
Lorotta Rose Guarino 
Computer Science Department 

Carnegie-Mellon University 

22 May 1978 

DEPARTMENT 
of 

COMPUTER SCIENCE 

CnU-CS-78-128 

Carnegie-Mel Ion University 
: 

i ■ ■ 

Q 

^-^"Tir 

Approved for public release; 
distribution unliaited« 

,.;;.■.:;■■    :■     ■-     . .■-        ■      ■.■ 



 —,—_—...,-.. —■'•  

/I jj        R^^^DOCUMEMTAriON PAGE 
1.   ^^■MMMBE^fT" ;/''|2. GOVT ACC 

JAFOSI^TR-   7 3-1251   ^ 
ESSION NO 

4.   TITLE (ana iuSiiiie) 

Mj JßE EVOLUTION  OF ABSTRACTION   IN  PROGRAMMING  / 
TANGaÄGESr 1/j* 

     '/f 7.   "^UTHORfsJ 

KI-.AU INSTRUCTIONS 
BEFORE COMPLETING KOkM 

3.    RECIPIENT'S CATALOG  NUMBER 

i    TYPE  OF   REPORT  A   PERIOD COVERED 

9/  
// Inter im  ^.^W 

. . SÄF-OWMtNG OR^jhE'P3TrrÜ UMBER 

4-J CMU-c s-78-iIa^V- 

ta   Rose /Guar i no 
; 

9.    PERFORMING ORGANIZATION   NAME   AND  ADDRESS 

Carnegie-Mellon University 
Department of Computer Science 
Pittsburgh. Pennsylvania  15213 

tO. PROGRAM ELEMENT, Pfc33ftt^TA;.|(./' 
AREA & WORK UNIT NUMBERS      W 

X 
II,    CONTROLLING OFFICE NAME AND ADDRESS 

Defense Advanced Research Projects Agency 
1^00 Wilson Blvd. 
Arl ington. Virginia  22209 

14-    MONITORING AGENCY NAME a   ADDRESSf// dlllerenl from Controlling Ollice) 

Air Force Office of Scientific Research/NM 
Boiling AFB, Washington, DC  20332 

16.    DISTRIBUTION STATEMENT (of this Repotl) 

NUMBERf;.) 

61101E 
A02466/7 

12.    REPORT DATE 

May 22,   1378 
13.    NUMBER OF PAGES 

mi- 

15.    SECURITY CLASS, (ol this report) 

UNCLASSIFIED 
15a.    DEC LASSIFI CATION/DOWN GRADING 

SCHEDULE 

Approved  for  pubTTc 'reTeäse;d'istr ibut ion unlimited.""^- ( 

17.    DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II dllterent Irom Report) 

18.    SUPPLEMENTARY NOTES 

19.    KEY WORDS (Continue on reverse side II necessary and Identlly by block number) 

20. ABSTRACT (Continue on 

N^ As'-'oulVunc 

on reverse side J/necessary and idenlily by block number) 

nderstanding of  the role of abstraction   in  programming  has 
improved,   programming   languages  have evolved   in  their  use and  support of 
abstraction.     This  paper defines abstraction and discusses  how the use 
of abstraction   In  programming   languages assists  the programmer.     It  traces 
in depth  the development of  support for  the abstraction of objects and 
for  the abstraction of control   constructs   in  programming   languages. ^ 

DD , ™RM73 1473 EDITION OF  1 NOV 65 IS OBSOLETE UNCLASSIFIED 

//- o S*flFf*& CATION OF THIS PAGE CWien Data Bntt 
I 



BEST 
AVAILABLE COPY 



 „ , ,  „      ■—•    "■     -—■■    —"■   ■■■ ' ■ ' "        '         " 

The Evolulion of Abslraclion 
in 

Programming Language« 

CnU-CS-78-120 

Loretta Rooe Guarino 
Computer Science Department 

Carnegie-Mellon University 

22 May 1978 • 

AI« VORCR  0FFIÖB A» . 

föohuloal   i..f, 
^«oraation  (>ffltl#p 

ThiG work was supported In part by a National Science Foundation Pelbwshlp. by a Xerox 
Corporalion Fellowship, and by the Defense Advanced Research Proiects ARency under 
confract no. F44620-73-C-0074. 

i« ,; ;; 

i   



r ^,,,^^.^,^1,,.,,-..,.^—^       —   — —-—         — «—- —.-^ —^.^^ /■""■II -"-■* 

Abstract 

As our understanding of the role of abstraction in programming has Improved, programming 

languages have evolved in their use and support of abstraction. This paper defines 

abstraction and discusses iow the use of abstraction in programming languages assists the 

programmer. It traces in depth the development of support for the abstraclion of objects 

and for the abstraction of control constructs in programming languages.    . 

ACCESSION for 

WIS I .,' Sttctlon 

• '    :   ;tlon   □ 
□ 
y 

. 

RY 

Ä 



■WSWl'-Ji"- . ..   — ''" '    '  "■■  ' , _,     ...     '    » J|"i ,      •——-»»«—•«» 

1. Introduclion 
2   Abstraction 

2.1. What we mean by abolraction 
2.2. Why abstraction is useful lo the programmer 
2.3. Abstraction introduced into programmmg languages 
2.4. Design advantages accruing from abstraction 

3. The Abstraction of Objects 

3.1. Basic support: names 
3.2. Fixed abstractions . 

3.2.1. Language designers provide application oriented data abstractions 
3.2.2. Built-in abstractions reflect underlying hardware 
3.2.3. Limitations of built-in abstractions 
3.2A. Proliferation of built-in abstractions 

3.3. Languages support programmer creation of new abstractions 
3.3.1. Type checking and the ability to create new types 
3.3.2. Trend toward simplicity 
3.3.3. Abstract data lypes 

4. The Abstraction of Control Constructs 

4.1. What can be abstracted from control constructs? 
4.2. Statement level control abstractions 
4.3. Procedures as control constructs 
4.4. Exception handling 
4.5. Effect of inappropriate control abstractions 

5. Conclusion 
References 

2 
4 

4 
5 
6 
6 

9 
10 
10 
13 
15 
15 
16 
16 
18 
19 

21 

21 
22 
25 
26 
31 

34 
35 

    -Jj 



«WPPPUPP" "   < ■" >■■'"*• '•" 

Introduction 2 

1. Introduction 

Abstraction is the distillation of the esr.enlial qualities o( a collection of Items from Its 

individual members. The use of abstraction has been recognized In recent years as a 

powerful tool in programming -- DijKstra [10] recognizes abstraction, sequencing, 

conditionality and iferalion as the basic tools of program design, and various languages have 

been designed to support user creation of abolract objects [33, 47]. The evolution of 

programming languages reflects the growth of the understanding that abstraction plays a 

crucial role in programming. This recognition spurred the development of language 

mechanisms that exploit the power of abstraction. 

The first programming languages were binary machine codes. A program was a sequence 

of bits comprehensible only to someone intimately familiar with the machine hardware. A 

programmer dealt with specific memory addresses and operation codes. 

In the early igSO's, assembly languages introduced an important fool lo assist the 

programmer: naming. A programmer used mnemonic operation codes rather than the binary 

encoding of the operation; he assigned a name to a jump location or area of data storage, 

using i . name Instead of the memory address throughout the program. Naming provided 

valuable bookkeeping assistance as well as a means for the programmer to express hi$ 

intentions by the mnemonic choice of names. 

The late 1950*3 and early 1960's saw an important step In the evolution of programming 

languages: abstraction away from the machine. Programming languages provided a virtual 

machine more amenable than the bare hardware of the real machine to the problem at hand. 

FORTRAN [1] presented an environment for scientific calculations in a style similar to scientific 

notation. It introduced primitive control abstractions such as DO loops and basic data 

abstractions such as real and integer variables. ALGOL 60 [36] continued this abstraction 

away from the machine, providing improved control constructs such as block structuring, and 

data abstractions through typed variables. 

The next landmark in language development was to recognize of the importance of 

abstraction and to support user definitions of their own abstractions. Dijkslra [10] and 

others pointed out the importance of the use of abstraction In program design. Languages 

such as ALGOL 68 [3] and SIMULA 67 [7] provided mechanisms that could be used for the user 

definition  of   data  abstractions.     Users  defined  the  representation of   data   object   types. 

    



■ 

Introduction 

PASCAL [41] was introduced a few years later to try to retain the advantages of data types In 

a simpler language. 

In the early to middle igyO's, languages were introduced that permitted the user to 

enforce the correct usage of abstract data types. CLU [33] and ALPHARD [47] provide language 

features in which a user defines the reprcsenta\ in of abstract objects and the operations 

applicable to the objects, and that protects the objects from misuse by other parts o' the 

program. 

The late 1970's find abstraction mechanisms used to address programming problems other 

than program design. EUCLID [27] was designed for the writing of verifiable programs. MESA 

[15] uses abstraction mechanisms to aid in the construction of large programmed systems. 

MODULA [44] and CONCURRENT PASCAL [6] address problems of operating system construction 

and synchronization. 

In the following sections, we define abstraction and discuss how the use of abstraction In 

programming languages assists the programmer. We then trace the development of support 

for the abstraction of objects and the abstraction of control constructs In programming 

languages In light of the evolution of language described above. 



Abstraction 

2. Abstraction 

Much of IHe r-uccess and widcoproad acroptance of higher-level languages has been 

attributed to their support of abstraction [19], In the following sections, we define 

abstraction and discuss its effect on the act of programming. Explicit recognition of the 

Importance of abstraction has occurred only within the last decade. Hence, although we shall 

review uses of abstraction over the entire development of programming languages, most 

references will be to relatively recent sources. 

