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Section 1

INTRODUCTI ON

1.1 MOTIVAT ION FOR AN OCEAN FORECASTIN G COMPUTER MODEL

As the sensitivity and effective range of acoustic
detection and weapon systems increases, knowledge of the
detailed oceanic environment in which these systems operate
becomes increasingly important . At present , however , the
Navy has no capability to forecast ocean environmental condi-

tions , and detection and weapon system performance predictions

depend upon coarse analyses of historic and synoptic data.

The Navy Oceanographic Prediction System (OPS) has been

proposed in response to the growing need for such a
capabi l i ty .  The purpose of OPS is to provi de accurate f ive—
day pre dictions of the major characteristics of whole—ocean
regions , and two-day predictions in greater detail in smaller

regions. In many ways OPS will be similar to the atmospheric

prediction computer models which have been developed over the

las t 10 to 15 years.

When its development is completed , OPS will be

integrated into the Primary Environmental Processing System

( PEPS ) at the U .S. Nava l Fleet Numer ical Wea ther Central .
It will there interface with a data analysis and inialization

system , an atmospheric prediction computer model, and ocean-

surf ace wave forecasting models to provide a dynamic

description of the  total  marine environment .

1—1 
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In th is  report and two accompanying reports
(Roberts and Grabowski , 1978a; Roberts and Grabowski ,
1978b), we descr ibe the SAI/NORDA ocean forecas ting mode l.
We believe this model has the features and flexibility to
form the basis of the Oceanographic Prediction System. 

1—2
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1.2 OCEAN FORECASTING MODEL REQUIREMENT S

The capabilities required of t he ocean forecasting
mo de l whe n fu l ly  developed are described in the document
“Operational Requirement~ Oceanographic Prediction System”

drafted by the Director of Naval Oceanography and Meteo-

rology in 1977. The requirements include :

• Variable horizontal mesh resolution
from 100 km for global predictions
to 1 km over areas of 3 x ~~~ 1ç~ 2

• The ability to operate both in a
basic coarse—mesh mode over large
areas , and in a nested fine—mesh mode
which can result in detailed predic-
tions within small areas of high
interest .

• Minimum prediction performance criteria
of temperature to 0.5°C, horizonta l
temperature gradients to O.25°C/km ,
current speed to 5% and direction to
100, and salinity to 0.05 gm/kg.

We have used these requirements as guides through-

out the first stage of model development , which we describe

in this and the two accompanying reports , and we will

cont inue to do so as our developmen t effort proceeds. We
expect satisfaction of these requirements will require a

finite—difference model with between 15 and 20 vertical mesh

leve ls.

1—3 
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1.3 THE SAI/NORDA SIGMA COORDINATE MODEL

The SAI/NORDA Sigma Coordinate Ocean Forecasting

Model is based on the “primitive equations” and it includes

the following features :

• Dynamic predictive equations for the
temperature , salinity, density, and
the three components of current
velocity as functions of location and
depth .

• A sigma vertical-coordinate system to
simplify the treatment of bottom
topography , coasts and islands.

• A parameterization of transport due to
small—scale unresolvable motions based
on gradient transport hypotheses and a
variable , anisotropic eddy diffusivity .

• An option for  user specification of
the coordinate system poles.

• The abil i ty to operate in global ,
hemispherical , whole—ocean , and limited
region modes .

• Non-uniform mesh spacing to make most
economic use of finite—difference mesh
points.

• A stable , temporally implicit , second—
order finite—difference representation
of the model d i f fe ren t i a l  equations
which allows large time steps and which
satisfies important integral properties.

• A formulation of the difference—scheme ,
including boundary conditions , which is
suitable for coding for “vector pro-
cess ing” computers such as the Texas
Instruments Advanced Scient ific Computer.

1—4
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In this report we descr ibe the der ivation of the
model differential equations , their spatial finite—

di fference representation including integral propert ies ,

and appropriate boundary conditions and their numerical

implementation . The implicit finite—difference treatment

of the temporal variation is descr ibed in Roberts and
Grabowski (1978a). The parameter izat ion of the transport
effects of small—scale , unresolvable motion is discussed
in Roberts and Grabowski (1978b).
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Section 2

OCEAN FORECASTING MODEL EQUAT IONS

2.1 OCEAN FORECASTING DIFFERENTIAL EQUAT IONS

In this section we present the basic differential

equations of the ocean forecasting model. We begin with the

fundamental differential equations representing conservation

of mass , heat , salt and momentum . The equations are expressed

in a reference system rotating with the earth. The following

six sections describe the derivation of the model differential

equations in the following order:

1. We introduce basic model variables and
parameters and apply the Boussinesq
approximation .

2. We introduce a system of orthogonal
curvilinear coordinates based on the
earth’s geopotential surfaces.

3. We present a parameter ization of the
heat , salt and momentum transport due
to motions which will not be resolved
in the finite—difference computations .

4. We apply a th in—layer  assumption and
make the hydrostatic approximation.

5. We perform a geometric simplification
and neglect variations of the coordinate
system metric coefficients from their
spherical thin—layer counterparts .

6. We introduce a a—coordinate system to
s impli fy  the treatment of bottom
topography .

2—1
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2. 1.1 Model Variables and Parame ters and the
Boussinesq Approximation.

To the basic system of d i f ferent ia l  equations
which represent conservation of mass , heat , salt and
momentum , we apply the  Boussinesq approximation so thac  we
neglect density differences except in the buoyancy force
term . The Boussinesq approximation is appropriate to the
study of almost all oceanic motions (except the propagation

of sound waves) .  The equations become

V •u  = 0 , (2 . la)

(2 .lb )

= — V.(uS+1) , (2 .l c)

— V • ( u ; u — t )  — 2c~xu — Vp /p

— p V x / p  , (2.ld)

and

p = p (T,S,p) . ( 2 .2 )

In these equations u is the fluid velocity relative to

the rotating reference frame , T is the temperature ,
S is the salinity (the mass fraction of salt), p is the
density (water and salt) and p is the pressure. The heat

source terms c and ~ represent the absorption of solar
radiation and the generation of heat by viscous dissipation ,
respectively. The vector ~ is the ear th’s angular velocity
( I~2 J = 7.292116 x 10~~ radians/ sec),  x is the ef fective
gravitat ional potential ( including the centrifugal po ten t i a l) ,

2-2 
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and p is a mean surface density. The equation of state

(2.2) is included to complete the system.

The fluxes 
~~ ~ 

and t arise from molecular

diffus ion; they are given by

X -DVS

and

1 = , (2.3a—c)

where ~~~ , D and v are appropriate molecular diffusivities ,

and the rate—of—strain tensor

e = ~~Vu + (V u)T] . (2.3d)

We present a particularly useful coordinate system
for the component expression of equations (2.1) and (2.3) in

the following sec tion.

2.1.2 An Orthogonal Curvilinear Coordinate System

We define a left—hande d , orthogonal , curvilinear
coordinate system ( X ,~~,z) base d on the ear th ’s geopotential
surfaces as follows. We let

z = (x 5—x ) / g  , (2.4)

where x~ is the surface geopotential. and g is 
an appropriate

value of the apparent acceleration due to gravity, which

2—3
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will be held fixed over the model extent. Thus z is
approximately equal to the depth measured positive down-

ward from the surface geopotential .* We next introduce
surfaces of constant A and ~ such that the A , ~ and z
surfaces are everywhere mutually orthogonal. We define

the A and ~ surfaces uniquely by requiring that they
coincide on the earth’s surface geopotent ial with lines
of constant longitude and latitude defined in the

conventional manner in terms of the normal to the surface
geopotential .

We now let u, v and w represent the components of
u in the A , ~ and z directions, respectively. We also let

hA , h~ , and h
~ 

rep resent the corresponding metric co-
eff icients where h

~
dX and h~,dp are elements of distance

along a geopotential surface in the east and north

directions , and hzdz is the element of distance normal to
the geopotentials. With these definitions we can express

equations (2.1) and (2.3) in component form in the (X ,4, z)

coordinate system in terms of h
~~
, hq, and h

~ 
and the general

orthogonal curvilinear coordinate express ions for the
gradient and divergence operators.

Since we have not yet derived express ions for the
metric coeff icients , it serves no useful purpose to present
the component—form equations at this point . It is importan t

to recognize , however , that as a result of our definition of

z the gravitational force appears only in the z component of

the momentum equation. In a following section we w ill
propose approximate metric coefficients and present the

component equations.

* The difference between actual depth and z will always
be less than 0.3%.

2—4
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2.1.3 Parameterization of Transport due to Small—Scale
Motion.

A fundamental aspect of the approximation of

differential equations by finite—difference equations is

that components of the solution of the differential system

with scales on the order of the difference—grid spacing, or
smaller , cannot be reso lved. If such small scale components
make important contributions to the complete solution , then
we can expect significant errors in our numerical solution.
In many situations errors arising from inadequate resolution

pose no real difficulty — we simply increase the resolution

of our numerical solution by decreasing the finite—difference

mesh widths . In typical oceanic flows, however , the scales
of motion vary over such a wide range that , even with the

largest existing or planned computers , resolut ion suff icien t
to resolve all of the significant scales is not possible .

The ratio between the characteristic dimensions of the largest

and smallest horizontal eddies in an ocean—sized region is

approximately l:5x108, and the ratio of the corresponding time

scales is on the or der of 1 sec: 1 yr . or 1:3x107 (Woods ,

1977). A numerical model with sufficiently fine spatial

resolut ion to resolve all of the scales of motion would
therefore require on the order of 108x108x105 spatial grid
points (we have assumed that the smal lest vertical motions
also have a length scale of 1cm). The time step at which

such a hypothetical numerical model could advance would be
on the order of one second . Such a model is not feasible .

In this modeling ef fort we are interes ted , in

general , in the large scale features of the ocean circula-
tion , and we expect to be able to adequately resolve motions

on such scales . Such fea tures include the major current

2—5
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systems and mesoscale eddies . Small—scale motions , however ,

may not be neglected since they are responsible for much of

the horizontal transport of heat , salt and momentum and

practically all of the vertical transport . Also , the

dissipation of kinetic energy by viscous stresses operates

at t he smallest scales . In our model , therefore , we

parameterize the effects of the small scale motions in terms

of the large scale , resolved motion.

The parameterization of sub—grid scale motion

is discussed in detail in an accompanying report (Roberts

and Grabowski,1978b) and only the basic results are presented

here . In essence , each dependent variable is decomposed by

a filtering process into a filtered part which consists of

those components of the spatial variation of the variable

with length scales greater than the mesh spacing, and a
residual part which consists of the remaining small—scale

components. The filtering process is also applied to the

equations of motion . The procedure described here is similar

to that fol lowed in the more common Reynolds decomposition
of the equations of motion except that temporal or ensemble

averaging is replaced by filtering . A good discussion of

filtering procedures is presented by Kwak , et al. (1975).

The filtered equations , expressed in terms of the
filtered “grid—resolved” parts an d residual or “sub—grid”
scale parts of the dependent variables are identical to

equations (2.1) (and to their representation in A ,~~,z

coordinates) except that T,S ,u ,v ,w,p and p represent their

resolved—scale components , and the fluxes ~~~~, y and 
~~. 

now
include additional terms (akin to Reynolds stresses) which

represent heat , salt and momentum transport due to the sub-

grid scale mot ion.

