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ABSTRACT

The following report provides a brief outline and description of

~he steps taken in formulating a simple mathematical model for the
analysis of heat transfer in a pure substance undergoing a change in
phase (solid to liquid or vice—versa). The problem is approached from
the differential point of view and eventually the governing equations
are solved by a finite difference technique. The results show fairly
conclusively that the present method of analysis is capable of predicting
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NOMENCLATURE

Dimensional Quantities:

Symbol Description

B tu
c heat capacity — 

lbm— °F

d characteristic length — ft

h convective conductance — 

hr_ft Z_ OF

B tu
k thermal conductivity — 

hr—ft— °F

Btuheat of fusion — —

ibm

L characteristic length — ft

q~ convective heat flux —

S solid layer thickness — ft

S solid layer thickness at zero time — f t
0

T temperature —

Tm melting temperature —

freestream temperature —

t time — hr

x position coordinate measured parallel to the
solid wall — ft

y position coordinate measured perpendicular to
the solid wall — ft

thermal diffusivity —

ibm
p mass density —

I time coordinate for Stefan soiLtion — hr



—5— June 7, 1978
MWN :l cl

Nondimensional Quantities:

Symbol Description

b numerical constant

Fo Fourier modulus

n nodal point index

N denotes interface node

q* dimensionless heat flux

q~ dimensionless heat flux for t<O

S* dimensionless solid thickness

St Stefan number

St . Stefan number for t<O
1

t* dimensionless time

symbol denoting small magnitude

1 similarity parameter

0 dimensionless temperature
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I. INTRODUCTION

The study presented in this paper was initiated in o r i r  to ~~ in

a better understanding of the phenomina occurring in a t~ .’o-- p l . i ;o ( s o l i d -

liquid) system under transient temperature conditions. Tin ’ ~e n ’ r i 1  p h . i s ’

change problem considered here is one of great practical inte r o~;t in l h f ’

areas of nuclear reactor safety, the solidification of t otal c i t  ings ,

cryogenics, etc.. Due to the mutual presence of two phases , this pr H I - n

defies solution by techniques commonly employed i n  p r o h l nns of (onduct m u

heat transfer because the region in which the solut i n  i s s n i ~ i it i s

continuously changing with time.

The immediate application of the p re s cu i t  . i u u ; u l y si s  olu r u u s  t i c

prediction of the behavior of the solid product layer a d j i c i n t  t o t ime

tube walls (heated side) in a Rankine c y c l e  stoats b o i l o r- li qu i d ‘i - u

reactor . The amount and rate of depos i t ion  solid product is ;o ir , i m t

as a function of time . The fundamental got 1 or h ji ’c i i vo  i n  L i i i ’ ;  . s t i u I v

then , is to formulate a simp lified m a t h e m , i t i c ;u l  ttiotli’ l wh i ch u i ,  be i d

to predict the rate of solidification or m e l t i n g  i n  .u t w o — p u t s ’  sy s t e m

such as the one descr ibed above fo r a g i v e n  s ot  of m i t  i d  and bo u nda ry

conditions.

The basic proble m of heat t ransfer  w i t h  ; i u m  c h u o u g o  i i i ;  ivolded

general solution for  a long time . The an. lv t i c il d i l l  i i u l t i e s  encountered

can be mainly a t t ributed to the nonlinear c i u , I r : I c t o r  i l l  t h e  governing

di f f e ren t i a l  equations . Nunierous p a r t i c u i u r  Hut i n t o  have been presented

in the literature (see for example, Carsl .tw m d  Jaeger (1), J. Stefa n (2 ) ,

and 1. C. Portnov (3) ). However, in genI’ r.f  I , the application of these

so lu t i o ns is limited to systems wi th  spo L i i  boundary conditions of the

type which are seldom encountered in r e a l — w o r l d  melting and solidification

- .- - S - - -- - - _ _ _ _ _ _ _ _ _ _ _ _ _
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; ;“norut ’n:l. ‘. :::;crous approximate methods have also been suggested in—

-: itiona l techniques and integral methods similar to those

d ’ -. ’~~~~’d by Th. von Karman for the calculation of two—dimensional

t.i :uinar and turbulent boundary layers in fluid dynamics. The accuracy

of these approximate methods is in general a function of the immediate

problem but they are nevertheless very powerful . Relatively accurate

results can be secured with these methods with the additional benefit

that the mathematical complexity is significantly reduced in comparison

to the more general solution techniques. The various methods of solu-

tion will be elaborated upon later on in this paper. S

The brief discussion of solution methods given above already implies

that in order to obtain results for the general melting and solidification

problem numerical techniques must be used. Therefore, the major effort

in this study will be toward the development of a finite difference approx-

imation for the governing differential equations. The resulting difference

equabions will be solved numerically by digital computer. The results

will be presented in dimensionless form so that the effects of the - 
S

various parameters can be more easily interpreted . An integral type

analysis is being developed at this time which posseses some favorable

characteristics even when compared to the full finite difference method ,

however, the details of the integral method will not be discussed

here.

