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ABSTRACT

The following report provides a brief outline and description of
the steps taken in formulating a simple mathematical model for the
analysis of heat transfer in a pure substance undergoing a change in
phase (solid to liquid or vice-versa). The problem is approached from
the differential point of view and eventually the governing equations
are solved by a finite difference technique. The results show fairly
conclusively that the present method of anmalysis is capable of predicting
the behavior of such a system to a reasonably high degree of accuracy.
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Dimensional Quantities:

Symbol

Cc

MWN:1cl
NOMENCLATURE
Description
. Btu
heat capacity 1bn=°F

characteristic length - ft

convective conductance - SEn
e hr—-ft2-°F
thermal conductivity - o S
Y~ hr-ft-°F
Btu
heat of fusion - Ton

characteristic length - ft

Btu
convective heat flux - E;:?Er

solid layer thickness - ft

solid layer thickness at zero time - ft
temperature - °F

melting temperature - °F

freestream temperature - °F

time - hr

position coordinate measured parallel to the
solid wall - ft

position coordinate measured perpendicular to
the solid wall - ft

thermal diffusivity - -—

3 1bm
mass density - s

time coordinate for Stefan solution - hr

2

F —
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Nondimensional Quantities:

Symbol
b

Fo

n

St
St

t*

Description

numerical constant

Fourier modulus

nodal point index

denotes interface node
dimensionless heat flux
dimensionless heat flux for t<O
dimensionless solid thickness
Stefan number

Stefan number for t<0
dimensionless time

symbol denoting small magnitude
similarity parameter

dimensionless temperature

1978
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I. INTRODUCTION

The study presented in this paper was initiated in order to gain
a better understanding of the phenomina occurring in a two-phase (solid-
liquid) system under transient temperature conditions. The generil phase
change problem considered here is one of great practical interest in the

areas of nuclear reactor safety, the solidification of metal castings,

cryogenics, etc.. Due to the mutual presence of two phases, this problem
defies solution by techniques commonly employed in problems of conduction
heat transfer because the region in which the solution is sought is

continuously changing with time.

The immediate application of the present analysis concerns the
prediction of the behavior of the solid product layer adjacent to the
tube walls (heated side) in a Rankine cycle steam boiler-liquid metal
reactor. The amount and rate of deposition of solid product is sought
as a function of time. The fundamental goal or objective in this study
then, is to formulate a simplified mathematical model which may be used
to predict the rate of solidification or melting in a two-phase system
such as the one described above for a given set of initial and boundary
conditions.

The basic problem of heat transfer with phase change has avoided
general solution for a long time. The analytical difficulties encountered
can be mainly attributed to the nonlinear character of the governing
differential equations. Numerous particular solutions have been presented
in the literature (see for example, Carslaw and Jaeger (1), J. Stefan (2),

and I. G. Portnov (3) ). However, in general, the application of these
solutions is limited to systems with special boundary conditions of the

type which are seldom encountered in real-world melting and solidification
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phenomena.  Numerous approximate methods have also been suggested in-~

cluding variational techniques and integral methods similar to those
developed by Th. von Karman for the calculation of two-dimensional
laminar and turbulent boundary layers in fluid dynamics. The accuracy
of these approximate methods is in general a function of the immediate
problem but they are nevertheless very powerful. Relatively accurate
results can be secured with these methods with the additional benefit
that the mathematical complexity is significantly reduced in comparison
to the more general solution techniques. The various methods of solu-
tion will be elaborated upon later on in this paper.

The brief discussion of solution methods given above already implies
that in order to obtain results for the general melting and solidification
problem numerical techniques must be used. Therefore, the major effort
in this study will be toward the development of a finite difference approx-
imation for the governing differential equations. The resulting difference
equations will be solved numerically by digital computer. The results
will be presented in dimensionless form so that the effects of the
various parameters can be more easily interpreted. An integral type
analysis is being developed at this time which posseses some favorable
characteristics even when compared to the full finite difference method,
however, the details of the integral method will not be discussed

here.

