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~~In connection with the 
development of a dual chamber rocket, the need arose

for a mathematical model capable of simulating the flow field involved. The
flow is turbulent and includes supersonic, subsonic and recirculating regions.
Such a model is fully described in this report.

Turbulence effects are accounted for by an eddy viscosity hypothesis,
and by suitable coefficients of mass, energy and entropy transport. It was
found that these turbulence effects radically change the elliptical/hyperbolic - 
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characteristics of the equations as compared with the classical case of
nonturbulent Compressible flow. The equations of momentum, continuity and
energy for turbulent flow are shown to be elliptical for both supersonic and
subsonic regions. When the second law of thermodynamics is added, the
equations assume a parabolic character.

This report explains how the f ield may be subd ivided into finite cells
and the solution marched downstream cell b y cell.

r~~~T~T T T ~~~~1—•—--
~~ ~~~ 

,,I’c•,on V~NTIS .

~utI ~ ~~~~

JijsrIflCATiO~

r~Y

DD ~OTflJ~ 1473 UN cLAsSiFIED

~i o
5
i%~ -n14—G6 O 1 SE~~U*ItV CC~1S$I~Ih~ION OP t~~I$ PAOEIWliai D.u•

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — . . -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~



~~
—- -. —

~~~~~~~~
--

~~~~~
---

~~~~ 
__ _

~~~
._—, 

TABLE OF CONTENTS

Section

SU~~1ARY 1.

1. PURPOSE AND SCOPE OF REPORT 2

2. CURRENT STATU S OF THE THEORETICAL INVESTIGAT ION 2

3. THE DUAL CHAMBER ROCKE T 

4. TURB ULENT TRANSPORT EFFECTS 9

5. CHO ICE OF FUN DAMENTAL VARIABLES 19

6. THE PARADOX OF FIVE EQUATIONS IN FOUR UNKNO WN S 22

7.  NONT U RBU1..ENT COMPRESSIBLE FLOWS OF MIXED ELLIPTIC/HYPERB OLIC
rYPE 24

8. CLASSIFICATIO N OF BASIC EQUATIONS FOR TURBULENT COMPRESSIBLE
F1..oW 31

9. BOUNDA RY CONDITION S FOR THE ELLIPTIC AND FOR THE PIECEWISE
PARABOLIC CASES 34

10. SOLUTION FOR CELL EXIT CONDITIONS BY RELAXATION 42

11. BASIS FOR THE FURTHER ANALySIS 45

12. CONTINUIT Y EQUATION 48

13. MOMENTUM EQUATIONS 49

14. EDDY VISCOSITY HYPOTHESIS 56

15. ENERGY EQUATION 60

lb. SECOND LAW OF THE RHODYNANICS - 66

17. FURTHE R DE VELOPMENT OF BOUNDARY CONDITIONS . . . . . . . .  68

18. SUMMARY OF PRINCIPAL EQUATIONS  72

19. CLASSIF ICAT ION OF EQUATIONS BY DETERM INANT METhOD 79

20. DERIVATIO N OF CHARACTERISTIC MATRIX 84

• 21. EVALUAT ION OF CHARACTERISTIC DETE RM INANT • 
88

22. SYMB OLS 

23. REFERENCES AND BIBLIOGRAPHY 96

iii



—- . — ,-. ,.,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~-~~~ —- — — — — .  - ~~~~~~~~~~~~ ~~~~~~~~~~~ 

— ~
.

LIST OF TABLES

19.1 CHARACTERISTIC MATRIX 81

I

78 10 O - ~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ . -.i~~~~~ _ ___ i__~~

_.___ _ ii III I~~



riiuiiuuuuuuuuuuuuui;uiiui 
~~~~~~~

_ 
-

~~~

- - 
.--.-,- ,- -‘—-.- - - ‘I

LIST OF FIGURES

3.1. OPERATING MODES WITH AFT NOZZLE IN PLACE 6

3.2. OPERTA ING MODES WITH AFT NOZZLE JETTISONED 7

9.1. FINITE DIFFERENCE MESH FOR DUCTED JET PROBLEM 35

- - -4

vii

L I - . .  ~~~~~~~~ 
. 

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ____ 

_____.



— —
--—---~~ -

. —,------ ----.----. ~..—.- 
— .-.- -  -. 

_ -.—--s-~~~
, 

~~~~~~ 
- -.-—---

~
---.- - - - - - -

SUMMARY

In connection with the development of a dual chamber rocket , the need arose

• for a mathematical model capable of simulating the flow field involved. The

flow is turbulent and includes supersonic , subsonic and recirculating regions.

• Such .a model is fully described in this report.

Turbulence effects are accounted for by an eddy viscosity hypothesis ,

and by suitable coefficients of mass , energy and entropy transport. It was

found that these turbulence effects radically change the elliptical/hyperbolic

characteristics of the equations as compared with the classical case of

nonturbulent compressible flow. The equations•of momentum, continuity and

energy for turbulent flow are shown to be elliptical for both supersonic and

subsonic regions. When the second law of thermodynamics is added , the

equations assume a parabolic character.

This report explains how the field may be subdivided into finite cells

and the solution marched downstream cell by cell.
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1. Purpose and Scope of Report

This report has two principal purposes. The first is simply to summarize

the progress that has been made during the fiscal year ending 30 Sept 1978 on

the theoretical aspects pertaining to the development of a dual chamber rocket.

The associated experimental program is suzmnarized separately by Netzer [62].

The initial objective of the theoretical program was to develop a mathemat-

ical model adequate for calculating and predicting the flow and performance

characteristics of this type of device. This required a number of initially

baffling paradoxes to be resolved , but the desired objective has finally been

achieved.

The second principal aim of this report is to summarize the theoretical

flow analysis and mathematical model that has finally been developed and to

explain in considerable detail the rationale involved.

2. Current Status of the Theoretical Investi&atlon

The initial phase of the theoretical program as reported herein has been

successfully comp leted. It has resulted in a formulation of the problem that

may be fa i r ly  regarded as a novel contribution to the state of the art of

computational f luid mechanics. Moreover , it has not disclosed any decisive

barrier to further progress.

Consequently, the next step should be to translate the present mathematical

model into a functioning computer code. When this has been accomplished , a

systematic program of detailed calculations and comparisons with experiment

can be undertaken to explore and delineate the overall performance potential

of the dual chamber rocket.

2
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The nature of our mathematical model suggests tha t the± t inal computer code

will entail calculations which , while massive , nevertheless lie within the

present state of the art.

In the preliminary phase of the present study, the author reviewed several

do zen papers in the recent technical l i te ra ture  and several classical texts  to

ascertain whether any ~if the currently existing methods is readily adoptable to

the present problem. in this connection , see the references and bibliography

listed in section 23. While this review provided much useful background infor— —

mation it failed to disclose any ready made method to do the present job.

Hence the author was obliged to tackle the problem from first principles. The

effort was successful and the resulting mathematical model is fully described

in this report. The principal equations are summarized in section 18. Because

of these circumstances, the reterences cited in the text as well as the addi—

tional items listed in section 23, while interesting and helpful, are not

essential for understanding the present text.

3. The Dual Chamber Rocket

This report outlines the progress that has been made and summarizes the

mathematical model that has been developed for the analysis of a type of turbu-

lent supersonic flow which contains regions of recirculation. While the

potential field of applicability of this model is qs’ite broad , the present

study arose specifically in conflection with efforts to develop an effective

small dual chamber solid pro pellant rocket o1 a type suitable as an air--to—air

weapon. Hence some information about the basic concept of the small dual

chamber rocket is appropriate at this point to provide orientation concerning

the initial intended application of the present theoretical analysis .

-3
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‘. comparison of the small dual chamber rocket wi th  a large mul t i—stage

rocket is instruc t ive here. It is well known that effective performance of

the large multi—stage rocket demands that each stage be jettisoned as soon as

Its fuel is spent. Ideally, such jettisoning wuld be desirable for the

small rocket as well, but in practice, the incidental penalties in weight and

comp lexity required to accomplish this outweight the basic performance advan—

tages that  would be gained from such jettisoning . The problem therefore arises

of designing the small two stage rocket to operate effectively without

j e t t i soning the f i r s t  or booster stage when it is spent. Consequentl y ,  the

second or sustain stage must f i r e  and discharge through the empty booster

casi ng. The general question therefore arises as to the range of par ameters

over which such a mode of operation can be made reasonably e f fec t ive .

One design compromise has been suggested that significantly affects the

s i tuat ion . This is to je t t i son not the whole booster stage , but only the aft

end of the booster which holds the aft nozzle. It turns out that the mechanical

complications and penalties required to accomplish this are much less than

those required to jettison the entire stage. if this option be elected , the

sestain stage discharges through a simple cylindrical tube, open at the aft

end. Under these circumstances there is far less interference with the

effective performance of the front nozzle. In particular , the permissible

length of the booster stage is not as severely restricted in this case. More-

over , the flow through the open tube, while still complex , is substantial ly

s impler than that through an a f t  nozzle .  The reason for this is that , assuming

sufficiently low ambient pressure, there would be no complex structure of im—

bedded shocks in the open tube, owing to the absence of downstream choking.

Consequently , our present theoretical anal’-sis emphasizes the open tube case,

at least for the time being.

4  

--. - . —-.-~~--



—. — -~~~~~‘~~~~r 
____•_‘

~
_•_ _•‘

~
___

—_ • _—— ~~~~ - ...~~~
, - - - __. -,_• ._-_ _ _  . _._ ___,_ _. •_ - _ _ -_,_ _-__ -_-_ .—— -

The general nature of the various possible flow regime s in the dual chamber

rocket is shown schematically in Figs. 3.1 and 3.2. Fig. 3.1 deals with the

configurations in which the aft nozzle remains in place while Fig. 3.2 deals

with the configurations in which the aft nozzle has been jettisoned. Notice

that in all cases the flow field consists of an expanding, axisyinmetric , super—

sonic inner jet plus an outer annulus of recirculating flow. Velocities over

much ot the recirculating region are presumably subsonic.

The expanding inner jet may or may not contact the walls of the aft nozzle

or of the aft tube before exiting . If the jet does not contact the walls , the

recirculating region remains in direct communication with the ambient air and

the aft chamber is said to be ventilated . In this case the general pressure

level in the recirculating region is governed primarily by the ambient pressure .

If the expanding jet contacts the tube or nozzle wall, it seals off the

recirculating region from contact with the amb ient air and the aft chamber is

then said to be unventilated . The general. pressure level in the recirculation

region is now governed by the complex mechanisms of turbulent transfer of

momentum , mass, energy and entropy between the recirculating fluid and the

main jet.

The analysis of such recirculating flows involves special difficulties

but is still possible. See, for example, references [26] through [31].

Given specified values of all of the other significant parameters , there

exists some corresponding critical length Lcr 
of the aft chamber at which the

inner jet just makes effective contact with the outer walls and thereby just

seals off the recirculation zone from the ambient air. Unfortunately, it has

not been possible up to now to determine the value of L
cr 

by theoretical

calculation, but only by experiment.
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Typical test ~ata bearing on various aspec ts of jet performance are g iven ,

for example, in references [56] through [67).

Such sketchy empirical data as are available on this point suggest that

L will usually be far smaller than the values of L which are of practical

importance because of other design considerations. Hence our primary interest

will be in operation in the super—critical modes as indicated schematically in

Figs. 3.1(c) and 3.2(c). Of course, these are the most difficult cases to

analyze, especially that shown in Fig. 3.1(c) which involves a rather complex

structure of imbedded shocks. In fact, just because of these shocks, this

case lies outside the scope of the present report. In princip le , the present

analysis applies, however, to any of the other five cases shown in Figs. 3.1

and 3.2.

Extension of the present methods to include the case of imbedded shocks,

Fig. 3.1(c) , while d i f f icul t , migh t eventually prove to be practicable . On

this question see , for example , the analysis of Murtuan [38].

The sub—critical modes, Figs . 3.1(a) and 3.2(a) , represent the easiest

problem because in these cases the jet can be expected to approximate to the

classical case of a free jet. Of course, there is considerable experimental

and analytical information available on the free jet. Nevertheless , even in

th is case , if the free jet  happens to be supersonic , many signif ican t details

of the flow field are still far from clear. On this point see, for example ,

Abramovich [1] and Kovasznay [351.

It is tempting to try to obtain some limited preliminary information on

the performance potential and on the inherent limitations of the dual chamber

rocket by considering certain limiting cases on a drastically simplified and

idealized basis. For example, one might treat the flow as essentially one

8 
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dimensional and inviscid. Also, the rather complicated shock s t ructure  shown

in Fig. 3.1(c) migh t be treated as a simple normal shock. A comparison of

the cases shown in Figs. 3.1(c) and 3.2(c) could then be carried out.

in all such over—simplified analyses, however, the net forces exerted on

the walls by the recirculating fluid cannot be deduced from the fundamental

equations, and must be estimated on the basis of some more or less plausible

but uncertain ad hoc assumptions. Moreover , such idealized analyses give no

reliable information on the crucial matter of the rate of spreading of the

jet. This rate is fundamentally determined by the complicated mechanics of

turbulent mixing and cannot be adequately analyzed on any basis that ignores

the turbulence. Moreover , spreading rate appears to be a sensitive function

of the boundary conditions so that any attempt to estimate this parameter for

the confined jet on the basis of experimental results for the free jet is apt

to be seriously in error. Because of limitations such as these, we do not

digress in the present report to explore or present grossly over—simplified

calculations of this kind but instead proceed directly to a more comprehensive

type of analysis.

Needless to say any research effort of this kind shoul d involve coordinated

experimental and analytical aspects. This report deals only with the develop—

ment of a mathematical model, which is the specific task that has been undertaken

by the author . The related experimental work is under the direction of, and

is reported separately by Prof. D. W. Netzer [62].

4. Turbulent Transport Effects

Among the various important matters which the mathematical 
model must be

able to analyze and predict are the spatial rate of spreading of the jet  and

the pressure distribution within the recirculating reg
ion of the h ow.

9
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Physically, these matters are largely governed by the complex mechanisms of

turbulent mixing. Hence to be suitable for its purpose, our mathematical

model must account adequately for the turbulent transport of key quantities,

specifically of mass, energy, entropy and momentum. Naturally, this require—

inent introduces unavoidable complications and supplementary questions of various

kinds into the analysis. See, for example, references [1] through [25].

To help place the turbulence problem in proper perspective , it is useful to

consider briefly first the special case of incompressible turbulent flow.

For Incompressible flow , various thermodynamic relations either drop out of

the analysis entirely or simplify drastically so that attention Is more easily

focussed on the phenomena characteristic of the turbulence itself .

In principle, the solution of any unstead y incompressible f low is com-

pletely determined by the continuity equation, by the Navier Stokes equations

and by the appropriate boundary conditions. This applies also to the type of

unsteady motion which characterizes turbulence. Unfortunately, however , two

circumstances conspire to thwart all e f f o r t s  to solve these equations for

the case of turbulent flow , desp ite their theoretical claim to su f f i c i ency .

Firstly , the basic equations are nonlinear . Second ly,  the detailed tur bulen t

motion encompasses a very large range of length scales with respect to each

of the three spa tial axes , and a very large range of time scales as well.

Thus an astronomical number of degrees of freedom is required just to specif y

the state of the flow field at a given instant of time. An even more prodigous

number is required to trace out the evolution of the field over time. More-

over, such a detailed solution , even it it were possible, would provide far,

far more data than is needed or usable; assuming a steady mean flow , what Is

really required is merely the statistically average properties of the solution

at each point in the field .

10
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Inasmuch as it is impossible to obtain the detailed so lution in or der to

average it , an alternative is to average the basic equations themselves, and

to attempt to solve these. However , because of the nature of the nonhinearl—

ties in the present system of equations, the process of averaging always

introduces additional unknowns so that we inevitably end up with more unknowns

than equations . This is the well known closure problem of turbulence theory.

Consequently , in order to define a determinate solution there is an unavoidable

necessity to introduce some auxiliary postulates which cannot be shown to

follow f rom the original governing equations themselves. The adequacy of any

such auxiliary postulates can then be demonstrated onl y pa r t i a l ly and in-

directly by comparison of theory with experiment .

Let us now drop the above restiictlon to incompressible flow and revert

to the fully general case of flow which Is both compressible and turbulent.

It is still necessary to average the governing equations and this process

still gives rise to additional unknowns. If the mean flow be steady this

average , which is symbolized in the usual way by an overbar , may be thought o f

as a simple time average and this simple interpretation is adequate for the

present discussion. If the mean flow be unsteady, a mor e sophistica ted

ensemble average becomes necessary , but this further generalization need not -j
concern us here.

Let us now examine in more detail the nature of the additional unknowns

that arise from the averaging process. Consider f i r s t  the equation of

continuity . Here the density p is the i luid proper ty of p rimary sign i f i—

cance. To distinguish between average and fluctuating values, we utilize

the following notation.

Ii
I
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p — the average value of the density at a particular point

p’ — the instantaneous deviation of the density from its average value
at the point

p” — the instantaneous fluctuating value of the density at the point in
question

According to these definitions ~- 
-

p” — p + p ’ (4.1)

Using an overbar to denote a time or ensemble average as appropriate, we

may also write

( 4 . 2 )

and

~~
, — o  (4.3)

In the later detailed analysis it is natural and convenient to use cylin—

drical coordinates, but in the preliminary discussion of this section it is

actually simpler and clearer to employ cartesian axes and cartesian tensor

notation. Thus symbols x1 , x2 , x3 denote the axes and uj u~ , u~

denote the corresponding components of the velocity fluctua tion. We may also

denote these quantities simply as x
1 

and u~ where I — 1,2,3

Using the foregoing notation, we find that the continuity equations upon

being sui tably averaged , contains terms of the form u~p’ . This is the type

of additional unknown which results from the averaging process. This quantity

may be said to represent the net turbulent transport of fluid mass in the

direction of axis x~

It is customary to assume that such turbulent transport can be adequately

described by a relation of the form

— C (
~~—) (4.4)

p 
~

I — 1,2,3

12

______________________ J



where C is termed the turbulent transport coefficient. Notice that i isp

treated as a true scalar , that is , as a quantity whose magnitude is independent

of the orientation of axis x
1 

. On the other hand , the value of c~ may in

general vary from point to point in the flow.

However , it is known from experiment that for an axi—syumietric free jet,

all turbulent transport coefficients, like C~ in the present discussion , re-

main approxImately cons tan t over most of the flow field. Presumably this

simple assump tion app lies also to the confined je t , a t least as a first approxi-

mation. Experimental support for this assumption is given by Abramovich [1]

and Schlichtlng [21.

Similar consideration also apply in connection with the f i r s t  law of

thermodynamics. The significant fluid property in this case turns out to be

total energy per unit volume, denoted by symbol Q . This in turn involves

the mean kinetic energy of turbulence at the point in question , denoted by

symbol pE . The following definitions apply

1 ,, 
~,pE 

~ 
(p U

k
U
k 

— P uk
U
k) (4.5)

/ 2  2 2
iu  + u  + u

Q = p  e +~~~~ + E  (4.6)

where e denotes the ordinary static internal energy per unit mass. Notice

that the summation convention applies to the repeated index k in Eq. ( 4 .5 ) .

When the average d ener gy equation is examined , it is found to contain

turbulent transport terms of the form u~Q’ . Hence by analogy with Eq. (4.4)

we write

u~Q’ — C
Q 

(~~
-.) (4.7)

i 1,2,3,
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Proceeding next to the second law of thermodynamics, we define the entropy

p.r unit volume S in terms of the entropy per unit mass a as follows

S -p s  (4.8)

When the corresponding averaged equation is examined , it is found to con-

tain turbulent transport terms of the form u~~’ . We again express these in

the form

, , asu~~S — C ~~(~—-—) (4.9)

• 
I = 1,2,3,

It also simplifies matters to assume tha t at any given point in the field

— C~ (4.10)

This is plausible since all three of these coefficients reflect the same basic

physical process of turbulent mixing. Moreover, all three of the fluid proper-

ties p , Q and S which are transported by the turbulence are scalar

quantities, and all are expressed on a per unit volume basis.

On the other hand the process of averaging the momentum equations for

compressible turbulent flow gives rise to a set of momentum transport quantities

which In the present notation turn out to have the following formidable looking

algebraic structure, namely,

t ij — P ’u~u~ + 4 ~~
+ 

+4  

~ij

+ 
{_ 

u~ P ’u~ - u
j P

’u~ + 
~ 

t~~ P
1U~~ (4.11)

i, j  — 1,2,3,

14 
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In Eq. (4.11) symbol denotes the Kronecker delta which is defined as

f ollows

— + 1  if i — j
(4.12)

— o  if i # j

Also, the usual summation convention of tensor analysis applies to the

repeated index k in Eq. (4.11). For example

= + u~
2 

+ u
2 

(4.13)

Inspection of Eqs. (4.11) fur ther  reveals that all terms have the dimen—

sb us of stress. In fact the quantitIes defined by Eq. (4.11) are the

familiar Reynolds stresses. These are additional unknowns created by the

averaging process. They are seen to constitute a symmetrical and purely

deviatoric tensor of second order.

In order to effect closure of the overall system of equations, we must

postulate a suitable governing relation for these quantities, most conveniently

one which, like Eq. (4.4) , (4.7) or (4.9), relates the net turbulent transport

to appropriate local gradients of the mean flow field through one or more

suitable transport coefficients.

Notice that the last pair of brackets in Eq. (4.11) offers no difficulty

in this regard because the quantities under the overbars conform to the format

already established in Eq. (4.4). This is not true, however for the quantities

under the overbars within the first two pairs of brackets. The distinction is

that in the third pair of brackets we are dealing with the transport of a

scalar which is a vector , while in the first two pairs we a~e dealing with th .

transport of a vector which is a second order tensor.

- ~~ ~~~~~~
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The customary way of handling this complication is to postulate a relation

between the Reynolds stresses and the strain rates of the mean flow which is

analogous to the relation which is known to apply between the viscous stresses

and the strain rates . In the present application this analogy must be general-

ized slightly to allow for the peculiarities introduced by compressibility. This

can be done by casting the assumed relation into the following form

= C ’ (P U
j
) + (P u~)~ - 4 