2—6 
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We model the sub—grid scale fluxes following an

eddy diffusivity hypothesis. From this point , we will

ignore the effects of molecular viscosity so that

and 
~~~~

, j and r consist only of the sub—grid flux contri-

butions. The fluxes are modeled as follows :

= - BHKH(VT )H

(a) v = — 
~V
KV (V T )V , (2.5a ,b)

~~I~HH = KH(e)HH

= KV(e)~~

and

= . (2 . 6 a — c )

The .i f lux components are modeled in identical fashion to the

~ fluxes. Subscript “H” refers to the horizontal , A and 4,,

components of the vector or tensor , and “V” refers to the
vertical component . The “VH” components of r are and

The quantities KH and K
~ 

are eddy diffusivities

for horizontal and vertical mixing and and 
~V 

are corre-
sponding inverse Prandtl numbers . In oceanic flows , the

motions which make the. major contributions to horizontal

mixing have much larger length scales (and time scales) than

the motions responsib le for vert ical mixing. It is conce ivab le ,

in fact , that in some oceanic simulations the horizontal grid

2—7
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resolution may be sufficient to resolve most of the important

horizontal mixing motions ; however , the grid resolution will

never be fine enough to adequately resolve the important
vertical mixing motions. Therefore , while our horizontal

eddy diffusivity is a function of grid spacing and decreases
as the grid spacing decreases (as more of the horizontal
motion is resolved), our vertical diffusivity is independent

of the grid spacing.

The horizontal eddy diffusivity KR is similar to

that proposed by Smagorinsky , et al. (1965),

KB 
= (Cgt~)

2 (2e1~e~1)~ (2.7)

where i and j  represent A and 4,, and the summation conven-
tion is assumed. The quantity Cg is an adjustable constant

(about 0.1), and ~ is a characteristic horizontal finite—
difference grid spacing.

The vertical diffusivity Ky is given by an approxi-

mation (Martin , 1976) to the Mellor—Yamada Level 2 diffusion

model (Mellor and Yamada , 1972). We specif y

Ky 2.2(z) [(
~~~
)

2 
+ (

~ J)2]~~~~~~~~~ 3/2 
(2.8a)

where the Richardson number

R = N2/[ (~~ ) + (~~7)2} , (2.8b)

and the critical Richardson number

— 0.23 . (2.8c)

2—8
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The quantity 2.(z) is a suitable vertical turbulent length

scale , and N is the Brunt—Vaisala frequency given by

N2 
= £_ 1(12.\ - I.~_2.\ .~21 (2 8d)p0 [\az/~~~4, ~

3
~~ TS azJ

where (aP/
~
p)TS is determined from the equation of state.

The Richardson number in (2.8) is a measure of the degree
of balance between the stabilizing effect of the density

gradient and the destabilizing effect of the flow shear.

As R approaches its critical value R
~
, the stabi’izing

effect overwhelms the destabilizing effec t , no mixing can
occur , and Ky goes to zero . We add a small exponentially

decreasing vertical diffusivity CV exp(—z/zV) to account for

those regions where KV as given by (2.8) is very small or zero.

Appropriate values of 
~H 

may be in the range 1.4

to 1.6 — typical values for unstratified turbulent shear

flows (Launder , 1975). The experimental data of Webster

(1964) taken in a stratified free—shear flow suggest that

as R varies from 0. to 0.25, 
~V 

varies from 1.6 to 1.0.

The decrease in as R increases is due to the fact that

as R increases , the relative contribution of internal wave

motions to the small—scale motion increases . Internal waves

transport momentum but not heat and salt. Some dependence

of 8V on R , based on the experimental data , will be included

in the model.

With the specification of suitable boundary condi-

tions , and an equation of state , we have a completely

formulated problem suitable for  numerical s imulat ion .
However , several important simplifications may be applied.

* To obtain (2.8d) we made use of the fact that to a good
approximation the specific heat ratio of sea water is unity.
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2.1.4 Thin—Layer and Hydrostatic Approximations.

We now proceed to simplify the comp lex , parame-
terized equations described in the previous sections. We
assume that , in terms of the curvilinear coor dinate system
introduced above , scales of motion in the z—direction are

much smaller than the corresponding scales in the A and 4,
directions so that w << u and v. This is a thin-layer

approximation motivated by the fac t that the lateral
dimensions of ocean forecast regions will be much greater
than region depths. We do not assume that derivatives in
z of terms involving w are small. We also assume that in

the z component of the momentum equation all of the terms

involving velocity are small compared with the buoyancy
and pressure gr~dient terms .

With the above assumptions , we reduce the z
momentum equation to the hydrostatic relation

= pg , (2.9)

and we neglect several terms involving w in the A and 4,
*components of the momentum equation .

2.1.5 Geometric Simplification - .

To the complex system of equations derived as

descr~~ed in the four previous sec tions , we perform a final
simplificat ion. As of this point , the componen t equations
are represented in terms of the undetermined metric

* To obtain (2.9) we make use of the fact that the vertical
metric coefficient h

~ 
Is given by g/~ Vxj
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coefficients hA , h4,, and h
~
. We mak e a thin-layer spherical-

geometry approximation and neglect variations of h
~ 

and

from their spherical thin-layer counterparts so that

hA = acos4,

and

= a , (2.lOa ,b)

where a is the mean radius of the earth. The error intro-
duced into the equation system by this approximation is

negl igible .

We further neglect the small difference between

h
~ 

and uni ty  and replace h
~ 

= g /lV x j by

= 1 . (2.11)

The maximum difference between g and V
~~~l will always be less

than 0.3~ .

With these final simplifications and with the

definition f = 2c2sin4,, the system of differential equations

becomes:

+ ~~(vcos~ ) + }_ (wacos~ ) 0 , (2.12a)

T = - acos4, ~h~uT+~ x~ + ~~~[(vT+q4,)cos~]

+ }._ ~(wT+q )acos~ J f 
+ , (2. 12b)
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= - ac~s~ ~~
9 A [

~~~~~~~ A J  
+ ~~~~~ ( v3+Y

4,
) c05~~

J

+ ~
_.

f(wS+Y )acos~ J} 
(2.12c)

= - 

acos4, ~~ Iuu_ T Ax ! + h ~~~~ T4,~ )cos~J

+ F [(wu_T Z~ )a cos~ J

+ ( vu_ r 4,~
) t~~ 4, + vf — p0a~os4, E~A 

‘ (2.12d)

= - acos4, j~~~
[uv r

x4,J 
+ ~~~[

(vv .r
4,4,) cos~J

+ -
~~~~~ [(wv_T z4,)acos~ Jj

— (uu_T
~~
) tan4, — uf — p 0a ~~ ‘ 

(2.12e)

and

= gp . (2.12f)

We obtain expressions for the sub—gri d scale heat

and salt fluxes in (2.12b) and (2.12c) from (2.5). To the

spherical thin—layer approximation , the gradients of scalars

such as T and S are given by
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~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~ -- . -. - - -~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~~~~- --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~
—

~~~
.
~~~~~

- ---
~~
--.--,. - .-------— ---, —.--- 

V T= ~
acos4, 9A a 34, 3z

so that

8HKH 3T
= - acos 4, ~~

- 

8HKH 3T
a 34,

and

= — 
~ V’

~V ~~ 
, (2.13a—c)

with similar expressions for y~~, y4, 
and y~~.

The sub—grid scale momentum fluxes are obtained
from (2.6). To the spherical thin—layer approximation , the

five relevant components of the rate of strain tensor are

2
~~~ 

= 
acos4, ~~ 

- vsin4,

e4,~ 
= 
acos4, 

+ ~~cos~ + usin~~

_ 3ue
~~~

— -
~~

_ 2 3ve4,4, ~~~~~~~~~~~~~~~~~

and

e
~ 4, 

= (2.14a e)
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With these expressions the sub—grid scale stresses are given

by

T A X = KHeAA

= K~e4,~

= Kve~~

T
4,4, 

= KHe4,$

and

T
z4, 

= K
~
e
~ 4, 

. (2.15a-e )

The horizontal diffusivity in the above expressions for the

sub—grid fluxes is obtained from (2.7) and is expressed in

terms of (2.14) as

= (Cg~)
2 
[2(e~~ 

+ e~ 4, + 2e
~~)J~ 

. (2.16)

The vertical diffusivity is as given in (2.8)

We will express this system of model equations in

terms of a new vertical variable a as described in the next
section .

2.1.6 Sigm a Coordinates

In this section we in troduce a new vertical
coordinat e a to rep lace z such that as z var ies from the
surface to the bottom a varies from zero to one .
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The lateral region over which our ocean forecasting

code is to be applied is always rectangular in A and 4,, and

it is described by

A w < A 
~~ . 

XE (2.17a)

and

(2.17b )

where the subscripts W , E , S an d N represent the Wes t , East ,

South and North boundaries , respectively. We specify that

land areas which appear in the region , both along the

boundaries and in the interior , be depressed and covered

with a thin layer of water. En this way we avoid the
problems associated with fitting a lateral mesh system to

an irregular coast or about an island. These problems are

especially severe when difference schemes are progr ammed
for a “vector processing” computer such as the Texas
Instruments ASC. The absorptivity of solar radiation of

this overland water will be zero , as will the surface heat

flux and the applied wind stress. The small fluxes of mass ,

heat , sal t and momentum across land areas which may occur
will not cause difficulties .

The vertical extent of the solution domain is

Zb < z < z~~ (2.17c )

where z~ ( X ,~~) and z5( A ,4,,t) are the ocean depth and surface

elevation measured positive downward from the surface geo—

potential . An extensive data base exists for z~ (A ,~~) in

all ocean regions . In order to simplify the numerica l
treatment of the differential equations , we apply a simple
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transformation to z such that as z varies from z5 to zb,
a transformed variable a var ies from zero to one . We
define

in [1 + (z—z )/ t5 j
— 

in (1 + (zb
_z
S)/ôJ

The quan tity 6 is a parameter which can be adjusted to
ensure that the finite—difference representation adequately
resolves the vertical variation of the dependent variables

in the upper ocean. As a result of our choice of trans-

formation , a finite—difference grid system equi—spaced in

~ expands geometrically with z, with spacing proportional

to 6+z.

To transform equations (2.8) and (2.12) through

(2.15) to the sigma—coordinate system , we make use of the
following results. Let f be any function of A , 4, and z,

then in terms of A , 4, and c , A— derivatives of f are written ,

using the chain rule ,

= (}~) + }~ , (2.19a)

An elementary application of the chain rule yields

(i~ \ fi~.\ (i~\ = -1\3A /
~ 

\~ z I 0 ~
3 o /

~

so that

I~ f\ 3f ~~ (2 19b)- 

~
5•
~ ~~~~) .
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This last result may also be written as

= -

~~~~~ 
Ih(~

) — -b (4~)J 
(2.19c)

with the A—derivatives on the right—hand side taken with a

held fixed. Similarly

— /3f\ + ~~~

~~~

— f3f\ 3f 3a f3z\
— 

\3~~
/
~ 

— 
3a 3z

= 

~~ Ih (f.~~) . (2.19d—f)

Derivatives in z transform simply as~

(2 20)3a 3z

If  f is also a funct ion of t then

= 

~~~~ 
+ (~ ) . (2.21a)

From the chain rule , we can obta in

2—ic 
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— /Da\ /3z\
—

so that

f 3 f \  — /3f\ 3f 3a 3z 2 21\atl \3tJ a 3a ~~~~~~ ~~~~~~ 
, ( . b )

where the subscripts are unders tood.

The model differential equations transformed into

the (X ,4,,a) coordinate system are presented below . It is

useful to def ine

— u 3z v 3 z
~~

_ W _
acos4,~~~~

_ i
~~~ 

(2.22a)

with this definition ~ is the fluid velocity normal to the

constant a surfaces . Th at w does not simply equal w results
from the fact that the a surfaces are not coincident in

general w ith geopotential surfaces . We also define

= - 
~~~~~

~~ acos4, 3A a 34,

— 

1X 3z
1a z a c o s 4 ,~~~~~~~~~~~

— 

T AX 3z 3zTaX — T
~~X 

— 

acos4, 5~~ 
— a

and
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T t
T = T — 

A 4 ,  .~~~~~ — ~~~ -
~~~~~ (2 22b—e)

z4, acos4, 3X a 34’

These quantities represent the sub—grid scale flux of heat ,

salt and momentum across constant a surfaces .

The forec asting model different ial equations
transformed from (2.12) are :

+ 
h(vcos4’~~) 

+ h(wacosq,) = 0 , (2.23a)

T — 
~~~~~~ 

= — 

acos4, fb[ (uT +~x~~ I + ~~~[(vT+q4,
)cos4’.~~ J

+ h[(wT+~a)acos4’JJ 
+ , 2.23b

— 
5~
Z = — 

acos4, 
-

~~~~~ lb I(u5+1A4~i 
+ h [vs+-’r

4’
cos4~J

+ F , (2.23c)

ii — = — acos4, ~~~~ 1F !UU_ T X X I  
+

+ h[ (wu_T aX )acos4’J! 
+ ( vU...T

4’X
) 

tan4,

+ v f -  1 E!2 _ i2i~~!~ 1
p0acos4, 1 3X 3a 3z 3A 1 ’

(2.23d)
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= - 

acos4, ~~ fh  i(~~
_T

A4’
)
~~~J 

+ fr(( vv— r 4,4 ,) cos4 ’i~J

+ 1 v_t
a4,)acos4’J

J 
- ____

p 0a 34’ 3a 3z 34, ‘ (2.23e)

and

(2.23f)

The time rate of change of z at constant X ,4, and a which

appears in the equat ions is determined from the analytic
relation between z and a. We differentiate (2.18) with

respect to time to obtain

/6 + z— z
~~~~~~~~+ Z Z )  

. (2 .24)

The rate of change of the surface elevation z~ , is given by

a surface boundary condit ion presented later.

The sub—grid scale heat fluxes given in (2.13)

transform to

— 

BHKH / 3T 3T 3a— — acos4, ~3X 3a 3z 3X/

BHKH 13T 3T 3a 3z~
a ~34’ 3a 3z 3$)
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and

= - 

~~~~ ~~ 
. (2.25a-c)

The salt fluxes 1X’ Y4, and ~z 
transform similarly.