II. Statement of the Problem

Figure 1 shows a two-phase system of solid and liquid in which the
solid layer is bounded on one side by a rigid wall and on the other side

by the liquid phase. The symbols in Figure 1 have the following meanings,
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T=T
Tiy, 1 ,
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(SOLID LAYER)

SRR D e e Lm
(WALL)

T=T

Figure 1 - Sketch Illustrating the Basic Arrangement of
Solid Layer, Rigid Wall, and Liquid Freestream.
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h - 1local convective conductance based upon T » the liquid freestream
temperature
qg - local convective heat flux at the solid-liquid interface
S - solid layer thickness
T - temperature in the solid layer
Tm - equilibrium fusion temperature of the substance
'I'w - local wall temperature
t - time coordinate measured from some convenient origin
x - position coordinate measured parallel to the rigid wall
y - position coordinate measured perpendicular to the wall

The wall is assumed to be either a plane wall or one in which the
local radius of curvature is large with respect to the local solid layer
thickness, S. This assumption is made because in the present study a
Cartesian coordinate system is used, but the same basic type of analysis
and procedure could be applied in either cylindrical or spherical coordi-
nate systems. At the solid-liquid interface, (y=S), the solid surface
is subject to the convective heat flux from the warmer liquid which is
of course a function of the local convective conductance, h, and the
freestream temperature, Tm. At the wall, (y=0), the layer is in direct
contact with the solid wall which is assumed always to be at some temper-
ature less than the fusion temperature, hence some solid is always present.
The assumption of direct contact between solid and wall implies the ab-
sence of any contact resistance and therefore the temperature of the
solid at y=0 is equal to the wall temperature. It is important to note
that in this analysis no assumptions will be made regarding the form of
the time variation of the wall temperature, Tw’ and the convective

heat flux, q:. On the other hand both Tw and qz must be known as
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functions of time before the problem solution can begin. Specification

of the heat flux at the interface implies that the fluid dynamical problem
for the region y>S is independent of the solid layer thickness. This

can usually be justified as a reasonable assumption in external flow
situations when S is small, but for internal flows the variation in

solid thickness may have a significant effect on the fluid flow itself.

In such a case the equations governing the flow in the region y>S are
coupled at the solid-liquid interface to the equations governing the

solid layer thickness. A more complete discussion of the assumptions

made in this analysis is given immediately below.

ITI. Basic Assumptions in Model Formulation

The following simplifying assumptions will apply throughout the
remainder of this paper.

1. Heat transfer within the solid layer is primarily one-dimensional

and in a direction normal to the solid wall. This assumption is

completely justified when the solid layer thickness, S, is rela-

tively small with respect to other characteristic dimensions of

the problem. The validity of this assumption for thin solid

layers is justified by the following order of magnitude analysis.

Consider the two-dimensicnal, transient heat conduction equation,

1 3T 9T . It
a3t "t s

where o is the thermal diffusivity of the solid. Introduce the

two characteristic length scales d and L where d is the scale
factor for the coordinate measured perpendicular to the wall,

y. For d to be a characteristic length in the transverse direction

it must be of the same order of magnitude as the solid layer
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thickness, S. Thus,
d ~ 0(S).
L is the scale corresponding to the coordinate measured parallel
to the wall, x. The two-dimensional energy equation is nondimen-
sionalized with the length scales d and L. and the fusion temperature,

Tm, yielding.

g @7 . A %
e e o ER-2
where,

T

Tz
m

o
yak,
x=% , and,

- to
E a°

The scaling factors d, L, and Tm were chosen so that Y, X, and T

are all of unity order.

=X~
oo 0(1)
S Zh
&= L 0(1)
-
T = T 0(1)
m

If the solid layer thickness is small in comparison to its exten-

sion in the x direction then,

[9 ~0(8), where §< < 1.

The right hand side of the energy equation III-2 becomes,
symbolically,

T d., ¥T 1 2 1 &
?_)_7+(L) %2 - 1;+8 1?-‘1+&
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Therefore approximately,
AT P
R T I1-3

and the one dimensional assumption is seen to be justified for thin
solid layers. Note, however, that the above argument breaks down

near edges or discontinuities in the wall because the assumption

[l {9

is no longer justified in these regions.
2% The wall temperature, Tw’ and the convective heat flux at

"

the interface, qc, are not dependent upon the solid layer thickness.
The equation governing the temperature distribution in the solid
layer is therefore uncoupled from the energy equation governing

the wall temperature and the equations of fluid dynamics governing
the liquid flow.

