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SUM ~t

Consider the constrained part (denoted as the Plant) of ~

control system, consisting of n cascaded sections , each of whose

outputs can be sensed for feedbck purposes . Feedback from the!.e

points is to be used to achieve apriori specified tolerances on the

system response, despite great uncertainty in plant parameter

values. In this first quantitative work of its kind , the feedback

is permitted to proceed directly to internal plant variables ,

constituting ~plant ~~~~~~~~~~~~~ The reason is that the internal

plant signal levels needed to achieve a specific output are now

affected by the feedback loops. This is in contras t to previous

quantitative research in which the feedback was confined to the

plant input. The plant signal levels needed to achieve a specific

output were then not influenced by the feedback.

Plant modification feedback permits greater r~~~~~rtm. In the

“cost of feedback” , in te rms o f feedback loop ban dw idths and

e f f ec t  of sensor noise, at the cost of increase in plant internal

signal levels . In this work, the maximum permitted increase Q

in signal level , is part of the design specifications . A step by

step design procedure is presented for satisfying this Q require-

ment and the system response tolerances over the given range of

plant uncertainty , and doing so at sensibly minimum “cost of

feedback”. This permits the designer to achieve desired trade—off

between increased plant signal level and cost of feedback .
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CHAPTER 1

STATEMENT OF PROBLEM AND PRELIMINARY BACKGI~)UND

1.1 Introduction

This work deals with the problem of making a system perform

satisfactorily despite uncertainty, in the following context :

Equipment has been assembled by specialists in the area of

concern, in order to achieve certain objectives, for example, an

airframe and engine for accomplishment of certain aeronautical

objectives, a chemical plant for production of certain chemicals,

etc. This assembly of equipment is denoted as the plant. The plant

has the ability, the muscle so to speak , to achieve the objectives.

However , it does not have the accuracy needed. This is manifested

by uncertainty in the parameters of the mathematical relations des—

• cribing the plant . For example in Figure 1.1, suppose the relation

Plant

Figure 1—1. Plant

between plant output y and input x is given by a linear time-

invariant (t t i)  ordinary differential equation

LL •
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(1.1-1)

i.e., the Aj  , B~ are constants. There are q physical para-

meters k1~ •~ •i kq and K A1 ~ B~ are functions of these para-

meters. The values of these parameters are not known precisely, but

it is known that they lie within certain bounds k. E (k1,k~]

Hence, each possible parameter vector k , each combination of

values i a 1,... ,q , gives a different plan t transfer function,

generating a set “P {P(s)} of possible plant transfer functions.

Such a formulation of the uncertainty problem may appear naive

because one might argue that often the parameter values change with

time-giving uncertain linear time-varying relations, because the

rate of variation is uncertain. Also , the Lti description is

usually an approximation of a nonlinear relation. We are really

assuning £ti relations with the above uncertainty form, in order

to be able to rigorously use Laplace transforms and frequency res-

• ponse methods . However , it has been rigorously proven 116) that

uncertain linear time-varying plant problems are reducible to the

above £ti uncertainty form, and even uncertain nonlinear time-

varying plant to a certain extent (153 , can be so reduced. Hence

the above modelling is highly justifiable. Finally , one must begin

somewhere with the development of a scientific synthesis theory for

uncertain systems, and the tti case is obviously where to start.

The objective is to achieve certain apriori specified per-

formance objectives V P E ‘P . Since the overall system is to be

tti , it can be characterized by its response to any input, and the
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step response is very popular because it combines within it both the

fastest kind of input (an abrupt change) and the slowest (no change) .

Time domain specifications are reasonable in many cases, as in

Figure l.2a, the step response is to be inside the bounds

b1 , b~ V P € with additional bounds of similar nature on the

1.2 i i i i
upper-7.- ——s,
bound! ~~~- 

b ‘
0.9 - ‘/ i” -

‘ ~ lower bound
c (t) I 

~
, b2. 1 1  -

I I

i i

0 li ’ i I I
0 2 4 6

Time (Sec)

Figure 1—2(a). Time domain step response specification.

first and perhaps higher derivatives. Our design technique is in

the frequency-domain, so we must translate such t-domain bounds into

“equivalent” u-domain bounds on the system frequency response

T(jw) . If the system is minimue—phase (2], IT(iw) I suffices and

we restrict ourselves here to such systems. This translation is, as

of this date, an engineering art rather than a science. Advice on

how to translate is scattered in the literature (2 ,6,143 . Very good

results have been obtained with only moderate effort.  We shall

L _ _ _ _ __ _ _ __ _
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Figure 1-2(b). Frequency domain specification.

asstm~ in this work this translation has already been done . It is

worth noting that it has been shown (15) that for minimum-phase

systems, time-domain specifications on the step response and on its

derivative of the following nature

b~~~ (t) ~ ~~~~~~~ ~ b3
U ) (t )  , i — O ,l , . . . ,n ( 1 . 1—2 )

can always be sat isfied by means of u-domain bounds of the following

nature

~ ~C(jw ) / R (jw )~ ~ B
1
(w) . (1.1 3)

In our work , the boundc on system per formance will have this form .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -. ~~~~~~~~~~~~~~~ ~~~~~ —
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1.1.1. Previous work

The quantitative aspect of our work cannot be over-emphasized.

The sensitivity reduction capability of feedback is very well-known.

Hundreds of books and thousand s of papers have been written on the

subj ect , but the number of these which are quantitative in nature is

extremely small, i.e., with uncertainty bounds and performance

bounds explicitly included in the problem statement. It is as if

the mere use of a feedback configuration around the uncertain plant ,

suffices to scare it into docile behavior. In the vast majority of

the techniques the uncertainty is completely ignored, and there are

no or extremely crude performance specifications. One presumably

emerges with the same design whether the parameter uncertainty is

x% or 1000x% , and irrespective of whether the bounds B1 , B2 in

Figure 1-2 (b) are narrow or wide apart . There is no concern with

the ‘cost of feedback’ - which, aside from the sensors, lies in the

bandwidth of the loop transfer function, and little concern with the

extremely important matter of sensor noise (see Sec. 1 .2) .  These

points have been emphasized in [5].

Our work follows closely in the tradition of ‘quantitative

synthesis ’ recently established (2,5,8). To appreciate the present

work, it is important to be aware of the highlights of this

previous work. Quantitative synthesis was first developed for a

plant with only one variable, the plant output, c(t) in

Figure 1-3, available for feedback [2]. The system comand input

r(t) was also assumed accessible, so the processing of these two

signals provides two independent compensation functions to the

designer. An infinitude of canonical two-degree-of-freedom

LL~
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Figure 1—3. Structures of 2-D.O.F. system.

structure may be used [4]. The design procedure developed in (2]

used Figure 1—3 (a) , but suppose the sensor transfer function is

H(s) , then one can use Figure 1—3 (b) , letting G1H (of

Figure 1-3(b) ) G (of Figure 1—3(a)), in order to have the same

loop transmission function L(s) = G1PH , and F1G1 = FG in

order to have the same system transfer function

F G PFGP 1 1 (1 1—4)1+GP 1+G1
PH

1.1.2. A 2—degree—of-freedom structure with 2—loop

implementation

Suppose large loop feedback bandwidth is needed and it is

found that an independent sensor measuring ~ (t) (e.g. ,  a tacho-

meter in a position servo) gives less noise than the differentiation

~~~~~~c-—=--•--~~~
—c--- 

~~~~~~~~~~~ r~~~E~~ -~~~~~~~
_ ~~~~~
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of a position sensor, so both sensors are used , as in Figure 1-4,

with the two sensor transfer functions H1 , H2 , and say the

structure in Figure 1-4 is used. This is a two-loop structure

fl~(t) Fb Gb G0 ‘~ C (t)

/
, 

/ 

T 

-

~ 

y ;  
-

~~~~~~~~~~~

- 
-
‘ 

Figure 1-4. 2-loop, 2-D.O.F. structure.

physically, but in terms of fundamental feedback design it is a two-

degree-of-freedom system, so the quantitative design theory of

Figure 1-3(a) is used, giving G and F • It is required that the

loop transmission around P , be the same in both cases , i .e.,

L — PG (Fig.1-3(a) ) P Ga (H 1+G~H2 ) (1.1-5)

and

T — F (Fig.1-3(a)) — Fb l+P(G (H
l+GbH2

)) (1.1-6)

so

G G ( H 1+%H2 ) , FG — F
b%G 

- (1.1-7)

H1, 
~2 

are known , so one must decide how to split G = Ga (H l+GbH2 )

between Ga and . This is done by considering the effect of

sensor noise N1 , N 2 at the plant input ,

G (H 1N1+H2%N 2 )
— X (j w) a 

(1 1—8)l+P(G (H1+%H2))

___  
-~~~~~ - -
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given that

G — ~ (j w) Ga (Hi+H2Gb) (1.1-9)

is fixed by the quantitative design technique of [2] .

The objective is to minimize 
~ a 

I x ~I 2 dw , subject to the

above constraint. This is a straightforward opt imization problem

which can be solved outside the realm of quantitative feedback

synthesis. The latter only provides the design with the feedback

loop transmission (L) needed around the plant , and the prefilter

F (F) needed to process the conusand input r ( t )  - The state-of-the-

art in sensors and in filter synthesis determines how L and F

are to be realized. In fact , in the above context one might con-

sider use of an accelerometer in a 3—loop feedback structure. But

from our point of view the structure remains that of a two-degree-

of- freedom system and we shall continue to associate the latter

with a single—loop system.

1.2 Paview of Two-Degree-of-Freedom Quantitative Design

Theory

Figure 1-3(a) is used with T F . It is assumed that

the compensatioi~ network, whose power level can be very low (as

the plant contains the power elements), can be constructed with

negligible uncertainty in their transfer functions. Hence , due to

the uncertainty in P

L — G P  (1.2—1)

and

~ Zn I T ( i w ) I — A Zn . (1.2—2)

~~~IIL~ - -~~~ ______ 
— - 

- -
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Given that A Zn I T ( j w ) l ~ 
61 db for example at in

Figure 1-2(b), what are the resulting constraints on L~j w) ? It

is convenient to pick a “nominal” plant P0 (s) , and derive the

bounds on the resulting “nominal’ loop function — P0G - These

H bounds can be found by means of a digital computer , but i t  is very

useful for insight to see it done on the Nichols ’ char t

( logarithmic complex plane with abscissa in degrees , ordinate in

decibels - 20 log10) .  The procedure is illustrated for the case

p ( )  = 
ka ; 1 ~ k ~ 10 ; 1 ~ a ~~ 10 . (1.2—3)s(s+a)

At w — 2 rps , P(j2) lies within the boundaries given by ABCD in

Figure 1-5. Since Zn L — Zn G + Zn P , the pattern out lined by

:1
-I

- 

- 
24011 —

M
~~~I~~ TI c~

• °- —- 
~~~~~~ 

-
--71/-

- 

~~~~~~~~~~~~~~~~ 

-

-13DB BOUND ON L(j2)
I -60’

-1505 - I -_ _ _ _ _ _  -

-1534’ -120 AR O L. ( DEGREES ) -40’

Figure 1-5. Derivation of bounds on L( ju )  on Nichols chart .
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ABCD may be translated, but not rotated , on the Nichols ’ chart ,

the amount of translation being given by the value of Zn G(j2)

For example , if a trial design of L ( j2 )  corresponds to the tem-

plate P (j 2 )  at A ’B ’C’D ’ in Figure 1-5, then

IG(j2)J db ~ 
IL(j2)

~ db 
— IP (j2)Idb

(1.2—4)
— (—2 . 0 )  — (—13.0) = 11.0 db

Arg G(j 2 )  a Arg L(j2) - Arg P(j2)
- (1 .2—5)

— (—60 °) — (—153.4 °) = 93.4°

1.2.1. Bounds on L (jw )  in the Nichols’ chart.

The templates of P (jw )  are manipulated to find the position

of L (jw)  which results in the specifications of Figure 1-2 (b) on

Zn IT(iu) I being satisfied. Taking the w 2 template, one

tries, for example, positioning it , as shown in Figure 1-5 , at

A ’B ’C ’D’ . Contours of constant ZnIL/ ( l+L)  are available on the

Nichols ’ chart . Using these contours, it is seen that the maximum

change in Zn(L/(1+L) which from (2) , is the maximum change in

in ~~ is , in this case, very closely (— 0 .49) — (—5.7) = 5.2 db

the maximum being at point C’ , the minimum at point A ’ -

Suppose that the specifications tolerate a change of 6.5 db at

w —  2 , so the above trial position of IL(j2)l is in this case

more than satisfactory. The template is lowered on the Nichols’

chart to A”B”C”D”, where the extreme value of tnI L/( 1+L) are

at C’’ (—0 .7 db) , A” ( — 7.2 db) . Thus, if Arg LA (j2 )  —60°

then — 4 . 2  db is the smallest magnitude of LA (j 2 )  which satis— 



______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~. ~a

Li

r
fies the 6.5 db specification for A in I T I  . Any larger mag-

nitude is satisfactory but represents over-design at that frequency.

The manipulation of the w 2 template is repeated along a new

vertical line, and a corresponding new minimum of ILA
(j2) I found.

Sufficient points are obtained in this manner to permit drawing a

continuous curve of the bound on L
A
(i2) , as shown in Figure 1-5.

The above is repeated at other frequencies, resulting in a family

of boundaries on L~ (~ 2) -

1.2.2. Nature of the bounds on L(jw)

A typical set of bounds is shown in Figure 1-6 . The bounds

~ 20db

-32 

— -2edb — 

~~~~~~~ ~~~~~~

Bh SPI

—-40d b —  ~~
/

-4€
~3~ oo =2400 -120° 0°

DEGREE

Figure 1-6. Typical bounds of L in Nichols ’ chart.

- 

- - 

~~~

-

~~~

- 

~~~~~~~~ 

- i~.
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tend to move down in the Nichols’ chart (become less onerous),

obviously because as w increases , greater change in IT(iw) I

is permitted, as in Figure 1—2(b) . It is in fact essential that

at large enough w , the uncertainty in !T(jw) I (i.e., the bounds

on ~T(jw)~ ) be greater than the uncertainty in P( jU)  , because

the net sensitivity reduction is always zero in any practical

system as was long ago 1]. ) shown by Bode,

f Zn tS~ (jw)ldw = - f in ~l+L ( j W) j dW = 0 (1.2-6)

where S~ = is the sensitivity function.

In the above example as w ~ , P -
~ , so

A Zn ~~ -~ A tn(ka) — 40 db - Note in Figur: 1-2(b) that the

permitted A Zn IT(jw) I ~ 40 db for A > 50 - Such large toler-

ances on I T ( i~) I  at large w are tolerable because T (jw ) j is

negligible at large w , e.g., if I P ( j wH can change at most

by 40 db at large w but IT(iw) I changes by 52 db , who cares

if this 52 db change is from Ti min 10
6 

to IT I ax to

400 x io
6 

. In return, one can concentrate the sensitivity

reduction over the bandwidth of T(jw) - Thus, although I P(~~) I
in this region varies by say 40 db , ~T(jw)~ may be controlled

to vary by only 4 db , or 0.04 db if desired.

1.2.3. Universal high-frequency boundary.

As noted , in the high-frequency range A Zn I T ( iu )  I must

realistically be allowed to be ~ A Zn jP(jw) I , and this is

reflected in the bounds on L0(jw) tending to a very narrow pencil .

~
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In Figure 1—7, B~ is drawn for the case A Zn L — A Zn k — 20 db

A Zn IT ( iw ) I — A in IL/ 1+L)I ~ 23 db at w . However, the

resulting peak value of IL/ ( l+L)  is 23 db = 14.]. arithmetic at

k — kmax indicating a highly under-damped pole pair at the

corresponding frequency with damping ratio ~ = 0.034 , when

k = kmax This tremendous peaking does not appear in the system

response to the coninand inputs R , because it is filtered out by

the pre—filter F in Figure 1—3(a) . But the system response to a

disturbance D is given by Td — (l+L)~~ . Disturbance

• attenuation generates its own requirements on L , which may lead

to more stringent bounds on L than those due to T (jw )  . The

20

\ •
~‘~LE-~1A9 ~~~~~~~ 

VI 
~~~~~~~~I, n~~ ~~~~~~~~~~~ I

~~

I L I (DB) I’~~~~~~~1Jk
..j4~*..240o \Bj ,  

~
‘
~~
[ 

0~e

~~~~~~~~~ 4
i.6

I contour j
B(w~ ) 

_ _ _ _ _ _I B
1’

4 [) ‘ 5C~~~, / I m 20IoQ
~j~~~I9h 1  &6~~~~ ~~~~~~~~~~ 

I_ .
- 

~~ 
2.3t~~~ 

~~~

-240° -180° -120° ~600

L. L (DEGREE)

Figure 1—7 Bounds on L(jw) on Nichols’ chart

- 
~~~~~ ~~~~~~~~~~
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final contours used in the design [2] must be the most stringent

composite of the two. However, even if D is very small , it is

usually certain that a peak I T d I of 14.1 is intolerable. It is

reasonable to add a requirement I T d I ~ ~y some constant , for all

w and over the whole range of P parameter values . The resulting

constraining contours denoted by B~ are shown in Figure 1-7

for the case A in k = 20 db , and for y = 2.3, 3. 5 , 5 db (all

these contours are symmetrical with respect to the vertical line

Arg L = -180° on the Nichols’ chart). If y = 5 db is used, then

• B(w
~
) indicates the composite contour shown in Figure 1—7. For

U > W,~ ‘ I A T(jw) I increase while y remains the same , so that

sooner or later there is reached a frequency U
1 ~ 

B(üj) is a fixed

boundary B~ , effective ‘Vw > -

1.2.4. The optimum L (j w ) .

It has been shown (3] a realistic definition of optimum in

the iti system is the minimization of k , defined by

u r n  L( s) = k 5—e 
, where e is the excess of poles over zeros

s-*~
assigned to L(s)

It has been proven (3) that the optimum L lies on its

boundary B. at each and that such an optimum exists and is

unique . Most important for the present purpose , is that in signi-

ficant plant ignorance problems the ideal optimal L has the

properties shown in Figure 1—8 , i.e., over a significant range it

follows Bh along UV up to the point J at which it abruptly

jumps to infinity along WW ’W” and returns on the vertical line 
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yZ , whose phase is (-90°) e . Such an ideal L (j w )  is, of course,

impractical. . A practical suboptimum L is shown in Figure 1-8.

L L (degree )

-e~90° -360° -180° 0°
.— Lopt~~~~~

~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~~~~~~~~~~~~

‘ L U

Proctical subopti mum L

Figure 1-8. Bounds on L and Optimum L on Nichols ’ Chart.

some results of a numerical design example are shown in

Figure 1-9. They were derived for the following problem.

1.2.5. Numerical example. (Figur e 1—3(a ) ) .

Plant : P —

Plant ignorance: P1 — k1/s , /1 ~ k1 ~ 1.0

P
2 

— k2/s , /1 ~ k2 ~ 10 1~~~

Per formance Specification: Shown in Figure 1-2(b) were
originally derived from time

domain bounds of Figure 1-2(a).

Disturbance response : ~ 2.0 db
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30 -- 
ATLO.145db

20 - 
~~
‘0.2

/ 2db ~

1L51 (DB) 
- _

J ’
d 

~~~~~~~ 15 5db

AP~4odb 5
_..~~1~&I~~~,~~1O ,AT 125 .5db

::: ~~~~
T

~~~

?

,

b00

~~

-360 -270° -180° -90° 0°
LL~ (DEGREE)

Figure 1—9. Single loop L5 and bounds of a numerical example.

This example is used later in Chapter 2 as a vehicle for presenting

the plant—modification design technique.

1.3 Cost of Feedback and Effect of Sensor Noise

In significant plant ignorance problems, there is a strong

tendency for the design to be such that N , in Figure 1-3(a), is

so highly amplified as to saturate the plant input at X . The

noise reLponse function is (see Figure 1—3(a) )

I
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T A L.  
-G 

_ _ _

N N  l+GP l+L

~ -L/P in h.f. range. (1.3-1)

The noise response of the numerical design example of the last

section is shown in Figure 1—10. Notice that the noise component

at x in Figure 1—3(a), is most important in the high-frequency

range where the useful command and disturbance components due to

D , are relatively small, rather than in the low frequency range

where the latter are relatively large. This is further enhanced

by the fact that arithmetic scales, shown in Figure 1-11 , must be

used to find

(~~
)
~~~ =11 ( IT NI2 $N)dw 

~~~~~~~ 
power spectrum (1.3—2 )

0

10 tOO 1000 W

DB
-40--

— ILl
IPI

-80 -

A
-120 —

Figure 1-10. The noise response and I L l I P I  -

~~~ -JII4
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Hence, it is desirable to decrease ILi vs u , as fast as

possible in the high frequency range. Even a saving which is small

in the logarithmic scale near A in Figure 1-10, can be signi-

ficant in rins sensor noise effect.

lINt - I  \_

20/ 
~~~~~~~~

.

0 tOO 200 300
w

Figure 1—11. Ar ithmetic plot of TN

1.4 Reduction in Cost of Feedback

1.4.1. Linear time-varying compensation and nonlinear

compensation.

To reduce the hf sensor noise effect , one way is by linear

time-varying compensation if the problem has time-varying features

(7]. Another is by nonlinear compensation. Actually the so-called

“adaptive’ system is in the category of nonlinear compensation.

They may or may not be better than iti compensation in reducing

the ‘cost of feedback’ . It is noteworthy and scandalous that in

Lk~~ ~



~ 
, ‘ ..r- . ~~~~- w-~- ~~~~~~~~ ~~ V 

- ~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~ T~~ ’~ ~~~ a’i ’~~~ .

19

the vast literature on adaptive systems , there is hardly ever any

quantitative comparison between the adaptive design promoted and a

proper iti design accomplishing the same design objectives. One

could excuse this not being done in a general. manner, because

there is hardly any ‘adaptive’ method permitting quantitative

design in the sense here defined. However, it could at least be

done experimentally. Occasionally one sees a comparison , with an

‘ordinary ’ or so-called ‘classical’ design. But the comparison

is usually greatly biased, because generally some very naive iti

design is used, and there is no statement of specifications -

even made up after the fact. There is not recalled a single corn-

parison, on the part of the proponents of adaptive systems, with

the iti quantiative design technique (2] discussed here. Some

nonlinear compensation techniques for which a quantitative design

theory exists to a greater or lesser extent have appeared in the

literature (8,9,10,11] for which such comparisons are possible.

It is noteworthy that these were expressly motivated by the desire

to reduce the ‘cost of feedback ’ , so that such comparisons were a

natural by-product.

1.4.2. Multiple—loop feedback.

Another method of ‘cost of feedback ’ reduction , in the con-

text of iti design , is by means of multiple-loop feedback,

restricted to those cases where additional plant variables (besides

the plant output) are available for feedback purposes. Such a

multiple loop design technique was first developed [5] for the cas-

caded structure of Figure 1-12 .

~

- - - . - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
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D3 D2 D~
F G2 G3 P3 P2 P1_/

Figure 1—12. Cascaded multiple-loop system

with (n+l) D.O.F. structure.

Then the technique was extended (12] to the parallel

structure of Figure 1-13.

Figure 1—13. Parallel multiple-loop system with

n+2 degree of freedom structure. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Finally, it is currently [13) being extended to the parallel-

cascaded structure of Figure 1-14 , where the number of cas”aded

II !  N,, I~ 1’
\ J,2i~.!_~”~i~,i 

f OI,~ d~~~~ I ,

R F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~,D
Pm,I Dm~”~

2 Dm,2 Dm,n-2 0m,n- c
~m,2 

— 1
~m,n-p 

Pm,n
-G~,i Nm,, I

: Gm,2 Nm,2 I

~Gm,n..2 N,,.,,~.,

.rn’

Figure 1-14. Parallel-cascaded multiple—loop structure

with m(n—1)+2 D.O.F. structure.

element in each of the parallel path need not be the same. But

note that in all three cases, there is no plant modification (P.M.)

because each feedback loop is returned to the plant input, with

none deliberately returned by the feedback designer (not the plant

designer) to internal plant variables (see Section 1.6.2 for

detailed discussion).

The multiple-loop plant modification synthesis theory

developed here , is based to a large extent on the design theory 

~ -— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
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for the above non P.M. multiple loop designs . Hence , it is very

important to first thoroughly understand the essentials of the

above design philosophy, which is therefore next presented. Since

this present work is confined to the cascaded plant, only the

latter is presented. It suffices also to consider the cascaded

two—section case.

1.4.3. Cascaded 2-loop design — no P.M.

The basic idea is to use the inner loop L2 = G2P2 in

Figure 1-15(a), to minimize the effect of sensor noise N1 at the

D2

R ~ :1 
G 

~~~~~~~~~~~~~~ t%.N

Figure 1-15(a). Cascaded 2-1oop system — no P.M.
II

plant input X
2~ 

. This effect is

- G1G.,
T — —

~~~~~~~ (1 4—1)N 1 N 1 1+G2P2+G1G2P1P2

— G
1

G
2

/(1+G
2

P
2

)

— (1.4—2 )
1 

P1P2G1G2
+ 

l+G2
p
2

I

~

. - - -

~

- - - -~~~~~~~ - - - -:~~~~ --~~~~- - ~~~~~
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- 

P
2 

“2e G2P2
— where 

~2e l+G P2 
(1.4-3)

1 + P
1G1

P
2 2

L1/(P1P2)
- 

1+ L
1 

L
1 

— P1G1P2 (1.4—5)

- 

~~
—j — in the hf range where I L 1I ~~ 1 . ( 1 . 4 - 6 )

1 2

x,c
Hence to reduce —~-- in the hf range , one must t ry to reduce

1
But must cope with the uncertainty in P

1P2 =P 1
(P2G2/l+P2G2)).

Assuming the worst case of uncorrelated uncertainties in P1 and

P2 , the best that can be done by the inner loop P2G2 is to

wipe out the uncertainty of 
~2e so that L1 need only cope

with the uncertainty on P
1 . Physically, this makes sense - for

obviously the inner loop cannot take care of the uncertainty in

P1 . There is then left  the single—loop system of Figure 1—15(b)

and L
1 can be designed to handle the ignorance of 

~l 
only. The

resulting L1 is therefore more economical. in bandwidth than its

tN

Figure 1-15(b). Equivalent single-loop structure

of a cascaded 2-loop system. 

- —- - - -- - - - -—--- -
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counterpar t in the single 1oop system , for the realization of the

• same d R  specifications. For example, compare the appropriate

TN. in Figure 1—16(a) (logari,thmic scale) and in Figure 1-16(b)
3.

(arithmetic scale) of the numerical example in Section 1.2—5.

40
ITN,I single loop

~~ 2:-

_ _ _ _ _ _

Figure 1-16(a). Comparison of noise response I T N1I on Bode diagram.

This looks very good , but the obvious question is: What of

the effect of sensor noise N2 not present in the single loop

design? It would first appear that the inner loop G2P2 would

have to be enormous in magnitude and bandwidth , leading to

tremendous effect of N2 . But this is not so. And the basic

reason is available if one studies the mechanics of sensitivity

reduction by frequency response methods . The reason is that

design of the outer loop to handle a certain definite anount of

uncertainty, even though designed optimally, is nevertheless able
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- • I

60 - ITNII single -

• 

• loop

40.- TI
0 00 200 300

Cu

Figure 1-16 (b) . Comparison of noise response

I TN I on arithmetical scale plot .
1

to handle a “much larger” amount of uncertainty. This is nicely

seen in the Nichols ’ chart in Figure 1-17.

Thus, in Figure 1-17, suppose the uncertainty in P
1
(jw) is

given by the template shown of P
1 which is not a point (it would

be a point if there was no uncertainty) but a region . Suppose the

specifications require the closed loop response uncertainty to be
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TI :0.2db
/ Template of P1

ILIdb 
/

/ IT I:_2.8db

The range of P, ignorance
con be handled

A rg. L(deg .)

Figure 1-17. The template P
1 and bound on

-• not more than 3 db , and the optimum design locates L1 = G1P1

in the position shown , i.e. j -.~~
— ranges from -2.8 db to
1

0.2 db . Note now that the actual uncertainty in P1 , could be

the entire shaded region lying in between the loci of

I T I — .2 db and ITt — -2.8 db

Thus P can in practice have significant uncertainty, even

though the outer loop was designed on the basis of no 
~2e

uncertainty. This is the secret of multiple-loop design — to

understand the nature of the “free” uncertainty available in the

various frequency ranges.

Thus, after Li has been designed, one finds what ignorance

of P20 can actually be tolerated in the abr ve design of L1 . It

is found that in only one frequency range it is important to corn-
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promise (overdesign ) the outer loop L1 , in order to ease the L2

design problem . This is in the range P/K in Figure 1-8, where

trade-off between the two should be made.

Since — 
~~

-

~~~~

— in Figure 1-15(a) , with L2 - G2P2 , the

final step is to determine the L2 needed so that the resulting

~2e does indeed stay within the bounds found by the previous step.