2.1. What we mean by abstraction 

Abstraction is the generalization from a collection of objects that all of the Items in the 

collection share some properties that are important for a given purpose.   Hoare    states: 

"Abstraction arises from a recognition of similarities between certain objects, 
situations, or processes in the real world, and the decision to concentrate on these 
similarities and to ignore for the time being the differences." 

Given a collection consisting of a book, paper and a pencil, we might, for example, form the 

abstraction "burnable item" if we were interested in starting a fire, or the abstraction "school 

supplies"   if   we   were   preparing   for   school.     The   abstraction  drawn  depends   upon   fhe 

properties that we judge to be important, and conversely, we can deduce the Intended use of 

a collection from the abstraction used to describe It. 

Wegner defines abstraction [40]: 

"An abstraction of a object is a characterization of the object by a subset cf Its 
attributes... If the attribute subset captures the 'essential* attributes of the object, 
then the user need not be concerned with the object itself but only with ;he 
abstract attributes." 

We   form   abstractions   because  of  certain  regularities or  similarities   among   the   particular 

.instances of the abstraction.   The abstraction is useful because we can concentrate on these 

Important  features and ignore the dissimilarities between the Instances as being incidental. 

Abstraction permits the expression of relevant details and the suppression of Irrelevant ones 

[32]. 

^Refet'ences to Hoare are from [19]. 

^. 

mm .. 



 ™-    ■ I  I    -■  -  

M-- |i ... hon 

2.2. Why abdraclion is useful to the programmer 

Whether they r»illftd it or not, programmers h.ive always used abstraction n part of tht 

problem-.olving process. Data abstraction is used In viewing a sequence of bits as an 

lnt«g»r, real number or character [.,:], '\ subroutine call can be thought of abstractly as a 

machine instruction [23], The process of programming can be viewed as building up more 

useful objects from the ob)ects already at hand, or as transforming one machine into another, 

more suitable machine [It, 31). 

Since programming. particularl> the programming of large systems, Is an extremely 

complicated task, the programmer uses absb.ution ar an organisational tool. Me uses 

jh-.tr action mechani'-.ms to dtCOmpOM pioMems mlo SUbparU) at any level of decomposition, 

he need only use the important characteristics of the lower level abstractions, and can focus. 

on providing the proper characteristics to higher levels [32]. When using an abstraction, the 

programmer can understand what the ahstrachon rtprttcntf without worrying about how its 

does so; when implementing an abstraction the programmer can understand how the 

abstraction is to be represented without worrving about why is it to be created {23\ 

Wegner's definition of abstraction notes that, if the attribute subset defining an abstraction 

is substantially simpler than its instance, then the use of the abstraction in place of an 

instance simplifies the problem addressed by the user. Wirth finds procedures a means of 

partitioning and structuring programs into logically coherent, closed components in a way that 

Is essential to the understanding of the program [43) Liskov indicates that programming 

problems can be solved by means of step wise abstraction, implemenhng appropriate data 

abstractions that are in turn developed bv means of subsidiary abstractions [33]. 

Stepwise refinement [A?] employs abstraction in a systematic way In solving problems. In 

the early stages, the programmer pays attention to global problems rather than to details. As 

the design progresses, the problem is split into subproblems, and gradually more 

consideration is given to details ol the subproblem specifications and the characteristics of 

the tools available. Hence the programmer concentrates only on the details relevant to a 

given stage of the solution. 

I 



Abstraction b 

2.3. Abstiaclion introduced into programming languages 

Explicit abstraction mechanisms in programming languages were introduced to support and 

encourage the proßrammer's use o( abstraction in program design. A side eltect was to 

improve the ability of the languages to represent the programmer's mental model of a 

program. A programming language provides the human-readable representation of programs. 

Hoare relates the importance of representation: 

"The primary use for representations is to convey information about important 
aspects of the real world to others, and to record this information In written form, 
partly es an aid to memory and partly to pass if on to future generations." 

Programming languages lhal explicitly display abstraction permit the programmer to 

indicate what tie considers to be the important aspects of a program, aiding Its readability 

and comprchcnsibiiity. Such support aids a person in retracing the design process and 

understanding the programmer's goals and intentions. Ideally, a programming language 

enables a programming abstraction to be represented easily and naturally, and enables the 

original programming abstraction to be easily reconstructed fror ;'s representation [25]. An 

appropriate use of abstraction indicates a menially manageable decomposition of the program. 

As Hoare indicates, such an improved representation assists in program development, 

reminding the programmer of previous design decisions, as well as assisting program 

maintenance. 

Hoare suggests several other advantages accruing from the support of explicit abstraction 

by programming languages. The use of abstraction contributes to the machine indepandence 

of programs, since only the implementation of the abstractions, not the abstractions 

themselves, need be changed between machines \22\ Abstraction mechanisms also help 

reduce the scope of programming error, both by encapsulation of data [37] and by the 

regular decomposition of control flow. 

2.4. Design advantages accruing from abstraction 

The most Important effect of the presence of abstractions in programming languages is 

their influence on the direction of program design. Hoare suggests that programming 

languages can and do contribute to the program design process by their support of 

abstraction: 

  -—«......-■i-uLa.iiim^. 



m'   mmm 

■ 

Abstraction 

"The role o( abstraction in the der.ign and development ot computer programs 
may be reinforced by the use of a suitable high-level programming language. 
Indeed, the benefits of using a high-level language instead of machine code may be 
largely'due to the incorporation of successful abstractions, particularly for data." 

The presence of certain abstractions shapes the way we approach problems. As an 

example of the way in which different languages affect our thinking about a problem by the 

abstractions they provide, we consider the task of calculating the area of a region [38, 39]. 

We are given a two-dimensional space of squares, each square painted either black or white. 

The black squares form a connected region, dividing the set of white cells into isolated 

regions. We wish to calculate the area of one such while region, given the location of a cell 

known to be within the region. 

A language supporting recursion, as does AlGOL, lends itself to a recursive solution. A 

starting cell is counted and painted black, and we recur for each of its four immediate 

neighbors. A cell is counted and its neighbors inspected only if it Is white. Note that a cell 

can be black either because it was not part of the original region, or because it has already 

been counted and painted black. 

We might be led to an "edge-following" solution in a language like FORTRAN, which most 

strongly supports Iteration. We calculate the area of the region by tracing its boundary. The 

area of the region will be the sum of the lengths of each vertical column of cells. We can 

calculate these lengths by our knowledge of the boundary location. 

Using API, a language providing simultaneous operations on arrays, we might solve this 

problem by considering a kernel of the space known to be within the region. Af each step, 

we "grow" the kernel to include all white cells adjacent to its boundary, continuing to expand 

until the kernel fills the entire region. The area is the number of cells grown. We can "grow" 

an area in a single step quickJy and easily because API permits us to shift and combine entire 

arrays with single operations. 

Since the abstractions provided can have such a strong influence upon language design, the 

introduction of user-defined abstractions provided design Hexibility while retaining the other 

advantages of abstraction. We can view every large programming project as involving the 

design, use and implementation of a special-purpose programming language, with its own data 

concepts and primitive operations, specifically oriented to that project [20]. Abstraction 

mechanisms permit the programmer to extend his language, either for a particular program or 

for  some  application  a;ea [23].    The  programmer can tailor  a language  toward  his  design 

_     



Abstraction 8 

needs, instead of letting his design be driven by the abstractions provided by a language. He 

retains and enhances the other advantages of abstraction, organization, imp'Oved 

representation, and portability. 

____________________ 



The Abstraction of Objects • " 

3. The Abstraction of Objects 

The development of the abstraction o' objects in programming languages has closely 

mirrored the language evolution described in the introduction. Each advance in language 

evolution has been accompanied by a major improvement in our understanding and support of 

object abstraction. The ability to name objects was a major improvement of assembly 

language over machine language. Variable declaration and types accompanied abstraction 

away from the mactvne. With the explici» roco. nilion of the lwporlar.a> of abstraction In fhe 

sixties came facilities for us;* . to define their own object types. The advances of the 

seventies have guided the development of facilities for user definition of abilract objects. 

3.1. Basic support: names 

The earliest tool provided to the programmer to express abstractions, introduced in 

assembly languages, was the ability to name things. Naming was Introduced to reduce the 

amount of bookkeeping involved in programming. It permits the programmer to abstract away 

from machine addresses, so he can concern himself with the use of objects rather than their 

locations. Naming shields the programmer from many of the bookkeeping details of the 

program because the translator that maps the names into memory addresses can easily keep 

track of these details.   If a program includes the statement 

JUMP        100 

to   transfer   control   to   the   statment   at   location   100,  then  any   modifications   that   cause 

Instructions to be added before location 100 will require that the JUMP stalerrsnt be changed. 

Tf the programmer can Instead write 

JUMP        TERM 

where TERM is a name attached to the desired instruction, then the tfanslator can make the 

adjustments when new code is added. Since the translator deals with the side effects of 

moving, adding, or deleting objects, the programmer can turn his attention to the use of the 

objects. 

In addition to this bookkeeping ability, the programmer gained the ability to use names 

mnemonically. The programmer could name objects to reflect the manner In which he 

Intended   to   use   them.      This   alone   makes   programs   immensely   more   understandable. 



The Abr.lraction of Objects 10 

Languages do not enforce any consistency between use and intention -- mnemonic names are 

a means of communicating between people, not beiween person and computer -- but the 

naming ability enabled the programmer to reflect his intended usage, for his benefit and for 

the benefit of others reading his program. 

The ability to give nanvjs to things was first introduced in assembly languages, although 

names were often restricted in length or format. The restrictions on name length hampered 

the use of mnemonic namei, and acronyms abounded. But the restrictions on name lergth and 

available characters were slowly raised, to the point that some languages support arbitrarily 

long names, multiple fonts, upper and lower cases, and spacing conventions within names. 

