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INTRODUCTION

The use of minimum mean-square error (MMSE) filtering for prediction, estimation
and smoothing has grown in popularity during the last few years. To a large degree this
interest may be attributed to the corresponding growth in the areas of real-time computing
hardware and software. The degree of sophistication reached in these areas has made it feasi-
ble to construct dedicated hardware componentry or interactive software algorithms capable
of implementing MMSE filtering.

As originally developed by Wiencr,l the theoretical techniques of MMSE filtering per-
mitted us to solve analytically for the linear filter impulse response. This would minimize
the mean-squared error between the filter’s output signal and a desired signal. We have con-

siderable freedom in choosing this desired signal: the specific application determines its choice.

One possibility enables us to use the output of a linear filter and to predict the future
values of a time series when we know its present and past values. The optimal filter impulse
response (which minimizes the mean square of the error between the filter output and the
selected time series value) appears (in the continuous case) as the solution to a Fredholm
integral equation of the first kind. Solution strategies for this equation have been developed
by a number of authors=3% for several signal and noise situations. For the case of discrete
data, the solution tfor ihe optimal L-length filter coefficients appears as the solution vector,
w*_to the well-known discrete Wiener-Hopf matrix equation:

Rh=Px. (1)
In Equation 1, R is the L X L autocorrelation matrix of the input time series, h is the L X |

vector of the optimal weight coefficients (the discrete impulse response of the filter) and P
is the L X [ autocorrelation vector with autocorrelation elements

B ]
O (D)
Sux(A+ 1)
_EAz 3 . 2)
L¢XX(A +L- 1)-

where A is the prediction distance in sampling intervals.

The main difficulty in solving Equation 1 is the estimation of the true autocorrelation
lags. oxx(¢). for the time series under examination. This in itself is an area of active current
research. In actual systems, we are given a finite amount of data from which to estimate the
actual lag values. This introduces some degree of uncertainty. This work examines the theo-
retical case of assuming the autocorrelation lags known exactly and develops an analytical
solution to Equation 1. Solutions developed for this ideal case are useful for comparison with
actual processors which approximate solutions to h from finite segments of noisy data.
Although this is a natural application of the analysis in this paper, we will contine the present
work to examining the properties of the theoretical solutions to Equation 1.

The specific case to be examined is that of bandlimited (BL) signals corrupted by
lowpass noise. An example is the signal generation by a Gaussian random process of a band-
limited signal and the noise characteristics of the media exhibit the familiar “1F™ frequency




absorption. An analytical technique known as the method of undetermined coefficients is
applied toward the soJution of Equation 1 for this case. Early theoretical work done by
Zadeh and Ragazzini= devised this method for continuous systems. The method was
adapted to the discrete case by Krut’ko® and Solodovnikov.® More recently, general
properties of the discrete method were examined by Satorius and Zeidler.” The discrete
method was then applied by Zeidler et al® to solving Equation 1 for the case of multiple
sinusoids in uncorrelated noise and by Satorius and Zeidler” to the case of multiple sinu-
soids in lowpass noise. To fully examine the effects of a nonzero bandwidth signal upon the
resulting optimal filter structure, the input is limited to one complex bandlimited signal in
lowpass noise. Motivation for examining this case stems from Reference 8. That work
reveals that as long as the frequencies of the complex exponentials comprising sinusoids
are sufficiently separated, there is effectively no interference between each complex expo-
nential solution. Solutions corresponding to real sinusoids then become linear superposi-
tions of the complex exponential solutions.

