AD=A059 601 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF F/6 9/2 =
A REAL-TIME OPERATING SYSTEM FOR SINGLE BOARD COMPUTER BASED DI==ETC(U)
JUN 78 W NIEMANN

UNCLASSIFIED

AD..AO59601

FILE COPY;

NAVAL POSTGRADUATE SCHOOL

Wonterey, California

A

DOC

THESIS

@ ,} A RFAL-TIME QPERATING SYSTEM FOR ?,
’/\ SINGLE BOARD QOMPUTER PASED DISTRIBUTED
ey yAVAL ;ACTICAL BATA EYSTEMS e \

@"‘m@ﬁ:ﬁ;"/

\/[[LJun’éﬂQ?S / "..’,,.

Thesis Adwvisor: Professor U. R. Kodres

Approved for public release; distribution unlimited.

)
78 10 ¢

SECURITY CLASBIFPICATION OF THIS PAGE (When Date Bntered)

REPORT DOCUMENTATION PAGE BAFORE CONPL EToNG Pora
. REPSAY NUNBER Tr153?1ziiﬁiﬁ?=ﬂ't‘In5Fﬂivﬁ1ﬂ1%g%f%§==i="""

4. TITLE (and Sudtitle) §. TYPE OF REPOAY & PEROD COVERED
A Real-time Operating System for Single Board Master's Thesis; June 1978
Computer Based Distributed Naval Tactical Dat
Systems. / 6. PERFORMING ORG. REPORT NUMBER

LT Wolfgang Niemann

\ AW (] \ '
L] N NIZATION NAME AND A an WO RK UN“ NULBE RS

Naval Postgraduate School
Monterey, California 93940

1). CONTROLLING OFFPICE NAME AND ADDRESS : 2. ARPORT DATE —
Naval Postgraduate School June 1978
Monterey, California 93940 W "“";fg bl
¢ ng ee) .. “Eulﬁv CLASS. (a Nie ;n)

Naval Postgraduate School Unclassified

mnt‘“y, C.lifomia 93940 Wmmm—i

nEouLE
v N HMEN 0

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of ihe sbotvact entered In Blosk 20, If ditterent fem Report)

16, SUPPL EMENTARY NOTES

9. Kav WORDS (Continue on reveree olde Il necossary and ldentily by bloesk number)

Distributed computer systems, Single Board Computers, Naval Tactical
Data Systems, real-time operating system

WM-nmdﬁnmﬂ'Mb.MM
The microprocessor revolution has produced a capable computer on a

single printed circuit becard.

The design and development of a real-time operating system for a
distributed system of Single Board Computers is presented in this paper.

There are user manuals and program descriptions for the operating
system, a debug module, a CRT module and a line printer module,

The operating systems has been develdped for a Multibus system with

’ [. . 0 e .

DD 5% W73 coimon oF 1 nov 68 18 osoLETR

/8 0102-014- 4001 | . SRCURITY CLATIIFICATION OF THit PAGE (When Date Bnterew)

T

B N TSP
T AANFICA T @ Tuil Ba Nete Bnterad.

The system has been designed specifically for Naval Tactical Data
Systems applications and the feasibility of such applications are
evaluated with respect to currently available Single Board Computers and
with respect to Single Board Computers that should be available in the
near future.

SRION 17 s
ol Waite Section
NS patt Saection 0

W)

N NG \
) “\“\‘\"N

) Y CORS
7 1:&5&:.13“*.0“1'\“‘\‘\‘:\\\\\\“‘ oy

m——v

DD “ﬂna 1473
S/ l& %‘-M‘-“Ol g SRCUMTY CLASNPIEATION 0F THis Paet

-

Approved for public release; distribution unlimited.

A REAL-TIME OPERATING SYSTEM
FOR
SINGLE BOARD COMPUTER HBASED
DISTRIBUTED
NAVAL TACTICAL DATA SYSTEMS

by

wol fgang Niemann
Lieutenant, Federal German Navy

Submitted in partial fulfilliment of the
requirements for the deqree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1978

Author: w(}feﬁm /'V\Zm%__

..--cboooo-t

Aporoved by:? ak-‘ /2 C.o o{_, e

: / Thesis Advisor
éj2§44@/ o

TeYeeaeeGueaaew

Policy Sciences

Dean ot Information a

ol Sy

ABSTRACT

The microprocessor revolution has oroduced a capable

computer on a single printed circuit board.

The design and develooment of a real=time operating
system for a distributed system of Sinale Boaro Computers is

oresentea in this paper,

There are user manuals and oroQram descriptions tor the
operating system, a debuq module, a CRT module and a line

printer module.

The operating system has been developed tor a Multibus
system with three INTEL Single Board Computers S8C80/20-4

and 64K bytes of common memory.

The system has been desiqned specifically for Naval
Tactica) Data Systems aoplications and the feasibility of
such applications are evaluated with respect to currently
available Single Hoard Computers and with respect to Single

Board Computers that should be available in the near future.

s

b i sl seacid

Il

It

v

TABLE OF CONTENTS

lN'RODUc'xO"‘...'.....'.........O’........l...‘..

COMPUTING REQUIREMENTS FOR NAVAL TACTICAL DATA

svs'EMs.'..............‘...........‘l..l....‘l..

A COMPUTER SYSTEM USING SINGLE BOARD COMPUTERS..

A,
8.
C.
D.
E.

Feo

INTEL'S SINGLE BOARD COMPUTER SRC80/20%4.....
SYRTEN BONEEPAL iy iiiinic s vaionundis hsiinvs
SYSTEM BUS ORGANIZATION. s eeseessncenacscnsnss
MEMORY ORGANIZATION..eueevensenocnsanscnnannss
INPUT/QUTPUT FACILITIES ueeeeencesaancaonanns

IN'ERRUP’ stRUCrURE-oo.o.oo--oo.ococooooouoo.

A REAL-TIME OPERATING SYSTEM FOR SINGLE BOARD

COMPU‘ERs.........'.'...Q.'..'.........'.'......

A,
B.
C.

N.

E.

SYSTEM CONCEPT . eeevsevecossosccscscsncscsncnns
MODULAR STRUCTURE ceccscovscsccscssssssssssnns
FACILITIES OF THE OPERATING SYSTEM, i ceeeoccse
le Priority TaskSuicessccessscsscscscscsscons
2. Communication between ModuleS.cveesccccss
3. Time Depencent and Periodic TaskSeesesose
4. Background TaskS.ceeeccscssscscsncscscnncs
Se System CallS,ciccccscccscssceccsscssccnce
6. Real=time Clock and Count Down Clockeecsee
REAL=TIME EXECUTIVE.coevocecesscsscscnccsncnns

thERRUP' NANDL!NG.......'....'.‘.......b....

10
13
13
16
18
19
2l
22

ed
25
26
26
26
e7
28
29
29
29
30
3

G,

A,

A,

R — ——

A -

8
c
D -
E
F

F. SVS'EM MON!'OR'.'......'...........'.‘....... 32

SYS‘EM ‘N'EGR“‘ON.........I......‘..'....... 32

AVAILABLE USER MUODULES:ecasescsssecscsssssnscsces 34
CRYT MODULE.cesesnsscsnsssscscosssasscvscscncnene 34
B. LINE PRINTER MODULEcseseccoessesccnssssncceee 35
C. DEBUG MODULE.cceseosesescncvcccncscsascnnancne 30
CONCLUSIONS . ceeecascesscvsssssssssssssssnsssscca 36

“ARD"ARE DESIGN.‘..I............O.'.........l 37

1. Standardization and CoStesscecccccassccce 37
2. Expandability.cececscecsscccscsnseccanscces 37
3. Interface with Peripheral tquipment.csees 38
4., Maintenance and Reliabilityccesscscccaces 38
S. Physical RequirementS.ieccecescccccscases 38
6. System RedUNdANCY.ssesssescsssssccssssssss 39
OPERATING SYSTEM,ccieeecscsssccssncscssnnssanses 39
1. Naval Tactical Data System Reauirements.. 39
2. Software Development,Maintenance and
ExtensionS.cccccescnscssesscsssccscncnnsss 40
3. StandardiZatiONececscsssessssssscncsasens 40

a. s‘mu‘ation'.........".l..".'....l...... ul

APPENDICES:

Program Description for Operating System....., 42
User's Manual for Operating SysteMicccccseses 67
User's Manual for Debug FunctionS.sescssscaces 95
Program Description for Debug Modulesseseeeesl08
Proaram Description for CRT Module.ccseseaassld0

Program Description tor Line Printer Module..l149

TR T -y

e G = Program Li'tinqs.ti..ltt.l...."........'....‘oo

RS

Bt i

#

T ———

P

s

I« [INTRODUCTION

An examination ot currently installed Naval Tactical
Data Systems reveals that the heart of the system, the
computer, does not represent today's advancead technology.
Even in recently implemented svstems large 'space. weight,
power and maintenance cost consuming' second qeneration
computers are found., The use of second generation technoloqy
s caused by lenqthy lead times 1in systems acqQuisition,
system conversion and especially sottware conversion cost,
educational cost etc. However, in the aqe ot
microcomputers, which pnrovides features like low hardware
cost, high deqree of versatility and therefore a potential
for standardization, high reliability, low maintenancc.cost
and low power, space and weiqht consumption, it should be
the time to develoo new systems in order to make use of
these features which seem to be tailored specifically for

military applications.

The real=time operating system developed in this thesis
should be understooc as a step in the direction of making
use of the new technoloay. The onerating system is desiqned

for a distributed system of concurrently operating Single

Board Computers.

T

PN IR BB s

Atter 1dentifying typical computing requirements for
Naval Tactical! Data Systems, a distributed computer system
using Single Board Computers and a real=-time operating
system are developed. Three user modules, a debug, CRT, and

a line printer module, are introduced. In the conclusion of

this paner a comparison between the identified requirements

and the developed system is made and possible extensions are

indicated.

E

E |

o umu— -

[I. COMPUTING REQUIREMENTIS FOR NAvAL TACTICAL DATA SYSTEMS

In this section the basic requirements for a computer
system which 1s to drive a Naval Tactical Data System are

considered.