II. Statement of the Problem

Figure 1 shows a two—phase system of solid and liquid in which the

solid layer is bounded on one side by a rigid wall and on the other side

by the liquid phase. The symbols in Figure 1 have the following meanings .

- - -

~ 

~~~~~ --~~~~~ - -~~~~~~~~~~~~~~~~
, . -~~~~~~~~~~~~ -~~~~~~~~~~~~ --- - - - - - -
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(LIQUID) q~ = h(T~~~T~ ) 
INTER FACE

-L
I

~~

I (y, t)
y S

(SO LID LAYER)

(WALL) \
T = T w

Figure 1 — Sketch Illustrating the Basic Arrangement of
Solid Layer, Rigid Wall, and Liquid Freestream.
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h — local convective conductance based upon T , the liquid freestream
temperature

q” — local convective heat flux at the solid-liquid interface

S — solid layer thickness

T — temperature in the solid layer

Tm 
— equilibrium fusion temperature of the substance

T — local wall temperature
w

t — time coordinate measured from some convenient origin

x — position coordinate measured parallel to the rigid wall

y — position coordinate measured perpendicular to the wall

The wall is assumed to be either a plane wall or one in which the

local radius of curvature is large with respect to the local solid layer

thickness , S. This assumption is made because in the present study a

Cartesian coordinate system is used , but the same basic type of analysis

and procedure co.ild be applied in either cylindrical or spherical coordi-

nate systems. At the solid—liquid interface , (y=S), the solid surface

i; subject to the convective heat flux from the warmer liquid which is

of course a function of the local convective conductance , h, and the

freestream temperature , T .  At the wall, (y 0), the layer is in direct

contact with the solid wall which is assumed always to be at some temper-

ature less than the fusion temperature , hence some solid is always present.

The assump tion of direct contact between solid and wall implies the ab-

sence of any contact resistance anJ therefore the temperature of the

sol id at y=O is equal to the wall temperature. It is important to note

that in this analysis no assumptions will be made regarding the form of

the t ime variation of the wall temperature , 
~~~ 

and thr convective

heat flux , q”. On the other hand both T and q” must be known as
C W c
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functions of tine before the problem solution can begin. Specification

of the heat flux at the interface implis chat the fluid dynamical problem

for the region y-S is independent of the solid layer thickness. This

can usually be justified as a reasonable assumption in external flow

situations when S is small , but for internal flows the variation in

solid th ickness may have a significant effect on the fluid flow itself.

In such a case the equations governing the flow in the region y~’S are

coupled at the solid—liquid interface to the equations governing the

solid layer thickness. A more complete d iscussion of the assumptions

made in this analysis is given immediately below .

III. Basic Assumptions in Model Formulation

The following simplifying assumptions will apply throughout the

remainder of this paper .

1. Heat transfer within the solid layer is primarily one—dimens ional

and in a direction normal to the solid wall. This assumption is

comple tely justified when the solid layer thickness , S. is rela—

t ively small with respec t to other characteristic dimensions of

the problem. The validity of this assumption for thin solid

layers is justified by th e following order of magnitude analysis.

Consider the two—diinensicnal , trans ient heat conduction equation ,

1 ~ T YT 
+ 

;j2T 
, ii ~ —1

~L - i t  ‘ty X

where ~ is the thermal  d i f f u s i v i t y  of the solid . Introduce the

two characteristic length scales d and L where d is the scale

factor for the coord inate measured perpend icular to the wall ,

y. Fo r d t o  be a c h a r a c ter i s t i c  l eng th  in the t ransverse  d i r e c t i o n

it must be of the same order of magnitude as the solid layer
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L dckness, S. Thus,

d ~ 0(S).

L is the scale corresponding to the coordinate measured parallel

to the wall , x. The two—dimensio nal energy equation is nondi men—

sionalized with the length scales d and L and the fusion temperature ,

T
in’ 

yielding .

3 T T  d 2 ~~~ T

~~ 
5v?z + (j ) -

~~~~~~~ 
111-2

where,

TT _
T
m

Y -~~d ’

X .~~ , and,

- tcL

The scaling factors d , L, and T
m 
were chosen so that Y, X , and T

are all of unity order .

Y = ~~~ -~ O ( l )

X = - 0( 1)

T 
~~

‘ - 0( 1)

If the solid layer thickness is small in comparison to its exten-

sion in the x di rect ion then ,

— 0(s) ,  where S< < 1.

The r igh t hand side of the energy equation 111—2 becomes ,

symbolically,

+ d 2 ~fT 1 2 1
~~~~~ ~ 

— 12 + ‘S ~~~‘ — 1 + ‘S
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The re fo re  approximately,

aT
= ‘~j~72 

11—3

and the one dimensional assumption is seen to be justified for thin

solid layers. Note, however, that the above argument breaks down

near edges or discontinuities in the wall because the assumption

1

is no longer justified in these regions.