~~~~~

+ C ” P
{[(r

t )+  ( .1)]..4o (
~)t

+ C  {[~ (~~~)+uj (
~

)] +i~Uk (~~k)~ 
(4.14 )

where c’ and C” are appropriate momentum transport coefficients and is

the scalar transport coefficient defined earlier in connection with Eq. (4.4).

Notice that of the three sets of terms on the right side of Eq. (4.14), the

second set is exactly of the same form as is known to apply to the viscous

stresses. However , the corresponding eddy viscosity, here denoted as c”p , is

many times greater than the ordinary molecular viscosity.

The f i r s t  set of terms on the right sid e of Eq. (4.14) is derived from the

second set merely by replacing each velocity component u~ by the corresponding

mass velocity component Pu1 
. The reason for this shift can be discerned by

studying the corresponding sets of terms in Eq. (4.11).

The use of three distinct transport coefficients in Eq. (4.14), namely,

C’ , C” and , is unduly elaborate. There are grounds for assuming that

e’ and C” can be treated as equal. Moreover, further information can be

16
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gained from the special case of Incompressible flow . In this event the fir st

two sets of terms on the right side ot Eq. (~ .l4) reduce to identical form and

the third set vanishes . This strongly suggests that ye may place

• t ” = -
~

- ( .4 .15 )

where t will now be termed the kinematic eddy viscosity.

The relation between the three coe f f i c i en t s  — — , all of w h i c hp Q S

pertain to the transport of a scalar property, and the momentum coetticient

which pertains to the transport of a vector property, cannot be predicted iron

the present theory. However , physical considerations and test data suggest

tha t , although both may vary from point to point , t heir ra t io may be t reated

as approximately constant.  Hence we he rea f t e r  wr i t e

~~~~~~~
L

Q
L

S
KL

wher e ~ is taken as constant over the flow tield. The constant ~ may be

recognized as the reciprocal of the turbulent Prandtl number .  Parameter  K

usually lies somewhere between l..~ and 2. We shall take K — 2 in initial

trial calculations.

We can now subs t i tu te  Eqs . (4.15) and (4.1t’~) into Eq. (4.l~), then expand

the la t te r and regroup terms . in t h i s  way we finally obtain the result

~~~ 

~
[(
~

)+(
~~ ~~~ij 

(
~

)