In general 1t can be said that the computer system has
to be able to handle the workload dictated by the
operational specifications and to cope with peak situations

without a system ftailure,

Typically, Naval Tactical! Data Systems are dedicated
systems, decause of this tact, system reaquirements tor the
CPU, memory and input/outout are known. It is theretfore not
necessary to carry a vast amount of overheaa in order to be
preparea for unknown worst cases. However, when deciding on
a computer system, future extensions of the system with
hardware consequences should be taken into account,
Unfortunately it 1is very aitfticult to oredict the possible
enhancements durinag the life time of a Naval Tactical Data
System. Therefore, the chosen computer system should be

expandable.

Since Naval! Tactical Data Svstems are rather complex
systems with many ditfterent svystem functions, the eqQuipment
used in an implementation s oroduced by many dytferent

manufacturers, Alchough there are some standard interfaces

10

tor Naval Tactical Data System, the computer, which s to
drive the peripheral hardware has to bhe versatile in orger
ta be connected to diftferent devices with drfterent

interfaces.

In order to reduce cost by large series and simplified
maintenance a standardization between dyfferent systems is

highly gesirable.

The instruction repertoire of the computer system has
to provide instructions which allow the efticirent
proaramming of typical operations 1in Naval Tactical Data

Systems, Typical onerations are

the solution of complex mathematical problems
in a reasonable time (Qquasi real=time)

= bit manipulations

- fast data base access

- complex and tast i1nout/output operations

- extensive interruot handling.

Many command and c¢ontrol operations and decisions
depend on the orooer functioning ot the Naval Tactical Data
System. High reliability, even under extreme physical
conditions, are therefore a too requirement for this kind of
system. In case of a breakdown, the tactical information
often is Jlost or it takes sOme time to recreate a valid

tactical situation. Because of the importance of the Naval

Tactical Data System within a larger system (ship or

T ST~ O Y T T e P o T ey -— . -
[iL

aircraft), a complete back=up for the computer system is i

desirable.

The major requirement to be met by the operating system
is to run the system under real-time conditions. Dependant
on the computer system, this leads to operating systems of
differing sizes where the ratio cf time used by the]

operating system to total time should be opotimized.

Basically, the operating system has to support an

overall program structure which simplifies

= software development

- software maintenance

- software extensions

- use of components from other systems

(standardization).

12

i

[11. A COMPUTER SYSTEM USING SINGLE BOARD COMPUTERS

In this section the hardware concept of a computer
system consisting of Single Board Computers is developed.
Rasic building block of this computer system s a INTEL

Single Board Computer, SBCB0/20-4,

A. INTEL'S SINGLE BOARD COMPUTER SHC80/20=-4

INTEL's Single Board Computer, SBC80/20-4, represents a

complete microcomputer on a single orinted circuit board.

The S8CB0/20=4 includes:

8080A CPU

« 4K static Random Access Memory (RAM)

« up to 8K Read Only Memory (ROM)

- 48 proarammable parallel input/output lines

- a programmable serial input/output interface

’ - programmable interval timers
- proqrammable, eiqht priority level, vectored

interrupt Structure

- bus interface for external system bus.

An in=depth description of hardware, function and
programmina ot the SBCB0/20-4 is given in the SBCB0 manual

{ (INTEL SBCB0/20 HARDWARE REFERENCE MANUAL 98-317c¢c).

1. 8080A CPVY
The 80804 is & sinale LSI chip CPU. It has six
8=bit general purpose reaisters and an accumulator. The six
qeneral! oburpose reqgisters may be addressed individually or

as reqister pairs, providing lb=hit operations.

A lo=bit stack pointer controls the addressing of an

external stack which can be located in Qeneral memory,
The B080A has an address ranqge of bUK bytes.

The CPU Set consists of the 8080A CPUsclock
qenerator and a system controller. It performs all system
processing functions and provides a stable timing reference

for al) other circuitry on the board.
2. Random Access Memory/Read Only Memory

The 4 K Random Access Memory on the Sinale H8oard
Comouter can be jumper assiqned to the top address space in

any one of the four 16K address blocks.

The Read Only Memory is located starting at address
0000 and has a size of 4K or 8K depending on the type of me=

mory devices used.

The tul) CPU capability of ndn;nss‘nc 64K bytes can
be utilized by adding external memory boards which are
accessible via the system bus, The respective parts in this
memory are ‘shadowed'’ by the on=board memory. The CPU set

is capable of determining whether an addressed

(X

memory location is on=board or not.

3. Parallel Input/Outouyt

The SHC proviaces 48 input/output)ines which can be
configured by software in combinations of uni=directional or

bi=directional input/outout ports.

4, Serial Input/CGutout

The SBC includes a proqQrammable
synchronous’asynchronous RS232C communication interface
which 1s capable of operatina with all common communication

frequencies.

5. Interval limers

The SBC contains two fully programmable and
independent BCD or 16=bit binary interval timers/event

counters.

6. Interrupt Structure

The on=board interrupt controller provides vectoring
tor up to eight interrupt leves in four different priority
processing modes. Operating mode and oriority assignment

are under software conterol,
7. System Bus Intertace
This interface is compatible with INTEL's Multibus

system and allows the combination of several Single Board

15

Computers,memory and other utility boards on one system bus,

Two bus priority systems are available: serial (up
to three master controller) and parallel (up to sixteen

master controller).

B. SYSTEM CONCEPT

The development of a computer system consisting itselt
ot rather independent Single Board Computers automatically
leads to the concept of a distributed system. A gdistributed
system in this context is a computer System in which seve=

ral orocessors are working on more or '»ss independent tasks
connected by a common system bus. The computer system to be

developed is a direct realization of this concept.

Basically the system consists of Sinale Board Computers
and 64K bytes of Random Access Memory external)l to the Single
Roard Computers. The external memory resides on four printed
circuit boards which are bus compatible with the Single
Board Computers. This memory represents a common memory to
all Sinale Board Computers attached to the same bus., This
concept in connection with the on=hoard memory of the Sinqle
Board Computers opnens up software possibilities which are

explored in Chapter [Iv.

Information interchanqge hetween Sinale Hoard Computers

can be realized usina three different concepts.

1o

B e i i L

Concept (1):
Storage of information in common memory and periodic
checks ot the agreed upon 'mail boxes'. This s

concept can be used in systems where all processing

e i

is organized in a hierarchical 'producer = consumer'
structure. In this structure basic processing is
local to a Single Boara Computer, Data is gathered
and processed at a high rate. The output, reduced E
data and upaates of common data bases, is required

by others processors at a lower frequency. Since

external events can occur asyncronously, an extra
data path through common memory for sSuch messages

has to be provided.

Concept (2):
Storage of information in common memory and
interruption of the information receiving Single
Board Computer. The addition of interrupts to
concept (1) allows both synchronous and asynchronous

transtfers of data sets between Single Board

Computers, The disadvantage of this conceot is the
number of interrupt lines required with an

increasing number of oarticipating Single Board

Computers in order to address each other, The i
alternative of having only one interrupt common to
all Single Board Computers would ' cause an

interruption of all processors and requires a 1

polling scheme to determine the receiving Single

17

e A . e

Hoara Computer.

Concept (3):
Direct transfer of information between Sinale Board
Computers wusing input/output ports and interrupts,
This concept can be used to exchange time critical
information between onrocessors. Since it directly
involves the CPU of both the sender and receiver the
amount of o0ata passed has to be kept small,
ﬁouever. large data sets can be transferred with the
use of pointers to common memory. The limitations
ot concept (2), extended for data lines between

input/output ports, also apply for concept (3).

The input/outout structure of the Single Board Computers’
allow the connection of a variety of peripheral devices to
the computer system, Each connection represents a hardware
modification or specialization of a Single Board Computer,
i.e. the dedication of a part of the computer system to a

special task.

C. SYSTEM BUS ORGANIZATIUN

The system bus, which is the main communication line
between several Single Boarada Comouters, common memory and
other utility printed circuit boards, is implemented using
INTEL's Multibus. This bus system allows master=master and
master~slave relationships between various system hardware

modules,

18

Transfers via this bus oroceed asynchronously, i.e. the
transfer speed is dependent on the speed of the transmitting
and receiving devices. Unce a module has gainea control of
the bus, transfers can oroceed with a maximum rate of S

million bytes/second,

Master modules can gain access to the bus using a serial
or parallel priority resolving scheme, The serial scheme is
limited to three masters because of the signal opropagation
delay, but up to sixteen masters may be connected to the bus

usina the parallel priority scheme.

The bus system provides an override facility which
allows a hardware module to keep control of the bus until
the operation is completed. This feature can be used under

software control.

D. MEMORY ORGANIZATION

The tota) memory of the computer system consists of
- common Random Access Memory
= on=board Random Access Memory

« on=board Read Only Memory.

The on=board Random Access Memory portions are located
in the same reqion on all Single Board Computers. This
leaves the respective portion in common memory unused,
however, it is now possible to run identical programs on the

Single Board Computers. Identical proarams allow the access

19

of common data and execution of shared code. The location
ot on-board Random Access Memory can be changed because all

programs are relocatable.

A1)l variable data has to be kept in on=board memory for
two reasons:
1) Faster access by CPU and increased overall
performance because use of the system bus is
avoided.
On-board memory access does not require WAIT states

of the CPU,

2) No data conflicts in the execution of shared code.,
Although the variable data has the same logical
address space, its physical representation is local
to the Single Boara Computers and therefore

'invisible' to other CPUs.

On=board Read Only Memory contains the executive and
frequently executed proQram parts. Other program parts,
especially when they are identical in all Single Board
Computers are located 1in common memory in order to allow

shared execution.

20

E. INPUT/O0UTPUI FACILITIES

Each Sinqle Board Computer provides serial and parallel
input/output facilities which can be completely driven by

interrupts.

The serial interface is ready to be wused with a CRT,
With the addition of an adapter a TTY can also be connected

to a Single Board Computer.

Each Single Board Computer provides six bi=girectional
8=bit ports.These ports can be confiqured by software to be
8=bit data input/output ports or d4d=-bit bit addressable
input/output ports. The latter can be used to receive and
send status bit information in conjunction with the 8=bit

input/output ports.

