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\/ SUMMARY

Consider the constrained part (denoted as the Plant) of a
control system, consisting of n cascaded sections, each of whose
outputs can be sensed for feedbck purposes. Feedback from these
points is to be used to achieve apriori specified tolerances on the
system response, despite great uncertainty in plant parameter
values. In this first quantitative work of its kind, the feedback
is permitted to proceed directly to internal plant variables,
constituting plant modification. The reason is that the internal
plant signal levels needed to achieve a specific output are now
affected by the feedback loops. This is in contrast to previous
quantitative research in which the feedback was confined to the
plant input. The plant signal levels needed to achieve a specific
output were then not influenced by the feedback.

Plant modification feedback permits greater r;;;:;Tbnki? the
"cost of feedback', in terms of feedback loop bandwidths and i3y
effect of sensor noise, at the cost of increase in plant internal
signal levels. In this work, the maximum permitted increase Q
in signal level, is part of the design specifications. A step by
step 9esign procedure is presented for satisfying this Q require-
ment and the system response tolerances over the given range of
plant uncertainty, and doing so at sensibly minimum "cost of

feedback'". This permits the designer to achieve desired trade-off

between increased plant signal level ﬁnd cost of feedback.
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CHAPTER 1

STATEMENT OF PROBLEM AND PRELIMINARY BACKGROUND

1.1 Introduction

This work deals with the problem of making a system perform
satisfactorily despite uncertainty, in the following context:

Equipment has been assembled by specialists in the area of

concern, in order to achieve certain objectives, for example, an

airframe and engine for accomplishment of certain aeronautical
objectives, a chemical plant for production of certain chemicals,
etc. This assembly of equipment is denoted as the plant. The plant
has the ability, the muscle so to speak, to achieve the objectives.
However, it does not have the accuracy needed. This is manifested
by uncertainty in the parameters of the mathematical relations des-

cribing the plant. For example in Figure 1.1, suppose the relation

Plant

Figure 1-1. Plant

between plant output y and input x is given by a linear time-

invariant (fti) ordinary differential equation

IS .Jl
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y(n-l) L SRS Any = K[x(m)+81x(m.1)

(n)

+ T wea
Yy A + Bmx]

1
(1.1~1)

B are constants. There are g physical para-

3
meters kl,...,kq and X , Ai p Bj

i.e., the Ai -

are functions of these para-

meters. The values of these parameters are not known precisely, but

it is known that they lie within certain bounds ky € [ki.ki]

Hence, each possible parameter vector k , each combination of ki

values i =1,...,9, gives a different plant transfer function,

generating a set QF> = {P(s)} of possible plant transfer functions.

Such a formulation of the uncertainty problem may appear naive
because one might argue that often the parameter values change with

time-giving uncertain linear time-~varying relations, because the

rate of variation is uncertain. Also, the 2&ti description is

usually an approximation of a nonlinear relation. We are really

assuming 2ti relations with the above uncertainty form, in order
to be able to rigorously use Laplace transforms and frequency res-

ponse methods. However, it has been rigorously proven [16]) that

uncertain linear time-varying plant problems are reducible to the

above 2ti uncertainty form, and even uncertain nonlinear time-

varying plant to a certain extent [15), can be so reduced. Hence

the above modelling is highly justifiable. Finally, one must begin

somewhere with the development of a scientific synthesis theory for

uncertain systems, and the (ti case is obviously where to start.

The objective is to achieve certain apriori specified per-
formance objectives V P e?P . Since the overall system is to be

fti , it can be characterized by its response to any input, and the

| —
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step response is very popular because it combines within it both the

fastest kind of input (an abrupt change) and the slowest (no change).
Time domain specifications are reasonable in many cases, as in
Figure 1l.2a, the step response is to be inside the bounds

bl ~ b2 VPE 7F), with additional bounds of similar nature on the

1.2 ol T T T
upper—o=——_
bound/ ey
0.9- bl,’ /’ -
| /‘Iower bound
c(t) ,’ ! b2
0.6 g -
] l i
I' /
0.3'-' ] - -
i !
I )
0 Ll;’l 1 1 L 1
(0) 4
Time (Sec)

Figure 1-2(a). Time domain step response specification.

first and perhaps higher derivatives. Our design technique is in
the frequency-domain, so we must translate such t-domain bounds intc
"equivalent" w-domain bounds on the system frequency response

T(jw) . If the system is minimum-phase [2], |T(jw)| suffices and
we restrict ourselves here to such systems. This translation is, as
of this date, an engineering art rather than a science. Advice on
how to translate is scattered in the literature (2,6,14). Very good

results have been obtained with only moderate effort. We shall
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Fiqure 1-2(b). Frequency domain specification.

assume in this work this translation has already been done. It is
worth noting that it has been shown [15] that for minimum-phase
systems, time-domain specifications on the step response and on its

derivative of the following nature
b0 s e o« bty L, 120,10, (1.1-2)

can always be satisfied by means of w-domain bounds of the following
nature

B,(w) € [C(iw)/R(jw)]| < B, () . (1.1-3)

In our work, the bounds on system performance will have this form.

