ﬁﬁa ! : CMU-CS-78-128
A |
AFOSRTR- 78- 1251 L % :2)

<
.""
G 7
ok The Evolution of Abstraction é”
A0 in
o Programming Languages
=
::t Loretta Rose Guarino
Compuler Science Department
Carnegie-Mellon University
22 May 1978
|
:;._.
O
)
o
Ll
— DEPARTMENT
-
> of
=
) =

—

COMPUTER SCIENCE

4t
i m

Carnegle-Mellon University
ﬁ“ @ "7 \ @ Eé:

Eﬁ? %} { 5 Approvod for public release;
distridbution unlimited,

b i o L e e e b e L R i e e s b T SR e R e

I e v P i e 1

Al s e

T — o ane rr— can R ST — i e e e el A o Sl B A e ke B e v A e iR Bty |t Sl s 05 s Lol

"\

Aq) REAS T DOCUKENTATICN PAGE AL NSNS

BEFORE COMPLLETING FORM

1. MBER\ _/ i / 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
TArOst RTR- 78-1251

4. TITLE (and Subiltie) 5y T

wo—

YPE OF REPORT & PERIOD COVERED
o § /
ZHE EYOLUTION OF ABSTRACTION IN PROGRAMMING (/&‘te“"‘ Fe Pt> /

fANGUﬁGES(, /YI;GF%EM.;g o é"“URT‘ﬁumsen
AUTHOR(.:) it RAST-OR-GRA "':‘“‘:MSER(A)
S) TR : / A
,O Loretta Rose/Guarlno ("jFA%ZP i 9?71{ VVA' }/
s tar T 4 Saped

w;

9. PERFORMING ORGANIZATION NAME AND ADDRESS

. AREA 8 WORK UNIT NUMBERS
Carnegie-Mellon University

10. PROGRAM ELEMENT, pé&iet?’m.ji

! 61101E
Cepartment of Computer Science A AO2466/7
Pittsburgh, Pennsylvania 15213
1. CONTROLLING DFFICE NAME AND ADDRESS 12. REPORT DATE
Cefense Advanced Research Projects Agency May 22, 1978
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, Virginia 22209 42
14. MONITORING AGENCY NAME & ADORESS(if different from Controiling Office) 1S. SECURITY CLASS. (of this report)
Air Force Office of Scientific Research/NM UNCLASSIFIED
BO]] ing AFB, Washington, DC 20332 154, s?CE..1Cé..DASEIFICATION/DOWNGRADING

. DISTRIBUTION STATEMENT, (of thia Report)

W22 My 10) 2L/ ()FT

Approved for public reTease distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

714 Y 1 e
2 17|

18. SUPPLEMENTARY NOTES

19. KEY WORODS {Continue on reverse side if necessary and identify by block number)

20, ASS?&ACT (Continue on reverse side If necessary and Identify by block number)

As-ouP¥understanding of the role of abstraction in programming has
improved, programming languages have evolved in their use and support of
abstraction. This paper defines abstraction and discusses how the use
of abstraction in programming !anguages assists the programmer. It traces
in depth the development of support for the abstraction of objects and
for the abstraction of control constructs in programming languages.ﬁR

DD |

525”73 1473 EDITION OF | NOV 65 IS OBSOLETE UNCLASSIF 1ED

[/ 0 3ECUﬂ gAsﬂgCATION OF THIS PAGE (When Data r,uw

RS N

e P N

il

v s i w1

BEST
AVAILABLE COPY

PR ray e i
r—-———- N [R m———T————, | PaRC———

CMu-Cs-78-1280

3

The Evolution of Abstraction

in

Programming Languages

VR FOReR OFF

i .‘T.I""j) T ase X
. ‘F_ PHAYSEITIAL T0 ppp RESEARCH. (arsc)

M “ 1I~Nnr h\“j?

il

b

At } Y v}
B e 14

L A KL
; Tochnie

This work was supported in par
Corporation Fellowship, and by
contract no. FA4620-73-C-0074.

al Int'ory,

Loretta Rose Guarino ~ Y A
Computer Science Depariment /
Carnegie-Mellon University i

22 May 1978

IC8 oF gop KENTIPI

g
Y
PR Palease [aw

i re

vicm»,d and g

v ollindteq, AR 190-12 {7b).

ition Off ooy

t by a National Scienc

e Foundation Fellowshlp, by a Xerox

the Defense Advanced Research Projects Agency under

e S i

e it b — R Giiane e

T ——— L m —

Abstract

As our understanding of the role of abstraction in programming has Improved, programming

languages have evolved in their use and suppor! of abstraction. This paper defines

abstraction and discusses how the use of abstraction in programming languages assists the
programmer. [l traces in depth the development of support for the abstraction of objects

and for the abstraction of control constructs in programming languages.