This is precisely a single loop design problem with 
~
‘2e and its

tolerances replacing the T function. It was demonstrated [51

that the resulting two-loop design could be highly super ior to a

single loop design , in the sense of achieving the same quantitative

sensitivity specifications, but with considerably less effect of

sensor noise .

The numerical single loop design example of Section 1.2 was

also done by a 2-loop cascaded design. The outer loop L
1 with

its bounds is shown in Figure 1—18 and the inner loop L2 with its

bounds in Figure 1-19.

~~~~~~~~~~ —-~~• -~~~~-- - ••-. --——-—~~~~~~~~~~~~~~~~
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40-
,f- AT’O.145db

20 - 
\j~: 

~~~~~
* 

~~~~~ ~‘f

0 -ILI(DB) Li
3.2 w13.2, A ~~ 0db
5

•1 Ql~~5
-20 8 ‘47 ~~~

5db
2O~~

-40 -

I I
-360° -270° -180° - 90° 0°

LL 1 (DEGREE)

Figure 1-18. The outer loop L1 and bounds in
cascaded 2-loop system of a numerical

4 example.

20

L21° 40 -~~~-~~~~~~~~~

100 ~~~~~~~~~~~~~~~~~~~

I~in 200

-4C -—____ _ _ _ _ _ _

_ __ __ _ _,

300 

_ _

-180° -120° ~600 0° 60° 120° 180°

LLz 36~ (ccc1le Z)

Figure 1—19. The inner loop L2 and its bounds in cascaded j
2—loop system of a n umerical example.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  LA
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1.5 A Simple Fast Technique for Multiple-Loop

(no P.M.) Design Perspective

The cascaded synthesis prçcedure has a highly interesting

property. One can achieve excellent design perspective by means of

the following straight forward construction , which only requires an

initial single-loop design in some detail.

Step. 1. Make a single-loop design L to handle the

entire problem and plot IL5~ I on a Bode—diagram as in Figure 1-20.

I

0 
Wb WS WbI Wb2

f k 2 mox I

:: ~~~~~
-80 - F~j a j PpP2nI

-100 -
IL snI

-120

Figure 1-20. Bode plot significant loop and plant

functions giving design perspective. 

~~~~~~~~~-—--—• ~~~~~
••..
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Step 2. Plot t e n ! = ln~2n ’ . The difference between

IL5~I and 
~~n ’ in the region where I L5~I < 1 , is the N1

sensor noise amplification (for its effect at the plant input).

Step 3. Note the hf uncertainty of P2 - This is the maxi-

mum amount that can be saved in the hf range, giving ~L I  in

Figure 1—20. It is always worth having a few db overdesign of

L , giving T
~ n 

in Figure 1-20. Note that L is obtained by

simply introducing the high frequency characteristic XYZ of L5~~.

at point Xa which is 20 db higher than point X . For example,

in Figure 1-20, P2 =k2
/(s

2) at hf with k7 /k2~~ 
= 20 db

then I Lan! is obtained by inserting the XYZ pattern at Xa

For 5 db gain margin, point Xb is S db lower than X and

‘sn ’ 
is the curve ~btained by inserting XYZ at X.~

Step 4. L~ can already be approximately drawn, as follows.

is used for I L1~I - Then max 1L2 1 is near tUb in

Figure 1—20 , i.e., near the middle of the fairly flat region

preceding the large high-frequency slope. There is hardly any

obligation on 1i2 in w < . The shape of IL25 I for u >

is fairly standard. Its slope is ~-30 db/decade from to

in Figure 1—20 until jL2 
(jw)l = _ [k

2~~ x/k2min !~~~
+ Gai n Marg in]

For w > Wb2 , the shape of 1L251 depends on the excess of poles

over zeros of L2 which is due to G2P2 . Because the excess of

poles over zeros of L1 is due to L1 
= G1G2P2P1 , the magni-

tude of the negative slope of IL21 is less than that of 1L11

Step 5. Sketch I~25I . The difference between IL 2n I and 

— - -•• 

-

- 

~~~~~~~~~ 
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!p2 1 is N

2 sensor noise amplification because in Figure 1-15(a)

— 
1+G

2P2 + GG P P (1.5-1)

- G
2

/(1+G
2

p
2— —  — (1 5—2)l+G1G2P p /  (l+G
2P2 )

- L IF
- 2n 2n 

L A G P(1+1.
1 ) (1-fL2 ) 

‘ 2n 2 2n ‘

~ 
G1P1 P2 , (1.5-3)

~
‘2n

2en l+L
2n

L
- ~~~~~~ in the hf range where IL I ~ 12n in 

(1.5-4)
IL J~~~ l .2n

Step 6. One can now decide whether to use Lb , or to
compromise further. Suppose that more compromise is wanted -

e.g. x more db overdesign giving Lc for outer loop. Then the
inner loop I L2~ { maximum level can be reduced by x db relative to

IL2b ImJ~ , 
as shown in Figure 1—21.

It is important to note that the above is based on
ei

~ 
kilo in the w-range at which L

1 is at B
h of

• Figure 1-8. This is reasonable in large hf uncertainty problems ,
because these require slow decrease of I L l  over large u range .
It is in these problems that the complexity of multiple loop design

is warranted.
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DB
0

k2 max ~~~~~~~~~~~~~~~~~~~~~~~~~
k2 min db

ILb l~~~\ ~ ILcI\ y

Figure 1-21. Trade off between inner loop and outer loop
of a cascaded no—P.M., 2-loop system.

1.6 Plant Modification System Synthesis

1.6.1. Plant modification (P.M.) structure.

It is again emphasized that all the multiple-loop systems

discussed above (5 ,12 ,13] are restricted to non—P.M. structures.

In this case , the degree—of-freedom available for the design is

limited. For a n cascaded plant system, ( n plant variables

available for measurement) , there are n independent feedback loops

which may be used — if no—P.M. is allowed, i.e., if the output of

all the feedback processors are allowed only to the plant input.

Together with the prerilter , this gives a (n+1) degree of freedom
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system, as ShOwn in Figure 1. 11 If feedback to internal plant

variables is allowed , then the nWnber of independent feedback loops

can be greatly increased . In a cascaded plant with n-l internal

variables and one output variable the number is

~ (n-i) - (n-i-i) n/2 . Now the total numbers of freedom available

is (n+l)n/2+l , including the prefilter as shown in Figure 1-22.

X Cn Cn-i C2

Figure 1-22. The P.M. multiple-loop with

n(n+l)/2+j. D.O.F. structure.

1.6.2. The plant modificatio~~problem.

Consider a plant consisting of two cascaded sections, as in

Figure 1-23 (a) and suppose a certain maximum output signal level is

required, with Laplace transform C1(s) . The signal level at the

input of P
1 is then X1 C1/P1 — C2 (out of P2 ) . This

remains true in the cascaded feedback structure (no—P.M.). Thus,

the feedback designer does not affect the signal level in the plant,

L - -

~~~~~~~
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needed to obtain a specific output level. This is true for any

feedback structure in which all the feedback paths return to the

plant input. If a feedback loop is put around plant P1 , by

means of H1 in Figure 1—23(b), then the signal at X1 is still

X2 p2 C 2 j  X 1 p1 Ci
p p~~~~p 

~ 0 c 1(t)
(a)

x2 ~ C 2 1  X i p1 CI
o . 2 O~~~~~9 ~

_ _ _ _

(b )  -

Figure 1—23 (a) A simple two plant system.
(b) Adding a P.M. loop L 1 = P1H1 -

C1,?1 . But

C2 — X1+H1C1 = C1P1+H1C1 (1.6-1)

= (1+H
1P1
) ~C1/P1 = (l+H1P1) -X 1 (1.6—2)

For the same signal level of C1 and therefore of X 1 , the

signal level at C2 is now multiplied by (1+P1H1) , which con-

stitutes a modification of the plant. It is concievable that this

new level of C2 may be so much larger than the old one, that P2

may have to be rebuilt to be able to handle this larger signal

level.

__________________________ 
- - - =~~~=~~- — - - -~~-~~~~~~~~~-



___________________________ - -~~ 

~~~~~-~‘rrr ~~~~~ ~~~~~ ... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~

35

If the feedback expert ’ is working together with the ‘plant

expert’ in the design of the plant itself , then the trade-offs in

such significant plant modification may be seriously considered.

But in many cases this is not so. It is advisable to find a design

method which uses the P.M. loop to improve the sensor noise problem,

but keeps the increase in the signal level in the plant within a

tolerable range. Recall that the noise problem is significant in

the hf range (high relative the bandwidth of the useful control 
S

signals). This gives us a very good opportunity to achieve signi-

ficant improvement in sensor noise effects with only small or

moderate signal level increase. In addition, the insight obtained

from such a synthesis procedure is very useful for those cases

where the feedback expert is called in to help the plant expert in

the actual plant design stage.

1.6.3. Reduction in cost of feedback by !.M. structure.

The cost of feedback can be tremendously reduced by a P.M.

S system. This is illustrated by the simple 2—plant, 3-loop P.M.

system shown in Figure 1-24. The noise effect at X1 and X2 due

D2 D1

R F G Pe \c~ X1
p t;2j~i ~

Figure 1-24. A P.M. 2-plant, 3-loop system structure with

unit feedforward element between plant section. 
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to N
1 and N2 are

N1 
— 
1+P

1H1+P2H2+GP1P2+P1~2H1H2 
(1.6-3)

L = P H
S 

—G il 
1

=
(1-fL . ) (l+L . )+p P G ‘ L. = P H

1 1
2 

12 1 2 2

—G / ((l+Li1
)(l+Lj2

)]

G P P
1+ (1-I-L

i 
) (l.I-L

i1 2

-L1/(P1P2
) P

1
P2G

— — 

1+L0 
~ L~ (l+L

i ) (1+L~1 2

— L / (P1P2) in hf range where IL0I ~~~ 1 . (1.6—4)

x — (H (1+PH)+GP ]
T
N1 N1 

— 
(1+Li

) (l+Li )+P1P2G 
(1.6-5)

-(L /(1+1. ) +L 1/Pii 
i
1 0 1

1+L
-
, 0

~ 
-(L

i 
+Ia
~
]/Pi in hf range where (1.6-6)

IL~I ~~ 1 , IL~~I ~ 1

X — H  (1-i-P H )
T
2 ~~~2 _ 2 11 

(1 6—7)N2 N2 (1+L
i
)(l+Lj )+GP1P2

— L~ / (P2(l+Li ~2 2
- 

1+1
~0

— - 5 - - —.~—--———--—-—.——.~~~~ —?-~ - ~—~~~_-— .‘ 
_ . ,__ . ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ - -  

— -~~~~~~~~~~
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~ 
-L~ ,P2 in hf range where

2
I L ! ~~ 1 ‘ IL~ ~ 1 (1.6—8)

2

1 ~l _ — P2H2TN ~ N — (1+L . ) (l+L . ) +GP P (1.6-9)
2 2 1 1

2 
12

- L. /[(1+L. )(l+L. )J

= ~2 
‘1 12 

-

l+L
0

- L~ in hf range where 1L01 ~ 12
IL . ~~l , IL. J ~ 1 (1.6—10)1

1 12

Following the same design philosophy as in a non-P.M. cas-

caded system design, let L. cope with the uncertainty in P2 -1
2

But, for the sake of the significant signal level variation due to

L. , it is impractical to let Lj cope completely with the
1 1

S uncertainty in P
1 . Let L . cope with P1 uncertainty in the11

high frequency range where sensor noise is significant, while the

uncertainty in the low frequency range, where the control signals

dominate, is taken care of by the outer loop L
0 - Then, L0 can

be designed as a highly economical loop , in terms of bandwidth.

So the sensor noise effect at due to N
1 in (4) becomes very

S small compared to the single loop design.

The results of a numerical example, taken from Chapter 4,

are shown here to illustrate the huge improvement in sensor noise

effect, i.e., excellent saving in the cost of feedback .

Fiaure 1-25(a) shows the Bode plots of noise response and the 

— _~~~~~S__ ~
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40

:1 
- 

I S

DB \ ~‘

20- \ -

4 ,~~~~~~~~~,7I1~I3 \_
7/ •

I 10 102
C’)

Figure 1-25(a) . Sensor noise effect at X
1 

and X
2 
in

single-loop system and P.M. 3-loop system.

arithmetical plots are in Figure 1-25(b) . The effects of intro-

2 1ducing a new sensor noise source N2 , i.e., T and T in
2 2

(8), (10) and the effect at , input to P1 , by introducing

1a new feedback loop H1 , i.e., T
N in (6) are all shown in
1

Figures 1—25(a), (b). it is known that, by a moderate trade-off

between inner 100ps L~ , Li and outer loop L0 , the effects

1 ~~l 2
of T~ , TN and T~ are reasonable small, although they are

2 2 1
bigger than their counter parts in a single-loop system. Note,

is bigger here than the single loop , even though L0 band-
1

width it L
5 bandwidth in single loop system. 

The reason is that,

in the 3—loop P.M. system, there is an extra path — H1 from N1 

-----.- - -- -- - - ~~~ , ~ - - - -
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60:

40- / -

//-
i4 I I~LI -

Figure 1—25(b). Sensor noise effect at and X
2 in single-

loop system and P.M. 3-loop system —
H arithmetical scale.

to • This is also seen in (6), as the lL~~ I bandwidth is not
1

small compared with that of ILSI , even though the IL0! band-

width is relatively small.

It appears that the P.M. structure is very good in decreasing

sensor noise effects. However, the signal levels in the plant to

achieve a specific output are affected by the introduction of the 

- . - .. -~~~~~~~~~--~~~—-
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P.M. feedback loop, so that no longer does one really have a fixed,

:1 constrained plant. This is the plant modification problem.

1.6.4. P.M. structure with unit feedforward elements

between plant sections.

Note, in Figure 1—24 , we put a unit feedforward element

between P
1 and P2 - This makes it somewhat simpler to develop

a systematic synthesis procedure. Now we prove this system is

equivalent to the system without separation between plant sections,

as in Figure 1-26. The transfer function in Figure 1-24 is

C FGP P
T ~ 1 

— 
1 2 (1.6—il)

R 1+P
1H1+P2H2

+P1
P2H1H2+GP1P2

:1 The transfer function in Figure 1-26 is

C F*G*p p
T ~ — 

1 2 
- (1.6—12)

R 1+P
iHt+P2H~+PiP2G*

D2

R F 3
4 

X2 ~2 \X  P1
0~ ~ 

~~ 

_ _ __ _ _ _

N2 N1

I

Figure 1-26. A P.M. 2-plant , 3-loop system structure
— without separation between plants.

~~~~~~~~ _________________ 
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Compare (11) and (12). Let

= H1 (1.6—13)

— 
~2 

(1.6—14)

Ga = G+H1H2 (1.6-15)

F* = FG/(G+H
1H2) (1.6—16)

and then the two systems are equivalent with respect to T and the

effects of P1 , P2 uncertainty on T • Note also that the actual

output of P
2 is not — C

1/P1 but is X1(1+P1H~) —

which is the same as that of X1(1+p1
fl1) — ~—(1-I-P1H1) in

Figure 1—24. And the noise responses in Figure 1—26 are

2 _G*+H~H~
1N1 ~~ l4.G*P

lP:+Pl:~
+p
2H; 

(1.6 17)

H 1 ~ 1 — H 1— G P 2T
N N

1 l+G*P
1P2+P1!ç+P2H; 

(1.6—18)

T
2 

~~ — 

- H~ (l+P1H~) 
(1 6-19)N2 N2 1+G*P

1P2+P1H~
+P2H

— 

— 
2 

(1 6—20)N
2 N2 1+G*P1P2+P1

H~+P2H

- _ Substitute (13),...,(16) into (17),...,(20)

2 -(G+H
1
H2)+H1

}1
2TN — 

1+(G+H1H2
)p
1
p
2
+p
1H1

+p
2H2

— 1+P1H1+P2H2+GP1P2+P1P2H1H2 
(1.6—21)

T
1 -H1- (G+H1

H2
)p
2

N1 l+(G+H
1H2

)p
1
p
2
÷p
1H1

+p
2H2

~~~~~~~
. -

~~~ 
- S  -~~~
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— (H
1

(l+P
2

H
2

) +GP
2

]
— 
(1+L )(l-s-L. )+P1P2G 

(1.6—22)

2 S

T2 — 
-H2(1+P1H1)

N2 1+ (G+H
1H2
) P1P2+P1H1+P2H2

—H (1+P 1H1
)

— 
2 

~ (1 6—23)(1+L.) (1+L~~)+P1P2G

i — H2P2T =
N2 l+( G+H

1
H2
)P
1
P
2+P1

H1+P2H2

- P H2 2
— 1 6—24)H (l+L

i 
)(l+L

i 
)+GP1P21 2

(21),...,(23) are exactly the seine as in (3), (5), (7), (9) of

Figure 1—24.

For simplicity , henceforth, we always choose the structure

with unit element between plants, for developeent of the P.M.

synthesis theory.

1.6.5. The RMS signal level problem.

The P.M. system synthesis theory in the present work is

restricted to the RMS signal level problem — not to peak values.

That is, this synthesis theory is based on the amount of signal

level variation Q defined by

r 2J C (w)
i,m max

Q — 
0 

, i — 2,. ..,m (1.6—25)

~ I C~ ,5 (w)~~~~ dw for rn-plant system

where tCim (W)t max 
is the maxim~zn signal level of P.M. multiple-loop

system at stage n- I such that there is at least one P.M. inner

I S  - _ - - -- - ---u
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loop in stage n—i+l Or J~n 1ater stages; IC1 (w)I Is the maximum

S.L. of the single-loop system at the corresponding n i  stage.

1.6.6. The P.M. synthesis philosophy.

P.M. design based on controlling the RMS value of the effect

of plant modification, has the nice property that the individual

contributions at each value of w in (0 ,oo) add. Now the

sensitivity reduction properties in the multiple-loop feedback

system — the trade-of fs between the loops, etc. — vary considerably

in different parts of the frequency spectrum. This is evident from

Sections 1.4, 1.5. This permits the designer to divide up the

spectrum into significant portions and in each portion, concentrate

on the crucial properties. Consider how complex the problem would

be otherwise — quantitative design for significant parameter

uncertainty, multiple loops, sensor noise effects and plant modi-

fication. Using frequency response, one can see the forest from

the trees and obtain good engineering solutions. Modern control

theory with its contempt for frequency response and non-analytic

solutions, has not been able to cope quantitatively with the

uncertainty problem, even in single-loop design, despite its vast

number of competent researchers.

it is assumed that the design specifications dictate the

permissible in RMS signal level at the outputs of 
~2

’• - .

in Figure 1-22, which is allowed in the P.M. design. The design

technique exploits this permitted increase so as to simultaneously

decrease the net effects of the various sensor noise sources.
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In the very low frequency range, the control signals are

generally large , so even a small increase percentage-wise can have

a significant effect on the signal level change. Fortunately, the

outer loop (as is evident from Sections 1.4, 1.5) can do the

sensitivity reduction job in this range, with little help. There-

fore, the P.M. loop P
1H1 is designed in this range to be as small

as possible, in order to guarantee that the relative increase in

signal level (of P2 , at C2 in Figure 1—24) is very small. In

the middle frequency range, the signal level is allowed to increase

by amounts related to . And the P.M. loop is assigned to

participate to some extent in the uncertainty problem. In the

high frequency range, the signal level problem is relatively

unimportant, so the P.M. loop is designed to minimize the cost of

feedback , i.e., to minimize the effect of sensor noise without

worrying over the S.L. effect.

- _
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CHAPTER 2

SIGNAL LEVEL

-ì 2.1 Introduction

The signal level (S.L.) problem is the basic one in plant modi-

fication (P.M.) system design. If there Is no limitation on the

output of each plant section, then P.M. is easy. In a practical

system, the designer must understand the effect of the local feed-

back 1oop P
1
H~ on the signal level C~~~1 

of the preceding stage.

This chapter presents a detailed analysis of this effect. The

-; signal level variation ratio (SLVR) p is defined . Then the

problem i~ simplified by dividing the frequency spectrum into

distinct frequency ranges. A single simple factor I i  + L
i~

I , is

shown to dominate p in each frequency region. A power increase

tolerance level is assinged to any P.M. design and it is finally

shown how to rela te p and Ii + L
1 1 to this tolerance level.

2.2 Definitions of Signal Level Variation Ratio (SLVR) and p

SLVR is defined with repsect to a single loop design for th~

same plant. Let — {P} be the plant set due to uncertainty .

Single loop system (see Figure 2—1 for notation)

The maximum output signal level is

L (jw)
I C s (j t

~) I max — IRF (iw)I•I l L ( j )I (2.2—1)

iL. - -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ ~~~~~~~~~~~~~
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T — R l + L  L5 
= C

~
P 

‘ ~‘ —

S

Figure 2—1 Canonic 2 section plant, single loop design.

and the maximum signal level at the output of P2 is

L ( ju )
IC 2s(i~

3)I m~ 
— IRF (Jw) t~ F~

_
~

5
j ) ~~l+L (j )) I (2.2—2)

The ratio

~ IC (jw)I max L (jw)/(P (jw) [l+L (jw)])tmax
(V 

1C 5(iw) l max I L 8 (iw) / [ l +L 5 (iw ) 1 In ~ x —

5~ is dropped henceforth, i.e., maximization and minimization

is always over ö~ unless otherwise specified.

P.M. 2—loop system (see Figure 2—2 for notation)

• Similarly,

L ( jw)
1c 1(jW)I I

~~
(i
~~

I I 1.~L (jw)I max (2.2-4)

L ( jw)
IC 22 (i~~I max — IRF(Jw)fsF

~
—

(J )?l+L (j)]I (2.2—5)

~ 
1C22(jw)I IL0(j/ 1 (jw).El+L 0(j~~DI (2  2 6~— 
1C 1
(jw)l 

— 

~
LO(jW~

/ [l+LO(jW)flmax 
—
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~~~~~~~~~~~~~~~~~~ 
_ _T — 

R 
— 1+L0 

L~, — CP2P1e ‘ ~1e — l + L 1 
L1 

=

Figure 2-2 The P.M. 2—loop system structure

The signal level variation ratio (SLVR) p is defined to be

IC I ~ I c !t~ 22 max 2 l max
‘~~~~Jc i ~~~ I c I2s max s s max

________________ ________________ 
Ic1!— 

IL /[P1
.(1+L )]I JL0/ ( 1+L

0)J

(2.2—7)

2.2.1 Nominal loop functions

In this and later sections , frequent references are made to

“nominal” loop functions, which are the 1oop functions at some

specific P~~P~ — {P~}. It is convenient to choose the nominal

P such that t
~~’mi 

— mm {lP
~
I} . Often, one specific para—

meter combination giv~~ ‘~~
1 min for all w , e.g. if I’ = s( s+ a )  ‘

k E [k1, k2] and a € [a1, a2] ~~ min — I s(s a ) I jw for all

w • But this may not be so for more complex plant functions. In

S 

such a case we shall use at each w , that p:~~mete5 combination
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which gives i P I min 
at that w value. Note that at high

frequencies P1 
+ k~/s~~ so 11

~~
j
~~~ 

corresponds to kimin -

2.3 Division of the Frequency Spectrum

One starts with a single—loop design L5 for the problem of

Figure 2—1. And based on the results, (Section 1—3), the frequency

range is divided into 5 distinct parts, as in Figure 2—3 . Let the

0.08 8 44 440
40 r -- -r ~~~~~r~~~~~~~~r

20- ~~~~~~~~~~~~~~~~~ 
—

25db : ~~~~~~..
-
,

0 —R1 ~~~~ 
R2~ ’~~~—.,’-~-R3 ~~ R4 ‘~ R5I 

~
.... ‘M 2 ‘ I

-20 -

-60 -

~~~~~ \ :
-80 -

~0o-
_ _ _ _ _ _ _ _ _ _ _ _ _-120 I I

- 
I ’  i0_2 icr’ io 02 Io~(ii

Figure 2—3 Division of the frequency spectrum

high—frequency (denoted by hf) uncertainty of P1 
be M1db (20 in

our example) and that of P2 be M2db (also 20 db in this

example).

(1) The very low frequency range R1 — [0 , w~
] is that In

which !L5(jw)! 
> 25 db over the entire plant parameter

-~ - — - -_ _____
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space. In Figure 2—3, 
~1 

— 0.08, because L5 there is

~L I mi . In this range in the multiple loop design

(cascaded no modification, or P.M.) the inner loops are

not used to help the outer loop L0 , i.e. in R1,

L L0~ , where L5~ and Lon designate the nominal

1oop transmissions.

(2) Middle frequency range 
~2 

= ~~ ~~~ defined by

25 db > ~L (jw)I > —M2 db where M2 is the hf

uncertainty of P2 , which is 20 db in this example.

In Figure 2—3, 
~2 

— 8

(3) High frequency range 1, R~ — (w2, w3] defined by

— —M2 db > !L jw 
~ ~~l 

+N2
)db where 

~~ 
4 M

2
) is the

hf uncertainty of P P1P2. In Figure 2—3, w3 44.

(4) High frequency range 2, R4 = (W
3~ 

(V
4

] where = 10 W3

In Figure 2—3 , W4 — 440.

(5) The very high frequency range R
5 

(W 41 °~‘)

It is helpful, for interpretation of SLVR , to point out here

orders of magnitude of the P.M. inner loop L
i~ 

(nominal value at

~ min~ ’ 
before going into detail. Two numerical examples (from

Chapter 3) of typical P.M. 2—loop designs are given in Figure 2—4.

In 1(
1
, IL~~I is very small in genera], though the actural values

depend on the specific problem. Thus, in Figure 2—4, Design A has

IL1 (iw)! < —30 db and in Design B, L
1~ (iw) I < —22 db for

w E R
~ 

- In R2, the SLVR is allowed to increase and IL in ! becomes

bigger. In Figure 2—4, —30 db < !L1 (jw)! < —7 db in Design A

- À - 
-

~~
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WI CA) 30 - — R, . ~~~~~~~~~~~~~~~~~~~ R4—~ R5

1DesignA-~~ \\ )~~~ \

-80 - L~~of 2-loop P.M.sys. I ~~~~~ L51, Design B-~
. \ \ : -

\ \I
-120 \g,

icr 2 I0~ I 10 i02 io3
Cu

Figure 2—4 Division of frequency spectrum and corresponding

L , L and L of design examples.sn on in

and —20 db < IL 1~(iw)L~—5 db in Design B, for w CR
2 - In

R3, Lin is used to cope with the parameter uncertainty of P1 , so

cannot be very small and actually tends ~ 0 db - In

Figure 2—4, —7 db < I L 1 (jw)~ < —2.5 dh in Design A and

—5 db < IL 1~(iw) ! < —2 db in Design B, f or w E R3. Note tha t

here IL i~
(jw)! is much bigger than the corresponding L (jw)I

and IL sn (iW) t 
— see Figure 2—4. In R4, in which Lon design was

based on no uncertainty in “le ’ Is nevertheless satisfartory for

large 
~le uncertainty (cf section 1.4.3), so IL in i can he small.

In Figure 2—4, —6 db !L~~(J w) I > —50 db in Design B and

—4 db ‘ IL. 1 
(iw )j  > —44 db in Design A , for w € R4. And the

last range R5 is the very high frequency range where both L
51~

Lon 1•jn are very small. In Figure 2—4, ~
L ( jw) ! N — 84 dl’ ;

S —~~~~ - . — ~~~~r ~~ s s ~~~~-— ~~s.— — - - - — - -
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< —120 db IL 1~ (iw) ! < —50 db in Design A and

IL0~(i )I < —130 db , IL~~
(jw)! < —54 db in Design B.

2.4 Relation between SLVR p and Il+L 1~ I

The precise expression for p (w) in (2.2—7) is too complex

for practical engineering synthesis. But good simplifying approxi—

mations are possible.

In Figures 2—1, 2,

c25 — c8/P 1 (2.4—1)

C22 — X12 • ( l + P
1
H1) 

= ~~~~ ( l + P ~H~) (2.4-2)

In a fa ir  comparison of the two designs , the maximum outputs over

~~ should be the same , i.e. I C I — Ic I . so (l+P H ) isi max s max 1 1

an important factor and it is useful to relate loci of constant

I1+P 1u11 to P
1
H
1 on the Nicho].’s chart.

Let L~ — P
1H1 , 2. — i/L1 and ~~~ l / ( l + L 1) , then

1 2.
— (2 4—3)

1+1/2. 1 + 2 .

The relation between and £ gives the conventional loci of

-
‘ constan t ~~~~. magnitude on the Nichol’s chart. So the relation of

with respect to Li i8 the reversed Nichol’s plot ,

obtained by changing the sign of constant magnitude curves (see

Figure 2—5). These loci will be very useful in P.M. design.

The simplification of (2.2—7) for St.VRp, follows.

-5--- - - 
_ _
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2 0_ _ _— _j_  1 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

40~~~~ ~~ ~~~~~~~~~~ ~~~~~~~~~~~~Odk 0db -

4 
F I A  ~_j_j J I I I I l l  I_ I 1 1 1 1 1

-ied’ izo° .60
0 0’ 60° 1 20’ 180

0

~~L D ~ 6RE ~~

Figure 2—5 Loci of constant I1+L 1 1 on the L
1 

Nichol ’s chart

2.4.1 R
1 — 

[0, &I)
i l

In this range, the single loop , unmodified cascade and P.M.

designs are almost identical, so I L l ,  I L l  > 25 db (see

Section 2.3 and Figures 2—4,6). Thus, the inner loop L
1 Is not

used in to help the outer ioop, and it Is therefore small with

typical maximum (over w ) values of the nominal (chosen as

the smallest over ‘
~~~~~~ ) ~~ —30 db (see Figure 2—7 which Is a

typical numerical example from Chapter 3). So 1L0/(l+L0) I  = 1.