The hardware provides three basic modes of operation

that can be selected by software:

- Mode 0 : Basic Input/Output
« Mode | : Strobed Input/Output

- Mode 2 : Bi=-directional Bus

Mode 0 can be usea for simple, status driven device
interfaces. Since this kind of interface is not compatible

with the real=-time reacuirements it is not considered here.

Mode | and Mode ¢ aqenerally require the support of
interrupts. Mode | pravides a means for transferring data

to or from a specific port in conjunction with strobe or

el

‘hand=shake' sigrals. This mode can be used for a variety of

difterent pericheral agevices.

Mode 2 provides communication with 8 peripheral device
on a 8=bit bus for both receiving and transmitting data.
‘Hanu=shake' are provided to maintain proper bus flow in a

similar manner to Mode 1.

The driver/termination connections of the parallel
input/output section are left open and have to be inserted

depending on the actual implementation.

The primary user considerations in determining how to

use each of the six inpuyut/output ports are:

9 = choice of ooerating mode
= direction of data flow
= choice ot driver/terminator networ ks
= jumper configurations

= mutua! port restrictions.

Fe INTERRUPT STRUCTURE

The 1interrupt controller accepts jumper selectable

interrupt requests from

« parallel! input/output
- gserval input/output
= interval timers

- gystem bus

2e

« directly from external aevicCes.,

The controller resolves prioritvy among the eight
possible interrupt levels according to an alaorithm which s
selectable by sottware. The priority assignments and

algorithms can be changea dynamically at any time during

system operation.

0t the four possible interrupt modes only the ‘'tully
nested' mode Vs consioered here. In this mode priorities are
fixed such that level 0 has the hiahest priority and level 7

the lowest.

The interruot hardware provides vectored interrupts
where the interrupt vector is not tixed Iin its location and
size (4 or 8 bytes/interrupt). The interrupt controller has
to be proqrammed with Jlocation and step width of the

interrupt vector.

The interrupt controller allows the setting of a one
byte interrupt mask by software., This feature allows the
inhibition of not wanted interrunts in any combination of

the eight interrupt levels.

23

7

IVe A REAL=-TIME OPERATING SYSTEM FOR SINGLE BOARD COMPUTERS

Ihe objectives for the operating system to bhe developed

in this section are:

1) The operating system has to be able to control NIDS

applications under real=time conditions.

2) The host computer system 1is the muylty processor

microcompuyter system agescribed in the previous section.

3) The existing Microcomputer 0Development System and
the associated support software (ISIS~[[,PL/M=80) has to be

used for program development.

4) The operating system must orovide debuggina tools
that allow system debuqgaina and system testing unader real=-

time conditions.

This chapter describes the operating sSystem 1In more
qeneral terms. An in=depth description s Qiven in the
user's manual (Appendix A) and in the proqram description of

the operating system (Appendix B).

A TASK is a part of ¢the orogram which handles a

specific function of the system and consists of one or more

procedures.

A MULULE is a3 separate task or separate qroup of
related tasks which are considered to be independent 1n

terms of software development and system inteqration.

The EXECUTIVE is the kernel of the cperating system and

controls the scheduling and execution ot tasks.

The OPERATING SYSTEM consists of executive, system

calls and system data.

A, SYSTEM CONCEPT

In contrast to an operating system for general usaqge 1in
which the nature of the running tasks is not predictable
this real=-time operating system drives a dJdedicated system,
Dedicated, in this context, means thast the implemented tasks
do not change at run time of the system, This concept allows
dropping much of the book=-keeping overhzad which is typical
for ooeratina systems for qeneral usage. Tasks in this
system are not physically moved in memory, they are only

activated and suspended,

Execution of tasks s under control of the kernel of the
operating system, the executive, The executive controls the
CPU assianment to the various tasks activated by interrupts,

to oprocess a message from another task or at a preset point

in time.

B. MODULAR STRUCTURE

The operatina system supoorts a strictly modular program
structure, Modules are integral parts of the overall program
which usually handle a specific function or a group of
related functions. lhis organization not only eases program
development and maintenace, it also allows easy=-to=implement
changes of the system. Typically, a module is compiled
separately and then intearated into the rest of the system,
Because of the independent nature of modules they can be
removed or replaced without influencing the remaining
system. Not only user programs represent modules, the

operating system itself consists of independent modules.

Modules are identified by a number. The number depends
on the number of the Sinale Board Computer which hosts the
module. Maximum number of modules per Single Board Computer
is 8. Modules in Single Board Computer | have numbers 0 to
7 in Single Board Computer 2 numbers 8 to 1S5 etc. The
lowest module number in a Single Board Computer is reserved
for the executive of the overating system while the highest

number represents the debug module.

C. FACILITIES OF THE OPERATING SYSTEM

1. Priority Tasks
Priority tasks represent the highest priority level
a task can have in the system. Priority tasks are executed

as soon as processor control is returned from the current

26

active task.

A priority task has to be entered into the list of
priority tasks with a system call., A single execution of
that priority task can then be scheduled with another system

call.

The primary purpose of priority calls is the process
of interrupts. The call of the priority task has to be
scheduled in the interrupt service routine. The high
priority of that task ensures that it is executed as soon as

the processor becomes available,
2. Communication between Modules

Since modules are separate and independent parts of
the system the operating system has to provide a function
which alliows the tasks or modules to communicate with each
other. This communication uses the form of messages which
are sent from one module to another. A message is sent with
a system call and entered into a FIFO list, The receiving
module's message entry is called if no priority task is
pending and the message is to be processed next in the FIFO

liste.

A message consists of message control block and
possibly data bytes. The message control block identifies
receiving module, sencing module, message number and length
of the message. Ihe message number depends entirely on an

aqreement between sending and receiving module and serves

27

e i i R ? g . -~

i
g

S

B st e e

;(the purpose of identifying the message. It the message
control block itself is not sufficient for the transmission

of information, data bytes can be added to the message.

A message is always sent from one module to another
module regardless in which Single Board Computer they
reside. The operating system decodes the number of the
receiving module and routes the messaqge to another Single

Board Computer if necessary.
3. Time Dependent and Periodic Tasks

Real=time environments and especially Naval Tactical

Data Systems require the execution of certain tasks at a

predefined point in time or periodically with a specified

time interval. In this operating system these tasks range

in the priority hierarchy below the priority tasks and the

process of messages.

Periodic tasks have to be identified to the

operating system with a system call. with this system call {

the task and the specified time interval s entered into the

lJist of periodic tasks, The executive uses the system's
real=time clock to determine the exact time of the call. A

periodic task can be suspended or the specified time

interval can be chanaed with system calls,

S ————

4, Backgrounda lasks

Background tasks represent the lowest priority level
in the system, They are executed only if no priority task
is pending, no messaqae is to be processed and no periodic
call is necessary, i.e. the processor is idlincg., This idle
time can be used to perform hardware checks on a time slice
basis or to perform data reductions for statistic and test

purposes.

If a Single Board Computer is completely interrupt
driven, (i.e. not periodically activated) the processor can
enter the HALT state to free the system bus. The next

interrupt will ‘awake' the processor and the executive.

S. System Calls

The operating system provides system calls for task
management, communication between modules and functions

which are commonly used by several modules.

6., Real=time Clock and Count Down Clock

The operating system provides two different clocks,
a continuously running real=time clock and a count down
clock which can be started with a specified run time. There
is only one real~time clock in common memory which is used
by all Single Board Computers in the system, The real=-time
clock is driven by the Sinale Board Computer with the number

1. Both reale=time clock and count down clock make wuse of

29

3¢

the interval timers on the Single Board Computers.

A count down clock is implemented in each Single |4
Board Computer. The count down clock can be started at any

time and generates an interrupt when the specified time s

AL ke

elapsed. The count down clock can be used to control time
critical processes. It has a size of 16 bits where the least

significant bit represents 1.86 micro seconds.

The real=time clock has a size of 4 bytes, the least
sianificant bit has the value of 1| milli second and the

maximum run time is approximately S0 days.

0. REAL-TIME EXECUTIVE

The real-time executive represents the kernel of the
operating system. The executive continuously checks for

pending tasks on four priority levels:
1. priority tasks

2. messages to be processed

3. periodic tasks

o s

4, backaround tasks.

The processor is assiqned to the next task with highest :;
priority in this scheme. The executive only proceeds to the

next lower level if no task is pending at the current or a

higher level.

o’

Each Sinale doard Computer runs 1its own, identical
executive, An executive is tailored to its environment with

special compile parameters.

The executives in different Single 8Board Computers
communicate with each other using normal meésages via an

exchange in an absolutely located buffer in common memory.

Because the code of the executive is executed most often

it is located in on=hoard memory.

E. INTERRUPT HANDLING

A1l interrupts are handled entirely by the operating
system. The operating system initializes the interrupt

controller and sets up the interrupt vector.

There are four special interrupts which are handled by
the operating system: real-=time clock interrupt, count down
clock interrupt, system restart interrupt and an interrupt
which causes the system to enter the monitor, if

implemented.

User modules can activate interrupts with a system call
and passing the requested interrupt level and the index of a
priority task to process the interrupt. In case of an
interrupt, a call of the priority task is scheduled by the

ooerating system. The de=activation of an interrupt is also

performed with a system call.

ES
i

.
:

E

Ll
- e —— e —
R i G e Sl) e SR

Fo. SYSTEM MONITOR

The system monitor is implemented as a system call, It
is called when internal program limits are exceeded. An
address value and two byte values are passed with the system

call. The address can point to the location of the error

RS RIS N

and the two byte values can further specify the nature of

the error.

s bl

The system monitor qenerates the display of an

appropriate messaqe for the operator.

This feature is primarily desiqned as an aide in the 9
program develooment and test phase and to cover undefined

program states.

G. SYSTEM INTEGRATION

User modules to run under the operating system are ﬁ
independent with respect to other user modules and the 1
operatina system. In order to provide the necessary |inks

to the operating system, a user module needs to be compiled

e —r—ae

together with some system data anad external declarations of

the system calls. Furthermore the module's entry for the

process of messages has to be identified to the operating

system. |

The linkinag of a module to the operating sSystem is
implemented using the public/external declaration feature of

PL/M=80 and the LINK program in [SIS-II. Basically, a

32

system inteqgration is the execution of this LINK program,
Included in the linking process are the operating system
itself and the user modules ot the special configuration to

be integrated.