dhamae

TSR T e,

|. Introduction
2. Abstraction

2.1. What we mean by abstraction

2.2. Why abstraction is useful lo the programmer

2.3. Abstraction introduced into programming languages
2.4, Design advantages accruing from abstraction

3. The Abslraction of Objects

3.1. Basic support: names

3.2. Fixed abstractions
3.2.1. Language designers provide application orienled data abstractions
3.2.2. Buill-in abstractions reflect underiying hardware
3.2.3. Limitations of buiit-in abstraclions
3.2.4. Protiferation of buitt-In abstractions
3.3. Languages suppor! programmer creation of new abstractions
3.3.1. Type checking and the ability to create new types
3.3.2. Trend toward simplicity
3.3.3. Abstract data types

4. The Absiraction of Conirol Constructs

4.1. What can be abstracted from control constructs?
4.2. Statement levet control abstractions

4.3. Procedures as control construcls

4.4. Exception handting

4.5. Effect of tnappropriale controt abstractions

5. Conclusion
References

o o0 DbL BN

10
10
13
15
15
16
16
18
19

2l
21

25
26
3!

34
35

Introduction ¢ 2

1. Introduction

Abstraction Is the distillation of the essenlial qualities of a coileciion of items from its
Individual members. The use of abstraction has been recognlzed In recent years as a
powerful lool In programming -- Dijkstra [10) recognizes abstraction, sequencing,
conditionalily and iteration as the basic tools of program design, and various languages have
been designed to support user creation of abstract objects [33, 47) The evolution of
programming languages reflects the growth of the understanding that abstraction plays a
crucial role in programming. This recognilion spurred the development of language

mechanisms thal exploit the power of abstraction.

The first programming languages were binary machine codes. A program was a sequence
of bits comprehensible only to someone inlimateiy familiar with the machine hardware. A

programmer dealt with specific memory addresses and operation codes.

in the early 1950's, assembly languages Introduced an important too! to assist the
programmer: naming. A programmer used mnemonic operation codes rather than the binary
encoding of the operation; he assigned a name to a jump location or area of data storage,
using i name Instead of the memory address throughout the program. Naming provided
valuabls bookkeeplng assistance as well as a means for the programmer lo express hls

intentions by the mnemanlic choice of names.

The laie 1950°s and early 1960's saw an important step in the evolution of programming.

tanguages: abstraction away from the machine. Programming languages provided a virtual
machine more amenable than the bare hardware of the real machine to the problem at hand.
FORTRAN [1] presented an environment for scientific calcuiatlons in a styie similar lo scientific
notation. Il introduced primitive control abstractions such as DO loops and basic data
abstractions such as real and Integer variables. ALGoL 60 [36] conlinued this abstraction
away from the machine, providing improved control construcls such as block structuring, and

data abstractions through typed variables.

The next landmark in language development was o recogrize of the Importance of
abstraction and to support user - definitions of their own abstractions. Dijkstra [10] and
others pointed out the Importance of the use of abstraction in program design. Languages
such as ALGOL 68 [3] and SIMULA 67 [7] provided mechanisms that could be used for the user

definitlon of dala abstractlons. Users defined the representation of data object types.

ol . T o T —— i i e i Sl e L R e L e o ke Lo S - ks +ow 1‘1

Introduction _ 3

PASCAL [41] was introduced a few years later to try fo retain the advantages oi data types In

a simpler language.

In the early to middle 1970, languages were introduced that permltted the user to
enforce the correct usage of abstract data types. Ctu [33] and ALPHARD [47] provide language
features In which a user defines the representailnn of abstract objects and the operatlons
applicable to the objects, and that protects the objects from misuse by other parts of the

program.

The late 1970°s fid abstraction mechanisms used to address programming probiems other
than program design. EUCLID [27] was designed for the wrlting of verlflable programs. MESA
[15] uses abstraction mechanisms to aid in the construction of large programmed systems.
MoDULA [44] and CONCURRENT PASCAL [6] address probiems of operaling system construction

and synchronization.

In the following seclions, we define absiraction and discuss how the use of abstraction In
programming languages assists the programmer. We then trace the development of §Upport
for the abstraction of objects and the abstraction of control constructs in programming

languages in light of the evolution of language described above.

R YR TN TR P PP - /e 4 'l o v _wr CLEL A .
R I R (i e, L TR s S AL L o i ok A T Sk TR L0050 SO S~k AR 1 M g i SR AT e i . ORGS0 o 1= -3 TR D sl TN . S 5 s Aoty i 50

LT R, WL TW IR e e T
F——‘ - wa— s -

i el I etk

-l

At APt . g, il At W W T

Abstraction 4

2. Abstraction

Much of the success and widespread accepiance of higher-level languages has been
attributed to their support of abstraction [19) In the foliowing sections, we define
abstraction and discuss its effect on the act of programming. Expliclt recognition of the
importance of abstraction has occurred only within the last decade. Hence, although we shall
review uses of abstraction over the entire development of programming languages, most

references wlll be to relatively recent sources.

2.1. What we mean by abstraclion

Abstraction is the generalization from a coilection of objects that ali of the Items In the
collection share some properties that are important for a given purpose. Hoare® states:

"Abstractisn arices from a recognilion of simiiarities between certain objects,
situations, or processes in the real world, and the decision to concentrate on these
similarities and to ignore for the time being the differences.”