over the range of plant uncertain , and in (2.2—7)

L L
P (i+L Y 1+L le mm (2.4—4)le o max o near max

1

___________ -~~~~~~~ ~~~~~ - - _ _ _~~~~~~~~~~~ -SS_
__

~~~~~~~~~~~~ S
_ -— - .

~~~
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38

20

7
2~~~\

(LI DS
‘ B~~~ 

TJ,.®~-20 -

ID

-360’ -z;o -ISO’ —10° 0°
L~L c PE~ REE)

Figure 2—6 Typical Lsn and L (from Chapter 3, Design A)

i S

- . - - - -~~~~~~~~~ - - - - - n- - - - - - - ------S - - -
- - -~~~~~~~~~~~~ -- - - - , —  — - ~~~~ 



~~~~~~~~~~~~~~~~~~ w~~~~rT ~~~ ~~~~~~~~~ ~~~~~~~

54

T 20 ’

tLdpb 

~~~~~~~~~~~~~~~~~~~~~~~
-40 - ~~ - 4o4~, - .oi

i Dii
I.~~~~~ F,fl~

=60 ___ • -6od

~ 

_ 
~~
- _ _ _ _ _ _ _

-: -360° 240° -
~~2.O° 0° 9o’

LL~~ 
(D EGR E E )

Figure 2—7 A typical inner loop L
in — P

1H1 (from Chapter 3,

Design A)

where — {P
1
} , due to uncertainty in P

1 parameters.

Similarly

________  

L
8 

— . —s I F t  
~2 4—5P (l+L ) I + L  l’min1 S max S near max

With this , ( 2 . 2 — 7 )  becomes

L ~ 
- - - —- y---—
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L 1
~ lLiin

_____________ 
max ri 

______

L L 
~~le

1 min ~ 
I C ‘max

1+L l+Ls near max o max 1

(2.4— 6)

1 n u n

-

~ ~ ~1 IP • (1~
i1
max) (2.4—7)

le nuin s max

‘~ l’min
• ‘p1 

• (lc1I
max) (2.4—8)

le mm 8 max
‘p1

Consider the error introduced in letting 
~~ 

1 in (7,8).

For example, let L have its minimum value at 25 db L~—90°

with gain uncer tainty of P1 , ito 10. lL9/(l -+ L5)l —

jl7.8/(j+Jl7.8)~ 0.99842 at 
~
‘lLnin , and 1il78/(l +il78)l ~

‘p1
0.99998 at 

‘~ l’max - So the percen tage error in cancell ing the
p1

first factor of (6) is (0.99998—0.99842)/0.99842 — 0.157%.

Similarly, the second factor in (6) has the same error due to

cancellation. But note that in the cancellation, the second

factor in (6) has an error opposite to that of the first factor.

So due to both cancellation8, the total maximum error << 0.157%.

_ 
- - - _ _ _ _--- -_ -
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So in (7),  S I. . Note again that we choose the nominal plan t

to be at the minimum value over ~~‘. 
-

Consider 
‘~ 1

1min”~ le 1 min ~ 
lPim min

P
i/U+ 1i~~min 

in (8).

We want to justify (with Li

Vi~min 
)L1J 1

P
1 ~~l 1 

____________I l+Lj~
l
~j 

— 
11+ (Lj )~j l ç Ji+ (L

i
)minI 

(2.4—9)

‘p1 ~~i

from Figure 2—5 as follows. Recall that in R1 , 
in the P.M. design

philosophy, the inner loop is not used to help the outer loop, so

(L0~ l and L~ is rather small. For example, in the

design in Figure 2—7, the biggest lL~~I over w ER1 is

—30 db L61° at w — 0.08. This values is ~L I over
in min

{P
1
}. A typical template of L1 due to P1 

uncertainty is

ABCD in Figure 2—8 in which the ].oci are of constant lL1/(l-~-L1)I.

It is obvious that both lL j / ( l + Lj )I mjn 
and ILil mi are at A ,

‘~‘1 ‘p1
50 lLi/(l+Li)l mm = lLjl j /ll+(Li)i l — — 2 0.73 db. Even If

the template of L~ is AB’C’D instead of ABCD in Fig. 2—8,

lLi/(1+Li)l min — ILjl mjn/l1+(Lj)mjnl e.g. (Ljf(l+Lj)mjn

~ i ~ 1 
‘
~l

—20.8124 db at A, ~L1 1 min 
can be any point along AB’. Let us

‘p1
take B’, the fur thest from A, with lL~I 8~/l1 + (Lj)B,l 

=

=20.5636 db. So 62= f~
(lL i

1(1+L
i)(isin

)
~
_ {lL

il min/ll+(Li
)
minIfl ntax =

120.8124 — 20.56351 — 0.2488 db - Note that 62 
depends on the

-
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S

—30 ——- 1 — 2 8 ,db —

,

-360’ -300° -240° -ISO’ -120 -60° 0°
LL. ( DE&REE)

Figure 2—8 Templates of L1 in Nichol’s chart in

position of template Li Thus, if A in Fig. 2—8 is at

—30 dbL3O° instead of —20 L30°, then 6
2 

= 0.058 db and when

A is at —10 dbL 30°, 62 
— 0.382 db. Our design philosophy is

to make Li as small as possible in R1 , in order that the

minimum signal level of C22 be very closely equal to that of C28

This is because the control signal level is highest in this low

frequency range , so that even small percent changes could lead to

large absolute differences. So 6
2 

is small in R1 - Here we

took L. Li ~.‘ 0° , because R1 is the low frequency range. Even

if the system is type 1, it is the ou ter loop which is preferably

made type 1, as the primary function of the inner ioop , L~ , is

to help relieve the burden on the outer loop in the hf range. But

even if L L1 in R1 
“~ —90° , the error 6

2 , 
in place of

- ~~~~~~~~~~~~~~~~~~~~~ -~~~
- - -—

~~~~~~~~~~ 
_ _ _ _ _  - ---- -
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0.2488 db for A at —20 db~~. 30° is still not great, e.g. in

Figure 2—8, jL1/ ( 1+L~)l~~ — —20.19 db at E and the furthest

value from E according to lL il mi /I1+ (L~)1 l is —19.892 db

at F’ and 6
2 

— 0.298 db. So (8) becomes

P /IC I
— I 1 / I ~~~~) l  • 

\IC 9Im~ 
(2.4—1 0)

~ 1 ~~l 
—

— a • 11+Li l ( I C i !max

) 

- 

(2.4-il)
s max

where a — 1 in R
1 -

Note again that L is the nominal value of L defined as thein i

minimum of IL~I over

At worst, in (11) , a very slight adjustment can be made in

-
~~ 

ICil max with respect to ICS l max to make a 1 exactly or even

< 1 • Curves of a for two numerical examples from Chapter 3,

are shown in Figure 2—9.

The conclusion is that in R1, the SLVR p l1+L 1~ I

( I C i I max/ I C s I max) with very good accuracy .

2.4.2 R2 — 
~~~~1, W

2] 
(Figures 2—3,4,6,7)

Recall R2 is the middle w range in which the signal level

Ia allowed to increase, p > 1 , and with larger ~L15I than in

R1 .

- - ~~~~~~~~~~~~~~~~
--

~~
—*
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Figure 2—9 Nature of a — from examples in Chapter 3

Prom section 2.3, R2 
— {~ J25 db > IL8~ (iw)l > —M~ db) where

M2 is the hf . uncertainty of P2 , i.e. P2 — k2Ph2e2Urn 
~h2 — 1/s , e2 

— the excess of poles over zeros of P2

= 20 log [k2max/k2mi ] . Note that the M2 uncertainty is

handled by the outer loop L0 in the P.M. 2— loop design. If P2

has significant uncertainty, R2 covers a rather big range, e.g.

(0.08, 8.] in Figure 2—10(a), which is replotted from Figure 2—6.

It is important to note that even at (8) , at the end of R2

the t~ np1ate of L8 — G5P1P2 at l~1I — 
‘~ l’min 

fixed , extends

P1
above the horizontal 0 db line, in the Nichol’s chart of

_ _ _-- 

- - _—- - - - - 
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Figure 2—10(a). Similarly, in P.M. 2—loop system, L0 = GP1eP2
at 

‘~ le ’ — ‘~ le ’min fixed , extends above the horizontal 0 db

13
~1

line, in Figure 2—10(b), which is replotted from Figure 2—6.

Consider the first two factors in (2.2—7). We want to justify

1m m
IL5/0~1~5) max (tLo/[Pie ( 1+L

o)]Imax\ 
_______

IT 5/tP10+Ls)]Imax \ ~L0/ ( l+ L0)~ )~~ 1
~ ie

1min

4 1

or 

• 
1 

(2 4—12)

l+ L  ~P ~i+I~
i 

~Ps max 1 mm o max le mm

~ 1 ___________________

L ~~
- 

- 

L (2.4—13)

‘ P ( 1+L ) ‘ 1~ (1+L )I
1 8 max le o max

This is done by illustrating typical templates of single—loop and

2—loop P.M. designs, in each part of R2.

It is concluded from Appendix I that there are three kinds of

P1, I’2 patterns, shown in Figure 2—11. In the first kind, the

template extends upward and to the right from the nominal point

P1~ (see section 2.2.1), as in Figure 2—11(a). The second kind

extends upward and to the left from P~~~, Figure 2—11(b). The

third extends both to the right and to the left from g
in ’ as

in Figure 2—11(c).

2
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Figure 2—10(a) Typical L5 and template of L8 in R
2
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0 -~~~~~~~~~~~~~~~~~~~~~~ O4b 

S
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-36 0’ 
- 

i80° 60’ LLo
Figure 2—10(b) Typical L0 and template of L0 in R2
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‘~~~~~1 r~~~~’ r~~~~~~
; I I

~ ~~~ : : ~~~~ : : ~i L ~~~~ L~~~ J
pin pin P

~n

(a)  (b) (c)

Figure 2—11 Three patterns of template of

Consider the first kind of pattern. Typical templates of

P1, P2 at W
A < < < are shOwn in (a) and (b) of -

S

Figures 2—12,...15. A typical locus of ~~~ = PlnHi in the

frequency range R2 is shown in Figure 2—16 with

L
i
(W
A
) = —30 dbL6O° , Lj (WB) 

= —22 db L.50°

Lin
(W
c) —10 db L40° and L

mfl(WD
) = —4 db L30° - The resulting

templates of 
~le P

i
/ ( 1+Li) ,  for P1 in (a) of Figures 2—12,.. .15,

are shown in (c) of the same figures, and this shape of 
~le 

is

S next explained. Recalling section 2.4.1, we can suppose

~len (defined as mm ~~le ’ 
= P

i
/ ( l+ L

i ) with error 6
2 

depending

on the position of L~~~. but very small. For example, if

— —30 db, 6
2 

0.058 db for a 20 degree wide P1 template,

6 0.2488 db at f t ( —20 db and 6 = 0.382 db if2 in 2

(Li~ I — —10 db , for the same P1 template. In (a) and (c) of

Figures 2—l2,...l5, the nominal ~~~ g
len are at A’ and A”

S 

respectively. Note that the P1 template extends upward and to

the right, but 
~1e extends both to the left and right. This can

be explained by Figure 2—17 where A,B,C,D, correspond to A’, B’,
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Figure 2=13 Templates at WB
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H
1

• - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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C’, D’ in Figure 2—13(a). Note X0 — 1 , so the vector from X

to any point in ABCD, represent 1+L
~ 

and argL~ > 0 in H2

Arg ( 1+ L~)
1 

at A = —L OXA and Arg(l+L1)
1 at D = — ZOXD.

Obviously, £OXD > LOXA , soLP1 t at r~ 
— 

~1e
1 at A

L l’at D 
— 

~~
‘i 1 at A - Hence D” is to the left of A”

in Figure 2—13(c), which is the template if . Summarizing ,

if the template of P
1 has the shape of Figure 2—11(a) in R.~

then 
~1e 

has the shape of Figure 2—11(c).

In this case, typical templates of = G8P1P2 (denoted by

~
‘) in single ioop design and L0 GP1eP2 (denoted by °J’) in

2—loop P.M. design are shown in (d), (e) of Figures 2—l2 ,...15.

These are constituted from the corresponding P1 , P2 and 
~le

in each figure. The shaded regions in and *3~ represent 7 at
due to P2 (denoted by~~2) and

’
~~at IPi t i due to

V2 
(denoted by ~~) respectively. These templates 

‘~ ~~~~~~~ 
~~~ 

and

in Figures 2—12,...l5 are used to justify (13).

There are five possibilities:

(1): p ( 1+L ) I - 1 1± L  (2.4-14)
1 s max 1m m s max

L
(because 

l+Ls max 
occurs at JP~J~~ 

),

and similarly

L L

11’ T min 
l l+~~ I (2.4-15)

Then bo th sides of (13) equal 1 and (13) is satisf ied w ith ‘ —

sign. The situation is shown in Figures 2—18,19.

~~~~ _______ —~ -— ~~~~ - - - - - - -
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l L.1,~GO ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 60 -

40 
-

~~~~~ 40

‘5” . , 5

20 20

-18 0’ 120’ 60’ ij ~ ‘190’ 120’ -60’ 
.

_~~~~~~~ —l8 ‘Y(WA) ,  3’( W A) at f~ T(jw)~ — 1.5 db

ILSIDB

40 4O~
~
J’ ~~~~ 

‘7(t a3A
)

20 2 0 ’
2db 

~~~~~~ 

- -2db 
2db 

~~~~~~~~ b

0 0 ‘ 
‘~“. “

-180’ —l2o ~ -CV 
~~~ —I SO’ -~�O’ -co’ LL.

Figure 2—19 l(WA
) , ~~~~~‘ (W ~~~) at 1AT(JW)f — 4 db

_ _ _  --~~~~~ —-- -~~~~ --- - --
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(2a): (14) occurs, so 9..hs of (13) — 1 as before , but not

so for L0/[P1 (l+L)1 , from which it follows that

L L
t Ple(i+~

cyt
max 

< T~ Tmin ~~~~~~ 
(2.4—16)

So (13) is satisfied with ‘ < ‘ sign. This situation is shown

S 
in Figs. 2—20,...22.

(3a): Neither (14) nor (15) occurs and such that for each

sides of (13) , the numerator fl. is > the denominator c&. However

~~~~ ths ~~
‘ ~~~~ rhs’ because of the shift of the template of

to the left, previously emphasized (this is to be proven , of course).

Examples of this situation are shown in Figures 2—23 ,.. .25.

We also have to prove that cases (2b,3b) below do not occur.

(2b): 
‘P ( l + L  

~ 1 P I  ‘ i L  (2.4-17)
1 s max 1m m  s max

but (15) is valid for the right of (13).

(a) : Neither (14) nor (15) occurs , so for each side of

(13) , ii. -s&. But Q?/IQ)
~~h

- 
, Case 1 will occur in the lower w range when both tL0 I and

are so large as to give the situation shown in Figures 2—18,19.

Here Lg/(1+Ls)Ima is at point X , 1L 5/(l + L ) t  at

‘~ l t min is at Y — X , fL /(l+L)f is at X’ and

at fP 1 f 1 
is at Y’ — X ’ . So both (14) and

(15) occur and ‘ — ‘ sign in (13) is valid. 
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- { IL5~~ 7
’ 1L.~~
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~~~~~~~~~~~~~~~~~~

___________ • , 
___________________
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Figure 2—20 ‘J(w8) , t
~~’(w ~ ) at t~ T(iW)t = 4 db
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40 / 

40

20 2 0 -

2Jb- .~~~

0 
___ 

~~~~~~~~~~~~~~~~~~

~ Bi.~ . , 
Bg.~,

-180’ -t20’ -60’ 
~~~~~~~~ 

-180
° -laO ~?O’ LL.

Figure 2—21 ~~(w ), 
~~‘(w 

) at jAT(jw)f — 6 dbB 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - ~~~~-- - -~
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~~~~~ 1O4b
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— —20 -‘ I &
‘180’ 12.0 ‘60’LLs 180! -12.0’ 60 LLo

-
~ ~~~ ‘J(w~) , ¶J ’(w ~) at f~ T(jw)j 12 db

I Ls1p L.Ipe

20 20 A ~~~

:4 

2dL~ .&~ 

cj~~ 
2db-.~~~ ~1~A7

o~~~~ ,1 ~~,

El _
-20 .,_ __- -20d6 -20 -204 —

__________ 
I I

S —180’ -ta o’ ‘60’ LLs — 190° — 12 0’ —60’ LL.
Figure 2—23 1(w3) ,  43’(W8) at I~ T(jw)! — 22 db

4

H -__ _i.
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- t •5_ I 5-.

- ; V -20 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~2OcHt

-180’ -120° 60’ LLs -180 -tiC “60 LLo S
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~~~~~~ 
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S
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— ‘ ____________________ I
-IBd’ —1200 ~~~~~~~~ 

~~~~~~~~~ ~ t800 =120’ ~ GO L,.L.

Figure 2—25 ‘J(wD
) ,  ‘J’(w.~) at f~ T(jw)f — 22 db

i
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Case 2a tends to occur in the middle w range giving the

situation shown in Figures 2—20,...22. Here points X and Y
S 

coincide, but not X’ , Y’ . So (14), (16) are valid and ‘

S 
sign in (13) is valid.

Case 3a (Example Figure 2—23)

L

~1+~ 
is at point X , which does not correspond to

s max

~l
1 min . At t

~ 1’min t~~ maximum is due to point Y 
L 

we

try a larger ~1 j ,  
~~~~ 

is increased but ~~
-
~

—

decreases. Since . — , the maximum over of

{max J~, ( 1 L  ) J }  can be found by considering the loci of constant

2 1 S

Il+L~ in Figure 2—5. In the entire shaded region, !1+LI

increases as IL l is increased. Hence l + L 1 decreases as LI

is increased. Therefore max is at point Y. So the ratio
‘p1

Il l i min ‘1+
3
L~ — 

T~ j min 
. (Mag. of 

‘ l+L t at pt . xl

1 P1(1+L ) i T~ Jmin 
• {Mag. of 

‘1+L 5
1 at pt. Y}

— 2 db — 1.4 db — 0.6 db (2.4—18)

Now consider rhs of (13). The equivalent points X, Y are

poin t X’, Y’ and again 1~ (i + L  )I is at point Y’, giving
le 0 max



- ~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

i L 
1 L

IP i ‘l + L  I 
~~~~~ 

{Mag. of 1 l+L 
at ptX’ }

l e m in o max _ le min o
L L
0 1 r 0

P ( l +L  ) J p  T 
tMag. of l + L  at ptY

le 0 max le min o

= 2 db — (—0.7 db) = 2.7 db (2.4—19)

Note this value of 2.7 db > 0.6 db in (18), and the reason is

due to the leftward shift of ~~~‘ previously emphasized . This

creates a bigger “effective” separation between X’, Y ’ than

between X, Y - This case also occurs in Figures 2—24,25 and it

will be seen later that this is so in general in R2 , when the

template of P1 has the shape of Figure 2—11(b).

Cases 2b,3b do not occur for exactly the same reason as in

case 3a, due to the leftward shift of ~~~~~
‘ creating a bigger

“effec tive” separation between X’, Y’ than between X, Y.

Consider the second kind of pattern of template P~

S (Figure 2—llb). Typical templates of P1, P2 at W
A 

< < W~ <

are shown in (a) and (b) of Figures 2—26,.. .,29. With the same

typical locus of Lin P1 H
1 

in the frequency range in

Figure 2—16, the resulting templates of 1’le P1/ ( 1. + 1..1) , for

in (a) of Figures 2—26 ,. ..29 are shown in (c) of the same

f igures and this shape of P
1~ is next explained. Again, we can

suppose 
~1en P1n / ( 1+L

in) with error ~2 
very small. In (a)

and (c) of Figures 2—26,...29 the nominal 
~ln 

‘ 
g

len are at

A’ and A” respectively. Note that both templates 
~
‘i’ “le extend

upward and to the lef t, but 1’le bends more to the left than that

of P1 in Figures 2—26,...28. But 
~1e bends less to the left

than tha t of P 1 in Fig. 2—29. This can be explained by 

-— -~~~--~~~~ - - - 5 -~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ 5 __55~~~ _~~~ ~~~~ S 5 5_S. j~~~~~•5
_
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __________

C ....S..~~~0# (e)

~~ R~4~ ~~

• p 2cr~~
rn

2

0’ 50’

Figure 2—26 Templates at W
A

....,td) (e)

~ t ~
p

p.
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Figures 2— 30(a), (b). Very similar to Figure 2—17, ABCD in

-: Figure 2— 30(a) corresponds to A’B’C’ D’ in Figure 2—27(a). Note

XD — 1, so the vector from X to any point in ABCD, represents

l + L1 and Arg L~ > 0 in R2. Arg(l+L~)
1 at A = — LOXA and

Arg( l+L 1)
1 at C = — Loxc.  Obviously , LOXC >L 0xA , so

L P
1 

at C — L P1~~ at A >Lp 1iat C —L..P1~at A. Hence, C” is

j more to the left of A” than is C’ with respect to A’, as

shown in Figures 2—26,. ..28. On the other hand, if L
1~~ 

is big

enough , e.g. IL~~I — ILiU(WD)I, then ABCD in Figure 2—30(B)

corresponds to A’B’C ’ D ’ in Figure 2—29 (a). Note,LOXC <L ~ OXA

here. SoLP
1~~at c _LPielat A < Lp 1~at C —

.LP
1Iat 

A. Hence

C” is less to the left  of A” than C’ with respect to A ’, as

in Figures 2—29(a),(c). Fortunately, this is the case with large

ILi l , in which w is large. So if it does occur, it is only at

the very end of R2. In most cases , it will not occur in

- I Concluding, if the template of P1 has the shape of Figure 2—11(b)

in 
~2’ then ~1e also has the same shape but wider than that of

P1.

S Similarly, typical templates of L5 G5P1P2 (denoted by 57)

S in single loop design and L0 = GP1eP2 (denoted by 1’) in 2—loop

- 5 
P.M. design are shown in (d), (e) of Figures 2—26,.. .29. The

S shaded regions of ‘3 and ‘3’ represent ‘3 at ~
p I due to

(denoted ‘32 and ‘3’ at 
~
‘le 1 min due to 

~~2 
(denoted by

‘3 2~
• The five possibilities in relation (13), as poin ted out

before , are considered.

S 
Cases 1, 2a, 2b do not occur , because the shapes of P1, P2.

~le are as in (a) , (b) , (c) of Figures 2—26 ,.. .29 and in (d) , (e)
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of Figures 2—26,...29; the rhs of ~ (or 031)  coincide with the

vhs of ‘
~ 2 

(or J;). But L/(l+L)~ occurs at 9~hs or

bottom of 17, rj’ (see Figures 2—31,...37),so neither (14) nor
2

(15) can occur.

Case 3a (Figures 2—31,...36)

L
is at point X , which does not correspond to

s max
4

S
‘I’l ’ min . At t

~
’11 uiin the maximum of 

‘14- L 
is at Y

L P G
Similarly,, 

~~ 
~~~~~~ and by considering the loci of

constant ~1+L~ in Figure 2—5, ‘p ( 1+L  ) I is at point Y.
1 8 max

So the 9.hs of (13) is

L L
I 

• 
8 1 • I:Ma ofip I 1+L IP I g. 

1+L1mm s max 1mm s X
L L

S 1 S
(l+L ) I I~ ~ 

. {Mag. of 1 1+L1 S max 1mm s Y

(2.4—20)

And similarly, the yhs of (13) is

_ _  

L  L

‘~
‘1e ’min ‘ le ’min 

. {Mag. of

IP ie + L
o
)h

inax IP i l mi 
. {Mag . of

(2.4—2 1)

For example, in Figure 2—31, (20) gives 1 db — 0.32 db — 0.68 db and

(21) gives 1 db - 0.32 db = 0.68 db, so ‘=‘ is valid in (13).