Multi-word names are often realized by judicious use of upper and lowei* case, e.g., 

CharactersPerLine, or by use of spacing characters, e.g., CHARACTERS.PER.LINE or 

CHARACTERS_PER_LINE. 

3.2. Fixed abstractions 

3.2.1. Language designers provide application oriented data abstractions 

The next step in the support of abstraction after providing a naming ability was to supply 

the user with the built-in or implicit abstract objects that the language designer felt were 

useful. Different languages provided different implicit abstractions, and hence were more 

appropriate for some applications than others. 

FORTRAN was designed to assist in scientific computations.   It introduced a form of common 

scientific  notation for arithmetic expressions.    Later versions supported extended-precision 

and complex arithmetic for use In scientific calculations.   FORTRAN'S arrays can be used as a 

matrix abstraction, although FORTRAN provides no primitive operation whose scope is an array 

or matrix. Hence, the following FORTRAN program fragment performs a marlx addition 

operation on the two-dimensional arrays being used to represent matrices: 

^Example programs are presented to show typical language syntax and use of abstraction. 
No attempt Is made to define or describe languages in detail. 

^ -  : „___ - 



The Abstraction of Objects 11 

DIMENSION A(99,D9),D09,a9),C09.n) 

20 
10 

DO 10 I = 1,99 
DO 20 J = 1,99 

C(I,J) = A(1,J) + B<1,J) 
CONTINUE 

CONTINUE 

COBOL  [2] presents  a  rich  set  of  abstractions useful for commercial data processing  and 

unit-record   oriented   programming.     The   set   is   intellectually   manageable   because   of   the 

structure of the abstractions provided; each data type Is composed of a series of attributes, 

with   a   choice   of   several   values   for   each   attribute.     The   language   contains   a   rich,   but 

incomplete, set  of  editing  rules  that convert  data from one type  to another.    For  instance, 

COBOL   permits  conversion  from  integer   to  siring,  but   not   from  siring   to   Integer.     COBOL 

programmers  learn  to  take  advantage of  the built-in coercions to accomplish much of  their 

computation: 

DATA DIVISION. 
FILE SECTION. 
FD    LEDGER-FILE DATA RECORD IS OUTPUT-LEDGER-RECORD. 
01     OUTPUT-LEDGER-RECDRD. 

02 OUTPUT-SOCIAL-SEC. 
03 PARTI 
03  FILLER 
03 PART2 
03 FILLER 
03 PART3 

02 OUTPUT-SALARY 

UDRKING STORAGE  SECTION. 

01     INTERNAL-SOCIAL-SEC. 
02 PARTI 
02 PART2 
02 PART3 

77 WORKER-SALARY 

SIZE 3 USAGE DISPLAY. 
SIZE 1 VALUE "-••. 
SIZE 2 USAGE DISPLAY. 
SIZE 1 VALUE --•'. 
SIZE 4 USAGE DISPLAY. 
PICTURE 888,889,99. 

USAGE COMPUTATIONAL SIZE 3. 
USAGE COMPUTATIONAL SIZE 2. 
USAGE COMPUTATIONAL SIZE 4. 

USAGE COMPUTATIONAL PICTURE 9999V99. 

  



The Absiraction of Objects 12 

PROCEDURE DIVISION. 

PRINT-LEDGER-RECORD. 
■ MOVE CORRESPONDING INTERNAL-SOCIAL-SEC TO OUTPUT-SOCIAL-SEC, 

HOVE WORKER-SALARY TO OUTPUT-SALARY. 
URITE LEDGER-RECORD. 
GOTO NEXT-INPUT. 

This use of data abstractions and coercions is useful and manageable because the data types 

are built-in and not extendable and are built up in a regular fashion, so the programmer can 

master their use. 

SNOBOl [17] is intended for text processing, so If provides the abstractions of character 

strings and patterns. The SNOBOL siring implementaiion is particularly flexible. A string can 

be arbitrarily long, and text can be added or removed from anywhere within a string. 

Powerful pattern-matching operations permit strings to be easily and intricately manipulated. 

For example, we can create a SNOBOL pattern that will take a subject string STR and a pattern 

PAT and find the longest substring of STR that PAT matches: 

MAXPAT      =       (*PAT 8  TRY *GT(SI ZE(TRY)),SI2E(BIG)))  S  BI G FAIL 

BIG must be initialized to the null string before using this pattern, and will contain the 

maximal substring after matching, as in the following program fragment: 

PAT     -     SPAN(•ABCDEFGHIJKLMNOPQRSTUVWXYZ') 
STR    =     'THIS IS A SAMPLE TEXT SENTENCE' 
BIG    = 
STR MAXPAT 
OUTPUT    =     'LARGEST WORD IS  '    BIG 

which produces the output 

LARGEST WORD IS SENTENCE 

LISP [34] is. both a mathematical formalism and a programming language for describing 

computations with symbolic expressions. It was designed for use In artificial intelligence 

applications, and it incorporated many of the abstractions used in formal logic. LlSP relates 

symbols by means of lists, which are the basic abstraction provided by the language. The 

recursive character of LlSP's control constructs melds neatly with the list abstraction. A 

typical  use of  recursion and the list  abstraction In LlSP is demonstrated by the following 



The Abslraclion o( Objects 13 

definition  of  the  function  REVERSE,  which  reverses  the  order  of   the  elements  of   Its   list 

parameter. 

(DE REVERSE (L) (REVERSE1 L NIL)) 
(DE REVERSEl (L M) 

(COND ((ATOM L) H) 
(T  (REVERSEl  (CDR L)  (CONS (CAR L)  H))))) 

The basic abstraction provided by API [24] is the array. Operators are provided to 

transform and manipulate arrays of arbitrary dimension and to reshape and redlmension 

arrays. Character strings are treated as one-dimensional arrays whose elements are 

characters. The following API statement will remove all extra blanks from an array of 

characters S: 

S ♦• (C  .OR.     1   .RV.      C ♦■ S  .NE.     '   ^/S 

As we mentioned in the area-finding problem, the basic abstractions provided by a 

language affect the types of programs written easily In that language. The languages 

described above present widely differing programming environments because of the basic 

abstractions they support, 

3.2.2. Built-in abstractions reflect underlying hardware 

Many of the initial decisions about the particular data abstractions to be included in a 

programming language were strongly influenced by the capabilities of the machine for which 

they were initially intended. The form of FORTRAN, for example, was oriented to the IBM 701 

computer [4, 43]. Language designers wanted to be able to use the underlylnp, hardware as 

efficiently as possible. The features and peculiarities of the computer strongly affected the 

abstractions provided, as well as the implementations of those abstractions. 

Early languages were designed around models of implementations derived from the 

designer's intended use of the hardware [40]. FORTRAN'S model of implementation required 

that storage requirements be known at compile time so all addresses could be assigned then. 

This static storage allocation engendered FORTRAN'S lack of recursion. ALGOL BO's 

Implementation model included dynamic storage allocation by means of a run-time stack, which 

permits recursive declarations. ALGOL supports arrays whose sires are not known until 

execution time, since it can allocate storage dynamically on its stack.   However, ALGOL cannot 

  



The Abstraction of Objects 14 

support   the dynamic  creation o( variables with arbitrarily long, overlapping  lifetimes,  as   Is 

possible In LISP. 

Most languages include the abstractions integer and real, which are Implemented by means 

of the machine's fixed- and floating-point numbers. These abstractions differ from the 

mathematical notion of integer and real numbers, of course, because the fixed-point numbers 

srs restricted to a finite subrange of the integers and floating point numbers can represent 

only a sparse Sampling of the real numbers. For most applications, this implementation of the 

abstractions of integer and real numbers is acceptable. Extended-precision packages have 

been developed to provide implementations that correspond more closely to the abstractions. 

The need to know when and how badly those implementations differ from the abstractions In 

use has stimulated the development of the discipline of numerical analysis. 

The mapping between a higher-level abstraction and the hardware implementing it gave 

rise to the use of the names CAR and CDR in LISP. CAR refers to the first element of a list 

and CDR to the rest of the list. Clearly, these names are not at all indicative of their 

functions. The first LISP implementation was on an IBM 704, a 36 bit computer whose 

instruction word was divided into four subfields, with a special instruction to access the 

contents of each field. The "address" and "decrement" fields, each 15 bits, were used to hold 

the two pointers that made up a list cell, and the LISP operations CAR and CDR were named 

for the 704 operations that implemented them: "Contents of Address field to Register" and 

"Contents of Decrement field to Register". 

The restrictions on FORTRAN subscript expressions were designed to make the best  use of 
i 

early indexing hardware [4]: 

A(10*rI-3) 

would be a permissible expression in FORTRAN, but 

A(I*J) 

would not. A subscript expression could be of the form 

{<integer constanfx) <integer scalar variable> |+<integer constant*} 

where all constants were limited to 15 bits. This was »he least restrictive syntax that would 

allow strength reduction in loops and would allow the Variable Length Multiply Instruction to 

be used to compute non-loop subscripts. Strength reduction, in which  multiplications in the 

calculation of indices are replaced by additions within loop, was necessary because the Index 



The Abstraction of Objects 15 

register was separate from the arithmetic register and could perform no arithmetic operations 

except addition. FORTRAN'S array performance would have been degraded severely If It had 

been necessary to use the arithmetic register to perform index calculation? within loops. 

The FORTRAN arithmetic IF statement reflects a peculiarity of the IBM 704 instruction set. 

The only comparison instruction on the 704 was CAS (Compare Accumulator to Storage), 

which would skip no commands if the accumulator was greater than the storage value, skip 

one instruction if the accumulator was equal to storage, and skip 2 instructions if the 

accumulator was less than storage. The FORTRAN arithmetic IF would branch to different 

locations if the value of its expression was greater than, equal to or less than zero, tt was 

designed to exploit the presence of the CAS instruction. 