Given a co”ec'tion consisting of a book, paper and a pencii, we might, for example, form the
abstraction "burnabie item” if we were interested in starting a fire, or the abstraction "school
supplies" if we were preparing for schooi. The abstractlon drawn depends upon the
properties that we judge to be important, and conversely, we can deduce the Intended use of

a collection from the abstraction used to describe it.

Wegner defines abstraction [40]):

“An abstraction of a object is a characterization of the object by a subset cf Its
attributes.. If the attribute subset captures the 'essential’ attributes of the object,
then the user need nol be concerned with the object itself but only with the
abstract attributes.”

We form abstractions because of certain regularities or similarlties among the particular
_instances of the abslraction. The abstraction Is useful because we can concentrate on these
Important features and lgnore the dissimilarities between the Instances as being incldental.
Abstraction permits the expression of relevant details and the suppression of. irrelevant ones

(32].

'Refe.re.nces: to-Hoare are from [19]

X

. O S A . Al I o

T i

Abstraclion

2.2. Why abstraction is useful to the programmer

Whether they reatized it or not, programmers have always used abstraction as part of the
problem-sotving process. Data abstraction is used In viewing a sequence of bits as an
integer, real number or character (22} A subroutine call can be thought of abstractty as a
machine tnstruction (23] The process of programming can be viewed as building up more
vsefut objects from the objects already al hand, or as transforming one machine {nto another,

more suilable machine [11, 31]

Since programming, particularly the programming of targe syslems, Is an exiremely
complicated task, the programmer uses abstrachion as an organizational tool. He uses
abetraction mechaniams to decompose problems into subparts; at any level of decomposition,
he need only use the impartant characterishics of the lower level abstractions, and can focus
on providing the proper characteristics to lngher levels [32) When using an abstraction, N;c
programmer can understand whal the abstraction represents without worrying about how tts

does so; when tmplementing an absiraction the programmer can understand how the

abstraction is to be represented without worrying about why is It lo be created (231

Wegner's definition of abstraction notes that, if the attribute subset defining an abstraction
is substantially simpler than its instance, then the use of the abstraction in place of an
instance simplifies the problem addressed by the user. Wirth finds procedures a means of
partitioning and structuring programs into logically coherent, closed components tn a8 way that
ls essentlal to the understanding of the program [43). Liskov indicales that programming

problems can be soived by means of slep-wise abstraction, implementing appropriate data

abstractions that are in turn developed by means of subsidiary abstractions [33]

Stepwise refinement (3] emptoys abstraction in a systematic way th solving probtems. In
the early stages, the programmer pays atlenlion to global probtems rather than to detaits. As
the design progresses, the problem is spht into subproblems, and graduatlly more
consideration is given to details of the subproblem spectitcations and the charactertslics of

the tools avaitable. Hence the programmer concentrates onty on the detalls retevant to a

glven stage of the solution,

s it

e 1A ey, o s

Absltraction 6

2.3. Abstiaclion Introduced into programming languages

Explicit abslraction mechanisms in programming languages were introduced to support and
encoura,e 1h:? programmer's use of absiraction in program design. A side effect was {o
improve the ability of the languages 1o represent the programmer’s mental model of a
program. A programming language provides the human-readable representation of programs.

Hoare relales the importance of representation:

"The primary use for representalions is to convey information about important
aspects of the real worid to others, and to record this informalion in writlen form,
partly a5 an aid to memory and parlly to pass it on to fulure generations.”

Programming languages that explicitly display abstraction permit the programmer to
indicate what he considers to be the important aspecls of a program, aiding Its readabllity
and comprehensibilily. Such support aids a person in retracing the design process and
understanding the programmer's goais and intenlions. Ideally, a programming language
enables a programming abstraction to be represenied easily and naturally, and enables the
original programming abstraclion to be easily reconstructed from its representation [25} An
appropriate use of abstraction indicales a mentaily manageate decomposition of the program.
As Hoare indicales, such an improved representation assists In program development,
reminding the programmer of previous design decisions, as well as assisting program

mainlenance.

Hoare suggests several other advantages accruing from the support of expiicit abstraction
by programming languages. The use of abstraction contributes lo the machine Indepandence
of programs, since only the implementation of the abstractions, not the absiracllons
themselves, need be changed belween machines [22} Abstraclion mechanisms also help
reduce the scope of programming error, both by encapsuiation of dala [37] and by the

regular decomposilion of control flow.