3. The material under consideration is a pure substance. The
complexities which arise due to phase change temperature ranges

and solid state phase transformations in multicomponent systems

are not considered here. With respect to alloy systems, for example,
Friedman (4) has approached the phase change problem successfully
with a finite element technique, however, the present analysis will
apply only to pure substances, homogenious in the solid phase.

4. All solid properties are temperature independent. This
assumption will not severely affect the accuracy of the results

in problems where temperature differences in the solid are not

extreme, i.e. for cases in which there is a moderate degree of

subcooling.
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s Thermodynamic equilibrium exists at the solid-liquid inter-

face, in other words, the interface temperature is assumed equal

to the fusion temperature at all times.

IV. Mathematical Formulation

For the assumptions stated above the temperature distribution in

the solid layer is governed by the following equation,

32
a—a~y"£=it1;‘, Q< iyl <USE S

The boundary conditions are obtained directly from Figure 1.

Initially,
T = T(y) ,
t = 0:
S =5,
o
At the wall,
y = 0: T = Tw .

At the solid-liquid interface,

y = S: T .

One other condition must be specified at the interface. This
relates the energy fluxes at y = S to the rate of latent heat

due to phase change. In words: The rate of energy transport

IV-1

IV-1la

IV-1b

IV-1c

IV-1d

condition
evolution

by con-

vection to the interface from the flowing liquid plus the rate at which

energy is evolved due to the latent heat of phase change is equal to the

rate of energy transport away from the interface and into the

layer by conduction, or,

at y = S: q * ot 48 o poF |

solid

IV-le
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The symbols in equations IV-1 have the following meanings:

o

2 -

thermal diffusivity of the solid
mass density of the solid
heat capacity of the solid
thermal conductivity of the solid

latent heat of phase change

Equations IV-1 completely define the present problem mathematically.

No general solution exists at this time for the system, IV-1.

The major difficulty with respect to analytical treatment arises from

the interface boundary condition, IV-le, as shown below.

In general, the temperature in the solid layer is both a function

of position and time, thus,

T = Tly,t]
and
_ o1 at
dT = 3y dy + e dt
at y = S, T=T, and
m
oT oT
i oy e === =
dT .ydy ot dt 0
Upon rearrangement this becomes,
aT
dy BT _ds
dt | y=S aT dc
dy J y=S

Substituting this result into condition IV-le results in,

(o3
-3

k_;)_T -qc=-oSI,

:’{::

Q)|
~<
~<
]
2]
QU
<

y=$
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The interface boundary condition, IV-le, is therefore nonlinear and it

is this nonlinearity which causes analytical difficulty.

V. Methods of Analysis

As mentioned earlier, exact analytical solutions are available for
phase change problems only of the most fundamental variety. These par-
ticular solutions apply only for special forms of conditions IV-la, b,
c, and e. Consider, for example, the classical Stefan solution. This
closed form solution applies to a semi-infinite region which initially
consists of a single fhase (liquid) at the fusion temperature. At zero
time the boundary temperature, Tw is stepped down to some lower temper-
ature thus initiating formation of the solid phase. The boundary
temperature remains constant thereafter. In this instance the liquid
phase is spatially isothermal at the fusion temperature and condition

IV-le simplifies to,

ka— = OQ%S:‘ .
y y=S

With this simplification and the assumption of constant wall temperature

a similarity solution is possible with,

n = —Y—  (similarity variable).
2vYat

When this relation is substituted into system IV-1 an ordinary dif-
ferential equation results which can be integrated to yield the tem-
perature distribution in the solid and the interface position,

e

2vat
e Tw 3 (Tm “ Tw) erf(b) *

erf{_i__.

s = 2bY/at , V=2
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where the constant, b, is given by,

g c(Ty - Ty)

beb erf(b) = V-3

Lv T

Obviously, the practical application of this solution is severely
limited by the restrictive boundary conditions which were imposed
in order to yield the closed form solution, V-1.