2. The wail temperature, T , and the convective heat flux at

the interface, q”, are not dependent upon the solid layer thickness.

The equation governing the temperature distribution in the solid

layer is therefore uncoupled from the energy equation governing

the wall tempe rature and the equations of f luid dynamics governing

the liquid flow.

3. The material under consideration is a pure substance. The

complexities which arise due to phase change temperature ranges

and solid state phase transformations in multicomponent systems

are not considered here. With respect to alloy systems, for  example ,

Friedman (4) has approached the phase change problem successfully

with a finite element technique , however, the present analysis will

apply only to pure substances, homogenious in the solid phase.

4. All solid properties are temperature independent. This

assumption will not severely affec t the accuracy of the results

in problems where temperature differences in the solid are not

ext reme , i .e. fo r cases in which there is a moderate degree of

subcooling .
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5. Thermodynamic equilibrium exists at the solid—liquid inter-

face , in other words, the in terface temperature is assumed equal

to the fusion temperature at all times.

IV. Mathematical Formulation

For the assumptions stated above the temperature distribution in

the solid layer is governed by the following equa t ion ,

0< y < S .  IV—l

The boundary conditions are obtained directly from Figure 1.

Ini tially,

T = T(y) , TV—la
t = 0:

S = S  . IV—lb
0

A t the wall ,

y 0 :  T = T  . IV—lc
w

At the solid—liquid in terface ,

y = S :  T = T  . TV-id
m

One other condition must be specified at the interface. This condition

rela tes the energy fluxes at y = S to the rate of latent heat evolution

due to phase change. In words: The rate of energy transport by con-

vection to the in terface f rom the f lowing liquid plus the rate at which

energy is evolved due to the la ten t  heat of phase change is equal to the

ra te  of energy t ransport away f rom the in te r face  and into the solid

layer by conduction , or ,

a t y = S : ~~~~~~~~~~~~~~~~ . IV— Ie
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The symbols in equations IV—l have the following meanings:

— thermal d i f f u s i v i t y  of the solid

p — mass density of the solid

c — heat capacity of the solid

k — thermal conductivity of the solid

— la ten t hea t of phase change

Equations tV—i completely define the present problem mathematically.

No general solution exists at this time for the system , TV—i.

The major difficulty ~wi th respect to analy tical trea tmen t arises from

the interface boundary condition, IV—le , as shown below.

In general, the temperature in the solid layer is both a function

of position and time , th us ,

T = T[y,t]

and

dT = F dy + ~~
-

‘

~
‘ dt.

