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APPROXIMATIONS IN FINITE CAPACITY ‘
MULTI=-SERVER QUEULS WITH POISSON ARRIVALS |

by

Shirlevy A. Nozakl and Sheldon M. Ross

‘ 0. INTRODUCTION

In this paper, we consider an M/G/k queueing model having finite
capacity N . That is, a model in which customers, arriving in accordance ;
with a Poisson process having rate ) , enter the system if there are less
than N others present when they arrive, and are then serviced by omne of
k servers, each of whom has service distribution G . Upon entering, a
customer will either immediately enter service 1if at least one server is

free or else join the queue if all servers are busy. Our results will be

e .

ot i\l 5 2l

3

] ‘[ independent of the order of service of those waiting in queue as long as it
!.4 is supposed that a server will never remain idle if customers are waiting.
{

i To facilitate the analysis, however, we will suppose a service discipline

of "first come first to enter service."

Our objective is to obtain an approximation for the average time spent

—

waiting in queue by an entering customer. This is done mainly by means of ,

e Y

an approximation assumption, presented in Section 2, and used in Section 3
to derive the approximation. In Section 4, we let N = » and relate the i

approximation to the existing literature. |
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1. BASIC DEFINITIONS AND FUNDAMENTAL EQUATION

We shall need the following notation:

P, : the steady state probability that there are 1 people in the
system.

S : a service time random variable, i.e., P{S ;.x} = G(x) .

W_ ¢ the average amount of time that an entering customer spends
waiting in queue (does not include service time).

L, : the (time) average number of customers waiting in queue.

V : the (time) average amount of work in the system, where the work
in the system at any time is defined to be the total (of all
servers) amount of service time necessary to empty the system of
all those presently either being served or waiting in queue.

V : the average amount of work as seen by an entering arrival.

We will make use of the following idea (previously exploited in such
papers as [l], [2] and [(8])) that if a (possibly fictitional) cost structure
is imposed, so that entering customers are forced to pay money (according

to some rule) to the system, then the following identity holds--namely,

time average rate at which the system earns = average arrival rate

(1)

of entering customers x average amount paid by an entering customer.

A heuristic proof of the above is that both sides of (1) times T is

approximately equal to the total amount of money paid to the system by time
o+

i

T , and the result follows by dividing by T and then letting T = =,

+
‘A rigorous proof along these lines can easily be established in the models
we consider since all have regeneration points., More general conditions

under which it is true are presented in [1].
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Bv choosing appropriate cost rules, many useful formulae can be
obtaineg 48 specfal cases of (1). For {nstance, by supposing that each

customer pays $1 per unit time while In service, Equation (1) yields that ]

average number in service = ‘(1 - PN)E[S] . /

Similarly, by supposing that cach customer pays $1 per unit time while ]

waiting in queue, we obtain from (1) that

LQ = \(1 - PN)WQ .

Also, {f we suppose that each customer in the system pays $x per unit time

whenever its remaining service times ia x , then (1) yields that
S
* 2
(2) V= (1~ PN)E SWQ +-[ (S - x)dx{ = \ (1 - PN)[E[S]WQ + E(S ]/2]
0

where w; is a random variable representing the (limiting) amount of time
that the nth entering customer spends waiting in queue.

Another important fact which we shall use is that, since our arrival
stream of customers is a Poisson process, the probability structure of what

an arrival observes is identical to the steady state probability structure

of the system.
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; THE. APPRONIMATION ASSUMPTION

Let ¢ denote the cquilibrium dstribution of o . That is,
‘l

X
G o(x) = _S.l.;_"_\.\.ll dv
¢ E[s)
0

also let

1 it x = v
(x,v) = . 5
'0 it x¢v

]
We assume throughout that .fxdﬁc(x) = E[ST)/2E[S] is finite. We make the

following approximation assumption.

Approximation Assumption:

Given that a customer arrives to find 1 busv servers, { >~ 0, then
at the time that he enters service, the remaining service times of the
other 1 - 3(i,k) customers befug served has a joint distribution that tis

approximately that of independent random variables each having distribution

G .
e

Heuristic Remarks Concerning the A.A.:

1. In the infinite capacity case, the A.A. appears to be approximately
true efther in heavy traffic (that is, as \E[S] * k) or in light
traffic (that {s, as \E[S] = 0) . This {8 so in heavy traffic
since the great majority of arrivals will encounter a large queue
and as a result the Kk departure processes (one for each server)

thev observe will be approximately independent delaved rencwal pro-

e .