+ + K) ~ (~
) + U~ (

~
) - 

~~~ ~~~~~~~ 
(~~~~~k~~~J 

~ (~~~~. l7 )  
-

•

~~. j = 1,2.3
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Likewise Eqs. ( 4 . 4 ) ,  (4 .7)  and ( 4 . 9 )  can now be rewrit ten  in the

slightly simplif ied form

a — K C( ~~~—\ (4.18)i

u~S’ = — 
KC(~~_)

Eqs . (4.17) and (4.18) summarize in a unified manner the general format

adopted for the closure hypothesis. In general K is taken as an emp~Lrical

constant, while c may vary from point to point in the field.

This turbulence model is not complete until the relations are stipulated

which fix the actual distribution of c over the field. As a rule, C may

be regarded as some function of the turbulent kinetic energy E and of a

second turbulence parameter , usuaily some suitable characteristic length scale

A or rate of dissipation of turbulent energy D

We shall not consider these more involved aspects of the turbulence model

in this report for two reasons. Firstly, there are more fundamental and urgent

questions that have higher priority . Secondly , we have the good luck to be

dealing with  a case for which the simple assumption of a constant eddy viscosity

over the field appears to provide an adequate basis for the initial computational

trials. Support for this assumption may be found in the texts by Abramovich [1]

and by Schlicting [2].

It is perhaps worth pointing out that any and all turbulence closure models

are inherently inexact by their very nature . This is true of Eqs. (4.17) and

(4.18) as well. Nevertheless, if the distribution of C be specified with

18
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suff ic ient  care , an eddy viscosity model of the present type is capable of

representing a wide range of f lows with an overall accuracy suff ic ient  for most

engineering purposes . This general conclusion is supported by the experience

of a growing number of investigators over the past two decades. See, for

example, references [10] through [25], and Reynolds [43 , 44 ] .

5. Choice of Fundamental Variables

Some problems in fluid mechanics are formulated in terms of a velocity

potential ~ , others in terms of a stream function ~ , still others in terms

of the velocity components u and v and the pressure p and so on. What

is an appropriate choice of independent variables for the present problem?

Of course the use of the velocity potential 4 is restricted to irrota—

tional motions which rules out this particular method in the present case.

Inasmuch as the present problem is restricted to mean motions which are

axisymmetric , the use of a stream function i~ is a possibility . Of course,

cylindrical coordinates are appropriate here. This method has the advantage of

expressing the two non—zero components u and v of the mean velocity in

terms of the single variable ~ . It is also customary in this case to employ

the vorticity transport equation , rather than the two momentum transport

equations themselves, in order to eliminate the pressure p from the funda-

mental equations. These convenient features are of course somewhat counter-

balanced by certain corresponding disadvantages. One of these is the difficulty

of extracting accurate pressure distributions from the calculated stream

functions .

The possibility of analyzing the present problem in terms of a stream

function ~p was studied with some care, but was ultimately rejected. It was

found that while the steady flow equations could be formulated in these terms ,

19
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the problem of finding a relaxation procedure that would ensure proper con-

vergence of the resulting equations to a stable solution proved troublesome.

To get around this difficulty it was decided to reformulate the equations

in the form that applies when the mean motion is unsteady. In this case the

solution defined by the equations automatically approaches the proper steady

state as the calculation are allowed to advance in time. While thiC’conver—

gence is perhaps not as rapid as we should like, it does finally occur. More-

over, computational strategies can be devised to speed up the convergence rate

if necessary.

On the other hand, in relation to this flow field which Is now both com-

pressible and unsteady, the whole concept of defining the velocity components

u and v in terms of a stream function 4 breaks down. A stream function

simply cannot be defined for an unsteady compressible f low. Hence we have to

abandon the use of the stream function ip under these circumstances and work

directly in terms of the velocity components u and v as independen t variables.

Recall also that when the stream function ~ is employed, the vorticity

transport equation Is used to eiiminate pressure p from the analysis, and to

give a governing equation expressed primarily in terms of ij.’ . Naturally,

when ~ is dropped, this step becomes more or less pointless; it becomes

simpler to retain variable p explicitly in the analysis.

In most problems of supersonic flow , the fluid may be treated as inviscid

outside the boundary layer. Consequently, the flow is usually irrotational. and

the entropy uniform over the field. With such a restriction on entropy , the

single additional thermodynamic property p suff ices to fix the thermodynamic

properties of the fluid at every point in the field . Thus the fundamental

variables are u , v and p in this case.

20 
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The presence of strong turbulence changes these conditions. It introduces

a viscous—like action over the entire field and causes the entropy to vary

from point to point. Thus, p itself no longer suffices to fix the thermo-

dynamic state at an arbitrary pcint. Two independent thermod ynamic properties

are now needed . These could be p and s, p and T or any convenient pair.

It turns out in the presen t problem that pressure p and density p are the

most convenient ones to designate as the independent properties. Then tempera-

ture T and entropy s become corresponding dependent properties which can

be expressed in terms of p and p by means of the usual perfect gas rela-

tions. Of course, velocity components u and v must still be specified to

complete the definition of the conditions at a given field point.

The above considerations indicate that the four variables u , v , p and

p are both necessary and suff ic ient  to f ix  conditions at any point in the

field. Hence our mathematical model must provide the field equations and

boundary conditions needed to fix the distributions of these four fundamental

variables.

In this respect, what should be said about quantities like eddy viscosity

, mean turbulent energy E , and possibly other variables that characterize

the turbulence? For the purposes of the present analysis, these may all be

regarded as secondary variables . They are fixed by the details of the postu-

lated turbulence model whenever the distributions of the above four fundamental

variables are specified. Or to put the ma t ter more simply , it suffices in

the present context to treat r and E merely as known f unctions . This is

permissible even if we choose not to specify at this point the precise nature

of these functions.

In addition to the general approach outlined above, there are of course a

wide variey of alternative analytical methods described in the current l1tera~

ture. For example, see references [321 through [
~ 51 .
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6. The Paradox of Five Equations in Four Unknowns

The preceding discussion has disclosed tha t , assuming e and E to be

— known functions, our problem requires that we find the distribution over the

flow field of the four fundamental variable u , v , p and p • Then all

other secondary variables may be readily found from various auxil iary relations .

The fundamental physical laws that are at our disposal for the solution of

this problem are summarized below . Each law provides a corresponding scalar

equation.

1. Momentum equation, direction x

2. Mom entum equation , direction r

3. First law of thermodynamics

4. Law of conservation of mass

S. Second law of thermodynamics

The details of these equations are given elsewhere and need not concern us

here. It is pertinent to note, however, that the partial derivatives of highest

order which occur in these equations are the derivatives of second order of all

four independent variables. Using a subscript notation to indicate partial

differentiation and referring to axisynsuetric flow in cylindrical coordinates,

we may write these derivatives as u , u , u , v , v , v , p , p , pxx xr rr xx xr rr xx xr rr

p , p , p • Note that there are twelve of these second order derivatives
xx xt rr

in all. Viewed in these terms, the problem is seen to be an extraordinarily

complicated one.

The above discussion confronts us at once with a curious paradox.. It

would seem that we are required to solve five simultaneous second order partial

differential equations in four unknownst This certainly clashes with the

ordinary concept that  in order to ensure a determinate solution , the number of

22
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equations and the number of unknowns should be equal. The above system of

equations appears to be overdetermined and hence possibly inconsistent and

insoluble.

It would seem that in order to define a determinate solution, it is

necessary to drop one of the five governing equations. If so, which one

should it be? There appears to be no satisfactory answer to this question

because every one of the five makes a physical claim which cannot be denied.

Needless to say, this paradox created considerable consternation before

it was finally resolved. But resolved it was, and in an entirely rational way

as the reader will presently see. The nature of the resolution is in some

respects surprising and amounts to a new insight concerning the basic mathe-

mnatical character of compressible turbulent flow. At least the author knows

of no publication other than the present report in which these novel features

are disclosed and systematically explained.

In order to by—pass temporarily the paradox of five equations in four un-

knowns, it was decided to drop the second law of thermodynamics for the time

being and to proceed with the solution of the remaining four equations in

four unknowns. The hope was that at some point in the solution procedure an

opportunity might still arise to reintroduce the temporarily neglected fifth

equation and, in fact, this is how matters finally worked out.

The decision thus to by—pass initially the second law of thermodynamics

rather than one of the other five basic equations was to a certain extent

— arbitrary. It was based mainly on convenience. However , since the temporarily

discarded equation eventually reappears in the analysis, it becomes a matter

of relatively minor importance which one of the five Is treated in this way .
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7. Nonturbulent Compressible Flow s of Mixed Elliptical/Hyperbolic Type

In order to obtain a solution of our residual system of four basic equa-

tions in four unknowns, it is necessary to establish whether these equations

are of hyperbolic, elliptic or mixed type. This is not a question of mere

academic interest but an absolute necessity because the answer to this question

fixes just  how the boundary conditions must be posed in order to define a

determinate solution.

To help put this question into its proper perspective, it is useful first

to review the situation as it applies to the simpler problem of axisymmetric ,

nonturbulent compressible flow. It suffices here to consider irrotationai.

motion for which a velocity potential 4 exists. The governing equation may

now be represented in the following somewhat generalized , quasi—linear form

Aq + 2B4 + c~ — D (7.1)
xx xr rr

where coefficients A, B, C, P represent certain known functions of the

velocities components 
~~ 

and 
~r 

the exact nature of these functions will

be specified a l ittle later . They are also discussed by Shapiro [32].

Now consider the following auxiliary relations

d~ 4~ d x + c~ drx xx xr
(7.2)

d
~ 

- ‘t~xr dx + ‘
~rr 

dr

Let ds be a small displacement in the plane at angle A as shown. Thus

dx ds cosA
(7.3)

d~ 

cir dr ds sinA
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Now substituting Eqs. (7.3) into ( 7 . 2 ) ,  then div iding through by ds and

rearranging gives

— — q cosA + 4 sinA
\ds/ xs xx xr

- (7.4)

/chp \(—J — — q cosA + m~ sinA
\ds- / xr xr rr

Eqs. (7.1) and (7.4) may next be reassembled in matrix ~ormat as follows.

rcosA sinA ol xx xs

A 2B c 
~xr = 1) (7.5)

L o cosA sinA 
~rr

In general the above equations can be inverted , that is, solved for 
~

and 
~rr 

provided only that the determinant of  the array on the left is

nonvanishing . Since some of the elements of the array are functions of A

the determinant itself , let us denote it by symbol D(A) , may in general also

be a function of A . The question therefore arises whether there exist any

characteristic values of A for which the determinant vanishes.

To see what this question implies , assume for a moment tha t there does

exist a family of characteristic curves whose local direction at every point

as defined by angle A is such that D(A) — 0 everywhere. It turns out that

if we now try to determine the quantities 
~xx 

‘ ~xr ‘ 
~rr 

by attempting to

invert Eqs . (7.5) , and by evaluating the quantities 
~ 

and 
~rs 

along such

a characteristic line, the .~esulting “solutions” will simply assume the in—

determinate forms 0/0 . What this means is that even though the first

derivatives ip and 
~r 

are everywhere continuous , the second derivatives

Wxx ‘ ~ xr ‘ ~rr 
are in general indeterminate and may therefore be discontinuous
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along any such characteristic line. On the other hand if no characteristic

directions or lines exist , the quantities ~
p , , ‘P must remainxx xr rr

determinate and continuous everywhere and the whole qualitative character of

the solution is thereby radically changed.

Hence we ask whether there exist any real values of A Such tha t

cosA ninA 0

D(A) A 2B C

0 cosA sinA (7.6)

— A s i n2 X + 2B sinA c o s A — C c o s’ A 0

Dividing Eq. (7.6) through by cos2A and changing signs gives

A tan2 A — 2B tanA + C — 0 (7 .7 )

Next solving Eq. (7.7) by the quadratic formula, we obtain the key result

tanA - (7.8)

Eq. (7.8) reveals three possibilities:

1) At any point in the field for which B2 > AC , there exist two real

values of angle A for which P — 0 . The equation is said to be

hyperbolic at such a point.

2) At any point in the field for which B
2 AC , there exists one real

value of angle A for which D — 0 . The equation is said to be

patabolic at such a point.

3) At any point for which B
2 

< AC , there exist no real values of

angle A for which D — 0 . The equa t ion is said to be elliptical

at such a point .
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If the equation be hyperbolic over certain regions of the flow field and

elliptical over other regions, it is said to be of mixed type. In such cases

there will exist some boundary line which separates the hyperbolic and ellipti-

cal regions. For points which lie on this boundary, the equation will be

parabolic.

One of the basic difficulties of solving equations of mixed type is that

the boundary conditions of the problem must be specified differently around

the elliptic and hyperbolic regions. Also, over the elliptic region, the

basic equation may be formulated in terms of ordinary finite differences where-

as over the hyperbolic region it must be formulated in terms of the method of

charac teristics. Worse still, the location of the boundary between the two

regions is itself initially unknown. For these reasons problems of mixed type

often prove to be hopelessly intractable. Nevertheless some problems of mixed

type can still be solved. For example , see Jameson [483 .

Further physical insight can be gained by studying the specific nature of

the coefficients A , B , C , D for  the present problem . Let symbol c

denote the local velocity of sound at. an arbitrary point and let symbol N

denote the corresponding local Mach numb er . Also let

‘PxMx c

‘p

~
1r (7 .9)

— H + M 2

By a minor modification of the analysis of Shapiro [32], it can be shown

that for our present problem
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A — l — M 2
x

B - - M Mx r

2 (7.10)
C = 1 — M r

D
~~~ _ ’ Pr /r

Upon substituting Eqs. (7.10) into (7.8) and simplifying, we obtain

tank — 
x r —  

(7.11)
(l_M

x
2 )

This now reveals clearly that the basic equation is hyperbolic over regions

where the flow is locally supersonic, and elliptical over regions where the

flow is locally subsonic. This is a well known result.

It is also well known that if the basic equation be of second order and

everywhere elliptic, that is, if the flow field be everywhere subsonic, the

boundary conditions which are both necessary and sufficient to define 4’

uniquely over a given region may be summarized as follows. Let C denote an

-~arbitrary closed contour which encloses the region of interest. Let n be an

outward unit vector normal to contour C at a general point. Then to fix

the distribution of 4’ uniquely over the region of interest, it is necessary

to specify at every point of contour C the value of either one of two

quantities. The first is simply the value of 4’ itself. The second is the

normal derivative of 4’ , that is, the quantity

~~~•V 4’ = 
* 

4’n 
(7.12)

Under certain special conditions the function 4’ can be multi—valued in

the region of interest.  Under these circumstances it becomes necessary to

specif y also the value of the circulation integral around contour C .
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If the function 4’ is single valued , however , the circulation integral equals

zero. Fortunately , the multi—valued solution is of little interest in the

present discussion so that it is not necessary to elaborate on the details of

this case.

We shall not at temp t to summarize the corresponding rules for the boundary

conditions if the basic equation be hyperbolic , that is, if the flow field be

everywhere supersonic , because it is not possible to do so concisely and

because these details are not really needed here. It should be pointed out ,

however, that the boundary conditions in this case cannot in general be

arbitrarily specified completely around a closed contour. Conditions over

certain portions of the contour must now be left free to be established by the

details of the solution itself.

These various mathematical conclusions all have a straightforward physi-

cal interpretation which stems from the simple fact that any small disturbance

in the flow field is propagated in all direct ions at sonic velocity with

respect to the fluid itself. In subsonic flow such signals therefore propa-

gate throughout the entire flow field so that conditions at every point are —

influenced by conditions at every other point . In supersonic flow, on the

other hand , signals cannot propagate upstream and certain regions of the flow

field are totally unaffected  by wha t happens over certain other reg ions.

The question that now arises is this: To what extent , if any, do the

foregoing conditions , which are know to appl y when the flow is treated as

compressible but nonturbulent , continue to apply when the flow is treated as

both compressible and turbulent?

Presumably the introduction of turbulence e f f e c t s  should not greatly in-

fluence the rate of propagation of physical signals as outlined above. From

this consideration one might suppose — at least this author did — that the
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above picture of the mixed elliptical/hyperbolic character of the solution

would for the most part continue to prevail also for the turbulent case. In

fact  this op inion was in itself a rather discouraging element in the situation

as it tended to dampen hopes for developing a tractable solution.

On the other hand a mere opinion of this kind does not in itself provide

an adequate basis for actually specifying the necessary and sufficient boundary

conditions which are required for our more generalized equations. Note that

the foregoing picture is drawn from the classical analysis of a situation

which is governed by a single second order equation in the single unknown 4’

Recall, however, that our more generalized problem as developed to this point

in the argument, involves the solution of four simultaneous second order

equations in the four unknowns u , v p and p . Also recall that we have

an as yet unused f i f t h  equation still lurking in the background. The elliptic!

parabolic/hyperbolic characteristics of our solution must now be deduced

rigorously from the four equations actually employed; these features cannot be

adequately inferred by mere analogy with the simpler classical case discussed

at length in this section.

Such a rigorous and independent analysis was indeed carried out. It proved

to be a lengthy and arduous task. The high points of this analysis are

summarized in the next section. Let it suffice here to say that the results

proved to be a stunning surprisel The classical picture of a problem of mixed

elliptic/hyperbolic type as outlined in this section was found to undergo a

radical transformation. At f i r s t  this result was very puzzling . In due

course , however , it was found to prov ide just the conditions needed to make

our hitherto unutilized fifth equation again relevant and necessary to the

solution. Thus the story has a happy ending.
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Further discussion of equat ions  of elliptical , parabolic , hyperbolic and

mixed type may be found in reterences j
~~

j through [5~ ).

8. Classification of Basic Equations for Turbulent Compressible Flow

In the previous section we considered the non—turbulent case in which the

f low is governed by a single equation of second order in the three second order

de r ivatives 4’ , 4’ and 4’ . The classif ication of this  equation asxx xr rr

being of elliptic , par abolic or hyperbolic type at an a rb i t r a ry  point was seen

to hinge on the possible vanishing of a certain three by three characteristic

determinant. This determinant arises from the fact that the governing equation

is augmented by two auxiliary relations.

In this section we wish to consider broadly the generalization of the

above analysis to the turbulent case in which the f low is governed by fou r

simultaneous second order equations in the twelve second order derivatives

u , u , u , v , v , v , p  , p  , p  , p  , p  , p  . Oncexx xr rr xx xr rr xx xr rr xx xr rr

again , each of the four  basic equations is augmented by two auxil iary relations .

Hence we must now deal with  twelv e s imultaneous equations in twelve unknowns.

Classification of the basic equations as being of elliptic , parabolic ~~

hyperbolic type at an arbi t rary point  again hinges on the possible vanishing

of a certain characterist ic determinant , this t ime of dimension twelve by

twelve .

The details of this determinant are fully explained in a later section of

this report and need not concern us here. However , the implications of dealing

with a determinant of this size are startling and amusing and worth pointing

out for  these reasons . The general result obta ined , and the conclusions that

follow from th i s  result  are also qu i t e  radical and require appropriate inter-

pretation . These are the general aspects which are discussed in this  section.
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It can be shown that the full expansion of an n ay n determinant,

none of whose individual elements is zero , amounts to n! terms in all, each

term of which is the product of n factors. The extraordinary implicatIons

of this rule are seldom appreciated . They can best be illustrated by the

following two examples. The full expansion of a 3 by 3 determinant amounts to

— 6 terms in all, each of which is the product of 3 factors . On the other

hand the full expansion of a 12 by 12 determinant amounts to the staggering

total of l2~ 479 ,001,600 terms itt all , each of which is the product of 12

factors !

Fortunately, the actual 12 by 12 determinant of interest in the present

case is rather sparse. Only 36 of its 144 elements are non—zero . Consequently ,

its evaluation is not nearly as hopeless a task as the above figures might

suggest. Nevertheless , it is still a formidable undertaking which runs to

about two dozen pages of algebra . Note too that the expansion required is

algebraic, not merely numerical. This greatly increases the labor involved.

The final result obtained from all of this strenuous effort turns out to

amazingly simple. The characteristic determinant is found to be

D — 

~ (y—l) 
(8.1)

where y represents the ratio of specific heats .

A very surprising feature of the above determinant is that it turns out

to be independent of angle A . This is unexpected because many of the m di—

vidual. elements of the original 12 by 12 array are themselves functions of A

In the process of expanding the determinant, various complicated intermediate

functions of A are formed. In the final expansion, however, all of these

complex intermediate functions cancel out of the result. It is quite

remarkable .
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Another surprising fea ture  of the  character is t ic  determinant  is tha t it

is entirely independent of the local Mach number . In this respect the present

result for turbulent compressible flow is wholly unl ike the classical resul t

for nonturbulent compressible flow as analyzed in the previous section.

The most important conclusion that  fol lows f rom Eq. (8.1) is tha t the four

gove rning equations for this case are always o~ elliptical  type !  Notice t hat

this conclus ion holds regardless whether  the f low is locally subsonic or

supe rsonic .

In a way this result which was ini t ial ly such a surpr ise  also turned out

to be a vast relief . The reason is that  it was the f i r s t  solid indication

that the present problem might be solved in a manner tha t avo ids the extreme

di f f icu l t ies  tha t  plague problems of the mixed ellip t i c/h yperbolic type.

It is now an apparen tly simple matter to formula te the na ture of the

bo undary conditions which must be specified and which are both necessary and

suf f ic ien t  to f i x  the detailed distributions of the four variables u , v , p

p over some a rb i t ra ry  region of in teres t .  Let C deno te some arb itrary

closed contour which enclosed the reg ion. It is now necessary to specif y at

every point of contour C the values of four  quant i t ies . These are the

quantities u or , v or (~~~~~~
) , p or (

~~~~~ ) 
and ~ or (~ E.)