And it is also so in Figure 2—32. In Figure 2—33 , (20) -* 2 db —

0.9 db — 1.1 db and (21) -
~ 2 db — 0.7 db — 1.3 db , so ‘<‘ is true

in (13) , and also in Figures 2—33 , .. .36. The reason is that 03 ’

L
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40 40

N

20 ~~~~~~~~~~~~~~~~~~ 20

—180’ -,~o’ 60 i_Is —180’ —110’ 60’ LL.

Figure 2—31 7(WA). 7(WA) in Nichols
’ chart

with I~T(Jw) 1.5 db

I l_sic

7~~
) 

~ °

• 20 20
2db ..

—180’ -120’ -so’ LL —~o’ -10’ -Go’ LL.
~~~~ Ftgure 2—32 w~1~i . ~~

‘(w A) in N icho ls’ chart

with ~AT(jw)J — 4 db
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‘IL.sIv~ I• IL.IPB

40 40

\ \
20 20

0 

2db~~~~~~ / 2db~~4~~~~ <‘l
-180’ -~2O’ -60’ Li5 -180’ —120’ -60’ LL,

Figure 2—33 7
~~B~’ 

7(WB
) in Nichols’ chart

with 
~T(jw)I - 4 db

,iLsloe

4o~ 
\ 4 0 ,

• 20 2 0 ’  \
2 4 m ~~\~~~~~

—180’ —12.0’ -60 -ISO’ —i ao’ -C0 LI.
Pigure 2— 34 

~~~~
(t

~ B
) ,  ly’(w8) in Nichols ’ chart

• with I~T(iw) I — 6 db

th~
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‘
~~~ .7tJ,

20 ‘ 20
2dL~~~
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B,. ~~~
-180’ -120’ -60’ ~~~ — 180’ -laO’ -60’ LL,

Figure 2—35 ~~~~~~ ~~~~~~~~~~ 
in Nichol ’s chart

with T(jw)~ — 12 db

ILSIDB ILbID8

20 _ -~‘J(k)) 20 •

2db-%..~ ~ 
ZcJL .

~
.....< ~

.. \ f
‘C ) •~ ,~

‘ I~\

-20 
._

~~.~OdL -20 ~~~~~~~~~~~~~~~~~~~~
‘

__— __.~-_2OdI

A I I I I

-ISO’ -110’ —60’ i_I_ s .180’ ~l2.O° 60’ LI.

Figure 2—36 dJ (w
c) ,  ,‘(w c) in Nichols’ chart

with I~
(jw) I — 22 db

I
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in the 2—loop P.M. case is wider than the corresponding “J in the
single loop case.

Case 3b (Figure 3—37)

Here (20), (21) are also true, but as ~~ ‘ is narrower than 7,
(20)-s 2 d b - O d b 2db and (21) -* 2 d b _ O . 7d b = 1 . 3d b . Note

this occurs at higher w and, fortunately , it is at the beginning

of R3 or at worst at the very end of 1(
2 , where the signal level

is not important.

Actually the third pattern of P~ in Figure 2—11(c) is the

combination of the first two of Figures 2—11(a), (b), so the

L reasoning and conclusions for the first two also applies. Suminarlz—

ing all the above discussions, (13) is true in for any kind of

H template of P1 . So (2.2—7) becomes

1
~ 1 min

p (w) < 
‘~l kll maj(

(2.4—22)
].e’min ‘ s ’ max

‘p1

IC I
— a Il+L i I • 

l max 
(2.4—23)

S max

where a < 1 in

Recall that ‘
l1 min”~~1eLnin 

— 6 2 I1+L~~I, where 1 in 
~2

:~ Since a < 1 in R
2 , the resulting design is conservative

if it is based on I1+L 1~I . The fac tor a is shown in

Figure 2—9 for two designs and it is seen that a < 1 in R2
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IL5~~ •DB

20
2db....~~

x T

C

I3e~~
— 20 ....__.— -22Jk —20 

:__._ —~~
“ 

‘
~ .~— -22J~

I I I

190’ —12 0’ —CO’ Lj~ 
190’ —120’ —60’ ~~~

Figure 2—37 °J(WD
), 

~~~
(w
D) in Nichols

’ chart

with I~T(iw)I 24 db

A very interesting point is that based on such a conservative

approach, one can design a 2—loop P.M. system with the signal level

variation Q defined in (1.6—25) even less than 1. This will be

seen in Chapter 3.

2.4.3 R3 — 
(w 2, w3]

Recall R3 covers {w I  — N
2 
db > ILgn (JW)I > — (M1+M2

)db}

where M1, M2 are the hf uncertainties of P1 and P2 respectively.

In problems with large parameter uncertainty , 1(
3 is well above

1 )  
_________________________________ _ _ _ _ _ _L i  •~~~~~~•___________________________
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the control system bandwidth , so the control strength is small in

R3 . We can therefore tolerate SLVR > 1 in 1(
3

Since R3 is relatively high in frequency , it is reasonable

to assume that over most of R3, P~ 
-

~ 
ki/s , where e~ is the

excess of poles over zeros of P~ , ki is the hf gain of P1 , e.g.

in Figure 2—6, R3 
(8,44], while the maximum control system

J bandwidth allowed (see Figure 1—2(b)) is 2.1. The single loop

transmission Lsn definitely has reached the universal hf cylinder

boundary Bhs (corresponding to y - 2 db in this example -

Figure 2— 38).

9 In Figure 2— 38, the typical template AF is used to discuss

the first factor in (2.2—7). Let 1L5/ ( l+L5)I ~ M .  Point B in

Figure 2—38, corresponding to M can be achieved at ansmax
infinitude of combinations of P

1 and P2 , giving say a set S.

Let the smalles t ~P1j in S be denoted by P1 . Obviously, from

Figures 2—38, for any f ixed P
1 , M5/P1 is maximized at P

2

~
‘21 max’ and with respect to P

1 at I~1I < IP~I . Thus,

L d P Ia s 2 max• 
(l+L ) I — Il+G ~ i (2.4—24)

1 a max a 2max 1 mm

From the constant Il+L I curves in Figure 2—39, it is seen that

to minimize the denominator of (24), 1P 1 1 should be chosen as

small as possible when the template of L8 at hT )
2 l max is in the

shaded area and as large as poss ible when L5 at 
~~2

I max 
is

below the shaded area. Hence the minimum point is at D in

Figure 2—39, which corresponds to point D in Figure 2—38. In

the early par t of R3, L at 1
~ 2 1 max is on or above D V P

1

~° — 

~~l
1 min 

is used. But eventually in R3 , the
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template at does not extend to or above D , so I~1J is

chosen big enough to make L reach D at I~ I • The
S 2 max

required 1P11 increases with w , until at (L)
3 

the end of R3 ,

it is I~I — AD. In this later part of R , L 1(1-FL )max 3 s s

corresponds to point D and 1P11 > 
~1’min’ 

varies from 1
~~1

1 m1n

to — AD. In the early part, ~L5/ ( 1+L 5)I lies somewhere

in BD while I~1I — P1~~~ ‘

L L
S S

1+L 1-FLs max 
— 

S B
L L

5 1 s
P1

(1-FL5) max 1
~
’1Tmin l + L 8 in

— 1
~
’iJmin ~ 6

i
c[O db , I BD I dh I

(2.4—25)

where IBD I 7 db. In the later part , 1L5/(l÷L5)I 
is always

at D , so

L L
5 8

1+L l + L

L 
a max 

— 
S B  

I P I * varies from 
~ l ’ m1n

5 1 
_ _ _

( 1-F L  ) I j P 1* 1 1+L I to I~ 
— AD at the end1 a max 1 a D  i max

of R3

— 
~
P
1I~~ 

+ [2 db — (—0.2 db) ]

— 

~~i
1 min 

(2 .4— 26)

L . •
~~~~~

• ..
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where 6 varies from 2.2 db to 2.2 db + I~ I — I - AD ,2 I max h u m
since the smallest AD, is at w — , — 3 db. So 6

2 ~ 12.2 db

— 0.8 db]. Co~~ine (25), (26)

L

1+1.
— 

L — 6 
~~1 ’min ~ 6 — [0 db , J~~1! — 0.8 dbJ

P (l+L1 s max

(2.4-27)

Consider the second factor in (2.2— 7). A typical outer loop

L and template of L0 in R3~is shown in Figure 2—40. Just as in

the first factor (24).

20

/ 
r

0 Lon

P 
Mi Of L0

-20 

~~5d1

-40 - 1

-300° -ISo’ -60’
LL. c DE~~REE)

Figure 2—40 Lon and typical template of L0 in

_ _ _ _ _ _ _ _ _ _  • -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - •.-. - - • , ~ •~~~~~~- • • -- ~~~~~~~~~~~~~~~ -~~~~~~- 
.Ij
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L IGI IP Io 2 max
P1 ( 1-FL ) max 

— 11+CP 2 P1 I i 
(2.4—28)

And by 1nsp~ ction of the constant I l + L l  curves of Fi gure 2—39 ,

the corresponding L0 at 
~2~ max ’ ‘~

‘le 1 min in R3 ~~ lfl

A’B ’C’ . In the early part of 1(3 1  GP
2 

P1 is above B , so

.4
L L

~ie~~~~~ o~~max 
= 

~~1e
1mln l + L ’ i 

(2.4—29)

Thus, the second factor of (2.2—7) is

IL 0/ [P1 ( 1+L ) ] I  
1 L /(l+L)I~ 

~~IL / ( 1 + L ) I  = 

~~1e’min IT~
h’ ( 141

~ ) I~

= 
6 • , 6

3
c[Odb , 3 db]

3 le min

(2.4-30)

In the latter part of R3, in Figure 2—39, L at 
~2

1 max

hI’le h mnin is along BC , ~~ I l h
le I * is chosen big enough to make

L reach the y locus (see section 1.2.2), in order to minimize

*the denominator of (28). The required h 1
~1e I depends on the

amount hf overdesign. In the numerical example of Figure 2—40

(Design A chapter 3), with 5 db hf overdesign on L0
I1~l.I* — 

‘~~le
1ain + 5 db • So

L.. -~~ -~~~~ -~~~~~~~~~~~ -- - -- - -.• -- - - - - - - - - • - -~~-- - --~~~~~-
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  i. 
IL01’U4L 0)I~

I L o/ ( l + L o ) I max 
_ ]i_

i 1* 1L0/ ( l + L
0)!

- 
~~~~~~~~~* 

- 
6~ JP~~ j~~ 

64c [odb . 8db)

(2.4—31)

where 8db is the hf overdesign of L0 . Combining (30) , (31)

IL /[P (1+L ) ] j
I L I(l+L 

~~~ 

— 6’ I~ i ó’~~[0db, max {3db , I3 db}I
0 0 max

(2 4—32)

Substituting (27), (32) into (2.2—7),

I~~I Id6 1m m  l max
p — IP I (2.4—33)

le min amex

c l
— a ll+L 1 1 . 

i max ; c~ > 1 in R
3 (2.4—34)

a max

From (33,34), the relation I~1I 1 / I P 1 I 1 I 1- ~-L~~ ! still

holds. Although L
1~ is not small in 1(

2 (see Figure 2—7), the

difference between t
~~l

1 i ’1
~ 1

1 i 
and jl+L

i I (~~0.4db) is

fairly small compared with the error in 6/6’. In the previous

example (Design A, chapter 3), a c[O db , IAP 1I — 5.5 db] =

[0 db, 14.5 db]. And in Design B (chapter 3), cx e[0 db, 14.5 db].

The actual results for a are shown in Figure 2— 9 , and they

confirm the above argument.

Note that a > 1 in R3,  but fortunately, the frequency

here is relatively high where the design philosophy is to emphasize

— 
~~~~~~~~~~ - ~~~~~~~~~~~ -— -~~--. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-‘~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~—•——-~~~~~~~~ •
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the saving in sensor noise effect, instead of considering the signal

level variation. In addition, if we use an additional inner loop

around P2 (Figure 2—2), the a > 1 region disappears . This is

shown in Chapter 4.

2.4.4 R
4 

(w3, ~)4]

Recall R4 is the range from w3 to 10 , where
:~ is the frequency at which L5~ turns the bottom corner of B

hs 
at

H X in Figure 2—6. In R4 ,  L5 is under 8hs decreasing

h moderately in magnitude and considerably in phase .

Consider the first factor of (2.2—7). In the early part of -‘

R4 ,  IL /(1+L5 ) I  reaches the forbidden y disturbance locus

(y = 2 db in Figure 2—6),  so I L / ( 1 + L ) l  y db , and

IL /[P (1-FL )] I — IC I I~ I /Il+c P P I . Consider
a 1 s max s 2 max a 2max 1 mm

the constant I 1+L~ curves of Figure 2—39. In the early part of

• 
R
4~ Il+L5 I is always under the VWXYZ line, so

L Ls 1 a
P (l+L ) — I~ I 1+L . —

1 S max i max s y

so

L L
5 

_ _ _

l +L  l + L
— 

s max s y
L L

Pj(1+Ls)L~ax ~1I I l+
5
L 1

— I~ I (early part of R ) (2.4- 36)imax 4

•- ---- ~~- ~~~~~~~~~~~~~~ -•--~~~~~~~~~~ • - - -
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• In the latter part of R4 , l L / ~~+ L ) I  cannot reach y in

a practical design , but occurs at ‘~~l
1 m.~~’ ‘~~2 ’ max , i.e. at

I L l  which for example is at point Q in Figure 38 and above

VWXYZ in Figure 2—39. Consider the factor I L8/U)1(1+Ls)ll max —

Ic5 1 P21 /fl+GP 2maxP1I mi~~ 
and l+ G P

2 ~1I is not a

minimum at I~ I . However, since IL I is small enoughimax I

(Figure 2—6), the variation of I1-~- L5 I due to P1 is fairly

small. In order to simplify the explanation later on, we take

L L
P1(l+Ls)

I
max 

‘ f1i I max 
I l+~ s I IPlI max

)

(2.4—37)

in the latter part of R4. So

-
~~ L Ls s

l+ L  1- F L  I~~I ,I~~Is max a lmax 2 max
L La 1 a

‘P (l+L ) I I~ I ‘ l+L I~ I I~ I1 a max 1 max a 1 max 2 max

— 
‘~~l

1 max (latter part of 1(
4) (2.4— 38)

Combining (36), (38)

L
S

1+l~S max 
~ IP I , in R (2.4—39)L l max 4

S I
P1(l+L5) max

Consider the second factor of (2.2—7). In R4, L is after

point X’ in Figure 2—6. Just as in the single loop case,
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I. Lo 1 o
‘P (1+L ) I~ I 1 +L  1 I~ I I~ Ile a max • le max o le max 2 max

L L
4 0 0

l + L  l + L  I~ I I~ I4 o max o •le max

- — l/1P1 1 , in R
4 (2.4—40)

.4

Substituting (39), (40) into (2 .2— 7)

cl max lmax
— 

IP 1-
~ 

(2.4—41)
le max amex

Consider the factor IP I / I P  I at several w c Ri max le max 4

In this range, the P
1 template is certainly a vertical line and

has negative phase angle V~1 (see Figure 2—7), so the

template of 
~
‘le — ~1/ ( l + L 1) definitely looks like Figure 2—11(a),

and this is so for our large plant class. A numerical example from

Chapter 3 (Design A) is shown here to explain the relation between

~~l ’ max and 
~le ’max in 1(4. In this example P1, P2 each

have 20 db hf uncertainty . L
i 

in 1(
4 is shown in

Figure 2—41 with the template P1 at the frequencies W
A~~~~~•W

F

At W
A 
(—50) I~

’ie I = 0.2 — (—5.8) — 6 db (Figure 2—41), is

considerably smeller than the range of IAP 1I — 20 db. So the

‘1 difference between I~ I and I~ I is 14 db —1 max le max

• Figure 2—42(a). At (—80) , I L 1~I is smaller, so 
~~
‘1e 1 is

larger — 5.5 — (—11. 5) — 17 db and 
11 max~~

’le ’max 
3 db in

Figure 2—42(b). At larger W~ Lin is close to —180°

(Figures 2—7,41). The template of P
1 

— 10 — (—16) 26 db at

100 and 
~~
‘1e 1 — 15.5 — (—20) — 35.5 db at 125. 

—
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Figure 2—41 L~ in R4 and templates of P1 at d i f fe ren t  frequencies
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So in Figure 2—42(c), i I max~~
1)
ieLax — —6 db . And in

Figure 2—42(d), 
~~i I max~’ h 1’ie Liax — —15.5 db. At higher w ,

ZLi 
< —180° and moves downward in Figure 2—41. So IL 1 ! is

very small and 1’le — P
1
/ ( l + L

1) ‘ P1 . At W
E 

— 250 , in

Figure 2—41, 
~~~le

1 — —8.5 — (—30.5) 22 db , and

11 max~
’
~~1e ’max — 20 — 22 — —2 db in Figure 2—42(e) . At

W
F 

— 500, in Figure 2—41, 
~~~ie

1 — —24 — (—43.5) = 19.5 db, and

P
1~ ~~~ — 20 — 19.5 = 0.5 db in Figure 2—42(f). The plot

of P/[IC I /~c I ]‘ (which is ~ I /fp I in R — see1 max s max 1 max le max 4
(41)) , for  Design A, is shown in Figure 2—43. Note that the

results in R
4 of Figure 2—43 agree with the explanation and

Figure 2—42(a), ...(f).

In order to have an expression similar to that in the other

f requency ranges, (41) is rewritten

IC
p — a I 1 + L i I • 

l max 
(2.4—42)

amex

where a — I~ I / [ I~ I Il+L I]1 max le max in

~ t~~I /I~ 
in Rl max le max 4

because Il+L i I is fairly small compared with PlI max
1)
le l max

in 1(
4 
. This can be seen from the correspond ing ~~~ in the

constant 11+14 curves of Figure 2—44, in which l1+L i I varies

from 1 db, 0 db, —1.7 db, —0.5 db, 0 db , 0.05 db to ~~ 0 db.

So a in R
4 

is close to 
~l’max’’~ le 1 max • The nature of a

in 1(
4 

for two numerical examples, is shown in Figure 2—45, which

is replotted from Figure 2—9. It is seen that in R4~ a var ies

L _ _ _ _ _  —
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Figure 2—43 Comparison of ll+L I and p/[~C I / I c  1 1in i max s max

(Design A, chapter 3)
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from a large positive db value to 0 db , and then to a large

negative db value and finally tends to 0 db.

2.4.5 — (w
4 ,

Recall that 1(
5 is the very high frequency range, where

It I~ L I~ IL <<1. So I 1 + L I — l , I 1 + L I — lan on in S 4.)

and 
~~le ’ 

— P
1
/ ( 1+ L 1)I ~ I~1I . In ( 2 . 2 — 7 )

I L l  IL /P I Id• s max o le max l max
“ IL /P I ~~ L I  I C !5 i max o max

I G P P I  IcP I I c !s l 2m a x  2 max i max
— 

I G P I  JGP P 1  I c !s 2m a x le 2 max s max

_ _ _ _ _  

I c !
— 

l max • l max
I~ I idle max s max

• Ic I
— 

max (2.4—43)
a max

Again (43) can be rewritten to have the same form as in the other

fre quency ranges

p - a ~1+L 1~~ 
~~~~~~ (~ .4-44)
s max

where a — 1 in

The curves of p/[ I C I lid ] and a are shown ini max s max

Figures 2—43,9 for numerical examples. Note, both are I in

1(
5 

in agreement with (43), (44).
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2.4.6. Suma ry

Concluding the above discussions , a < 1 in and R2
where the control signal is important. So the design philosophy is

conservative, a > 1 in R3 and in the beginning of 1(
4 a < 1

in the latter part of 1(
4 and a — 1. in R

5 . The latter are the

high frequency ranges , wher. the signal level is not important and

we concentrate on the reduction of the sensor noise effect.

.4 



- • ~~~~~~~~~ —.- -•~•- “ “  -~~VY~9~~ • ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~ ~~~~~- “‘~~~~~~

CHAPTER 3

2—PLANT, 2—LOOP, P.M. SYSTEM SYNTHESIS

3.1 Introduction

This chapter is devoted to the simplest (two—loop) plant—

modification (P.M.) structure——Fig. 3— 1. The plant has two cascaded

sections P
1
, P

2 
and two loops are used. (A more complex structure

with a third loop from C22 to X22 is considered in chapter 4). The

loop from C
1 
to X22 is called the outer loop L — C P

2
P
1
/(l+P

1
11
1
)

— G 
~2

1’I-e and the other is the plant modification inner loop

L
i~
P
1
H
i
. At best, the inner loop L

i 
can be designed to take care

of all parameter uncer tainties in P
1
, as in the cascaded no P.M.

design philosophy (section 1.4.3). But, as discussed in chapter 2,

it is necessary to compromise, because of the resulting increase in

signal level of C22 . I L i l is therefore made small in the low fre—

quency control bandwidth regions 
~l

’ 
~2

’ So the inner loop L
i

R F G X u P~ \~ I~~~~p, 
p1

1I_ -1 N,

T -jj~ 
- L0 ~ 

CP2P1e ‘ ~le 
~ 

1+L i 
L1 

P
1
H
1

Figure 3—1. 2—plant, 2—loop, P.M. system
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cannot handle all the uncertainties of P
1 
in R

1
, 
~2
’ and the outer

loop L must in this sense be “overdesigned” to make up the differ-

ence. The important point is that in problems with significant

uncertainty, the sensor noise effect is strongest in the high fre-

quency range, which is well beyond the control frequency bandwidth.

Based on this, the design philosophy is to concentrate on the signal

level increase in the Q.f. ranges (R , R ) and let L do its best
1 2 i

in the h.f. range. The means of doing the former was prepared in

chapter 2, with (1 + L
i
) the principal design tool.

In this chapter, a systematic design procedure based on the

above is presented with detailed numerical examples. Several values

of signal level increase ratio are chosen, in order to get a feeling

• for the trade—off between the bounds on l+L ,increase in Cin 22

signal level and sensor noise effects. For comparison purposes,

single loop and cascaded 2—loop, no P.M., designs are also given,

which satisfy the same specifications. Also, a hypothetical P.M.

design which ignores the signal—level—variation problem (ISLV) is

given, in order to see the maximum savings in sensor noise effect ,

in case the permitted S.L. increase is unlimited . Finally, a de-

tailed comparison is made between the P.M. 2—loop system and the no

P.M. cascaded 2—loop system, with respect to sensor noise effects.

It is assumed throughout that each plant section is minimum—

phase, although it need not be open—loop stable [2, 51. 
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3.2 Principle Steps in Design Procedure

(1) Translation of time—domain bounds on c(t) into bounds

on IT(iw) I ~ IC(jw)/R(jw)l, if the specifications are

not originally in the frequency domain.

(2) Choice of bounds on Ii + L1
(jw) j from a given value

of permitted C22 power increase

q - P (C22 (w) }2dw/ 1° IC~ (w) }2dw.

(3) Determination of the resulting bounds B~~(w) on the

inner 1oop L~ P1 H1 in the low frequency range,

~l
’ R2

.

(4) Design of inner loop L~ in R
1
, R

2 
which satisfies

B~1
(w) .

(5) Determination of the template of 1
~1e 

— P
1
/( 1 + L~)

from L~, in R1, 
1
~2~

(6) Find ing the bounds B
~~
(
~
) on the outer 1oop, in order

to satisfy the design specification on T(jw). In

R
2
, these bounds are chosen so that L~ is satisfactory

and need not be altered. In R
3
, 1(

44 R5
, the bounds

are chosen as in the cascaded design philosophy.

(7) Design of the outer loop L from the bounds B
L
(w),

and then finding the corresponding bounds B
Li
(w) on the

inner loop, in R
3~ 

R
4
, R

5
, such tha t L chosen is

satisfactory .

k~. 
~~~~~~~~~~ • •~~~• • • • • • • • • • •~~~~~~~~~~~~~~~



-- ~~~~~~~~ ~~~~~~~~~~~ •~~ ‘~~~~ •

105

(8) Completion of the design of the inner ioop L
1 

which

satisfies both B~~
(w) and B

~i
(w).

3.3 Design Procedure

The design procedure is explained and illustrated by means

of a design example.

3.3.1 Specifications on Numerical Example

Plant: P — P
1
P
2
, P

~ 
—

Plant uncertainty: /2~~ k1 ~ 
10 fi , v’2 ~ k2 ~ 1,0

independently

Bounds on IT(iw)t: shown in Figure 3—2(b) were

originally derived from time

domain bounds of Figure 3—2(a).

Disturbance response: ~ 2.0 db

(Al l above are the same as in Section 1.2.5)

Restriction on signal level: Q ~ 1.05 for unit step input.

3.3.2 Translation of time—domain apecification,~J7ig~re

3—2(a)jjnto freguency domain bounds (Figure 3-~j b J)

This effort is as yet an art rather than a science. In a

minimum—phase system the magnitude of the frequency response

IT(Jw)I completely specifies the transfer function T(s), which in

turn uniquely determines the system step response c5(t). Hence,
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t.2 .

upper-7I~- ~~~~~~~
boundi ~~ - - -

b ~0.9-  I~~ -

~
‘ 1”Iower bound

c (t) I , b
2

0.6 - / ~

‘ -

I ,
I ,

-

I j
0 I I I I

0 2 4 6 Time
Figure 3— 2(a). Time domain step response specification.

bounds on 9..nIT(jw)I suffice. But the rigorous translation of time-’

doma in bounds into bounds on IT(iw)I is, as yet, an unsolved pro-

blem. In practice, however, it has not been difficult to achieve

a translation suitable for any specific numerical problem en—

countered. One may begin, for example, by assuming a simple second—

or third—order system model for T(a), and finding the bounds on the

model parameters which correspond to the bounds on the time res-

ponse. From the model parameter bounds, one then determines the

resulting bounds on 2nIT(jw)I. Suppose this steps leads to the

solid—line bounds B , B
L 
of Figure 3—3.

It is desirable, of course, to increase the spread between

B and S
i,
, but it will be seen that there is no advantage in doing

so at isolated points. There is benefit only if the spread in-

creases, on the whole, with increasing w. One soon finds, with a

little experimentation, that indicated modifications B1, B2 in
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1 1 I I I J  d.~ 
I I I I I I j

0

B1 
-

* 

- 

8~~~k \çlTlmax
\ ~~~~~~~~~~~~~~~~~~~~~~~~~-20 -

I’ Imin ~~

DB - 
B2 -

40 -

\ -
\

60 t u t u  1 I t i u i t u l  ~
I tow

Figure 3—2(b). “Equivalent” frequency domain specification

• Figure 3—3 are generally achievable. It is very helpful for such

experimentation to have a computer programme for finding time res—

ponse from the magnitude of the frequency response. Additional

experimentation reveals that there is a definite limit to the per-

missible spread in the lower frequency range for a reasonably smooth

curve of T(jw)f. Subsequent design details provide one with an

appreciation of the frequency ranges in which broadening of the

bounds may or may not be important. Such ranges depend a great deal

on the nature of the plant and its uncertainty. Hence, it is best

to obtain comparatively quickly estimates of B
1
, B

2 
and proceed with

the design. The designer will subsequently understand whether it is
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worthwhile to return for better determination of bounds on !T(iw)I.

Practitioners of quantitative design have had very good results in

translating and satisfying time domain bounds. [2, 5—16].