at y = 5, T = T , and

d T = ~~~~ dY +-}~~d t = O

Upon rearrangement this becomes ,

aT
4y_ 

~~~~~~~~~~~~~~~~~~~~~

dt y=S ~T dt
ay y=S

Substituting this result into condition IV—le results in,

aT

k -~-~- 1  q~ — pg

y=S
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The interface boundary condition, IV—le, is therefore nonlinear and it

is this nonlinearity which causes analytical difficulty.

V. Methods of Analysis

As mentioned earlier , exact analytical solutions are available for

phase change problems only of the most fundamental variety. These par-

ticular solutions apply only for special forms of conditions IV—la , b,

c, and e. Consider , for example, the classical Stefan solution. This

closed form solution applies to a semi—infinite region which in itially

consists of a single phase (liquid) at the fusion temperature. At zero

time the boundary temperature, T is stepped down to some lower temper-

ature thus initiating formation of the solid phase. The boundary

temperature remains constant thereafter. In this instance the liquid

phase is spatially isothermal at the fusion temperature and condition

IV—le simplifies to,

k-~~ -— = p i ~~ -~~ .a y y S  dt

With this simplification and the assumption of constant wall temperature

a similarity solution is possible with ,

r i = (similarity variable).
2/ ~~~

When this relation is substituted into system TV—i an ordinary dif-

ferential equation results which can be integrated to yield the tem-

perature distribution in the solid and the interface position,

erf ~~
2’ ;;tt

T - T  = (T - T )  , V-i
w m w erf(b)

S = 2b~’ t , V—2
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where the constant , b, is given by,

b2 c(Tm — Tw)
be erf(b) = 

— . V—3
it

Obviously, the prac tical applica tion of this solu tion is severely

limited by the restrictive boundary conditions which were imposed

in order to y ield the closed form solution, V—i.

In contrast to the Stefan solution , I. C. Portnov (3) obtained

a series solution to a slightly more general problem by Laplace trans-

form methods. However , according to the paper of K. Stephan (5) the

evaluation of even the first few coefficients in the series is very

cumbersome.

In order to relax the restrictions imposed by an analytical solution ,

many investigations have employed approximate solution techniques , the

most popular of which are the integral analyses. A brief description

of the integral method is given below, however , a much more comple te

account may be found in Schlicting (6) and in özisik (7).

The basic procedure used in most integral analyses in heat transfer

and fluid dynamics is to first approximate the unknown tempera ture or

velocity profile by some functional relationship, the form of which is

chosen in order to satisf y the bou ndary conditions for  the given problem .

The governing equation (equation of motion or energy) is then integrated ,

using the approximate profile, with respect to one of the spatial

variables. The resulting ordinary differential equation is then in

terms of the second independen t variable and may be solved b y standard

methods. The overall e f fec t  of the integral method then is the same as

the e f f e c t  of the s imilari ty transformation in tha t the original partial

d i f f e r e n t i a l  equation is reduced to an ordinary d i f f e r en t i a l  equation.
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In contrast to the similarity solutions the integral solution can only

be an approximation because the assum ed profi le  sat isfies the origina l

governing equation onl y at certain specific points within the given

region , at the boundaries for example. It follows then, that the greater

the number of boundary conditions satisfied by the assumed profi le  the

more accurate the resulting integral solution. In many cases there is

a choice as to which boundary conditions are to be used in developing

the appro ximate profi le .  In this case the conditions should be chosen

fo r the boundaries which are the most critical in a given situation so

that the assumed profi le  will be especially accurate in these regions .

In the phase change problem , for example , it is imperative tha t the

interface heat balance condition , IV—le , be used informing the approx-

imate profile. Integral techniques have been successfully applied to

melting and solidification problems by T. R. Goodman (8), P. A. Libby

and S. Chen (9), J. M. Savino and R. Siegel (10), and K. Stephan (5).

All of the studies mentioned here report results which are usually

well within the limits of accuracy normally required for engineering

purposes. For instance , Stephan reports integral results which are

in error by less than 2.5 percent when compared to presumably exact

numerical solutions. Despite these promising results the applica-

bility of integral techn iques has thus far not been justified in more

general phase change problems where the temperature profile within

the solid may not be approximated well by a simple polynomial. Such

situations may arise when the wall temperature and/or the heat flux

are varied in an irregular manner . The integral technique is a

powerful method of solution when app lied to phase change problems but ,

more work must be done in order to establish the limitations involved

- - ---— ~~~~~~~~~~~~~~~~~~~~~
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when using this type of approximate analysis.

Another approximate method which has been used successfully in phase

change investigations Involves the variational technique developed by

Blot (11). This method was applied to the case of constant wall temp-

erature solidification by C. Lapadula and W. K. Mueller (12). The re-

sults of their work are comparable in accuracy to the integral method

used by Libby and Chen with the additional benefit that the solution is

available in closed form. On the whole, however , variational techniques

are not nearly as popular as integral methods and integral techniques

therefore are responsible for the bulk of the approximate solutions.

The third major category of solution methods are the finite

difference techniques. The principal advantage of numerical solution

is, of cours~’, the inherent immunity of these methods to nonlinearities,

time varying boundary conditions, etc.. But even finite difference

methods are adversely affected by the moving boundary characteristic

of all phase change phenomina. In fixed nodal arrangements, the solid—

liquid interface must move toward , reach, and pass—by each stationary

tempPrature node so that when the interface is located between two

nodes its exact position Is unknown and therefore it must be located

approximately by Interpolation. A continuous account of the fusion

front travel becomes then somewhat of a problem. The difference

equations and interpolation formulae can become very complex, especially

when solution In two space dimensions is considered , for example , see

Springer and Olson (13). A unique nodal scheme for one—dimensional

problems which eliminates the need for Interpolation and yields a

continuous , accurate account of the fusion front motion was suggested

by Murray and Landis (14). Tn this nodal arrangement , the nodal mesh

S .  - - _ _ _ _ _ _
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changes continuously with fusion front travel so that the interface

position is always coincident with a temperature node, thus there is

no need for interpolation and the difference formulae are simplified

considerably.

Numerical techniques provide a means of obtaining an accurate

solution to the phase change problem outlined in Part II for realistic

boundary conditions. Because it is a primary aim of this study to pre-

sent a method of solution which is of a general nature, numerical methods

will be applied here, namely, a finite difference technique similar to

that used by Murray and Landis.

VI. Nondimenslonaiization and Asymptotic Solution

The following dimensionless groups are defined :

y* = , dimensionless space coordinate,

= - , dimensionless time coordinate (Fourier Modulus),
So

o = 
T — T

~ , dimensionless temperature,
Tm~~Tsj

dimensionless solid layer thickness ,

where denotes the solid layer thickness at zero time, t t~ 0.

Substituting these dimensionless variables into equations TV— I results

in the following nondimenslonal system.

~~o i. dS t
ay *2 

= 
~~~ [0—l i  + -~~~~~~ . VI—l