The components of the rate of strain tensor (2.14)
trans form to

— 2 j3u 3u 3a 3z .
eXA — 

acos4, ~~~~ 
— — vsln4’j

— 1 [3v 3v 3a 3z + j3u 3u 9a 3ze4,A acos4, 13X 9a 3z 3X ~34, 3a 3z 34,) cos4,

+ usin4’j

= I ~~i~
~~~ 3a 3z

— 2 (3v 3v 3a 3z~e4,4, a ~34, 3a 3z 34,!

and

3v 3ae
~4, 

= -
~~~~~ 

. (2.26a—e)

The expressions for the sub—grid momentum fluxes are (2.15)

with the above representat ion for the strain rates.
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In the sigma coordinate system the horizontal

diffusivity KH is as given by (2.16) with the appropriate

transformed express ions for eAX , e4,4’ 
an d e

4,~~
. The vertical

diffusivity defined by (2.8) becomes

I ~ 21 fr
= 2.2(z) [(u) + (

~
) J .

~~~~~ 
(1_R/R c)

3/2

where

= N2/JL(p) + ( 3 V)
2

J ( ~~~~~)
2 I

R = O . 2 3

and 

N2 = 

~~ 

- P~(~~ )~ 81 
. (2.27a-d)

We have made use of (2.12f) in obtaining (2.27d) from (2.Sd) .

The sigma—coordinate differential equation system

which we have derived is completely specified with the in-

corporation of the equation of state. It is this system

which will be approximated and solved numerically by our

ocean forecasting computer model.
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2 . 2  EQUATION OF STATE

There exist numerous formulations of an equation
of state for seawater , of which the most widely known is
probably that developed many years ago by Knudsen
(Fofonoff , 1962). There is at present much activity in

this field and recent emphasis has been on the development
of thermodynamical ly consisten t formulations , that is , on
formulations which not only accurate ly represent the
variation of density with temperature, salinity and

pressure, but which also provide accurate sound speed
predictions. Among the best of these recent formulations

are two developed by Chen and Millero (1976 , 1977).

These formul as are of the general form

p = 
~~/[i 

+ P/(K
0 + AP + ~p2)} , (2.28a)

where Pt 
Is the density at the in situ temperature and

salinity but at a standard atmospheric pressure (1.013 bar),

and P is the difference (in bars) between the actual and

standard pressures

P = p — 1.013 (in bars) . (2.28b)

The densities p and p.~ are in units of gm/cm
3 . The

quan t i t i e s  P t ’  K° , A and B are given as func t ions  of T
and S.
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In the first Chen and Millero formula (1977)

the computat ion of these quantities involves 48 parameters
and the state equation is valid over the range

5< S < 4 0 % 0

O < P < 1 0 0 0  bars ,

and

- 2 < T < 40 °C . (2.29)

The second Chen and Millero formula (1977) is a simpli-

fication of the first for use in the open ocean involving
23 parameters. It is valid over the range

30 < S  < 40%~

0< P < 1 0 0 0  bars ,

and

- 2 < T < 40 °C . (2.30)

The second Chen and Millero formula will be
incorporated into our ocean forecasting code . The

quant i t ies  p.s , K0 , A and B are given by

= 1.0281045 - 5.35633x10 5 T - 6.78195x10 6 T2

+ 7.0517x10 8 T3 -8.4794x10~~° T
4 + 5.057xi0~~

2 T5

+ (8.0792x10 4 — 3.248lxl0 6 T + 6.423x10 8 T2 — 6.490xl0~~
0 T3)

x (S — 3 5 ) + 2.045x10 7 (S — 35)2
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K° = 21585.72 + 132 .5657 T — 2.0860 T2 + 8.7648x10 3 T3

+ (56.928 — 0.2975 T) (S — 35)

A = 3.40075 — 7.6371x10 3 T + 2.9651x10 4 T2

(2.287x10 3 — 3.255x10 4 T) (S — 35)

and

B = 2.211x10 5 
. (2.31)

With (2.28) we may now evaluate

(3 p\
\~3 PITS

which appears in the definition of N2 (2.27d). Differ-

entiating (2.28) we obtain

f3p\ = 
K° - BP2 . (2.32)

~~P)TS 
- 

P
t (K

0 + AP + BP2)

To conclude this section we note that Chen and
Millero are at the time of this writing developing a new

formu lat ion un der the guidance of The UNESCO /ICE S/ SCOR/ IAP SO
Joint Panel on Oceanographic Tables and Standar ds. This
formulation , which will have the same general form as (2.28),

is meant to be definitive and we will incorporate it into

the computer code when it becomes available late in (1978).
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2.3 MODIFICATI ONS TO ALLEVIATE ROUNDIN G ERROR

Our ocean forecasting computer code will be

programmed for the TI—ASC in single—precision arithmetic.

The use of double precision increases the computation time

for typical operations by a factor of about four. Since

single precision arithmetic corresponds to roughly 6 to 8

significant figure accuracy , we must take care to alleviate

as much as possible potential difficulties associated with

round—off error. In this section we describe a modification

to our ocean model equations which will help ensure that

rounding error is kept to a minimum . As we encounter

difficulties associated with round—off error in other

aspects of our model , we will take appropriate steps to
alleviate them .

2.3.1 Introduction of Reference State Density and
Pressure

In the geostrophic approximation all of the terms

in the horizontal momentum equations vanish except for the

Coriolis and the pressure gradient terms , and , although in

our ocean model we are not applying such an approximation ,

these terms will dominate the others. Their accurate

calculation is thus very import an t .  The Coriolis force
term , being simply a product , poses no special difficulties ;

however , the pressure gradient term does. The pressure is
obtained from the integration of (2.23f), and except near

the sur face , the pressure is very large compared with the 
•

surface pressure . The hor izonta l gradients of pressure
which play a major role in the circulation dynamics are
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very small compared to the vertical gradients so that round-

of f  error associated with the  pressure integrat ion can pos e
serious difficulties .

In our (X ,4,,a) coordinate system the round—off

problem is especial ly acute. Cons ider the hor izontal pressure
force in the A direction , from (2.23d)

— 
1 1f~ \ — -~~~~~ -~~~~~ 

(i~\ (2 33)p
0acos4, ~

\3A! 0 3a 3z \3A /

Over much of the ocean (3z/3A)0 will be small since the
bottom topography changes slowly with A as does the surface

elevation z5. Near the coasts , however , and at other

locations where the depth variadon is large , (3Z/3A) a will

not be smal l, and since (3p/3A )a then includes a significant
vertical (z ) componen t , the two terms in (2.33) are both

very large . They are , however , almost equal so that the ir
dif ference , which is the horizontal pressure gradient

( 3P/ 3X ) z~ is small. The subtraction of two large but almost

equa l numbers is the classic example of a situation in which
round—off error can significantly degrade the accuracy of the

• result.

To reduce as much as possible the potential for

significant rounding error , we modify the pressure with the
introduction of a re ference pressure given by

3p
= P~~( Z)~~ , (2.34)
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where Pr(Z) is a specified reference density distribution .

A suitable reference density distribution might be obtained

from a mean of oceanic observations. At z = Zr~ 
we specify

that 
~r 

be a global mean atmospheric pressure 1
~ra~ 

We
subtract (2.34) from the hydrostatic relation (2.12f) in

(X ,4’,z) coordinates and obtain

31! 
_____= 

g( r) , (2.35a)

where

= 

~~r~ ”~o 
. (2.35b )

Since 
~r 

is a function of z only , we can replace p/p0 in

the momentum equations in (A ,4,,z) coordina tes by 11. When
the equations , in terms of 11 , are transformed into the

(X ,4,,a) coordinate system , the resulting equations are

identical to (2.23) except that , in the horizontal momentum
equations and the hydrostatic relation , p/p0 is replaced by

11. Thus the hor izon tal pressure gradient terms are

1 / 3r t 311 3c 3z\ 2 36- acos4, ~-x — 
~~~~ 

( . a)

in (2.23d) and

1 (311 311 3a 3z (2 36b)a ~34, 3a 3z 34,

in (2.23e). The hydrostatic relation becomes

= g(P;
P
r) -~~~ . (2.37)
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2.4 USER-SPECIFIED POLES

A feature which will be incorporated into the
ocean forecasting model is an option for user—specified

location of the coordinate system poles 4, = ±900. The

user—specified pole feature will be useful in both whole—

ocean and limited region forecasts since with its applica-

tion A and 4, coordinate lines can be aligned with major

features of the ocean region under consideration. This
possibility is especially attractive in conjunction with

the variable—mesh—width finite—difference scheme described

later in this report .

A second application of the user—specified pole

feature might be to limited—area forecasts in high latitude

regions. Since the “equator” of the coordina te system ,

4, = 0, can be specified as passing through any point on the

earth’s surface , a X—4, mesh system for a limited region

which is nearly rectangular in distance is possible anywhere .

An example of the utility of this feature is that our model

can be applied directly to forecasts of the North Polar Sea

without the grid— related numerical difficulties generally

encountered near the geographic poles.

A third application of the user—specified pole

feature will be to very large region forecasts (hemispherical

or global) which include the polar regions . In these cases ,

the coordinate system poles can be located over land masses
so that , as mentioned above , numerical dif ficult ies
assoc iated with flow near the poles are avoided.- ‘ Two pairs

of overland antipodal locations which might be suitable for

global forecasts are 30°N 110°E - 30°S 70°W (Western China—
Argentina) and 75°N 40°W - 75°S 140°E (Greenland—Antarctica).
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The variab le—pole capability will require a simple

data transfer subrout ine to convert data reported at con-
ventional longitude—latitude points to the model A-4’
coordinates . If (X~~ 4’~ ) is the desired geographic location

of the “north” pole in terms of conventional longitude and
latitude , then a new longitude—latitude system is given by

* —1 cos4, sin (X —A)
— a sin4, cos4’~ _cos4’ sin4’~ cos (X~ _A)

• (2.38a)

and

= sin 1 
[cos4’ cos4’~ cos (A~ _A ) + sin4, sin4’~ J

(2. 38b)

where we have d’~fined

A * = O a t  X = X — n

The new coordinate system has one of its poles at (A ~~ 4’~ )

and its zero meridian passes through the geographic North

Pole.

We emphasize that the computer code input and out-

put will always be in terms of conventional longitude and
• latitude . The Coriolis parameter f must , of course , also

be determined from the conventional latitude .
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2.5 BOUNDARY CONDITIONS

In this section we present appropriate boundary
conditions for the ocean forecasting model equations described

in the previous section . We remind the reader that the

lateral boundaries are located at XW ,AE,4,S and •N’ and that
the ocean surface and the bottom are located at a = 0 and
a = 1, respectively . We present ocean surface and bottom
conditions , and three types of lateral boundary conditions :
no—flux, flux , and periodic In longitude

2.5.1 Ocean Surface Conditions

In this sect ion we descr ibe a set of ocean surface
boundary conditions. More sophisticated parameterizations

of the transport of heat and momentum across the ocean
surface and of the effects of evaporation and precipitation

may be implemented as the forecast ing model is developed .

In what follows the subscript “s” will be used to denote
quantities evaluated at the surface.

At the ocean surface we require

D
~~(z—z5

) = F5 , (2.39a)

where is the net volume flux of fresh water at the surface

due to precipitation and evaporation (precipitation makes a

positive contributIon to F5). In terms of the fluid velocity
in the a d~rectIon defined in (2.22a) we have
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= w — F5 . (2.39b)

Equation (2.39b ) will be solved numerically in time for z~
as part of the overall solution process.

To obtain a surface condition for T we assume that
either the surface water temperature or the heat flux through

the surface , q5 , is specified. The surface heat flux might be
expressed in terms of the surface temperature and -salinity.