3.2.3. Limitatioris of built-in abstractions 

The languages discussed provide abstractions that are quite useful for their intended 

purposes. As testified to by their continued heavy usage, these languages present a major 

increase in convenience and clarity to the programmer by their abstraction away from the 

underlying machine. However, no language is appropriate for alt applications. The 

programmer is limited to the abstractions that a language provides. Attempting to manipulate 

text in FORTRAN is frequently even more difficult than in assembly language. Furthermore, It Is 

difficult to join together subprograms from different languages, so one can not simply split up 

a task into the» languages most appropriate for each part. 

3.2.4. Proliferation of built-in abstractions 

PL/1 [28] takes the use of built-in abstraction to Its extreme. It attempted to become the 

ultimate general-purpose language, suitable for commercial, scientific and real-time 

applications, by collecting many of the abstractions used by other languages. Unfortunately, 

this primarily resulted in overwhelming the user. PL/1 litki a systematic structure with a 

unifying underlying conception [43] and the user fac ; a wide range of abstractions from 

which to select.   Furthermore, complex coercion and c jles are built in*o the language 

to define the interactions between the abstractions. They are numerous, often non-intuitive, 

the programmer has no control over them, and he seldom receives warning when they are 

applied.   As an example. In the following program 

 . .. . J 



The Abstr.iclion of Objects ■ 16 

DECLARE B BlT(l)i 
8=1« 
IF  B=l   THEN GOTO Yj 

ELSE GOTO Xj 

execution transfers to label X because the fixed-decimal constant  1 Is converted to a bit data 

type in the assignment sta'ement and to a binary data type in the comparison [35]. 

Wegner   [40] claims  that   programming  in PL/1   is  relatively  easy  once   the  language   is 

mastered,   but   the   complexity   of   the   language   makes  this   mastery   difficult   and   makes' 

verifiability   and  rtadability   of   programs   a  problem.     Because  of   the   complexity   of   the 

abstraction   interactions,   the   programmer   loses   the   usual   advantages   of   abstraction   -- 

intellectual manageability and minimieation of arbitrary interactions. 

3.3. Languages support programmer creation of new abstractions 

The futility of providing a language with too many implicit abstractions caused language 

designers to step back and discover that a recursive application of the principle of 

abstraction was in order. Programming languages provide specific abstractions as tools from 

which to build. Let one of the objects provided be the concept of abstraction itself: provide 

the programmer with the basic essentials from which to build and let him create his own more 

complex or specialized abstractions as needed. 

3.3.1. Type checking and the ability to create new types 

By defining his own data types, the programmer can specify the representation of his 

abstract objects. SIMULA 67, with its classes, and ALGOL 68, with its modes, were among the 

first languages to permit the programmer to localize the definition of an abstract object's 

representation. The programmer gives the abstract object definition a unique type name, 

which he then uses to declare variables in his program. !n this way, changes to the 

representation need only be made in the type definition for the programmer to be assured 

that all instances of a type of abstract object possess the same representation. 

One of the important bookkeeping aids provided by a programming language is type 

checking, that Is, the consistency checking of operands [20]. Operations may only be 

performed upon operands of  the correct  or consistent  type; we cannot   add  apples  and 



Iho Abstraction of Objects 1' 

oranges. Lnnguagcs assitt the progrimmet In thf USt of new abstractions by performing 

lype checking on programrrw-deflned as well as implicit types of operands. 

What  we shall call woaK type checking ensures that operands have Identical underlying 

representations.    A complex  number   and a point on the plane can both be rep  esented by a 

pair of real numbers.   If we declare 'wo types, 

TYPE  Complex   ■  RPCORD  [Real Part,   I maqPartl   Real 11 

TYPE  Point        ■  RECORD  [XCoord.   YCcordi   Real It 

languages with weak type checking will not distinguish between variables of these types. We 

can test whether a variable of type Conxplct is equal to a variable of type Point, for 

instance. In effect, the language Only checks whether the structure of an operand permits 

such an opei ation. Weak type checking is useful In wriling operations such as an output 

formatter, (or which the underlying representation Is hie important characteristic of the 

operand. If does not assist the programmer in enforcing the distinction between separate 

types with identical representations. Weak type checking is used by SIMULA 67, AlCOl 68, and 

PASCAL, the early languages to introduce user-defined data types, 

MESA, ALPHARD and CLU enforce strong or strict typo checking [15, 32], which distinguishes 

between usages of separate types with identical representations. Languages with strong 

type checking ignore the underlying representations of objects. Objects of different types 

are conceptually different and should be treated as separate entities. In such languages. 

Objects of types Comdex and Point cannot be confused or interchanged. Hence it would be 

impossible to accidentally square a Point variable or compare a Complex variable with s 

Point variable. 

To be efficient and to reduce the proliferation of procedures that are identical except for 

the types of their parameters, languages such as SIMULA, EUCLID, CLU and ALPHARD support 

forms of parameterized types. Instead of msisting that an operand be of a certain type, 

operations can specify that an operand type must possess certain properties. We can use 

such a facility in a strongly typed language to gain the flexibility of weakly typed languages 

while retaining type protection. For instance, we can write our output formatter that should 

accept both Complex and Point variables by requiring that the operand type possess 

operations FtrstReaLFart and LastReaLFart that return the two real parts of the operand We 

can use parameterized types to avoid having to create different stack types for every type 

of object  we wish to stack [47].    Instead of creating types 5fuc/tO/7nieger and StackofFeai, 

 ^  ._^ ^  



■ T--:.     -.'.■:.       -:.,"-■   /''■-■, . n^ir 

The Abotraclion of Objects 18 

we can create a parametcri?ed type Stack that can be used with any type. 

3.3.2. Trend toward simplicity 

SIMULA 67 and AlGCH 68, the early languaces that provided facilities for user-defined types, 

are large, complex languagtt. Altempls to .Khieve greater richness by synthesis of existing 

features, a la PL/1, and by generalization, a la Air.OL 68 led to excessively elaborate 

languagps. Flexibility and power of expression in programming languages are accompanied by 

greater complexity [Q0\ Programming methodologies have beer; developed that argue tor the 

syctematic use of a small set of basic tools in programming development [10, 20]. The desire 

for correct, reliable programs has not only stimulated program design methodology, but has 

also increased interest in program verification, both manual and automatic. These 

developments-encouraged the design of simpler languages that would be manageable by the 

programmer and tractable for verification, even at the price of restricting flexibility and 

power of expression. 

The language PASCAL was designed with the stated goal of providing "a notation in which 

the fundamental concepts and structures of programming are expressible In a systematic, 

precise, and appropriate way". U grew out of the desire to retain the advantages of 

abstraction as developed in SIMULA 67 and ALGOL 68 within a simpler language, based on the 

spirit of the considerations outline above. It attempts to provide rich data and control 

abstraction facilities without sacrificing efficiency of implementation. PASCAL provides data 

abstractions such as sets, enumerated types, and the discriminated union of types by means 

of variant records. To simplify the implementation of PASCAL, however, arrays must be of a 

fixed size; the programmer cannot determine his array size et runtime as he could in ALGOL 

60.   An axiorr.tic language definition [21] was published to aid in portability and verifiabilily. 

EUCLID [27], an offspring of PASCAL, is intended for the expression of systems programs 

that are to be verified. To permit stronger statements to be made about the properties of 

programs, EUCLID is yet more restrictive than PASCAL. For instance, the language guarantees 

that the aliasing problem cart not arise, that is to say, two identifiers In the same scope can 

never refer to the same or overlapping storage areas. To effect this guarantee,' EUCLID 

restricts the parameters that can be passed to a procedure. Hence, If we are given the 

declarations. 

 i ~-.-^...«.—_a^^   ^      _ 



- 

The Abstmcticn of Objects 19 

var   Ai   array  1.,100  of   Intcgon 

var   qs    Intcgon 
procedure  p(var   xi   Integer,   var  y!array  1..100  of   Integer) 

%■ 

tuclid will not permit Ihe function rail 

p(A[l].A) 

»-.incp location Atl] would be known both as x and y[l] within p. However, 

p<q^A) 

Is permitted. 

3.3.3. Abslract data types 

Ur.er-defined data types increased the programmer's ability to form His own data 

abstractions, but an important aspect of data abstraction was still missing. An implicit data 

type has a limited set of associated operations [22]. Tor example, one can perform arithmetic 

operations on integers, but not logical operations. However, a programmer who created a data 

abstraction by means of user-defined types could not limit the operations associated with the 

abstraction or restrict access to its representation, . Programmers needed to be able to 

extend the concept of type to be a set of values together with the primitive operations that 

could be applied to these values. Additional support was necessary for users to enjoy the 

full advantages afforded to built-in abstractions in their user-defined abstractions. 

The creators of SIMULA 67 [7, S], generalizing the AlGOL notion of a procedure to apply to 

the problem of coroutines as used in simulation, developed a mechanism that was suitable not 

only for simulations but for the increased support of abstract data types. The SIMULA class 

contains both local data fields and operations to access these fields. Many instances of the 

class can be created, each identical but with its own private data. It is possible for the 

programmer to create a new, named type, to specify its structure by means of the class's 

local data, and io specify the operations associated with the type to be those provided by 

the class. Originally the language did not ensure that only class operations could access local 

data, but later versions enforce this restriction. 

Other languages have developed facilities lor linking the internal representation of a 

user-defined abstraction to the operations permissible on the representation and enforcing 

that  only  these  operations  access  the representation,    ClU clusters [33] and AlPHARD forms 

liliiiiniiiiMliiirri 



I" 'I |1»I!|.I.I»11IWW»»P"IS —        -       .   - . 