At f i rst  glance this seems s imple enough. Unfor tunately ,  it is al l too

simple for  it turns out on more detailed examina t ion that  we do not seem to

have suff icient  information to f i x  the above four  boundary conditions all the

way aroun d contour C! The nature of these further difficulties, and the

method that was finally developed for overcoming them, is the subject of the

next section.
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9. Boundary Conditions for the Ellip~ic and for the Piecewise Parabolic Cases

In this section we analyze the problem of defining adequate boundary con-

ditions for our problem of a ducted jet. For definiteness, we consider the

slightly simplified configuration indicated schematically in Fig. 9.1. Once

the basic principles are clearly established , however, the extension to more

complex geometries should offer no fundamental difficulties.

We wish to calculate flow conditions over a reg ion such as that bounded

by the closed contour AA ’D ’DA . Because of symmetry there is no need to con-

sider the region below the x axis in the figure . The diagram depicts a

supersonic jet entering across portion AlL” of the boundary . By a minor

cLnge we could make the jet at AA” sonic if desired. After expanding,

the jet discharges across exit station DD’

Since the final calculations are done by finite differences, it is expedient

to define the boundary conditions in corresponding terms . A square computational

grid of mesh size a is used. The position of a particular point in this grid

is indicated by the indices m and k as shown.

For reasons which will soon appear , it is advantageous to divide the domain

of analysis into sub—regions or cells of axial length 5a as shown. The first

such cell is bounded by contour AA ’B’BA , the next by contour BB ’C’CB , and

so on.

Consider the first cell AA ’B’BA . According to the analysis of the pre—

vious section, the four basic equations permit us to solve for the values of

the four variables u , v , p and p at all interior points of this cell once

conditions are properly specified for the points which lie along the boundary .

Four boundary conditions must be specified for each boundary point. The simplest

situation is one in which the actual numerical values of u , v , p and p
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are stipulated at the point. The boundary conditions need not necessarily be

restricted in so severe a manner, however. It suffices merely to have four

applicable finite difference equations for each boundary point .. These may be

expressed in terms of the four initially unknown values of u , v , p and p

at that point and usually of the unknown values of u v , p and p at nearby

points as well . Under these circumstances it might not be possible to establish

all unknowns along the boundary before proceeding with the solution for the

interior points. In that case the boundary unknowns and the corresponding

boundary equations must be incorporated into the overall solution matrix . As

long as this overal problem incorporates as many independent equations as there

are unknowns , a complete solution fom all unknowns can still be found.

Let us now examine the various portions of the cell boundary to ascertain

in more detail the nature of the boundary conditions that apply to each.

The simplest situation occurs at points that lie on segment AA” of the

boundary , that is, along the cross—section of the entering jet. We are at

liberty to specify the actual numerical values of all four variables u , v

p , p at each of these points. If the jet is parallel we must set v 0

An anomaly may arise at the edge of the jet, point A” , if the velocity

is treated as discontinuous at this location. Thus, just above point A”

u is zero, while just below it equals the full jet velocity. No finite

difference scheme can accommodate a double valued function of this kind. Per—

haps the simplest remedy is to take the effective value of u at this point

as equal to the arithm etic mean of the two limiting values mentioned above.

Another possibility is to position the edge of the jet so that it falls midway

between two successive grid points.

36



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- - - -  

-~~~ N-~~~~~~ - _

It can be shown that the following four boundary conditions apply at each

point along the solid boundary A ’A ’ , namely,

u 0

(-
~
.
~
) — 0 (9.1)

jfl
~ f (The algebraic sign of

v a 
± 
11.0 ~v muat agree with

(that of Txr

The first two of Eqs. (9.1) clearly express the condition of no flow through

the wall . The third expression is the consequence of imposing zero heat transfer

normal to the wall.

The fourth of Eqs. (.1) requires more extended comment. It is well known

that at any fixed boundary in turbulent flow there exists a very thin viscous

aublayer . The tangential velocity component changes very rapidly from zero at

the wall, itself to some finite value at the edge of the sublayer where the

latter meets the main turbulent flow. The tangential velocity at this location

is only moderately smaller than that in the main turbulent region itself. It

is possible to approximate the tangential velocity at the edge of the viscous

aublayer analytically by means of a so—called wall function and that is what

we have done above. This procedure avoids the difficulty of trying to resolve

the extremely rapid changes through the viscous sublayer by f ini te  differences ;

the regular computational grid is far too coarse for this purpose. The quantity

t xr in the fourth of Eqs. (9.1) represents the shear stress at the wall. The

derivation of this approximate expression is given in section 1? of this report

and is not repeated here.
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Eqs. (9.1) can be readily rewritten in terms of the primary variables u

v , p , p and th~~ further simplified on the basis of plausible physical

arguments. This too is explained in section 17 and is not repeated here. The

significant point to be made here is simply that we have identified the four

basic physical constraints that fix the four boundary equations which apply at

each point along a stationary wall.

Of course analogous conditions apply along the outer wall segment A’B’

Thus

v 0

:- (j~’) — O

( 9 .2)

(11:) . 03r

[ —
~ 

(The algebraic sign of
u a ± 11.0 \~~ 

xr 
cu must be opposite to

V ~ ~that of ‘t

Next consider conditions along segment AB of the x axis . Ac tually the

points that lie along this line may be treated much like those in the interior

region . That is to say the four basic equations may be applied at these points .

The only difference is that these equations will reduce somewhat because of the

symmetry conditions that prevail along the axis. The conditions are simply that

v 0
(9.3)

and

Examination of the four basic equations for this case reveals that the

momentum equation in direction r is now satisfied identically . The other

three ba8ic equations then provide the conditions necessary to fix the values

of u , p and p for points on the axis.
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Finally we consider the exit cross—section of the cell, boundary segment

E’B . Boundary conditions for the portion BAA ’B’ of the enclosing contour

have been established in the foregoing discussion. However, the solution for

the values of u , v , p , p at the interior points cannot be completed until

the values of u , v , p , p are specified also for the points along the

final segment B’B of the cell contour. How shall these initially unknown

parameters be prescribed?

Notice that since the four basic equations comprise an elliptical system,

a solution which rigorously satisfies all four of these equations at all in-

terior points can always be found irrespective of how the above unknown para-

meters along the exit station B’B happen to be assigned. Thus our analysis

leaves us at this point not with a unique solution but rather with a large

family of theoretically possible solutions. The essential differences between

individual solutions of this family lie in how the boundary conditions happen

to be assigned across station B’B for each case. However, if the final

solution of the problem is unique, there must exist some rational basis for

prescribing these as yet undetermined boundary conditions across B’B in a

corresponding unique fashion.

In dealing with segments BA , AA” , and A ’B’ of the boundary, it was

possible in every case to base the respective boundary conditions on physical

considerations of a very obvious and straightforward kind . No corresponding

elementary considerations seem to apply to portion B’B of the enclosing

boundary.

The question arises whether the above apparent indeterminacy in the boundary

conditions might be resolved by enlarging the domain of analysis to include the

entire region inside contour AA ’D’DA . The idea here is that conditions far

downstream across section D’D should be far simpler to prescribe correctly

than those across any interior section such as B ’B . Proceeding on this bas is
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we may pos tulate, for example, that v — 0 along D ’D , at least to a close

approximation. This seems quite plausible . On the other hand all efforts to

find equally plausible and satisfactory assumptions for the other three condi—

tions along D’D , as required to define a unique solution, have proved

unsuccessful.

Unf or tunately the flow f ield far downstream, instead of converging

asymptotically to some limit characterized by negligible rates of change of

key parameters , eventually approaches a choking condition characterized by

extremely large rates of change. The melancholy conclusion must be drawn that

it is not possible to stipulate conditions far downstream in advance. Pre—

sumably these conditions, instead of fixing the solution, are themselves some-

how fixed by the solution .

It was eventually realized that the resolution of the above seeming impasse

can only be accomplished by utilizing the mathematical resource which we were

previously compelled to lay aside temporar ily. This is the fifth of the five

basic equations, namely, the second law of thermodynamics . Of the great multi-

plicity of theoretical solutions , all of which satisfy the firs t fo ur basic

equa tions equally well, not all are of equal merit with respect to the second

law. In fact we may use the second law as a kind of mathematical filter to

cull out all but one of these many solutions, retaining only that one solution

which satisfies not only the four basic equations but also the second law. In

that way we finally obtain a unique solution which does in fact satisfy f ive

basic equations in four unknowns !

To see more clearly how this can be done, consider again the cell domain

enclosed within contour BAA ’B’B . In particular , consider the row of poin ts

at the fixed radial station denoted by index m . The last point in this row

40
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is at axial station k — 6 . There are four initially unknown boundary condi-

tions that must be stipulated at this point, namely, U
6 

Vm6 ‘ ~m6 ‘ ~m6
The second law requires that a certain set of terms must sum to zero at

each interior point in the region. If the second law is not properly satis—

fied at a particular point (m, k) , these terms will sum not to zero but to

some finite magnitude, call it z~~ . Thus we now require that parameters

Ur n 6  V
6 ‘ ~m6 ‘ ~m6 be so chosen as to give

Zmk — 0

k a 2 ,3,4 ,5 (9.4)

m — 1,2,3 (n—l)

Notice that Eqs . (9.4) provide four equations in four unknowns for each

station m . Of course these equations must be satisfied for all (n—l)

interior stations m as indicated. Thus Eqs . (9.4) compress 4(n—l) equa-

tions in 4(n—l) unknowns.

In principle Eqs. (9.4) ,  when comb ined with the four original basic

equations at each interior point and with the four boundary conditions at each

point along the open contour BAA ’B ’ , jus t suffice co f ix the complete solution

on and within the closed contour BAA’B’B , Moreover , this solution is now

unique; there are no further undetermined parame ters .

It should now be clear why each cell was specified to be of axial length —

5a. If it were any longer , there would not be a sufficient number of free

parameters available at the exit station to satisfy the second law at all

interior points. If it were any shorter , there would not be a sufficient nun—

her of interior points to utilize all of the degrees of freedom available

across the exit station.
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It is evident that essentially the same solution may then be applied to

the next cell, that is, to the region enclosed within contour CBB’C’C . If

- - anything , this second cell should be slightly simpler to calculate than the

f i rs t  because the conditions across section B’B are known in a simpler form

than those which prevail across section A ’A . All succeeding cells will also

be simpler in the same sense.

We see that the solution can be marched downstream, cell by cell, as far

as desired. Such a unidirectional progression is characteristic of equations

which are everywhere parabolic. The present solution proceeds downstream in

finite increments of length 5a. Hence it may be characterized as being

“piecewise parabolic”. The successive cross—sections A ’A , B’B , C’C , and

80 on play the role of characteristics.

It is a quite extraordinary fact that we have now demonstrated, namely,

that the basic equations of turbulent compressible flow are in the final analy-

sis neither elliptical, hyperbolic, nor mixed, but are rather piecewise para—

bolic. It is remarkable too that this conclusion applies whether the flow

happens to be subsonic, supersonic or both. This implies also that a method

of solution exists which, while quite complex, is nevertheless substantially

simpler than that which characterizes equations of mixed elliptic/hyperbolic

type.

In this one respect the introduction of turbulence effects into the

mathematical model actually simplifies the analysis.

10. Solution for Cell Exit Conditions by Relaxation

In later sections of this repor t, a set of four bas ic equations is derived

which suffice to fix the four independent variables u , v , p , p at each of

the interior points of a cell. Let the number of rad ial stations starting at
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the axis, r — 0 , and ending at the outer wall, r — R , be denoted by index

m — 1,2,3, .... n • For the first cell of axial length 5a, let the axial

stations be denoted by index k 1,2,3,4,5,6 • If we include the points along

the axis among the interior points, the total number of interior points is

N — 4 (n — 1) (10.1)

It is useful to denote these interior points by index i , so that

i — 1,2,3, •. .  N (10.2)

The theory also develops a fifth equation which expresses the amount z~

by which the second law is not satisfied at the ith interior point.

We seek a solution such that

z
i
= O

i = 1,2,3 •... N (10.3)

It proves advantageous, however, to satisfy Eqs. (10.3) indirectly by

imposing the alternative but equivalent restriction that

I — r~ z~
2 

= A Minimum (10.4)

The following notation will also prove convenient at this stage. Let the

various variables u , v , p , p at points along the exit station k = 6 be

denoted by the generalized symbol , where j — 1,2,3 .... N , according

to the following scheme.

LI], ,6 
— a1 

- U
2 ,6 

a — — — U
(~~~1) 6  a(N 3)

V1 6  — a
2 V

2 ,6 
- a6 — — — v

(~_1),6 a(N 2)
(10.5)

~1~6 : :~ ~
2~6 : 

~ 
III ~(n—l),6 : ~~~~~‘~~—‘-

p
1,6 4 p2,6 8 P(~_1),6 ~~
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Now consider the small change

6z
1 ~ (-5~~~~~

) 

óa~ (10.6)

that occurs in the solution for z at the ith interior point as a result of

an arbitrary small change in the single arbitrary boundary parameter

The error term I is therefore changed accordingly. The resulting new value,

call it I’ , is now given by the approximate expression

I ’ &~~~~~ r i [zi + ~~~~

a r~ Izj
2 + 2z i (

~
) ~~ + 

~~~~
)2 (~a )

i—I.

+ óa~ 2~~~~ r
i
z
i 

+ (~5cz~ ) 2 
~~~~

r
i (!

~~)2

~ A Minimum (10.7)

Let us now choose the as yet undetermined parameter in such a way as

to minimize the above function. The minimum occurs when the corresponding

derivative vanishes, that is, when

_____  — 0 + 2E rizi (5_i

) 

+ 2(~Sct~ )~~~~~~r1 (si) — 0 (10.8)

The solution of this equation now gives the required change in the form
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i i~~acx .j
i_i. “ ~‘(&x4) — — 

N - (10.9)

I ~~~iE
/az ’~~~ /

i—l

Successive applications of Eqs. (10.9) for j — 1,2 ,3 . N , and

repetition of this cycle of calculations as many times as necessary, will

ultimately reduce the error term I below any preassigned bound and thus pro—

vide a solution of any desired accuracy .