~ 
0 = O(y *), VT—la

~ S* 1. V t—lb
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y * = 0: 0 0. V t—ic

0 1, V t — I d

y* = S*:
dS*S~ -

~~
—

~~ 
— q * = ~~~~~~~~ . VI—le

The new parameters resulting from the nondimensionalization are

defined as,

~~~ 
S0q* = , di.mensionless hea t f lux ,9. p c t

s~ = ~~~~~~~~~~ 
T~~ , Stefan number .

Both q* and St 
are assumed to be time dependent in the general case.

The steady state thickness is obtained from equations VT—i as

follows. Under steady state conditions VT—i reduces to,

a2 o— = 0. V I —2a y *2

Using VI—Ic and Vt—id in VI—2 ,

8 = (linear profile). VI—3

Substituting VI—3 into the interface boundary condition VI—le results in,

Stss * or ,
58

S
* tss

— 

q* ‘

ss

whe r e q * , S , and S* are the values of q*, S~, and S* respectively 
S

under steady state conditions. When dimensional quantities are reintro—

duced , equation VI—4 is seen to be merely a statement of the equality

of heat flux by conduction through the solid layer to the rate at

which energy is convected to the interface from the liquid ,

(q ”) k(T~5— T~ )
55

S -~~~
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P robably one of the most important  results  of the normalization

of equatio ns tV—I is the appearance of the parameter , 5~ (te rmed

“Stefan number”). The physical interpretation usually associated

with S~ is obtained directly from the definition ,

= 
c(Tm—Tw) sensible heat

t 9. 
— latent heat

Thus, the Stefan number is often interpreted as a measure of the relative

effects of sensible and latent heat in the solid layer. It is shown

by Lock (15) that in cases for which convection effects are small at

the interface ,

F (Fourier Modulus).
t 

0

Therefore small values of St imply large values of F , which in turn

implies the approach toward steady state conditions within the solid

layer (recall that a large Fourier modulus indicates that heat capa-

city effects are small with respect to heat conduction effects). To

further illustrate the physical significance of this parameter , con-

sider the case in which the Stefan number assumes a very small value,

indicating small heat capacity effects in the solid , i.e.

S <<1 , and F >> l
t 0

If convection effects are also small and the wall temperature is con-

stant , then, Vt—I reduces approximately to,

-
~~--~~

— ~~O . VT-S
2

Thus , the temperature  p ro f i l e  must be approximatel y linear ,

VI—6 

- - _ _  ---
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Using this result in condition VI—le yields ,

* VI-
dt* s* q

Equation VI—7 is an expression for S~ as a function of t* in the case

of constant wall temperature and very small Stefan number. Assuming

fu r the r  a constant value of heat f lux (q * cons tant )  and in te rc hanging

independent and dependent variables results in,

S*
~~~~~~~ I _

~s _
I S — q ~~

F1 t

where ‘
~ denotes a dummy variable of integration.

Integrating VI—8 ,

1_s* St St= —~~--- + —
~j- 

I — 

VI—9

Equation VI—9 is a closed form expression for S* as an implicit function

of t* for the limiting case of S
t 
‘0. Th is solution Is of practical

interest because in many cases S is indeed very small and VI— 9 c-in

then be expected to i. ive totally satisfactory results. Ice is one

substance for which equation VI—9 often applies , for  ice , ~/c 288°F.

VII. Finite Difference Solution

In Figure 2 the N temperature nodes are spaced evenly throughout

the solid layer with the 1st and Nth nodes located at the wail and at

the solid—li quid interface respectively. In order to maintain this

config ura t ion as the Interface moves, each temperature node (excepting

the first) must have a non—zero velocity with respec t to the wall at

y O .  The pr incipal purpose for introducing the nodal mesh, of course,

is to allow the 4pproximation of equa t ions V I—t by finite difference
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(LIQUID) INTER FACE

• n = N-i
o n = N - 2

(SOL ID LAYER ) S . = .1.

0 f l = 3
• n = 2

(WALL )

Figure 2 — Variable Nodal System.
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formulae. Vith the above moving nodal arrangement , however , the time

derivative , as it appears in equation VI—l , cannot be written in dif-

ference form for the reasons outlined below.

Writ ing the time derivative in the more explicit form ,

— fd o  ) DO
at* t dt* j

y* = constant

emphasizes the important fundamental difference between the partial

time deriva tive at a fixed point in space and the total time deriva-

tive of a moving point or particle. In order to express equation Vt—i

in difference form, it must be written in terms of the ~otal time

deriva tive, , which is easily approximated by the nodal system in Figure 2.