@

"




1.1.1. Previous work F
The quantitative aspect of our work cannot be over-emphasized.
The sensitivity reduction capability of feedback is very well-known.
Hundreds of books and thousands of papers have been written on the
subject, but the number of these which are quantitative in nature is
extremely small, i.e., with uncertainty bounds and performance
bounds explicitly included in the problem statement. It is as if
the mere use of a feedback configuration around the uncertain plant, j
suffices to scare it into docile behavior. 1In the vast majority of
the techniques the uncertainty is completely ignored, and there are
no or extremely crude performance specifications. One presumably
emerges with the same design whether the parameter uncertainty is
x% or 1000x%, and irrespective of whether the bounds B1 ’ 82 in
Figure 1-2(b) are narrow or wide apart. There is no concern with
i the 'cost of feedback' - which, aside from the sensors, lies in the
| bandwidth of the loop transfer function, and little concern with the
extremely important matter of sensor noise [see Sec. 1.2). These

points have been emphasized in [5].

Our work follows closely in the tradition of 'quantitative 1
synthesis' recently established [2,5,8). To appreciate the present
work, it is important to be aware of the highlights of this
previous work. Quantitative synthesis was first developed for a
plant with only one variable, the plant output, c(t) in

Figure 1-3, available for feedback [2). The system command input

r(t) was also assumed accessible, so the processing of these two
signals provides two independent compensation functions to the

designer. An infinitude of canonical two-degree-of-freedom
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Figure 1-3. Structures of 2 -D.O.F. system.
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structure may be used [4]. The design procedure developed in [2]

e .'.Ir.:l.'.i—

used Figure 1-3(a), but suppose the sensor transfer function is

H(s) , then one can use Figure 1-3(b), letting G,H (of

1
Figure 1-3(b)) = G (of Figure 1-3(a)), in order to have the same

loop transmission function L(s) = GP = GIPH , and F.G, = FG in

1l |
order to have the same system transfer function
4
F.G,P :
FGP 171 3
T(s) = Tie 1+G PH ° Mkt

1.1.2. A 2-degree-of-freedom structure with 2-loop

implementation
Suppose large loop feedback bandwidth is needed and it is

found that an independent sensor measuring c¢(t) (e.g., a tacho-

meter in a position servo) gives less noise than the differentiation




of a position sensor, so both sensors are used, as in Figure 1-4,

with the two sensor transfer functions Hl ' H2 » and say the

structure in Figure 1-4 is used. This is a two-loop structure

n(t) Fob Gy Go X P < (1)

Figure 1-4. 2-loop, 2-D.0.F. structure.

physically, but in terms of fundamental feedback design it is a two-
degree-of-freedom system, so the quantitative design theory of
Figure 1-3(a) is used, giving G and F . It is required that the

loop transmission around P , be the same in both cases, i.e.,

L = PG (Fig.1l-3(a)) =P Ga(H1+GbH2) (1.1-5)
and
G P
P GpCa
T=F (Fig.1-3(a)) = F (1.1-6)
1+GP b 1+P[Ga(H1+GbH2)]
SO
G = Ga(ﬂl+cbn2) . FG = rbc;bca N (1.1-7)

Hl' H2 are known, so one must decide how to split G = Ga(H1+GbH2)
between Ga and Gb . This is done by considering the effect of

sensor noise Nl » N, at the plant input,

2

Ga(H1N1+H2GbN2)

- X (ju) =
N L+P (G, (H)+G H,) ]

(1.1-8)
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given that
G = Z(ju) = G_(H. +H.G.) (1.1-9)
P a {8, 8,6, 3

is fixed by the quantitative design technique of [2].

The objective is to minimize !w lxNI2 dw , subject to the
above constraint. This is a straiqh:forward optimization problem
which can be solved outside the realm of quantitative feedback
synthesis. The latter only provides the design with the feedback
loop transmission (L) needed around the plant, and the prefilter
(F) needed to process the command input r(t) . The state-of-the-
art in sensors and in filter synthesis determines how L and F
are to be realized. 1In fact, in the above context one might con-
sider use of an accelerometer in a 3-loop feedback structure. But
from our point of view the structure remains that of a two-degree-
of-freedom system and we shall continue to associate the latter

with a single-loop system.