Aoh el S i = “
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cegses., Hence, considering those customers served by server 1,
it follows that when they enter service they would have been

observing k - 1 independent delayed renewal processes for a

large time, and the A.A. follows since the limiting distribution
of excess in a renewal process is just Ge .

In extremely light traffic, the great majority of arrivals
will find either 0 or 1 busy servers. Now, since Poisson
arrivals see the system as it is (averaged over all time), it
follows that arrivals finding 1 server busy would encounter the
same additional service time (for the busy gerver) as would random
(and uniform) time sampling of the excess of a renewal process.
Hence, the A.A. follows in light traffic from the renewal process
(excess) result.

Additional heuristics for the A.A. follows from the fact that it

{s known to be (exactly) true when no queue is allowed (see [9]).
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3. THE APPROXIMATION

Since V s the average amount of work as seen by an arrival, f{t

follows by c(onditioning upon whether or not an arrival enters the system

that

Vs (1- PN)Ve + PN « (average work as seen by a lost customer).

In accordance with our basic A.A., it seems reasonable to approximate the

. 2
average work as seen by a lost customer by k %%%g% + (N - K)E[S] . Hence,
we have that

(3) Va(l-P)V +P(kESz+(N-k)E[S]
N e N 2E(S *

Now for any arbitrary customer that enters the system we have the following
identity

work as seen by the entering customer =

k x time entering customer spends waiting in queue + R

where R {s defined to be the sum of the remaining service times of those

being served when the customer enters service. Taking expectations yields

that

(4) ve = ka + E[R] .

To obtain E[R] , we condition on Be , the number of servers that are

busy when the customer enters the system:

. ATETa

R s




and so from (3)-(7) and Equation () we obtain that

h ]
-

1
4
F.
P“I
! E[R] = ECE[R B ]

1 ‘l

g
i S '

" .k - . .Lt‘:_l , ot AL
!! E[B (B k)] T bv the ALA,
i
!
o) Now,

i

]

H vl - P“)E[S] » average number of busy servers as seen by an arrival
! (v) !

{

4 | = (1 - PN)E[Bel + kPN "

i

4

;i ‘ Also,

f11 ke

X - _ - \ '

i (7) E[$(B_,k)] (1 P = }j) Yl )
7! j=v

‘ k-1
Eé%§+ (1 - - S pj) - (N = OPE[S)
(8) No. - 4=0
Q (1 - PV)(k - \E{SD

oldest customers in the svstem pav $1 per unit time, | =
.e e .0
svstem. Hence, letting bl.bq. 5 ol bk-l denote k -1

that

Therefore, it remains to obtain PV and Pj »y 02 ) k=1,

so, we impose the following fictitional cost structure--namely, that the

where the age of a customer is measured from the moment it enters the

independent

random variables each having distribution Ge , we obtain from Equation (1)

A S e s i kit 8 AL e T e, il




(o + ... + P, )E[S] + APiE[(S - min (si.sg. 2 si))+]

+
e e

9 .

+
+ APk_ZE[(S - (k -1~ 1)th smallest of (Si, cevy Si_z)) ]

+
+ A1 =Py =PBy- ... - Pk_z)E[(S = (k - 1)th smallest of (S:. ceey 5:_1)) ]

N
i.l,nocgk-l

Pl + ZP2 + ..o+ (k - l)Pk-l + k(1 - Po - e = Pk-l) = A(1 - PN)E[S]

" x if x>0
where x = . To understand the above equations, suppose
0 1f x< 0

first that {1 < k. Now, as only the 1 oldest pay, it follows that when
j customers are present the system earns at a rate j when j < i and at
a rate i when j > i . Hence, the left side of Equation (9) represents
the average rate at which the system earns. On the other hand, an arrival
finding fewer than i customers already in the system will immediately go
into service and will pay a total amount equal to his service time; while
an arrival finding j present, k -1 > § > 1 will also go immediately
into service but will only begin paying when j - 1 +1 of the j others

in service leave. Thus, in this latter case, under the A.A., the arrival

would expect to pay a total of E[(S - (J +1 -~ 1)th smallest of

e .e e
(SI,S » eeray SJ

+
)) ] . Finally, if the arrival found more than k = 2 busy
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servers, then he will begin paving atter k - 1 of those customers in

service when he enters service leave the svatem.  This explains the first

k = 1 of the set of Equation (9), The last equation (when | = k) casily

tollows sfnce in this case each customer will pav a total equal to his time

in service, i

To simplify the set of Equation (9), we will need the tollowing lemma.