In contrast to the Stefan solution, I. G. Portnov (3) obtained
a series solution to a slightly more general problem by Laplace trans-
form methods. Howevgr, according to the paper of K. Stephan (5) the
evaluation of even the first few coefficients in the series is very
cumbersome.

In order to relax the restrictions imposed by an analytical solution,
many investigations have employed approximate solution techniques, the
most popular of which are the integral analyses. A brief description
of the integral method is given below, however, a much more complete
account may be found in Schlicting (6) and in Ozisik (7).

The basic procedure used in most integral analyses in heat transfer
and fluid dynamics is to first approximate the unknown temperature or
velocity profile by some functional relationship, the form of which is
chosen in order to satisfy the boundary conditions for the given problem.
The governing equation (equation of motion or energy) is then integrated,
using the approximate profile, with respect to one of the spatial
variables. The resulting ordinary differential equation is then in
terms of the second independent variable and may be solved by standard
methods. The overall effect of the integral method then is the same as
the effect of the similarity transformation in that the original partial

differential equation is reduced to an ordinary differential equation.
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In contrast to the similarity solutions the integral solution can only
be an approximation because the assumed profile satisfies the original
governing equation only at certain specific points within the given
region, at the boundaries for example. It follows then, that the greater
the number of boundary conditions satisfied by the assumed profile the
more accurate the resulting integral solution. In many cases there is
a choice as to which boundary conditions are to be used in developing
the approximate profile. In this case the conditions should be chosen
for the boundaries which are the most critical in a given situation so
that the assumed profile will be especially accurate in these regions.
In the phase change problem, for example, it is imperative that the
interface heat balance condition, IV-le, be used in forming the approx-
imate profile. Integral techniques have been successfully aﬁplied to
melting and solidification problems by T. R. Goodman (8), P. A. Libby
and S. Chen (9), J. M. Savino and R. Siegel (10), and K. Stephan (5).
All of the studies mentioned here report results which are usually
well within the limits of accuracy normally required for engineering
purposes. For instance, Stephan reports integral results which are

in error by less than 2.5 percent when compared to presumably exact
numerical solutions. Despite these promising results the applica-
bility of integral techniques has thus far not been justified in more
general phase change problems where the temperature profile within

the solid may not be approximated well by a simple polynomial. Such
situations may arise when the wall temperature and/or the heat flux
are varied in an irregular manner. The integral technique is a
powerful method of solution when applied to phase change problems but,

more work must be done in order to establish the limitations involved
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when using this type of approximate analysis.

Another approximate method which has been used successfully in phase
change investigations involves the variational technique developed by
Biot (11). This method was applied to the case of constant wall temp-
erature solidification by C. Lapadula and W. K. Mueller (12). The re-
sults of their work are comparable in .accuracy to the integral method
used by Libby and Chen with the additional benefit that the solution is
available in closed form. On the whole, however, variational techniques
are not nearly as popular as integral methods and integral techniques
therefore are responsible for the bulk of the approximate solutions.

The third major category of solution methods are the finite
difference techniques. The principal advantage of numerical solution
is, of course, the inherent immunity of these methods to nonlinearities,
time varying boundary conditions, etc.. But even finite difference
methods are adversely affected by the moving boundary characteristic
of all phase change phenomina. In fixed nodal arrangements, the solid-
liquid interface must move toward, reach, and pass-by each stationary
temperature node so that when the interface is located between two
nodes its exact position is unknown and therefore it must be located
approximately by interpolation. A continuous account of the fusion
front travel becomes then somewhat of a problem. The difference
equations and interpolation formulae can become very complex, especially
when solution in two space dimensions is considered, for example, see
Springer and Olson (13). A unique nodal scheme for one-dimensional
problems which eliminates the need for interpolation and yields a
continuous, accurate account of the fusion front motion was suggested

by Murray and Landis (14). In this nodal arrangement, the nodal mesh

B R = >~
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changes continuously with fusion front travel so that the interface
position is always coincident with a temperature node, thus there is
no need for interpolation and the difference formulae are simplified
considerably.