1.2 Review of Two-Degree-of-Freedom Quantitative Design

Theory

Figure 1-3(a) is used with T = F

GP
1+Gp ° It is assumed that
the compensation network, whose power level can be very low (as
the plant contains the power elements), can be constructed with

negligible uncertainty in their transfer functions. Hence, duvue to

the uncertainty in P ,

Gp L
AtnT=Afn o= =AdnTe, L=GP e {ledel)
and
8 fn |T(3w)| = A tn |29 (1.2-2)

1+L(jw)
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Given that A &n |T(jw)| = §, db for example at w, in
Figure 1-2(b), what are the resulting constraints on L{jw) ? It
is convenient to pick a "nominal" plant Po(s) , and derive the
bounds on the resulting "nominal" loop function Lo = POG . These
bounds can be found by means of a digital computer, but it is very
useful for insight to see it done on the Nichols' chart
(logarithmic complex plane with abscissa in degrees, ordinate in
decibels = 20 10910). The procedure is illustrated for the case

Ple) =2 ;| 1 ekg10; 12210 . (1.2=3) :

s(s+a) W = E

At w =2 rps , P(j2) lies within the boundaries given by ABCD in

Figure 1-5. Since &n L = ¢n G + &n P , the pattern outlined by

i,

240B

al L _
M—4|¢L

|u| (oeciBELS)

-
_ Loy

BOUND ON L()2)
-60°

+
534" -120°] ARG L (DEGREES) |-40'

-1608

Figure 1-5. Derivation of bounds on L(jw) on Nichols chart.
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ABCD may be translated, but not rotated, on the Nichols'’ chart,

the amount of translation being given by the value of £n G(j2) .
For example, if a trial design of L(j2) corresponds to the tem-

plate P(j2) at A'B'C'D' in Figure 1-5, then

l[eti2)| g = (LG | g - [PG2 4
(1.2-4)
= (-2.0) - (-13.0) = 11.0 db
Arg G(j2) = Arg L(j2) - Arg P(j2)
. (1.2-5)

(-60°) - (-153.4°) = 93.4° .

1.2.1. Bounds on L(jw) in the Nichols' chart.

The templates of P(jw) are manipulated to find the position
of L(jw) which results in the specifications of Figure 1-2(b) on
2n |T(jw)| being satisfied. Taking the w = 2 template, one
tries, for example, positioning it, as shown in Figure 1-5, at
A'B'C'D' . Contours of constant 2n|L/(1+L)| are available on the
Nichols' chart. Using these contours, it is seen that the maximum
change in ¢n|L/(1+L)| which from (2), is the maximum change in
¢n |T| is, in this case, very closely (-0.49) - (-5.7) = 5.2 db ,
the maximum being at point C' , the minimum at point A' .
Suppose that the specifications tolerate a change of 6.5 db at
w= 2, so the above trial position of |L(j2)| is in this case
more than satisfactory. The template is lowered on the Nichols'
chart to A"B"C"D", where the extreme value of fn|L/(1+L)| are
at ¢" (-0.7 dab) , A"(-7.2 db) . Thus, if Arg LA(jz) = =60° ,

then =-4.2 db is the smallest magnitude of LA(jz) which satis-
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fies the 6.5 db specification for A ¢n |T| . Any larger mag-
nitude is satisfactory but represents over-design at that frequency.
The manipulation of the w = 2 template is repeated along a new
vertical line, and a corresponding new minimum of [LA(j2)| found.
Sufficient points are obtained in this manner to permit drawing a
continuous curve of the bound on LA(jZ) , as shown in Figure 1-5.
The above is repeated at other frequencies, resulting in a family

of boundaries on LA(jz)

1.2.2. Nature of the bounds on L(jw) .

A typical set of bounds is shown in Figure 1-6. The bounds

32

L

|
{

| |
.16 : N
I \,\wllo,AT<20db
| fid
|
—<28db : %O AT<30db
-32 + + -
,rc-— Bn ——:
= 1\ |
40db \\\}— ’7
-48
-360° -240° -120° o°

DEGREE

Figure 1-6. Typical bounds of L in Nichols' chart.




tend to move down in the Nichols' chart (become less onerous),
obviously because as  increases, greater change in |[T(jw) |

is permitted, as in Figure 1-2(b). It is in fact essential that

at large enough ® , the uncertainty in IT(jm)l (i.e., the bounds
on |T(jm)| ) be greater than the uncertainty in P(jw) , because
the net sensitivity reduction is always zero in any practical

system as was long ago [1] shown by Bode,

«© o
[ anlspigwlaw = - [ an (14| @ = o (1.2-6)
o o
T 9T/T g
where SP 3p,/P is the sensitivity function.
In the above example as w *+ ® , P =+ 5% , SO
s