The Abstraction of Objects 20 

[47] are two such examples.   An example o( a user-defined abstraction In CLU Is a wordbag 

uordbag  =  cluster  La 
create, %create an empty bag 
Insert     » %lnsert   an clement , 
print» %prlnt   contents  of   bag 
rep  =  record [contents!   uordtree,   totah   InQ > 

create  =  proc  ()  r^^rnsCcvt)» 
return(rCi;8(contont si   uordtreeScreate (),   total I   0))j 
end  create: 

Insert   =  proc  (x«   ^;J.,   v<strlnq)t 
x.contents  J= uordtree8lnsert(x,contents,v)| 
x.total   := x.total   + li 
end   Ipiertj 

^ print   =    proc (xJ   Qi,  oi outstrcam)» 
^1^ uordt reeJpr I nt(x, contents^, tot 8l,o)t 

£üsi print» 
end  wordbag» 

Wordbag is the name of the abstraction, and the only operations permissible on wordba^s are 

create, insert, and prirtif Only the cluster is allowed access to the internal representation of 

the abstraction by means of ci/f, which stands lor the object's internal representation. 

Abstraction facilities have also influenced and been influenced by design methodology and 

verification considerations. The encapsulation of representation and operations eases 

verification, and suggests guidelines in the design process for the decomposition of programs 

[10. 13, 37]. 

  



H", ..       ,     ' '- ■•■ "■ ',.. , "» "»-»«~™ iiwiiiiimiiwiiwmiii 

The Abstraction of Control Constructs 21 

4. The Abstraction of Control Constructs 

The development of control abstraction does not parallel the evolution of programming 

languages as we!' as does the development of object abstractions. The procedure has been 

present since the first assembly languages, and many of Ihp control constructs In use were 

first introduced when lanßuaßes staMed abstracting away from the machine. A control 

scheme parallel to the concept of abstract data t^pes has not emerged, unless It Is the 

procedure mechanism that has been with us all along. However, there have been 

improvements developed in the proper support lor different types of control abstraction. 

4.1. What can be abstracted from control constructs? 

What does it mean to form abstractions with respect to flow of control? An abstraction 

emphasizes the regularities among items, suppressing the less-important differences. It also 

indicates the intended use of an item, so that the item can be used without respect to the 

details of implementation. 

The abstraction of control constructs reflects regularities in the flow of control. Since 

abstraction mechanisms indicate the general control flow, a reader can determine the order of 

execution of varioi-s parts of the program and how they interact without knowing their 

details. Control abstractions also guide thff reader's focus of attention. Good programming 

style uses indentation to emphasize the regularity provided by control abstractions. When a 

reader encounters a control abstraction, he can assume that it groups activities that form a 

conceptual activity. Unless concurrent execution is involved, the flow of control will remain 

within the area demarcated by the scope of a control abstraction. For Instance, the reader 

may safely assume that control will remain within a WHILE loop as long as the loop condition 

is satisfied, and that a procedure will complete execution before returning control to Us 

caller. 

The basic control-flow elements provided by computer hardware »re sequencing (the linear 

order of Instruction execution within the machine's memory) and branching, both conditional 

and unconditional. All control abstractions are built up from data manipulation and these 

flow-control elements. 



'■"■'     -■■■——-        -~- ■ ■..     ■  ■■' ■ .. >■■   BH s 

The Abstraction of Control Constructs 22 

4.2. Statement level control abstractions 

Machine and assembly lanßuaees used the control elements of the hardware transparently. 

Programmers had the complete freedom of the machine, but with it shouldered the complete 

responsibility. Disciplined uses of the control elements arose to support such abstractions as 

procedures and iteration. For instance, the following conventions were adopted for 

procedure calls and parameter passing on the IBM 704*: 

TSX       ROUTINE,4 

PZE       address of  parameter  1 

PZE       address of   parameter  2 

PZE       address of  parameter n 

For all procedure calls, index register 4 was expected to hold the address of the routine call. 

The called routine knew the number of parameters it expected, so it could calculate the 

return address. It would retrieve its parameters indirectly through the addresses that were 

stored in the code (note that such a technique makes »the code non-reentrant). FORTRAN 

relieved the programmer of the necessity of remembering the details of the c • T 

convention by providing a subroutine call notation and generating the proper code. In 

FORTRAN, the programmer wouid make the above call by writing 

CALL ROUTINECpa.-ameter 1,  parameter 2,   ...     parairater n) 

FORTRAN also provided improved control abstraction by Its notation for arithmetic expressions 

[20], which relieved the programmer from register allocation responsibilities and concerns 

with order of evaluation.   Instead of writing 

LD A 
MUL B 
ST TEMP 
LD C 
HUL D 
ADO TEMP 
ST F 

*TSX means "Transfer and Set Index"; it stores the program counter into the Indicated 
index register and then does a transfer. PZE stands for "Plus Zero", and is an assembler 
pseudo-op that generates a word containing only an address. 

.. .  



wmufKimmmn.i » iina^^«m^mPin|)p^^pi«9P«!«iii 

The Abotraclion of Conlrol Conslrucls 23 

the programmer could wrife 

F = A*B + C*D 

', 

Through   DO  loops,   Ihree-way  condihonal   branchinR   and   subroutine   mechanisms,   FORTRAN 

provided a notation for the control disciplines established in assembly language. 

ALGOL 60, designed with the goal of describing computational processes, Introduced 

Improved statement-level control abstractions. Block structure enabled the programmer to 

treat a group of statements as a single statement without the overhead of a procedure call. 

The IF-THEN-ELSE statement provided a convenient abstraction for conditional execution. In 

ALGOL, the programmer can use these control abstractions to write 

IF X = Y THEN 
BEGIK 
X «- X-it 
Y «■ 0 
L.D 

ELSE 
BEGIN 
X «- X+li 
Y «■ -1 
ENDt 

■ 

while in FORTRAN, he would have to specify transfer of conlrol explicitly: 

IF (X .NE.    Y) GO TO 10 
x s X-l 
Y a   0 
GO TO 20 

10  CONTINUE 
X = X+l 
Y = -I 

20  C0NTINUE 
■ 

Looping  mechanisms  were  provided by  F0R-WH1LE statements.    Looping  mechanisms   are 

particularly useful abstractions because they relieve the programmer from the drudgery of 

decrementing counters and explicitly testing loop termination conditions, and also provide  a 

standard   repetition   mechanism  with  which \he  programmer  can  become   familiar.   Errors 

Involving one too many or loo few Iterations around a loop were much more common before 

such looping mechanisms entered languages. 

The Introduction-of looping constructs and the desire to reduce or eliminate the use of GO 



The Abstraction of Control Constructs 24 

TO's in programming [9] led to the search lor looping constructs with the llexiblllly to permit 

graceful   loop   exit   but   the  control   regularity   to   retain   control   decomposition   advantages. 

Languages contain loop conotrucls with the exit tests at the beginning, middle, and end of the 

loop.    WHILE loops continue as long as a condition holds, UNTIL loops as long as a condition 

does not hold.    EXIT statements permit the programmer to exit a loop at any pointi BREAK 

statements  permit  the programmer to advance to the next Iteration ol a loop at  any point. 

MESA, EUCLID, ClU, and ALPHARD permit FOR loops to iterate over all the elements of a collection 

of   arbitrary  types. Instead of  just over  a sequence ol  integers. For  Instance, In CLU the 

general form of the FOR statement is 

for  declarations  1Q Iterator da 
body 
end; 

The user provides iterators with a collection definition; these ite alors are used to yield the 

elements of  the collection. Hence, It we defined a type Set, we could declare the Iterator 

ElementsOf and use It: 

for  xi   SetEl   IQ ElemcntsOf(HySet)  fa 
process x 

£04' 

Language constructs such as the FOREACH statement in the SAIL languaRe permit the 

programmer to abstract away from the order in which elements are processed, simply 

specifying that all the elements of a set arc to be used. Programmers have been given more 

freedom to specify the iterative action and the termination condition. 

More convenient means of grouping compound statements were proposed. For Instance, 

BEGIN and END can be replaced by parentheses in BLISS [^5] and ALGOL 68. Some languages 

Introduce closing delimiters for control constructs. In ALGOL 68, looping structures repeat all 

statements between the delimiters DO and OD. FI is used to Indicate the termination of an IF 

statement, eliminating the dangling ELSE problem [5]: in the following program fragment, It Is 

unclear whether the ELSE belongs with the first IF or the second IF. 

IF X = 0 THEN IF Y = 0 THEN    Z ♦• 0 ELSE Z «• 1 

It can be disambiguated with the use of FI as a clo.ing delimiter. 

.^—~—,.-.-.- :._ ,;;-;j.^..:i.l31_ ..''.«)ltP'K~ — 



i 'u ■ ■■' i^m^^^mm ii i in ■"■HUI!« mini ii 

The Abstraction of Control Constructs 25 

IF X  =  0  THEN 
IF Y = 0 THEN 

2 -  0 

ELSE  Z «- 1 
FI 

4.3. Procedures as conlrol constructs 

A programmer can name an activity or group of actions and then consider them to be a 

single action. The language features that provide this ability are procedures (or functions or 

subroutines) and macros. The procedure, one of the first control abstraction mechanisms, is 

still the most common and useful. A procedure call specifies that control be passed to 

another program unit, which will return control to the calling point when II has finished its 

task. Parameter-passing mechanisms provide a means for the program units to explicitly 

exchange information. 

Procedures permit the programmer the advantages of naming, discussed in section 3.1, in 

his use of control abstraction. The ability to group actions and refer to them by name permits 

the programmer to indicate the essential features of the group of actions. The abstraction 

advantages of this ability are greatest if the program units have minimal interaction and if the 

interactions they do possess are indicated explicitly. If this Is the case, we can view a 

procedure as a machine instruction that affects only its parameters. 