Numerical techniques provide a means of obtaining an accurate
solution to the phase change problem outlined in Part II for realistic
boundary conditions. Because it is a primary aim of this study to pre-
sent a method of solution which is of a general nature, numerical methods
will be applied here, namely, a finite difference technique similar to

that used by Murray and Landis.

VI. Nondimensionalization and Asymptotic Solution

The following dimensionless groups are defined:

y* = % , dimensionless space coordinate,

(o)
t* = é?% , dimensionless time coordinate (Fourier Modulus),
0
T-T
6 =____ W  dimensionless temperature,
Tn- Ty

S* = % , dimensionless solid layer thickness,
o

where So denotes the solid layer thickness at zero time, t = t* = Q.
Substituting these dimensionless variables into equations IV-1 results

in the following nondimensional system.

¥0 _ 1 dS¢ 39
O<y*<S*: Syas " —s't Jox (O-1]1 + =% . VI-1
8 = 0(y*), Vi-la
t* = 0: {

Sk = 1, VI-1b
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y* = 0: 6 = 0. VI-1c
8 =1, VI-1d
y* = S*
S a8 » = 852 Vi-le

t Oy* 7 qex
The new parameters resulting from the nondimensionalization are

defined as,

"S
q* = %Qg—g , dimensionless heat flux,
St - Eﬁzmé;liﬁ_ , Stefan number.

Both gq* and St are assumed to be time dependent in the general case.
The steady state thickness is obtained from equations VI-1 as

follows. Under steady state conditions VI-1 reduces to,

329

_E)y_;*Z = 0. VIi-2

Using VI-lc and VI-1d in VI-2,

= L* i i -
ess s*ss (linear profile). VI-3

Substituting VI-3 into the interface boundary condition VI-le results in,

S* ss g £

ss
S

*

S i tss ’ VI-4

ss q*
ss

* % % *
where qss' Stss’ and Sss are the values of q%, St’ and S* respectively

under steady state conditions. When dimensional quantities are reintro-
duced, equation VI-4 is seen to be merely a statement of the equality
of heat flux by conduction through the solid layer to the rate at

which energy is convected to the interface from the liquid,

(q'é) = k(Tm'Tw) ss
Ss S
Ss
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Probably one of the most important results of the normalization
of equations IV-1 is the appearance of the parameter, St (termed
"Stefan number"). The physical interpretation usually associated
with St is obtained directly from the definition,

2k c(Tm-Tw) sensible heat
t 2 latent heat

S

Thus, the Stefan number is often interpreted as a measure of the relative

effects of sensible and latent heat in the solid layer. It is shown
by Lock (15) that in cases for which convection effects are small at
the interface,

1 2
S ~ Fo (Fourier Modulus).

t
Therefore small values of St imply large values of FO, which in turn
implies the approach toward steady state conditions within the solid
layer (recall that a large Fourier modulus indicates that heat capa-
city effects are small with respect to heat conduction effects). To
further illustrate the physical significance of this parameter, con-
sider the case in which the Stefan number assumes a very small value,

indicating small heat capacity effects in the solid, i.e.
§ <<1, and F >>1
t o

If convection effects are also small and the wall temperature is con-

stant, then, VI-1l reduces approximately to,

x 0 » VI-5

. -
0=ss . VI-6

B I S————

PranTIp .
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Using this result in condition VI-le yields,
ds* _ St
——dt* = g; - q* vI_7

Equation VI-7 is an expression for S* as a function of t* in the case
of constant wall temperature and very small Stefan number. Assuming
further a constant value of heat flux (q* = constant) and interchanging
independent and dependent variables results in,
*
tkx = JS gfg%;$ ” VI-8
1
where ¢ denotes a dummy variable of integration.

Integrating VI-8,

*
i R ol W ? = %E
t q* q*z 0g 1—-———,-‘—{; . VIi-9
a
E

Equation VI-9 is a closed form expression for S* as an implicit function
of t* for the Jimiting case of St-'O. This solution is of practical
interest because in many cases St is indeed very small and VI-9 can

then be expected to give totally satisfactory results. Ice is one

substance for which equation VI-9 often applies, for ice, %/c = 288°F.