While the above solution necessarily converges, the calculations are in-

herently very lengthy. This follows from the fact that for each small change

óct4 in an arbitrary one of the N parameters, a complete solution for the
J az

iresultant changes (~—) must be worked out over the entire field,
j

i — 1,2,3 N . It seems possible that such changes might prove to be

local in character, so that effects some distance away from the boundary point

in ques tion can be neglected. If so, this fact should permit the calculations

to be very substantially shortened. The details cannot be settled here but

must be worked out in connection with the development of the actual computer

code.

j j~~ Basis for the Further Analysis

In the present context, cylindrical coordinates x , r , 0 represent the

natural choice. All subsequent relations are expressed either in this specific

coordinate system or else in generalized vector notation which applies in any

coordinate system.

All mean flow quantities are taken as axi—symmetric and the peripheral

component of the mean velocity is taken as zero everywhere.
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While the ultimate solution that is sought is for the case of steady mean

flow, the basic equa t ions are initially developed for the more general case of

unsteady mean flow. By holding the pertinent boundary conditions constant , we

can follow the unsteady motion through time numerically until the required

steady state finally develops. This technique is in some respects simpler than

attempting to find the final steady state directly from the steady state equa-

tions themselves.

The fluid is treated as a perfect gas with constant specific heats.

Adiabatic conditions are assumed at all solid boundaries.

The net turbulent transport of momentum is assumed to be expressible in

terms of an appropriate eddy viscosity ~ , and the net turbulent transport of

mass, energy or entropy is assumed to be expressible in terms of a related

transport coefficient icc as explained earlier.

The three velocity components and the various scalar properties of the

fluid such as its density, pressure, temperature and so on are expressed

according to the following format.

u” (x,r,e,t)  — u (x ,r , t) ÷ u’ (x,r,O,t)

v” (x,r,9,t) — v (x,r,t) + V t (x ,r,O,t)

w” (x,r,O,t) — 0 + w ’ (x ,r ,O , t)-
(11,1)

p” (x ,r,e,t) — p (x,r,t) + p’ (x,r,6,t)

p” (x,r,e,t) — p (x ,r , t ) + p ’ (x ,r ,O ,t)

T” (x,r,O,t) — T (x ,r , t) + T ’ (x ,r ,6 ,t)
etc.

In these expressions the unprimed quantities represent the mean flow

effects whose distributions it is required to calculate. The single primed

quantities represent the corresponding turbulent fluctuations. The double
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primed quantities represent the corresponding instantaneous resultant variables.

It is necessary to simplify the various basic equations by a suitable

process of averaging. In the present case all mean flow quantities are unsteady

and the appropriate average is the ensemble average. We denote the ensemble

average of any fluctuating quantity in the usual way by means of an overbar.

Upon averaging Eqs. (11.1) in this way we obtain the following relations.

— u (x ,r , t) = 0

— v (x ,r t )  = 0

Tr o (11.2)

— p (x ,r,t) = 0

— p (x ,r ,t) 
.

~~
- ‘. 

= 0

= T (x ,r , t) = 0
etc.

Eqs. (11.2) show that the ensemble average of any single primed quantity

is zero by definition. On the other hand the average value of the product of

two or more singly primed quantities is not in general zero. Thus quantities

like u’v’ , p ’U ’ , p tu t.~j’ etc. do not vanish from the basic equations and

must therefore be adequately accounted for in the final mathematical model.

A number of other mean and fluctuating quantities relating to the turbulent

energy and to the turbulent transport of mass, energy and entropy are also in-

volved in the development. These quantities are introduced and defined as the

need for them arises in the subsequent analysis.

When dealing with the equations on a vectorial basis, one quantity that

frequently arises is the instantaneous velocity vector V” , namely, :1

~~~

‘ — V + V ’ — e u  + e V ” + 0w” 
a 

~ 
(u+u ’) + 

~r ~~~~~~~~~~~ + ~e ~~~~~ (11.3)
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12. Continuity Equation

The law of the conservation of matter, upon being ensemble averaged , re-

quires that at every point in the flow field

( )  — (.
~

-
~

-) — — V~ (p ”~”) (12.1)

Consider the quantity

— (p + p’)(~ + ~‘) — p
~ 
+ p 1!7~ (12.2)

The last term in Eq. (12.2) may be expressed in terms of a transport

coefficient as follows

— 

~~ 
p ’u ’ + er p ’v ’ + p’w’

- - ~~ + e (~~~~~~) 
+ O

~ 
(12.3)

— — KCV p

Combining the foregoing relations and simplifying gives finally

(.
~~) —  — V~ [p

~ 
— iccVp] (12.4)

When expressed in cylindrical coordinates this becomes

(~~~~~ ) 
— — f ~

pu — icc — ~~~~~~~~~~ tr (pu — icc (12.5)

Eq. (12.5) represents one of the fundamental equations of the final

mathematical model.
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13. Momentum Equations

In vector notation the equation of motion, including effects of turbulent

fluctuations, may be written

(a”) + ~“•vv” — — (13.1)

This relation ignores gravity forces which are not significant in the pre-

sent context , and viscous forces which are negligib le everywhere except in the

viscous sub—layer along a fixed boundary. Such wall regions will be considered

separately later.

The left side of Eq. (13.1) represents the acceleration of a fluid particle.

The right side represents the net force per unit mass acting on the particle.

The flow field also satisf ies the continuity equation, namely,

~~~~~~~~~~ 

+ — 0 (13.2)

Multiplying Eq. (13.1) by p” , Eq. (13.2) by , then adding and re-

grouping terms gives

[n
” -(n-) + (-i—) V.’] +~ pV”.VV ” + V . (p ”

~~”) 
~~~~

‘] 
- - Vp ” (13.3)

This may be condensed to the form

f. (pII It) + V• (p
~~

” u”) — — Vp” (13.4)

Upon ensemble averaging this equation we obtain the important result

-
~t 

(p ”~ ”) + V• (p ”~ ” f”) — — Vp (13.5)

By recalling Eq. (12.2) we note tha t the first term in Eq. (13.5) can be

reduced to the form
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(P” ~“) ~~ (p~ + p ’~~~~’] (13.6)

The components of this expression in cylindrical coordinates are

(p”u”) — [Pu + ~‘iiT]
(13.7)

~~~~~ 
(p”v”) — [pv + p’

~~~
]

The next step is to expand the second term of Eq. (13.5) in cylindrical

coordinates. Thus

V• (p ”~ ”~ ”)

— {}— [ p ”u” ( u” + 
~r 

v” + e0 w”)]

1 3  -‘ -
~+ ~~ [r p”v” (e u” + e v” + e9 w”)]

+ ~ 
.
~~~~~

- [p”v” 
~~~ 

u” + 
~ 

v” + 
~~ 

w”)]} (13.8)

-p 4, -+
Notice that although e is constant, unit vectors e and e arex r 8

functions of 0 such that

~~~~~ (~~~)~~~~~~r 
(13.9)

Upon expanding Eq. (13.8), making use of Eq. (13.9), and noting that of

the eleven resulting terms, six vanish by reason of symmetry , we obtain

V .

— I_. [p”u”2] + [r

______ 
2 

(13.10)

+ {f [p%”v”] + f. [r p”v”
2
] — [Pr

I P,’ j }
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By making use of Eqs. (13.7) and (l3.lQ) , we can now reduce Eq. (13.5) to

the following pair of momentum transport equations in cylindrical coordinates,

naasly, - 

-

~~ [~
u + p ’u

1] 
— — (

~~~~~
) — ~~~~~~ [p~u

’]
~~~ 

— 
~~ [r p”v”u”]

(13.11)

~~ [~
v + ~‘v’] — — (.

~
) — 

~~~~~ 
[ p

U~~~II.~
jflj_ 

A 
~~ ~r ~~~~~~ + frm

I ’
2J

It is advantageous to express the momentum transport quantities which

appear on the right side of this equation in terms of the so—called Reynolds

stresses which are here defined as follows.

2 ,~~,,2 2
t — ~~~pE —(p u  — p u )

trr — ~~
- pE — (p ”v”2 

— pv2)

TOO — pE — (pw”2 — 0)

(13.12)

— Trx — 0 — (p”u”v” — puv)

I
r — - t  — 0Ox xO

Notice that two of the six possible Reynolds stresses vanish in this case

by reason of symmetry .

We also impose the restriction that the Reynolds stresses, as here def ined,

shall be purely deviatoric in character so that

t + 1  + t  — O  (13.13)xx rr 00
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Upon adding the first three of Eqs. (13.12), then imposing the restriction

expressed by Eq. (13.13) and rearranging the result slightly, we obtain

pE — 4 1 (pII ;j 112 
— pu2) + (p”v”2 — pv2) + (p”w”2 - 0) j (13.14)

This shows clearly that pE represents the mean turbulent energy per unit

volume at any given space— time point. Also the quantity PE represents a

pressure—like or isotropic term in Eqs. (13.12)

Upon eliminating the quantities having overbars between Eqs. (13.11) and

(13.12) and regrouping terms, we obtain

[Pu + p’u’]

3 2 3 2 13— — 
j— [p + pE] — 

~~~~— [pu — — ~~~~~~~~~~~ (r (puv — t~~~ )) 
(13.15)

[pv- + p~’~i’]

— — 
[p + ~~~

. pE] — [puv — t~~~ ] — 1f- [r (pv2 — t ) ]  —
It is now possible to identify certain terms on the right side of Eqs.

(13.15) as representing the components of the net resultant force per unit

volume exerted upon the fluid element by the pressure and by the various

Reynolds stresses. In this connection it is convenient to def ine an effec tive

pressure term of the form

P — (p + pE) (13.16)
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The resultant force components per unit volume produced by the purely

deviatoric Reynolds stresses are now seen to be

/3T \i xxi 1 3
- (r t )

, ~ (13.17)
/3t \

p1 — ( 
Xr )+ IL (r I ) 

-r \ 3x 1 r 3r rr r

It is also convenient at this point to express the turbulent mass transport

effects in terms of a transport coefficient, that is ,

- pru~ — — 
~~~~~ (.

~
)

x 
(13.18)

p’
~~ 

— — icc 
(~~~~~

)

By utilizing the notation of Eqs. (13.17) and (13.18), we can rewrite the

momentum relations of Eqs. (13.15) in the following form

~~~~~
- 

[Pu 
- cc (‘~IJ - — 

f 
(pu~) — A 

f 
(r puv) — (-p) +

(13.19)

fr [pv_ icc (.~-E)] _— f (puv) —~~~-f- (r pv2) _ (~!) +pf

Once the Reynolds stresses and the resulting Reynolds forces be expressed

in terms of a suitable eddy viscosity hypothesis, Eqs. (13.19) define the two

basic momentum transport equations of our mathematical model.

Our next objective is to show how Eqs. (13.19) may be transformed into an

alternative form which lends itself to a useful simplification. For this

purpose we first expand these equations as follows
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p (~~)+ u (~~)-fr (KE~~~)

— — u~~~ (Pu) — Pu (
~~

) —
~~~~~

-
~~~~~~~ 

(r pv) — pv (.~~;) — 
(~~~~~

) + pf

(13.20)

p (~~
) + v (

~~
) - ~~ (ice 

~~
)

— — vf- (Pu) — pu (!) — !f r  (r pu) — pv (
~~~~~ ) 

— +

We now require the continuity relation, Eq. (12.5). In this connection it

is convenient to define the following auxiliary variable, namely,

(13.21)

With this notation the continuity relation may be written as follows

- 
(~~~~) 

- (pu) + (r pv) + pG (13.22)

We next multiply Eq. (13.22) by u and add the result to the first of

Eqs. (13.20). We also multiply Eq. (13.22) by v and add the result to the

second of Eqs. (13.20) . In this process certain terms cancel out. We then

divide through by p . Finally the following results are obtained

(~~~~~ ) 
- 

~~~~~~ (ice ~~~~~
) - - u (

~~~~~
) - v (

~~~~~ ) 
- 
~ 

+ I - uG

(13.23)(a) - ~~(icc~~~) - -u  (~~~~~
) -v (

~~~~~ ) 
-

~~~~(~~~)  + f - v G

Eqs. (13.23) are now exactly equivalent to Eqs. (13.19). These two pairs

of equations differ only in form, not in essential content. However, Eqs. (13.23)

lend themselves to a further useful simplification based on the assumption that

~
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terms containing the factor cc in Eqs. (13.23) and (13.21) may be neglected

in comparison with the other terms involved. While this assumption seems

plausible enough, its actual validity still remains to be verified quantitatively.

Nevertheless, proceeding tentatively on this basis, we finally obtain the

following simplified approximations.

(ft ) ~~
_ u (

~~) -v

(13.24)

3v 1 3P
— — v — v (.

~~~)  — ‘
~~~ ~~~~~ +

Thus we now have the option of incorporating into our mathematical model

the momentum equations either in the more accurate form of Eqs. (13.19) or in

the analytically simpler form of Eqs. (13.24). For the sake of definiteness,

we state here that the subsequent analysis of this report is based specifically

upon the simplified approximation shown in Eqs. (13.24). It appears, however,

that if subsequent work shows it to be preferable to revert to the more accurate

version, this can probably be accomplished without too much difficulty.

Notice that Eqs. (13.24) are exactly analogous to the equations of motion

for laminar flow. However, the forces f and f , instead of being causedx r

by deviatoric viscous stresses, are here caused by the deviatoric Reynolds

stresses. The terms that have been dropped from Eqs. (13.24) are associated

with mass diffusion effects and amount to a small correction to the effective

acceleration of the fluid element.
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14. Eddy Viscosity Hypothesis

It is instructive to expand the expressions for the various Reynolds

stresses in the following manner . Consider first the mean turbulent kinetic

er~rgy as defined by Eq. (13.14). Let us begin by expanding the first term,

neasly,

(p”u”
2 

— Pu
2
) — (p + p ’) (u + u ’) 2 

— pu2

- (p ’u’2 + 2u ~~T+/2) + (pu ’2 + 2pu /+
~~~~) 

-
~~~~~~~~~~

— p’u’2 + pu’2 + 2u p
h ijU (14.1)

Proceeding in like manner with the other two terms in Eq. (13.14), then

adding and rearranging, we readily obtain the expression

PE - 4 (p ’u’2 + p’v’2 + p’w’2)

+ (u’~ + V
t2 + w 1 2)

+ (up ’u’ + v p’v’ + o) (14.2)

Proceeding in like manner with Eqs. (13.12), and making use of Eq. (14.2)

above, we obtain the following expressions for the deviatoric Reynolds stresses.