2.4. Design advantages accruing from absiraction '

The most tmportant effect of the presence of abstractions in programming languages is
their influence on the direction of program design. Hoare suggesls thal programming
languages can and do contrlbute to the program design process by their support of

abstraction:

iy A

AR i N, S i, St P 5 . vl 5. e

e Lt s B B o LB - v N s |

Abstraction

“The role of absltraction in the design and development of compuler programs
may be reinforced by the use of a sutlable high-level programming language.
Indeed, the benefils of using a high-level language Instead of machine code may be
largely due 1o the incorporalion of successful abstractions, particulariy for data”

The presence of certain abstracticns shapes the way we approach problems. As an
example of the way in which diflerent languages atfect our thinking about a probiem by the
absiractions they provide, we consider the task of calculating the area of a reglon [38, 39]
We are given a two-dimensional space of squares, each square painled either black or while.
The black squares form a connected region, dividing the set of white celis into isolated

regions. We wish lo calculale the area of one such while region, given the location of a cell

known {o be within the region.

A language supporting recursion, as does ALGOL, lends itself lo a recursive solution. A
starting cell is counted and painled black, and we recur for each of s four Immediate
neighbors. A celt is counted and its neighbors inspected only if it Is white. Note that a cell
can be black either because it was not part of the origina.l region, or because it has already

been counled and painled black.

We might be led lo an "edge-following™ solution in a language like FORTRAN, which most
strongly supports lteration. We calculate the area of the reglon by tracing its boundary. The
area of the region will be the sum of the lengths of each verlical column of cells. We can

calculate these iengths by our knowledge of the boundary location.

Using APL, a language providing simultaneous operations on arrays, we migh! solva this
problem by considering a kernel of the space known lo be within the region. At each step,
we "grow” the‘kernei to include all white cells adjacent to Its boundary, continuing to expand
until the kernel fills the entire region. The area is the number of cells grown. We can "grow”

an area in a single step quickly and easily because APL permils us to shift and combine entire

arrays with single operations.

Since the absiractions provided can have such a strong influence upon language design, the
Introduction of user-defined abstractions provided desig flexibility white refaining the ather
advantages of abstraction. We can view every large programming project as involving the

design, use and implementation of a special-purpose programming language, with its own data

" concepts and primitive operations, specifically oriented to that project [20) Abstraction

mechanisms permit the programmer to extend his language, either for a partlcular program or

for some application avea (23] The programmer can lailor a language toward hls design

Abstraction 8

needs, Instead of letting his design be driven by the absiractions provided by a language. He
retains and enhances the other advantages ol abstraction, organlzation, Improved

representation, and portability.

T A —

e

The Abstraction of Objects . 9

3. The Abstraction of Objects

The development of the abstraction of objects In programming languages has closely
mirrored the language evolution described in the inlroduction. Each advance In language
evolutlon has been accompanied by a major Improvement In our understanding and suppor! of
object abstraction. The abilily to name objects was a major improvement of assembly
language over machine ianguage. Variable declarallon and types accompanied abstraction
away from the machine. Wiib the explicit reco; nilicn of the lmporiancy of abstraction in the
sixlies came faclilties for use. . to define thelr own object types. The advances of the

seventles have guided the development of facilities for user definition of abstract objects.

3.1. Basic support: names

The earliest tooi provided to the programmer lo express abstractions, introduced in
assembly' ianguages, was the abllity to name things. Naming was introduced to reduce the
amount of bookkeeping involved in programming. It permits the programmer to abstract away
from machine addresses, so he can concern himseil with the use of objects rather than thelr
iocatlons. Naming shleids the programmer from many of the bookkeeping detaiis of the
program be'cau,se the iransiator that maps the names into memory addresses can easlly keep

track of these detalis. Il a program Inciudes the statement
JUMP 100

to transfer control to the statment at iocation 100, then any modifications ihat cause
Instructions to be added before location 100 will require that the JUMP stalement be changed.

If the programmer can instead write

JUNP TERM

where TERM is a name attached to the desired instruction, then the translator can make the
adjustments when new code Is added. Since the transiator deals with the side effects of
moving, adding, or deleting objects, the programmer can turn his attention to the use of the

objects.

In addition to this bookkeeping abliity, the programmer gained the ability to use names
‘mnemonically. The programmer could name objects to reflec! the manner in which he

intended to use them. This alone makes programs Immensely more understandabie.

i T A e Ty A Ut B a0 Aintt = - b Mdgaiarr b & v s s

4
I; .

-

T S Y

L R

’

The Abstraction of Objects 10

Languages do not enforce any consistency belween use and intention -- mnemonic names are
a means of communicating belween people, not beiween person and computer -- but the
naming ability enabled the programmer to refiect his inlended usage, for his beneflt and for

the benefit of others reading his program.

The abllity to give namus to things was firs! introduced in assembly languages, although
names were often restricted in length or format. The restrictions on name length hampered

the use of mnemonic names, and acronyms abounded. But the restrictions on name lergth and

_available characters were slowly raised, to the point that some languages support arbitrarlly

long names, multiple fonts, upper and lower cases, and spacing conventions within names.
Mulli-word names are often realized by deicious use of upper and lower case, e.g.,
CharactersPerLine, or by use of. spacing characters, e.g., CHARACTERS.PERLINE or
CHARACTERS_PER_LINE.