3.3.3 Derivation of bounds on I i  + Lini from values of

permitted maximum C2~ power increase

Let

PEI1+L [‘ Ic I 12
in 2s max dwQ(design criterion) — Q — —___________________

-I C Plc 2
o 2s max

It is recalled that

I Ic I 2 dw
~~o 22 max

Q-

I ~c 2 dw
j o 2 s m ax

is the power increase, which is apriori given as part of the system

specifications. For the time being, assume that from this given Q,

we are able to determine Q — 1.22 in this example. The procedure

for finding Q from Q is given in section 3.5. The next step is to

determine the 
~
1 + L1 (jw)I specification from Q .  The procedure

for doing so and for finding Q from Q, will be much better appre-

cia ted af ter a few design examples , so it is postponed. In the

meantime, we accept the curve shown in Figure 3—4 for

[I i + L
i 

sIC 2 I maxJ 2 
vs w, from which there is obtained the bound

on Il + L1 (jw)l in Figure 35 . 
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~~~~~~~~~~~~~~~~~~~~
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Figure 3—4. The choice of (I1+L
i i • IC25!)
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— Design C
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~ II+L~I~IDB

10 1 1.3 CA) 
t O

Figure 3—5. Bound on I l+L1 I due to Figure 3—4

3.3.4 Bounds B~~(w) on the inner loop, Line i~ R,~~ R~

The constant I l+LiI curves of Figure 2—5 are very useful

• here, as they give directly the bounds BLi(~
) on L

i 
— P

1
H
1
. For

example, in Figure 3—5, the bound is 1 db at cu — 1.3, so the locus

in Figure 3—6 of I 1+Li I 1. db immediately gives B~~(l.3). The

shaded region is the acceptable range of L
in 

at w 1.3. The set

of bounds BLi(w) on Lin shown in Figure 3—7 are thus obtained in

R
1

, R
2

.

3.3.5 Design of L which satisfies B
~i

(w) in R
1, 

R
2

L~~(w) denotes Li
(w) in R

1
, R

2
. The bounds B

~i
(w) are

shown in in Figure 3—7. Note how the bounds move up with w in the

Nichols ’ chart. The resulting increase in I L i~ I is accompanied by
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-to o~~~.i~YiI ‘~ -?~

~ rr~5~~~• ~~~ 

~~~~~~~~~~BL1t ’~~~ 
I
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H I I

00 300 60
0 

90
0 1200 ISO’ 180° LL~

Figure 3—7. Bounds B
~i
(w) and resulting L

i 
in R

1
, R

2 
(Design C)
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Arg L~>0 with magnitude dependong on the rate of increase of IL1 !.
The larger the ra te of increases , the larger is Arg L~~, and this

results in a wider shift of the template of 
~1e ~ 

P1/( 1+L1) to the

left (decreasing angle)-—Figure 3—9. The effect on the outer loop

bound is to shift it to the right (Figure 3—10), so that the outer

loop I L l  decreases more slowly——which is not good in the effect

of sensor noise. This is discussed in section 3.3.6, 7. So we try

to shape L~ to satisfy B~~ with smallest LL
1
’
~ , from w — 0 to

(a t end of R ), with LL~ (0) — 00 and LL ° (w ) - 00.
2 in i n 2

The resulting L~ is shown in Figure 3—7 and its Bode plot

in Figure 3—8.

3.3.6 Templates of

As noted, L~ does not contend with P1 uncer tainty in R
1
, R

2
.

So the outer loop L must do this. The total uncertainty template

is now that of p
2 ~2

’
~ 1e The template of P

1 ~

can be found , because L
i 
is basically known in R

1
, R

2
. Some re—

suiting templates of P
2
P
~, 

for this example are shown in Figure 3—9.

3.3.7 The outer loop bounds B~ ,(w) in R
1, 

R
2

The outer loop bounds B~~,(w) can be derived by hand , by

manipulating the templates 
~le~2 

to find the position of L (ju)

• which results in the specifications of Figure 3—2(b) on ~nIT(jw)!

U.
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0 ’

10 
IL~ I

-30 800

IA) 

~O
’ ’  to IO~

Figure 38. Bode plot of L~ in R1
, 
~2 

(Design C)

being satisfied. The details are the same as in the single loop

system discussed in section 1.2.1, because it is an identical pro-

blem. This is pretty fast but it can, of course, be done entirely

on the computer. The results in R
1
, R

2
, are shown in Figure 3—10.

Note, in Figure 3—10, the lef t hand side of B
L
(w) do not reach the

disturbance forbidden cylinder Bh2 in R1, R2. This is because

in R
1
, R

2 
in Figures 3—7, 8, so the templates of 

~le~2 
in

Figure 3—9, all go upward and to the left from “Len (the nominal

point of 
~le as defined in section 2.2.1). Obviously, this kind

of B
L
(w) forces L to be further to the right, i.e., with larger

phase angle thereby decreasing the rate of decrease of

-- . -  - - --~~~_ -- •-~~-~~~~~~~~~~~ .-  -~~~~~~~ 
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Figure 3—9. Templates of P~~P2 
(Design C)

and increasing the sensor noise response in hf region. This is

the price we must pay for restricting SLVR in R
1
, R

2
.

3.3.8. Design of L and determination of B
Li

()
~~

The outer loop Lon is designed to satisfy the BL (c
~
) ob-

tained in section 3.3.7 in R
1
, R

2
, and to be pretty much like in

an ordinary no P.M. cascaded design, for R
3
, R

4
, R

5
, i.e., with

a safety margin——chosen as 5 db in this example——see Figure 3—10.

It is important here to note that in R
3
, R4, R5~ 

L
on 

is designed

(except for 5 db margin) as if there is no uncertainty in P
1 ——

as in the no P.M. cascaded philosophy.

The resulting L design is final. The next step is to ob-

tain the inner loop bounds BLI (w) in R
3
, R
4
, R

5
, such that the L 

- •
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11°IDB
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r 
j  
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~***__f~__•~ ~~~~~~~~~~ I 0db

BI l2~ ,
-20 \~4,/J~~

~~~~~~~~~ “9’~ ~
40 Lo P%

—270° — 180’ -90’ 0 L L.0
Figure 3—10. BL (w) and L in Nichols ’ Chart (Design C)

design is satisfactory, despite its neglect of 
~
‘1e uncertainty in

R
3
, R

4
, R

5
. (This part is the same as in no P.M. cascaded design.)

Also, to be absolutely sure that the final design satisfies the fre-

quency specification of Figure 3—2(b), this is also done in R1, R
2
.

This precaution is worthwhile because L
1 

as originally designed

for R
1
, R

2
, must be modif ied, albeit very little. The procedure

is now exactly the same as in the cascaded multiple loop (no P.M.)

system. It can be done either graphically as in [2] or by a com-

puter search program. Some B~~ corresponding to L of Figure 3—10,

U 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •‘~•--~~ 
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—
~ 
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are shown in Figure 3—11. Note the patterns of BLi f or w ~ 40 is

very similar to those in the no P.M. cascaded system (see Figure

1—19). This is so because the main difference between the P.M.

and the no P.M. L
i 

is at low frequency.

~ 1 I I 1 1 I

0~~ _ _

_________ 
‘Q~ 4o

-20

• \~~~. _  I
.

•1
—40 .  / k’~~~~N O.K. re

~
o
~1

— 180° — 12 0’ -60° 0° 60° j 20° i80°
LL~

Figure 3-11. The bounds of B
ti 

(Design C)

I,
3.3.9 Completion of L

in

4 Recall (section 3.3.5, Figures 3—7, 8) tha t L~ (from w 0

to — 10), was obtained as the f irst step in design of L
1 1 i.e.

in R
1
, R

2
. The final step is to complete L

in 
so as to satisfy the

bounds B
ti~ 

some of which are redrawn in Figure 3—12. Note that we

have deliberately designed I L~~(i w2) ! to be near the maximum value

_•

~
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needed by L1 —-approximately 6 db at W 55. So from w = = 10

to u 55~ Lin must be approximately horizontal. Since L~ was

designed (see Figure 3 8 )  to be approximately horizontal for

• it is relatively easy to achieve a good fitting of L
i~ 

with an L1
which satisfies the bounds for all w, i.e., the low—frequency poles

and zeros used in L~ are retained in L , which , of course , has
in in

more poles and zeros in the higher range in order to achieve the

shaping needed to satisfy the B
Li
(w).

The resulting L
1 

is shown in Figure 3—12. Comparison with

other designs is done later——Figures 3—28,31. These other designs

• are next presented.

3.4 More Numerical Examples

3.4.1 Introduction

Sections 3.3.2 — 9 presented the details of a design for the

problem presented in section 3.3.1. We now present with much less

detail, more designs for the same problem, differing chiefly in

the signal level ratio Q and also in system structure. This is

done in order to give the reader a good perspective on the effect

of Q and how the design results compare with those of single—loop

and no P.M. cascade structures.

3.4.2 Single loop system (Figure 1—3(a))

Recall section 1.2.5, where the single loop transmission

hiiiL~ _ ._ ~~~~~~~~~~~ -~~~~~~~~ -------—--—~~~
---- —-—---- - - —  --— -

~~~~
-
~
---—— - — -  • - -  — • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . :— -::--ii:---=—-
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-20 

~~~~~~~~~~~~ 
.~~ ‘~ ~

-.40 -

— 18U° — 120’ - =60
0 OO 60° 120° i80’

-.360° (S oIe 2) — 180°

Figure 3—12. The inner loop L
1 

with B
Li

L = C P P for this numerical problem wa~ shown in Figure 1—9.Sn s l n 2  -

Henceforth, Lsn is used for comparison with the P.M. 2 loop system,

with respect to signal level, sensor noise effect, etc.

3 .4.3 Cascaded, 2—loop, no P.M. system (Figure 1-~5(a

In section 1.4.3, the outer loop L1 and inner loop 1
~2 

=

1~2
M
2 
of the cascaded , 2—loop, no P.M. systems (Figures 1—18, 19)

were presented for this numerical problem. These are used to

compare the sensor noise e f f e c t s  at points X
1
, X

2
, with the 2—loop

P.M. design (see Figures 1—15(a), 3—l) later in section 3.9. 

~~~~~~~~~~~~~~~~~~~~ ~~~~~
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3.4.4 ISLF (Ignoring—signal—level—variation), 2—loop,

P.M. system (Figure 3—1)

In this system, we ignore the problem of signal level in-

crease. The inner loop L
i 

— P
1
H
1 

is designed in precisely the same

manner as L2 ( P
2
H
2 
there) in the cascaded , no P.M. design of

• section 3.4.3, i.e., to relieve the burden on L as much as pos-

sible. The ISLV , 2—loop , P.M. system is compared with the other

2—loop, P.M. systems to s~~ the sacrifice in sensor noise effect

due to the problem of signal level variation in the P.M. design.

3.4.5 More 2—loop, P.M. designs (Figure 3—1 )

Four more 2—loop, P.M. designs with different SLVR require-

ments, are presented here. These designs, denoted by B, D, A , E,

were achieved trying different L
i
P in R

1
, R

2
, which resulted in

different Q value. Based on these results, we derive a relation

between Q and SLV R in section 3.5. This relationship enables us

to choose SLVR from a specified Q value. Also, the sensor noise

effects obtained from these designs gives us the trade—off between

• Q and sensor noise effect in a 2—loop, P.M. system——section 3.8.

The assumed L~ of designs B, D, A, E, are shown in Figures

3-l3(a—d) and the corresponding~1 + Li 
Ivalues in Figure 3-14.

(Curve C represents a design done by deliberate synthesis, unlike

A , B, D, E.) The templates P1
P
2 
are shown in Figures 3—15 (a,. .

d) ,  and the B and L in Figures 3—16 (a, . . . d ) .  Finally,
-

~~~~ 

Lo on

~~~~~~ 

. 
-
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Figure 3—13 . Bounds B~~(u) and w it h  constan t 1+L
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0 I . I

Figure 3—14. The corresponding values of

I1+Li l for L~ in Figures 3—13 (a), . . . (d)

the in the hf ranges and the final L
i 

are in Figures 3—17

(a , . . . d).  Some of the computer simulation results of unit step

response are shown in Figure 3—18 (a ) including the upper

and lower bounds b
1
, b

2
. In all designs including the single loop

and the no P.M. cascaded loop, the results agreed with the time—

domain specification of Figure 3—2(a). 
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3.5 The Relation be tween Qand SLVR

3.5.1 Int roduction

Recall (section 1.6.5) that this work is restricted to the

RMS problem defined by Q. But the design criterEon is based on SLVR

(w) (section 2 . 2 ) .  So it is important  to have :~ met hod for  choosing

SLVR(cti) from a given Q. In section 3.4 .5 , four desi gns (H , D , A , E)

were made based on assumed L~~. These results, together with the

ISLV design, are analyzed here and used to der ive a r e lat i o n  between

SLVR(w) and Q. Finally,  this derived re la t ion is used to do a V

synthesis problem——which was presented as Design C of section 1.3.

It is re—examined here, in order to clarify the procedure for

choosing SLVR(w) from (~ V

In this chapter , we only consider Q and SLVR at the output of

(see Figure 3—1). The signal level at the input of P 2 is not con-

sidered here. It will be considered in chapter 4 En conside rable V

general ity, because plants with more than two stages are treated V

there.

3.5.2 The nature of )C and ~C
________________ 

22 max _____2s max

In the single m o p  system of Figure 2—1 , !C 2
(lui) I — 

V

IR(i~ ) 
. T (jU.t)/P

1
(jw)l, where T(j~) ~ C1

(jt&~) / R ( jw) , is the system

t ransfer  function . Similarly,  in 2—loop, P.M. system of Figure .1—1 ,

- IR(iw) T(jt~)/ P
1 

(jw)~ , whe re P
1 ~ P 1/ ( 1  + L~)~ L~

P H . IC I 2 of Design A is compared here for various cond i t ions1 1  22 max

_ _ _ _ _ _ _ _  - V
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with IC 
2 

of the same problem. Curves of (Il+L ‘~c )
2

2s max in 2. max

are also shown. Figure 3—19 is for R — unit step, P~ • type 1.

Figure 3—20 shows the results for R - unit step but P
1 

- type 0.

Figure 3—21 shows the case of R — unit impulse and P
1 

— type 1.

Finally, Figure 3—22 shows R - unit impulse and P
1 

- type 0. Note

that in Figures 3—19 —22, the region of strength of the signals

changes with the input function and type number of P
1
. For example,

in Figure 3—19, the peak control signal is near 1.2 rad/sec , and

in Figure 3—20. it is at w — 0. In section 1.6.5, the power

0.8
‘S

/
2

.
%

I C ~2
2s max

0.4 ’
I

I

0.1 -
SI

SI

V 
~ • 

. — — — —

0 I I I

0 a 4 6
Figure_3—19. Comparison of signal levels R - unit step, P

1 
— t ype I

I _ 
_  _ _  _ _ _  _ _ _ _ __ _  __-- V --_______ - - ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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variation Q was defined to be the ratio of area under the curves

Ic 2 Ic 2 The designer knows ~C (j t e )j  before
22 max 2s max 2s max

coninencing the P.M. design. He can use these figures to predict

the resulting 
~22~~~Lax

.1

3Q

y 
(11+tin t I C 2sI max)

2

20

10

0 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3—20. Comparison of signal levels R — unit step, P1 
— type 0 
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Figure 3—21. Comparison of signal levels R — impulse, P
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— type 1
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2

3.5.3 Comparison of f I C f dw and Qo 22 max

In order to understand the relation betvet~n Il + L and
in

Q for various conditions, the various 2—loop P.M. design are com-

pared in Tables 3—1, 2. In these tables, ‘criterion’ means the

da ta are calculated from f°°{Il + t ‘IC I }
2
dw, and the

V 
o in 2s max

2‘result’ column contain the actual f IC I dw for the single
o 2s max

loop and 
~ 

IC22Im~~
dw for the 2—loop, P.M. system. In the Q column,

‘criterion’ indicates Q — f°{~l + t f .~c I }2dw/PIC 
2 
dw,o in 2s max o 2 5 m ax

2 2
and ‘result’ gives Q — I IC I dwII IC dw.o 22 max o 2s max

The ISLV design (ignoring—signal—level-variation) may be

impractical, because the signal level problem is ignored and the

only objective is the reduction of sensor noise effect. So in

V 
Tables 3—1, 2, its Q etc. values are the largest. But, it is use-

ful. to know that even in this extreme case Q 2. Design E for R

a step input (Table 3—1) is excellent in terms of signal level
V 

variation because Q (result) — .98<1, although Q (cr iterion) —

1.17. This is because the design criteria are very conservative,

as noted in section 2.4.2.

Nex t, the data of Q in Tables 3—1, 2 are plotted: Q (result)

vs Q (criterion) Q in Figure 3—23. The very interesting

V 

point is that for each condition (e.g., P
1 

— type 1, R — unit step),

the data lie on a straight line. In Figure 3—23, a, b, there has

_  
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ V
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four straignt lines representing the four different cases——

(1) P
1 

— type 0, R — unit step; (2) P
1 

type 0, R unit impulse;

(3) P
1 

— type 1, R — unit seep; (4) P
1 

= type j ,  R = unit

impulse. Also, the data for each of Designs A, B, C, D, E, give

straight lines, as shown in Figures 3—23(c)(d). (The lines were

obtained by linear regression). By means of these lines, the

designer can f ind Q f rom his known required Q .  With regards

to C, in section 3.3.1, the specification on Q was 1.05, for

R — unit step, P
1 

= type 1. In Figures 3—23 (b,d), the corresponding

— 1.22, which was used in the design in section 3.3.3.

QT

i.8 fo r Q)

Impulse inpu t ~~ I”

Step input -

I .  1.2 i.4 (.6 1.8 2.0 Qc

Figure 3—23(a). Relation between Q and 
~~~~~ 

— type 0.
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)

/
Impulse input 

~~1.6 Step input

‘ 4 ,

1.2. / // V
- 

V 
V 1.05 - 1’

#
4, ‘

I 

(.8 2.0 2.Z

Figure 3—23(b). Relation between Q and 
~c~~~l 

— type 1.
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Design B
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~~ iu Design E

Figure 3—23(c). Relation between Q and Q for d i f ferent  designs.r c

- -

1.6

~~~~~~~~~~~~~~~Design D

h

I:~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
g
_~~~~~~~~IlI~~~~ 

Design C

H 
I. 

~~. 

In 
i.4 (.6 1.8 

- 

2.0 Q~
Figure 3—23(d). Relation between 

~r 
and 

~c 
for different designs.
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3.5.4. The nature of L

For pedagogic reason, it is better to understand the nature

of L
in 

in R
1
, R

2 
before considering how to derive I i  + Lin (iW)I

from Q .  The nature of L
i 

is decisively influenced by the nature

of non P.M. cascadec1 loop design [5], note previously in chapter 1.

Recall that in the lf range (R
1
, R

2
) there is little demand on

L
1
; the bounds are upper ones, i.e., L

1 
must be below some boundary.

Consider the loci of constant I i + L1 ) in Figure 3—24, which is

replotted from Figure 2-5. We want it to be small in R
1
, R

2

because it is being used to determine SLVR, and in these ranges

we want small SLVR. We also know from our experience in cascaded

(no P.M.) design that at higher frequencies (R
3
, R

4
) the bounds

change to lower bounds (L
i 
must be above the boundary) 8nd the

- : level of these lower bounds gradually increases to a maximum at

in Figure 3—24, and then decreases along MNQ in Figure 3— 24 
V

(see Figure 3—12) . In our P.M. problem, we want tc tetain and V

improve the nice property of the non P.M. design in its drastic

reduction of sensor noise effect. The above properties of the

bounds in the non P.M. design continue to exist in the P.M. design .

The natural tendency for L
i 
is to reach w~, at L

i 
-. _9Ø0 in - 

V

Figure 3—24. And this is precisely the region in which I i + Li i

is large - 5db in Figure 3—24, giving a large SLVR value. However,

it is not this large SLVR at which bothers us because is

relatively laige——in R
4
, in which the signal level is small. It

-- V •~~~~~~~ - V V . ~~~~~~~~ -~~~~~~~ V
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is the fact that we must reach this region at starting from a

small value of IL I in R . (Recall that small ~i + L is re-

quired in R1
, R

2 
b:cause the signal level is largest inR

1
, R).

So we have to shape L
in 

in R
1
, R

2 
to join MNQ, but hopefully so

as to achieve small ~
i + L

1~~
. Also Arg L

1
(0) must be a multi ple

of 2. Curve ABC in Figure 3—24 seems attractive but it gives a

negative half encirclement of the —1 point , so (1 + L1
) has a

rhp zero, unless L1 has a rhp pole. This is seen from the Nyquist

criterion : no. of encirciements N = N — N , where N = no. of
z p z

1 + L in the rhp and N = no. of poles of 1 + L. in rhp. Con—

sider the two alternatives: 

, —

- I I t 
~~~~~~

o — 
Bdb

~~~~F 
-r

odL L. I~~
’ - 0db

_____________________ r’~A I I I —

-lao’ 
V 

=60
0 

0’ 60 IZ~~
’ 8o

LLL

Figure 3—24. Constant l+Lj curves and possibility of L
1 
curves.

ii

-— ~~- - - ~~~~~~~~~~~~~~
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i. L — P H has a rhp pole. This pole must be due to V

in lnl

H and then it appears as a rhp zero of L = GP P /
1 on 2n ln

V (l+P
in
H
i
)
~ 

which is then nonminimum phase and is very

limited in its feedback capabilities. So it is ex—

eluded.

2. L
1 

does not have a rhp pole. If so, it is impossible

for such a stable L to achieve the encirclement
in

shown in Figure 3—24, because in such a case N = —1 ,

p N — 0, so N — —l whl.h is impossible
p

A second attractive possibility for L
1 

in R
1
, R

2 
appears

to be A ’B’C’ or A”B”C” in Figure 3—24, which was seriously attempted .

The problem is achievability of such curvEs. Achievability of such

curves has been discussed in detail in section 7.7 of [45]

(Figure 7.7—4, etc.) and it was shown to be impossible to achieve

the kinds of ratio !M 1/M 2 1 generally need€d here , where M1 is the V

maximum L
i l needed and M

2 
is — —20 db due to the hf uncertainty

in P
1
.

This leaves us only with the third possibility A” B” C”

Here Arg L
1
(0) — 0 and iL i~

(0)I should be small in order that

Il + L1 f is small in this range where the signal level is large.

But at higher w, L
i 

must merge into MNQ in Figure 3—24. Hence,

Arg L
1 

must be positive over much of R
1
, R

2
, in order that I L . I

may increase from its low value at w — 0 to the value needed at

M , denoted by w
0 0

-- VV V V V  ~~~~~~~~~~~~~~~~~~~~~~~~ 
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We want to estimate the w value at which L across the
in

zero phase line on its way to MNQ. We know from our experience

in cascaded design that IL i l (i.e., point M in Figure 3—24)
1~

occurs near J of L in Figure 3—25. Our experience is that a
on

reasonable estimate of w~/w 3. This can also be approximately

theoretically justified as follows. Arg L
i 

is by definition

positive from 0 to 
~ 

and I L i I is at (Pt J). Now M
M 

(magni—

tude of L~ at point M) cannot be much bigger than H , because

Arg L
i 
in this range is < 0. So must of the increase in I L 1 I

from its small fL (0)1 to IL (M)i must be achieved in (0, w ) .
in in o

From w to w.~, 1L1 1 will be fairly horizontal and cover a range

of 90° decrease in phase. This is somewhat similar to the

situation f rom I to J in Figure 3—25, where - 90° is also covered

and where the range w~/w~ 3. This gives near point I in

Figure 3—25.

V 3.5.5 Choice of “criterion” i l+L from Q
V in c

Recall Q — P{Il + L I I c  I }2
dw/P lc 

2 dw (— 1.22
c o in 2s max o 2s max

2V in design C). I C 2 I is known by executing a single loop design

and is shown in Figure 3—26 (which is replotted from Figure 3—4).

So the area under the curve {!l + L I I C  }2 — ~~~~~ shouldin 2s max

be 1.22 t imes that under Ic 2 
• This curve should be such tha t2s max

the resulting L (jw) looks more or less like A”B”C” (Figure

3—24) in the region R
1
, R

2 
which covers the significant range in
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1. L — P H has a rhp pole. This pole must be due to
in m l

H and then it appears as a rhp zero of L — (‘.P P /1 on 2n ln

(l+P H ) ,  which is then nonminimum phase and is ve r y
in 1

limited in its feedback capabilities. So it is ex-

cluded .

2. L
~ 

does not have a rhp pole. If so, it is impossible

for such a stable L to achieve the encirc lement
in

- :  shown in Figure 3—24, because in such a case N -1,

N — 0, so N — —l whi h is impossible
p z

A second attractive possibility for L
in 

in R
1
, R

2 
appears

to be A’B’C ’ or A”B”C” in Figure 3—24, which was seriously attempted .

The problem is achievability of such curv€s. Achievability of such

curves has been discussed in detail in section 7.7 of [45]

(Figure 7.7—4, etc.) and it was shown to be impossible to achieve

the kinds of ratio 1M 1/M2 I generally need€d here, where M
1 
is the

maximum IL needed and M is — —20 db due to the hf uncertainty

m t ’ 1. 
in 2 -

This leaves us only with the third possibility A”B”’C”

Here Arg L
i

(O) — 0 and I L 1~(0) ! should be small in order tha t

+ ~~~ is small in this range where the signal level is large .