ANALYSIS
The matrix Equation 1 may be expanded into its L components to become
L-1
S ORI =0 @A) 2201, L-1. 3)
k=0

For the specific case of one BL signal in lowpass noise, the form of the autocorrelation lag

¢xx(Q) becomes
) 3
= = ~—aNIK| 2 ol el
Oxx(B) =0y e tofe el (4)
In Equation 4,
D .
OI-\I = noise mean-square power
p) !
o5 = signal mean-square power
ay, &g = correlation parameters of noise and signal, respectively
wg = radian center frequency (relative to Nyquist) of complex BL signal

Following the method outlined in Reference 7, we assume the general solution to
Equation 3 for the case of a complex BL signal in lowpass noise to be:

S

h(k)= > By 7K, + €y 8(K) +Ca 8k = L= 1), k=0,1,,..,L-1. (5
m=1

In Equation S, the Bm, C1 and C2 are complex coefficients. as yet undetermined: the zp, are
damped complex exponentials of the form zpy, = exp(um +i0m): and the delta functions
6(*) are due to the end effects of the finite length filter.

The solution strategy is to substitute Equation 5 for the optimal weight vector and
Equation 4 for the autocorrelation function into Equation 3 and solve the set of resulting
equations for the unknowns By, 2z, C1 and C2. Applying this technique yields six
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equations in six unknowns, which may then be partitioned according to the following con-
sistency requirements:

1. The coefficients of z:‘, in the resultant substitution must be equal for every ¢ of
the equation:

1

—aNt ANY st similarly equate and

(a5 + jwg)

and ¢
(—g + jw\-)k’

2. The coefficients of ¢

3. The coetficients of ¢ and ¢ must also equate

Condition | leads to a complex quadratic equation which may be solved for the com-
plex exponentials 2 and z2>. Conditions 2 and 3 give a set of four equations in the remaining
four unknowns (B, B>, €1, C2). Thus the unknown parameters of Equation 5 may be
found and the resulting optimal weight vector determined.

Applying condition 1 gives the following equation:

2 1 |
o -
N . 0 2o
F=2p¢ N L=z .
) 1 1
tog e - s =0 (6)
e A~ J Wy ! 2O = J g
L=z e™s Sz et :

which after a few operations leads to

B Y . sy
2 : 2 Olnachim s LJ2wg
ON sinh an(z, - 2 cosh ag e Zey € )
¥ 1 2]

= oJWs 7e -
+ o5 e sinh ozs(zm

2 coshay zg, +1)=0. (7)
Equation A17 in the Appendix shows that this is equivalent to the condition

N(zm) =0 {

o0
-~

where N(z) is the z-domain polynomial representing the numerator of the power spectral
density Sxx(z) given by
N(z)
7)== —= = C

Syx(2) D(z) Z {¢4x(D} . (9)
In Equation 9, D(z) represents the denominator z-polynomial, ¢xx(Q) is the autocorrelation
function frorm Equation 4 and Z{- } signifies the z-transform operation. Equation 8 states
that the zy, are located at the zeroes of the input spectral density . For the case of one BL
complex line the zeroes are given by the pair {z{,z2} which are reciprocal to the unit circle
on the frequency radial 6 1:

"

) e M cjol (10a)

I}

2y =Ml (10b)

In Equation 10, u is a measure of the closeness of the zero to the unit circle and for the
present case. 4 > ag.
Applying the consistency conditions 2 and 3, we obtain the following set of equations:

Bl ———l—_' + B> —'l——" +(“=C-C\’NA (1)
I -z N T 1 -2y N
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F_le-e-aNL —zi‘e""NL

Bl R +(~’e—aN(L—l)=0 (11b)
l—th‘—aN % ]—z:e'aN PE

By —l——‘ + B> ———‘-—— +(’|=c(°0‘5+j°~’s)A {ic)
1 -z e¥s™J%s N1 -z, s —Iws
;-_ ZL e(-as—ij)L -Zl; C(_ aS-ij)L

B, : - + B, = . +Cy e~ (as tjwe)(L - 1)

G — JWg L - OG- J W <

_"Zl‘ s = JWs P e S
=0.

