

Samaniego, F. 3. (1977). Maximum likelihood estimation for binomially
distributed signals in discrete noise. Journal of the American
Statistical Aseociation, to appear.

Sclove, S. L. and Van Ryzin, j. (1969). Estimating the parameters of a
convolution. Journal of the Royal Statistical Society, B 31, 181-91.



—--4

SICIJ RITY CLAS S IF I CATION OF T HIS PAGE (W~,~ n D.t. Ent.~.d)

DE
~~

’DT E’-’T~~’~~ 
DA~~E 

R E A D  INS TRU CTION S
~ i ~~ r~~i &,ij ~~.uin r~ .‘~.i ii.” r BEFORE COMPLET !NG FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENVS C A T A L O G  NUMB ER

/ ,
‘. 4. TIT LE (~~1t4~~ J4U~ ’ .-... ~~~~~ -~~ . .~~~~~~~~~ _.

- 
‘~~~

- Maximum Likelihood Estimation for a Class of Interim ,“~‘ ~~/#  I
~~~~~~~ Multinomial Distributions Arising in Reliability j - 

)I

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~. I N

7V AU THOR(a)  
V 

S. CONTRACT OR GRANT NUMSER(a)

-~:1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V 
‘~~ ~~

/
~~~~~~5 

j
I 

V FOSR-77-3180~
’
~

S. PERFORMING ORGANIZATION NAM E AND ADOR SSS 10. PROGRAM ELEMENT. PROJECT . T A SK
- ARE~ r*~~ ORK UNfrY IMIUIERS

University of California •, VZ.~ 
‘ ——- 12.”

Department of Mathematics~ 61l02F /23~4/4&5~
Davis, California 95616 ____________________________

II. CONTROLLING OFFICE NAME AND ADDRESS /~~ ~2~-~~~owr~~1tE
Air Force Office of Scientific Research/NM (L~ 

Jul.V

Boiling AFB, Washington, D.C. 20332 l3.
1
I~gJMBE RO I 1 PAGES

14. UONITORI~NG &4LN.~ Y .NAM.E & AODRESS if~~~1fi~~~r1Pom Controltlr4 OfUc.) IS. SECURITY CLASS. (of thu. r.port)

- /‘); J . / ~~~~
//,

I / / UNCLASSIFIED

i L_ -~~~~~ - - - IS.. OECLAS SIFICA TI ON/ DOWNG PAO ING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of thi. R.p .rI)

2/) , ~ ~ (Approved for public release, distribution unlimited.

Il. DISTRIBUTION STATEMENT (of Ii ,. .b.fr.ce .nI.,.d in h ock 20. if d J f f  -.

(7
~~~~~~~~~~

/ V~~~~~~~~~~~~~~~~ ?~~~~~~~~~~~~~~~~~~~

f

/

IS. SUPPLEMENTARY NOTES

IS. KEY BORDS (C..,tima. on ,.v., .. aid. II  n.e..wy aid id.nt ify by block r n u b r )

Convolution, maximum likelihood estimation, invariance principle, reliability.

20. ASST RAC 1 (ConuS nu. on r . . .  ~~~~~~ g~ n.~... y aid idMf ti ty by block n.aib.r)

Let X1, i.1,. . ., k be independent Bernoulli variables, with —

Let Y — EX.~ , and consider a multinomia l experiment based on n independent ,

identically distributed observatio ns ~~~~~~~~~~~ This model is identifiable in

the ordered parameter vector 
~~~~~~~~~~~~~~~~ 

where 
~ (i l) ~ P~ 1~~ and arises

in reliability exper iments in which k components in parallel have potentia ll’
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20. CONTINUED...
different probabilities of failure. The family of niultinomial distributions

with the structure described ab ove is properl y contained in the family of

general multino mial distributions with (k+l) classes. Maximum likelihood

estimation for this family is considered, and it is shown that for suff i-

ciently large n, the maximum likelihood estimate of 
~~(1)’

•••’
~ (k)~ 

may be

identified with high probability from the roots of a kth degree polynomial

whose coefficients are consistent estimates of the elementary symmetric

functions of the ratios 9
(i) 

— 

~~~~~~~~~~~~~ 
A simulation study for the

case k — 2 sheds light on the sample size required.
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