Depending on the application, the linked and located
code can be kept externally and loaded into Random Access

Memory or transferred into Erasable and Programmable Read

Only Memory.

St 4

" " _ TR " R Y T —

V. AVAILABLE USER MODULES

Three user modules have been developed and are
available to run 1in the presented svséem configuration: a
CRT moduyle, a line printer module and a debug module. The
software documentation, a oroaram description of each module
and a user's manual for the debug functions, is part of the

Appendix.

A. CRT MODULE

This module is a typical user module. It drives a CRT
connected to a Single Board Computer. The CRT, via the CRT
module, may be used by any other module in the system,
reqardliess in which Single HB8oard Computer it is located.
Messages are used for the communication between the CRT

module and a 'CRT user' module.

The CRT module provides two different kinds of outputs

to the CRI and the facility of obtaining inputs from the

connected keyboarde.

T T T T T o S P ey e e e

B. LINE PRINTER MOLDULE

The line printer module is the driver for a line
printer, Any module in the system can transfer text with a

message to the line printer module in order to have it

printed,

C. DEBUG MODULE

This module allows the debuqgging of the entire system
under real-time conditions, i.e. without influencing system
operation during the debuqqaing process. [Ihe provided debuq
functions are desianed to ease debugaing of malfunctions
which are typically encountered in real=time systems and

specifically in Naval Tactical Data Systems.

The debuqging concept allows several users to debug
different program parts at the same time.Any Single HBoard
Computer can be debuggqed from any other Single Board
Computer with the restriction that only one user is allowed

to debug a Single Boarad Computer at a time.

Input/output media for the debug module are a CRT or
equivalent device anag a high speed printer for output only.
Both devices are driven by modules described 1in previous

sections.

35

i asacs

=

VI. CONCLUSIONS

In this section a comparison s made between

the

proposed computer system (hardware concept and operating

system) and the requirements establishea in Chapter 11l.

It is emphasized that no attempt 1S made to examine the

capabilities of the previously described computer system to

drive a typical Naval Tactical Data System, Obviously

the

CPU, INTEL's 8080A, fails to Qqualify for this task because

of its restricted instruction revertoire (espec

vally

the

lack of arithmetic instructions), eight bit word size and

64K byte address space.

Nith the recent introduction of a single ch

microprocessor with

o lé=bit

= instructions to operate on 8=,16= ana 32 bit

qQquantities
= gsigned and unsigned arithmetic operations
including multiplications and aivisions

« address space of 1| meaabyte

the proposed model with minor adaptive change

operating system becomes realistic, provided

$ In

that

the

the

concept of Sinal~ Board Computers will be keot. Considering

the success of INIEL's SBC8B0 series, this is very

like\y.

el e

(A, HARDWARE DESIGN

1. Standardization and Cost :

The proposed hardware design, distributed system
; with Single Board Comrputers on a common bus system, is very
flexible. It can be used in Naval Tactical Data System
applications which recuire extensive computing power as well

as in very small ana simple systems. Because of this

e

flexibility, the oroposed concept would reduce the number of]

different computer architectures currently 1in use. This

reduction iS equivalent to an increase in standardization
which besides lower hardware cost has a strong influence on .
cost in terms of software development, maintenance and

training of personnel.
2. Expandability

The proposed éoncept has special advantages as far
as future changes or extensions of the system are concerned.
A hardware change is kept local to one or a few Single Board
Computers. Extensions are accomplished easily by agding
Single Béard Comoutegs“to the system. However, it should be
noted that the utilization of the system bus may turn out to
be the ‘'bottlieneck' of such a system. The capacity of the

system bus clearly dictates the limits for the proposed

computer desiqn.,

h\ A solution to this problem is thinkable in form of a

‘super bus' structure consistina of two or more of the

37

—

previously developed systems and a connecting 'super' bus

system. This structure would lead to a strictly hierarchical
system concept in which information is reduced before being

transferred to the next higher bus level.
3. Interfaces with Peripheral Equipment

The imolemented input/output interfaces in Single
Board Computers are not fixed. The 1input/output and
interrupt controller are software programmable and, in
connection with easy to implement jumper connections, allow
the tailoring of the input/output and interrupt facilities

according to the application.
4, Maintenance and Reliability

The most astonishing eftects of the new technology
used in Single Board Computers can be found in the area of
maintenance and reliability. A computer system consisting of
Single Board Computers is opractically maintenance-free.
Although reliability tests of the new technology are still
in proqress, it s already known that there is a great
increase in reliability. In case of a tailure parts of the
computer would no longer be replaced: the computer would be

replaced itself,
S. Physical Requirements

The proposed computer system drastically reduces

weight, soace and environmental (power, cooling etc.)

requirements of currently imolemented Naval Tactical Data
Systems. This reduction 1is especially important for air=

borne systems.
6. System Redundancy

Up to now a complete back~up computer system is not
found in Naval Tactical Data System applications. Reasons
for this are mainly costs and sometimes space and weight,
Kith an implementation of the proposed system concept these
constraints could be eliminated, Although reliability is
already greatly increased a redundant system design can be

considered.

B. OPERATING SYSTEM
1. Naval Tactical Data System Requirements

The proposed operating system has been designed
specifically for an application in Naval Tactical Data
Systems. It provides facilities which ensure the real-time
operation of the entire system, 'Real=-time' is a relative
expression with respect to Naval Tactical Data Systems. An
operator expects a system reaction in real-time after
completion of his inputs. In this case the system has to
provide an 'instantenous' reaction in terms of human speed.
However, in the case of a high frequency radar interface,

‘instantenous' represents a considerably shorter time

between input and reaction. The structure of the operating

R T— P

system with different priority levels supports this
interpretation of ‘real=-time' as well as other commonly

found Naval Tactical Cata System operations.
2. Software Development,Maintenance and Extensions

Because of the modular structure supported by the
operating system, it is possible to run test vehicles early
in the program development phase. The modules in the test
vehicle are replaced by the originalAmoddies as soon as they
are completed or the simulated equipment is installed. This
concept of a continuous test of the growing system involves
some simulation overhead but it avoids 'big bang' tests and

leads to a better tested system.

The modular structure also eases program
maintenance, because modules are easily changed and re=

integrated into the system,

Extensions to the system are implemented by adding
modules. Hardware facilities of the computer system can be
extended by increasing the number of Single Board Computers.
In order to find an optimal distribution of the extended
program it may be necessary to re=distribute the modules

over the Sinagle Board Computers.
Ss Standardization
The structure of the operatina system basically

reflects a similar structure used in various real=time Naval

40

i 5 T aat g Y s do e Lo

Tactical Data Systems. This allows the use of already

developed software ana knowledqe.
4, Simulation

Simulation in Naval Tactical Data Systems is needed
mainly for three reasons: software development, software
test and operator training. The modular software structure
in connection with the distributed Single Board Computer
concept allow simuylation not only of missing modules or
equipment, it allows the simulaticn of the operation of
entire Single Board Computers as well., No hardware changes
are necessary since the simulation takes place entirely

inside the computer system.

41

S

s AP S 43 0 53T kg ot

e e T omant

1 APPENDIX A i3

PROGRAM DESCRIPTION QOF OPERATING SYSTEM

2.1

2.2
2.2.1
2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.4
2.2.5
2.2.6
2.3

TABLE OF CONTENTS

Ge"’ra‘.‘........Q.......l.'.....Q’........
lntrOdUCtioncooootoonoc-ooo..noonu.ooc.-..o

Abbreviations and ConventioNSecceccececcccns

EXeCUtiVeeeeeososocsocascsscrasssccccsccccnnss
INnpuUtSeececrcerconccescscrscrccosccscconcnnns
FUNCtiONeccescesescscssescsccccsasssscscsnscscse
System InitializatioONeseccccccccscsccncnnss
Priority CallSccceccscenccccccecsoccsccncancs
Communication between ModuleSecescecsccccsonsns
Internalecceccccsccecsesscrncscnccnccccccnnce
External.ecscecccccccscccsssscssessccccccccnnse
Periodic Cal)S.sessessssssscscscscccsccccnce
Background TasSkSeecececccecscccccccccsosonose
Message ExtractioNeecsccssescsscccssacccsces

ou'outs....-.‘.l..‘..'...'.................

Interrupt Handling.-.--.--...............-.

SY‘tem Data'.........'....‘O...‘...........

System CAYBssssnsvsesssvivnssvadnsavssaonso

Real=time Clock ano Count Down CloCkecceens

LOo@0@ P ececccccscccscocscsccsscnssssccsssosssnsnse

10

11

12

—————
=g |

S ——
e

o

L T —— RER

M.MOPY M.b.oo.-ooolo.-.o.oooooobo.opo-.tto.
Absolute Datdccccsscscssacssoncencnocnansese
ADSOIULE COO@ccssvanocscscsnossssssensasscnsce

Changes of SBC MONitOFesececescosconasssssne

Li!tiﬂg of Executive Y PR R IR e e

13
13
14

15

17

General

Introduction

This seament of text describes the function of the operating
system. The use of the facilities is documented in the user's
manual for the operatinag system, |

In cases where system functions are well explained in the ;
program listing itself no cescription iS given here.

The executive is considerea to be a module. It has the lowest
possible module number in a SBC and the module identification
EX.

Abbreviations and Conventions

All numbers in this segment of text are decimal except as
otherwise indicated.