Consider 0 to be a function of y* and t*,

0 = S[y*, t*]

d 0 4
~~ 

dt*+~~~~ dy*

= 
p_
~
_ 

- ~~~ ÷ 4~dt* Dt* 
— 

t~ dt* ~)y*

or ,

VII-’at* Dt* dt* ~jy *

Substituting into equation VI—1 results in,

= — 

~~ 

[8-1] + -
~
-
~~ 

. VII -2

Equat ion VtI—2 is the one—dimensional , transient , heat conduct ion

equa t ion in a form applicable to poin ts mov ing in the solid layer w ith

velocity, . The velocity of the nth node is related to the inter-

face veloc it y by the followi ng relationship,

= ~~~~~~~~ VtI-3
dt * S* dt*

n
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in which y* denotes the position of the nth node. Substituting VII—3
n

into VII—2 and rewriting VII—2 for the nth nodal point yields.

D0~ ~
2o dS~ 0 ~ + VtI—4= 

~~~~~~~~ 

— 

~~ ~ S * d t * y *

Equation VII—4 is substituted for equation VI— 1 in the original set

of non—dimensional equations which are now rewritten in a form

applicable to the variable difference mesh in Figure 2.

= ~~~—~~- - i— ~~~~~~~ [0 -1] + ~~~ ~~~~~~~~ 
-
~-~

-- . V It-S
Dt* ay*2 S dt* - n 5* dt* a7*

n n

= 0(y*) , VtI—5a

= 0:
= 1. Vu — Sb

y* = y~ =0 : 0 = 01 0. VII—5c

1
0 = 0N ~~~~~ 

VIt—5d

= y
~ 

= S*: 

~~~~ ~~~~~~~~ 
— q* = . VIt-5e

N 
dt*

In the numerical solution of equations VII—5 all space derivatives

were approx imated with 3—point central difference formulas with the

exception of the gradient in the interface equation which was approxi-

ma ted with  a 3—point backward formula . The 3—point formula  was chosen

in favor of the simpler 2—po int formula at the interface in order to

minimize truncation error in this critical region. Both time deriva-

tives of temperature and solid thickness were approximated by 2—point

forward formulas. The detailed difference equations are listed in

the appendix.

The explici t form of the difference equations simp l i f i e s  the

numerical solution of system VtI— 5 considerably,  however , in an
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explicit solution scheme the question of stability must be considered .

Accord ing to d z i s i k  (7)  the re  is no genera l  c r i t e r I o n  fo r  d e t e r m i n i n g

the  s t a b i l i t y  l i m i t s  fo r  non l inea r  problems . Tn most cases the s t a b i l i t y

bounds are determined by numerical experiment. For the present study,

however , a somewhat d i f f e r e n t  approach was taken. First , i t  was assumed

that  the general stability criterion for linear , parabolic , partial dif-

ferentia l equations holds approximately in the nonlinear case (see Ames

(16) ). Then as a second check on the stability of the solution a pre-

dic tion—correction scheme was used. The corrector was applied to S* at

a given time step until successive corrections differed by less than

some predetermined amount , or , if after four corrections the above step

size control criterion still had not been satisfied the step size was

halved and that iteration repeated . In this way a check on the stability

and on the accuracy of the solution was achieved in one step. Both

accuracy and stability are assured by the above procedure because in

most cases accuracy strongly imp lies stability. A solution being

carried out near the stability bound will exhibit a stable but slightly S

i rr egular  behavior  in advance of the poin t where the numerica l al gor-

ithm becomes truly unstable. The above step size control procedure

then , effectivel y detects impending instability by the slightly erratic

behavior of the solution which immediately precedes it. This procedure

has been used to ob ta in  nume r ica l  r e su l t s  for  a wide va r i e ty  of in i t ia l

and bo undary  cond i ti ons (Including those in Part VIII) and to date no

stability problems have been encountered .

VIII . Results and_Conc lus ions

The numeric al results in this section have been included to

ver i f y the va l idity and accuracy of the finite difference technique
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developed in Part VII and to al low some basic observations to be made

regarding the general behavior of the physical system outlined in Part II.

All curves were obtained with the moving nodal point network shown

in Figure 2 using a total of ten temperature nodes (eight internal nodes).

This mesh size was found to yield accurate results without an excessive

amount of computational e f f o r t .  For s implici ty,  each of the curves

calculated (except for Figure 5) beg ins wi th a solid layer ini tially

at steady state, i.e.,

dS* *for  

* 

t~ < 0, s* = 1, -
~

-
~~~ = 0, and =

where S and q. denote the values of Stefan number and dimensionless
t i  1

heat flux respectively for times less than zero . At t*  = 0 , ei ther

S~ or q*, or both change from their initial value to some other value

which may or may not remain constant with time, depend ing on the

specified boundary conditions for the immndiate problem.