When the surface temperature T5 is specified , the boundary

condition on T is obviously

T = Ts(X ,4,,t) . (2.40)

The heat flux through the surface is specified by

= q5(X ,4,,t ,T5,S5) . (2.41)

We require that there be no flux of salt through
the ocean surface. To satisfy this condition we specify

= — F5S5 . (2.42)

We will demonstrate that (2.42) is the appropriate condition

for zero surface f l ux  in SectIon 2.6 (see equations (2 .54 )
and related discussion).
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The surface windstress will be estimated from the

near surface wind velocity using the simple formulas

~a 2 2TaA ,s 
= — CDUa T(ua 

+ va)

and

~ 2 2~~= — CDva ~~~~~ 
÷ va) , (2.43a ,b)

where CD is an appropriate friction coefficient , ua and va
are the longitudinal and latitudinal components of the

surface w ind ve locity, and 
~a 

is a mean air density .

Typical values of CD are about 3 x 1O~~ (Sverdrup , Johnson
and Fleming, 1942).

Finally, we require that at the sur face the pressure
p equals the specified atmospheric pressure 

~~~~~~~~~~ 
In

terms of the modi f ied pressure , we require

Us = 
~Pa~~r s )J~’c~o . (2.43c)

2.5.2 Ocean Bottom Conditions

In this section we p resent a set of ocean bottom
boundary conditions. Subscript “b” will be used to refer
to quant ities evaluated at the bottom. We assume that the
model predictions will not be very sensitive to the imposed
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bottom boundary conditions so we are permitted some

flexibility in their specification . Should any of the

approximate conditions presented here prove inadequate ,

it will be suitably modified.

The condition that fluid does not cross the ocean

bottom is given by

D (z_ z b ) = 0 . (2.44a)
Dt

Since Z
b 

= 0 we have , in our (X ,4’,a) coordinate system ,

= 0 , (2.44b)

which will be used to initialize the vertical integration

of (2.23a) for 
~~
.

The bottom condition on T is obtained from the

condition that there be no bottom heat flux into the ocean ,

that is,

= 0 . ( 2 . 45 )

Similarly we require

1a ,b 
= 

‘ (2.46)

as the bottom boundary condition on the salinity.

4 . . . . . . . . . . . . . . . . . . . C • - C S • • ‘ — .

Finally, conditions are required for the u and
v velocity components. We propose
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6z 3u~ — AU + — —~~0 —

and

+ Sz 3v~ — 0V a —

where
2 2~~u+v

(2.47a—c)

c5z is the distance (in z) between the bottom and the first

finite—difference mesh point above the bottom , and ôa is

that ‘~grid spacing in terms of a. The quantity d is a

bottom—layer thickness length scale. 
•As either N or the

• Coriolis parameter increase , d decreases corresponding
to the suppression of vert ical transport by buoyancy forces
in the forme r case and to the occurrence of a thin Ekman
layer in the latter.

The me aning of (2.47) is made clear by the con-
sideration of two limiting cases , Sz >> d and Sz << d. When
cSz >> d , we have no hope of resolving the bot tom boun dary
layer so a no—slip bottom condition cannot be applied . In

this case (2.47a) and (2.4Th) become

-~anu ~~~= o

When 6z < d , we do expect to be able to resolve the bottom
layer. In this case (2.47a) and (2.4Th) become

u 0 and v = O
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which is just the no—slip condition . The signs in (2.47a ,b)

have been chosen so that in the intermediate case the

velocity gradient has the correct sign .

2.5.3 No—Flux Lateral Boundary Conditions

No—flux lateral boundary conditions are unphysical

except at boundaries located over lan d areas . Such will be
the case in whole ocean forecasts where the boundar ies will
be located ove r , but near the coasts of , the surrounding

lan d areas .

For the heat , sal t , mass and momentum fluxes to
vanish at a longitudinal boundary, we require

1A 0 
‘

and

u 0

We also require a condition on v , the velocity component

parallel to the boundary , and we specify

= 0 . (2.43a—d)
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No—flux conditions at a latitudinal boundary , 4,~
or 4,N’ are specified in similar fashion as

q4, = 0

v 0

and

= 0 . (2.49a—d)

2.5.4 Flux Lateral Boun dar y Con ditions

Flux lateral boundary conditions will be applied

in limited region forecasts when T , S, u , v and z5 are
specified along the region boundaries . This will typically

be the case when high—resolution numerical forecasts for

limited regions are imbedded into lower resolution forecasts

for larger regions. In such cases care fu l in terpolation
procedures must be used in the generation of lateral boun dary
conditions for the high resolution computat ion from the

lower resolution predictions .

Alon g inflow boundar ies (where the velocity normal

to the boundary is directed into the region), we have

T, S, u , v an d z5 specified. (2.50)
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Conditions (2.50) will be obtained by interpolation from a
large region , low resolution forecast.

Along outflow boundaries we require that the second

spatial derivatives of T and S normal to the boun dary be
zero , and the velocity component normal to the boundary be

specified. We require the second derivative of the velocity

component parallel to the boundary be zero , and z~ be specified.

Along the longitudinal boundary the outflow condi-

tions are

~

3A 2 
0

u specif ied

3A 2

an d z~ specified . (2.51a-e )

Along a latitudinal boundary the outflow conditions are

32T — 0
34,
2

32S 0
34,2
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v specified

2
= 0

34,2

an d z5 specified . (2.52a—e)

We apply second—derivative outflow conditions since specif i—

cation of the quantities themselves will in general lead to

numerical problems associated with the development of a

narrow “boundary layer” at the boundary (see the discussion
of “wiggles” in Roache , 1972). The velocity component normal

to the boundary can be specified , however , since the develop-
ment of a “boundary layer” for this quantity is prevented

by the action of the pressure gradient normal to the boundary .

• We add a constraint to our interpolation procedure

for the velocity component normal to the boundaries . We
require the appropriate numerical representations of the net

volume flux into the limited region be the same for both the
low and high resolution forecasts . This is essential to

ensure a consistent low resolution forecast.

2.5.5 Periodicity Conditions in Longitude

Periodicity conditions in longitude will be

appropriate for hemispherical and global forecasts. In

terms o f our boun daries AW and XE, we simply set
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Aw o°

XE = 360
0 (or equivalently , 2i1 )

z(XE ) = z ( A w)

• T (AE) = T ( A w)

S ( A E ) S ( X W)

u ( X E) = u(XW)

and

v ( A E) = v ( X
~
) . (2.53a—g)
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2 .6  INTEGRAL PROPERTIE S OF THE MODEL EQUATION S

In this section we discuss integral properties of

• the model differential equations (2.23). These properties

• provide guidance in the development of the numerical repre-
• sentation of the equations by finite differences.

Equations (2.23b ) and (2.23c) represent the con-

• servation of heat and salt. It is easy to integrate them

over the forecast region Aw < A < XE, 4,S ~ 4, 
~ 

and

O < a < 1. We make use of the surface an d bottom conditions
(2.39), (2.44), (2.45) and (2.46) to obtain

L J
TdV = - f  (~ T+~).~~LdAL +f(F5Ts+~a5)dA5

V AL A5

and 

+ (2.54a)

h f  SdV = - f  (US+l).c
~L
dAL + f(FsSs+~Yas)

dAs
• v AL

(2. 54b)

where

dV = a2cos4,dXd$-~~da

is the element of volume , AL is the surface area of the
la teral boun dar ies , 

~L 
is the local un it normal to the
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lateral boundary (directed outward), A5 is the ocean region

sur face area and

dA5 = a2 cos4 ,dAd4 ,

Equations (2.54) demonstrate that the rates of

change of TdV and SdV integrated over the forecast region

are equal to the appropriate net fluxes into the region

through its boundaries , plus the volume integrals of any

sources with in the region. We see that  with the surface
salinity condition (2.42), the surface salt flux is zero .

S . .

We can also derive a second property of (2.23b )

and (2.23c). We neglect the sub—grid fluxes of heat and

salt and the source term c. We multiply (2.23b) by T,

(2.23c) by S and integrate over the forecast region . We

make use of continuity (2.23a) and the kinematic conditions
at the surface and bottom , (2.39) and (2.44), and we obtain

-k f  ~T2dV = - f  ~T 2o.
~~LdA L + f  ~T

2F~dA5
V AL A5

(2.55a)

and

h f  ~s2dV = - f  
~~~~~~~~~~ 

+ f  ~S~ F5dA5
V AL

(2.55b )

EquatIons (2.55) demonstrate that under advection the rates

• of change of the volume integrals of T
2 and S2 simply equal

the fluxes of T2 and ~2 through the region boundaries .
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This property is especially useful in the development of a

finite—difference scheme which is not prone to “non— linear

instability ” .

Finally , we may derive an integral p roper ty of the
horizontal momentum equations (2.23d) and (2.23e). We use

the modified pressure terms (2.36), neglect the sub-grid

stresses, and multiply (2.23d) by u and (2.23e) by v. We
add the resulting equations and integrate over the forecast

region V. We make use of continuity (2.23a) , (2.39) and

(2 .44 ) ,  and we obtain

-k f  (u 2+v2 ) dV = f  w ~~ i~~

~ ~~~~~~~~~~ 
+ ~ (u 2+v2 )F5 J d A5

- + ~(u
2+v2)j IJ C IILdAL

AL
(2. 56)

Equation (2.56) shows that with the neglect of the sub—grid

f luxes , the rate of change of the total system horizontal

kinetic energy is equal to the work done against the

buoyancy forces , plus the energy flux and pressure work at

the boundaries . The energy lost doing work against the

buoyancy forces is added to the potential energy of the

system. We will require that our finite—diffe rence repre-

sentation of the horizontal momen tum equa tions satisf ies a
finite—difference representation of (2.56).
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2.7 OCEAN FORECASTIN G MODEL SUMMARY

Since we have presented a great deal of material

in this section , it is probably useful to conclude it with

a swmnary of the ocean forecasting model equations which we
have developed. We present such a summary in Table 2.1.

The extent of the forecast region is given by
(2.17), and we have introduced a transforme d ver tical co-
ordinate a in (2.18). The model differential equations are

(2.23) but expressed in terms of the modified pressure II

defined by (2.35), with the lateral pressure gradients given

by (2.36) and the hydrostatic relation by (2.37). The time

rate of change of z at constant a is given by (2.24) in

terms of z5. The mean velocity and the sub—grid fluxes in

the a direction are defined in (2.22), and the sub—grid heat

and salt fluxes (in the X ,4, and z directions) are given by

(2.25). The sub—grid momentum fluxes are expressed in (2.15)

with the components of the rate—of—strain tensor given by

(2.26). The horizontal sub—grid diffusivity is given by

(2.16) with the appropriate expressions for eAA , e4,4, 
and

e4,A from (2.26). The vertical sub—grid diffusivity is given

by (2.27) with N given by (2.32). The equation of state is

(2.29).

An option for user specified poles is described

in Section 2.4, and expressions for A and 4, in the coordi-

nate system with poles located other than at 4, = ±900 are

given by (2.38).
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Ocean surface boundary conditions are given

by (2.39) through (.2.43), and bottom conditions by (2.44 )

through (2.47). No—flux lateral conditions are given

by (2.48) and (.2.49). Flux conditions are given in (2.50)

through (2.52), and periodicity in longitude by (.2.53).

The reader will probably recognize that we

have left several loose. These will be tied down during

the second phase of model development . We will develop

a relationship based on experimental data between 
~V 

and

the local Richardson number . We will incorporate a
- -  

suitable model for the absorption of solar r~diâtion us—

ing the extinction curve of Jerlov (.1961) or more recent

work. We will develop an appropriate turbulent length

scale specification technique , probably by relating it

to a model predicted estimate of the mixed—layer depth.

We will incorporate at parameterization of surface

evapora tion , including evaporative heat flux .
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Section 3

SPATIAL FINITE-DIFFERENCE REPRESENTATION

We obtain finite—difference rep resentations of

the ocean model equations fo llow ing a “box ” approach

similar to that described by Bryan (1966). The difference

equations are constructed to be second—order accurate in

the mesh spacing, and to have four important conservation

properties . The numerical scheme we have developed ensures
in the absence of temporal dif fe rencing errors , that

1. the time rate of change of a represen-
tation of the volume integrated heat
and salt within the computational region
is exactly equal to the net heat and
salt flux through the region boundaries;

2. the t ime rate of change of representations
of the volume integrals of the quadrat ic
quantities T2 and S2, are zero un der the
act ion of the advection terms ;

3. the time rate of change of a represen ta-
tion of the volume integrated horizontal
kinetic energy (u~+v

2)/ 2 is zero under
the action of the advection terms ; and

4. the rate of increase of the representat ion
of the volume integrated kinetic energy
under the action of the horizontal pressure
gradient is equal to a natural represen-
tat ion of the rat e of work done by buoyancy
forces , plus the rate of pressure work at-
the boundaries.