3.2. Fixed abstractions

3.2.1. Language designers provide applicalidn oriented dala absiractions

The next step in the support of abstraction after providing a naming ability was to supply

the user with the built-In or Implicit abstract objects that the language designer feit were

_useful. Different languages provided different Implicit abstractions, and hence were more

appropriate for some applications than others.

FORTRAN was designed to assist in scientific computations. It introduced a form of common
scientific notation for arithinetic expressions. Later versions supported extended-precision
and complex arithmelic for use in scientific calculations. FORTRAN's arrays can be used as a
matrix abstraction, although FORTRAN provides no primitive operation whose scope is an array

or matrix. Hence, the following FORTRAN program fragment performs a marix addition
operation on the two-dimensional arrays being used to represent matrices:*

*Examp!e programs are presented to show typical language syntax and use of abstractlon.
No attempt Is made to define or describe languages in detall.

e

- e it i et ety e~ T S i . o B A N P Sl b A . M s, S S, W

The Abstraction of Objects it

DIMENSION A(99,99),B(99,99),€(99,77)

po 1ol = 1,99
=1

D0 20 J = 1,99
C(l,Jd) = ACLLJ) + B(1,0)
20 CONTINUE
10 CONTINUE

Cosol [2] ﬁresenls a rich sel of abstractions useful for commerclal dala processing and
unit-record oriented programming. The set is intelleclually manageable because of the
siructure of the abstractions provided; each data type ts composed of a series of attributes,
wilh a choice of several values tor each altribule. The language contains a rich, but
tncomplete, set of ediling rules that convert data from one type to another. For instance,
CosoL permits conversion from integer o slring, but not from string to integer. CoBoL
programmers learn lo take advanltage of the built-in coercions {0 accomplish much of their

computation:

DATA DIVISION,
FILE SECTION,
FDO LEDGER-FILE DATA RECORD 1S OUTPUT-LEDGER-RECORD,

01 OUTPUT-LEDGER-RECORD,
02 OUTPUT-SOCI AL-SEC,

03 PART1 SIZE 3 USAGE DISPLAY,

03 FILLER SIZE 1 VALUE "-",

03 PART2 SI2E 2 USAGE DISPLAY,

03 FILLER SIZE 1 VALUE "-",

03 PART3 SIZE 4 USAGE DISPLAY,
02 OUTPUT-SALARY PICTURE $88,889,99,

WORKING STORAGE SECTION,

01 [INTERNAL-SOCIAL-SEC,

02 PART1 USAGE COMPUTATIONAL SIZE 3,
02 PART2 USAGE COMPUTATIONAL SIZE 2,
02 PART3 . USAGE COMPUTATIONAL SIZE 4,
77 HORKER-SALARY USAGE COMPUTATIONAL PICTURE 9999v39,

et A A AR el il

o

The Abstraction of Objects T 12

[d L] .

PROCEDURE DI VISION,

PRINT-LEDGER-RECORD,
* MOVE CORRESPONDING INTERNAL-SOCIAL-SEC 70 OUTPUT-SOC!AL-SEC,
MOVE WORKER-SALARY TO OUTPUT-SALARY,
WRITE LEDGER-RECORD,
GOTD NEXT-INPUT,
Thls use of data abstractions and coercuons is useful and manageable because the data types

are built-in and not exiendable and are buull up in a regular fashion, so the programmer can

master thair use,

snogot [17] is intended for lex! processing, so It provides the abstractions of character

strings and patlerns. The SNogoL slring implementalion is particularly fiexibie. A string can

be arbitrarily long, and text can be added or removed from anywhere within a string.
Powerful pattern-malching operations permil strings to be easily and Intricately manipuiated.
For example, we can create a SNOBOL paltern that wili {ake a subject string STR and a pattern

PAT and find the longest substring of STR Ihat PAT matches:
MAXPAT = (%PAT 8 TRY *GT(SIZ2E(TRY)),SIZ2E(BIG))) § BIG FAIL

BIG must be initialized to the nuli string before using this pattern, and will contain the

maximal substring after matching, as in the following program fragment:

PAT = SPAN('ABCDEFGHI JKLMNOPQRSTUVKXYZ')
STR = 'THIS IS A SAMPLE TEXT SENTENCE'
BIG =

STR MAXPAT

QUTPUT = 'LARGEST WORD IS ' BIG

which preduces the output

LARGEST WORD IS SENTENCE

Lisp [34] is. both a mathemalical formalism and a programming language for describing
computations with symbolic expressions. It was designed for use in artlficial intelilgence
applications, and it incorporated many of the abstractions used in formal iogic. LISP relates
symbois by n;eans of lists, which are the basic abstraction provided by the language. The
recursive character of LISP’s control constructs meids neatly with the list abstraction. A

-

typical use of recursion and the list abstraction In LiSP Is demonstrated by the. foliowing

The Abstraction of Objects 13

definition o! the function REVERSE, which reverses the order ot the elements of ils ilst
parameler.