The numer ical solution can be compared to the exact analy tical

solution of Stefan for the special case of q* = 0. This is a trivial

example but it nevertheless provides an excellent means of checking on

the performance of the finite difference calculation. It will be re-

called that for the case of zero solid thickness initially and liquid

at the fusion temperature the temperature distribution in the solid

and the interface position at any time are given by equation V—l and

V—2 respec t ive ly .
erf

T — T  = ( T - T )  2 v ’~~~ V-I
w m w e r f ( b )

S = 2 b /~~~~, V—2

where the constant b , is determined from ,

1,
2 
e1’ erf(b) = ~t.— yin -I
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The initial condition for the Stefan problem is unfortunatel y inconsis—

tant  w i t h  the requirement  of the  f i n i t e  difference model that the solid

layer always have a f i n i t e  thickness. The difference in initial cond i—

S t ions is i l l u s t r a t ed  in Figures 3a , and 3b.

This discrepancy was accounted for  in the numerical comparison by

allowing the S te fan  solution to proceed un t i l  the  solid layer thickness ,

S , calcula ted by Equation V—2 was S in magnitude at which t ime the

numer ical solut ion was begun using the exact temperature profile given

by Equation V—i as ar~ initial temperature distribution. The procedure

is shown schematically in Figure 4.

In Figure 4, r is the time coordinate corresponding to the Stefan

solu tion , T0 is the time required for the solid to build—up to a thick-

ness S as given by Equation V—2 , and t is the time coordinate for the

f inite dif fe rence  calcula tion , the origin of which coincides with T T~ .

From Figure 4,

T = t + t~ ,

so tha t equation V—2 becomes

S = 2b/ri (t+~0) . V11I 2

However , by de f in i t ion ,

S = 2b VT~~~0

thus ,

a
T0

Substituting this into Equation VIII—2

S 2
2 ~ - ,  0S — 4h ~~t+— ,

4b ~

S 2 2~~ Lt
(~~~ 

) = 4b ~~~ 
+ 1

S
0 0
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LIQUID , Tm

LIQUID , (SOLID) S0

\\ \~‘% \\\~\
(WALL ) (WALL)

(a) (b)

Figure 3 — Initial Condition for Initial Condition
the Stefan Solution, Specified in Part IV ,
No Solid Layer. S=S

0 
at t=0.
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• I 
~~ NUMER ICAL

S = 2bTh~ SOLUT ION BEG INS(S TEFAN ) HERE
S

To
(time) t = O , ORIGIN OF TIME FOR

FIN ITE DIFFERENCE
CALCULAT ION

Figure 4 — Illustration of Method for Comparing the
Exac t -and  Numerical Solutions .
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and ,

= 4 b 2t* + 1 . vt rr —3

Equation VIII—3 is the Stefan solution in terms of S* and t*, the

per tinent variables in the numerical solution. Similarly, Equation V—I

becomes ,

er f 
____________

2 v’t* + 
~~~~~~~~~~ VIII—4e r f ( b )

Equation VIII—4 was used to generate the initial temperature profile

for the finite difference solution . For convenience the constant b was

set equal to 1/2 so that Equation VI1i~3 reduces to

S*= ‘E~~i i  , VIII—5

with S
t 

= 0.5923 from Equation VItI—l .

The results of this comparison are shown in Figure 5 in which the

data points were plotted from the finite difference solution and the

continuous curve is plotted from Equation VIrt— ’5.

The discrepency between the two solutions is so small that it

cannot be easily seen from Figure 5. In actuallity , the error in the

finite difference results , in the range of t ime shown , is less than

1/10 of one percen t based upon the “exac t ’ results of Equation VIII—5.

The same curve was extended to a t* value of 10 ,000 to ascertain the

effec t of large values of S* (large increments between temperature

nodes) on the accuracy of the solution. At t~ 10,000, at which time

the solid thickness is 100 time its original thickness, the relative

error in the numerical solution is still only about 1/20th of one per-

cent. From the results of this comparison it would seem safe to assume

tha t the solu t ion techn ique outlined in this paper does provide results

which are highly reliable.
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I. I I I

9 — STEFAN SOLUTION
• NUMERICAL SOLUTION

q~~~O

S~ 0.5923

• 3 .

1 I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100

t
s -.ta

0

Figure 5 — Comparison of Exact (Stefan) and Numerical Solutions.
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Figure 6 is a series of plo ts param etric in Stefan number verif y ing

the effect of very small values of S~ on the solution ~or S* (see part

VI). For small values of S~ the tempera ture prof ile in the sol id layer

is virtually linear and the interface position is predicted quite well

by Equation VI—9 denoted by the data points in Figure 6. However , as

the Stefan number is raised , the heat capacity in the solid becomes

more and more important and at S~ values approaching unity the predic-

tions of equation VI—9 , derived under the assumption of a linear profile ,

become poor approximitions at best.

Also note that in each curve in Figure 6, Equation VI—9 over—

predicts the magnitude of the interface velocity. The reason for this

is easily shown by the dimensional form of the energy equation ,

~
2T 

— 1 ~T I V 1

For growing solid layers, such as the ones in Figure 6, the right hand

side of Equation IV—l is always negative, indicating that the temperature

profile is everywhere concave down , see Figure 7. The slope of the

linear profile is seen to be greater than that of the actual profile

at the interface , and the refore subs t i t u t i on  of the linear relation

VI— 6 into condition IV—l e ,

dSk —  — q  = o 2 ~— , IV—ledy  y=S c dt

will resul t  in i n t e r f a c e  veloci t ies  in excess of those given by the

finite difference solution. This qualitative result coincides with

the resu l ts of F igure  6. Another very important point concerns the

value of q*, the heat flux parameter , used in the construction of the

curves in Figurt. 6. If the value of q* had been chosen close to unity

very poor correlation would have resulted regardless of the value of
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20 I I I I I I I I I
— FIN ITE D IFFERENCE SOLUTION

• ASYMPTOTIC SOLUTION