A en |P| > A 2n(kxa) = 40 db . Note in Figure 1-2(b) that the
permitted A &n |T(jw)l » 40 db for w > 50 . Such large toler-
ances on |T(jw)| at large w are tolerable because |T(jw)| is
negligible at large w , e.g., if |P(jw)| can change at most

by 40 db at large & but |T(jw)| changes by 52 db , who cares

= .10-6 to ITl to

if this 52 db change is from |T| S

400 x 10.6 . In return, one can concentrate the sensitivity

min

reduction over the bandwidth of T(jw) . Thus, although |P(jw)]|
in this region varies by say 40 db , |T(jw)| may be controlled

to vary by only 4 db , or 0.04 db if desired.

1.2.3. Universal high-frequency boundary.

As noted, in the high-frequency range A &n lT(jw)l must
realistically be allowed to be » A ¢n |P(jw)| , and this is

reflected in the bounds on Lo(jw) tending to a very narrow pencil.

A ‘
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In Figure 1-7, B‘S is drawn for the case A %n L = A fn k = 20 db ,

A %n |T(jw)| = A &n |L/(14L)| € 23 @b at w, . However, the
resulting peak value of |L/(1+L)| is 23 db = 14.1 arithmetic at
k =k — indicating a highly under-damped pole pair at the
corresponding frequency with damping ratio £ = 0.034 , when
k=k i ¥ This tremendous peaking does not appear in the system
response to the command inputs R , because it is filtered out by
the pre-filter F in Figure 1-3(a). But the system response to a
disturbance D is given by '1‘d = % = (1+l‘..).:L . Disturbance

attenuation generates its own requirements on L , which may lead

to more stringent bounds on L than those due to T(jw) . The

20

Bj

:ODB
1

m
A

N

LI (0B) .
| /be-240°| \By | | ne-1008 o
)
composite ! ¢"6°
contour ) ! I¢=-I2O°
B(UJV) | |
-20 ) m=-200B
B
v |

: L
yisod /] m=20log | =]
: L
2.308] . 7 4’"R°-[W#‘

-240° -180°  -120°  -60°
L L (DEGREE)

Figure 1-7 Bounds on L(jw) on Nichols' chart
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final contours used in the design [2] must be the most stringent
composite of the two. However, even if D is very small, it is
usually certain that a peak |T,| of 14.1 is intolerable. It is
reasonable to add a requirement |Td| € y some constant, for all

w and over the whole range of P parameter values. The resulting
constraining contours denoted by B: are shown in Figure 1-7

for the case A ¢n k =20db , and for y = 2.3, 3.5, 5 d (all
these contours are symmetrical with respect to the vertical line
Arg L = -180° on the Nichols' chart). If y =5 db is used, then
B(mv) indicates the composite contour shown in Figure 1-7. For
w o> w IA T(jw)| increase while Yy remains the same, so that
sooner or later there is reached a frequency W, J B(w) is a fixed

boundary Bg , effective Vu > u, .

1.2.4. The optimum L(jw).

It has been shown [3] a realistic definition of optimum in

the £ti system is the minimization of k , defined by

lim L(s) = k s © + where e is the excess of poles over zeros
S—»0

assigned to L(s) .

It has been proven {3] that the optimum L 1lies on its
boundary Bi at each w, and that such an optimum exists and is
unique. Most important for the present purpose, is that in signi-
ficant plant ignorance problems the ideal optimal L has the
properties shown in Figure 1-8, i.e., over a significant range it
follows Bh along UV up to the point J at which it abruptly

jumps to infinity along WW'W" and returns on the vertical line
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YZ , whose phase is (-90°)°*e . Such an ideal L(jw) is, of course,

impractical.

A practical suboptimum L is shown in Figure 1-8.

L L (degree)

-e-90° -360° . -'90°L 0°
w L — Lopt /
la— “i,

| L] (db)

o
b=
4

-

==K
AR

Practicol suboptimum L

o e e e e e R
X i

Figure 1-8. Bounds on L and Optimum L on Nichols' Chart.

Some results of a numerical design example are shown in

Figure 1-9.

1.2.5.

Plant:

They were derived for the following problem.

Numerical example. (Figure 1l-3(a)).

P = Ple

Plant ignorance: Pl = kl/s P V2 g kl < 10 V2

P2-k2/s,5sk2s10/2-

Performance Specification: Shown in Figure 1-2(b) were

originally derived from time
domain bounds of Figure 1l-2(a).