Procedures can indicate their direct »(feet on the state of a program by returning values. 

Languages place different restrictions on the amount and type of information • that a 

procedure can return. In ALGOL 68, procedures always return values (although the type of 

the return value may be the VOID value EMPTY). In FORTRAN, a distinction Is drawn between 

functions, which return a single value, and subroutines, which return no values. By use of the 

language features of constructors and extractors, MESA permits a procedure to return many 

values [14]. Procedures can also affect the program state indirectly by changing the value of 

global variables. Since such an indirect effect on the program state reduces the control 

abstraction advantages of a procedure, languages that permit multiple return values 

encourage the programmer in exploiting procedural control abstraction. 

The advantages of procedures as control abstractions can be diminished by language 

features that permit side effects.   Because of the possibility of parameter evaluation causing 

 i — 



::■::-'.■.■■■•  (BSKW? 

The Abstraction oi Control Constructs 26 

side effects, it is impossible to write a procedure with two integer parameters called by name 

that will always swap the values of those parameters [12]. As a mild example, consider 

calling the procedure with subscripted parameters, e.g. SWAP(J>A[J]). The exchange will not 

always occur properly. 

The use of global variables in procedures permits a procedure to affect the state of a 

program in ways thai are not obvious from inspection of the procedure call. Certain 

parameter mechanisms, such as call by reference, permit aliasing; that Is, they permit two 

different names within a name scope to refer to the same Storage location. If aliasing can 

occur, the programmer can not reliably determine what abstract action a procedure provides 

by inspecting the procedure apart from its context in a program [20]. 

4.4. Exception handling 

The limited focus of attention permitted by control abstractions and the nested call-return 

discipline of procedures aids the programmer in building up his program in an orderly fashion, 

but occasions arise in which such control disciplines unduly constrain the programmer. 

Conditions occur that cannot be handled locally but which must be brought to the attention of 

some other part of the program, such as the caller of a procedure. Such conditions are 

known as exceptional conditions or exceptions. For example, a procedure may discover that 

it has been passed invalid parameters and cannot perform its function; a storage allocator 

may run out of storage to allocate; an I/O device may encounter an end-of-file when trying 

to read data [16]. In demonstrating different mechanisms for handling exceptional conditions, 

we shall use the example of a storage allocator GetBlock that runs out of storage. 

Many languages provide no special language assistance for dealing with exceptional 

conditions, forcing the programmer to employ standard language features for this purpose. A 

procedure can return a "return code" indicating success or the exception that arose during its 

call. The calling program must then test the return code explicitly at the conclusion of every 

operation, a clumsy and costly process that obscures the logic of the main program. In 

languages that permit procedures to return no more than one value, the programmer is 

obliged to return the function value indirectly, either through a global variable or by altering 

a parameter.   In such a language we might declare our storage allocator; 



»WPWWIIPIM«»MP  •^mmmmmmmmmm. 

The Abstraction of Control Constructs 

TYPE RetYal  = {success,OutOfStorage,badParameter)» 
PROCEDURE GetBlock  (var ptn   BlockPtp)i   RetValf 

•     i     • 

and we could use it in the following way. 

CASE GetBlock(newBlock)  OF 
success»    ...      continue normal processing 
Out Of Storage«    ...      garbage collect and try to allocate block again 

badParameterl    ,. .issue error message and abort 

A program can deal with exceptional conditions by calling an exception-handling routine 

when it encounters an exception. This permits the handling routine to inspect the 

environment of the exception in its attempts to recover from it. Furthermore, all valid 

computations can be saved and need not be recomputed. However, if the handling routine 

cannot gracefully recover from the exception, control must still return to the exception site, 

from which it may be difficult to proceed in any reasonable manner. Hence, our storage 

allocator might include the following sequence: 

PROCEDURE GetBLock«   BlockPtn 

BEG1N i 
• •    . • 
IF Out Of Storage THEN 

OutOfStorage 4- -GarbageCollect lonO»     \ garbage collection 
IF OutOfStorage THEN 1 returns true i/" more 

Abort» |storage u/oj obtained 

• «      • 
END 

Languages that support procedure variables, like AlGOl 68, provide more flexibility in the 

assignment of different handlers to an exception condition in different environments. A 

procedure variable is associated with each condition, and the procedure referenced by the 

variable is called when the condition arises. A subprogram can create Its own handler for a 

condition by declaring a local variable of the same name and assigning Its handler to It. The 

scope rules of block structured languages ensure that the handler most recently created will 

be invoked. An environment arranges to catch only those conditions it thinks it can handle. 

Consider procedures Proci and Proc2, both of which call the storage allocator» furthermore, 

Proci calls Proc2. 



"■"-"- mmrnmmmBfm 

■   -   :'- .  ■ . 

The Abstraction of Control Constructs 28 

PROCEDURE GetBlocki   DlockPtn 
BEGIN 
•    i    • 

IF OutOfStorage  THEN OutOfStorage ♦• -GetMoreStoragoOl t 

• «     • 
ENDi 

PROCEDURE  Proclt 
BEGIN 

• •     • 
GetMorcStorage *• GctStorageFromSystemi 
newBlock ♦• GetBlockOj 

• • < 

Proc2()i 

• • • 
ENDi 

PROCEDURE Proc2t 
BEGIN 

i  •  • • 

GetMoreStorage *■ GarbageCol lect lorn 
myBlk ♦• GetBlockOj 
• *     i 

ENDi 

If  CetBlock runs out of storage when called from Proc2, it will call CarbageCoUectioru If  It 

runs out of storage when called from Proci, It will call CetStoraseFromSystem. 

Another approach to exception handling is to transfer control to a handling routine by 

means of a GOTO, overlaying the current computation. This solves the problem of how to gel 

rid of the environment in which the exception occurred, with the condition handler deciding 

where to resume computation. However, it Is impossible to resume from the point of the 

exception if the handler finds it not to be fatal. Because there Is no detailed information 

about individual exception occurrences, it is difficult to do anything but treat all occurrences 

uniformly. One cannot determine whether one instance of an end-of-flle was expected and 

can be ignored, while another Is a fatal error. Our storage allocator might Include the 

statements 

IF OutOfStorage THEN GOTO NoStorageExlti 

NoStorageExlti   PrlntError("Out  of  Storage")i   Aborti 

PL/1, the first language to attempt to provide an explicit language mechanism for dealing 



The Abstraction of Control Constructs 2^ 

with exceptional conditions, uses such an approach. Conditions can be declared, and handlers 

are explicitly specified and associated with conditions dynamically by means of ON statements. 

Control fransfers are achieved by means of non-local GOTOs, and parameter passing to 

exception handlers is not supported! this hampers the effectiveness of this mechanism for 

cealing with many conditions. 

BUSS provides another, more sophisticated variant of this second method of condition 

handling with the more flexible SIGNAL and ENABLE mechanism. When an exceptional 

condition is encountered, a signal is raised by name. The signal propagates backwards 

through the call stack, looking for the most recent block or procedure that executed an 

ENABLE of the named condition. Wnen it finds that ENABLE, It invokes the associated 

condition-handling routine. Upon completion of the handler, the block enabling the condition 

is terminated. The SIGNAL mechanism permits the condition handling routine lo be specified 

dynamically, and if allows the exceptional condition to be handled by the part of the program 

that can best deal with it. However, if is impossible to return to the site of the condition if 

the handler can correct the condition. The condition is considered fatal by all calls until one 

Is found that provides a handler. With this mechanism we could program Prod and Proc2 as 

follows: 

PROCEDURE GetDLockt   BlockPtn 

BEGIN 

• •     • 
IF OutOfStorage THEN SIGNAL NoMoreStorage» 

• tt 

ENDi 



....J—..«.^ 

The Abotraction of Control Constructs 30 

PROCEDURE Proclt 
BEGIN ENABLE 

NoMoreStorageJ 
BEGIN 
IF GetStorageFromSystefn THEN 

Procl ! 
ELSE Abort 
END: 

• *     * 
neuBlk *• GetBlockt 

• «     • 
Proc2<ENABLE Jcaü Proc2 from within Prod 

NoHoreStaragei 
BEGIN 
IF GarbageCollection THEN 

Proc2 
ELSE Abort 
END)» 

•     •     • 
ENDt 

If the storage allocator runs out of storage when called from this invocation of Proc2, the 

invocation of Proc2 will catch the signal, call CarbageCollection and try again if more storage 

was obtained. If the storage allocator runs out of memory when called from Prod, the same 

action is taken but CetStoragcFromSystem is called instead of CarbageCoZ/ectton. 

A compromise between the method of handling an exception in its own environment and 

the method of transferring to another recovery environment Is provided by the 

exception-handling mechanism in MESA [15]. If considers a signal to be a procedure call on 

the handler, except that the call binding is dynamically delermined by the execution history, 

rather than statically by the lexicographic structure of the program. Parameters can be 

passed and returned, and the handler has the option of returning control to the condition site, 

permitting the signal to continue propagating up the call s'ack, or terminting the block If is 

associated with and continuing execution after the block. With this mechanism we would 

program Prod and Proc2 as follows: 

PROCEDURE GetBLocki   BlockPtn 
BEGIN 

• •     • 
IF OutOfStorage THEN SIGNAL NoMoreStoraget 

END) 



The Abotraction of Control Constructs 3^ 

PROCEDURE Proclt 
BEGIN 
BEGIN     iNoMoreStorage« 

BEGIN 
IF GctStoragcFromSystem THEN 

RESUME 
ELSE Abort 
END; 

• •     • 
neuBlk ♦• GetBlockt 

* *     * 
Proc2( 1 NoHoreStoragei !caU Proc2 from within Prod 

BEGIN 
IF GarbageCollection THEN 

RESUME 
END)« 

•     i     • 

END» 

If the storage allocator runs out of storage during this invocation of Proc2, the signal will be 

caught and GarbageCollccUon called. If more storage is found, we pick up from where we left 

off In the storage allocator; If storage Is not found, the signal continues up the call stack and 

is taken by Proel. It calls CetStoraseFromSystem', if more storage has been obtained, we pick 

up where we left off In the allocator.   If we still haven't obtained enough storage, we abort. 