Task = part of the program which handles a specific
function of the system and consists of one or
more procedures

Module = part of the program which consists of one or more $
(related) tasks and can be compiled separately

Executive = part of the operating system which controls the
scheduling and execution of tasks

Operating :a
System - consists of executive, system calls and system data
System - consists of operating system and all integrated

user modules
SBC <« Single Board Computer

MDS =« Microcomputer Develooment System (INTEL)

MCB <« Message Control Block

RMN <« Receiving Module Number ;
SMN <~ Sending Module Number 3
MN - Message Number E
ML = Message Lenath 3
EX = executive, module number in SBC 17273 : 00/08/1¢6

LP = line printer mhdule,module number in SBC 17273 : 0S/13/21

CS = CRT module, module number in SBC 17273 : 06/14/22

08 = debuq module, module number in SHBC 1/2/3 : 07715723

RTC = Real Time Clock
COC = Count Down Clock

|

F 2 Executive fi
3 { The executive is the kernel ot the operating system, 7
It controls the process of |

- priority tasks |
- peal=time messaqes
- time dependent (periodic) tasks

= background tasks.

a.l lﬂputs

EX receives two real-time ressages from any debug module,'start
message extraction' and 'stop message extraction'.

Format:
RMN : EX i
SMN : any debug module 4
MN :t 10 - start
11 = stop :
ML : 04 !

This message rontrols the state of the flag MSGEXTRACTION.,
It is set to 'TRUE' upon receipt of the 'start message
extraction' message and reset to 'FALSE' when 'stop message
extraction' is received.

2.2 Function

.21 System Initialization

The system is initialized with a call of procedure EXSTART

at system start. Prior to this call the variables SAVESTACKPIR |

and RESTART are set. !
i

SAVESTACKPTR contains the value of the stack pointer at inttial 53
system start. It is saved for a system restart without loading A
and system RESET, |

RESTART is set to 'FALSE' at the initia)l start of the system.
In case a system restart is initiated with INT6, RESTART is set
to 'TRUE'. At the same time the stack pointer is reset to the
saved valuye.

RESTART is used by all modules to determine whether the current
start is a system start with or without hardware reset.

46

In order to prevent overlacping proaram action caused by
erroneous interrupts, the interrunots are locked out for the i
time of system initialization. o : ?

A)l) system tables are reset and a 'start' messaqge tor each ;
module in the same SBC is packed into the system's message
buffer.

EXSTART ends with the initialization of the interrupt control=
ler and an ENABLE instruction.

SBC1 has additional tasks at system initialization. It resets
the RIC, starts the RTC update and qives the start signal

to al) other SBCs in the system,

Al) other modules in the system check their specific start
variable START1, START?2 etc. to take on a value other than 0.
Atter completion of the initialization, SBC]l sets the respective
SBC number into START1, START2 etc. and all SBCs start their
initialization.

Priority Calls

In the context of priority calls there are two relevant
items of system data: PRIORLIST and PRIORSCHEDULE.

PRIORLIST is an address vector of lenath B8 and contains the
addresses of priority procedures entered.

PRIORSCHEDULE is a byte variable which indicates the scheduled
priority calls,e.q. bit 0 = | means that a priority call of
the priority procedure in PRIORLIST(0) has been scheduled.
Prior to the call of this procedure the respective bit in
PRIORSCHEDULE is reset to 0.

The executive keeps checking PRIORSCHEDULE until all calls
have been made before proceeding to the process of real=time
messages.

Communication Between Modules

Communication between modules uses real-time messages.

These messages can be sent from any module to any other module
in the system.

A message is considered to be ‘'internal' it it is sent to a
module in the same SBC. An 'external' messaqe is sent to a
module in an other SBC,

Internal and external messages have the same format.,only the
treatment by the executive is gifferent.

2.2.3.1

2.2.3.2

b

A message is sent with a call of SEND. In this system procedure
the message is placed into MSGBUFFER, a circular FIFO list,

MSGBUFFER is controlled by two pointers: MSGIN (next to fill)
and MSGOUT (next to process),

The variable NUMMSG contains the number of messages currently
in MSGBUFFER,

Internal

The executive checks NUMMSG for a messace to be processed.

If NUMMSG = 0 then the executive proceeds to check for external
mesSages.,

MSGOUT points to the next messaqe to be processed.

The executive computes the index of the next messaqge in
MSGBUFFER (new MSGOUT = MSGOUT + ML of current message).
After this update, the executive examines RMN of the message.
It the receiving module is in the same SBC the procedure
MSGENTxx is called (xx = relative module number in

asSBC : 0 -~ 7). !

This procedure is the messaqge entry of the receiving module.

External

If the receiving module of a message is not in the own SBC,
the executive calls SENDEXT to process this message.

There is a buffer for external messages (EXTMSGBUFFER) which
has a very similar structure to MSGBUFFER,

The only exception is that the receiver of the messaqge

is the number of the SBC which hosts the receiving module.

An external message is kept into EXTMSGBUFFER until it is
processed by the respective SBC and transferred into the local
mesSage bufter.

Since all SBCs operate in EXTMSGBUFFER there is a lock mecha=
nism that prevents two SBCs from workina in EXTMSGBUFFER at
the same time.

Every time a message is taken out of EXTMSGBUFFER or when the
first message is written into the empty EXTMSGBUFFER the vari=
able EXIMSG is set to the number of the receiving SBC of the
message currently at the top of EXTMSGBUFFER,

It EXTMSG = 0 then no external message is waiting to be
processed.

After checkina the external messages PRIORSCHEDULE is examined
again.

- § = 48

2.2.6

Periodic Calls

Al) activated periodic calls are kept in PERLIST, <
PERLIST is a vector of records. i
The variable NUMPER contains the number of activated periodic
calls.

PERXIBL, a list of pointers to PERLIST, is always kept

compacte i.€. if a periodic call is suspended.,entries in PERXIBL
are moved to become compact again. This technique reduces
execution time when the executive is checking for necessary
periodic calls.

atix o

oL

It the executive finds a 'next call time' <= RTC then a new
‘next call time' is computed (RTC ¢+ time interval) and the
periodic procedure is called, j

If no periodic procedure is to be called, the executive proceeds

to the background tasks.

Otherwise the periodi¢c procedure is called and upon return of a
proQram control the priority calls are checked aqgain. |

Background Tasks

Background tasks represent the lowest priority level within
the executive.

They are executed only if no other task is pending, i.e. the
processor is idlinge.

Message Extraction

Before processing a real=-time messaqge, the executive calls
EXMSGEXTR i1f the flag MSGEXTRACTION is 'TRUE',

In this procedure the current message is checked against {3
the message control block contained in DEBUGMCSE. {3
1t DEBUGMCB matches the current messaqe, the message entry |
of the debuq module is called with a faked 'messaqge extrace
tion' message.

Uponh return the current messaqge IS processed. !

e

«7e 49

2 i A - bl

Outputs

At system start, after its own initialization, EX sendas
'start' messages to all mocules in the same SBC.

Format:

RMN = all modules 1n own SBC

SMN = EX
MN - 00
ML - 04

Apart trom the 'start' message, EX sends an ‘'extraction’
message to P8 if message extraction is activated and a match=-
ing messaqge was detected. This message is 'sent' by directly
calling the messaqe entry of DB.

This special procedure is chosen in order to avoid an ex=
cessive load of the system's message buffer since each ex~
tracted message would be represented twice: as original
messaqge and as data bytes of the 'extraction' messaqge.

Interrupt Handling

All interrupts are handled entirely by the operating system.

There are four system interrupts and three user interrupts.
The system interrupts are:

RIC interrupt

CDC interrupt

- gystem restart

enter monitor.

The RTC interrupt (INT2) is activated in S8C 1 only.

This interrupt is generated by counter 0 of the interval
timer arriving at the terminal count of 0.

Counter 0 is first set in procedure EXSTART to the equiva-
lent of | msec and started.

Upon occurrence of the interrupt the RIC is updated anmo the
counter is started again with a time interval of | msec.

A COC interrupt may be initiated in each SBC. The CDC inter-
rupt is started with the system call SETCDC.

At terminal count the interrupot (INT0) is generated and

the address passed with the system call i1s called.

The system can be restartea without RESET by generating
INT6 at the ftront panel of the MDS, From the interrupt
process the procedure SYSRESTART s called where the restart
is initiated.

- 8 - 50

R

SS—

The SBC monitor can be entered at any time by pressing INTZ
at the front panel.

This interrupt 1s jumpered on the SHCs to cause an interrupt
on level 1,

Upon occurrence, the monitor is entered at location 0740H,
The same proceaure when activating the monitor with RESET
applies, i.e. typing capital 'U' to initialize the USARI.

Note: Since the monitor changes locations in on=-board Random
Access Memory, the system cannot be restarted without
loading!

User interrupts can be activated on levels 3,4 and S. They are
activated and de-activated with system calls (ENTERINT and
REMINT) .

The interrupt vector is locate? at 3000H and has a length of
64 bytes, i.e. each interrupt occupies 8 bytes.
This structure is compatible with PL/M=80, :

The interrupt routines are written in PL/M=80 and therefore
located at 0000 = 003FH.

After SBC 1| is loaded, the loader transfers the code for
interruot processing to its final location in the interrupt
vector.

Since the user interrupts are restricted by PL/M=80 to

INT3 = INT7, only S interrupts can be programmed this way.
These are the three user interrupts and RTC and CDC interrupte.
The code for the process of monitor and restart interrupt s
written into the interrupt vector in procedure EXSIART,

The book=keeping of user activated interrupts takes place in
table INTTBL,

INTTBL(3) contains FFH if interrupt i is not activated.

An activated interrupt is indicated by INTIBL(j) = k, where

j is the interrupt level and k is the index of the priority

task to be scheduled upon occurrence of the interrupt.

System Data
System data are divided in two parts:

- data to be compiled with each module

- data to be compiled with the executive, system calls
and the debug module.

The first data set is in the source tiles SYDAIP,SRC and
SYDATE .SRC,

The executive has to be compiled with the PUBLIC declarations
of this dgata in SYDATP.SRC whereas all other components of
the system are compiled with the EXTERNAL declarations in
SYDATE .SRC,

e 9 o 51

Since this data set is well explained in the program listing
(see Section 11 in the operating system user's manual) it
is not described here.

The second data set is in the source files EXDATP.SRC and
EXDATE,.SRC.

It contains all data necessary for the operation of the execu=-
tive and the system calls.