The substitutions from Equation 10 are then used in Equations 11 from which the
unknown coefficients may be determined and the solution for the weight vector becomes

h(k) =By e K el01k 4 gy bk 01k 4 0 5k)+C5 8k - L+ 1),

k=00 Je =k (12)

ASYMPTOTIC PROPERTIES

Equation 12, with {B], B2, C1, C2} determined from Equations 11, gives the gen-
eral solution for the weight vector for arbitrary filter length L, signal bandwidth parameter
ag and noise bandwidth parameter aN. However, more insight into the properties of the
optimal impulse response may be gleaned by considering a few asymptotic properties of the
general solution.

LARGE FILTER LENGTH, L

First, consider the form of the impulse response as the filter length L becomes larger
and larger (L = 0 in the limit). Note that the term eHK present in Equation 12 is unbounded
for increasing k. For L unbounded, this will cause an unbounded solution for the weight
vector. Thus, if we consider the case of long filter length L (L = o0 in the limit). the coeffi-
cients B2 must be equal identically to zero to give a stable solution for h(k). With this sim-
plifying assumption, the Equations 11a and 11¢ become

1 : - aN/.
By J——— R aNa (13a)
I-ZICaN
B, _l__ +(‘i=e('a’s+jws)‘3 (13b)
] =2y 8=
6




which may be solved for B] and ('l to give:

QN - L0 Qg =M L0 ] = wg) .
B, - L5l il 1Sl bl it 1 G B TR RN

: : a)
¢ON —H ¢j0) _ o051 (0] - wg)

(1 =-cs—H 100 = ws)) [\.-QNA _U“as+.iws)A|
(14b)

(‘l = k'_uNA = ; .
CON = H 0] _ a5 = p,i(0] - wy)

Making the approximation B2 = 0 in Equation 11b gives the following expression for C>:

C = e=ON < #L_c___‘lolL ; (@50
5 T
But for the long filter length case (L > 4/u), the factor c"”l' asymptotically approaches zero
and thus C> vanishes.
Therefore, for the case of very long filter length the optimal weight vector reduces to
the tollowing approximation:

h(k) = B ¥k 01K £ ¢ 5(k) k=0,..., L-1;L—oo, (16)

The weight vector given by Equation 16 has two parts: a damped complex exponen-
tial oscillating at the frequency of the spectral zero of the input process, and an impulse of
strength €, existing in the first weight. The damped exponential decays away from the
beginning of the filter with an envelope determined by the value of u, the zero-damping
parameter. For very small g, the oscillatory function is almost a pure sinusoidal term: for
larger u the solution decays to zero quickly. The impulse C18(k) gives a value C to the first
(k = 0) weight only. Physically. the BL signal may be thought of as causing the damped
exponential portion of h(k), while the lowpass noise contributes the impulse with magnitude
C1é(k).

Once the impulse response h(k) has been derived, the transfer function H(jw) of the
optimal filter may be determined by taking the z-transform of h(k) and evaluating around the
unit circle at z = ¢J%. Thus from Equation 16,

L-1
H(z)=Z {h(k)} = h(k) z K
k=0
L-1
=B, [e=H+i0] z'|]k+('|
k=0
or
| —e=HL+j01L L
H(z) = B, : +Cy. (17)
| —emH +i01 ;-1 /

Since L = oo, the exponential e~muL approaches zero. Using this approximation and
evaluating at z = ¢J@_ the transfer function H(jw) becomes




B

(18)

H(w) = - +E
i =M ai@] ~w) I
Thus, the optimal transfer function has a constant background component of complex value
() (given by Equation 14b) plus a component due to the BL signal presence. The spectral
peak of this latter term is, in general, a function of all the parameters (as seen from Equation

14a) and is not examined further in this paper. However, an enlightening simplication results :

from considering the BL signal in white noise, which we do next. ;

: 1

WHITE NOISE APFROXIMATION FOR LONG FILTER LENGTH |
21

White noise of mean-square power oy can be approximated from Equation 7 by
allowing aN — . The zy, for this case may be obtained easily from Equation 7 by first
dividing by cosh aN and taking the limit as aN — oo:

? 5 g, 5] g 20 g
e o &~ mao e ,J(JJS fot ,J_(J.)S = C
R [oN cosh ag +0f sinh asl e T T N 0, (19)
m=1,2.