— — — 4 (p’u’
2 + p’v’2 + Ptw I 2)~

J —

- [2u p’~i’ - ~ (u p~ i~ + v p’v’ + (14.3)
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— — [p
tvt2 — I (p ’u’~ + p ’v’2 + p 1w~

2
)1

~~P [ v
12

~~~4 (u t 2 + v 1 2 + w t 2
)]

(14.3)

- 
~2v P.’V’ 

- ~ (u~~ ir + vp’v’ + o)j

106 — — Ep~w~2 
— 4 (p ’u’

2 + p ’v’2 + p 1w~2
)j

- 

~
{ ~~~~~~~~~~~~

4 (

7i
+

7i
÷

~~~~~~~~
)]

r 2—  _ _  1
— 0 - j- (uc ’u’ + VP’V ’ + OJ

trx 
— — p’u”i’ — pu’v’ — (vp ’u’ + u p ’v~)

r — r  — orO Or

I 1 — OOx xO

Notice tha t each of the Reynolds stresses in Eqs. (14.3) consists of three

distinct terms. The first involves the transport of mass velocity, the second

involves the transport of velocity, the third Involves the transport of mass. —

The mass flux effects may as usual. be modelled heuristically in the form

Plu’ — — icE: (
~~

)
(14.4)

p’v’~~~— -icc (.~~)

The other terms are modelled heuristically according to the general

reasoning explained earlier in section 4.
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Referring back to Eq. (4.14) , note that it is written in cartesian tensor

notation. Upon translating .it into cylindrical coordinates, and upon making
use of Eqs. (4.15) and (4.16), we obtain the following results.

— e (pu) — 4 V . (P~ )] + p - 

4 
v.~] + ~~~~~

- 
~2u (~~~~~~~ 

- 
~ ~~

I — c~j f (Pu) _ 4V . (~)J + p k~ 
_ 4 v .~J +~4 u~~~~)+ 2v ~)J~

- c — 4 V 

~] + p [(~~) 
- 

4 
V .~ J 

+ u - v (~)I}
I - I • {

~ ~f 
(pv) + }- (Pu)] + 

~~~

. + (
~ ) ] + K ~v (

~ )+ u (
~)1}

::::::;:: (14.5 )
To show how these relations may be further simplified, consider the

following expression which occurs in the first of Eqs. (14.5). Thus

— L~~t1) _ 4 v . (
~
)1 — P 

~~(~~~~) 
_ 4 v .

~1+ tu (~~
) _ 4~~~.Vp1

~~~~~~~~ (14.6)

+ ~u (~~~~_4 (u~~~~+v ~~~)]

• ~~~ 12 (~~~~~
) — (

~~~~~ 
+ 

~~)] 
+ 

4 1211 (~~~~~ ) 
- v (~)J
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With the aid of Eq. (14.6) , the first of Eqs. (14.5) may readily be reduced

to the form

I • c {~ 
(2 (~~~~~

) — + + ()
~~~~~~~~~~~~ [2u (~~~~~

) — v (
~~~~~ )~~~~ 

(16.7)

Proceeding in like manner with the other equations, we f inally obtain the

required results in the following form . These are equivalent to Eqs . (4.17)

• ~ 
fr 

[2 (~~~~~ ) 
- (

~~÷~ ] + (2K+1
)I 2~ (~~~~~ ) 

+ - v(~~ )J}

t - ~ {~ I~ (~~~~~
) - + + ()

~~~~~~~~~~~~ [ u (~~~~~ ) 
+ 2v (.~)J}

• c fr~ 
[~ (~) - (

~~ 
+ 

~~~)] 
+ (9’) (- u (~~~~~

) - v (
~~~~~~~~~ ~~

I
~~~~~~~

I
r~~~~~~

c
~~~P ( ( ~~~)+(P)1  + ( 2

~~~ )[v ( ~~ ) + u (p ) j }

I I 0
rO Or (14.8)

1 1 — 0Ox zO

Eqs. (14.8) represent the final eddy viscosity hypothesis as used in the

present model. They relate the deviatoric Reynolds stresses to appropriate

deviatoric components of the mean strain rate and density gradient. The quan-

tity c is treated as a true scalar, that is , a quan tity whose magnitude is

independent of the orientation in space of the local reference axes. In general

the value of c may vary from point to point , but in the present application

e may be taken as constant, at least to a first approximation. The experimental

data that supports this simplifying assumption may be found, for example , in
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the texts by Abramovich (1] and Schlichting (2].

It should not be overlooked that Eqs. (14.8), like Eqs. (14.4), are in-

herently approxinw.te in character. This is true for every closure hypothesis.

15. Energy Equation

In applying the first law of thermodynamics, it is again convenient to

deal, with an infinitesimal control volume fixed in space. If e is the

ordinary mean static internal energy per unit mass of the fluid, the mean

total energy Q per unit volume may be defined as follows.

Q — p  (e+
U
~~~~

V
+E) (15.1)

The various components of the work done and of the energy transported by

the fluid as it crosses the boundaries of the control volume make corresponding

contributions to the local time rate of change of the total energy within the

element. The aim of this section is to identify and evaluate each of these

components and to assemble them into an overall energy equation.

According to the previous momentum analysis, the surface of the control

volume is subject to an effective hydrostatic pressure of amount

2P p +~~~ pE (15.2)

where p is the ord inary mean f luid pressure and where pE represents the

extra effect  of the turbulent velocity f luctuations.

The effective pressure P does flow work on the system and contributes

toward the local rate of change of total internal energy as follows.

(~~
) - - Pv.~ - ~.Vp - - v. 

(~~~~~) (15.3)
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Notice that the net flow work done by the effective pressure P may be

— expressed in two equivalent ways. The one term expression on the extreme right

of Eq. (15.3) can readily be interpreted in relation to a control volume which

remains fixed in space and whose boundaries are crossed by the mean flow. The

other expression involving two terms can more easily be interpreted in relation

to a control volume which moves with the mean flow. From the latter viewpoint,

the term — PV~~ denotes the work done by the effective pressure P on the

rate of change of volume V•~ of this utoving element. Likewise the term

— ~.VP represents the work done by the resultant pressure force — VP on the

rate of displacement ~ of the moving element. Eq. (15 .3) involves a vector

identity. This proves tha t the two interpretations offered above are entirely

equivalent.

It should not be overlooked that Eq. (15.3) includes not only the flow

work of the ordinary fluid pressure p but also that which is produced by the

turbulence effect  
4 

pE

Next consider the transport of total energy Q across the boundaries of

the element by the mean flow. This may be written

— — ~~

Of course internal energy is aiso transported by the turbulent fluctuations.

We can model the turbulent flux in the usual way as follows

Q ’
~~
’ — — KcVQ (15.5)

Therefore the corresponding contribution to the rate of change of internal

energy is -

(
~~

) — — V~~ (Q ’~’ )  — + V~ (iccVQ) (15.6)
3
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Before proceeding with the analysis of the remaining work effects, it is

instructive to consider the sum of the three effects represented by Eqs. (15.3),

(15.4) and (15.6). Thus

+ (‘
~~~~~~~~~ 

+ — — v~ — ~
. (Q

~~) + V (KCVQ)

- - V . ((P + Q)~~~- KcVQ ]

— — V~ (H~ — iccVQ) (15.7)

where it has been convenient to def ine the auxiliary var iable

H P + Q  (15.8)

The quantity H will be recognized as the mean a ~ective total enthalpy per

unit volume.

Finally , consider the net work done on the element by the deviatoric

Reynolds stresses. This can be summarized in the form

a • -~ -~~~~ -

(~~~ ) w + p f . tJ  (15.9)

In this expression ~ denotes the work done by the deviatoric stresses

on the deviatoric strain rates of the mean flow. We may write this as

W t  y +1 y +1 ~~- +1 .
~~ (15.10)xx xx rr rr 00 00 xr ‘xr

These stresses are as defined earlier in Eqs. (14.8). The corresponding

deviatoric strain rates work out to be

2 3v v
~r r i  

2 (~~)— (;+~~~)

(15.11)

~xr 
• [(.~~~) 

+
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Now referring back to the last term of Eq. (15.9), we recognize that pl

denotes the net force per unit volume exerted upon the element by the purely

deviatoric Reynolds stresses. The components pf and ‘~~r 
of this force

were previously defined in Eqs. (13.18). Of course the corresponding resultant

force exerted by the effective pressure P , namely,

— VP — — V (p + 4 pE) (15.12)

has already been included in Eq. (15.3) and hence is not involved in Eq. (15.9).

The desired overall energy equation can now be obtained by adding Eqs.

(15.7) and (15.9). The result is

+ (
~~

) + (*~
)
3 
+ (~~~~~~) 

-

... . - .-~(iL) — Q — — V •  (MV — KEVQ) + W + p t V  (15.13)

This can now be translated into cylindrical coordinates as follows.

— - 
F [Mu — KE: (i)] - 

f ~r [Mv 
- (

~1~ (15.14)
+~~~

+ p f x u + P f r v

In earlier sections of this report it has been shown how the continuity

equa t ion fixes the quantity (~~~~~ ) and how the momentum equations f ix  the quan-

tities (~~~~~
) and (

~~~~~ ) 
. We now wish to show how the addition of the above

energy relation, Eq. (15.14), to our mathematical model fixes the quantity (‘
~~

).

In this connection recall that for a perfect gas with constant specific

heats

pe — 
(if

) (~~j’ 
T) • (15.15)
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Hence Eq. (15.1) can now be rewritten as

Q - (1 ) p + P (11
2 
+ + E) (15.16)

Upon differentiating this equation with respect to time and solving for

(
~~

) we readily obtain

(~~~~~
) - (y j) - (

U + ~
2 
+ E) (4~ ) 

- p (u (4~
) + v (~~~~~~) 

+ (
~~~)]~~ 

(15.17)

This is the result required. Note that Q is fixed by the energy relation ,

Eq. (15.14) while (~~~~~
) , (4~ ) and (4~

) are fixed by the continuity and

momentum equations as already noted. Since E is here treated as a known

- f unction, the quantity (~~~~~ ) is likewise known.

The development to this point has shown how the continuity , momentum and

- j energy equations serve to fix the quantities (~~~~~
) , (

~~~~~
) , (

~~~~~
) and (

~~~~~ )

assuming that c and E are known functions and assuming that the applicable

boundary conditions are properly specified . If we hold these boundary condi-

tions constant and integrate numerically through time, the solution should

ultimately converge to the corresponding steady state .

There is an aspect of the turbulent flux of energy Q as represented in

Eq. (15.5) that is relevant to the analysis of the second law of thermodynamics

as developed in the next section. To explain this, we expand Eq. (15.5) in

the following way

Q’~’ 
— — KCVQ — — 

[~~
(e ~~

11 + + E)]

RT u +v— KCV j p (~-1+ 2 + E )

— KE 
K (pVT + TVp J

(15.18)
( 2 2

+ V ~~
p ( 1 1  + v  +E)
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Of the three terms on the right side of Eq. (15.18), only the f i rs t  term

involves the temperature gradient VT . Recall that in steady laminar flow, the

net heat flux associated with molecular conduction is expressed in the form of

the Fourier equation

— — kVT (15.19)

where k is the ordinary molecular thermal conductivity of the fluid.

By analogy with this, we see that the first term of Eq. (15.18), since it

involves the local temperature gradient VT , may be interpreted as an apparent

or equivalent heat flux which is produced by the turbulent mixing. Thus

— 
~~~~~~~~~ 

(~~~~~~~~) p] VT (15.20

Comparison of these last two expressions shows that the effective thermal

conductivity, which is now associated not with the molecular action but with

the turbulent mixing, is simply

k — KC (~~~~~~~~) 
p (15.21)

Perhaps it should also be remarked in passing that, assuming that the

independent properties p and p are specified over the field, the temperature

T which figures in the above relations may of course be found from the equation

of state of a perfect gas. We may write this here in the form

T — (15.23)
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16. Second Law of Thermodynamics

The extension of the analysis of the preceding section to the second law

is straightforward. -If p and p are the independent thermodynamic properties,

then for a perfect gas with constant specific heats the entropy per unit mass

may be written

s — (_
~j,
-) [in (2_~) — 

~ in (
~

-
~)] 

(16.1)

where p , p denote some convenient reference state at which the entropy is

taken as zero, by definition. Inlet stagnation conditions provide such a con—

venient reference state.

We define the corresponding entropy per unit volume simply as

- S • ps (16.2)

—p

Now the work term W , the apparent heat flux q , and the mean and turbulent

transport of entropy contribute to the overall time rate of change of entropy

per unit volume . For example , the transport of total entropy by the mean flow

and by the turbulent fluctuations gives

~~~~~~~ 
— — V • ISV — KCVS] (16.3)

Of the various work terms considered in the previous section, only the

quantity W affects the entropy . The relation is simply

,as~ ~i (16.4)

It has been shown that a portion of the enthalpy transport amounts to an

apparent hea t flux . This contributes to the rate of change of entropy

according to the relation

bb 
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(~~) — - v . (~) - + v .  [Kc (~~~)~~~vT] (16.5)

The desired result is now found by adding these three effects. In this

way we obtain the equation

+ (~ 3 + (~~)3 
- (~~~~~ )

— — — c’. [s~
_ KCVS — ~c (~

!i.) ~- VT] +~~ (16.6)

Translating this into cylindrical coordinates in the usual way gives

- ~~ ~r [Sv - KC (~~~~~
) - KC (

~~~~~~~~) ~~~ (~~-t
)] 
~ + (16.7)

The quantity ~ defined by Eq. (16.7)  can nob ’ be further developed in

the following way . Firstly, we differentiate Eqs. (16.2) and (16.1) with

respect to time . This gives

(16.8)
and 

(4~
) — (~~~~~~~~) 

[

~i (ft) — 

* 
(.
~)] (16.9)

Secondly, we combine these last two expressions and rearrange the result.

This gives f inally

(.
~~ ) 

— 
(
!

) 
2. (ft) + (.1~ — 

~~ ) 
(.

~~~) — z — 0 (16.10)

where is found from Eq. (16.7), (~~~~~ ) 
is found from Eq. (15.16) and (~~~~~ )

is found from Eq. (12.5).
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The auxiliary variable z is introduced into Eq. (16.10) as a convenient

abbreviation to denote the sum of all of the terms on the left side. Thus

the requirements of - the second law can now be stated concisely as z — 0

The earlier discussion has shown that Eq. (16.10) is not in general satis—

fied at interior points of a computational cell if the boundary conditions

along the exit cross—section of the cell be specified arbitrarily. These exit

conditions must be so adjusted, by a suitable process of numerical relaxation ,

as to satisfy the condition a — 0 , at all interior points of the cell. The

method of accomplishing this has already been outline in section 10.