(DE REVERSE (L) (REVERSE1 L NIL))
(DE REVERSE1 (L M)
(COND ((ATOM L) W)
(T (REVERSE1 (CDR L) (CONS (CAR L) H)))))

The baslc absiraclion provided by APL [24] is the array, Operalors are prov.ided lo
{ranstorm and manipulate arrays of arbitrary dimension and fo reshape and redimension
arrays. Character strings are treated as one-dimensional arrays whose eiements are
characters. The following APL statement will remove all extra bianks from an array of

characters S:

S « (C ,0R, 1 .RY, CeS ,NE, " M)/S

As we mentioned in the area-linding problem, the basic abstractions provided by a
language aflect the types of programs writien easily In thal language. The languages
descrlbed above presen! widely ditfering programming environments because of the basic

abstractions they support.

3.2.2. Built-in abstraclions reflect underlying hardware

Many of the inltial decisions about the particular data abstractions to be included In a
programr;\ing language were strongly influenced by the capabilitles of the machine for which
they were inilially intended. The form of FORTRAN, for examp|.e, was oriented to the 1BM 701
computer [4, 43). Language deslgners wanted to be able to use the underlying hardware as
efficiently as possible. The features and peculiarities of the computer strongly alfected the

a'bstracNons provided, as well as the Implementations ol those abstractions.

Early languages were designed around models of Implementations derived from the

designer’s intended use of the hardware [40] FORTRAN's model of implementation required

that storage requirements be known at compile time so all addresses could be assigned then..

This static storage allocation engendered FORTRAN's lack of recursion. AtcoL 60°'s
implement ation model Included dynamic storage allocalion by means of a run-time stack, which
permits recurslve declaratlons. ALGOL supporls arrays whose slzes are not known untll

execution time, since It can allocate storage dynamically on Its stack. However, ALGOL cannot

159 .
L
E L T

LB L B e e e

>

The Abstraction of Objects 14

support the dynamic creallon of variables with arbitrarily long, overlapping lifetimes, as Is

possibie in LISP.

Most languages Include the abstraclions integer and real, which are Implemented by means
of the machine’s fixed- and floaling-point numbers. These abslractions differ from the
mathematical notion of Integer and real numbers, of course, because the fixed-polint numbérs
are restricled to a finlle subrange of the integers and floating polnt numbers can represent
only a sparse 3ampling of the real numbers. For most applications, this implementation of the
absiractions of Integer and real numbers is acceptable. Extended-precislon packages have
been developed lo provide implementations |hat correspond more closely lo the abstractlons.
The need o know when and how badiy these Implementations differ from the abstractions In

use has slimulated the development of the discipline of numerical analysis.

The mapping belween a higher-levei abstraclion and the hardware Implementing it gave
rise to the use of the names CAR and COR in LiSP. CAR refers to the flrst element of a list
and CDR lo the rest of the list. Clearly, these names are not at ali indicative of thelr
functions. The first LIsSP implemenlation was on an IBM 704, a 36 bit computer whose
instruction word was divided Inlto four subfields, with a speciai instructlon to access the
contents of each field. The "address” and "decrement” fields, each 15 blts, were used to hold
the two pointers thal made up a list cell, and the LisP operations CAR and COR were named
for the 704 operations that impiemented them: "Contents of Address field to Rggisler" and

"Content.s of Decrement field to Register".

The restrictions on FORTRAN subscript expressions were designed to make the best use of

early indexing hardware [4]:

A(10%] -3)

would be a permissible expression in FORTRAN, but

ACIxJ)

would not. A subscripl expression could be of the form

{<integer constant>#} <Integer scalar variable> {+<integer constant>}
where all constants were limited to 15 bits. This was the least restrictlve syntax thal would
allow strength reduction In loops and would aliow the Variabie Length Mulliply Instruction to
be used to compute non-loop subscripts. Strength reduction, in which multiplications In the

calcuiation of Indices are replaced by additions within loop, was necessary because the Index

AT R G

Sa—_——

The Abstraction of Objects . 15

regisler was separale from the arithmetic register and could perform no arithmelic operations

except addition. FORTRAN's array performance would have been degraded severely If It had

been necessary to use lhe arilhmellc regisier fo perform index calculations within loops.

The FORTRAN arithmetic IF statement reflects a peculiarlty of the IBM 704 Instruction set.
The only comparison Instruction on the 704 was CAS (Compare Accumulalor to Storage),
which would skip no commands if the accumulator was greater than the storage value, skip
one insiruction if the accumulator was equal lo storage, and sklp 2 instructions !f the
accumulator was less than storage. The FORTRAN arithmetic IF would branch lo different
locations it the value of ils expression was grealer than, equal to or less than zero. It was

designed 1o exploil the presence of the CAS inslruction.

-3.2.3. Limitalions of built-in abstractions

The languages discussed provide abslractions thal are quite useful for tﬁeir Intended
purposes. As testified to by their continued heavy usage, these languages present a major
Increase Ih convenience and clarity to the programmer b.y their abstraction away from the
underlying machine. However, no language is appropriate for alt applications. The
programmer is limited to the abstractions that a language provides. Attempting to manipulate
text in FORTRAN Is frequently even more difficult than in assembly language. Furthermore, it Is
difficult to join logether subprograms from different languages, so one can not simply spllt up

a task into the languages most appropriate for each part.