From the quadratic formula for complex numbers and letting
o)
02

SN
a=cosh ag + | — )sinh as (20)

N
Equation 19 has the following solutions:
zl=c~iw5[u—\/';’-_jl (2la)
z:=e~i""5[u+\/u_fl-l. (21b)

But from Equation 10, it has been shown that z| and z2 appear at the spectral zero
locations of the input process. Thus, equating Equation 10a with Equation 21a and 10b with
21b gives the following relation:

ci/“cjol =[ut\/u:—ll cij. (22) A

Equating the real and imaginary parts of Equation 22:

u=¢nla-Val-1] (23a)

0= wy (23b)

Furthermore, from Equation 14b we see that as aN = oo, C| approaches zero. Substituting
this result and Equations 23 into the asymptotic solution (Equation 16) for h(k), we obtain:

h(k) = By [a-val = 11K eiwsk (24)




———1

An important property of the impulse response tor the BL signal in white noise is
seen from Eguaation 24, Namely, the oscillatory portion of h(k) is at exactly the center fre-
quency, wg, of the signal regardless of bandwidth. Moreover, the impulse-type noise contri-
bution due to €'y has disappeared tor the limiting case of white noise. Further characteristics
of the solution are seen by considering the effects of aN — e upon B. This may be exam-
ined by first multiplying the numerator and denominator of Equation 14a by ¢ N giving:

[e™ON _ B edO1) [ - s~k (0] - ws))

= —aNA _ (-og t jwg)A
B, - - [¢ g s/=].
e H oJ01 _o—aN tag-u (0] - ws) (25}
Taking the limit as aN = 2,
GmB, _ K IO [] 2o =# 0] = wg)| o(-as +jws)A |
= - (26)
aN — o0 C_# CJU l
But 0 | = wg for the white noise case and thus
B, = TS (] 2O TH) pTwsA (27)

B is thus complex with a magnitude determined by the bandwidth of the signal (due to ag)
and delay, A, and with an initial phase determined by the signal center frequency wg and delay.
When Equation 24 is substituted into Equation 27, the solution for the weight vector becomes

k) = e~ (] - o8& —H) o=HK gk + A4, (28)

OsksL-1I

The solution is thus seen to be a damped complex exponential with initial phase wgA and
initial magnitude ¢™@sA (] =¥ =My For increasing A, the magnitude decreases as e~ @s4.
additionally, the initial phase increases as A is increased.

The transfer function is easily obtained from Equation 18 using Equation 27 for Bl
and the fact that C1 = 0 for white noise:

.(—as"'.iws’/-\(] — e%s — iy |
H(jw) = - . . (29)
] - ™M ellws - W)

SEPARATION OF SIGNALS FROM NOISE USING DELAY PARAMETER, A

In discrete Wiener prediction theory, we estimate the value of a discrete time series A
samples into the future based on the knowledge of its present and past values. That is. based

on a knowled re of the sequence® {x(k), x(k = 1),....x(k =L+ 1)}, we form an MMSE pre-
diction of x(k + A). This is equivalent also to predicting the present value of the time series ;
x(k) based or the delayed sequence {x(k -A), x(k-A-1),....xtk=A =L+ 1)}. In this "

section we show that we are able to separate the BL signal trom the lowpass noise background
using a variable prediction distance A. A requirement is some a priori knowledge of the ex-
pected signal and noise correlation distances (or, equivalently ., signal and noise 3 dB bandwidths).