17. Further Development of Boundary Conditions

It was shown earlier that along a fixed wall normal to the axis, the four

boundary conditions prescribed by Eqs. (9.1) must be satisfied. These are

repeated below for convenience.

u -  0

(~~) - o

x (17.1)

v_ ±ll.O \jT~~~

We are now in possession of additional relations which allow a significant

simplification of these boundary conditions. Thus from the first of the

simplified equations of motion, Eqs. (13.24), we have

(}~) 
— — u (~~~~~

) — v (
~~~~~ ) 

— 
~ 

(.
~f) + f (17 .2)
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This now reduces to

(17.3)

From the third of Eqs. (17.1) we also have

R (~~~~~ ) 
- 

~~~ (~~~) 
- -

~~~ 

(-b) — ~~~~ (~~2) - 0 (17.4)

By algebraic -reduction of Eqs. (17.3) and (17.4) we readily obtain the

interesting relations below.

2 ~E1 - 1 - X 3 

- 

(17.5)

Notice that 
~x 

represents the deviator ic Reynolds force normal to the

wall. While the component- 
~r 

tangential to the wall might be significant,

the component normal to the wall is almost certa .n to be negligible.

Next consider the quantity (~). Since E itself is normally rather

small compared with p/p , this derivative is unlikely to be significant out-

side the viscous sublayer. Moreover, E normally passes through a maximum

at or near the edge of the viscous sublayer and at this maximum the derivative

vanishes. We conclude that (~~~~~ ) 
, like £ itself, can safely be neglected.

On this basis the boundary conditions resulting from Eqs. (17.1) and

(17.5) simplify to the form

•1 
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u 0

a 
± ll.O\/r~~~~T 

(17.6)

(~~~~~~ O

(.
~~)~~~ 0

Similarly , the boundary conditions along the outer wall simplify to the

form

— u — ± ll.O
\J~~~ T

v —  0
(17.7)

(~~)a09r

Recall from section 9 that in Eq. (17.6) the algebraic sign of v must

agree with that of txr while in Eq. (17.7) the algebraic sign of u must be

opposite to that of • These simple rules may readily be verif ied by

examining the directions of the stress and velocity components acting on a

fluid element near a wall.

It is well known that outside the viscous sublayer in fully developed

pipe flow the axial velocity distribution is well described by a universal

logarithmic law of the form

(~~~~~
.) — A in (~~Z) + B (17 • 8)
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where u* is the so called friction velocity. If Ltxr I denotes the magni-

tude of the shear stress at the wall, the friction velocity is

u~ 
_~/ii~~~i (17.9)

Numerous experiments have established the following values as good

average estimates of constants A and B , namely,

A — 2.5 B — 5.0 (17.9)

In the very thin laminar sublayer immediately adjacent to a smooth wall,

the velocity distribution is well described by the linear relation

(
U

) — — y
+ 

(17.10)

Between the laminar sublayer and the fully turbulent region, the velocity

distribution gradually changes from that of Eq. (17.10) to that of Eq. (17.8).

It is convenient, however, to ignore the details of this gradual transition

and instead to plot the two curves as if they were independent. The solution

is taken as following Eq. (17.10) up to the point of intersection of the two

curves, and as following Eq. (17.8) beyond that point. This point of inter—

section is defined as the theoretical edge of the viscous sublayer.

At this location we must have

(~w) — 2 .5 in y~ + 5.0 (17.11)

Numerical trial and error verifies that this relation is satisfied f or

(
U

) — y+ — 10.99 ~ 11.0
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Hence it follows that

u 
~~
± ll .O\~[~~~’~ (17.12)

Of course , the accuracy of this analytical wall function is somewhat

variable and dependent on various circumstances. It can be made more general

by introducing further complications, but such complications are considered to

be not justified in the present context.

Further information on the so—called law of the wall as expressed by

Eq. (17.8) may be found in many standard texts including that of Schlichting

(2]. Other discussions of wall conditions and wall functions are presented ,

for example, in references [68] through [75].

18. Summary of Principal Equations

AU of the principal equations tha t characterize the present mathematical

model of the flow are summarized in this section.

Part (a) summarizes the boundary conditions that must be satisfied at

points which lie along various portions of the enclosing contour of the cell.

Parts (b), (c) and (d) susmarize the principal equations in the approxi-

mate order in which they would be used to calculate the small change of state

occurring in some small time interval i~t at a typical interior point of the

cell. Part (b) lists the various auxiliary variables that occur at each point.

Part (c) summarizes the four fundamental laws tha t yield the quantities (~~~~~
) ,

(ft) , (~~
), (

~~
) . These are the two momentum equations, the continuity

equation and the energy equation. Part (d) summarizes the four simple rela-

tions that fix the resulting n-aw state of the system at time (t + ~t) .
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Of course the above calculations must be carried out for all points of

the cell, both boundary and interior points, in accordance with the respective

equations that apply to each.

The above sequence must be repeated over as many successive time intervals

as necessary to reach an essentially steady state. During this calculation

the boundary conditions around the cell, including the boundary conditions

across the exit section, are held fixed.

The present discussion assumes that the eddy viscosity c , the turbulent

energy E and its time derivative (4~
) are known at every space—time point.

Fortunately, it happens that the simple assumption that c is constan t over

the field provides a reasonable f irst  approximation and eliminates many com-

plications. Moreover, it is also permissible in a first approximation simply

to neglect E and (~~~~~ ) 
. Nevertheless, these terms are retained in the

following equations for the sake of greater generality.

For a more general analysis it might become desirable to model the

quantities c , E and (~~~~~~) 
themselves by means of suitable additional

equations. This aspect lies outside the scope of the present report. Never-

theless, however such possible additional complications are handled , the

essential features of the present analysis are not significantly altered

thereby.

The calculations of part (a) start with known or assumed values of the

quantities c , E and , and of the independent variables u , v , p , p
at time t

It has been pointed out earlier that the solution obtained by the above

process does not in general satisfy the second law of thermodynamics because

the boundary conditions across the exit section of the cell are as yet

73

~~~~ ~



arbitrary . To determine the extent to which the above provisional solution

deviates from the requirements of the second law, we must carry out the addi—

tional calculations sumj i~arized in part (e) of this section.

In order to bring the final solution into compliance with the second law

we must relax the exit boundary conditions according to the general method

described in section 10. This process is summarized in part ( f )  of the present

section.

Periodically during the above relaxation process of parts (e) and (f),

the calculation procedure summarized in parts (a), (b), (c) and (d) of this

section must be repeated to ensure not only that the second law is satisfied,

but also that the four original basic equations continue to be satisfied.

Thus the calculations finally required to satisfy all five governing laws

over all interior points of a single cell are bound to be very leng thy.

On the other hand once the solution over a given cell is finally foun d ,

it need never be revised further. In other words the calculations in any

given cell never affect the solution in any other cell upstream of the given

cell. This amounts to saying that the flow field, instead of being elliptical,

is piecewise parabolic. Hence the solution can simply be marched downstream

cell by cell as far as may be required. The computation, while still formida-

ble, is nevertheless greatly simplified by the fact that it suffices to deal

with but one cell at a time.
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(a) Simplified Boundary Conditions

At Points Along Cross Section of Entering Jet

U

Known (Basic data of problem) (18.1)

p

At Points Along Wall Normal to Axie

u 0

— + 11.0 J~ xr1 Algebraic sign of v must agree with that
— p of t
a o (18.2)

At Points Along Pipe Wall

u — ± 11.0 Algebraic sign of u must be oppositep to that of Txr
V — 0 

(18.3)

(~) a o
At Points Along Pipe Axis

v — 0

u ~ 
These values are fixed by the axial momentum equation, the

( continuity equation and the momentum equation, with v — 0

~ I and
~ 

r 
(18.4)

At Points Along Exit Plane of Cell

These values, which are initially guessed, must be gradually
v ad.just.d~se- that the f inal solution satisfies , in addition

to the other four basic laws, the second law of thermodynamics
at all interior pointa. The method of accomplishing this is

p summarized in parts (a) and (f) below. (18.5)
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At Points Along Entrance Cross—Section of Any Cell Except the First

U

v These values are identical with those across the exit
section of the preceding cell. They are therefore known .

p

(b) Auxiliary Variables

P .”p + 4p E  (18.7)

- 
(y-l) 

+ ~ (
U ~ V

2 
+ E) (18.8)

H — P + Q  (18.9)

- (p+ !~1 (18.10)

~rr 
— 4 12(P~ — (! + (18.11)

— 

* 
— (-

~~~~ 
+ U8.12

- 
~~~~~~~~~~ 

+ (~~~~~ )~~ 
(18.13)

— c ~p ‘ + (
2K+l

)1 2u (~~~~~ ) 
— v (18.14)

- 
~ ~rr 

+ (
2K+l

)I u (~~~~~ ) 
+ 2v (

~~
)}

~ 
(18.15)

- 
~~ ~oe + (

2~~~)[~ u (~~~~~ ) 
- v (P)J~ (18.16)

T — £ -
~ 

+ (
2K+l) [ v (~~~~~ ) 

+ u (~2~)J~ (18.17)

W — 
~ 

+ I 
~~
‘ + t~~~ y~~~ + T (18.18)

— ( 
~X) + 4~

- -
~~

. (r’r r) (18.19)

— ( ~~~~~~~~~ 
+ -

~~ F (rI g) — —
~~~ (18.20)

- - s— tHu — KE (
~)1 — 

~~~~ 
(Nv — KC

• ~ ~ ~
t
x
U + Pfr

V (18.21)
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(c) Time Rates of Change

( P ) — — u ( P ) - v (~~
) _

~~~
(
~~

) + f
~ 

(18.22)

( P ) _ _ U ( P ) _ V ( P )_
~~~~ (~~

• ) + f
r 

(18.23)

(-
~~~)  — — 

~~~~~ [~u — ic — ~~~~~~ ~
r(pv — i c 

~~~~~~~~~ 
(18.24)

— (-k)  — (y—l) ~~~~~~~~
— (u + v ) (•

~~~~~) ~
, tu (~

)+v(P) +(.
~~)~~ 

(18.25)

(d) New State of System

— u + (~~~~~ ) ~t (18.26)

V ( +l) - v~ + ~t (18.27)

~n+l 
— + 

~~~~ 
~~ (18.28)

~n+l 
— 1’n 

+ (18.29)

(a) Second Law

T — (l&.30)

$ — (A) [in (~~
—) — yin (~—)J 

(18.31)

s p~ (18.32)

~~
__ }_ [Su

_ K€ (~~~~~ ) 
- K C

- A 
~r [Sv 

— KC (~~~~~ ) 
— KC 

~ (~~)
‘

~ 
+ (18.33)

(.
~~ ) 

— (~~~j ) 
-
~~ 

(-b) + (~~ 
— -

~~
) (-

~~~) — z — 0 (18.34)
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(1) Relaxation of Cell Exit Conditions

Notation:

m — 1,2,3 n — first index denoting radial position of mesh point
in cell

k — 1,2,3,4,5,6 — second index denoting axial position of mesh point
in cell

N — 4 (n—l) — total number of interior mesh points in cell — total
number of initially undetermined boundary parameters
across exit section of cell (18 35)

I — 1,2,3 N — index denoting interior mesh point of cell

j — 1,2,3 N — index denoting intially undetermined boundary para-
meter across exit of cell.

The exit boundary parameters are relabelled according to the following

scheme.

U2 6  
— U~~~6 

—

V —~~~ V —~~~ ———— V —~~~1,6 2 2,6 6 n,6 (N—2
(18.36)

a3 p2 ,6 
— a7 ~n,6 

— a(N_l)

An arbitrary small change in exit parameter a~ produces small

changes in the second law discrepancy of amoun t

— 

~~ 
&zj (18.37)

at each interior grid point j — 1,2,3, ... N . These changes can be found by

calculation according to the preceding principles.

At any stage in the relaxation process , the optimum change in exit para-

meter aj is given by the relaxation formula
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En  zj
i—l

- 
(.Sa~) — — 

2 
(18.38

The above relaxation process is continued until the following criterion

is satisfied

n
i 
z~
2 < I (18.39)

i—i

where 1
0 

is some very small preassigned quantity that defines the acceptable

level of error in satisfying the second law.

19. Classification of Equations by Determinant Method

This discussion refers to the final equations of section 18. For the

purposes of the present argument, it is permissible to treat c , E and (~~~~~ )

as known f unctions of space and time.

The principal equations are now the following.

Momentum , x direction Eq. (18.22)

Momentum, y direction Eq. (18.23)

Energy Eq. (18.25)

Continuity Eq. (18.24)

The order of Eqs. (18.24) and (18.25) has been reversed in the above listing

because this ultimately simplifies the format of the basic matrix that is in-

volved in this analysis.
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Our aim in this section is to establish rigorously whether the above set

of equations is of elliptical, parabolic or hyperbolic type. This question

must be settled in order to verify that the nature of the solution procedure

and of the boundary conditions summarized in section 18 are in fact correct

and appropriate to the problem.

In this connection we note that all quantities which occur in the above

four basic equations can be expressed as functions of the four basic variables

u , v , p , p and of their various partial derivatives. This can be shown by

expanding Eqs. (18.7) through (18.21) and substituting the results into Eqs.

(18.22) through (18.25). Details are shown in section 20.

The highest derivatives which occur in the four resulting equations are

found to be u , u , u , v , v , v ‘p  , p  ,p p , p  ,p  . Itxx ~ rr xx xr rr xx xr rr xx xr rr

is convenient for our present purpose to relabel these quantities x1, x2,

x3 x12 . Using this notation we can rewrite the above four basic equa-

tions in matrix format. Specifically, the above four equations are shown in

rows 2, 5, 8 and 11 of Table 19.1. In rows r — 2, 5, 8 or 11 , all, terms in

quantities other than the above twelve x
i
’s are transferred to the right side

of the equation. The detailed algebraic form of these auxiliary terms is not

needed for our present purpose and may therefore be ignored .

En addition to rows 2, 5, 8 and 11, Table 19.1 also contains eight other

F rows. The method of establishing the elements which occur in these other rows

will now be indicated.

Consider the equation

du — u dx + u dr + u dt (19.1)
x xx xt xt
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Let ds be a small displacement in the plane at angle A as shown. Thus

:: : :: ::: (19.2)
Let us analyz. the changes along ds at some fixed instant of time, so H

tha t we may set

dt — 0 (19.3)

It then follows from Eqs. (19.1), (19.2) and (19.3) that

dux• (—) — u — u cosA + u sinA (19.4)da xs xx xr

Similarly
du

(—
~~
‘) — u u cosA + u sinA (19.5)ds rs xr

Eq. (19.4) may be recognized as row 1 of Table 19.1. Eq. (19.5) is row 3.

The extension of the above method to the other rows of the table should

now be evident.

Table 19.1 now represents a set of 12 simultaneous equations which may be

written sytholically as

[A] {x} — fyI (19.6)

We introduce the following notation

D(A) — determinant of the matrix [A]

(19.7)
Ni
(A) — determinant of the array formed by replacing

the ith column of the above array by the
column vector {y)

Than by Cramer ’s rule
Ni

(X)
— 

~~~ 
(19.8)
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Notice that both determinants in Eq. (19.8) appear to be function of angle

A because some of the elements in these arrays are functions of A

We now ask whether there are any characteristic values of A such that

D(A) — 0 (19.9)

If Eq. (19.9) be satisfied for certain values of A , then since x
1 

is

finite, it follows from Eq. (19.8) that for these same values of A

N~(A) 0 (19.10)

Consequently, Eq. (19.78 now assumes the indeterminate form

x~ = (19.11)

Thus,if there exist certain characteristic values of A for which Eq.

(19.9) is satisfied , then these values define the directions of characteristic

lines along which the second derivatives denoted by the variables x
1 may be

indeterminate or discontinuous. Under these circumstances the above system of

equations is said to by hyperbolic.

Conversely, if there exist no values of A for which Eq. (19.9) can be

satisf led , then there are no such characteristic lines. Consequently , the

second derivatives denoted by the variables x~, are everywhere determinate

and continuous. Under these circumstances the above system of equations is

said to be elliptical.

Hence the classification of our four basic equations as elliptical or

hyperbolic hinges on the value of the determinant of the 12 by 12 array listed

in Table 19.1. This determinant has been evaluated in section 21. Inspection

of section 21 will reveal that this evaiuation was a lengthy and arduous task.

Fortunately, the final result obtained proves to be extremely simple. It is
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(19.12)

This result is very interesting. Notice f i rs t ly tha t the elements of the

matrix as listed in Table 19.1 are functions not only of A , but also of para—

meters y and K , and also of the three fundamental variables u, v and p

Cur iously enough, they are not functions of the fourth fundamental variable

p which does not appear in the table.

Under these circums tances one would naturally expect the f inal  determinant

itself to be some function not only of A , but also of y, K , u , v , and p

But the result turns out differently. Eq. (19.12) shows tha t all of the above

quantities except y cancel out of the f inal determinant!

This result proves that the four basic equations here considered , namely,

Eq. (18.22) through (18.25), are in themselves u~conditionally elliptic in

character, irrespective of local Mach numb er or anything else!

Of course as we have already seen, when the second law of thermodynamics,

Eq. (18.34), is added to the system, the equations change from elliptical to

piecewise parabolic.

20. Derivation of~Characteristic Matrix

In this section we derive the elements of the characteristic matrix as

previously displayed in rows 2, 5, 8 and 11 of Table 19.1. These represent,

respectively , the momentum equation in direction x , the momentum equation in

direction r , the energy equation and the continuity equation. The elements

in the other eight lines of the table, which are either cosA , sinA , or zero,

have already been established and explained in section 19.
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For the momentum relation in direction x our starting point in Eq. (18.22)
as follows

(~~~~~ ) 
— — u (.