The executive has to be compiled with the PUBLIC declarations

in EXDATP.SRC. All other components which need to operate on :
these data (system calls, interrupt handling, debug moogule) can
be Ccompiled with the EXTERNAL declarations in EXDATE,SRC,

Al) operational data of the system are listed and described
in Section 9,

System Calls

The code of the system calls has been split up into seven
parts in order to ease program develooment and maintenance
under 1SIS-II. These orogram parts are named SCPUBL1 = SCPuUB7.

The object code of the system calls is kept in the object
library SC.LIB.

Each module can be compileac with the set of EXTERNAL decla-
rations of all system calls in the source tile SCEXT,.SRC.
The matching of the PUBLIC and EXTERNAL declarations takes
place in the LINK step during svstem generation where the
object library SC.LIB has to be included.

The function ot the system calls is explained in the source
program listing.

Real=time Clock and Count Lown Clock

RTC and CDC are implementea using counter 0 and | of the
on=board interval timer.

Both counters are 'down counters' with 3 terminal count of 0
and driven by a clock input of 1.80 micro seconds.

The ‘terminal count' output lire is jumpered to the interrupt
controller.

Counter 0 generates a level 2 interrupt while counter 1 is
tied to INTO,

Counter 0 (RTC) is driven by SBC 1 only. SBC 1 loads counter 0
with the equivalent of | msec (LSB = 1.86 micro seconds) and
updates the RTC (4 byte vector in common memory) by 1 upon
occurrence of the interrupt, i.e.terminal count of counter 0.

A CUC interrupt is implemented ,in each SBC. Its initialization
is by a system call (SETCDC). /

In the process of this system'call the following actions take
place:

3

4 - save the address.to be called at CDC interrupt

- enable interrupt level 0

- load counter | with the transferred value
(LSB = 1.86 micro seconds).

Upon occurrence of the COC interrupt, the interrupt on level 0
is disabled and the indicated address is called.

] Loader

The system 1s loaded and started under control of a separate
loader.

The loader runs in the MDS and 's started toqgether with the
SBCs. It interacts with the S58Cs through tour abtsolutely located
variables:

LOADSBC (F1FOH)

- STARTI (FLF1NH)
- STARTZ (F1F2H)
- STARFS (F1F3H).

At start all tour variables are reset to 0O, lhe SHBCs conti~-
nuously check LUADSHBC to take on the value of their SBC number
1 = X).

ihe loader loads the code tor SBC) from the Jdisk with an
offset(bias) ot 6000H.An [SIS-1I1 system call is used to load
the file LUADI,

After completion of the loading LOADOSHBC is set to l.The loa-
der now waits until LOADSHC becomes 0 aqain.

SBC1 detects the '1' in LOADSBC and starts moving the code
from the temporary storaqe into on=board memory for which it
was located before by the LOCATE program of ISIS-ll.

After completion of the move, LOADSHBC is set to 0 and then the
SBC waits for the variable START] to become 1.

The loager now repeats the process for SHCZ2 anad SBC3.

After having loaded all SBCs, the loader stores a | 1n STARTI,
Ihis is the signal for SBCl to start.

After initializing system gata and the RILC the vartiables
START?2 and STARIS are set to 2 and 3 respectively.

This ettects the start of the entire system.

The loader issues informative messaaes on the CRT as it
proceeds through the loadina process.

It should be noted that a loading process 18 not necessary
in a practical application because the program would reside
in Read Unly Memory.

Memory Map

In this section all absolutely located data and code is des=
crived. Furthermore all PRUM changes of the SBC monitor are
listed.

Absolute Data

Absolutely located data is necessary for communication between
SBCs and loading and starting of the SBCs,

Absolute system data are located 'in the region FOUOOH = FILlEFH,
These data include:

- module status table (MUDSTATUS)
- real=time clock (RTC)

- message bufter and messaqe control variables for
external message exchange.

F000
e MODSTATUS
FO17
FOlA
e e th
FO18
FO1C EXTMSGLOCK
FO1D EXTMSG
FOLE EXTMSGIN
FOLF EXTMSGOUT
F020 NUME X TVSG
Foel EXTLAS IMSG
Foee
g EXTMSGHUFFER
F119

Absolute data for loading and starting are located in the
reqion F1FQ0 = FIF7:

FLFO LOADSBC
FIF1 START]

F1Fe START2

FIF3 STARTS

FIF4

oo key for the system operation (key is OABCOH)
FI1FS

SinCe the snapshot function is implemented with the trap

instruction RSI4, it is necessary to define the

entrance of the snapshot execution in an absolute location.
Ihe entry adaress is storea in 3040H and 3041H,

Sl aiad i

i,

ot s

8.2

Absolute Codae

Apart from the code tor the SHC monitor.which is located
absolutely because it resices in RUOM,the interrupt vector
has to be located absolutely,

Ihe interrupt controller is proarammed to expect the interruot
vector at 3000H with 8 bytes/interrupt.

Ine code ftor INTUINTZ,INIS,INTY and INTS is moved into the
vector by the loader. [he rest of the vector is set in the
start routine (EXSIARI)., These are INT1 (entry of monitor) and
INTO (system restart).

INT? currently is not implemented.

3000

.o CDC interrupt
3007
3008

. ‘enter SBC monitor' interrupt
300F
3010

. RIC interruot
3017
3vis

.o INT3 (user interrupt)
S01F
3020

. INT4 (user interrupt)
3027
3028

.o INTS (user interrupt)
302F
3030

oo ‘system restart' interrupt
3037
5038

os INT?7 (not implemented)
303F

- 14 = 56

L h o ety Sl

AN T Ny ey ey

8.3

Changes of the SHC Monitor

This section lists and comments the changes of the SBC moni=-
tor in PROM,

The monitor needs to be moaified in order to allow the
automatic loading of the system,

At system start the monitor checks & key which is an address
value located in FIF4H,

For operation of operating system the user has to store the
the hexadecimal value AHCD in this location. [f the contents
ditferent from this value the monitor will operate in normal
mode.

is

000ou JMP 0700 CS 0o 07 jump to V700H at RESE]
0700 LX] H,REY 2l Fd4d F1 check key
0708 MV1 A,0ABH SE AB
0705 CMP M BE
07006 JNZ 0740 C2 40 07 start monitor
0709 INX W 23
070A MVI A,0CDH 3£ CO
070C CMP M BE
0700 JNZ 0740 Ce 40 07 start monitor
0710 0I F3 disable interrupts
0711 LXI H,LOADSBC 2l FO F1 wait until ready to load
0714 MVI A,S8BC 3E nn SBC nn
07106 CMP M BE
Q71/¢ JNZ 0716 ce 16 07 not ready yet
071A LXI B,9000 01 00 90 begin of temporary code
071V LXI D,3042 11 42 30 begin on=board RAM
072 LOAX B 0A
0721 STAX B 12 move code into own RAM
0722 INX B 03
0723 INX D 13
0724 MV]I A,OQEFH 3E EF last byte to be moved
0726 CMP C 89
0727 JNC 0720 e 20 07 continue move
072A MVI A,0 JE 00 ;
072C STA LOADSBC 32 FO F1 reset LOADSHBC
072F LXI H,STARTnN 2l Fn F1 check for start SBC n
0732 MVI A,0Q 3£ 00
0734 CMP M BE
0735 JZ 0734 CA 34 07 no start yet
0738 STA STARINn 32 Fn F1 reset STARINn
07§H JMP 3042 C3 42 30 start SB8C
0740 MV]I A,dt 3t 4t replaced monitor
0742 QuUrT EVL L3 ED instructions
0744 JMP INUST C3 VH V3 0000 = 0VO0Vo
“« 15 5?7

oo2v
ooel
002¢
0023
0024
0025
0028

DI
PUSH
PUSH
PUSH
PUSH PSW
LHLD 3040M
PCHL

TOX

F3
()
DS
CcS
FS
2A 40 30
E9

- 16 =

execute snapshot
upon execution of
a RST4 instruction

save registers

adaress of snapshot
transter control

58

il

T ————— A

T R R T P T

3 VR i S BB O g

Listing of ktxecutive Data

S —

it & 3 59

4

3143 (QONZAPN> CLHLSHIY J3SP3 1HLSAON)
‘2173Nd S5344940Y 1Y1SAgY 124

S3NI0W N3HLIO

ALBATILIY/AN3CHSNS 0L A3ZTAHO0OHLAY 3NA0NW
S3MNAOK A3HLO 3LWAILIY

Z7AM3d4SNsS 0L d3ZIA0HLNY LON 370a0M
d3gM3dsns 33 ABW 3NA0W

J3aN3d4SNS 33 10N AL 3TNA0W
ad31BAIL38 3TMNA0W

d31BAILOY LOM 3NAO0NW

S15I¥X3 3INIA0N

15IX3 1ON 5304 3NACW 9 = 2 113 - 9 113
€357 = 9 113D
P 9SH SAS HLIM J3X3 49 d31HddN S1I SNLYLSAOM

A3IUNN 3TN0 ST X3AMI WILSAS 3HL NI
S3INA0W T 40 SNLYLS 3HL SHIBLHNOD SNLIYLSAOW

CCWINID3E> 1Y J173Nd 3149 <(IAOWSASXBIWY SNLBLSIOW 124

Hiuad 3AILNMI3X3

C(JAS 'diBaxX3:Td4: >30NTONI #

™
60

ADHOHE® o
N

®

-8 =

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

T 316a4dn

A43N1dW0D 83-W/\d

'y}

pL
A4344N3 9SS LX3 NI 9%W LX3 40 A33WNM
*/
‘€3 + P1PA5S3aY933 > 1Y J1713Nd 3149 9SWLXIWNN
% A344N3 9SS THMAZLA3 0L A3ILMIOA
*/
‘(2 4+ BIHJSIGYO3a "> 1Y JIT3Nd 3143 LNOOSHLA3
‘€9 4+ BIPHASAaED33 > 18 J173Nd 3143 MI9SWLIX3
¥
AldD SMIAIZI3N 40 A33KNM 3STMAZTHLD
SS37044 0L 9SH WMA3LX3 OM 41 9
*/
(S + H1KAS3Y934 ‘> 1Y J173nd 31A3 9DSWLX3
Pe d
HIHH4NT NI OMIHAOM ATTLHINANND 2H1dD 40 A3IWNM 3SIMANTHLOD
AIAD0TINN A344N3 9SH "LX3 41 9
*/
¥ + HIHAS3EYS33 > 1Y 2JI718Nd 3LA3 AJDNOSHWLAI
Ve 2
D3SWH T © 119 1LHYDJILAINDIS 1sSH3T
€213 = 3149 LHNUII4IN9OIS 15637
AJOTD IWIL 3N W3ILSAS