One drawback to this mechanism is that handlers must be located in the current nest of 

procedure calls. It Is not possible, for instance, to invoke a handler associated with a data 

abstraction for all conditions associated with the abstraction. 

Debates continue over the appropriate control path and context to use in handling such 

conditions. At present, languages provide few features for the support of sxceptional 

condition handling. Levin [30] and Goodenough [16] survey and discuss techniques and 

language features for dealing with exceptional conditions and proposes additional solutions. 

4.5. Effect of Inappropriale control abstractions 

The lack of appropriate and useful control abstractions has hindered certain control 

constructs from entering higher level languages. The hope of exploiting the concept of 

parallelism  has  enticed computer  scientists for decades, but  has  met   with  little   practical 

fej 



' — ——"" 

The Abstraction ol Control Constructs 32 

success   becaur.e   of   the   lack   of   a   proper   abstraction   for   Incorporating   parallelism   Into 

programming languages. 

One of the few languages to explicitly support parallel execution Is ALGOL 68, which 

provides the PARBEG1N and PARLNO constructs to give explicit indications of parallelism. This 

is a primitive tool for supporting parallelism, however. If a parallel activity begins in a 

routine, if must finish within the routine; parallel statements can neither take parameters nor 

return values; synchronization must lake place by means of explicit semaphores [18]. We see 

that the programmer is forced to deal with the details of discovering opportunities for 

parallelism and controlling the interactions produced by parallel execution. The language 

offers no assistance in discovering and developing such opportunities. Hence It provides 

none of the guidance and regularity that a useful abstraction should. A proposal for an 

additional language facility that provides a more appropriate parallelism abstraction Is 

presented in [18]. 

A more successful incorporation of parallelism Is achieved by APL. APL provides powerful 

array-manipulation facilities that permit a high degree of parallelism in their implementations. 

For instance, when two arrays are added, all array elements can be added in parallel. The 

programmer, however, deals with the array abstractions without any need for considering 

their implementations. Hence APL has a much more usable control abstraction for parallelism. 

Another   related control   construct   that   has   floundered   for   lack   of    an    appropriate 

abstraction   is   the coroutine.      Coroutines   imitate   the   interleaved   execution   of   parallel 

processes, but deal with synchronization between programs more explicitly and in a simpler 

manner. 

Coroutines are symmetric subroutines. One coroutine calls another, preserving Its 

execution state just as a procedure does when it calls another procedure. However, a called 

procedure "returns", eliminating Its local environment and all trace of Its execution. A 

coroutine can, instead of returning, relinquish control by calling another coroutine. Every time 

a coroutine is called, it resumes execution wherever it left off when It last relinquished 

control. 

Consider an Edit coroutine: \\ accepts input that consists of text and editing characters 

such as character, word and line deletions; It produces the edited lines as output. Any 

coroutine that needs edited lines would pass control to Edit, it would read characters, edit 

the line until it came to a line feed, and then pass the line and control to the calling coroutine. 



■WWK,-v   .- —  '•■         —  ■•--       i.i.juijilijil w.iumi 11 IIINIIIW ■■»». 

The Abstraction of Control Constructs 33 

Edit appears to call a procedure to procesr. edited lines. The other coroutine appears to call 

a procedure to produce lines. 

Language problems arise in creating and starting coroutines and In conveniently and 

flexibly specifying to whom a coroutine is passing control. In some cases, a coroutine needs 

to explicitly specify which coroutine it is calling; in other cases, it may need to pass control to 

whichever coroutine called it. It may be desirable that one coroutine be responsible for 

scheduling the others. If coroutines can pass parameters, theie considerations become yet 

more difficult. Krutar [26] describes an efficient and flexible coroutine environment, and 

argues for their use in system construction. 

Few languages provide constructs that permit the programmer to specify such Interactions 

and guide him in the use of this tool. ClU's iterators are a constrained form of coroutine that 

are used only within FOR loops [33]. SIMULA 67 provides a coroutine abstraction [8] 

particularly useful in simulation with a standard language extension that provides automatic 

scheduling to imitate the passage of time within the simulation. MESA also provides support for 

a simulation abstraction that permits parameter passing and flexibility in passage of control. 



lUHiVpii   .ipwMRNpnpwiiM " ilU.lwmill!HU,li|ii^OfWT I 

Conclusion 34 

5. Conclusion 

We have outlined how the success and usefulness of programming languages has been 

Intimafely tied to their support of abstraction. This support has evolved as language 

designers have learned how to provide more effective assistance to the programmer. 

The first higher-level languages provided built-in data abstractions, procedure mechanisms, 

and control abstraction facilities of varying degrees of sophistication and effectiveness. The 

advantages of this use of abstraction were negated by program languages becoming too 

baroque and providing too many such elements. As language designers recognized the need 

for meta-abstraclion mechanisms to manage the overwhelming amount of detail, later language 

designs were simplified, but the tools were provided in the language for the programmer to 

construct his own abstractions. 

Acknowledgements 

1 wish to thank my advisor, Nico Habermann, for valuable guidance in developing the ideas 

in this paper. Additionally, my thanks go to Brian Reid, for his help in devising examples, for 

his knowledge of early languages and machines, and for his assistance In the organization and 

style of this paper. 

Thia document was produced using the SCRIBE Document Production System. 



References _- 

References 

(.1]       —-, ASA Standard FORTRAN. Communications of the ACM (October 1974). 

[2]       ---,/5A Standard Cobol.   Codasyl COBOL Journal of Development.   National Bureau of 
StarJards, Handbook 106 (1968). 

[3]       ---, ALGOL 68 User Manual.   Carnegie Mellon University Computer Science Department 
Technical Report (1977). 

[4]       J W.   Backus, RJ.   Bceber, S.   Best, R. Goldberg, L.M.   Haibt, H.L   Herrick,   R.A.   Nelson, 
D.   Sayre, P.B.   Sheridan, H.   Stern, 1.   Ziller, R.A.   Hughes, and R. Nutt, The FORTRAN 
Automatic Coding System.   Proceedings of the Western Joint Computer Conference 
(1957), 188-198. 

An enlightening display of the goals .md efforts of one of the first higher-level 
language and compiler efforts.   Motivations for the project are discussed, the language 
defined, and the translator described a, great length.   Heavy emphasis on optimization. 

[5]       P.W.   Abrahams, A Final Solution to the Dangling else of A[lgol 60 tM ^elated     ' 
Languages. Communications of the ACS) 9,9 (September 1966), 679--, "■;>. 

Defines the dangling else problem, discusses solutions adrpled by various languages 
and proposes syntax equations to eliminate the ambiguities. 

[6]       P.   Brinch Hansen. The Programming Language Concurrent Pascal.   IEEE Transactions 
on Software Engineering 1, 2 (June 1975), 199-207. 

Introduces Concurrent Pascal, a language for concurrent programming. Extends Pascal 
with modules called processes, monitors and classes, attempting to combine module use 
for abstraction with module use for synchronization. 

[7]       Dahl, Myhrhaug, and Nygaard, The SIMULA 67 Common Base Language.   Norwegian 
Computing Centre, Oslo (1968). 

SIMULA 67 language definition. 

[8]       O.-J.   Dahl and C.A.R.   Hoare, Hierarchical Program Structure.   In Structured 
Programming, Dahl, Dijkstra, and Hoare, Academic Press, London, 1972, 175-220. 

Discusses features of SIMULA 67 in light of developing programming methodologies. 
Describes the use of SIMULA in modeling data abstractions, and discusses the use of 
coroutines in the language. 

[9]       E.W.   Dijkstra, GOTO Statement Considered Harmful.   Communications of the ACM 11 3 
(March 1968), 147-148. 

Landmark paper presenting the benefits of control structure and the difficulties caused 
by the GOTO statement. 

[10]    E.W.   Dijkstra, Notes on Structured Programming.   In Structured Programming, Dahl, 
Dijkstra, and Hoare, Academic Press, London, 1972, 1-82. 



•*w*-rmcr*mKt 

References 36 

Introduced programming design methodology to deal with the mounting complexity of 
computer programt.   Proposes enumeration, ;nduc!ion and abstraction as the basic 
clcnents of program design.   Marks a turning point in the awareness of the use of 
abstraction in programming. 

[11]    E.W. Dijksfra, The Structure of the "THE" Multiprogramming System. Communications of 
t/ie/ICM //. 5 (May 1968), 341-346. 

Introduces the use of strictly hierarchical design as a tool in writing large software 
oyofemc. • 

[12]    A.C.   Fleck, On the Impossibility of Content Exchange through the By-Name Parameter 
Transmission Mechanism. ACM StgP/aa il. 11 (November 1976), 38-41. 

Proof of the impossibility of writing a swap routine using call by name. 

[13]    L.   Flon, Program Design with Abstract Data Types, Carnegie Mellon Department of 
Computer ^Science. 

Explores the use of abstract data types as a modularization and structuring technique 
in the design of programs.   Emphasis on design aspects of data abstraction.   Well 
presented, with many examples. 

[14]    CM.   Geschke and J.G.   Mitchell, On the Problem of Uniform References to Data 
Structures.   IEEE Transactions on Software Engineering, SE-i, 2 (June 1975), 207-219. 