Lemma 1:
If S.S;. 5500 s¥ are independent random variables such that S has

distribution ¢ and the others G, o then F

e))+] Jr+1-] E(S] .

" .e
E[(b - jth smallest of (bl. ekeis Sr )

Prootf:

+
Using the identity (x = v) = x - min (x,y) , we have that

+
E[(S - jth smallest of S;. P Si) ] - i

E[S] - E[min (S , Jth smallest of si' el Si)] .

Now, {
E[mln (s . Jth smallest of S5, ..., <‘r)]
-.f P{s » u}P{jth smallest of (Se. PR Sc) : n\da
; 1 r f
V)
. ( it r { r-1
- J.\l - G@)) S (1)(6‘(u)) (1 - G‘(u)) Jda
{=0 ¢ ¢
) |
{
i
]
: 1




T T L R TG Y T W ok . &

10

IS
- Efs] :)J‘y‘(l - Ty

H Al 0
;!
? J'l ' - '
0 - E[s] ¥ (:) 11rr+ 1;. 4
h i=0 ' i
b
i - S
b E(S] r +1

-
e —

which proves the lemma.l

PG Sty i

5
.

It follows from Lemma 1 that the equations for PN and PJ ~

0< 3 ~k=1 depend on ¢ only through E[S] . Hence, as the equations

" . T

are exactly true when G {8 exponential, it follows (since for fixed PN -
it can be shown that the set of equations has at most one solution) that
: the Pj » 0§« k-1 have the same relationship to PN as when G 1is y

exponential. Thus, we are left to determine PN , which we will approximate :

by the answer in the exponential case. In other words, we shall use the

exact result for Pj 0~y k-1, PN when (G 18 exponential as our |

approximation. This yields, from Equation (8), that

efs’) Mi'ooeispd Ly E(S)QE sp®
. EIS) 0 pndk Rk
(10) Wy * T o g :
LiL?J.l ; wﬂﬂ T
j-O ' jok k1K




4, THE INFINITE CAPACLITY CASE

In the intinite capacity case N = ¢ | the approximation (10) reduces,

vhen \E[S5] - k , to

\kalszl(aiﬁlmk"

anow s Sy T -
vie v el S QELSD: \E|S
SR I R CER \E(sl)]

Some remarks are in order:

1. In [4), Kingman obtained bounds on W_ for the general queueing

Q
system G1/G/k. When adapted to the M/G/k case of Poisson arrivals,

his inequalities are

E(s’] (ST k- (LS
2E[S)(k - \E[S]) 2E(S) =

CME(ST) - E(SDT) + kA
Q - 2(k = \E[S])

W

It {3 easily verified that our approximation for WQ {s con-

sistent with Kingman's upper and lower bounds.

! In [5]), Kingman conjectured a heavy tratftfic approximation for NQ

tn G1/G/k models., In the special case of Polsson arrivals, his

confecture {s that

] Y Y ‘Y "y
VTE[ST] - \T(E[SDT + k° ' e
wn > Kk = \E[S]) when V\E[S] ~ k .

A

Calling the right side of the above K and our approximation, as

given by (8), N - R, we have

[
§
K

A L X el Sttt s i e et i



K AE(S], _E[S) (kz - QE[SJ)Z)

N-R = = 2 2k
kPk PkE[S ]

k-1
where ﬁk =] - z Pj . Hence, since in heavy traffic,
0

E[S} = k/x , ?k
with Kingman's heavy traffic conjecture.

Numerical tables for LQ have been published by Hillier and Lo
in the special case M/Er/k, where E_ represents an Erlang

distribution with r phases. Table 1 compares our approximate

formula for LQ (= AWQ) with the Hillier-Lo tables.

Another heavy traffic conjecture was given by Maaloe who in [6)

conjectured that for the model M/Er/k

2
W AE[S”]

Q™ Tk(k - JE(S]) “hem 1E[S) =k .

As the ratio between our approximation and the above approaches
unity in heavy traffic, we see that our approximation is also

consistent with this conjecture.

12

=] , we see that our approximation is consistent

S o

A At et
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