~~~~~~~~~~~~~ •

10

S -ç

=

0

Figure 6 — Asymptotic Behavior for S~ —÷ 0.

• ~~~~~~~~~ - - e S -  - .~~ - - - - ~~~~~ _S- -— .  - 5 5 S • ~~~~~~ 

—~~~~~~~~~~~~~~~~~~~~~~ -~~~



—3 5— June 7 , 1978
MWN: 1 c 1

T = T m
ACTUAL SHAPE OF ~- 7~ ’ ~

IJ
PROFILE D UR ING ~~~~~~~ ày y = S

SOLID IF~CAT IOJ~V’,’

~s/
T / ,~~—.....

/,‘ LINEAR
/ / PROFILE

7/
/ /

T = T  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

y y = S

Figuic 7 — Comparison of Temperature Gradients  at
t he In ter face , Actual  Temperature
P ro f i l e  and Linear Approximation.

- - - S-- -S~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
~~~
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Stefan number used . The relationship between S~ and Fourier modulus

cited in part VI has no meaning unless convection effects at the inter-

face are sufficiently small. This important detail is implicit in the

development of Equation VI—5 , (see Reference (15)) and has been over-

looked by at least one author (Reference (5) ).

Figures 8 through ii were included in this section in order to

give some indication of how the solid layer would behave when subjected

to simple step changes in wail temperature or heat flux . One obvious

conclusion to be made here is that for a melting layer , Figures 8

and 9, an increase in heat flux at the interface is much more effective

in causing a response than an increase in wall temperature (for the

same final value of S*). This effect becomes more and more pronounced

as heat flux is increased and S is decreased .

In f i gure 11, the solid layer is growing (solidification) and the

convective heat flux , q*, is seen to have a substantial effect on the

time required to reach steady state conditions . As the heat flux is

diminished the curves approach the characteristic “square root” shape

as in Figure 5. The general tendency in all the curves is toward short

response times when the heat flux is large and the Stefan number is small.

Figure 12 was included to show the variation in solid thickness for an

arbitrary step—wise variation in convective heat flux which migh t occur

during a load change in a device like the boiler—reactor referred to

in Part I. In this particular case the wall temperature remained

constant at the initial value but it could have just as easily been a

step or continuously varying function of time . Figure 12 is there-

fore an illustration of the generallity of the solution technique

developed in Part VII.
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1.0 I I 1 I I

s =  _

0.2 ’  

I 
S

t• =
S~

Figu re 8 — Constant Heat Flux , Wall Temperature Stepped Up.
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0 2 6~~~~~
T
~~~

T 4
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Figure 9 — Constant Wall Temperature , h e a t Flu x Stepped Up.
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Figure 10 — Constant Heat Flux, Wall Temperature Stepped Down.
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Figure 11 — Constant Wall Temperature , Heat Flux Stepped Down.
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Figure 12 — Constant Wall Temperature , Step—Wise Heat Flux
Var ia t ion.
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In conclusion , the results presented here show relatively con-

clusively that the analysis developed in this paper for dealing with

phase change—moving boundary type problems is capable of prov iding re-

liable, accurate data. This statement only holds true if the simplif ying

assumptions set forth in Part III can be app lied to the physical problem

without an excessive loss in realism . Probably the mos t conclusive way

to show tha t the simplif ying assump t ions do no t oversimplif y the ac tual

problem is by direc t experiment. Such an experiment is at present in

the developing stages and should eventually provide data to directly

verify the analysis carried out here.
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• APPENDIX

D i f f e rence Approximations

Equation VII— 5 :

~~+l 
~~~~~~~~ 

— ~ n—l~~ ~n+l 2)r) 1 
dS
~ 9

r ~~ dS*~~
3n+l 3

n— l~- 

~y *2 - [ n~~~ 
+ 

S*r dt* 2A y*

Equation VtI— Se:

~~N — 2 
— 49

N—1 + 3~~~) d3* ~~
r+l 

— S*’
t 2A y* dt*

In the above difference formulae “r” denotes the rth time step,

“n” the nth nodal point , and “N ” the in te r face  node.
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