Disturbance response: Yy £ 2.0 d .

i
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Figure 1-9. Single loop Lb and bounds of a numerical example.

This example is used later in Chapter 2 as a vehicle for presenting

the plant-modification design technique.

1.3 Cost of Feedback and Effect of Sensor Noise

In significant plant ignorance problems, there is a strong
tendency for the design to be such that N , in Figure l1-3(a), is
so highly amplified as to saturate the plant input at X . The

noise recponse function is (see Figure 1-3(a))
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T A X- -G -ap

N=N" I+ep = 1+L

&8 -L/P in h.f. range. (1.3-1)

The noise response of the numerical design example of the last
section is shown in Figure 1-10. Notice that the noise component
i at x , in Figure l-3(a), is most important in the high-frequency
range where the useful command and disturbance components due to
D , are relatively small, rather than in the low frequency range
where the latter are relatively large. This is further enhanced
by the fact that arithmetic scales, shown in Figure 1-11, must be

used to find

o 2
(xN)rms =J/£ (ITN| -0N)dw i 0n==noise power spectrum (1l.3-2)

40

—

T g S

S i e

Figure 1-10. The noise response and ILI ’ [PI .
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Hence, it is desirable to decrease |L{ vs w , as fast as
possible in the high frequency range. Even a saving which is small
in the logarithmic scale near A in Figure 1-10, can be signi-

ficant in rms sensor noise effect.

T T T
60 - ,\ -
- -
40} /‘ il
| Tnl

20} -§

o) I00 200 300

Figure 1-11. Arithmetic plot of P

1.4 Reduction in Cost of Feedback

1l.4.1. Linear time-varying compensation and nonlinear

compensation.

To reduce the hf sensor noise effect, one way is by linear
time-varying compensation if the problem has time-varying features
[7]. Another is by nonlinear compensation. Actually the so-called
"adaptive' system is in the category of nonlinear compensation.
They may or may not be better than ¢ti compensation in reducing

the 'cost of feedback'. It is noteworthy and scandalous that in

i

S
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the vast literature on adaptive systems, there is hardly ever any

quantitative comparison between the adaptive design promoted and a
proper £Lti design accomplishing the same design objectives. One
could excuse this not being done in a general manner, because
there is hardly any 'adaptive' method permitting quantitative
design in the sense here defined. However, it could at least be
done experimentally. Occasionally one sees a comparison, with an
'ordinary' or so-called 'classical' design. But the comparison

is usually greatly biased, because generally some very naive £ti
design is used, and there is no statement of specifications -

even made up after the fact. There is not recalled a single com-
parison, on the part of the proponents of adaptive systems, with
the ALti quantiative design technique [2] discussed here. Some
nonlinear compensation techniques for which a quantitative design
theory exists to a greater or lesser extent have appeared in the
literature [8,9,10,11] for which such comparisons are possible.

It is noteworthy that these were expressly motivated by the desire
to reduce the 'cost of feedback', so that such comparisons were a

natural by-product.

1.4.2. Multiple-loop feedback.

Another method of 'cost of feedback' reduction, in the con-
text of ALti design, is by means of multiple-loop feedback,
restricted to those cases where additional plant variables (besides
the plant output) are available for feedback purposes. Such a
multiple loop design technique was first developed [5] for the cas-

caded structure of Figure 1-12.

— R —.
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Figure 1-12. Cascaded multiple-loop system
with (n+l) D.O.F. structure.

Then the technique was extended [12] to the parallel

structure of Figure 1-13.

Figure 1-13. Parallel multiple-loop system with

n+2 degree of freedom structure.
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Finally, it is currently [13] being extended to the parallel-

cascaded structure of Figure 1-14, where the number of cascaded

Figure 1-14. Parallel-cascaded multiple-loop structure
with m(n-1)+2 D.O.F. structure.

element in each of the parallel path need not be the same. But

note that in all three cases, there is no plant modification (P.M.)

because each feedback loop is returned to the plant input, with

none deliberately returned by the feedback designer (not the plant
designer) to internal plant variables (see Section 1.6.2 for
detailed discussion).

The multiple-loop plant modification synthesis theory

developed here, is based to a large extent on the design theory




e

ol

™ Gl 4 g
oL Sl L s St

P m————

o aliea e i Lo
RIS DRSS il

B ——
N

22
for the above non P.M. multiple loop designs. Hence, it is very
important to first thoroughly understand the essentials of the
above design philosophy, which is therefore next presented. Since
this present work is confined to the cascaded plant, only the
latter is presented. It suffices also to consider the cascaded
two-section case.