But at higher 
~~ 

L~ must merge into MNQ in Figure 3—24. Hence,

V Arg L
i 

must be positive over much of R
1
, R

2
, in order that jL

1 j

may increase from its low value at w — 0 to the value needed at

M , denoted b y w
~~~ 0 0  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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0
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LL.
Figure 3—25. L in Nichols’ chart.

on

Figure 3—26. This is necessary in order that a higher w, (to

achieve significant sensor noise reduction), L
i 

satisfy the

bound M
M 

at and then follow a curve like MNQ in Figure 3-24.

So the primary concern at this stage is to start L
1 

at w = 0

at a point like A” , and arrive at a point like M in Figure 3—24

(where w 15). Obviously, there is no unique curve of ~‘ (w) .

What are the t r ade—offs  and constraints? It is easier to see the

— .— ~~~ ~~~~ •V ~~VV ~~ •V V -‘ _ _ _ _ _ _  _ _ _ _ _



- 

~r ~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =~ ~~~~~~~~~~~~~~~~~~~~ --~r~ ~

-~~T
- V.::

V
V,

148

effec t of L
i
(iw) shaping on ‘P (w), rather than vice versa and

this is next done.

First, we can use the Bode integral [4, section 7.5]

4~~~A — A  — — ~ I Arg L
1 
(jw)d 9~n U (3 .5 - I)

A — V Q n I L i 
(0) I =MA,,, , A -

The interval in (1) is from 0 to ~~~, but since the poles and zeros

introduced beyond the R
1
, R

2 
range are relat ively far—off (e.g.,

in our example C, P~ 26.5 ~ j45.9, —115.5 + 1309.), we can take

f~o , and A — M .  So far a given value of MA,,,

Arg L
i 

(jW)dVQnU) is pretty well fixed. This is one semi-

constraint (because MA ,,, is free , and so is w ) .

Suppose we have found a curve which satisfies the 1. 2 2

condition and (1), e.g., that shown in Figure 3—26 , for which

the resulting L
1 

in R
1
, R 2 is shown in Figure 3—27.  Consider

keeping the same shape of L
in 

as in Figure 3—27 , but shifting the

pattern as a whole to the lef t , i . e . ,  achieving the t r ans fe r  from

- : A” to C” in Figure 3—24 in a lower frequency range . Clear ly ,

this would cause ‘Y(w) to be the same for w~w , but considerabl y
0

larger in between 0 and U) , thereby violating the 1.22 condition .

So , if we want to “start IL 1 
(1

~ ) 1 of f ”  soone r , we must f l a t t e n

somewhat the curve of Arg L~~(Jw) in Figure 3—27-—lower its peak

and spread it out over a larger range, so that its area remains the

same, as shown by dashed line in Figure 3—27. This will increase

I
V ~~~~~~- -V— - -  ~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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‘P at lower w and decrease it at higher w. Note that lifting A”

higher , i.e., increasing I L in
(O) I

~ 
means f~o can be less, and so

H peak Arg L~~(Jw) can be smaller. However, in Figure 3—24 , it is

seen that this tends to increase Il + L and therefore ‘P. How-

ever, reduction of Arg L
1
(jw) is good , :specially in latter part

of R ——because the bound on the outer loop L is shifted less to
2 on

the right (Recall section 3.3.7 and Figure 3—10). So this kind

of e f fo r t  (starting L1 (j w) up sooner and raising A’” ) is good

and one should do this as much as possible. But the 1.22 limit

-
‘ on f ’I’dw limits how much can be done and that is basically the

optimum, which is seen by considering the opposite kind of

variation.

J
Suppose the pattern in Figure 3—27 is pushed to the right.

‘11(w) is thereby decreased but the peak in Arg L
1
(jw) occurs at

a higher w, which is more harmful to L (j w) in the sense of
on

sensor noise effect (see section 3.3.7, Figure 3—10). Thus, one

wants to move in the opposite direction——to the left——as pre-

viously seen.

The above presents the trade—of fs. The optimum ‘11(w) curve

would require some cut and try. Our experience has been that a

good way to start is to take the peak of l’~~~ 
~max ~ 

M~ in

V Figure 3—26 at the same w value as the peak of IC I , take V25 max

‘11(0) — I c I at zero , allow a value - .05 larger than I C I25 max 28 max

in the higher w range (see Figure 3—26) and draw a f a i r l y  smooth

H 
VV -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(I 1+L i I . I C 2 I )  —‘11(w)

2o4 ~
C2 1 ax \~

l’ r- Gos

o.a I

I S1

V I !  I
V o i.a~~~ 4

R~
Figure 3—26. The choice of (ll+L~ l • 1 C 25 1 )2 (Design C)

— V

fJ’)

Figure 3—27. L
in 

and !Lin I
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curve satisfying the above. Try different M
x values until the 1.22 

V

condition is satisfied. So now a trial ‘11(w) is available. Use it

to determine the bounds on Il + L~ I and find the resulting L 0-: in in

(i.e., L
i 

in R
1
, R

2
) wilch will look like that in Figure 3—24 . 

V

Use this as a starter. Now work from L~~, rather than from ‘11(w).
V 

in

Push the IL~~I increase toward lower frequency as previously

indicated and modify Arg L~ and possibly the A” point in this

quest. We have found this to be a good approach.

3.6 Comparison of the Loop Transmissions

Bode plots of the inner loop ~L and the outer loop L
in on

for the five different P.M. 2—loop designs are given in Figure

3—28, as well as the single 1oop transmission L .  Recall

section 2.3, R
1 

(0., w1] , I L  (jw
1
)~= 25 db; H2 

= (w
1
, w

2
] ,

~.(jw2
)~— —M

2
, M

2 
— hf uncertainty of P

2
; R

3 
— (w

2
, w

3
],IL (jw

3)I
V 

——(M
1 
+ H

2
), H

1 
— hf uncertainty of P

1
; R
4 

— (w
3
, w

4
], w~ — lOw

3
;

R
5 

— (w
4
, co) .

I L i~I in R
1
, R

2
, in Figure 3—28 is closely related to SLVR

and Q. The larger 1L 1 1, the large are SLVR and Q. Note, when

L in R,, is lover than some limit , say Design E , then, althoughin

the criterion on SLVR , I i + L I~ >1 the actual p/ (JC I / I c  I )in l max 5 max

<1 in Figure 2—29(e) in most of R
2
. So Q< 1, because of the

conservative character of the design philosophy. It is reempha-

sized that the signal level in R
3
, H

4
, R

5 
is not important , so

L. V~~~~~~~~~~V~~~~~~~ VV ~~~~~_
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even large SLVR (p)——ther e poses no problem . The curves of 1+L1 1

and p/(IC I I I ’~ I ) for Design B, D, A, C, E are shown in1 max a max

Figure 3—29 (a), . . ., (e) . Note the values of P / ( I C 1I /

J c I } in Figure 3—29 in H , R , are directly related to thes max 1 2

value of JL 1 I in Figure 3—28 . For example , Design B in Figure

3—28 is the largest in R , R , so the value of p / ( I C I /IC I }1 2 l max s max

of Figure 3—29(a) is the largest. The comparison of

I c I } are shown in Figure 3 — 2 9 ( f ) .s max

— 
tiJi t4)j  cJq~20 1 1  ,~~

R, 
_ _ _

-20 
~~~~~~~~~

B
—40 

~~~~~ \ .  ~ tin of 2—loop , P.M.
C system designs

—60 E 
B

V ton of 2—loop, P.M. D E

system designs A - 4uw Qvalue C -BE
D—1.24 V100 A —  1.10
C —  1.047 V

E — 0.98

(A) 

tO %O1 lO~

Figure 3—28. Loop transmissions of L , L , L
V Sn on in

V 
- - - - ——~~~~ V V - - 

V
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Figure 3—29(a). Design B
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Figure 3—29(b). Design D
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CA)t 
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~

!~ii&ure 3—29 (c) .  Design A

.6~ ~ ~~~~~~.t5~ I 
I I~~~VII ~jimax~ ~1 0 -  ‘ ‘ / I t c  

___ -j .,.~. /

VB 
Isinax 

~~
,,

_ _ _ _ _  ~R3 -.41S1~/~4.~
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I0•
~

Figure 3—29(d). Design C
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A
.08 8. 44.~~ 440.
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1 
‘

S 
I l+L I 

I

in

0 -  
1

-•5 ,  I I‘I I

R~ 
w&. R~..’—. Rç~-R~

10=’ 
I 10 ,0a

V I I~4)

Figure 3—29(e). Design E

I
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44. 1 
V

is - .08 8. 440. V

i o -  R, ‘.‘L R3.— 
~~ R4 ~~~DB

‘ 5 ñ I~~~_  I

Q value I I
B — 1.41.

~ 
Curves of ~I:~:: p

I o
_
~
. to_I I 10 I O~ I0~

(f) Comparison of p/(IC I / I c  I )i max S max

Figure 3—29. Bode plots of I l+L and p/(IC I / I c  I )
in l max s max

The levels o f L and L in R , R , R in Figure 3—28,
on in 3 4 5

determine the sensor noise effect. The overall tendency of the

effect of sensor noise depends on the levels of I L I~ I L Ion in

H
3
, R4, R5 relative to the corresponding value of i./1P

1
P
2! and

1. / I  P2 1- . The equations are derived in (3.7—3, 4) in section 3.7.

The layer Q, the smaller the price that must be paid in ILØ~ in

H , R . Obviously, the smaller L , L in H , R , H , the smaller
4 5 on in 3 4 5

is the sensor noise effect.

V - - - - .V - - _ _ _ _ _
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Note, in Figure 3—28, all t
on 

have 5 db hf overdesign.

It is known that in the cascaded (no P.M.) design, some over—

design of L in this range, makes the design of t much easier.on in

This is basically because ~L can be thereby reduced . In
in max

a P.M. system, this is equivalent to shift t
in 

from AB’C’D’E in

Figure 3—30 (with It1~ at M
x
’ 0 db) to ABCDE. In our

example, the design is 5 db, so I L~~I is at M.x -—5 db . Note

the corresponding I l+L1~I value in Figure 3—30, is much smaller

along ABC than AB’C’. Recalling section 3.5.5 , one wants to s tar t

L
~~

(Jw) up sooner and raise A” (see Figure 3—24) , to achieve

IL in a shorter w range. Obviously, curve ABC in Figurein max

3—30 is better for this purpose than AB’C’.

3.7 Sensor Noise Effects

Recall the sensor noise effect  is evident in hf range where

L 

the signal level and disturbance response are usually small. The

noise transfer functions are as follows:

A. The single loop system——Figure 2—1 , sensor N
1

1 - 

T 
2 ~ 

— 

—C 
— 

L / P
1
P2 C P

1
P
2

N1 N l + C P P  l+t
V 1 s l 2  s

V 
— L / P

1
P
2
, in the hf range where 1L 5 I < < I  ( 3 .7—1 )

x - cP  —t ip
V l~~ 11 s 2  S 1

T — — —  —
N-, N l+CPP 1+L

L s l 2

V 

—L IP
1
, in the hf range where I L 8 k<I (3.7—2)

- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
V V~~~~~~~~~~ V~~~~~~~~~~ V 
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The curve of T 2 is shown in Figure 3—32. And T 
1
< 0 db for all

N1 N1

(B) The 2—loop, P.M. system——Figure 3—1 sensor N
1

2~~~~~X
22 

—G

T
H N1 N

1 
1+P

1
H
1
+P
1
P
2
G

— (l+t~)(l+L ) , L
i 

P
1
H
1
, t

o 
= GP

2

—t /p P
o 1 2
(1+L )

0 -

a L0/p
1
p
2
, in the hf range where 1L0 I<< I (3.7—3)

T 1 ~ = 
—(CP

2+H1
)

N1 N1 1+P
1
H
1
+CP

1
P
2

—[L (1+L
1
)/P

1
+L~/P

1J
— (1+t~)(l+t ) 

—

V - (L /P
1
+L~ /P

1
) in the hf range where

IL 1I < < I ,  I L 0 k<I

L~/P
1
, in the hf range where IL0 I < < I L ~I (3.7-4)

The curves of IT 
1I and I T 

2
1 for the five different 2—loop, ‘ 

V

N1 N2

P.M. design are shown in Figure 3—31(a) in DB vs log w and in

Figure 3—31(b) in arithematical scale. In these figures Design E

is the worst and B the best case , which is as it should be as the

SLVR constraint in Design E is the toughest. This also can be seen

directly from (3), (4) and Figure 3—28. In (3), (4), I T 11 and

ITN~
Idepends on ~~~~ It~I and I~1~2 I , I~1I . Since !P1

P
2! 

and I~1I

V ~~~~~~~~~~~ V~~~ VV ~~~~~~~~~ V~~~~~~~_ _
_ _
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LL~
Figure 3—30. The result of hf overdesign on L

0

are the same in all designs, the values of I L ~ I L I determine

I T N~I and l T N~ I .

Compare Design E with the single loop design in Figure 3—32

(a), (b). T 
1 

of signal ioop <0 db for all w, so it is not shown
N1

in Figures 3—32(a, b), but T
N
1 
of Design E >0 db as shown in

1
Figure  -32(a , b) .  The single loop design is better than the

‘- t vu~~. P.M. design with respect to sensor noise effect at the

,,.‘~~~ 
_ ,f However , with respect to the overall effect sensor

- - ..r ~~ ‘ . . i ip  ‘~vstem is better.

- ..l ~~ $~,4I ‘. s~~’~i t~ t h a t  it is the actual sensor noise

- .. P,. P1 
which n- ’- important , not the

— 
__ _i_____ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -
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Q valueV 
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comparison between noise effect at X12 in the single two-loop

designs. To illustrate this point, suppose that in the single—

loop design, the effect at X22 (Figure 3—1) is given by a number

10, and at X12 it is .1, whereas the signal level capacity of X12

is of the same order of magnitude or even larger than that of X
22
.

Hence, it is the noise at X
22 

which may render the design imprac-

tical. The noise effect at is insignificant. Now, in the

two—loop design, suppose the effect of X22 is 2 and at X12 it is

.5 (five times that in the single—loop design). The two—loop de-

sign Is obviously considerably superior. Thus, the two important

TN
1

ratios are 
N1 (2—loop) and 

1 (2—l opp ) N 1 (2—loop)

T 
2 

(1—lo op) - T 
2 

(1—loop) T (1—loop)
N1 N1 N1

not important.

The above is precisely the situation here . C22 X 22 P 2

and in the relatively low control signal frequency range, IP 2L>i

generally in this range, or at least l, so Ic 22 I~ 1x 22 I . Hence,

the signal level capacity (i.e., which the output stage there can

comfortably handle) at C22 must be ~ that at X22 . In the single—

1oop design I T I is enormous (see Figure 3—32) while I T 
1
1<1. In

N1 N1

the two—loop design IT 2 1 is considerably reduced , while IT 
1
1>1

Nl N1
but still small relative to iT 

2
1 and certainly very smallN1 2—loop

compared to ITN I .  Hence, the 2—loop design is decidedly better

in terms of overall system performance. It will be seen in

L~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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chapter 4 that this superiority is considerably increased if

another 1oop is added around P2 .

3.8 Trade—off between Q and Sensor Noise Ef fec t

The results of six different 2—1oop P.M. designs, ISLV , B,

D, A , C , E are shown in Figure 3—33. The total noise effects at

X12 and (in Figure 3—1) are calculated by means of

~ 1 2  2 ~ 2-9 2 1I ITN ~~~ ~ 3dw and / ITH r~N 
) ]dw respectively, where T

N
2 

1 1 1 1 1
T
N 

are def ined in ~3.7—3, 4) and ~ is the noise spectrum of
N
1

sensor N
1
, taken as a uniform distribution (I1

~N 
— 0.001). In

1
Figure 3—33, the two curves give the relations between Q and sensor

noise power response at X12 , X22 . These are useful for giving the

designer a feeling for the trade—off between signal level and

40 I I V • V Y V
~~ 

I V I I T I V I l  . V I V

30
P8 / ,

P 
~~% Design E — loop

/7~~ /(TWS)Design E \
0 I I I#

~,
,I i , , ,i ,I ,

I 10 IO~ iø~

(a) In logarithmic scale
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70

6 0 -  fl~Design E/  ~4 \I ‘thiSIngle
50 J ~~~~~

/ V

40 \
30 /

20
-

: / \
~~~4TW~~DeSj gfl E

V 

too 200 300 350
LA)

V 

- (b) In arithematical scale

Figure 3—32. Comparison of I T N’I ,  ITN
2

I between single—loop
1 1

system and 2—loop, P.M. system, Design E.

noise effect. Of course, Design ISLV is the best one in sensor

noise effect, but Q is rather high (—1.96). In Design B , the noise

is a little larger than in ISLV but the improvement in Q is fairly

large. In Design E , Q is excellent (—0.98) but the noise is signi-

ficantly more than in Design C with its Q = 1.047. It is again

emphasized that even in Design E with Q<1, the noise response (1.59)

V V -V~~~~~~ V~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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is still much smaller than a single loop system (5.63) in

2 2  2f [ 1T ~ ~ ‘N ~ dw.
i. 1

Q(resulted)

4 ::: ~~-i-~~~tSLY

1.6 V

1.4 ~-=-~ - -O Jo{I T N1I 
~~Nl~ 

}.‘dw

1.2

A - - — . - — — Single—loop system

1.0

0.9 
a~ç$ I I I L— I I _._L4ç...~...t .2 .4 .6 .8 1.0 1.2 1.4 1.6 5.6

4.4xl0 4
Total noise

Figure 3—33. Trade—off between Q and sensor noise effect.

V 3.9 C.pmn~rJ.sçn of Noise Effect between the 2-loop, P.M.

Sy~tem and the Cascaded, 2—loop, no P.M. System.

For a system with 2 plant sections, if the design is re-

stricted to 2 loops, there are two options: One is the cascaded ,

2—loop, no P.M. system (Figure 3—34(b)), the other one is the

2—loop, P.M. system (Figure 3—34(a)). Suppose the choice of

structure is dependent on the savings of sensor noise effect which
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means ignoring the fact that the 2—loop no P.M. design requires

two sensors instead of one. A fairer comparison is therefore the

3—loop P.M. design in chapter 4 which uses two sensors of the

2-loop no P.M. design.

(a) 2—loop, P.M. system

D1
F G2 X P 2 P1

R O
~~~~~~1 r ~~~~~~

_ O a  

~~~~~ N2 

~~~~~~~~~

(b) Cascaded , 2—loop, no P.M. system

Figure 3—34. 2—loop systems.

The noise power ratio ( N . P . R . )  is defined as the

ratio of total noise power in the cascaded , 2—1oop, no P.M.

system to that of the 2—loop, P.M. system,

I X ic hht~1l I 2 hi !41I 2 
+ Ix j /t~2 i 2 . I N 2 l 2

W — 
V (3.9— 1)

I , 2 2X121N1 
• N

1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Since the noise response of a cascaded , 2—loop, no P.M. system is

(see Figure 1—15(a) and (1.4—6))

X

ITN
2

I ~ l-j~- I  
~~~~~ 

in the hf range (3 .9—2)

x L
ITN

2
I ~ Ij~ I ~~~ 

in the hf range (3.9—3)
2 2 2

X L
ITN

1
I ~ ~~ ~~~ 

in the hf range (3.9—4)
1 1 1

x
I T N

1I ~ I~~I fL~ in the hf range (3.9—5)
2 2

together with (3.7—3, 4). The NPR in (1) becomes

1L 1/P11 2 1N 1I 2 + 1L 2 I 2 ’ I N 2 1 2
wl — 

2 
(3 .9 — 6)

1L1
/P1 1 IN 11

2

IL1!
2 
+ 1L2

P
1I
2
’R
2 

~
— 

2 , where R — (3 .9—7)
IL~ I 1

- 
- 

1L1/ (P 1P2)1
2 IN 1!

2 
+ t2

/P
2!
2
’IN 21

2 
(3.9—8)

w2 — 

It0RP1P2 I
2.!N1I

2

It1!
2 
+ 1L 2P11 2 R2

— ( 3 .9—9 )
IL 1

2
-4 0

Figures 3—35 , 36 give graphs W
2

(U)) , W1
(w) for d i f ferent

values of R, P11’ using the design results of the cascaded ,

2—loop system in section 3.4.3 and Design A for the 2—loop, P. M.

F !
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I system, for deciding whether a 2—sensor design should be considered . 
V

But if the decision is In the affirmative, it should be emphasized

that a 3—loop (2 sensor) P.M. design is in general much better

than a 2—loop (single sensor) P.M. design. Also, from Figure

3—35 , W2 , which is the important factor (recall section 3.7),

is <1 for most of w.

4

U 

-- 
_ _ _ _ _ _ _ _V - _ _ _ _ _  

I_j
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MULTIPLE-LOOP P.M. SYSTEM SYNTHESIS

4.1 Introduction

Chapter 3 dealt with the sImple P.M. structure for the two—

section (P
1
, P

2
) cascade plant. A more general structure for this

2—section case admits three feedback loops——one from C23 to X2 in

Figure 4—1 may be added. To determine the most general feedback

structure, observe that no feedforward ioops are allowed (i to 1+1

in Figure 4—2), other than in the original plant in Figure 4—2.

In this research we consider only structures in which there are no

crossings of lines when the feedback loops are all drawn below (or

all above) the plant, e.g., In Figure 4—3(a) feedback from output

of P
1 
to input of P

2 
is not allowed because such a line would cross

the present one from P
2 
output to P

4 
input. How many different

structures are possible? We shall assume that in each structure

there is a local feedback 1oop around each plant section and one

from ~~~V 

to 0 in Figure 4—2, as these do not prevent any other loops.

Let S be the number of structure for the n—section of1
Figure 4—2. Either there is a loop from node n to node 1, or

there isn ’t. If there is one , the remainder on the right forms
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D2 D 1
x2 c23 x 1

L ~~~ 
~~~

‘

t
o 

C 
~le~2e’ ~le 1+L11 ~2e l+L

12 
L
i1 

P
1
11
1
, L

i2 
P
2
H
2

I Figure 4—1. 2—plant, 3—loop, P.M. system

-~~ 0 I 3 77
I 

PSI I PSI.f ~ l iL.2 , ,0 1- O O ’  OQ~~~~- OO’ .’ ”  OO’~~~~O

Figure 4—2. n stage cascaded—plant

an n—l section with number S . The remainder on the lef t has
n-i

on .y one section giving S
1 
possibilities with a total of S~~~ x S1

.

If there isn’t one from n to 1, there are two possibilities:

Either there is one from n to 2, or there isn ’t. If there Is one,

- then the remainder on the right is a n—2 section witi. S and on
n-2

- 

the left a 2—section giving S
2
, with a total of S~~2 

x S
2
. If

there isn’t one from n to 2, there are two possibilities: Either

I there is one from n to 3, or not . If there is one, the remainders

- 
on the right and left are respectively n—3 and 3. giving
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S~~3 
x S

3
, etc. Thus, in an n—section with no “feedback crossings,”

for n>2

S S x S  +S x S  +...+S x S  +S x S

with S1 ~~
l, S

2~~ 
1. Henc:, S

3 
.

2

2, S4 
— 5,~~:c. The five cases

of n—4 are shown in Figure 4—3.

Maximum number of loops

Each of the possible structures has a maximum of 2n—l

feedback loops, proven as follows. In every structure, local feed—

back loop (1 to i—i) is possible for each section without inter—

fering with any other feedback loop, so each structure has these

n local loops. Consider the structure in which every section

except the first in Figure 4—2 (for which is extraneous), also

• feeds back to the plant input 0, giving an additional n—l loops,

making a total of 2n—l loops. Obviously, no more ioops are pos-

sible without crossing.

Let us hypothesize that the maximum number of ioops for a

plant with n—i cascaded sub—plants is independent of the specific

structure ueed, so is a constant 2(n—l)—l and that this is true

for each of n—l, 2, ... up to n—i. We will prove that it is true

for a plant with n cascaded sub—sections. Take any sub—section

structure whatsoever and give it its initial n local ioops.

Starting from the plant input 0, proceed to the right in Figure 4—4,

until the first poivt, say n
1
, is reached which has at least one



~~~—. ~~~— ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~r ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ w’~’~’~ ~~~~~

176

R F  
~ 

R
~~~~ R ’ Pi Pi c

R F  G~ P4 ~~~ R P1

tb) 
T_

f 
_______

RF ~ P4 P 3 1 P~~~~P, c
_ _  

~ i~~ii 
;~ !,t; II -,

RF GI P4 P3 P a I P *
0 ~~~ 

~~~ ? 1I~ I~~ f~’I~I ~
-a

R~ _ P4 P., Pa I P ,  C
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Figure 4—3. 5 different cases of 2n D.O.F., 4—plant ,

i—loop, P.M. system
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u s

loop (other  t h :in from n+ l )  feeding into point n
1
. There v i i i  be

1 loop f rom to I) because there is nothing pr event ing it. Pro—

c~ ,’d t orward ( t o  the r i g h t )  from until the last point is reached

which has ~ feedback loop t e rmina t ing  on n 1
. By hypothesis t here

must be at least one such point. Let this be point n2>n1 
(of

course). The part from n~ to i
~2 

can be considered as “semi—isolated ”

(n 1—n 1) structure wi th a max imum total of fl_. loops , because

$ there can he no loop f rom any point inside reaching outside or vice

versa without crossing the loop from n2 to n1.

o T h T h~, 7 l a D,

Ft~ ure 4-4. No crossing multiple loop system.

Now work backwards from the last point n until the first

point n4 (Figure 4— 4) is reached which has at least one ioop feeding

hack to some’ n ~O(n <n —1) in addition to 0. 1! n has more than
I 1 4 -

~~~~~~~~~~~
—— — - 4

one, t .~k.’ that one furthest away (to the left) from n14
. Note that

n~ ’n~ by hypothesis because no crossing is allowed . The part  from

to n4 also t onnn ~i “semi—isolated” multiple—loop system with

-- - - -~~~~~~~~~ -~~~~~~~~~~~~~~~
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‘flu — 
isaxim*nn loops. Let us now count the total loops. By hypo-

4 n3
thesisfl — 2(n —n )—i,fl — 2(n —n )—l. The number of

“ ~ t~2~~~1 
2 1

loops from the first n1 sub—plants (from 0 to n1) is: n
1 
local

(i to i—i) and n1
—l (2 to 0, 3 to 0, ... , n1 

to 0), giving a total

of 2n
1
—l. The number of loops from the part consisting of plant

sections from n2 to n3 
is: n

3—n2 
local and n

3—n2 
+ 1 to 0 (i.e.,

f rom n2, n2+l , n3 each to 0), totalling 2(n3—n2
)+1. Finally

the number f rom the sub—plants from n
4 to n is: n—n 4 local and

n—n4+l (i.e., 
from n

4
, n
4
—1 , n to 0), totallIng 2(n—n

4
)+l.

j Adding all of these gives 2n—1. It is easy to prove the hypothesis

is true for a — 1, 2, 3. Uence It is trueVn.

We shall concentrate first on the two structures shown in

Figures 4—1,24, with considerable detail and numerical examples.

From this there will emerge a perspective and understanding which

will enable us to tackle any non—crossing structure. In fact it

will be possible to know in advance, without a detailed design,

a great deal about the design problem——just as in the cascade no

P.M. design approach (recall section 1.5).

4.2 The 2—plant, 3—loop, P.M. system

4.2.1 Design perspective (Figure 4—1).

The important design factors are the increase in signal

level of C23 
and the effects of sensor noise sources N1

, N2 at X2



-~~~~~~~ 
-
~ 

-
~~~-~~~~~~~~~ 

- 
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- —U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

177

and X1. As in chap ter 3, the former is controlled by careful de-

sign of (i.e., L
11 

in the if range), although the actual re-

lation between Q and Q (of Figure 3—23) is different in the 3—loop

case (see section 4.3.9). Just as in chapter 3, L~1 
can handle the

P
1 

uncertainty problem in the hi range, with the help of some safety

margin in the IVJ region of Figure 1—8 (5 db was used in chapter 3;

recall Figures 3—10, 16). But now L
12 

— P2142 is available to re—

move the burden of P
2 

uncertainty from L. Thus, except for the

(5 db) safety margin in the IVJ region of Figure 1—8, L need handle

no hf uncertainty at all and only 1’le lf uncertainty. One more

point, however, this safety margin can be divided between L11 and

‘1 L12. This relative strengths of N
1
, N

2 
and the dynamic ranges of

the stages at X
2
, C23 influence the way the division should be

made. Our objective is to give the designer the perspective and

understanding of the trade—off a to enable him to make an Intelli-

gent choice.

4.2.2 Specifications on numerical examples

Plant: P — P
1
P
2
, P

~ 
— k

i
/s

Plant uncertainty: ,‘~~k1~
l0vi, /~~k2~l0i/~

independently

Bounds on IT (iw)I: shown in Figure 3—2(b) were origin—

ally derived from time domain bounds

of Figure 3—2(a)

~L F
_ _ _ _ _ _ _ _ _  -‘
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Disturbance Response: y~2.O db

(All above are the same as in sections 1.2.5, 3.3.1)

System structure: as shown in Figure 4—1,

‘1 Restruction on signal level: Q ~ 1.28 for unit step input

(The rational function values of the compensation functions

in Figure 4—1 are given in Appendix II)

4.2.3 Single and cascaded, 2—loop, no P.M. design

Since the first half of the specifications in section 4.4.1

are the same as in sections 1.2.5, 3.3.1, so the single loop and

cascaded 2—loop, no P.M. designs of sections 3.4.2, 3, are valid

here.