The first of these properties is the finite—differ-

ence equivalent of (2.54), the second is the equivalent of

( 2 . 5 5 ) ,  and the third  and four th  are the equivalent of ( 2 . 5 6) .
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By requiring that positive—definite quantities

remain boun ded , the second and third of these four pro-

perties free the scheme from the problems associated with
“non—linear instability ” . An important corollary of the

third and fourth properties is that the rate of change of

the total horizontal kinetic energy is exactly equal to the

work done by buoyancy forces and the surface pressure (in

the absence of turbulent stresses and boundary f luxes )
since the Coriolis force and the “geometry” terms vutan4,/a
and -u2tan4,/a in (2.23d and e) do no net work .



_ _ _  _ _ _ _ _  —•--•---•—--—————.-.———.I,

3.1 THE FINITE-DIFFERENCE GRID SYSTEM

3.1.1 The Grid System

We overlay the solution domain

Aw < A < A E

and

0 c ~~~~1

with a finite—difference grid system denoted by the discrete
values ~~~~ ~~~~ ak where

i =

j = 1 ,2,... ,J

and

The grid system is arran ged in the lateral plane (see Figure 1)
such that the lateral boun daries are located halfway between
mesh lines , so that

3—3
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Figure 1. Basic Finite-Difference Grid System
in Lateral Plane
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A w = ~(A2~ + A 1~ )

X E = ~(A 1~~ + X 1~~~)

= +

and

= * (4 ,~÷~ 
+ 4,~~~

) . (3.la—d)

The mesh lines at X1~ , ~~~~ 4,~~~, and thus fall outside

the domain; these exterior mesh lines will be useful in the

application of boundary conditions as described in a following

section. We also specify that

a 2 = O

and

aK 
= 1 (3.le ,f)

so tha t a2 is coincident with the upper surface and aK, the
lower. We note that the index “2” is assigned to k at the
upper boundary instead of “1” so that when additional grid

points are defined above the surface to facilitate the

application of boundary conditions , as described in a fo l-
lowing section , the index system will be directly FORTRAN

compatible (FORTRAN indices must be integers greater than

zero).

We allow the horizontal grid spacings , X1~~ 
—

and — 
~~~~~~~~~~~~ 

to vary , but the ir variat ion must be smooth
to insure second—order accuracy . We restrict the grid

spacing in a, ak÷l — Gk, to be un iform.
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In order to simplify the presentation and mani—

• pulation of the finite—difference equations , we introduce

the two—point averaging and differencing operators

= 
~~~~~~~~~~ 

+

and

= C ]. I.~ — 

~
i_
~ 

. (3. 2a ,b)

Similar opera tors are def ined for averages an d dif ferences
in j  and k. The operators commute with each other in all

three indices ; for example

=
1 1

The commutability of the averaging operators allows us to

wr ite , unambiguously

~~~~~~~~~~~~~~~~

so that an overbar with more than one associated superscript

represents the averaging operator in each of those super-

scripts applied in any convenient order.

Since A , 4, and a are defined , in the finite—differ—

ence approximation with the discrete values X1~~~, ~~~~ and

ak only, the subscripts of these quantities will henceforth

be neglected; and since the averaging and differencing

operators may be applied to these quantities in meaningful

fash ion only in I , j  and k, respectively , the sub an d super-
scr ipts in these operations will also be neglected. Our
neglect of these indices simplifies the presentation without

3-6 

-• .-- — — -- - -—.~~~~~~~~~~ • • - ,- --~~~~~ - S-- - - •~~~~—~~~~--- -- ~~-- - • • - . • .- 

-



TT.~~~~~~ .~~~~~~::T T.J:  ~~~~~
- ‘

~~~~~~~~~~~~~
‘

F; J

any loss of clarity. With these conventions , the difference

grid spacings are denoted by oX , 64, and c5~~, where OX and 64,

will in general vary with position .

In order to represent derivatives by finite—

differences with a minimum of truncation error , some of the

dependent variables will be located on mesh lines staggered

with respect to the mesh system described above. We define

a staggered set of mesh lines at locations midway between the

A , 4,, and a lines. We denote the staggered system by A , ~
an d a , following our definition of the two—point averaging

operator , and we associate with the staggered system the

indices i, j  and k+~ . As a result of our definition of the

system , staggered grid lines coincide with the lateral

boundaries of the region , that is ,

XE =
~~ I

4,~

and

= 
. (3.3a—d)

The index “2” is assigned to A and 4, at the West and South

boun daries to fac ilitate t he application in the FORTRAN code
of boundary conditions there .

The latitude functions cos 4, and sin 4, are defined

only at the ~ latitudes. In the finite—difference equations

presented in the following sections
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c E cos ~
and

S E sin ~ , (3.4a ,b)

arid since two—point averages of c and s are meaningful only in

j ,  we neglect the j  superscript and represent these averages
as a and S. The Coriolis parameter f will be defined at 4,
lat itudes .

3. 1.2 Arran gement of Depen dent Variables

The dependent variab les are arran ged as shown in
Figure 2. The temperature and salinity , T and 5, are defined

at i , j ,  k+~ , that is , at the intersections of mesh lines 3 ,

~ and ~~~~, and the pressure quantity II is defined directly above

the T—S point , at i, j ,  k. Thus , T,S an d U are def ine d on the
lateral boundaries A 2, 

~~~ ~2’ 
and 4,~~. The horizontal

velocity components u and v are defined at i+~ , ~~~~~ k+~~, that

is, at the intersections of mesh lines A , 4,, ~~, and the depth

z is defined directly above the u—v point , at i+~~, j+~ , k .
Although it does not appear explicitly in the finite—difference

equations , the vertical velocity is most conveniently computed

at the fl—points.

Several factors are responsible for our choice of
grid arrangement . Since the differential equations for T and

S are ident ical , except for the source term c , it is conven-
ien t to locate T and S at the same mesh point . Then , since
the hor izon tal velocity componen ts u an d v are used in the
computation of T and S fluxes , it is conven ient to locate
them at the same vertical (a) level as T and S. The boun dary
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Figure 2. Arrangement of Variables
and T-S Grid Cell.
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con dit ions on T , ~~, u and v at the ocean surface are der i-
vative conditions , except for those cases in which T might

be specified at the surface , and it is numerically convenient

to locate T, S , u and v at vertical half-mesh points a.

The staggering of the T—S and u—v grid points in

the lateral plane keeps truncation error in the evaluation

of temperature and salinity fluxes to a minimum. The

velocity components u and v are located at the same mesh

point to simplify temporal implicit  treatment of the Coriolis
force term . We arrange the staggering in the lateral plane
such that T and S are located at the lateral boundaries to
simplify the application of lateral boundary conditions .

We locate U at the levels since fl~ is specified

at a2; also, since p is conveniently computed from T and S at

vertical grid levels ~~, the hydrostatic relation (2.37) is

conven iently represented there .

That with our grid arrangement the mesh lines of

the “primary ” lateral grid system ( X 1~~ , 4,~+~) do not

coincide with the lateral boundaries , while mesh lines of

the averaged system (3~~~ , 
~~~~

) do coincide , resulted from

our desire that the T—S points be located halfway between

the u—v points and that T—S points be located on the lateral
boundaries. With this grid arrangement the cross—sectional

area normal to the vertical of a T—S grid cell is given by

a2ccSXO 4,. In our difference scheme this area is the funda—

mental lateral cell area.

In order to incorporate bottom topography and to

allow the computation of the lateral fluxes as accurately
as possible , we chose to locate z vertically between the u-v
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points at i+~~, j+~ , k . In our dif ference  scheme the la tera l
volume fluxes , which are responsible for the mean lateral

heat , salt and momen tum fluxes , are computed at the u—v

points and are proportional to the appropriate lateral

velocity components and the cross—sectional cell areas normal

to those componen ts. Thus, the fluxes are most accurately

computed when the cross—sectional area is most accurately

specif ied at the velocity locations . Such is the case when
z is located as we have proposed. To make clear the

advantages of locating z above the u—v points , cons ider the
simple example of a narrow isthmus coinciding with the

meridian ALC Suppose we adjust our grid system so that

XL 
= ~~~~ along which both u and z are def ined , then since

Zb 
- z~ ;ill be very small along XL, the volume f lux across

the isthmus will be very small , as it should be. Consider

now , z at a second likely location , the II points. Locating

z at the U points is attractive since z at those points is

• required for the numerical treatment of the hydrostatic

relation. However , since the computation of the vo lume f lux
in the A direction requires z at the u-v points and since z at

the u—v points would be computed from two—point averages of z

in i and j, a negligib ly smal l f lux across the isthmus coul d
be ensured only if it were two grid points wide . Adjusting

the grid so that AL 
= ~~~~

. 
will not help.

Finally , we note that the sur face water f lux F
~

will be defined at k=2 at the X1, 
~~ 

grid points since at

these locations the sur face con dit ion on z~ will be applied.
The heat source c will be defined at the T—S points for

obvious reasons .
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3.2 THE FINITE-DIFFERENCE EQUATIONS

We obtain a finite—difference representation of the

model differential equations (2.23) with (2.36) and (2.37)

follow ing a “box” approach of the sort described by Bryan
(1966). In essence , we conceive of grid cells located about

each grid point . The dependent variable defined at the grid

point is assumed to represent a kind of average over the grid

cell , and the rate of change of the variable times the volume

of the cell is set equal to the net flux of that quantity

across the cell sur faces , plus the rates of change due to

source terms or body forces which are evaluated at the cell

center. Our formulation is complicated by the fact that our

cell volumes in (X ,4,,z) space vary with time.

In what follows , we let

= aO
~

cSkz

= a’
~
63O kz

= a2cOXcS 4,

and

V = 
~z~k~~

3 
. (3.5a—d)

The quantities accS X and ac5 4, represent the lateral dimensions

of the T—S grid—cell centered at 1, j, k+~ (see Figure 2)

so that is the cross—sectional cell area normal to the

vertical , and V is the volume of the cell. The quantities

and a4, 
are cross—sectional areas of the u—v cell centered

at i+~ , j+
~
, k+~ normal to the A and 4, directions (Figure 3).
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A

Figure 3. The u-v Grid Cell. The areas
of faces ABCD an d EFGH are
represented by aX and a4,.
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3.2.1 The Continuity Equation

We represent the continuity equation (2.23a) at

T—S grid points (i, ~~ k+fl by

where

G
~~

=ii
~~

3

G
4,
=~~~~~

and

G = wct
~ (3.6a-d)

are the grid resolved scale volume fluxes in the A and 4,
directions at constant z and in the a direction , t hrough
the sides of the T—S grid cell. From (2.44c)

Ga K  = 0 (3.6e)

so that (3.6a) will be used to determine Ga from G~ 
and

for all k. The quantity C~ will never be needed.