Develops notation for allowing a program to operate on a data object In a manner 
independent of Its underlying representation. Describes many features of the MESA 
language. 

[15]    CM.   Geschke, J.H.   Morris and E.H. Satterfhwaite, Early Experience with Mesa. 
Communications o/t/ie /Of 20,fl (August 1977), 540-553. 

Discusses experience with strict type-checking and modularization within the Mesa 
system with an eye toward the interaction of language design and programming 
methodogy. 

[16]    J.B.   Goodenough, Exception Handling: Issues and r. Proposed Notation.   Communicationj 
of the ACM (December 1975), 683-696. 

Defines exception conditions, discusses requirements on exception handling language • 
features, surveys existing approaches to exception handling and proposes new 
languages features to handle exception conditions.  Good motivation for exception 
handling constructs and analysis of related issues, but only deals with language support 
up through PL/1. 

• . 
[17]    R.   Griswold, J.   Poage and I.   Polonsky, The Snobol4 Programming Language, 

Prentice-Hall, 1971. 

SNOBOL language definition and user manual.   Excellent tutorial. 

[18]    P.   Hibbard, Parallel Processing Facilities.   In New Directions In Algorithmic Languages 



37 References 

1976, S.A.   Schuman(ed)p Inslilule De Techerche D'lnformalique el D'Automatique, li^t, 
1-7. Discusses some weaknesses with ALGOL 60's parallelism mechanisms and propose? 
eventual variables as an allernative. 

[19]    C.A.R.   Hoare, Notes on Data Structuring.   In Structured Prcfframming, Dahl, Dijkslra, 
and Hoare, Academic Press, London, 1972, 83-174. 

An excellent discussion of the usefulness of data abstraction in programming. 
Discusses the concept of type and proposes particular methods of data structuring. 

[20]    C.A.R.   Hoare, Hints on Programming Language Design, Stanford Computer Science 
Department Report No.  CS-403. 

An excellent paper, presenting suggestions for designing languages that will most aid 
the programmer in the difficult aspects of programming, program design, documentation 
and debugging.   Contains a brief annotated reading list. 

[21]    C.A.R.   Hoare and N.   Wirth, An Axiomatic Definition of the Programming Language 
Pascal. Acta Informatica 2 (1973), 335-155. 

A definition of PASCAL intended to be rigorous semantically as well as syntactically. 
Syntax diagrams used for syntax definitions and Hoare axioms used for semantic . 
definitions. 

[22]    C.A.R.   Hoare, Data Reliability.   ACM ScgPlan 10,6 (October 1975), 528-533. 

Discusses a method of data structuring and description, drawing parallels with me-thods 
of program structuring,  evaluation. 

[23]    JJ.   Horning, Some Desirable Properties of Data Abstraction Facilities.   ACM SigP/an 8,2 
(March 1976), 60^2. 

Draws parallels between procedures and abstract data types, particularly as regards 
the domain of computational structure. 

[24]    K.E.   Iverson,/^ Programmmg Language, Wiley, 1962! 

[25]    R.G.   Herriot, Towards the ideal Programming Language.   Proceedings of an ACM 
Conference on Language Dengn for Reliable Software, ACM SigPlan 12,3 (March 1977), 
57-62. 

Suggestions for eliminating unnecessary redundancy and adding useful redundancy In 
programing languages, modeling suggestions after English language usage. 

[26]    R.A.   Krutar, Flexors (Modification Mechanisms), Carnegie Mellon University Department 
of Computer Science. 

Includes.arguments for the use of coroutines in system building, and a description of an 
efficient, flexible coroutine environment.   Difficult reading, particularly for those 
unfamiliar with the concepts discussed.   Bibliography contains references to other 
sources for coroutines. 

[27]    B.W.   Lampson, JJ.  Horning, R.L  London, J.G.  Mitchell, and G.J.  Popek, Report on the 



References 38 

Programming Language Euclid.   ACM SiRplan 12, 2 (February 1977). 

Language definition presented in the style of the ^ASCAL report.   EUCLID Is, interesting 
as a language designed to aid verification.   While there is some discussion of the effect 
of this goal on the language design, most of the report deals strictly with language 
definition. 

[28]    C.P.   Lecht, The Programmer's PL/I, McGraw-Hill, 1968. 

A clear reference manual for PL/1.   Not a tutorial. 

[29]    H.F.   Ledgard and M.A.   Marcotty, A Genealogy of Control Structures.   Communication! 
o/l/ie/qCM (November 1975), 629-639. 

Reviews theoretical results on control structures and explores their practical 
implications.   Excellent survey of proposed control abstractions, sound fheoretlcaly, but 
also sound conclusions on the effectiv  ness of control structures In programming task. 

[30]    R.   Levin, Program Structures For Exceptional Condition Handling, Carnegie Mellon 
University Department of Computer Science. 

i 

Contains an excellent survey of exceptional condition handling mechanisms, for both 
sequential and parallel programs,   A new mechanism is proposed and analy2ed with 
regard to verifiabilily, uniformity, adequacy, and practicality.   Lengthy but well written. 

[31]    B.   Liskov, The Design of the Venus Operating System.   Communications o/t/je/1CM 
1    i5,3 (March 1972), 144-149. 

Operating system constructed as a hierarchy of levels of abstraction.   Hardware of the 
mächine made more suitable to the system by means of microcode, creating more 
appropriate machine. 

[32j    B.   Liskov and S.   Zilles, Programming with Abstract Data Typ^s.  ACM SigPlan Notices, 
9 (September 1974), 50-59. 

argues for the need for abstract data type support in programming languages, and 
prof oses clusters as such a mechanism. 

[33]    B.   Liskov, A.   Snyder, R.   Atkinson, and C. Schaffert, Abstraction Mechanisms in Clu. 
Communications of the ACM 20,6 (August 1977), 564-576. 

Provides introduction to CLLTs abstraction mechanisms, supporting data, procedural and 
control abstraction.   Well written and well motivated, explaining how the abstraction 
features of CLU support the programming task. 

[34]    J.   McCarthy, Recursive Functions of Symbolic Expressions and Their Computation by 
Machine.   Communicatioru o/t/jc/OMApril 1960), 184-195. 

Describes the formalism used by LISP for defining functions recursively.   Discusses the 
Implementation of a LISP system by means of list structures. 

[35]    G.J.   Myers, Software ReUabUity - Principles and Practices, Wiley, 1976. 

/;::V,:VJ;;s,-:7- :;;:■,„: SSSgSaiag ^9= 
iJL_■.:,.:..._■.   •    ■.-.^..;..■■'   -:■ 



39 
References 

Chapter  15, Programming LaMguaßcs and Reliability, contains examplesiof some 
non-intuitive results produced by Pl./l's default and coercion rules. 

[36]    P.   Naur(ed.), Rcvired Report on the Algorithmic Language Algol 60.   Communications of 

the ACM (January 1963). 
0 

A landmark h language design and definition.   First attempt to rigorously define 
language syntax via BNF.   Draws distinction between the reference language, 
publication language, and hardware representation.   Rigorous language definition makes 
report more useful as reference than tutorial.   AlSOl S0\ control structuring facilities 
greatly influenced future language design, and Air.OL implementation spurred compiler 

writing techniques. 

[37]    D.L   Parnas, Information Distribution Aspects of Design Methodology.   Proceedings of 

the IF IP Congress (1971), 26-30. 

[38]    M.   Shaw(ed.), IC Study Problems, Carnegie Mellon University Department of Computer 

Science. 

A collection of programming problems lor exploring languages and programming 
techniques.   One problem has been used in this paper as an example of language 

Influence on solution design. 

[39]    M.   Shaw(ed.)1 IC Study Problems Solution Collection, Carnegie Mellon University 

Department of Computer Science. 

The solutions to the problems given in the above technical report. 

[40]    P.   Wegner, Programming Languages - The First 25 Years.   IEEE Transactions on 
Computers, VoL   C-25, No. J2 (December 1976), 1207-1225. 

An excel'ent overview of the principal concepts and programming languages developed 
since the  ' DSO's.   Each "milcpost" is presented, with a discussion of what the     , 

significance oi oach is. 

[41]    N.   Wirth, The Programming Language Pascal.   Acta Informatica 1 (1971), 35-63. 

Defining report for PASCAL 

[42]    N.   Wirth, The design of a Pascal Compiler.   Software, Practice and Experience I (1971), 

309-333. 

[43]    N.   Wirth, 5yitcmattc Programmmg;/In/ntroWucttoa, Prentice-Hall, Inc., 1973. 

Introduction to programming principles.   Includes a brief description of the process of 

stepwise refinement. 

[44]    N.   Wirth, Modular   A Language for Modular Multiprogramming.   Software -- Practice 
and Experience, 7 No.   i (1977), 3-35, 

Goals, philosophy and language definition of Modula. 

_» ^ = :  



References 40 

[^5]    W.A.   Wulf, D.B.   Russell and A.N.   Habcrmann, BLISS: A Language for Systems 
Programming. Communications of the ACM M, 12 (December 1971), 780-790. 

BLISS language definition with emphasis on features that support systems programming. 
Not a rigorous definition, but emphasizng goals and philosophy. 

[^6]    W.   Wulf and M.   Shaw, Global Variables Considered Harmful.   ACM SigPlan 8,2 
(February 1973), 28-34. 

Discusses adverse effect of use of non-local variables on comprehensibillty of 
programs. 

[47]    W.A.   Wulf, R.L   London and M.   Shaw, Abstraction and Verification In AlPHABD: 
Introduction to Language and Methodology, Carnegie Mellon University Department of 
Computer Science. 

Discusses influence of ALPHMRD'S goals of support for development of well-structured 
programs and the formal verificaticn of these programs.   Presents current status of 
language, with references to other relevant sources. 