4.2.4 The P.M. inner loop L
ii —

The choice of l ].+L11 1 (for Q — 1.28) is made in accordance

with the philosophy of chapter 3, section 3.5, resulting in Figure

4—5. The inner loop bounds B
L~l

(w) in the if range and the re—

suiting L11 are shown in Figure 4—6.

4.2.5 Design of Lon

Following section 3.3.8, templates of 1’le ~ Pi/(l+L
i1
) in

R
1
, R

2 
are obtained and shown in Figure j,~~~ 

As the uncertainty

~~ will be handled by L12 — P
2H 2 , only “le uncertainty need be
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II+L1n!DB

~~~~~~~~~~~~~~~~~~~f~~~~~~~ . 3 . ~~~~~~I 1 3 4 - 5

Figure 4— 5. The criterion on ! 1+L11~~ DB

40
~~~~~ 

O.14b
£ I .

600 120

LL~i

Figure 4—6. L
1~ 

with bounds B
L~1

(w)
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Figure 4—7. Templates of 
~le

handled by t. This is the big difference between the 3—loop de-

sign of Figure 4—1 and the 2—loop design of Figure 3—1. Bounds

B
t
(w) due to 

~le in R1, R2, are shown in Figure 4—8. Wi th S db

hf overdesign, ton is designed to satisf y B
~~

(w) and is shown in

Figure 4—8. All above procedures are the same as in 2—loop, P.M.

design in chapter 3.

40
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o.t~~:\J.~0ut . .\p
p.2. \ %1iV 4. ”i_v D

o
L0~ r~ JJ~

I B~~~
)

~~~~~~~ 5

~~~~~8.
—10

8ow~tlary for i)~ 3

-360 -ISO’ -9o 0’ ~
Figure 4—8. B

~ 
(w) and ton

0

L ~ U
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Figure 4—9. Bounds on
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(b) Bounds for to ~ S

Figure 4—12. Bounds on

compare BT
~i1 

in Figures 4—9 (a), (b) giving Figure 4—10(a) and the

of Figures 4—12(a), (b) due to Figure 4—11. There is no

difference between Figures 4~9(a) and 4—12(a), because the modifi-

cation in Figure ~—il is for w>6 approximately, but there is a

definite difference between Figures 4—12(b) and 4—9(b). L
ii ~~

next designed to satisfy the new bounds of Figure 4—12 and is

shown in Figure 4—13.

4.2 .7  Inner loop L12 — 
P2
H
2

The inner loop L~2 is designed exactly . the same way as the

inner loop in a cascaded , no P.M. system (section 1.4.3) except for 

~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~
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replacing P
1 
by 1’le’ as shown in Figure 4—14, i.e., bounds BL12(to)

are found in L such that the design L remains satisfactory
i2n on

despite the uncertainty in P
2 

(and P
1
). The results are shown in

Figures 4—1 5(a) , (b) and L~ 2 in Figure 4—16. Note the general

natur.~ of bounds ki2
(to)and L

12 
are exactly the same as in the cas—

caded , no P.M., inner loop BL2 I L2n 
in Figure 1—19. The Bode plots

of L , L
11
, L

i2 
of 3—loop, P.M. system together wi th the single

loop system , L , are shown in Figure 4—17.

In Figure 4—15(b) the level of Bt12 in [5 , 8) range is so

much higher than for BLil 
(in Figure 4— 9(b) )  because the 5 db margin

in this range (Figures 4— 10, 11) was used entirely for L11. Hence ,

IL 12 I is correapondingly >IL ii I (see Figure 4— 17) in this range

and its effect persists for higher frequencies. This was done here

to emphasize the trade—off possibilities between L
11 

and L12.

4.2.8 Time response of the 3—loop, P.M. system

CSMP digital simulatio~t of the 3—loop, P.M. system at four

extreme parameter cases are shown in Figure 4—18. The time domain

bounds of Figure 3—2(a) are included as dashed lines. It is seen

the results satisfy the time specifications.

4.2.9 The bandwidth prop~gation effect

In the multiple—loop design, there is a significant effect

of increasing the ntunber of inner loops. This is the steadily 
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1.2 ‘ b, .~.._ I 1
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• a  ‘
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0’ J ‘

2 4 C
~~~~ (*)

Figure 4—18. Time response of 3—loop, P.M. system

at extreme parameter cases

increasing “bandwidth” of each inner loop. 15, 13] Compare the

bandwidths of IL1~~I and JL12 in Figure 4—17 , and it is seen this

does not occur here. The slight increase in bandwidth in IL~2 I

is primarily due to the 5 db margin being used entirely for L
ii

.

This is because L~2 
is not “inside” L

11 
as is the case in the non

P.M. cascaded system. If there is another inner loop L inside

then the bandwidth propaga tion effec t will occur (see section

4—4).
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4.2 .10 The signal level variation ratio (SLVR), p

Recall in section 2.2, the SLVR p, is defi ned

L L

C P (1+L ) Hi.. c23 max le o max • s x . 3 max~ (4 . 2 — 1 .2 )
—

C L L C2a max 8 sma
P (l+L ) l+L1 s max o max

The frequency ranges are redefined here (refer to section 2.3):

— [0., u;]. IL8~(iWp l — 25 db, — 0.08; R — (w ,

— 0 db because P
2 
is perfect in L , — 1.6;

(w , t o ] ,  IL (jw)I — —M
2 

— —20 db with M
2 is the hf uncertainty

~f ‘
~2~ 

— 8; R~ — (w, w], — 10w — 80; R — (to
~~, o) .

We wish to simplify (1) (see section 2.4)

Id3r ~~• ~~— a •  l+L •
iln - Ic I (4 .2 3)

s max

Compare (L ) with (L ) in Figures 4—19on 3—loop , P.M. on 2—loop, P.M.

(a , .. .,  c). They are def ined in the same way in R
1 1 R2 

and

giving a ~ 1 in R , R as in sections 2.4.1, 2. Also, in the very

hf region of R , L I ,  1LonI~ 
tLil I~ 1t12~1 <~ 1, so the result

p a — 1 of section 2.4.5 applies. There remain R , R~.

4.2.10.1 R , to — (w ,  w ] ,  Figures 4—19(a), (c)

Thu region now corresponds to the latter part of R
2 
in

Figure 4—19(b). Recall in 2.4.2, 1L8
/(l+L

8)I 
is likely to reach its

maximum at I~ I for It I ~ N db , where M is the hf uncertainty1m m sn 2 2

- . .— ~~~~~~~~~~~~~~ .
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40

.12 . 0 -

(
2db -\

I•J I .
0 -

-~

- 
-

/ LoP
• ( .ioop D 20~~4P.M.) “~~ 4o4f

~~~ 
- 270° -leo’ -9o 0°

4 
LL

Figure 4—19(a) . L of 3-loop P.M. system and L

of P
2
. Rut in the )—loop, P.M. case, 1L 0/ ( l +L0 ) I  def ini te ly cannot

reach its maximum at I~ Ile min

L Lo 
< 

1 (4.2—4)P (1+L ) I~ I l+Lle o max le min o max

And the first two factors in (2) give

I
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40 1

V .

.1 1
20

IL DS
~~~~~~~~~~~~~~~~~~~~~~~~ -

-20 

(Losi)~-ioep

—360° _2700 —~gO’ — 7 ? 0° LL
(b) L of 2—loop, P.M. system (Design A) and L

Figure 4—19. Outer loops with defined regions

R~.
~ I~ I

R’ ~-.~‘L_Ra .~‘LR~~Lp~ ~~~~p~’_
—•-- - - • - -  _ _ _ _ _

1~8 ° ,~~~~Lsh1.

40 3..Ioøp I IL.OtI ! “ 
°

P.M.sy5. t 
IL~.’d 

___

2—loop j ~L~~1
—80 P.M. sys. (D)( I L1~1I

10~ 10 ’ 1
’
OIL PC?

Figure 4—19(c). Bode plots of loop tranmuissions 
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t
o 

L
s

P (1+L ) 1+Lle 0 max • s max
L

P (1+1. ) l+L1 s max o max

1 
L

P I l+L
,. lelmin ~~~ 

• a max
L

P 1+L l+L1m m  s max o max

II ~1Jmin
— 

1~
’
1e1min

~ I l+Li~I (4.2—5 )

So (2) becomes

C
p — a I l+Lii~ I ~3 (4.2—6)

s max

a ~ 1, for to in 0 > IL (jto~ ~ —M2
.

If M
1~
M2, then (6) covers the whole range of R

3
. If M

1
>M
2
, then

I L /(l+L )~ may not be achieved by 
1~ lJmin 

in the range

{w I — M2>IL (jw) I —M1}. But now IL0~I is fairly small (Figure

4—19(a)), so that at h1
~leIm1n~ 

IL0/(1+L0)I 
tends to be further from

its maximum than its counterpart in the single loop system. So (6)

still hold

p — a I1+Lj1~I.
1
~

3
~~

x 
(4.2-7)

s max

a ~ 1 in

_ _ _ _ _ _ _  ~~~~~~~~~~ --- - - • • -  
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The result of the numerical example of a 3—loop, P.M.

design is in Figure 4—20(a), and agrees with (7).

4.2.10.2 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IPiqures 4—19(ai, (C) )

Compare (L)2 1 , ( L ) 3 1  in Figures 4—19(a), (b).

R
4 
in the 3—loop, P.M. system corresponds to the latter part of

R
4 
of the 2—loop, P.M. system. The nature of I L l  in both cases

is quite similar, because IL5~I is fairly small. So the results for

the latter part of R
4 
in the 2—loop system of section 2.4.4,

applies, i.e.,

Id
p — a. Il+Li1 I• ,~

3
i~~ 

(4.2—8)
a max

a ~ 1 in R
4

which agrees with the result of the numerical example ir Figure

4—20(a).

In conclusion, as c~ l for all to, design based in I l+Li~I

is definitely conservative even more so than in the 2—loop design.

Comparison of Il+t11~I with P/ ( !C 3 In.~ / ICs Imax] is shown in

Figure 4—20(b), with Q — 1.26, which satisfies the specification

Q~l.28.

Comparison of a in the 2—loop and 3—loop P.M. systems is

shown in Figure 4—21. In the 2—loop P.M. system (D), Q - 1.24 and

in the 3—loop P.M. system, Q — 1.26.

~

--

~ 
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DB
I ‘ Jo I0~0

1 .11.11 I .

Ri ‘~~~ RI

Figure 4—20(a). Nature of a in each frequency range

3 -
DB 

____ Li) .
0 •~~~ i %  I I I~ ~~I

10.
I I
I I 

II I

I I
I I F
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-20

Figure 4—20(b). Nature of I l+L~1~I and P / t I C  I /IC3lmax]
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I I

• ~ ~~ R3
11~~ ~~

( DB) 
- 

2 -loop, P.M~ys.(D)4....~/
0 rh~- 3- loop, / \ 

I
PM. 50.

-to . F

- IS ~~~~~1 R~ ~~RI R~+ R
-20

lO~ 10 ’ 1 10 10*

Figure 4—21. Nature of a for 2—loop and 3—loop P.M. systems

4.2.11 Sensor noise effect

We repeat the noise response function of section 1.6.3.

2 A 
- 

t
o 

T 
1 ~ 

(L
11

+L)

N N
1 

P
1
P
2
’ N N

1 
P

1 1 1 
(4.2.9—12)

2~~ 2 i2 l A  1
T — — - — T — — -LN

2 
N
2 

P
2 

‘ N
2 

N
2 

i2

at hi where IL0 I ,  It~1I ,  I L~2 l-<< l .

In the hf range, all parameter uncertainties in P
1
, P

2 
are

handled by the inner loops of L , L , so the bandwidth of L is
ii i2 on

fairly small (see Figure 4—17). Hence, the noise effect of T in

_____-

~ 

- - • - -- -- - -_ _ _ _ _ _ _ _ _  .-- --
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(9) is considerably better than in the 2—loop P.M. design. The

1 2 1other noise effec ts T , , T,~ , T,~ in (10,...,12) are also rela—
Il
l

tively much smaller than T
N 
. The reason is that the “hf asymptotic

1

region, (where I L l  begins its fina l downward slope——point X in

Figure 4—17) occurs at a much lower frequency range (to~~8) in the

3—loop design, than in the 2—loop design (w~~55) in Figure 4—19(c).

The peaks of It~1~t and f t12 occur approximately at this point (

see Figure 4—19(c)) .  This is inherent In cascaded design . The

results are compared in Figure 4—22 with the single loop and cas—

caded, 2—ioop, no P.M. systems; in Figure 4—23 they are compared

with the single loop and 2—loop, P.M. (Design D) systems. Note,

in Figure 2—23 , Design D has Q — 1.24 and the 3—loop , P.M. system

has Q — 1.26, so the signal level increases are quite similar,

but the noise improvement is much bigger in the 3—loop P.M. than

in the 2—loop P.M. system for the reason given above.

4.3 The 3—p1ant~ 5—loop, P.M. system

4.3—1 Design philosophy

Design in Figure 4—24 coimnences exactly as in the 3—loop

P.M. system (section 4.2.4). The bounds on L~ (i.e., on L1 
in

the if range) are obtained to control the signal level increase at

C25. Then L~~ is obtained in the lf range, giving P
1
(jw) in the

if region. The bounds on the outer loop t
on 

are obtained to handle

the uncertainty in P
1 

in if only plus the safety margin (5 db in

-

~

--- -• -- ~~~~— -~ 
—

~~ •—-——— —-
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Figure 4—22. Comparison of noise effects
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Figure 4—23. Comparison of noise effects
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D2

R ~F ~3 ~, ~
,

~~

_____ 
_ _  _ _ _

L
i1 

P
1
11
1
, L12 ~ P2

H
2
, L~3 ~~~~ 

~ie 
~ P1

/(l+L
1
),

P ~~P /(1+L ), P ~~P /(1+L ) , L ~~C P  P2e 2 12 3e 3 i3 o2 2 2e 3e

T ~~P P /(l+L ), L ~~C T P2 2e 3e o2 o l 2 le

Figure 4—24. 3—plant , 5—loop , P.M. system

Figures 4—8, 11) in the A region. in the 3—loop system the next

step was to find the bounds on L~2 to handle the uncertainty in P 2 .

But here we have the T
2 
section in Figure 4—25(a) to replace P

2
H
2
.

Our next step is to assign some safety margin (say 5 db) v w to the

outer ioop L — C P P of T , i.e., as if the uncertainty ino2 2 2 e 3e 2

P P is 5 db. This gives L . The next step is to find the2e 3e o2n

bounds on L
1~~ 

to handle the actual uncertainty in P
2
, i.e., to

ensure that L 2 
is satisfactory despite the uncertainty in P~ , (at

— 

~3n 
fixed). (We should also worry at this point about the

effect of N2 
on the signal level at C35

, but it viii be shown In

section 4.3.5, that there is no need to worry.) The final step is

to design L~3 
to handle the uncertainty in P3.



- —~~~ --- —----
~-~~~‘~~~

.- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ T~~ ’~~~-- - -
~~~~~~~~~

-
~~~~~~~~~~~ • - ‘

- - • __ ~~~~~,~. - v ~~ - - 
- -

203

R F 
_ _ _ _  

p3 C~ ~1 P1 CS
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- _ _ _

I
(a) Design of L11 P

1
H
1 

and L

D3
x3 p3 p2

(b) An equivalent 3—loop, P.M. system

Fiiure 4—25. Design of 5—loop , P.M. system
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4.3.2 Specifications on numerical examples

(Figures 4—24,~ ..., 27)

Plant: P — P
1
P
2
P
3
, P

1 
— k

1
/s

Plant uncertainty: l.7l~k1~
l7.l, l.7L.<k2~

l3.58,

l.7i~k3~
(30.4l independently

Bounds on I T ( iw ) I :  shown in Figure 3—2(b) were origin-

ally derived from time domain bounds

of Figure 3—2(a).

Disturbance Response: y~~2.O db

System structure: Figure 4—24.

-

~ ~~ __________Restriction on signal level: — p~ ~ 1.28,o 2s

2/ 1C33(w)l dw
Q = ° 

~ 1.30 for unit

~ 1c 35
(w) I dw

input. Note the need for Q3 > Q2.

(All above specifications are the same as in section 4.2.2

except for plant and system structure.)

(The rational function values of the compensation functions

in Figure 4—24 are given in Appendix II.)

4.3.3 Single loop and cascaded, 3—loop, no P.M. systems

The single loop system (Figure 4—26) and cascaded, 3—loop,

no P.M. system (Figure 4—27) are also designed here in order to

•~~~~~~~~~~~~~~~~~~~~~~ •~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ,
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_ _ _

X

~ 

_ _ _ _  _ _ _ _

I~~lI — 20 db, I~
P2I — 18 db, l~~3I — 25 db

Figure 4—26. The 3—plant, single loop system

R

~ 

~~~~~~ 

f e a
~~~~

f fT

~~~~
c

1 1 1 2e’ 2e l+G p P ‘ 3e li-P C2 2 3 e  3 3

Figure 4—27. The 3—plant, cascaded , no P.M. system
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compare with the 5—loop, P.M. system in SLVR, Q and sensor noise

effects. The Bode plots are shown in Figure 4—28

4.3.4 First P.M. inner loop Li1 P
1
H1 and outer loop L

In section 4.3.2 the signal level specification at the

output of P
2 

(Q
2 ~ 

1.28) is the same as In the 3—loop, P.M. case.

So the constraint here on l l+L11 ! is the same as in section ~~~~

We do not consider the signal level at C
35

, knowing that it will

only be slightly more than at C25 in a proper 5—loop design. The

design of L and Li1 (~P1 
— 20 db) Is exactly the same as in the

3—loop, P.M. system (sections 4.2.4—6), because at this point the

uncertainty in all that precede P1
, is ignored. So Figures 4—5 ,

..., 13 apply here, including the trade—off of Figures 10, 11.

20
$0. $01 ‘0~0 - -

t’B 
I.

40 \ ILs,ii~ \
(Sn ~l. 

0 IL.loop )

-80 - 
L2i~~6aPahB~h

-$20

Figure 4—28. Bode plots of ~L I, IL I I L I’ IL Ien in 2n 3~
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4.3.5 Second outer loop t — G P P , second P.M.o2 22e 3e

inner loop L12 P
2
H
2 

and the third inner loop

P
3
H
3

The dash box (T
2
) in Figure 4—25(a) is considered next.

At this stage the problem is to control the variation such that

the designed L and L
11 

are satisfactory despite the fact that P2,

P
3 
uncertainties were neglected in their design. Three loops are

available for this purpose: t02, L~2, L13.

• 4.3.5.1 Design of L 2 (Figure 4—29)

In the 3—loop system of sections 4.2.4—7 and Figure 4—1, the

outer loop L had to handle the P1 
if uncertainty (analogous to

~2e 
here) and 1’

le if design 
was dominated by consideration of signal

level at C
23 

(C35 in Figure 4—24). So, presumably similar pre-

cautions must be taken here. Fortunately this is not so. It is re-

called from chapter 3, section 3.3.7 (Figures 3—9, 10) that

design shifted the template which L had to handle, to the left

where it could cross B
h , 

facing L to be more conservative. But
2 °

here ABC in Figure 4—29(a) replace Bh , so excursions of the tem—
2

plate of the new P
1 

(i.e., P
2 

of Figure 4—24) to the left are

acceptable.

The second point is that in the 3—loop design L11 could not

handle entir.ly the if uncertainty of P1 
(in Figure 4—1) because of

the signal level problem. But here because of the ‘bandwidth
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propagation effect’ discussed in section 4.3.7, we can neglect the

signal level problem of the new P1 
(i.e., 

~2e 
of Figure 4—24).

Thus, the frequency corresponding to w.~ of Figure 3—24 is much

larger (50 in Figure 4—30(c) cf 6 in Figure 4—13). Hence, there

is very little obligation on the new outer loop (i.e., L 2 
of

Figure 4—24). However, as a safety factor, we design L 2 
as if it

has to handle a f cv db uncertainty over all w (somewhat analagous

to the 5 db safety margin used in Figure 4—8 for t
o 
there). In

this design example 5 db was used.

A third factor is the analog of the trade—off (Figures 4—10,

11) between L
ii 

and L12 in the 3—loop P.M. design. Here the trade—

off is between L and L , and can be made in accordance with the
-ì ii o2

levels of N1, N2
. In this specific example, the 5 db region in A

4 was given to L
11 

and the region in B was split roughly equally

between L and Lii o2

4.3.5.2 Design of L12 (Figure 4—30)

Special design of L~2 
in the if range in order to control

SLVR at C35, is not necessary because of the bandwidth propagation

effect discussed in section 4.3.5.1. Li2 
is designed simply to

handle the uncertainty of P
2
, i.e., bounds 

~Li2 
in Figures 4—30(a,

b) are obtained such that is satisfactory for P2 
uncertainty

(18 db here) despite the fact that L 2 
was designed on the basis

of 5 db uncertainty. L
12 

is then obtained to satisfy Blj2~ 
as shown

in Figure 4—30(c).

_ _
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4.3.5.3 Design of L~3 
(Figure 4—31)

The design of L~ 2 is exactly the same as the second inner

loop of a 3—loop, P.M. system (L12 of Figure 4—1). Bounds B
LI3 

are

obtained such that L , L are satisfactory despite the actualo2n i2n

uncertainty of P
3
, from which L13 is as then found. In Figure 4—31

(b) , thc level of B
~i3

(w) for wE120., 75.) is much higher than the

level of BLI2(u) in Figure 4—30(b). This is because we used all the

safety margin of t
2 

for L~2 (recall Figure 4—10, 11 in section 4.2.6).

Hence IL13~I is correspondingly >>
~L12 I (see Figure 4—32) in this

range and the effect presents for higher frequencies. We thereby

emphasize the possibilities for trade—off between L~2 
and L13, which

is useful in the case of significant differences in the levels of

N
2
, N

3 
in Figure 4—24.

4.3.6 Time Responses

Eight extreme parameter cases were simulated on the digital

computer (CSMP ) and shown in Figure 4—33, including the time domain

bounds of Figure 3—2 (a)

4.3.7 The bandwidth propagation effect

In Figure 1—20, in the single loop design, the loop trans-

mission L can take its final hf slope only at point E. The

relatively horizontal segment XE is a preparation for the final

breakpoint. In the 2—loop design, E is replaced by W
b

.1
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Figure 4—31(c?. L and bounds— i3n -
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Figure 4—32. Loop transmissions of the s—loop, P.M. system
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for the outer loop which is significantly to the left of E. How—

ever, the inner loop L
2 

cannot assume its final hf slope until

vtdch is slightly to the right of B. This is the ‘bandwidth

propagation’ effect. The critical region for the inner loop

~~~~ wb2) is shifted to a range significantly higher than that

for the outer loop (~ X.~,, w, for the latter). This property is

also noted in Figure 3—28. In the general n—cascade no P.M. design

where there are ii nested loops, the interval between points X.~ and

X in Figure 1—20 would be split up between the inner loops. A

3—loop no P.M. case is shown in Figure 4—28.

In the P.M. case it is possible for several inner loops to

have the same “critical bandwidth” region in the above sense, be-

cause they are not nested but working, so-to-speak, in parallel.

This is so for L~1. L12 
(Figure 4—17) in the 3—loop design. (It

is recalled that the difference there is due to the unfair division

of the 5 db safety margin). Similar1y~ in Figure 4—32 , and L
2

are in “parallel” and L
12
, L

13 
are in parallel with the reason for

the differences explained in 4.3.8.

4.3.8 Trade—of fs between loops

In the 3—loop design of section 4.2.6, let us distinguish

between regions A and B in Figure 4—lo(a). The safety margin in A

was given all to L~1 
while that in B was split between L~1 

and t12.
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The result was significantly larger level of L12 than

(Figure 4—17), in the w range corresponding to A (Figure 4—10(a))

which persisted in its effect to higher w (because IL12 I must

then decrease over a larger interval). This was repeated pre-

cisely in the S—loop design of section 4.3.4, between L~1 and

L
2 

(which effectively replaces L
i2 

in this matter), leading

to the significantly larger IL02~ 
(Figure 4—32) than IL11 I.

The above problem was repeated in the desi~~ of L1 2, L~~ L~

is shown Figure 4—29(c). Because of the ‘bandwidth propagation’

effect A’ is now at a higher w range than A. Again some extra

margin is assigned to L
2 

in A’ (just as such was assigned to L

in A). And again we let L
12 

have all of it in A’, while that in

B’ was split between L and L . The result is L level
i2n i3n i3n

‘
~ significantly larger than L

12 
level in Figure 4—32 and which per-

sists as before. The difference between L and L in Figurei3n i2n

4—32 is > between L
i1 

and Li~ 
in Figure 4—17, because in the

former the uncertainty of P
3 

> uncertainty of P2 (25 db cf 18 db),

whereas in Figure 4—17, the uncertainty of P1 
P
2 
are equal

— 

(20 db each).

As previously noted, the above can be used as trade—off

between the loops, to compensate for significant differences

between sensor noise levels.

-- - ~~~~~~~~~~~~~~~
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4.3.9 The signal level variation ratio (SLVR), p

The definition of SLVR is extended to account for the addi-

tional plant modification in the 5—loop case, over and above that

in the 3—loop case. (Figures 4—24, 26).

IC ~c I25 max 35 max
— 1 C I ‘ 

(4.3 1)
2s ’aax ‘ 3s max

Recall section 4.2.10, it was proven

Ic I
p
2 

— ct2
. I l+L11~ I • 

S max (4.3—2)
s max

a
2~~~

1

The frequency ranges for our numerical example are (section 4.2.10):

Rj — [0, w), J L  (iuç) — 25 , — 0.08; — ( w ,  (A);) .

IL (3w)I — 0 db, • 1.6; — (w , w ] ,  L (jw ) — — (M2+M3)—

—43 db, with N
2
, N

3 
the hi uncertainties of P~, P3 

respectively,

— 5~; R~ — (w , wi], w~ — 10 — 550; R — (w~, a). The results
of the 5-loop numerical example is shown in Figure 4—34(a), and

agrees with (2).

The SLVR for C35 i~

Ic I f c I I35w 35 max/ 25 max
— 

Ic 1 1c I I c p
2

3s max 3. max/ 2s max

— a
32
.
~1+L~2~ 

• (4.3—4)
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with a32 ~ 
1, because the dashed part T

2 
in Figure 2—25(a) acts as

another 3—1oop, P.M. system. Combining (2, 4)

p
3 

— a3.Il+Li1 I.Il+Li2 1.( IC 5 1 / I C I ) (4.3—5)

a
3 

a
23 

a
2 ~

The results of the example are shown in Figure 4—34(b) and agree

with (5). The nature of J l+L~1 J, P2
/(IC

5Imax/IC J )I

I l+L11~IhI1+L12~I and P3/(IC5I max/ICsImax) are shown in Figures 4—35

(a), (b), respectively.

4.3.10 Sensor noise effects

The sensor noise functions of the single loop and the cas-

caded, no P.M. system for a 3—section plant (Figures 4—26, 27) are :

4 (1) single—loop system

X L X L3~~ 3 a 2 A  2 aTN — 
N
1 

TN1 
- 

N
1 

P
1
P
2

X L
T1 ~ —

~~ 
—~- , all at hf where IL ~<<1. (4.3—6)

N
1 

N
1 

P
1 

a

(2) cascaded, no P.M. system

3~~ 
X
3 

L1 2 A  ~2 
L
1TN1 

— 
N
1 

P
1

P
2

P
3 

T
N 

— 
N
1 

- 
P
1
P
2

all at hf where all ILI<<l. (4 3 7)
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T
N 

- 
N

2 
T~ - 

N
2 

P~

1L21 , all at hf where all 1LI<<l. (4.3—8)

~ ~~~ ~ 
T IL3I V T~

3 ~~~~ 
1P2L31

all at hf where all ILI~~l. (4.3—9)

The results for our design example are shown in Figure 4—36(a) in

log—scale, and in Figure 4—36(b) in arithematical scale.

~20

4 IT?3 I CasCüM~3 i..p
4 80 - INIIL\ \ */<I.~ 1 

N —

tX3 t \ \, ~~‘ ~ ~~~~~~~t~~1 I~~~ 5~ sv s .
I I” —

p 
_

2. 10 lO’~~~

(a) In Log scale

L
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(X l~~ I
(Ss~ Is Ioop)

/f/
(3(10’
)! 

Tw~1~ 1c
1/\ 

~~~~~~~~~~~~~~~~~

0 (000 2000 3000 es.)