1.4.3. cascaded 2-loop design — no P.M.
The basic idea is to use the inner loop L, = G,P, in
Figure 1-15(a), to minimize the effect of sensor noise Nl at the
N,
Figure 1-15(a). Cascaded 2-loop system — no P.M.
plant input xzc . This effect is
Ty QJ;ZC " T+c P-+zlzzp P He Al
1 1 2 ¢ L )2
- GIGZ/ (1+G2P2)
= P PG (1.4-2)
3 2y Sy
e
272
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1
", C2e G,P,
= —————— where P, = (1.4-3)
2e 1+G_ P
1l + P1G1p2e 2 2
L./(P,P,)
1 32
- l-+L1 L1 = PIGIPZe (1.4-5)
L
- in the hf range where IL l S (1.4-6)
P1P2 1
X,C
Hence to reduce —i— in the hf range, one must try to reduce Ll .
1

But L1 must cope with the uncertainty in P1P2e==P1(P202/1+P2G )i

Assuming the worst case of uncorrelated uncertainties in Pl and

G is to

P2 . the best that can be done by the inner loop P 5

2

wipe out the uncertainty of P , So that L., need only cope

2e 1

with the uncertainty on P Physically, this makes sense - for

1”
obviously the inner loop cannot take care of the uncertainty in

P1 . There is then left the single-loop system of Figure 1-15(b)

and L1 can be designed to handle the ignorance of P1 only. The

resulting Ll is therefore more economical in bandwidth than its

Figure 1-15(b). Equivalent single-loop structure

of a cascaded 2-loop system.
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counterpart in the single loop system, for the realization of the
same C/R specifications. For example, compare the appropriate
TNi in Figure 1-16(a) (logarithmic scale) and in Figure 1-16(b)

(arithmetic scale) of the numerical example in Section 1.2-5.

|Tn,| single loop

20 |Tn,| coscaded
system

1
| 10 102 103

Figure 1-16(a). Comparison of noise response ITNlI on Bode diagram.

This looks very good, but the obvious question is: What of
the effect of sensor noise N2 not present in the single loop
design? It would first appear that the inner loop G2P2 would

have to be enormous in magnitude and bandwidth, leading to

tremendous effect of N But this is not so. And the basic

5
reason is available if one studies the mechanics of sensitivity
reduction by frequency response methods. The reason is that

design of the outer loop to handle a certain definite amount of

uncertainty, even though designed optimally, is nevertheless able

b O it e ik e

ol e 4 kit
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T T T
x’\
60 | Ty,| single -
loop
= -
a0 -
o

Figure 1-16(b). Comparison of noise response

|ty | on arithmetical scale plot.
1

to handle a "much larger" amount of uncertainty. This is nicely
seen ir the Nichols' chart in Figure 1-17.

Thus, in Figure 1-17, suppose the uncertainty in Pl(jw) is
given by the template shown of Pl which is not a point (it would
be a point if there was no uncertainty) but a region. Suppose the

specifications require the closed loop response uncertainty to be

e 8 O e s e i i
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Template of P,

IL]db
| T|=-2.8db
The range of P, ignorance

con be handled
—

Arg. L (deg.)

Figure 1-17. The template P1 and bound on Ll

not more than 3 db , and the optimum design locates Ll = GlPl
Ly
1+L1

in the position shown, i.e. ranges from =-2.8 db to

0.2 db . Note now that the actual uncertainty in P could be

l ’
the entire shaded region lying in between the loci of

|| = .2db and |T| = -2.8 db .

Thus P can in practice have significant uncertainty, even
2e

though the outer loop was designed on the basis of no P

2e
uncertainty. This is the secret of multiple-loop design — to

understand the nature of the "free" uncertainty available in the

various frequency ranges.

Thus, after L. has been designed, one finds what ignorance

2

of P can actually be tolerated in the abcve design of L

2e It

1

is found that in only one frequency range it is important to com-
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promise (overdesign) the outer loop L1 . in order to ease the L2
design problem. This is in the range IVK in Figure 1-8, where

trade-off between the two should be made.

Lo
Since P2e = 1+L2 in Figure 1-15(a), with L, = G,P, , the
final step is to determine the Lz needed so that the resulting

P2e does indeed stay within the bounds found by the previous step.

This is precisely a single loop design problem with P and its

2e
tolerances replacing the T function. It was demonstrated (5]

that the resulting two-loop design could be highly superior to a
single loop design, in the sense of achieving the same quantitative
sensitivity specifications, but with cbnsiderably less effect of
senscr noise.