The true vertical velocity w will not appear
explicitly in the finite—difference equations. If w is

desired it will be calculated from Ga at points (i , j, k)
using

— — O k — — _ .kiik
wct
~ 

= Ga + uaO4,61z
1 + vacc5XO~ z

3 (3.7)

which is a finite—difference representation of the definition
of w (2.22a).
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3.2.2 Heat an d Sa lt Equations

The finite—difference approximations to the heat

and salt equations (2.23b ) and (2.23c) at points i , j, k+~
(see Figure 2) are

Vt = a~~
iJ O T  — 6j(~~ GA + - 6~(~

JG4, 
+ Q4,)

— 6  (~
kG + Q ) + V Ek a a (3.8)

and

V~ = ct~~~
36 S  — o1(~

’Gx + rA ) — O~ (~
JG

4, 
+

• 
o (~

kG + r )k a a (3 9)

The resolved volume fluxes G A , G4, an d Ga have been defined
in the previous section , and t is a suitable numerical

approximation to the distributed heat source . The quantities

~4,’ %‘ 
rA , r4, and ra are the finite—difference represen-

tations of the sub—grid scale heat and salt fluxes at the cell

sides . They are given by

Q
4,
= q q;~;

’

and

= q~ct~ , (3.lOa—c)
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with similar expressions for r
~
, r~ and ra in terms of

and The fluxes per un it area 
~~~ 

and are
defined at the appropriate cell sides by the finite—differ-

ence representation of 
~~~ q4, 

and (2.25), and they are

q - 

8H
KH 

~~ - 
ok
’r ó~~

ijk

A ac 

~~~ 
6k~

3 
~~

8 ‘6 T 6 ¶jk ~ -~ijk\
q H H  (~~~t.. _ k ....L. ~4, a 

~~~~ 6k~
1 

~~ /

= ~ij~~~~ ,
V V  6 —ijk

and
—ik ~~—j —jk 6 —i

— - ~~ 
. (3. 11 a— d)

ac OX a 64 ,

The finite—difference representation of 
~A ’ ~~ 

‘

~~~~~ 

and y.~ is

identical with (3.11) but with T replaced by S. The locations

at wh ich and q4, are defined are depicted in Figure 4.

The areas an d ~~~~~, which multiply the sub-grid

fluxes 
~~~ 

q4,, ~A an d in the def init ions of 
~ A ’ ~~~

and r4,, represent the areas of the vertical T—S cell sides
normal to the A and 4, directions. The contributions

~~
ka64,6~~ 3 and ~~

kac O A O j~
1 to the sub—grid heat flux

(and similar contributions to the salt f lux ~0) through
the a = constan t cell surfaces arise from the fact that
fluxes in the A and 4, direction (at constant z) cross those

surfaces.
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T~~~~~~~~~ A X
I I
I I
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L

Figure 4. Arrangement of finite-difference
sub-grid heat (and salt) fluxes,
rate of strain components , and
horizontal and vertical diffusivi—
t ies in constant a p lane . The
vertical diffusivity is displaced
vertically.
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The horizontal diffusivity KH is computed from a
representation of relevant components of the rate—of—strain

tensor an d (2 .16) .  We approximate (see Figure 4)

i

2 6.u /6k~~ 
6~~ k

eAX = _ [_
~
._ _

~~~~~

.__ ) —
~~

-

~~~ 

— vs , (3.12a)

e4,4, 
= 

~ 
[~+-: 

~~~~~ ~~~
k] (3.12b )

and 
_ _ _

e4, A 
= ~~ [

~~~i 
+ 

~~~~~~~~~~~ 

c + ~~~~ - (a

k

) 

~~~~~~~ k

(6
~~k

)

J 

~r’~c1  
. (3.12c)

Then we define KR at (i, i ,  k+fl as

2 . 2 . 2
KH 

= ~
/
~ (cg~) [

(i— i) + 

~~~ 
+ 2e~~ . (3.13)

We compute the vertical diffusivity Ky at points
(i+~ , j+~ , k), from a difference representation of (2.27)
with N as given by (2.32a). We have

Ky = L
2(z) 

[(::;k)

2 
+ 

(
:;k)2]

1_R,Rc
312

+ C~ exp (_z/zy)
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where

B. = N2 

[

~~k
u) + (o

kv

k) 
J

0. 23

and
16 1j —ijkl

N2 = 
~~~~~~~ 

k~ — 
. ijk 

g(~~
’
\ I . (3.14a—d)

~ \aP,TS j

The quantity (
~~
p/ap)TS is given by a representation of (2.32)

described later . As mentioned earlier , we add a small ,
exponent ially decreasing vertical dif fus ivity to account for
those deep ocean regions where Ky as computed from (3.14) is
very small or zero .

3.2.3 Horizontal Momentum Equations and the Hydrostatic
Rela tion

The finite—difference approximations to the hori-
zontal momentum equations (2.23d) and (2.23e ) with the
modified pressure terms (2.36) are (see Figure 4)

= Oku - dj(~~ FA ) + FA O IU
1

+ 6
1
(~

1F4,
) + F,O~ u

J + Ok(5F) + FaokukJ

+ 6j(T xx~~
1) + 6(~~

_i 
~~l) + Ok (T aA

•&
~~
’l )

(cont’d .)
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+ ~~~ V~~ — 
•~~~.ii ) (a~Y~9 + fvV’3

— (a A 6 i ~~
3k 

— a6
~
6i~

1’
~
6kff 11

~~
) , (3.15)

and

= 
~~~~~~~~ 

- ~I 6 i~~~A ) + FA Ojv’

+ 6~(~~ F4,
) + F

4,6 .v
3 + 

~~~~~~~ 
+ F O kv

’
~J

+ 6
~
(
~~~

3 
~~~ + 6 . ( t 4,4,ç3 ) + Ok(ta4,c )

— ~ ~ 13 
((uu 

— iT’) (a
~Y~’1 

— fuV’3

— (a4,O~~
’
~ — ~~~~~~~~~~~~~~~ . (3.16 )

The quantities FA , F4, and F0 are the resolved
scale volume fluxes in the A , 4, and a directions at the u—v

cell sides. They are defined as

F
~~

= i i
~~
’

and
— G il 

. (3 . 17a— c)
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The flux F0 is computed as the i-j average of the
a fluxes of the four surrounding T—S cells in order to

satisfy an energy conservation constraint which will be

derived in a following section , an d to avoid excessive F0
values at the surface . With this definition of F0, the

fluxes do not exactly satisfy a continuity relationship ,

that is,

+ 6~ F4, 
+ Ok

F’
a 0(~

2)

where ~ is some measure of the grid spacing. However , the

Piacsek and Williams (1970) approximation of the advection
terms ,

h(uF~
) = 

~[Oi(~~
FA ) + FA O iuh]/O~ , (3.18)

ensures that a numerical represen tation of the total
horizontal kinetic energy is conserved under advection .

The volume V’3 ascribed to the u-v cell is the
i—j average of the four adjacent T-S cells. This second-

order approximation is necessary in order that numerical

representations of the volume integrals of T, 5, T2, S2 and

(u 2+v2)/ 2 may al l be conserved un der advection with z a
function of time. This volume approximation also ensures

that the sum of all T—S cell volumes is exactly equal to

the sum of all u—v cell volumes . Note also that the area

of the u—v cell normal to the vertical is the i-j average

of the four adjacent T-S cells .

• The horizontal sub—grid scale stresses TA A ’ T~~~~
4,

and are computed at the same locat ions as eAX , e4,4, and
as described in Section 3.2.2 (see Figure 4).
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Thus and -r
4,4, represent average normal stresses over the

vertical u—v cell faces normal to A and 4,. The shear stress

is computed at the corners of the u—v cell (at the k+~
level), and it is appropriately averaged to yield the shear

stresses on the vertical faces. The z—X and z—4, stress

components are computed at i+~ , j+~ , k, directly above the

u-v points.

From (3.12) and (3.13) we have

=

t
4,4 , 

=

and

=

We also app roximate , using (2.15) and (3.14),

kZ

and
6~ v

= K ~~~ (3.19a—e)
z4, V 6 —k

k

Then from (2 .2 2d) and (2.22e)

6 —i —ijk 6
-r = .r — ._2~2~ J~ — 

t4,X ..J..~ 
(3. 19 f)

oX zX a~ 
a
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and

~—ijk ~—~i —jk 
~ 
—j

T a 4, 
= T

z4, 
- —~~~~~ .l. - —~~~~~ —a--- (3. 1 9g)

ac OX 54,

The double—k averaging of II in the numerical

representation of ~fl/3a in (3.15) and (3.16) is necessary

to ensure that Conservation Property 4 is satisfied. We
compute the U gradients from a difference approximation

to the hydrostatic relation (2.37) as follows .

We approximate the hydrostatic relation (2.37) at

T—S grid points by

= g ~~~~ SkZ 
(3.20a)

where the density p is given by the numerical implementation

of the state equation as described in the next section , and

= pr(~
13l

~ . (3.20b )

Then formally

= g~~ ~~~~ 5k~1uJ + 
‘ (3.2la)

m=2 °
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where

fl~ = 
(~ a 

— 

~~~~~~~ 
/p . (3.21b )

To minimize rounding—error , however , we do not compute II or

directly. Instead , we obtain and at k+~ by

applying the differencing and averaging operators to (3.21)

to obtain , at k+~

k

= 
~~~~ 

~~~~~~~~~~~~ 
+ 5.115 , (3.22a)

and

k

5~~ ik = 

~~~~ 
(

P_:
r i ~
) 

+ S
i
lls , (3.22b)

so that the vertical summation is performed on the and

differenced contributions to S~ fl and

To compute OkIIklc, we first compute at k = 2~~,
3~~, . .  . ,K—~ from (3.20). We introduce an additional grid
level at k 1 , above the ocean surface , an d another at
k = K+1, below the bot tom; we compute U at these levels by
linear extrapolation. This is equivalent to the assumption

that 5~~ U = 0 at k=2 and K. With these artificial IT values ,
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we comput e 6k11 at k 1~ and K+~ . We then compute
at k 2 ,3,.. . ,K , and f inally ~ at ~~~~~~~~~~ .,K-.~ .
These values are averaged in i and j to yield 6k!1

3.2.4 The Equation of State

• We compute the density p from the equation of state
(2.28) at T—S grid points. We obtain the pressure at those
points from the difference equivalen t of (2 .35b ) so that

= ~~~~ + 
~~~~~~~ 

. (3.23)

Then P in (2.28a ) is just

= ~k — 1.013 (bars) , (3.24)

and 
~~ 

K°, A and B are given directly by (2.31).

Similarly the quantity

(3p\
\3 
~JTS

at T—S grid points is given directly by (2.32) with (3.23)
and (3.24).

3—25

_ _  ~~~~~~~~~-. • • -



—---- - — •- -  ~~-~~~~~~— . - - - - . - --.. .~~~~~~~~~~~~ --—. ---- — --- - -,

3.3 THE BOUNDARY CONDITIONS

In this section we describe the numerica l imple-
mentation of the boundary conditions described in Section 2.5.

The order of presen tation parallels the discussion in tha t
section . We describe the ocean surface and bottom conditions ,

and no—flux , flux and periodic lateral conditions .

We begin our discussion with the introduction of

mesh lines just out side the forecast region.

3.3.1 Exterior Mesh Lines

The application of boundary conditions in our

numerical scheme is fac ilitated through the use , in the

usual manner , of mesh lines located outside the forecast

region.

We introduce d in the previous section a mesh lines
at k=1 and K+1 and ~ mesh lines at k 1~ and K+~ . To define

z at the addit iona l a mesh levels , we require

z1 
= 2z2 — z

3 (3.25a)

and

ZK+1 = 2ZK — ZK 1  (3.25b)

where t he subscripts refer to k . With th is def inition , the

local thickness of the additional exterior mesh “layers” is

equal to the local thickness of the adj acent in ter ior  “layers ” .
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We will also make use of exterior longitudinal
and latitudinal mesh lines . We have already introduced the
grid lines A 1~~, ~~~~ 4,~~ and which lie just outside
the lateral boundaries of the forecast region . We define
additional mesh lines

~1
2
~2

_
~~ 3

~i+i 
= 2 —

~1
2
~2

_
~~ 3

and
• = 2~~ — 

•

~~

•

~~~
_

~~~ . 
(3.25c—f)

The exterior u—v grid cells (centered at X1~ , ~~~~ 4,~~ and
are thus equal in width , in terms of A and 4,, to the

adjacent interior u—v cells.

The arrangement of the dependent variables T, S ,
F u , v an d z on the exter ior mesh lines is ident ical to their

arrangement in the interior which was described in Section
3.1.2. Values of these exterior quantities or expressions
for t hem in terms of interior quant it ies , will be defined
as required.
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3.3.2 Ocean Surface Boundary Conditions

Analytic expressions for the ocean surface condi—

tions were given in Section 2.5.1. We recall that the

surface coincides with the a mesh line at k=2, and , as
before , we will denote quanti t ies evaluated there with the
subscript “s”.

We represent the free—surface condition (2.39) by

= G0 k— 2 
— a

~
F5 (3.26)

for i=2 to I and j=2 to J , where G0 k=2 is obtained from
the continuity equation (3.6). If is specified on any

pair of A and 4, mesh lines , or if linear relations are
defined along any pair of ~ and ~ mesh lines between the
values of on the neighboring A and 4, mesh lines , then

is comp letely determined for all mesh locat ions i+~~,
j+
~ 

from (3.26). We , therefore , might envision specifying,

depending on the circumstance , ±~ along a pair of A and 4,

exterior mesh lines or perhaps specifying ~~~~ and

alon g a pair of X an d ~ boun dary mesh lines , then computing

• 
~~~~~~~

. We would , however , encounter serious difficulties with

th is  procedure — rounding error would rapidly accumulate
during the computation an d ren der the calculated values
meaningless.