(b) In Aritheaatical scale

Figure 4—36. Noise responses of the single loop system

and the cascaded, 3-loop, no P.M. system

The sensor noise functior~ for the 5—loop, P.M. system

(Figure 4—24) are:

X L X L3 A  3 o -, 2~~ 2 o
T &i— ~~ T N P P ’N1 

N1 1 2 3  1 1 12
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T
N 

— all, at hf where all ~L~(<l. 
(4.3~~0)

L 
2 A

X
2 

Li2
— , T~4

- 
N
2 

P
2
’

IL~~I all at hf where all ILk<l. (4.3-11)

2~~T
N 

— — — , T
N 

- 
N 1L13 I ,

3 3 3 3 3

lP~L~3I all at hf where all ILk<l . (4.3-12)

Results for the design example together with the single loop system

are in Figures 4—37(a , b) . Comparison of S—loop P.M. system and

3—loop (no P.M.) system are in Figures 4—38 which shows the big

saving due to the 5—loop system.

I20~~

500 (T1 )
N2 5— loop,P.M.system

p ,__ ‘

9 0 -  2 / 2  /~~~~(T ) 1 ( T )  T .
~N] S / N3 5 JSingle—

60 (T~1)5 / ~~~~~~ 
loop sys.

40 (T
~i~~~~~~~~~~~7~~~ ~~~~~~~

2~~~~~~
2Th

\

2: ~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ \\

2 10 I0~
(a) In Log scale
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(b) In Aritheinatical scale

Figure 4—37. Noise response of the single loop system

and the 5—loop , P.M. system
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200 

3—loop, no P.M.

(so

500

5—loop, P.M.

-
t

1W 3 15so
~~~~~~~ ~l~ it

200 400 600 800 ià~ ZX IO’ 3al~

~4)

Figure 4—38. Comparison of noise effect between

4 
5—loop, P.M. system and 3—loop (no P.M.) system

4.3.11 Signal level at plant input

In considering signal level increases, we have always

gone backwards up to and including the output of the first plant

section (X~~ 1 
in Figure 39), but never bothered with input to

the plant, X .  The reason is that all feedback to X can proceed

— - -—- - =-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ —.—.-- —-—--.
~~~~~

- - —- - 
— 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a, Q~ 
X,~ ~~~,

Figure 4—39 Cascaded, no P.M. multiple loop system

— via a compensation network in cascade with the plant, e.g. C

in Figure 4—39, rather than via P. The dimensions at Q1
, Q2 can

be electrical, not the physical ones of the plant (which may be

chemical , aeronautical etc. as the case may be). Thus X
n 

—

X~_1/P~ and in this way need not be affected by the feedback

paths to X , which in this work we generally showed in the re-

turn path.

4.3.12 Design philosophy and perspective for second type

5—loop PM structure

The second type S—loop PM structure is shown in Figure

4—40(b)(the first was Figure 4—24 and replotted in Figure 4—40(a)).

— - - .- -

~
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The outer loop L4, GlLoiP3e is designed first with L01 — C
2
P
2
P1 ,

(P
1 

— P
1
/(1 + Li1), 1’2e — P

2
/( 1 + Li2), L11 — P

1
H
1
, L

12 
— P

2H2
)

and L~3 — P
315. L

0 
is assigned to handle a few db (say 8db)

r - —  
~~~ 1

R ~ ~ 
~~ c, 

~

- 
_-e~ . — ,  ~~

L02 ~ P3 
P
2 
G2, T2 ~ P3 P

2 /( 1 + L02) ,  L0 ~ T2P1

(a) Structure I

r- -~~~~~~

03 ‘ ~~ 
T~ D1

R F s ~~~ Pj \ 1Pa~~~~ 1P,~~~~5

Nj ’ 
~~~

L01 
P
2 
P
1 
C2, T1 P

2
P
1

/(l+L
1
), L0 P

3
T
1

(b) Structure II

~ P1
H1, L~2 ~ P2

}{2, L~3 ~ P3H3, 1’le ~ P1/(14-L11),

~2e ~ P2/(1+Li2), P
3 ~ 

P
3
/(l+Li3)

Figure 4—40 S—loop, P.M. systems
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uncertainty as a safety margin for the next step. Suppose we

take the specific problem in Figure 4—40(b) where the hf un-

certainty is 63 db, and a single—loop design gives Lsn in Figure

4—41. Measure 63—8 — 55 db up from the plateau of Lan at A

in Figure 4—41 to give ton with new plateau at A ’ the nominal
.1

outer loop of our S—loop design.

The loop L — P P C and L — P H now constituteol 1e 2e 2 i3 3 3
two “parallel” inner loops (the first inner loops) next designed.

Normally we would design t
01 

in the same manner as L~,1 was

designed in Figure 4—13, i.e. SLVR considerations dominate.

However, here L 1 need not handle the entire P~P2 uncertainty

- j (whereas in Figure 4—13 L
ii did have to handle the P

1 
uncertainty

entirely), because here loops P1111, P2H2 are available.

II

‘~‘ _ .
~_
&~~~“. -

, 
— ‘-• 

, 
~ 18db 20db 25d

PB ~ .~ c~~~ 
-

I ~~~ ~~~~~~~~ -
‘~‘ojn’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ILshI

-520 , ’

Figure 4—41 The perspective design of Structure II

_____________________________________________________________________ — 
~~~~~~~~~ -~~~~~~~ -- ~~~~~~
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SLVR considerations due to the other loops is considered later.

We could assign some few db safety margin (say 8 db) f or L
1

to handle. We now recall Figure 3—24 where we considered use

of “positive feedback”, locus A’B’C ’MNQ for L1, which is much

better than A’’’B’”C’’’MNQ in terms of SLVR. There it was not

useable because Li had to handle bf uncertainty of P1 ‘~ 20 db and

a positive feedback path could not achieve it (recall the dis-

cussion in Section 3.5.4). However, here L
1 
need handle only

a token small uncertainty factor, so the “positive feedback”

path is feasible. Hence we can pretty well ignore the SLVR

problem in design of L
01
.

We can make a good estimate of L without a detailedoln

design. It i~ an inner loop following L , so its peak will be

in the w region (A’) of the plateau of t
o
, as shown in Figure

4—41. Then IL lnI will decrease “slowly” (‘~ 
average of

25—30 db/decade) until the 8 db margin has been achieved , followed

by a plateau (at X in Figure 41) and then rapid decrease.

is next designed to handle the uncertainty in P
3
.

Since it is in the f irst inner loop group, “paralleling” L 1
,

its peak is also ‘. A’ location, but after this peak it must

decrease “slowly” until the 25 db uncertainty of P3 has been

handled. Thus, its plateau at CD is at higher w than that of L~~~.

Of course, just as in Sec. 4.2.6, there is the choice of how to

split up between Loin and Li3n the reserve provided by L0~ .

_ _  ~--~~~~~~-~~~~~~~~~ - - - -— - - - p -
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We next turn to the two “parallel” second inner loops

— P
1G~, L~2 

— P
2C2 ~~~~ is designed to handle the

uncertainty of P1, and L3n that of P3; and the reserve due to

L
1 design can be split up as desired. In Fig. 4—41 , note that

the peaks of ~~~~ ~~~~ occur in the w range (~ X) of the plateau

of L 1, inasmuch as this parallel inner—loop pair branch off

from L
1 . L

1
, L 2 were drawn as if there was even division

of the L reserve.oln

Note how the inner loops can be drawn approximately ,

without the need for a detailed design, — at most only of L ,

the single — loop transmission. We should next consider the

relative merits of Structures I (Figure 4—40(a)) and II (Fig-

ure 4—40(b)), but will first consider more fully the SLVR

situation in Figure 4—40(b).

4.3.13 SLVR in structures I, II (Figures 4—40(a,b)

It is readily found that

C35/C
5 

— ((1+L
1
)(l+L11)(l+L12)]/ (P

1
P
2
) in II

C35/C5 — ((l+Li1)(1+L12)]/(P1
P
2
) in I

The effect of (l+L 1) has been previously mentioned as not being

dominant, so it would appear that the SLVR problem with respect
- 

-
.

to C35 1. basically the same in I, II. There is, however, a

difference. In I, L~,1 is in the first inner loop pair , so the

1-
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+ L~,1~>l factor is effective in a lower frequency range than

in II where L~1 
is in the sec9nd inner loop pair (bandwidth

propagation effect). Hence SLVR would be bigger in Case I,

because L~2 is in the second inner pair for both I and II.

Consider C25/C5 — (l+lji) C
f for both 1,11. As L11 is in second

inner loop pair in Case II (in first for Case I), SLVR tends to

be bigger for Case I.

4.3.14 Noise response comparisons between structuresj,jI

The noise responses of Structures 1,11 are compared

in Table 4—1. For example, at hf X
2/N

3 ~ 
L~,3 for both. However,

in II , Li3 
is in the f irst inner loop, so its final asymptotic

descent begins earlier than in I. Hence, in the hf range

IL~3I 1 > IL~3~1~
. The significance of a,b,c,d,e,g depend , of

course, on the respective L/P ratios. If IP I is large, then the

effects are unimportant but in large uncertainties it is more

likely that the L~,/P~ are large. If the level at X
3 
is the

major fac tor, then item (b) (as far as sensor noise is concerned)

is the one to examine, but of course, the total RMS level due

to all sources must be considered, so even if the difference

is very large in (b), it does not matter much if (b) is still

small compared to (a). If the X2 level is important, 
then

Cd) should be contrasted with (f).

~

-- - - --- -~~~~ -~~~~~~~~ -~~~~~~ ~~~~~~~~~~-~~~~~ .-_ _
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Abbreviations

hi high frequence

low frequence

Up inner loop pair

Lti linear time invariant

Ltv linear time varying

Lhs left hand side

rhs right hand side

ISLV ignoring signal level variation

N.P.R. noise power ratio

P.M. plant modification

S.L. signal level

SLVR signal level variation ratio

RMS root mean square

L • - _•~~~~~~~• -~~~~-~~~~- ~~~~~--• - -—- -~~~~•-
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APPENDIX I

Patterns of Templates

Seven typical patterns of templates P1 and P2 are con-

sidered. They can be divided into three categories . The first

category extends upward and to the right from the nominal point

(see Section 2.2.1) , as shown in Figure 1—1(a) . And the

r— - 1  r— ~~ ’ r~~~—~- 
~ ; ,I p. I P p . , I p . II i i  I , t

~~J L ~~~~L~~~J

(a) (b) (c)

Figure I—i. Three categories of tençlate.

second category extends upward and to the left from P~~ , as

shown in Figure 1-1(b) . The third one extends both the right

and to the left from 
~~~ 

, as shown in Figure 1-1 (c) . The

• following three plant functions give templates of the shape of

Figure 1—1(a) .

(1) ~a (8) — s(s/ps1) k — (k1,k2 ] , p — (p1,p2) (I—i)

k
— 

1 ( 1— 2)n s(s/p1+1)

(2) ~b (5) s(s/p +i)(s/p b+1) 
k — (k1,k21



~ .-. ~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

238

— (z1,s2J ‘ ~a 
— t
~a1’~a2

1 ‘ ~b — 
~ b1

’~b2
1 (1-3)

b k.1(./z2+l) (1—4)
P (s) — 

~~~~ 
+1) 

~~~ 
+1)

, 2

-

k — Lk1,k2) , w — (w ,w
0 3 , a — 

~
°

~~‘
°2 

(1—5)

— 
1 ( 1—6)n s(s/(a1+jw )(s/(a1 jw )+l]01 01

And the respective shapes of templates at three different

frequencies < 0)
5 

are shown in Figures 1-2,... ,4. Note

P°(WB) I”]

• 
P~
’(wA ) P~

(Wc)

4 Figure 1—2. Typical templates of ?(s), Case (1) .

in Case (3) th. pole—pair ranges inside MNQU and M’N’Q’U’ in

S—plan. of Figure 1-4(a). Three t.a~ lates Figures

1—4 (b ) , . . . ,  (d) , are plotted with w ~ u . If w ‘ w , then
0

~~ 01
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pb(

P~(wA ) P,~ (w9 ) P,~(w~
)

Figure 1—3. Typical templates of P1’(s), Case(2).

the template extends to the left which puts it in the second

category.

The next three typical structures have the shape of

Figure 1-1(b) .

(4) pd (s) — s( ’-a ) , k — (k1,k2) , a (a1,a2 ] ( 1— 7)

d 
_______P Cs) — ( I— B )n s(s+a )

( 5) p5
~5~ s (s+p) (s4

~
pb

) , k — (k1,k2]

z — (21,22
] 

‘ ~a 
— 
~a1”~a2

3 ‘ ~b — 
~~b1’~ b2

1 ( 1—9)

k ( s + z )
C 1 1p (s) — (1—10)n s(s+p 

~~
‘
~ba2 2
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• iw

jWC

~ ~~O2

4:
JWa

U Ste —I-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ jw01 -~~~

- 15 •A’8
_ _ _ _ _ _ _ _ _ _  -- 

~JWc~ 
~~~—o~ p 13
~ 73 (d)

N ’ ~~~~O2 P~~
(w c )

S-plane
P (w8 )

/

r 

pC 

•13

I2~~ • 
A
’

(c)
pC(w)

(b)

Fi~~re I 4  (a) . P~ parameter uncertainty in S-plane.

(b),...,(d). Typical templates of P0(s) , Case 3.
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(6) ~f(5) — s(s+a+jw~~(s+a—jw ) , k — (k 1, k 2 )

a — 
~
°i’°2~ 

‘ ~o — 
°l °2 

(I—il )

f k1P (s) — s(s+o2+jw0 
) (s+c2—j w ) . ( 1—12 )

2 2

Similarly, the respective shapes of templates at three different

frequencies are shown in Figures I—5 ,...,7.

P
~
(wA ) P

~
(w
~
) P

~
(wc )

Figure I— S. Typical templates of ~d(8) , Case (4).

Note , in case (6), the complex pole—pair ranges within MNQU and M’ N ’ Q ’U ’

in the S-plane of Figure 1-4(a). Three frequencies, 0
A 

< <

in Figure 1-7 are shown in Figure 1-4(a). Again, if w <

the template extends to the right which puts it in the first

category.

The third category is the template extending both to the

~

- -

~

--• -

~ 

.--• _ _ _



• 
~~~~~~~~~~~~~~ 

-. 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~

242

p•(wc

Pfl (wA ) P~ (WB ) P~ (uc )

Figure 1—6. Typical templates of ~e(5) , Case (5)

It

P~ (wc )

~ (wB )
P~

(WA)

Figure 1—7. Typical templates of i~~ s , Case (6) with

par emeter uncertainty in Figure 2-14 (a).
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right and left of P~ (Jw) . Such templates definitely occur when

the plant set includes both mininsmi and nonminimum-phase elements, or

both stable and unstable elements, or both, as illustra ted by

( 7) P9(s) — k , k — (k 1,k 2 ] ( 1— 13)
s(s +as+b)

and the complex pole-pair of ~
g(9) ranging in MNQU , M’N’Q’ U’ of

Figure 1—8(a). Three typical templates at different frequencies

• WA 
<

~~~~ 
< W

C 
in Figure 1—8(a), are shown in Figures 1—8 (b) , . . . ,  (d) .

P(w A

N P~(WA )

M U 
JP~(wc )/

P9 (wc)
S— plan e

(a) Cd )

P~~
(w B )

Figure 1—8 (a) Range of complex pole-pair of P9(s)

(b),(c),(d) Typical templates of P9(s) , Case (7) .

L ~~~~~~~~~~~~~~ ~~~~~~~~~ —.•~~~
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APPENDIX II

Rational Functions of Numerical Examples

The following expressions

n(s) — a1s~ + a2s~~~ + . .. .  + an_is + aj d(s) — b1S
m 

+ b2s~~
1 + .... + b~~~ s +

represent the numerator and denominator of a rational function

R(s) —

11.1 Single loop system

(1) Figures 1—3(a), 2—1, ~AP~ — ~~ P
1

P
2 f — 40 db

I..5
(s) — 0.8533 E+09 x R(s)/s

(a
1 a

7) 0.l0000000E+Ol, 0.31934769E+02, 0.22690730E+03,

0.83455640E+03, 0.15804253E+04, 0 .15747661E+04 ,

0.65232l78E+03.

• (b1 • b11) — 0.l0000000E+0l, 0.37145410E+03, 0.13052187E+06,

0.i863l760E+08, 0.24542067E-s-l0, 0. 38433726E+l1,

0.20272860E+l2, 0.657l2659E+12, 0.1ll38572E+13,

0. 10663364E+13, 0.45332 398E+l2. 

- .~~~~~ - - ‘  ~~ --~~~~~~~~~ • - • - • -~~~~ - •
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(2) Figure 4—26, I~~1~2~3I — 63 db

L5(s) — 0.2469E+13 x R(s)/s

(8
1 

+ 88) — 0.10000000E+Ol, 0.5689l708E+02, 0.53505396E+03,

0.25187393E+04, 0.67933555E+04,

0.86928672E+04, 0.30754795E+04.

(b1 
-~ b12) — 0.l0000000E+Ol, 0.286l9253E+04, 0.80363180E+07,

0.86478725E+l0, 0.9078lll7E+l3, 0.23453811E+l5,

0.15893765E+16, 0.63699863E+l6, 0.15216227E4-17,

O.2197669lE+17, 0.l7419455E+17, 0.63546876E+16.

11.2 Cascaded no P.M. system (Figure 1—15(a))

L1(s) — 0.45l3E+07 x R(s)/s

(a1 
+ 8

5
) — 0.10000000E+01, 0.l2530328E+02, 0.45847092E402,

0.7053276 1E+02 , 0.414263l5E+02.

(b
1 

-‘ b9
) — 0.l0000000E+Ol, 0.92955902E+02, 0.78720469E+04,

0.2858348lE+06, 0.9l296l80E+07, 0.59384608E+08,

0.18004706E+09, 0.22596626E+09, 0.12587678E+09.

0.4 x 402 x 2502

2 2£ (s +O .7x40s+40 ) (s +0.6x250s+250

I - 
11.3 2—loop P.M. system (Figures 2—2 , 3—1)

(1) Design A

L0(s) — 0.lSOOE+08 x R(s)/s

:~ 
_ _
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(a1 + 87) — 0.l0000000E+Ol, 0.204096375+02, 0.15927747E+03,

0.678275395+03, 0.161296905+04, 0.197649275+04,

0.109582355+04.

(b1 
+ b11) — 0.100000005+01 0.132379065+03, 0.137982895+05,

0.69865088E+06, 0.27376240E+08, 0.36934l95E+09,

0.246057755+10, 0.89491988E+10 , 0.196791545+11,

0.208973215+11, 0.l1361743E+ll

L~1(s) — P1(s) H1(s)

— 
O.6(s +2)(40s+1) x 452 x 3ØØ2

(s+7.6)(40s+l6.67)(s2+45s +4 52)(s2+O.7x300s+3002)

(2) Design B

- L0(s) — 0.637lE+07 x R(s)/s

(a
i 

+ a5) — 0.100000005+01, 0.ll242662E+02, 0.42154068E+02 ,

0.6714714154-02, 0.404642945+02.

(b1 
+ b9) — 0.100000005+01, 0.99096939E+02, 0.868206645+04,

0. 33085312E+06, 0. 108367605+08, 0. 712869445+08,

0.238829525+09, 0. 321606405+09, 0. 208168805+09.

L~1(s) —

• • 0.68(1.25 + 3) (100. + l)(48s + 1) x 452 x 2502

(l.25+7)(lOOs+3)(48.9-l6,67)((l.2s)2+l.2x45s+452)(s2+O.7x250s+2502)

L
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(3) Design C

L0(s) — O.2l74E+08 x R(s)/s

(ai 
+ a5) — 0.10000000E+01, 0.10000282E+02, 0.35892l5lE+02,

0.56468002E+02, 0.33795563E+02.

(b1 b9) — 0.l0000000E+01, 0.13268655E+03, 0.147l228lE+05,

0. 7232023lE+06, 0. 29226304E+08, 0. 20516770E+09,

0. 64369638E+09 , 0. 89944986E-s-09, 0. 58078003E-I-09.

— - 
0.5(s + 3)(30s + 1) x 532 x 3302

* (s+9)(30s +25)(s +53s+53 )(s +0.7x330s+330 )

(4) Design D

I.e(s) — 0.l062E+08 x R(s)/.s

(a1 + 85) — 0.10000000E+Ol, 0.1l204820E+02 , 0.4l860794E+02 ,

0.66633072E+02, 0.40388687E+02.

(b
1 

+ b9) — 0.l0000000E+0l, 0.ll282556E+03, 0.ll24l965E+05,

0. 4838l150E+06, 0. l7928832E+08, 0. l1999072E+09,

0.393356805+09, 0.542149125+09, 0. 35039437E+09.

‘

~ — 
0.5(s + 2)(65s + 1) x 452 x 3002

(s+5.5)(65s +16.67)(s +458+ 45 )(s +0.7x300s+ 300 )

F-

L •
~~~~~~~~
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(5) Design E

L0(s) — 0.4527E+08 x R(s)/s

(a
1 

+ a4) — 0.l0000000E+0l, 0.72563848E+01, 0.l7384796E+02,

0.137561995+02.

(b1 
+ b8) — 0.10000000 5+01, 0.l5459435E +03, 0.19788469 5+05,

0.110705405+07, 0.5077l584E+08, 0.273725185+09,

0.59020390E+09, 0.461278725+09.

— 
0.5(s + 4.5)(l6s + 1) x 602 x 4502

(s+lO)(l6s+30)(s +60s+60 )(s +0.7x450s+450 )

(6) Design ISLV

L0(s) — 0.45l3E+07 x R(s)/s

1~ 85
) — 0.l0000000E-t-01, 0.l2530328E+02, 0.458470925+02,

0.705327615+02, 0.414263l5E+02.

(b1 + b9) — 0.100000005+01, 0.92955902E+02, 0.78720469E+04,

0.2858348lE+06, 0.912961805+07, 0.59384608E+08, 
- 

-

0.180047065+09 , 0.225966265+09, 0. l2587678E+09.

0.4 x 402 x 2502L -
i (s +0.7x40s+402)(s +0.6x250s+250 )

L. -
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11.4 3—loop P.M. system (Figures 1—24, 4—1)

1..~(s) — 0.83315+04 x R(s)/s

(a1 + 84) — 0. 100000005+01 , 0.66346006E+01, 0..14799875E+02 ,

0. 11100864E+02 .

(b
1 

+ b8) — 0.10000000E+Ol, 0.2265924iE+02, 0.3548352lE+03,

0.313488455+04, 0.194703485+05 , 0. 66803438E+05,

0. l0434300E+06, 0. 64274535E+05.

L (8) — P ( H ( ) — 
4.l25E+04 x (a + 0.0153)

(s +7s+49)(s+0.92) (s +O.4x 42s+42 )

L~2 (s)  — — 2 
100 X 1202 

2 
X R(s)

s + 0.4x120s + l20

(a1 + a19) — 0.10000000E+Ol, 0.l408284lE+03, 0.83792813E+04,

0.319433195+06, 0.83721440E+07, 0.l7572984E+09,

0. 27825651E+lO, 0. 35667821E+ll, 0. 36489l0lE+l2,

0. 30564963E+l3, 0.205487175+14, 0.113045645+15,

0.489945715+15, 0.17120134E+l6, 0.447081565+16,

0.903107505+16 , 0.ll800826E+l7, 0.99326917E+16,

0. 154713375+16. -
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(b1 + b21) — 0.100000005+01, 0.145280565+0 3, 0.946552345+04 ,

0.393885505+06 , 0.115404785+08, 0.265426195+09,

0. 48l47415E+lO, 0. 707195705+11, 0.852749455+12,

0.852017495+13, 0.709390195+14, 0.492074945+15,

0.283973715+16, 0.135277855+17, 0.526074l8E+i~ ,

0. l6437946E+18, 0.399026935+18, 0.734072655+18,

0.91l56008E+l8, 0. 70823165E+18, 0. 12667604E+18.

11.5. 5—loop P.M. system (type I) (Figure 4—24)

L0(s) and Lu (s) are the same in 3—loop P.M. system

2 82 602

2
x
2(s +8.4-8 )(s +0.4x60s+602)

Li2 (s) — 1.17E+07 (s + O.Oi)(s + 0.08) 
2 X R(s)

(0.ls+1)(lOs+l)(s +0.4x160s+l60 )

(8
1 

+ 814) — 0.10000000E+01 , O.2].468l79E-s-o3, 0.2l766156E+05,

0.l6546280E+07, 0.80722400E+08, 0.298498795+10,

0.820770905+11, 0.16920483E+13, 0.27214205E+14,

0.317843695-1-15, 0.274519955+16, 0.l568997lE+l7,

0.559140705+17, 0.891491595+17.

LI

L • ~~-~~~~ - -~~~ -- ——•• -- -~~
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(b1 
+ b16) — 0.10000000 5+01, 0.25456444E+03, 0.318959105+05,

0.27528480E+07, 0.l73332l4E+09, 0. 80436388E+10 ,
-

~ 0.28532185E4-l2, 0.777418345+13, 0.16361775E+15,

0.26835680E+16, 0.338118685+17, 0.32018864E+18,

0.22259569E+l9, 0.l0466948E+20, 0.3099l538E+20,

0. 410610245+20

— 
5.4E+09(s + 180)

1 (s+250)(s +2x0.38x 36s+36 )(s +400s+lO )

I!

4 
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Consider the constrained part (denoted as the Plant) of a control system ,
consisting of n coacoded sections , each of whose outputs can be sensed for
feedback purposes. Feedback from these points is to be used to achieve apriori
specified tolerances on the system response, despite grea t uncertainty in plant
parameter values . In this firs t quantitative work of its kind , the feedback
is permitted to proceed direc tl y to interna l plant variables , constituting
“plant modlficatio&’. The reason is tha t the interna l plant signa l l evels
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20. Abstract continued .

needed to achieve a specific outpu t are now affec ted by the feed back loops .
This is In contrast to previous quant l-ta~ ive research in which the feedback
was confined to the plant input. The plan t signa l levels needed to achieve
a specific output were then not influenced by the feedback .

Plant modification feedback permi ts greater reduction in the “cost of
feedback” , in terms of feedback loop bandwid ths and effect of sensor no i se,
at the cost of increase in plant Interna l signa l levels.  In this work , the
maximum permitted Increase Q In signa l leve l, Is part of the design
specifications. A step by step design procedure is presented for sat isf y ing
this Q requirement and the system response tolerances over the given range of
plant uncertainty, and doing so at sensibl y minimum “cost of feedback”. This
permits the designer to achieve desired trade-off between increased plant
si gna l level and cost of feedback.
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