*For filters not constrained to be finite length, this sequence extends an infinite distance in the past:
XE) XK=~ 1). ..}




Using Equations 14 and 16 we see that the expression for the impulse response for
long filter lengths may be rewritten to reflect the dependence of the By and Cy coefficients
upon A:

hy(k) = By(A) e Bk ei0 1k 4 ¢ (a) 5(k) (30)

k=0, s 1 Li>ieo,

where B1(4) and C1(4) are given by Equations 14a and 14b, respectively. From Equations
14 we see that for fixed signal and noise parameters (aN. ag, 9 1. wg., p) the coefficients
B1(4) and C1(A) (and hence the filter impulse response) are functions of the prediction dis-
tance A. Since By(A) is associated with the BL signal characteristics of the optimal filter
and C1(4) is associated with the noise contribution, we can enhance the BL signal properties
by choosing a value of A for which B1(4A) dominates C{(A).

This can be seen clearly in the following example. Consider the input power spec-
trum as shown in Figure 1 and suppose we desire to use the MMSE filter impulse response to
estimate the center frequency of the BL signal. For the parameters given in Figure 1, the
MMSE filter has the impulse response given by

ha(k)=By(a) [.772 cj“‘“’()”’lk +C(A) 8(k) (31)
where from Equation 7, the z,, = z|. 25 are found to be

2 =.772 A0 (32u)

25 = 1,295 J(:490)7 (32b)

From Equation 31 we can see that the impulse response now becomes a function of A via
the B1(A) and Cy(A) dependence. Figure 2 shows the relative magnitudes of Bj(A) and
C1(4) as a function of A for the signal and noise parameters given in Figure 1. From Fig-
ure 2 we see that for small values of delay (A < 7), the noise coefficient C1(A) is much larger
in magnitude than the signal coefficient B1(A). The resulting impulse response would then
be strongly influenced by the noise component, producing a strong impulse for the k =0
weight. This is shown explicitly in Figure 3a. which is the real part of the complex weight
vector for the value A = 1. There is a strong impulsive value at k = 0, after which the signal
components take the form of a damped complex exponential. Note, however, that for A =7
in Figure 2 the B1(A) coefficient is the larger, which signifies the signal components should
dominate the impulse response. This is clearly seen in Figure 3b, which illustrates the almost
complete disappearance of the impulse-type value at k = 0 for A =7. The weight vector is
very nearly a noise-free damped complex exponential which should lead to good frequency
estimation properties. E

Figure 4 then presents the magnitude square of the transfer functions, [H(w)|-. of
the weight vectors shown in Figure 3. For A = 1 (Figure 4a) the transfer function is very
much dominated by the noise component and a highly inaccurate estimation of the BL signal
results. As A is increased to A = 7. it is possible to estimate frequency better from the trans-
fer function (Figure 4b). One effect, however, (seen from Figure 4b) is that the resultant BL
signal appearing in the transfer function is broader than the original BL signal shown in Fig-
ure 1. However, the spectral peak of the transfer function is at the correct center frequency
wg = .507 of the BL signal.
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Input power spectrum for BL complex signal in lowpass noise.
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By increasing A to a value greater than the correlation distance of the lowpass noise,
the effects of the noise upon the MMSE filter response may be diminished considerably.
However, as long as A is not increased past the correlation distance of the BL signal, the filter
response still retains good characteristics for detecting and estimating the center frequency
of the BL signal. It we define w( as the 3 dB bandwidth of a BL process, w() = 2a leads to a
process autocorrelation function of the form ¢(¢) = exp[-«|¢|]. This leads to defining the
correlation distance, I', of the process as

I'=1/e, (33)

so that when ¢ =T, the value of ¢(¢) = el For the lowpass noise process of Figure I, the
correlation distance of the noise, I'N, then is given by

FN = l/aN = 2.5 samples,
whereas the correlation distance of the BL signal, I'q, is much longer and given by
= = Y0 cx e
FS l/ozS 20 samples.