The numerical single loop design example of Section 1.2 was

also done by a 2-loop cascaded design. The outer loop L1 with

its bounds is shown in Figure 1-18 and the inner loop L. with its

2
bounds in Figure 1-19.
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Figure 1-18. The outer loop Ll and bounds in

cascaded 2-loop system of a numerical

example.
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Figure 1-19. The inner loop L2 and its bounds in cascaded

2-loop system of a numerical example.
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1.5 A Simple Fast Technique for Multiple-Loop

(no P.M.) Design Perspective

The cascaded synthesis procedure has a highly interesting
property. One can achieve excellent design perspective by means of
the following straightforward construction, which only requires an
initial single-loop design in some detail.

Step. 1. Make a single-loop design LSn to handle the

entire problem and plot |Lsn| on a Bode-diagram as in Figure 1-20.

DB A
0 \
f kzrnox
Ko min
_pop-tRemride 2
40 k2 max
ko min
-60}
80+
-100+
-120F

Figure 1-20. Bode plot significant loop and plant
functions giving design perspective.
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Step 2. Plot anl = |P1nP2nl . The difference between

IL and |Pn| in the region where ILsnI <1, is the Ny

snl

sensor noise amplification (for its effect at the plant input).

Step 3. Note the hf uncertainty of P This is the maxi-

2 *

mum amount that can be saved in the hf range, giving lLanl in

Figure 1-20. It is always worth having a few db overdesign of

Lan , giving Lbn in Figure 1-20. Note that Lan is obtained by

simply introducing the high frequency characteristic XYZ of Lsn'

at point xa which is 20 db higher than point X . For example,
€2

in Figure 1-20, P, =k2/(s ) at hf with kzmax/k2min =20 db ,

then |L_ | is obtained by inserting the XYZ pattern at X_ .

For 5 db gain margin, point xb is 5 db 1lower than xa and

[Lbnl is the curve obtained by inserting XYZ at Xy -

Step 4. L2n can already be approximately drawn, as follows.

|Lbn| is used for IL Then mgx |L2n| is near Wy in

ln| 3
Figure 1-20, i.e., near the middle of the fairly flat region
preceding the large high-frequency slope. There is hardly any
obligation on L, in w < wy, - The shape of |L2n| for w > wy
is fairly standard. 1Its slope is ~30 db/decade from wy, to Wy

in Figure 1-20 until |L2n(3m)| = _[k2max/k2min|db'+Galn Margin] .
For w > w, , the shape of |L2n| depends on the excess of poles
over zeros of L2 which is due to G2P2 . Because the excess of

poles over zeros of L1 is due to L1 = GIG2P2P1 , the magni-

tude of the negative slope of |L2| is less than that of ‘Lll .

Step 5. sketch [P, | . The difference between |[L, | and
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IPan is N2 sensor noise amplification because in Figure 1-15(a)

-G

2
[T | e (JL) = (1.5-1)
N2'n T Wy'n L4GP) 4G G P
- s M) (1.5-2)
1+Glczplnp2n/(1+czpzn)
£ 5 L2n/P2n L A g P
’ = ’
(1+L1n)(l+L2n) 2n 2°2n
A =
Lln £ GlplnPZen ¢ (1.5-3)
p P2n
2en T 1+L
2n
L2n
N o in the hf range where lel <1
2n (1.5-4)
L |<«1.
2n

Step 6. One can now decide whether to use Lbn » Or to

| compromise further. Suppose that more compromise is wanted -

€.g. x more db overdesign giving Lc for outer loop. Then the

inner loop |L2c| maximum level can be reduced by x db relative to
ILZbImax » as shown in Figure 1-21.

It is important to note that the above is based on
e

Pl,Pz -+ ki/s 3 in the w-range at which L, is at B of

1 h
Figure 1-8. This is reasonable in large hf uncertainty problens,

because these require slow decrease of |L| over large w range.
It is in these problems that the complexity of multiple loop design

is warranted.
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karnox
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Figure 1-21. Trade off between inner loop and outer loop

of a cascaded no-P.M., 2-loop system.

1.6 Plant Modification System Synthesis

1.6.1. Plant modification (P.M.) structure.

It is again emphasized that all the multiple-loop systems

discussed above [5,12,13] are restricted to non-P.M. structures.

In this case, the degree-of-freedom available for the design is

bR

E limited. For a n cascaded plant system, ( n plant variables
available for measurement), there are n independent feedback loops
which may be used — if no-P.M. is allowed, i.e., if the output of
all the feedback processors are allowed only to the plant input.

i Together with the prefilter, this gives a (n+l) degree of freedom

e




E
!
;
|
|
|
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system, as shown in Figure 1-1l.. If feedback to internal plant
variables is allowed, then the n&pber of independent feedback loops
can be greatly increased. In a cascaded plant with n-1 internal

variables and one output variable the number is

n

2 (n-i) = (n+l)°n/2 . Now the total numbers of freedom available
o

is (n+l)n/2+1 , including the prefilter as shown in Figure 1-22.