VII. Finite Difference Solution

In Figure 2 the N temperature nodes are spaced evenly throughout
the solid layer with the 1lst and Nth nodes located at the wall and at
the solid-liquid interface respectively. In order to maintain this
configuration as the interface moves, each temperature node (excepting
the first) must have a non-zero velocity with respect to the wall at
y=0. The principal purpose for introducing the nodal mesh, of course,

is to allow the approximation of equations VI-1 by finite difference

- A_A
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formulae. With the above moving nodal arrangement, however, the time
derivative, as it appears in equation VI-1, cannot be written in dif-
ference form for the reasons outlined below.

Writing the time derivative in the more explicit form,

38 _[de ] 4 D8
* * T
o 4t y* = constant e

emphasizes the important fundamental difference between the partial
time derivative at a fixed point in space and the total time deriva-
tive of a moving point or particle. In order to express equation VI-1

in difference form, it must be written in terms of the total time

derivative, o which is easily approximated by the nodal system in Figure 2.

Dt* °’

Consider 9 to be a function of y* and t%*,

8 = 8[y*, t*] ,

or,

8£*= Dt*  dt* oy* i
Substituting into equation VI-1 results in,
2 ds *
DO wdiB, 1 SEgpayaS0S0 | Cyrig

Dtx  oy¥ 5, de* dtx Jy*

Equation VII-2 is the one-dimensional, transient, heat conduction
equation in a form applicable to points moving in the solid layer with
velocity, %%; . The velocity of the nth node is related to the inter-

face velocity by the following relationship,

ape | e st
dt* g S* de*x °’
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in which y: denotes the position of the nth node. Substituting VII-3

into VII-2 and rewriting VII-2 for the nth nodal point yields.

. ds o
Re_rl = 62[) — _]:_ ._t [f) _1] + ﬁ‘. Q _a_’... = VII—[o
Dt* F)y;\2 St dt* " n S* dt* oy* =
n

Equation VII-4 is substituted for equation VI-1 in the original set
of non-dimensional equations which are now rewritten in a form

applicable to the variable difference mesh in Figure 2.

*
DI _ 3%9 _ Ll dst .o,y Ynds* 30 .
Dt* Dy*2 » Se dee SR Sk dt* Jy* .
re = O(yg) s VII-5a
t* = 0
13* o VII-Sb
& = VII-5c
y* = y; =0: 6 =96 =0.
f = O“ =1, VII-5d
y* = y'k = Sk
e g oA | o S50 VII-5e
: * dex  °
t dy N

In the numerical solution of equations VII-5 all space derivatives
were approximated with 3-point central difference formulas with the
exception of the gradient in the interface equation which was approxi-
mated with a 3-point backward formula. The 3-point formula was chosen
in favor of the simpler 2-point formula at the interface in order to
minimize truncation error in this critical region. Both time deriva-
tives of temperature and solid thickness were approximated by 2-point
forward formulas. The detailed difference equations are listed in
the appendix.

The explicit form of the difference equations simplifies the

numerical solution of system VII-5 considerably, however, in an
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explicit solution scheme the question of stability must be considered.
According to Ozisik (7) there is no general criterion for determining
the stability limits for nonlinear problems. In most cases the stability
bounds are determined by numerical experiment. For the present study,
however, a somewhat different approach was taken. First, it was assumed
that the general stability criterion for linear, parabolic, partial dif-
ferential equations holds approximately in the nonlinear case (see Ames
(16) ). Then as a second check on the stability of the solution a pre-
diction-correction scheme was used. The corrector was applied to S* at
a given time step until successive corrections differed by less than
gsome predetermined amount, or, if after four corrections the above step
size control criterion still had not been satisfied the step size was
halved and that iteration repeated. In this way a check on the stability
and on the accuracy of the solution was achieved in one step. Both
accuracy and stability are assured by the above procedure because in
most cases accuracy strongly implies stability. A solution being
carried out near the stability bound will exhibit a stable but slightly
irregular behavior in advance of the point where the numerical algor-
ithm becomes truly unstable. The above step size control procedure
then, effectively detects impending instability by the slightly erratic
behavior of the solution which immediately precedes it. This procedure
has been used to obtain numerical results for a wide variety of initial
and boundary conditions (including those in Part VIII) and to date no

stability problems have been encountered.