~~~~~) 
— - v (~~~~~ ) 

— 
~ ~~~~~~~~ 

+ 
~x 

(20.1)

We now substitute for the various unknowns in terms of the primary variables

u, v, p, p and of their various derivatives according to Eqs. (18.7) through

(18.21) . It suffices for our present purpose, however, to show explicitly only

the terms in the twelve variables u , u U ~ v , y r ~ 
Vrr Pxx ~

‘ 1’rr ‘ 

~xx 
‘ 
~xr ‘ “rr These are the only terms which occur in the main

matrix on the left side of the final system of twelve simultaneous equations.

All other terms are ult imately transferred to the right side of these equations.

Such unessential terms are of no immediate interest and may simply be dropped

from the present derivation. These unessential missing terms are indicated in

the expressions below by rows of dots.

Thus Eqs. (20.1) now reduces as follows.

(*~
) = £ + .... (20.2)

Substituting from Eq. (18.19) and simplif ying

(~~~~~ ) 
-A  (

atxx) 
~~~~~~~~ (rT ) + —- 

3t p 3x r ar rr

— I ~(
at~~~~~(

aT
) + ....~ 

+ .... (20.3)

Substituting from Eqs. (18.14) and (18.17) and simplifying f ur ther

(.
~~~~~) 

— 

~ {~~~

__ ~ a 
f2 ~~~~~ 

— 
~~~~ 

+ • .. . + (2K+l) [2u (.
~~~)  — y (

~)1I — 
-

+ 
~ + (P)! + (2K+l) [v (~2) + u (~~~~~ )~ 

} + ....
- 85
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~
,,, — -

- [2u - v )  + ()
~~~~~~~~ [2up - V p ]

+ p Lv + urn + (2K+l) [vp~~ + U P ]~ + .... (20.4)

Upon regrouping terms we finally obtain

- C u + U
rr + 4 V~~~ + 4 (2K+l ) 

~ ~xx

+ (
2~~l) ~ p + (i i

) 
~ ‘~rr~ 

+ (20.5)

This result now accounts for the elements in row 2 of Table 19.1. Notice

that the common factor ~ is omitted from the coefficients in the table.

A similar procedure applies to the momentum relation in the r direction

Eq. (18.23). Thus

av 3v l a P

at
- f  + .... i 

( ~~)+
1
~~- (rt ) - --~~~ + ....r p ax r 3r rr r

— ~(xr ) + (~~~
r
)~ + ....

— •{~ I + 
(
~)J + (2K+J.) t.~ 

(~~~~~ ) 
+ ~~ - 

-

÷ L(42~ 12 (~~~~~
) — (

~~~~~ ) 
+ •. . .  + (2K+l) 

I u  (~~~~~ ) 
+ 2v (

~
)1}

~ 
+ ....

— C 
~
1Vxx + u,~~] + (

2K;l) 
~~ ~~~ 

+ ‘
~~
‘ 

~xr1

+4 [2v - u ]  +4 (2K+l) [
~~ UP + 2VP rj

~ 
+ ...~~~ (20.6)

Finally

(~~~~~ ) 
— 

~4 U + ‘
~xx + ~ Vrr + ~ ~xx

+ (
2~~1) 

~ 
+ 4 (2K+1) 

~ ~~~~ 
+ ~~• • ~~ (20.7)
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• This result now accounts for the elements in row 5 of Table 19.1.

It is most convenient to consider next the continuity relation, Eq. (18.24).

Thus

a ,~~~~ l a l
— — — KE (a,) — ~~~~~1~

’(pv — (C 
ar~

— + KC {p + + .... (20.8 )

This result accounts for the elements in row 11 of Table 19.1.

Finally we consider the energy relation, Eq. (18.25). It is convenient

to write this as

1. 
~~~~~~ 

— — (
U + ~

2 
+ E) (~~~~~~~ 

— p 
~~~ 

(~~~~~
) + v (

~~~~~ ) 
+ (20.9)

Substituting for Q from Eq. (18.21), then expanding and dropping um—

o essential terms gives

(y—l) (~~~~~ ) 
1._

~~~~ IBu
_ KC (~~)j 

-
~~.fr1r 

(Hv_ K E
~~~)1

+ W + pf u + pf vx r

- (U + V  +E) (~~~~~
) - p lu (~~~~~

) + v  (
~~~~~ ) 

+ ....
~

KC I(~~ )+(~~ )~~.(”
’
~~’ +E) (.~2.)t a x 2 ar 2 l  2 3t

_ p u +~
•
~~
_ f )_ Pv (

~
f_ f

r
) + u i i s  (20.10)

Inspection of Eq. (20.2) and of the early development of Eq. (20.6) re—

veals that all second derivatives cancel out of the quantities (
~~~~~ 

— f) and

— 

~~ 
These terms therefore vanish from Eq. (20.10).

By evaluating the derivatives (
~~

—
~~

) and (
L~~~~) in Eq. (20.10) from Eq.
ar 2

(18.8) , and substituting for (‘v) from Eq. (20.8), we obtain

87



- ~~~~~- — -,--—- - - -------- ,--- -- ~~~~~~~~~~~~~~~ -~~~- r ’ - - ---~~~~~~~~~~ --~.-,~-- ,- -t .-------- - --~~ ,- ----

(y—l) (ft) • KC 
-1) (p,~ + prr~ 

+ pu (u + u )  + pv (v + V )

+ Cu: + + E) 
~~xx + ~rr~ 

+

— 
(

~~~ + v + E) (Ke) 
~“xx ~~~

‘ 
‘~rr~ 

+ ~~~~~ (20.11)

Notice that the terms in + cancel out of Eq. (20.11). Hence

multiplying through by (y—l) and rearranging, we f inally ob tain

(n’) — KE (y—l) 
3~~

u 
~~xx + u )  + pv (v + v )

(p + p )~
+ 

(y—l) .... (20.12)

This result accounts for the elements in row 8 of Table 19.1.

Thus all elements of the characteristic matrix summarized in Table 19.1

have now been accounted for in complete detail.

21. Evaluation of Characteristic Determinant

The discussion in section 8 shows tha t it is not practical to evaluate

the 12 by 12 determinant of Table 19.1 by the general method of successive ex—

pansions which is so convenient when dealing with a small determinant, say of

size 4 by 4, for example . Instead we choose here to transform our original

matrix into upper triangular form. We say a matrix is in upper triangular

form when all elements below the main diagonal are zeros. It can easily be

shown that the determinant of a matrix in upper triangular form is just equal

to the product of the elements which lie along the main diagonal.
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In reducing an arbitrary square matrix to upper triangular form, we make

use of the following two theorems:

1) If the elements of any row are multiplied by an arbitrary constant,

the determinant is multiplied by the same constant.

2) If to the elements of any row are added an arb itrary multiple of

the respective elements of any other row, the determinant remains

unchanged.

Consider a general transformation in which the elements a of row mmk
are replaced by new values a ’~~ as defined below. The second index k de—

notes the column number ; it should be understood to range over all of the

columns. Let a~~ be the elements of some other row n , and let c
1 

and

be two constants which remain to be defined. The general transformation of

interest may now be expressed as follows.

a’~~ = C
1 
a~~ + c2 k (21.1)

Let us now choose these two constants in the following way

c
1 

= a~~ c2 
— a~~ (21.2)

where index £ denotes some particular fixed column. It now follows that in

general

a’ = a  a — a  a (21.3)
tnk ni pik m~ nk

but that for the particular column £

a’ — a a — a a E 0 (21.4)
siR. nP. sit siR. n9.
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The above transformation may therefore be used to reduce the value of the

element in row in , column £ , to zero. Repeated and systematic use of this

technique may therefore be employed to reduce an arbitrary matrix to upper

triangular form.

It. now follows from the above theorems that this transformation changes

the determinant by the known factor

— a~~ (21.5)

Hence we can keep track of the changes in the determinant as these successive

transformations are carried out .

We now summarize below the sixteen successive transformat ions that were

actually used to reduce the original matrix of Table 19.1 to upper triangular

format .

a 2k 
= (coaX) a2k 

— a1~ (21.6)

a 8k (coaX) a8k 
— Pu alk (21.7)

a 3k (•
~~ 

SiXlX) a3k + (coaX) a2k (21.8)

a 5k 
= (4 am A) aSk + a2k (21.9)

a 8k 
= (coaX) a8k + (Pu am A) a3k (21.10)

a Sk 
= (i + 

9~~~2)~
) aSk — (cosA) a3k (21 .11)

a 8k 
- (i + 

ain2A
) a8k - pu a3k (21.12)

a Sk 
— (coaX) aSk 

— 4 a m A  (i + sin A) a4k (21.13)

a
8k 

— (coaX) a8k 
— ~ V COS A (i + 5~~

2A
) a4k (21.14)
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tm 6k E~ 
~~~~~ + sin A )J &6k + (coaX) ~5k

a 8k 
- osA ) + p cos2A [U CO aX 

+ v a m A  (i + 
sin2

x j  a6k (Zl.16)

a 8k — (4~ am A) agk — p cos2A 8iflA coaX + v (i + sin
2A
)1 a6k 

(21.17)

a 8k — (cocA) a8k 
16 ainA cos4A (i + 

sin A
) a7k

16 ain2A cos4A sin2Aa 9k 
— 
1 (y—l) (i + 

~ 
) a9~ + (cocA) a8k

— (coaX) 811k — alOk (21.20)

a l2k — (am A) al2k + (coaX) alik (21.21)

The sixteen succassiva transformations defined by Eqs. (21.6) through (21.21)

above involve intermediate calculation steps which are too voluminous to present

in detail here. Since our purpose is simply to evaluate the determinant, the

only details of the final upper triangular matrix of interest here are the

values of the twelve elements along the main diagonal. These are summarized

below.

a11 
— coaX a77 — cosA

4 16 sin2A cos4A sin2Aa22 
— — a m A  a88 — — 

~~~ (y—1) (i + 
~

a33 
— (i + $ifl2A) a99 

16 sinA cos4~ (1 + ain
2A
) 

(21.22)

a44 • cosA a10 10 — cocA

a55 
- - ~~ .in

2A l + 8i~~X) a11,11 
- - sinA

a66 — ajaX a12,12 
— + 1
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The value D’ of the determinant of the matrix in upper diagonal form is

just the product of the twelve factors given in Eqs. (21.22). This is

4 12 8 2 2 3
— 
8 
(
16
) 

coc A sin A 
(i + ~~~ A) (i + ~~~ (21.23)

(Y-1)

The changes in the value D of the original determinant produced by the

sixteen transformations listed in Eqs. (21.6) through (21.21) is equal to the

product of the sixteen factors in these equations. In each case the relevant

factor is the coefficient of the first term on the right side of the equation.

The product of these factors is

c - ~ (~~)
4 

( 1 )  (1+ 8~~
2A
) (1 + 5~~

2A
)

3 
(21.24)

Hence the value D of the determinant of the original matrix shown in

Table 19.1 is finally

- D - ~ (y-l) ~ o (21.25)

This completes the evaluation of the characteristic determinant.
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22. Sy~~ols

a Spacing of finite difference mesh

Matrix coefficient, row m, column k

Transformed matrix coefficient, row m, column k

A,3,C,D Coefficients in governing equation for nonturbulent
compressible flow

A,3 Constants in logarithmic law of the wall

c Sonic velocity

c1, c2 
Constants in matrix transformation equation

C Product of changes in determinant resulting from ma ’rix
transf ormations

D Characteristic determinant of original matrix

Characteristic determinant of matrix transformed to upper
triangular form

D Rate of dissipation of turbulent energy

e Internal energy per unit mass

x’ ~r ’ ~e 
Unit vectors in cylindr ical coord inates

E Mean kinetic energy of turbulent fluctuations per unit mass

Net force per unit mass exerted on fluid element by
deviatoric Reynolds stresses

f , f Components of Ix r

G Auxiliary variable defined by Eq. (13.22)

H Total effective enthalpy per unit volume

i,j,k,t,m,n Indices

I, I , I’ Total weighted error with respect to the second law of
thermodynamics

L Length from exit plane of nozzle to point where jetcr attaches to pipe wall

H Local Mach number

Mx P M~ 
Components of M

~~~~~~~~~~~~~~~~~~~~~~~~ 
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n Number of radial stations in finite
difference mesh

-I.

n Outward unit vector normal to contour

N Total number of internal mesh points in cell. Also
total number of adjustable parameters across exit section
of cell

N
i Determinant in Cramer ’s rule

p Fluid pressure

• P Total effective pressure of fluid and of turbulent
fluctuations

Q Total energy per unit volume

r Radial coord inate

R Perfect gas constant

• a Entropy per unit mass

S Entropy per unit volume

• ds, dx, dr Elements of inf initesimal triangle

t Time

T Absolute temperature

u
i Velocity component in cartesian tensor notation

• u, v, w Velocity componentts in cylindr ical coordinates

u* Friction velocity in logarithmic law of the wall

+

V Velocity vector

W Time rate of work done by deviatoric Reynolds stresses
upon deviatoric strain rates of mean flow

Coordinate in cartesian tensor notation

x , r , 0 Cylindrical coordinates

z Error at a point with respect to second law of thermodynamics

Generalized variable at point along exit cross—section of cell

Small change in
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Ths Eron.ck.r delta

£ Eddy viscosity

IC Inverse of turbulent Prandt l number

A Angl. of characte ristic with respect to x axis

0 Vslocity potential

Stream func tion

p Density

D.via toric Reynolds st resses in cartes ian tensor notation

t,~~. T~~~, etc . Dsviatoric Reynolds stresses in cylindrical coordinates

Subscript notation for derivatives

~x~r xr
etc .

Notation for fluctuating quantities

U — u Ensemble average value of u

U’ Fluctuation of u from ensemble average

— (ulu ’) Instantaneous value of u

etc.
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