Figure 1-22. The P.M. multiple-loop with
n(n+l)/2 +1 D.O.F. structure.

1.6.2. The plant modification problem.

Consider a plant consisting of two cascaded sections, as in
Figure 1-23(a) and suppose a certain maximum output signal level is
required, with Laplace transform Cl(s) . The signal level at the
input of P1 is then x1 = C1/P1 =C, (out of P, ) . This

remains true in the cascaded feedback structure (no-P.M.). Thus,

the feedback designer does not affect the signal level in the plant,
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needed to obtain a specific output level. This is true for any
feedback structure in which all the feedback paths return to the

plant input. If a feedback loop is put around plant P by

1 ’

means of H in Figure 1-23(b), then the signal at X is still

1 K

X2 P, Co 1 X P, Ci -
O—e—0—»—0O0—»—0

(@)

Figure 1-23 (a) A simple two plant system.

(b) Adding a P.M. loop L; = P\H, .

C,/P, . But
02 = xl+H1Cl = C1P1+H1Cl (1.6-1)
= (1+HlPl)-Cl/Pl = (1+Hlp1)-x1 (1.6-2)
For the same signal level of c1 and therefore of xl + the
signal level at C2 is now multiplied by (1+P1H1) , which con-

stitutes a modification of the plant. It is concievable that this
new level of C2 may be so much larger than the old one, that P2

may have to be rebuilt to be able to handle this larger signal

level.
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I1f the 'feedback expert' is working together with the 'plant
expert' in the design of the plant itself, then the trade-offs in
such significant plant modification may be seriously considered.
But in many cases this is not so. It is advisable to find a design
method which uses the P.M. loop to improve the sensor noise problem,
but keeps the increase in the signal level in the plant within a
tolerable range. Recall that the noise problem is significant in
the hf range (high relative the bandwidth of the useful control
signals). This gives us a very good opportunity to achieve signi-
ficant improvement in sensor noise effects with only small or
moderate signal level increase. In addition, the insight obtained
from such a synthesis procedure is very useful for those cases
where the feedback expert is called in to help the plant expert in

the actual plant design stage.

1.6.3. Reduction in cost of feedback by P.M. structure.

The cost of feedback can be tremendously reduced by a P.M.

system. This is illustrated by the simple 2-plant, 3-loop P.M.

system shown in Figure 1-24. The noise effect at xl and X, due

Figure 1-24. A P.M. 2-plant, 3-loop system structure with
unit feedforward element between plant section.
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1+P1H1+P2H2+GP1P2+P192H1H2

L = P.H
2 s

= » e
(1+Lil)(1+Liz)+PlP26 Li2 P2H2

-G/ [(1+L11) c (1+L12)]
GP,P

12
(1+L )(1+Li

1 2

1l +

i )

'Lo/ (P1P2) T P1P2G
1+4L o (1+L, ) (1+L, )
o 11 12

= Lb/(P1P2) in hf range where ILOI « 1.

-[H1(1+P2H2)+GP2]

(1+Lil)(1+Liz)+PlP26

-[L, /(1+L, ) +L_1/P
11 il [ 1

1+L
o

-[L11+L°]/Pl in hf range where

- H2[1+Plﬂl)

(1+L il) (1+L i2) +GP1P

2

- L, /[P,(1+L, )]
1,772 i,
1+L,
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S -Li /P2 in hf range where
ll«1, o, [«1 (1.6-8)
2
2 afk b (1.6-9)
N, N (1+L, ) (1+L, )+GP.P ’
2 2 i i 152
1 2
- L, /[(+L, ) (1+L, )]
f i, i i
1+L
o
& - L. in hf range where |L |« 1,
i, o
[Elred, o, | <1 (1.6-10)
1 2

Following the same design philosophy as in a non-P.M. cas-

caded system design, let Li cope with the uncertainty in P2
2
But, for the sake of the significant signal level variation due to

Li , 1t is impractical to let Li cope completely with the
1 1

uncertainty in Pl . Let Lil cope with Pl uncertainty in the
high frequency range where sensor noise is significant, while the
uncertainty in the low frequency range, where the control signals
dominate, is taken care of by the outer loop Lo . Then, L can
be designed as a highly economical loop, in terms of bandwidth.
So the sensor noise effect at x2 due to N1 in (4) becomes very
small compared to the single loop design.

The results of a numerical example, taken from Chapter 4,
are shown here to illustrate the huge improvement in sensor noise

effect, i.e., excellent saving in the cost of feedback.

Fiaure 1-25(a) shows the Bode plots of noise response and the
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