VIII. Results and Conclusions

The numerical results in this section have been included to

verify the validity and accuracy of the finite difference technique
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developed in Part VII and to allow some basic observations to be made
regarding the general behavior of the physical system outlined in Part II.
All curves were obtained with the moving nodal point network shown
in Figure 2 using a total of ten temperature nodes (eight internal nodes).
This mesh size was found to yield accurate results without an excessive
amount of computational effort. For simplicity, each of the curves
calculated (except for Figure 5) begins with a solid layer initially

at steady state, i.e.,

] ds* *
for t* < 0, S* =1, e - 0, and Sti = qi,
*
where Sti and 9 denote the values of Stefan number and dimensionless

heat flux respectively for times less than zero. At t* = 0, either
St or q*, or both change from their initial value to some other value
which may or may not remain constant with time, depending on the
specified boundary conditions for the immediate problem.

The numerical solution can be compared to the exact analytical
solution of Stefan for the special case of q* = 0. This is a trivial
example but it nevertheless provides an excellent means of checking on
the performance of the finite difference calculation. It will be re-
called that for the case of zero solid thickness initially and liquid
at the fusion temperature the temperature distribution in the solid

and the interface position at any time are given by equation V-1 and

V-2 respectively. )
o [_J__
Z/E?J

k- ’I‘w (Tm Tw) erf (b) V-1

S = 2bVOT V-2

where the constant b, is determined from,

2 b Sy
b e erf(b) = VIIT-1

m
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The initial condition for the Stefan problem is unfortunately inconsis-
tant with the requirement of the finite difference model that the solid
layer always have a finite thickness. The difference in initial condi-
tions is illustrated in Figures 3a, and 3b.

This discrepancy was accounted for in the numerical comparison by
allowing the Stefan solution to proceed until the solid layer thickness,
S, calculated by Equation V-2 was So in magnitude at which time the
numerical solution was begun using the exact temperature profile given
by Equation V-1 as an initial temperature distribution. The procedure
is shown schematically in Figure 4.

In Figure 4, T is the time coordinate corresponding to the Stefan
solution, T, is the time required for the solid to build-up to a thick-
ness So as given by Equation V-2, and t is the time coordinate for the
finite difference calculation, the origin of which coincides with T = 1.

From Figure 4,

so that equation V-2 becomes
S = 2bVa(t+T) . VIII-2
However, by definition,
SO s sz(lTo ’
thus,
£ .2
g
. 4b%g
Substituting this into Equation VIII-2 ,
S 2

8% = 4b% au(t + 02 Vo
4b“a

Gy2=ap? 25 41,
S S

5} “o
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Figure 4 - Illustration of Method for Comparing the
Exact-and Numerical Solutions.




-31- June 7, 1978
MWN:1lcl

and,

S*% = 4 btk + 1 . VIII-3
Equation VIII-3 is the Stefan solution in terms of S* and t*, the
pertinent variables in the numerical solution. Similarly, Equation V-1

becomes,

erf L x ]
¥ 2/t*% + 1/4b2
0 = orf (b) VIII-4

Equation VIII-4 was used to generate the initial temperature profile
for the finite difference solution. For convenience the constant b was
set equal to 1/2 so that Equation VIT-3 reduces to

Sk = Jex + 1, VIII-5
with St = 0.5923 from Equation VIII-1.

The results of this comparison are shown in Figure 5 in which the
data points were plotted from the finite difference solution and the
continuous curve is plotted from Equation VITI-S,

The discrepency between the two solutions is so small that it
cannot be easily seen from Figure 5. In actuallity, the error in the
finite difference results, in the range of time shown, is less than
1/10 of one percent based upon the "exact" results of Equation VIII-5.
The same curve was extended to a t* value of 10,000 to ascertain the
effect of large values of S* (large increments between temperature
nodes) on the accuracy of the solution. At t* = 10,000, at which time
the solid thickness is 100 time its original thickness, the relative
error in the numerical solution is still only about 1/20th of one per-
cent. From the results of this comparison it would seem safe to assume
that the solution technique outlined in this paper does provide results

which are highly reliable.
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Figure 6 is a series of plots parametric in Stefan number verifying
the effect of very small values of St on the solution for S* (see part
VI). For small values of St the temperature profile in the solid layer
is virtually linear and the interface position is predicted quite well
by Equation VI-9 denoted by the data points in Figure 6. However, as
the Stefan number is raised, the heat capacity in the solid becomes
more and more important and at St values approaching unity the predic-
tions of equation VI-9, derived under the assumption of a linear profile,
become poor approximations at best.