3.2.4. Proliferation of built-in abstractions

PL/1 [28] takes the use of buill-in abstraclion to Its extreme. It altempled to become the
ultimate general-purpose language, suitable for commercial, scientlfic and real-time

applications, by collecting many of the abstractions used by olher lanjguages. Unfortunately,

this primarlly resulted in overwhelming the user. PL/1 lacks a systematic structure with a
unifying underlying conception [43] and the user fa a wide range of abstractions from
which to select. Furthermore, complex coercion and d ules are built Into the language

to define the Interactions belween the abstractions. They are numerous, often non-intuitive,

the programmer has no control over lhem, and he seldom receives warning when they are

applied. As an example, In the following program

e

The Abstraclion of Objects 16

DECLARE B BIT(1)s

B=1:

1F B=1 THEN GOTO VY:
ELSE GOTO X

execulion transfers to label X because the fixed-decimai constanl | Is conv_erted lo a bit data

type in the assignment sta'ement and to a binary data type in the comparison [35).

Wegner [40] ciaims tihat programming in PL/] is relaliveiy easy once the ianguage Is
mastered, but the compliexity of the language makes this mastery difficuit and makes
veritiabiiity and readability of programs a probiem. Because of the complexity of the
abstraction interactions, the programmer loses the usual advantages oi abstraction --

intellectual manageability and minimization of arbitrary interactions.

3.3. Languages support programmer creation of new abstractions

The futility of providing a ianguage wilth loo many implicil absltractions caused ianguage
dlesigners |.o. slep back and discover that a recursive appiication of the principie of
abslraction was in order. Programming languages provide specific abstraclions as toois from
which to buiid. Let one of the objects provided be the concept of abstraction itself: provide
the programmer with the basic essentiais from which to buiid and iel him create his own more

complex or speciailzed abstractions as needed.

3.3.1. Type checking and the ability to create new lypes

By defining his own data lypes, the programmer can specify the representation of his
abstrac! objects. SIMULA 67, with its ciasses, and ALGoL 68, with its modes, were among the
first ianguages to permit the programmer to localize the definition of an abstract object’s
representation. The programmer gives the abstract object definition a unique type name,
which he then uses lo deciare variabies in his program. In this way, changes lo the
representation need only be made in the lype definition for the programmer to be assured

that all instances of a type of abstract object possess the same representation.

One of the imporiant bookkeeping aids provided by a programming language is lype

- checking, that Is, the consistency checking of operands [20] Operations may oniy be

performed upon operands of the correct or consistent °type; we cannot add apples and

o s o R @At P WA P Y T RSN .o m 48 12 M

The Abstraction of Objects 17
oranges. Languages assist the programmer in the use of new absiractions by performing

tvpe checking an programmer -detined as well as impticit types of operands,
Y 3 4 p yp f

What we shall call weak type checking ensures that operands have Identical underlyling
representations. A complex number and a point on the plane can both be rep esented by a
pair of reat nurabers. It we declare two types,

RECORD [ReatPart, ImagPart: Reall:
RECORD [XCoord, YCuord:r Reall:

TYPE Complex
TYPE Polnt

languages with weak type checking wilt not cistinguish between varlabtes of these types. We
can test whelher a variable of type Complex is equal to a varlable of type FPoint, for
instance. In etfect, the language only checks whether the structure of an operand permits
such an operation. Weak type checking is useful in writing operations such as an output
formatter, for which the underlying representation is the importanl characteristic of the
operand. It does nol assist the programmer in enforcing the distinction belween separate
types with identicat representations. Weak type checking is used by SIMULA 67, ALGOL .GS. and

PASCAL, the early languages to introduce user-defined dala types.

MESA, ALPHARD and Ctu enforce strong or strict type checking {15, 32], which distinguishes
between usages of separale lypes with identical representations. Languages with strong
type checking ignore the underlying representations of objects. Objecls of different types
are conceptuatly different and shoutd be treated as separate entittes. In such tanguages,
objects of types Complex and Foint cannol be confused or interchanged. Hence It would be

Impossible to accidentally square a Point variable or compare a Complex varlable with 8

Fouwnt variable.

To be efficient and to reduce the proliteration of procedures that are identical excep! for
the types of their parameters, languages such as SIMULA, EUCLID, Cll and ALPHARD supporl
forms of parameterized lypes. Instead of msisting that an operand be of a certain lype,
operations can specify thal an operand type mus! possess cerfain properties. We can use
such a facility in a strongly typed language to gain the flexibillty of weakly typed languages
white retaining type protection. For instance, we can write our output formatter that should
accept both Complex and Point variables by requiring that the operand type possess
operations FirstRealPart and LastRealFart that return the two reat parts of the operand. We
can use parameterized types to avoid having to create ditferent stack types for every lype

of object we wish 1o stack [47) Instead of crealing lypes StackOfInteger and StackofReal,

R R R R R R R O R g e

o e ot s

The Abstraction of Objects 18

we can create a paramelerized lype Stack that can be used with any type.