Thus, the value of A =7 samples chosen from Figure 2 falls safely within the range
[‘N <AL I‘S required to give good signal characteristics in the transter function.
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APPENDIX
AUTOCORRELATION FOR CORRELATED NOISE AND BL COMPLEX LINE

The autocorrelation function ¢ () and power spectral density S(w) are related by

the inversion integral

™
00 =5 | St dde . (A1)
-

Now consider the discrete form S(z) related to S(w) through the transformation
(for T=1) z = ¢J@. The new parameters in Equation A1 may be found by the following

relations:
dz = j & dw - dw = ~jz~! dz
w = - 7 = el
e .
w= T 7 =t el

The last relation implies the path of integration in the z-plane is counterclockwise
around the unit-circle. Thus, in the z-plane Equation Al becomes

o(Q) 2]rrj f S(z) 241 4z
C

. K=l .
Z Res S(z) z pl)les of S(z) - (A2)
Assume first that S(z) is the lowpass noise spectrum given by SyyN(2):

N

2 °N2 e sinh ay
SNN(Z) = = 0 (A3)
(/.—e N) (z“‘—e N)
Applying the inversion integral (Equation A2), the autocorrelation function ¢N ()
becomes:
Y ., Q
(20 = sinh « )z l —a
oan(0 = [, = TN ez 0 (A4)
(¢N-2)
Evaluating Equation A4:
2, ‘(XNQ
¢NNlQ) = 0oNT¢© « 220, (AS)
A similar evaluation for € < 0 gives
9 OIN ¢
¢NN1Q) = ON'C < o (AG)
The combination of Equations AS and A6 give
~any ¢
AR C(N| | (A7)

¢NN(Q) = GN"t




which is the desired autocorrelation function.
Next consider the complex BL signal with the spectrum S (2) given by:

o) o
b e S o:
20 ¢ sinh o

ScalZ) = - ; (A8)
s (Z_e'as+1ws) (z'l e s 'J‘*’s)
Again applying the inversion integral gives the autocorrelation function ¢ ({):
o
: (2 052 sinh as) LIPS - 5
$ss(®) = oIET , 820 . (A9)
iSgit g ) -, +j we
(L S~z SRS WAL
Upon evaluating, Equation A9 reduces to
- ¢ jw, ?
6@ = 02e 5 T ez0 . (A10)
A similar solution for ¢ <0 gives
o € jw ¢
b0 = 6 2e S T 0o (A1)

and combining Equations A10 and A 11 gives the required autocorrelation function for the
BL signal:

2 7o I8 jeog €

bV = o (A12)

The linearity of autocorrelation functions now allows us to find the autocorrelation func-
tion, ¢y (), of an input process consisting of a complex BL signal in lowpass noise by
simple addition of Equations A7 and A12:

¢XX(Q) = ¢S§(Q) +¢NN(Q) .
The linearity of the z-transform operator then gives

Syx(2) = SNN(Z)+SSS(2) c (Al3)

Performing the addition in Equation A3 gives

N o~ =0y
2 2on“e N sinh ay 2 o\‘: e sinhag
(z) = T T : ;
XX - QT - ~. t 1w, o 7 ST
(z—c T\‘) (z"—c N) (z—c S “) (z'l—c 3 -‘)
(A14)
After considerable algebra, the final form of the input spectrum becomes
_(=22)N()
Sxx(?) D(2) (A15)
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where
ISR 2y s RRIZN
N(z) = ON sinh an (/, ~2z¢ cosh @, +e
| N
| W,
| +"52 c" Ssinh aq (7.2—2[ cosh ay + I) . (A16)
R
l - o ~0o T+ (G O G
i D(z) = (z—c N) (z—c N) (z—c A “) (/,-eS ! ”) . (A17)

The poles of Sy (z) are the roots of the Equation D (2) = 0 and are the pole-pairs of cach
separate spectrum from Equations A3 and A8. The roots of the Equation N (2) are the non-
trivial zeros of Sy (z). Additionally. there is a zero at the origin which does not affect
computation of the spectrum or the solution for the weight vector.