*/
‘(HIYJSAaY9D33 > 1Y J1I718Nd 3149 <> D14
/¥
A4OW3W HOWWOD MI Hi-g 3LnT1053y 40 MI933
*/

CAOWSASXHW + WINID3IT> 1W J173nd 31439 HiUQS3WO33 134

¥

1AYLS 1Y 135S SI 1W1SAdY J3Nauiays 3583 3HL
AILNGWOD 3NO H0d4 SIIANLINI 3HL

SH3IA0D ANY SNLIBLSAON H04 AHTH3A0 NY S1I 1HLISA0W

394

61

- 19 -

[I U (I O

AH3IN14KW0D 93-W/d

3NA0W 9N3F33 0L 95 MOILIUANLY3I =
% */ =
/(9 2Z 'X3 34> WILINI JI719Nd 3LA3 (> 95WALX3 1040 = 7T 27
’* =
13491S W3LSAS 1W AIJLNIOL HIWLS =
*/ =
21713Nd S534A08 ALAAIPLEIAES D4 = 7T ST MM
’* =
S2 N1 9SH AODLINOW W31SAS =
*/ =
e« -
L9909 99 9999 -MOLIMOW W3LSAS.> WILINI JIN8Nd 31A9 (925 LXAILMOW =
‘(O ‘BT ‘A3 'SI> WILINI J2173Nd 3149 <P> 9SWHOMW 134 = T ST
% -
AO9SH HOITIL., 95W LAD dH04 1LX3) =
*/ =
7,99 W 99 MW 99 NHSO9 MIA: 9SW W93 > =]
WILINI JI71and JL4AF (22> 9SWHITI 134 = T +T o
g = A
$.,235 40 1AY1S = [}
gy OMIAHNT d0d4 g3sn S3T38Iags d3182071 31LN11053Y =
*/ =
(CHOATAH9) 1Y J17138Nd 3LAS3 (ZLAWLS ‘Z1AWLS ‘TANYLS *I9590071> 134d - T b2 4
Vg =
AMOW3IW MOWWOD MI HBibwd 31NT0S3Y 40 dN3 = 1
*/ =
(852 + HIHASAY933 > 1Y J1713Nd 31438 HIBASIHAN3 = .
7% = 3
H344N9 3909553 TWMNAILKIT = w
*/ = ;
¢OT + HIHAS3YD39 > 1Y JI73Nd 3149 <(9SZ)> HIJINTISWLAT = :
(6 + HIHASIYD3T > 1Y J1719Nd 31439 9SWLISHILK3 =
9 39494 AINI4W0D 92-1W/\d M

T

*/
21713Nd 3143 XA347%3
21773Nd SS3HAI AIPIHIZA3
21718Nd 3143 1443443
#
MON4H3A0 A344N3 9SW A0d4 3900 AOLINOW WILSAS
*/
‘2173Nd S5349aY 3AY5330D
% Q3LBAILIY 1M1 2420 dI 3NdL #/
- 121718Nd 3143 3AIL1LTIYIAD
Ve
1443 1MI N8 40 3SUT NI d3NA3HIS 33
0L S3¥NA3I0AN4 ALIHOIAd 40 S3DIAGHNI SHIWLINOD 37139l

2173Nnd 3143 Amv”Mhhzu

13Y1s 1Y 4d3353710 33 01 Uisqg 40 Z~OMM
2173nd 3143 OmWMMMJUXN

ANLNI LANAEAILNI LOHSA4UMS dJ0 mMWNOMM
f(H24T49> 1B J2I79Nd S533¥qaY momhﬂﬂmtzm

LAKd1S3IASAS 3WNA3IINEd 40 mmmmomm
17304 31449 415N ‘I1719Nd 55330 MMthmm

14NAA3LNI 24D 1Y 93776D 33 0L mmmmomw
2173Nd SS3¥QaY WMCUOO

#

IoNd

174

124

129

2q

129

124a

s ls)

AINI4W0D 93-W/Vd

LI I (L (O T O O YA

wowwwwwwwnwonu

£2

§ 74

4

sT

ST

63

/F
‘d3717HD SI (£515174014d NI £534aad9 3HL ‘135
S1 3MAIIHISA0IHEd M1 <8 LI9 = 957> £ 113 41 9 3
‘JINA3HISHADI A4 MI LI3 3AILD34534 3HL 9NILLI3S
A3 A3NA3HIS S1 11 M3HM d3TV7HD SI ASHL ALIAOIAL W
SASHL ALIAOIAC
A3IUATILIE FHL 40 S35534GaY 3HL SHIMWLINOD LSITAOIAd
*/
31739nNd 3143 3MNA3HIZAOI AL
AI713Nd S534A0E CHOIAAXEWY LSITA01IAd 134
¥
T + A344N39z4 MI
9SSl 15571 40 3148 15571 40 X3AMI SHIWLNOD 95WLSHT
‘AldL3 51 H344N39SWd ‘9 = 9SWKNM
‘J35537044 S1 95W U HNIHM J31HM3134I34
aMe 1M3S 51 95 B N3HM G3LNIN3ATHI SI 9SHWNM
‘1%3M Q35537034 39 0L 9SW 0L SLIHIOd LND9s5W
‘NI 1I4 01 93 1X%3M 40 MOILYI0T 0L SIMIOd MIDSH
‘Q35S3J048d 33 0L 9MILIEM 338 HDIIHM 95K
FHL ONININLIMNOD L1SIT 0414 AYINJANID W SI 4344N395K
*/
21713ANd S5344aY 9sKHLsSH
J178Nd 31A3 9SKIINM
‘3179N4d 55333409 CLND9SKH ‘MID9SK>
21719N4d 553¥AAY 1S31MON443A0
31713Nnd 3149 CHININ39SH) HIA4N395KH 1340
Ve
AQ3LHATILIE SI NOILIWHNLAT 9SKW 41 3NAL
*/
31718N4 3149 MOILIPHLX3OSW 134
¥
Hisqa J1Q0Id34 J3X3

i g 43IN14KW0D B2-W/Vd

X Y sttt " "

3
b

-dla

4/ =
f3173N4d 31A3 aN34Y3I%3 1349 = Tz
Ve =
SI1A01A434 A31BAILIY A0 A33NN =
*/ =
31713Nd 3143 A34UNN =
mn
Ve = O
151771434 404 43I HIAY3IS 51 %434 =
*/ =
‘21713Nd 3143 #£43d =
/¥ =
21901434 W 40 "WAASINI 3WMIL 404 AYT43A0 =
*/ =
‘AL43 (P> (TYHZ A3SH3 LHIA3d4) =
/¥ =
ASYL 21401434 J31BATLOH =
MY 40 YiHd LNEJILINSIS T SHIBLNGD 151771434 = !
*/ = ©a
% CAIHWAOLd D145 3WIL WD LA3N #/ ‘I13Nd (3143 (P> NI LA3S = o
/% WAHATLNI 3WIL 40 5534999 #/ ‘5534A08 HIYLHIA34 = 1
7% J100143d4 40 553¥0d9 %/ ‘553404049 HAYA3d =
/4% 3344 51 W311 - 3N4l #»/ ‘3143 3344 =
> FENLONALE (A34%BW> 1S177434 124 = 2z
/* =
A318AILTIY LON JIQ01A434 - H449 =
WAO4 LOHA1M0D NI 15177434 OL A3LINIOLd SHIBLINOD 1314434 =
*/ =
2173N4 LA (A3dFAEWY 13LXH434 134 = 6z
/* =
S3NAYIAYA HH0M D3X43 =
*/ =
2173ANd SS3HAAY (THX ‘ZHX “THX> “I1T18Nd LA (£3X% ‘Z2aX ‘T3%> 124 = 8z
[394 A3N14K0D 92-1/d

9T 394

Lo ol B

Ve
1¥91sS 1Y a339373 33 01 Widag 40 an3

HIVI4W0T 93-UW/d

-24 -

APPENDIX B

b

USER'S MANUAL FOR OPERATING SYSTEM

67

— g -
W Ny -

(A R VI VIV V) n
e o o o o

N & -

o

e ot ot oo o o e et e e DX NO NN E i N~

COV TN T E LN —C

00000000 TTOCOCCTTTOCOCO

TABLE UF CONTENTS

Genere‘..'..l...‘....‘..........Q.l...........".

Introduction..-..o.........-..-......-.-.......o.
Abbreviﬂtions and Conven!iOHS-.......-..-.-......
Facilities of the Uperating SySteMeiscccsccscccnsne

svstem Orqan‘zat‘.on.....OQQQQOQ........‘..l......

Modular StrUCtUPBecssressnsossssssessssnssssncnny
PriOfitY rasks.-o.."'.O.'.......l..l.‘...l......
Communication Betwien ‘asks-'o‘o-.n.oo‘-.-ooocooo
Iime DeDendent and Periodic Tasks..-...-.........
Background TASKS s usssnsosnssnsnsssnstsessssnsanss

Interrupt HANA!l iNQeeesecesscsscoscosecsesvosscsccs
system Data‘..."......'............'....'........
Elecutive........-.-....---o.o.......-.--.-......

SVStem ca,'s.‘.'OC..0..000..0'..".'.'..-........

ENIERPRIOR..I.l......'..‘.‘.""..‘...."........
PRIOR!,YIN'/PRIORl‘Y..I.......I..C.O'....I.Q.Ol.'