Also note that in each curve in Figure 6, Equation VI-9 over-
predicts the magnitude of the interface velocity. The reason for this

is easily shown by the dimensional form of the energy equation,

d

o T
8!: - IV-l

1
.
For growing solid layers, such as the ones in Figure 6, the right hand
side of Equation IV-1 is always negative, indicating that the temperature
profile is everywhere concave down, see Figure 7. The slope of the
linear profile is seen to be greater than that of the actual profile
at the interface, and therefore substitution of the linear relation
VI-6 into condition IV-le,

T - g w o35 i
ay q, oldt 5 IV-le

k
y=S

will result in interface velocities in excess of those given by the
finite difference solution. This qualitative result coincides with
the results of Figure 6. Another very important point concerns the
value of q*, the heat flux parameter, used in the construction of the
curves in Figure 6. If the value of q* had been chosen close to unity

very poor correlation would have resulted regardless of the value of
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Stefan number used. The relationship between St and Fourier modulus
cited in part VI has no meaning unless convection effects at the inter-
face are sufficiently small. This important detail is implicit in the
development of Equation VI-5, (see Reference (15)) and has been over-
looked by at least one author (Reference (5) ).

Figures 8 through 11 were included in this section in order to
give some indication of how the solid layer would behave when subjected
to simple step changes in wall temperature or heat flux. One obvious
conclusion to be made here is that for a melting layer, Figures 8
and 9, an increase in heat flux at the interface is much more effective
in causing a response than an increase in wall temperature (for the
same final value of S*). This effect becomes more and more pronounced
as heat flux is increased and St is decreased.

In figure 11, the solid layer is growing (solidification) and the
convective heat flux, q*, is seen to have a substantial effect on the
time required to reach steady state conditions. As the heat flux is
diminished the cur;es approach the characteristic "square root" shape
as in Figure 5. The general tendency in all the curves is toward short
response times when the heat flux is large and the Stefan number is small.
Figure 12 was included to show the variation in solid thickness for an
arbitrary step-wise variation in convective heat flux which might occur
during a load change in a device like the boiler-reactor referred to
in Part I. In this particular case the wall temperature remained
constant at the initial value but it could have just as easily becn a
step or continuously varying function of time. Figure 12 is there-
fore an illustration of the generallity of the solution technique

developed in Part VII.
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Figure 9 - Constant Wall Temperature, Heat Flux Stepped Up.
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Figure 10 - Constant Heat Flux, Wall Temperature Stepped Down.
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Figure 11 - Constant Wall Temperature, Heat Flux Stepped Down.
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In conclusion, the results presented here show relatively con-
clusively that the analysis developed in this paper for dealing with
phase change-moving boundary type problems is capable of providing re-
liable, accurate data. This statement only holds true if the simplifying
assumptions set forth in Part III can be applied to the physical problem
without an excessive loss in realism. Probably the most conclusive way
to show that the simplifying assumptions do not oversimplify the actual
problem is by direct experiment. Such an experiment is at present in
the developing stages and should eventually provide data to directly

verify the analysis carried out here.
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APPENDIX
Dif ference Approximations
Equation VII-5:
o A r r r * r i
T WL G " W oF-17 + 2o ds* Onr1 "0 1
At* Ay** S, dt* "'n S*r dt* 20y*
Equation VII-5e:
r r r
- +
o Bz~ Mg T e gt et
t Ly* % = qex AL*

In the above difference formulae 'r'" denotes the rth time step,

"n" the nth nodal point, and "N" the interface node.

)
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