To alleviate the roun ding error problem , we will
obta in from

= G0 k~2
/aZ — F~~~ (3.27)
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which is the i—j average of (3.26). Equation (3.27) is

defined at the interior mesh points i = ~~~~~~~~ ,I—~ and

j = ~~~~~~~~ ,J—~~. To determine from (3.27) we must

specify appropriate conditions on at all lateral boundaries.

Such conditions include the specification of and

or and at 5 and ~ boundary mesh lines. The

former conditions will be used at no—flux boundaries and

the latter at flux boundaries . Periodic conditions in

longitude are also appropriate. With suitable boundary

conditions (3.27) is easily solved in two successive

tridiagonal inversions.

We must point out here that as computed from
(3.27) will not exactly satisfy (3.26) since the i—j

avera ging of .GO ,k 2 /aZ.
_ F5 filters it of components which

vary as (~~1)1 and (-l)~~. The dif ference , howe ver , is very

slight and will henceforth be ignored.

The numerical representation of the sur face
temperature conditions (2.40) and (2.41) is facilitated by

the use of artificial T values at k 1~ . We represent (2.40)

simply by

= T5 (3.28)

where T5 is a specified surface temperature distribution.
The heat flux condition (2.41) is simply

= q5 . (3.29)
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The numerical representation of the surface

salinity condition (2.42) is similar to (3.29). We

approximate (2.42)

k
1k—2 

— 
k=2 F~ (3.30)

where F5 is the water flux into the ocean .

• We approximate the surface wind stress

conditions (2.43a) and (2.43b ) by

aA ,k=2 = — C
D~~ ~~_ (i

i~ + , (3 . 31a)

and

~ ‘2 2’~- CDV ~~~~~~ 
+ v

a) 
, (3.31b )

where ua and Va are numerical representations of the

local surface wind components.

Finally, the numer ical counterpart to the
surface pressure condi tion (2 .43c) is simpl y

= [~a 
— pr(zslJ)I / ~~~ 

(3.31c)

at points ( i,j), where 
~a 

is specified.
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3.3.3 Ocean Bottom Boundary Conditions

Analytic expressions for the ocean bottom condi-
tions were given in Section 2.5.2. We recall that the
bottom coincides with the a mesh line at k=K.

We represent the bottom kinematic condition (2.44)
by simply

G0 k g  = 0 . (3.32)

The bottom conditions on T and S given in (2.45)
and (2.46) are approximated with the aid of artificial
values at K+~ by

= 0 (3.33a)

and

• = 0 (3.33b )

at k—K , where q0 is given by (3.114) and y0 by the y—
counterpart to (3.lld). The terms in (3.li.d) which were

eliminated at the surface as described in the previous
section to yield the simplified expressions, (3.29) and
(3.30), for the surface conditions may not in general be
eliminated at the bottom.

Finally , we approximate the bottom conditions on
u and v , (2.47), at kK , with the aid of artificial values
of u and v at K+j, by

• -
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and

where

2 21*
d u +v 

‘ 
(3.34a—c)

N2+f2i

is evaluated at K—~ with N2 as given by (3.14d) at K-i.
For the sak e of numerical convenience , we have chosen to

evaluate elements of (3.34) at slightly different locations.

The characteristics of these conditions , which were

described in Section 2.5.2, are unaffected.

3.3.4 No—Flux Lateral Boundary Conditions

Analytic expressions for the no—flux lateral

boundary conditions were presented in Section 2.5.3.

Their finite—difference representation is greatly simpli-

fied with the application of the conditions

6~z = 0 along longitudinal boundaries (3.35a) 
•

and

6~z — 0 along latitudinal boundaries , (3.35b)
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for all k. Conditions (3.35) will be satisfied for all k

if they are satisfied at the surface k 2  and at the bottom

(assuming that the transforma tion parameter 6 is a cons tan t).
We assume that they are satisfied at the bottom ; then we
need only apply (3.35) to the calculation of the surface

elevation from (3.27).

The finite—difference counterparts to the

longitudinal boundary conditions (2.48) are

= 0

—1
u 0

and

= 0 . (3 .36a—d)

The conditions on T and S are obtained from (3.lla) with

the application of (3.35a).

The finite-difference counterparts to the

latitudinal conditions (2.49) are

a
i
&= 0

~i = 0
and

6~ u = 0 . (3.37a—d)

The conditions on T and S are obtained from (3.llb ) with

the aid of (3.35b).
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3.3.5 Flux Lateral Boundary Conditions

We represent the inflow conditions (2.50) at a

longitudinal boundary by

T,S,~ii1 ,v
1 and I~ specified ; (3.38a—e)

and at a latitudinal boundary by

T,S,ii3 ,~
3 and ~~~~~~ specified . (3.39a—e)

We represent the longitudinal boundary outflow conditions

(2.51) by

52T = 0
1

5~ S = 0

5~ v = 0

and

and ~~ specified ; (3. 40a—e)

and we represent the latitudinal conditions (2.52) by

and 

and ~~ specified . (3.41a—e)
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We note that the outflow conditions 5~ v = 0 and S~ u = 0 are
applied , not at the boundary , but at the u—v point just

inside the boundary .

3.3.6 Periodicity Conditions in Longitude

To represent the longitudinal periodicity condi-

tions (2.53) we set

A
i* 

A 1~~ 
— 2ii (3.42a)

and

+ 2ff (3.42b)

with the requirements that

and

X1 = 27r

Then we require

z
1* 

= zi_*

z
I+* 

= z
2*

T1 = T1_1

T1 = T 2
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Si 
= SI_i

sI = s 2

ui~ 
= ui_i

uI+~ 
= u2~

and

vi~ 
= vI_~

vI~~ 
= v2~ , (3.42c—g)

for all j and k. The subscripts in (3.42) refer to i.

Equation (3.42c) is applied as a boundary condition on z~
in the solution of (3.27).
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Section 4

DIFFERENCE—SCHEME CONSERVAT ION PROPERTIES

In this section we demonstrate that our finite—

differen.ce scheme has the four conservat ion properties
described in Section 3. Since the equations of heat and
salt conservat ion are formally identical , except for the
source term which is neglected in the analysis presented
in this  section , the salt equation will not be considered
explicit ly.

4.1 SUMMATION DEFINITIONS AND RELATIONS

The derivation of the conservation properties is

facilitated by the following summation definitions. Let f

be a function defined at the integer points i = 1,2,... ,I ,I+1 ,
and let g be defined at the “ha lf—integer ” points
i = 1~~,2*,... ,I—* ,I+~~, and let the boundar ies of a region
be at i = 2 and I. We then define three summation operations ,

as fo llows :

f f 2 + + + fI , (4 . 1)

that is , the sum over all values of f in the inter ior an d on
the boundaries of the region ;

—

f ~f2 
+ f3 + ... + f~~ 1 + ~~~ , (4.2)

~
i I

‘ 1  4-1
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that is, the sum over all f with the boundary contributions
f2 and f1 halved; and

g g2~ + g3~ + ... + g1_~ , (4.3)

that is, the sum over all interior values of g. The sums

Ejf andE~g are analogs of the respective integrals.

We present summation relations based on these three

definitions below. A property of our two—point averaging and
differencing operators , which we make use of in the derivation
of the relat ions , is

= j51h
2 

, ( 4 . 4 )

where h is either f or g. Property (4.4) is easily derived.

We also make use of the Piacsek and Williams notation

‘
~~~~~ ihh = h1~~ h1~~

which approximates the square of h at grid point i.

The summation relat ions which we apply in the
demonstrat ion of the conservat ion propert ies of our dif ference
scheme are presented in Table 4.1. In these relations

Relations (S.3) through (S.8) are all obtained from (4.4),

(S.1) and (S.2); (S.1) and (S.2) are difference calculus

counterparts to integration by parts , and they are easily
derived.
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TABLE 4. 1 SUMMATION RELATIONS

One Dimension

= (S.1)

+ ~~~g~~f = [f~i1
I 

(S.2)

~~
h
(f~s.g

i 
+ g~s.f) = (S.3)

~f 2
~s1g ) =  ~

[
~~ ig1j

’ 
(S.4)

~~h (g~5 (~
1f)  — 

~g
2

ts1f) = (S.5)

~~
h
(gfç

~i + ~g
2o1f) ~[f~~1]

’ 
(S.6)

~~b(g~~(1
if )  + gfâ jgi) = (S.7)
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TABLE 4.1 Continued

~~b (gd~~
ii + = — *~5i

~?i45jg] 
(S.8)

Two Dimensions

- ~~
h
~~

h
giii

= 1~~h[~ i~ g1

J 
+ i

~~~
1[

~~i~~~
.g]

I 

+ 
[f~i

6j~ /16]
’ ‘I

( S .9 )

+

= — + 1[f6~~~
ç :

(S . 10)

Note that in these relations

I~ ~1 — f 21 2

and
,
~~~~~ ihh = hj+*hi~~

where h is either f or g .
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As an example of the manipulations required to
derive (3 .3) through (S .8), we present the derivation of
(S 3) .  We rearrange (S .1) with g, as it appears in (S .1),
replaced by unity and f replaced by U1g as

:‘~:~: 
f6 1g

1 
~~1 f6~ g

since 6~ l = 0 , and we rearrange (S .2) as

= -~: 
f6 1g + I~i~1~

We add these two equations to obtain

~~~ (~~ 1
g
~ + g~1f) =

relation (3.3).

With similar manipulations , we derive (S.4) and
(S .5) from (S .2) with the aid of (4~4) , (S .6)  from (S. 1)
and (S.2) with the aid of (4.4), (3.7) from (S.5) and (S.6),
and (8.8) from (3.1) and (S.2).

If we assume that f is def ined also at the j
integer points , j — 1,2,... , J , J +1 , and g at the j “half—
integer” points j — ~~~~~~~~~~~~~~~~~~ we easily obtain
(S.9) which is the two—dimensional .counterpart of (S.1).
We may also derive a two—dimensional “integration-by-parts ”
relation (S.10), from (S .1) and (S .2).
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4.2  CONSERVATION OF VT AND VS ( CONSERVATION PROPERTY 1)

We first show that , in the absence of explicit source

terms , the temporal rate of change of VT (and VS) as computed

from the difference equation and summed over all (T—S ) grid

points is exactly equal to the net flux of T into the com-
putational region .

We rewrite equation (3.8) with V taken within the

time derivat ive , and with the source term c neglected , as

h~~
T) = 

~z
äkZ T + a z

~~~k
T

— 

~j
(
~
1GA+Qx ) 

— ~~~~~~~~~~~ — ôk(T
~~~~~~~ 

.. * (4.5)

We sum (4.5) over all the grid points with the lateral boundary

contributions to the sum halved since only half the volume of
a boundary T—S cell is within the computational region. We

apply (S.3) in k to the first two terms on the right-hand

side involving ~ (s ince a~ is independent of k), and we app ly
(S.2) in k to the last term on the right—hand side ; we obtain

~~~ h 
h(vT) = ~~

;{[
~ k(~~~

ii
G )Q ]

K

- 
i (4.6)

*The notations Bf/~ t and ~ for the time derivative of f ( t )
are used where convenient.
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We next apply (S.2)  in i an d j to the i and j flux terms
respectively ; we make use of the con dit ions that z , G~ and

are iden tically zero at the ocean bot tom and that , from
(3.26),

z z s

at the surface . We obtain the difference counterpart to
(2.54),

~ ~~~Ea~
F
~
T +

+ ~:j~ ;[~ii 1
+ciJ +

( 4 . 7 )

The terms summed over k on the right—hand side of (4.7)
represent the fluxes of T , both resolved and sub—grid
scale , through the lateral boun dar ies; the ij sum of

frZ FS~ + 
~L 2 represents the heat flux . Thus , the

conservation property is established — the rate of change
of VT summed over all grid points exactly equals the flux
of T through the region boundaries.