REMPRIOR.'......'."...'.‘...'....'...l.".......
SEND..Q.....Q.....'....'......'..."..‘....l.....
pERACt............".....'.......................
PERCHG...............‘.‘...‘...'..I...I.....Q‘Q.I
PERSUSPII...!.'....'.'....Q..‘........I...‘I'IOOO
AC‘IVA‘EII.‘O..C..'.....'C‘...C."'I.......I.IQ.I
AC‘IVE.‘.."............I.'.........".....'...O.
SlJSPtND....OQ..'.".........l...l.'......'.....l.
pROCADR..-.O.....I.OO......0‘0.....‘000!...!.....
UPDSTA'.I.....'..........I..I'..‘....I'........C.
CLEAROAIA..“...'I."....‘..".........'...‘...'.
BI'I....‘......I.I.....'......."‘..........'...Q
CLEARHI‘...O..'......Q...........................
Stral"..l.....'ﬁIl...O....Q....“.......ll'.l‘..
SE‘CDC......I....‘.......'....'..'..‘..I..'......
ILLEGALMSG.....'.!‘..l...l.'..l'l...."..........
tNrERlN'....................l..'....".'..‘...'..

REMIN‘.......Q...l..‘............'.."Il......l..

SYS'QM Monitoro--00..0.io....;‘..o.co!..o'o..oooo

& W

TET~NOCJT N

10

10
10
11
11
11

12
12
12
13
13
14
14
14
14
15
15
15
15
15

16

8 Real=time Ciock anc Count Down CloCkeesoseseoncoss 17

L ey System Loader and System Startececccecccscsosssecss 18
10 Example of a User MoAdUlCeeeseoncecocccncscesosncssse 19
ll Listing of System uata..‘.........'.......'...... 23

12 Listing of External System Call DeclarationSeee.. 27

General

Introduction
This manual describes the use of the real=time operating system
tor dedicated multi processor micro computers.
The operating system is designed to use INTEL's single board
computers SRCAB0/20-4d,therefore it is assumed that the reader
is familiar with

- sinale board computer hardware

= PL/M=80

- operating system ISIS-II for INTEL's MDS.

Abbreviations and Conventions

Al) numbers in this seagment of text are decimal except as
otherwise indicated.

Task = part of the program which handles a specitic
function of the system and consists of one or
more procedures

part of the program which consists of one or more
(related) tasks and can be compiled separately

Module

part of the operating system which contols the
scheduling and execution of tasks

Executive

Operating
System - consists of executive,system calls and system data
System - consists of operating system and all integrated

user modules
SBC <=« Single Board Computer
MDS = Microcomputer Development System (INTEL)

MCB - Message Control Block

RMN <« Receiving Module Number

SMN =« Sending Module Number

MN - Messaae Number

ML = Message Length

EX = executive, module number in SBC 1/2/73 : 00/08/106

LP = line printer module,module number in SBC (/273 : 0S/13/21

CS = CRT module, module number in SBC 1/2/3 : 0b6/14/22
s 077185723

DB = debug module, module number in SBC 17273

RTC =~ Real Time Clock
CDC = Count Down Clock

e J = 70

S ——— e - — —

Facilities of the Uperating System

The operating system is specifically desianed to control
complex real=-time environments,

In order to meet these requirements the operating system
provides:

- priority task schedulina

- communication between modules

- time dependent (periodic) scheduling of tasks

- real-time clock and count down clock

- system monitor

= commonly needed functions in form of system calls
= interrupt handling.

The operating system is able to control all possible SBC hard-
ware configurations. INTEL's multibus system can handle up to
16 master controller,theoretically all SBCs.

Code in memory may be shared by several SBCs, however, care
should be taken that there is no interference with data access.
By simply keeping all data in on-board memory no data conflicts
can occur.

For efficiency reasons the executive and time critical func=

tions should be kept in on=board memory, whereas the code of

the system calls can be located in common memory where it can
be shared.

A module can take on the identities of several modules.

The Yody of the module is shared in common memory. The kernel
of the module, i.e. the entry for real-time message,is special
each SBC as expressed by different module numbers.

Communication between modules allow the sending of messages
from a module to another module, reqardless of where these
modules are located.

Since message between SBCs as well as code executed from common
memory make use of the system bus the actual distribution of
the modules in the entire computer system should be such that
system bus access is minimized,

Al]l executives in the SHBCs are identical, the binding of an
executive to the host SBC takes place during the compile with
two compile paremeters: number of SBC and module number of
first module in the S8C.

in

o e i el el

‘ol

r .

System Organization
Modular Structure

The operating system supports a strictly modaular structure.
Modules are intearal parts ot the overall system which usu=
ally handle a specific task or a gqroup of related tasks.
This organization not only eases proqram oevelopment and
maintenance it also allows easy=to-implement chanaes ot the
system.

The links between a module and the rest ot the system are
the system data and the entry for real=time messaqges of the
module.

These links require

- the inclusion of system data in the compilation of a
module

= the marking of the message entry procedure as a PUBLIC
procedure and a predefined name to allow access by
the executive.

The example of a complete user module is aiven in 3Section 9.

A module has a unique number which is used to identify it

in the system.

The number of a module depends on the number of the SBC which
hosts the module. Each SBC can have a maximum of 8 modules
(0~7), e.g. module 3 in SBC 2 has the module number 11,

The lowest module number in each SBC is reserved for the
executive. Imolementing the executive as a module allows

user modules to send message to the executive.

Each possible module in the system has a reserved byte
in the system table MODSTATUS. This table contains the status
of all modules., If the entry is 0 for a module the module

is not existent.
MODSTATUS is updated with the system cal) UPDSTAT
(see Section 6,12).

Each module is in one of three states: nonexistent, existent
or activated.

" ‘ . mery . — ezl o

Priority Tasks

Priority tasks consists of one or more procedures with one
entry procedure. The call of this procedure can pe scheduled.
A scheduled priority task will be considered by the execu~
tive as soon as the processor becomes available.

Usually the process of an interrupt is implemented as a priority
task where the scheduling is done in the interrupt procedure.

In connection with priority tasks there are four related
system calls: PRIURITY, PRIORITYINT, ENTERPRIOR and REMPRIOR
(see Section 6 for formats).]

A priority task has to be entered into the list of priority
calls prior to its first schedulinag. This is done with the
system call ENTERPRIOR, ENIERPRIOR returns an index which is
used to schedule a call ot the task (PRIORITY or PRIORITYINT)
or remove the task from the priority list (REMPRIOR).

PRIORITYINY and PRIORITY perform the same function, however,
PRIORITY may not be called from an interrupt procedure and
vice versa. This prevents erroneous program action in the
case that the processor is interrupted while executing the
priority scheduling system call.

U R R, AN 11 T AN

§
i
£
H
¥

o 73

el e o

Communication Between Modules

Since modules are separate and independent parts of the
system, the operating system has to provide a function which
allows the modules to communicate with each other.

This communication takes place in form of a message exchange.
Messages are sent and received by modules and the sender

and receiver are identifieo by their module numbers,

A message consists of a message control block (MCB) and, 1 f
necessary, data bytes.
The MCB has a length of 4 bytes and the following structure:l

ARARRRAARRARR
A RMN x Receiving Module Number
ARARKARAA KRR

* SMN x Sending Module Number
ARRRRARRRA KA

* MN ® Vessage Number
ARRARARRARR
x ML * Message Lenqth

RRAANARARAA KK

The MN is an agreed upon number between sender and receiver

of the message in order to identify the meaning of the message.
ML determines the total number of bytes of the message

(MCB + data bytes) and has a minimum value ot 4 (message without

data bytes).

A messaqge is sent with the system call SEND. This routine requires
the address of the first byte of the MCB to be passed to it.

SEND returns a 'TRUE' if the message has been sent and a 'FALSE’
otherwise. The latter can happen when the receiving module is

not activated or not existent.

If the message has been sent, data bytes may be stored in the vec-
tor MSGDATA. SEND has reserved space for as many data bytes as
indicated by ML in the M(CB,

In the case that more data bytes than specified are written

into MSGDATA they will be acisreaarded.

The messaqge is inserted into a circular FIFO list.

The executive checks the top of the list and transfers control

to the message entry of the module specified by RMN in the MCH.
Prior to calling the module the message to be processed is set
into the vectors MSG and MSGDAIA to allow access by the pro-
cessing module.

—

o

AT

it il s

Time Dependent (Periodic) Scheduling of Tasks

A common requirement of real=-time applications is the time
dependent execution of tasks, e.g. a display has to be up-
dated every two seconds or a8 process has to be triggered
once after a certain amount of time has elapsed.

Ihe operating system proviages the functions. for executing
tasks of this kind.

The time dependent scheduling of tasks is implemented with
three system calls: PERACT, PERCHG and PERSUSP (see Section o6

for formats).

A procedure can be entered into the list of periodic tasks
by calling PERACT and passing 2 parameters: the address of
the procedure entry and the time interval.

PERACT returns an index which identifies the task in the
system calls PERCHG and PERSUSP.

The time interval can be changed with the system call PERCHG
and a periodic task can be removed from the list with a call
of PERSUSP, g

The executive continously checks the list ot periodic tasks
and calls the respective procedure when the specified time
is less than or equal to the value in the real=time clock.

Background Tasks

In order to utilize the processor in case that no prio-

rity call is scheduled, no message is to be to processed and no
periodic call is necessary, background tasks can be called

by the executive.

Typically, not time dependent hardware checks are performed

as a backgqround tasks on a time slice basis.

Interruot Handling

All interrupts are handled by the operating system,
User interrupts currently can be activated on three levels:
INT3, INTY4 and INTS.

An interrupt is activated with the system call ENTERINT.
Parameters for this system call are the requested interrupt
level and the index of the priority task to be scheduled upon
occurrence of the interrupt.

An activated interrupt can be de-activated with the system call
REMINT.

e S 5

T

e ———— e = - —
F e o e D

4 System Data

The set of EXTERNAL system data declarations as listed in
Section 11 has to be incluaged in the compilation of a module.
The PUBLIC definitions of the same data are compiled to=
gether with the executive.

Care should be taken in the use of the system work variables.
Since al) modules are allowed to use them (except in interrupt
routines) their contents is not preserved from one call

to the next.

Executive

This section describes the function of the executive and
the interface between executive and user module.

The executive of the operating system iS a program
loop which checks for pending tasks on 4 levels:

- priority tasks

messaqes to be processed

periodic tasks

background tasks.

The executive only p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>