4-7
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With the applicat ion at i = 2 and I of eit her
no—flux or periodic conditions as described in Sections

3.3.4 and 3.3.6 respectively, and the application at

j = 2 and J of no—flux conditions , the net contribut ion
to the sum of the horizontal fluxes vanishes . We
obtain

(VT ) = 

~~~~~~~~~~~~~ 
+

( 4 . 8 )

so that the total rate of increase of the heat in the region
is equal to the flux through the ocean surface . Wi th a
distributed heat source c , its volume sum is added to the

right—hand side of this equation.

4—8
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4 .3  CONSERV ATION OF VT2 AND VS2 BY ADVECTION
( CONSERVATION PROPERTY 2)

Next we show that under the action of the advection

terms the temporal rate of change of VT2 summed over all T-S
grid points is exact.~y zero.

We neglect the sub—grid fluxes in (4.5) so that

that equation becomes simply a statement of the conservation
of VT by resolved—scale advection . We multiply by T and sum
over a].l grid points to obtain

+ a T  Z ó kT

- TIo i(~~
Gx) + ~ . (T3 G~~) + 

~k~~~~ c)J}

(4 . 9)

We apply (S.6) in k to the second term on the right—han d side

and in k to the last term , _T5k(T
’
~
Ga). Then , with the aid

of the surface and bottom conditions (3.26) and (3.32), we
obtain

~~~~~~ h(~VT2 ) = 

~~~:~~~; 
1
~ k=2

aZFS

- ~~ ITai(~~
Gx) + T~~(TJ G,) 

11TEIT
~ . ±~ 

10>



The f i r s t  term on the righ t in (4.10 ) represents the f lux
of T2 through the surface .

We next apply (S.5) to the horizontal flux terms

in (4.10) so that

>; >; ~~~ 
a (~~ I1V~ 2

) = - >~ 
IT2( 5 1G~~ 6~ G~ +

— ~~
h 1~

[’
~” I

I 
÷

~~~~~~[~~~

3G
,IJ 1

+ k_2aZFS . (4.11)

The f i rs t  group of terms on the r igh t—han d side of (4.11)
represents the net generation of VT2 by the advection terms ;

since

6 1G~ + + = 0

by cont inui ty , there is zero net generation and the con-
servation propert y is established. Equation (4 . 11) is the
dif ference  counterpart to ( 2 . 5 5 ) .

The remaining terms in (4.11) represent the f lux

of T2 across the region boundari es ; the lateral contributions

vanish with the application of either the no—flux or

4—10
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periodi c conditions at the longi tudinal  boundaries and
the no—flux condition at the latitudinal boundaries .

Under these conditions , with sub—grid fluxes and heat

sources neglected and with F
~ 

= 0,

~~~~~~~~~ ~~~(~~VT2 ) = 0 . (4 .12 )
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4.4 CONSERVAT ION OF HORIZONTAL KINETIC ENERGY BY
ADVECTION , AND CONVERSION OF KINETIC ENERGY
TO POTENTIAL ENERGY (CONSERVATION PROPERTIES
3 AND 4)

In this  f ina l  section we consider the f i n i t e—
difference representation of the hor izonta l—flow kinet ic
energy, which is the sum over all u—v grid point3 of

~V
h3(2+ 2) We first demonstrate that its time rate of

change under the action of the advection terms is zero
(Conservation Property 3). Secondly , we show that its

rate of increase under the action of the horizontal
pressure gradient is equal to a natural representation of
the rate of working by the buoyancy forces (Conservation
Property 4).

We neglect the sub—grid stress terms in (3.15)
and (3 .16) ,  mult iply (3:15) by u , (3.16) by v , rearrange
the lef t—hand side so V13 is t aken within the t ime deri-
vative, add the two resulting equations together , and sum
over all u-v grid points to obtain

~~ 
~V
ij
~~

2+~
2 

= 11+12+13 (4.13)

where

~~h~~h~~h 

j
~~ u

2+v2) aZ~k
z + u

_ _ _  
k

14 i j
+ v a ~~ ~kv

4— 12



12 
~~1~~ j~~~k {u

~l~~
iFA ) + uF

~
6±u

1 + V6 i (v 1F x ) + vFA 6iv’

+ u5~ (~~ F~) + UF~ 6~ Ü~ + vi5~ (~~ F~) + vF~~~v
i

+ u6k(uF) + 
~~a~k

U + V6k(V F )  + vF6kvkJ (4.15)

and

13 = 
~~h~~h~~ h 

{_ua~
6ifl3 —

+ (ua~~~1~~~ + va~~~~~ j~~i’~~ 6k!~~i J  
- (4.16)

We treat the I~~, 12 and 13 sums in turn . Sums I~
and 12 together represent the generation of kinetic energy
by the advection terms , and the net flux of energy across
the region boundaries . Sum 13 represents the work done by
the pressure forces .

We first consider I~~. We apply (S.6) in k to the

second and third terms in I~ ( remember a
~ 

is independent of

k), and Ii simplifies immediately to

(4 .1 7)
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Next , we consider 12. We apply (S.6) in I to the
first  four terms , in j to the second four terms , and in k to
the last four terms to obtain

‘2 
= ~~~ [FX~~~

i+~~ i]
’ 

+~~~

~~~~~~~~~~~~~~~~~~~~~ 
. (4.18)

We recall that

Fc = c’
~

and we apply (3.26) and (3.32) to (4.17) and combine the

resulting expression for I~ with (4.18) to obtain

11+12 — 
~~h~~~b[ hJ (~~~~+~f?1~)]

+ ~~~~
j [ F A 

i+
~~~i )]2 +

~~~~~{F, ~~>r1  

. (4 .19)

All of the terms in (4.19) represent energy

fluxes at the boundaries of our region so that there is
no Internal  generation of energy by the advection terms .
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Thus Conservation Property 3 is demonstrated. We were able
to obtain this result without the application of a continuity

relation as a result of our use of the Piacsek-Williams
advection operator (3.18). Thus we do not require

+ ~~~~ + 
~k F’a = 0

and this relation is only approximately true to second order
in the mesh spacing.

The interpretation of the terms in (4.19) is
straightforward and their differential counterparts may be
foun d in (2.56). The first expression (that summed over

both i and j) represents the flux of kinetic energy across
the ocean surface. Our computation of Fe as the i-j average

of Ga is partially motivated by the constraint that the
kinetic energy f lux across the surface be exactly zero when
F
~ 

= 0. The remaining terms in equation (4 .19) clearly
represent the flux of kinetic energy across the longitudinal

and latitudinal boundaries .

With the  application of either the no—flux or
periodicity conditions at the longitudinal boundaries , and
the no—flux conditions at the latitudinal boundaries , we
obtain simply

I~ + 12 ~~~~~~~ aZFS
1
~

( +
~~~~

) k...2

Finally , we cons ider the pressure—work sum 13.
We apply (S.10) and i and j to the first two terms in (4.16)
and (S.9) in i and J to the last ‘

two to obtain
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‘3 = 
~~~~~~~~~

+ Z t [I~~~~~ j(va~ ) - ~jkF - *dkU ó IWI

+ ~~~~~~~ [*~i~~
6j(ua~) - ~~~~~ 

- *ô kl l 6 j W]

- 

[*!~~ d F + o F + 6k j ~j
W/16

~ 
:i 

(4.20)

where

14 = 

~: Iw
ii a ~1ck + (~~~GA +ô .G~~)~ 1c} (4 .21)

and

W 
~~~~~~~~~ 

+ va’
~ó~~~

’&’
~ . (4.22)

The terms in (4.20) evaluated at the lateral

boundaries represent the work done by the pressure on the

lateral boundary fluxes. The remaining term , the i—j sum

of I 4~ is the work done by the pressure forces in the
interior and at the surface. From continuity (3.6)

4—16

L... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 

_



14 
= 

~: jW
u3
~ k~~

k 
- 

~k%~ } . (4.23)

We apply (S.8) in k to the term involving in (4.23) so

that

14 
= ~~ {_11

k
~~~w i + 

~kGa )j  + 
[
~

kkWi3k . 
*
~k

n
~~k

w 3t

(4.24)

Then since from (3.7)

a
~
w = G + Ejk 

, (4.25)

we apply (S.2) to obtain

14 
= 

~ t~
w6
~I + 

[
~

kk(W1ik_ a w ) - *d kfl
~~kW ]

(4.26)

The f i rs t  term in ( 4 . 2 6 ) ,  aZw6k~~ , represents the
work done by the buoyancy forces and the conversion of
potential energy to horizontal kinetic energy , in analogy

with the equivalent term in the integral expression ( 2 . 5 6 ) .
We simplify the second term by applying (4.25) and the

surface and bottom conditions (3.26) and (3.32) so that

[
~ kk (wiik

)] = a~ (~~~
3+F5)

~~~~2 (4 .27 )
2
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which is the work done by the surface pressure at the moving

surface (since with the linear extrapolation procedure

described earlier , 1I~~~2~ fl
5
).

The remaining term

[k
~kokwuu]

K

is exactly zero under the boundary condition that 6kW~~~
O at

k—2 and K. The conditions imply that w is defined and

computed from

w — (Ga k=2+ W~~2~~)/a~ at k 2  (4.28a )

and

w = (Ge K  + at k—K . (4.28b)

We may now combine (4.26), (4.27) and the condi-
tions (4.28) into (4.20) to obtain

‘3 ~:~; f~~ 
aZw6kf l )  + (~~~J + F5)fl 5

+ Pressure Work Against Boundary Fluxes , (4.29)

1’

I
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so that the work done by the pressure forces on the
horizontal flow is equal to the work done by the buoyancy
forces, plus the rate of pressure work at the lateral

boundaries - Conservation Property 4. The first two terms

in (4.29) are the finite—difference representation of the

first two terms on the right in (2.56).

We note in conclusion that in the case of no—flux
or periodic conditions at the longitudinal boundaries and

no—flux conditions at the lat i tudinal  boundaries, the lateral
boundary terms in (4.29) exactly vanish.
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Section 5

SUMMARY AND CONCLUDING REMARKS

In this report we have presented a set of
differential equations and boundary conditions suitable for

forecasting the currents , temperature , salinity and density

over both whole-oceans and limited ocean regions. We have

also presented a spatial finite—difference representation

of these equations. The finite— difference treatment of the

temporal variation is presented in an accompanying report.
In this final section we briefly summarize both the model

differential equations and their finite—difference

representation.

In Section 2 we described in detail the derivation

of the model differential equations. We began by assuming

that the Boussinesq approximation is appropriate , and we
introduced a coordinate system based on the earth ’s geo—

potential surfaces and longitude and latitude defined in the
usual manner in terms of these surfaces. Then , recognizing

that the resolution of all important oceanic scales of motion
by a finite—difference scheme is simply not possible , we
introduced a parameterization of the effects of unresolved
“sub—grid scale” transport on the resolved motions. The
paraxneterization is based on a gradient diffusion hypothesis

with an anisotropic diffusivity . The horizontal diffusivity

is a function of a measure of the finite—difference grid

spacing in the lateral plane , and the vertical diffusivity

depends on the vertical variation of both the density and

the horizontal velocity. Then we applied a thin—layer H

assumption , made the hydrostatic approximation and ignored

5—1
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the variation of the coordinate system metric coefficients

from their spherical thin-layer counterparts. Finally, we
introduced a new vertical variable a which varies from zero
at the surface to one at the bottom , an appropriate equation

of state, modifications to alleviate round-off errors , and
the implementation of user specified poles .

We also described boundary conditions in Section 2.
We specified that the forecast region will always be rec-
tangular in A and ~~~ , and that land areas which might be
located within the interior or at the boundaries of the

forecast region wil l  be depressed and covered wi th  a th in
layer of water. This treatment of land areas will greatly
simplify the computer coding.

We concluded Section 2 with a brief discussion of
some of the integral properties of the model differential
equations which provide guidance in their finite-difference
representation.

In Section 3 we presented a spatial finite- -

difference representation of the model equations . We
described the staggered grid system and the motivation
behind it. We obtained second-order accurate difference
equations with the aid of a “box” approach . We also
described the representation and implementation of the

boundary conditions, including the introduction of mesh
points just outside the forecast region boundaries.

Finally, in Section 4 we discussed the conserva-

tion properties of our finite-difference equations . In
particular, we showed they conserve representations of
heat and salt. We also showed that the advection terms
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in the equations make no net contributions to appropriate
representations of the volume integrals of the horizontal

kinetic energy and the squares of temperature and salinity ;

this result frees our scheme from problems associated with
“non-linear instability”. To conclude Section 4 , we showed
that a representation of the rate of work done by the
pressure gradient s on the horizontal flow is equal to a
natural representation of the rate of work done against
the buoyancy forces , plus the rate of pressure work at the
boundaries.

The second phase of the model development , which
includes computer programming, debugging , and preliminary
application of the mo del , is now underway . The program is
being written carefully in a modular fashion to make modi-
fication simple, and we are emphasizing readability through

the use of “top-down” programming techniques . During this
phase , we are laying the computer code groundwork for what
will be an effective , fiexibi-” , and efficient ocean fore-

casting tool.
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