3.3.2. Trend toward simplicity

SIMULA 67 and ALGOL 68, the early languages that provided facilities for user-defined types,
are large, complex languages. Atlempls to achieve grealer richness by synthesis of exisling
features, a la PL/l, and by generalization, a la AlGoL 68 led to excesslvely elaborate
languages. Flexibility and power of expression in programr.ning languages are accompanied by
greater complexity [40) Programming methodologies have beer: developed that argue for the
systematic use of a small sel of basic tools in programming development [10, 20] The deslire
for correct, reliable programs has not only stimulaled program design methodology, but has
also increased Inlerest In program verification, both manual and automatic. These
developments.encouraged lhe design of simpler languages Ihat would be manageable by the
programmer and ftractable for verification, even at the price of restricting tlexibllity and

power of expression.

The language PASCAL was designed wilh the staled goal of providing “a notation In which
the fundamental concepts and structures of programming are expressible In a systematic,
precise, and appropriate way" It grew oul of the desire to retain the advantages of
abstraction as developed in SIMULA 67 and ALGOL 68 within a simpler language, based on the
spirit of the considerations outline above. It altempts to provide rich data and control
abstraction facilities without sacrificing efficiency of implementation. PASCAL provides data

abstractions such as sets, enumerated types, and the discriminated union of types by means

of variant records. To simplify the implementation of PASCAL, however, arrays must be of a

fixed size; the programmer cannol determine his array size et runlime as he could In ALGOL

60. An axiomzitlc language definition [21] was published to aid in portability and verifiability.

EuctiD [27], an offspring of PASCAL, is intended for the expression of systems programs
that are to be verlfled. To permit stronger statements to be made about the pfoperties of
program‘s, EUcLID Is yet more restrictive than PASCAL. For instance, the language guarantees
that the aliasing problem car not arise, that is to say, two Identifiers In the same scope can
never refer to the same or overlapping storage areas. To effect this guarantee, EUCLID
restricts the parameters that can be passed to a procedure. Hence, If we are glven the

declarations.

b Slahaik ol oo i T — s e

The Abstraclicn of Objects ' 19

var At array 1,,100 of Integer;
var q! Integer:
procedure p(var xt Integer, var ytarray 1,,100 of Integer)

Fuctid will not permit the function call

p(Al1].A)

aince location A[1] would be known both as x and y[1] within p. However,

i p(a.A)

kY

“? s permitted.

°

1

bl

E 3.3.3. Abstract data types

St

3 User-defined data lypes increased the programmer's ability to form his own data

|

i abstractions, but an important aspect of data abslraclion was still missing. An implicit data

:; type has a limited set of associated operations [22] For example, one can perform arithmetic :
operations on integers, but not logical operations, However, a programmer who created a dala I
abstraction by means of user-defined types could not limit the operations associated with the 1

abstraction or restrict access to its representation.. Programmers needed lo be able to i

4 extend the concept of type to be a set of values together with the primitive operations that

1

could be apptied to these values. Additional support was necessary for users to enjoy the

L
|

g full advantages alforded lo built-in abstractions in their user-defined abstractions. :
The creators of SIMULA 67 [7, S), generalizing the ALGOL notion of a procedure to apply to "

the problem of coroutines as used in simulation, deveioped a mechanism that was suitable not 1

only for simulations but for the increased support of abstract data types. The SIMULA class :

contains both local data fields and operations to access these fields. Many instances of the :

class can be created, each identical but with its own privale data. It is possible for the :

E.‘ programmer to creale a new, named type, to specify its structure by means of the class’s :

local data, and io specily the operations associaled with the type o be those provided by ,
the class. Originally the language did not ensure that only class operations could access local

data, but later versions anforce this restriction.

e L S m—

Other languages have developed facilities for linking the internal representation of a
user-defined abstraction to the operations permissible on the representation and enforcing

that onty these operalions access the representation. ClU clusters [33] and ALPHARD forms

\ ek

ap,—.‘__-swmm.“_’-wAfl_m;s.&-_ - e e

The Abstraction of Objects 20

[47] are two such examples. An example of a user-defined abstraction In ClU Is a wordbag

wordbag = gluster ls

create, “icreate an empty bag
Insert , %insert an clement \
print, %print contents of bag

cep = cecord [contents: wordtree, total! [ntls

create = proc () returns(evt):s
ceturn(rep$icontents: wordtrecScreate (), totalt Ot

end creates

Insert = prog (xt! v, vigtring):
x,contents 1= wordtrec8lnsert(x,contents,v)t
x,total 1= x,total + 13

end Inserts
print = prog (x! gyt, oloutstrcam)s
wordtreeSprint(x,contents,x,total,0)s

end print:
end wordbags

5,
Wordbag is the name of the abstraction, and the only operations permissibie on wordbags are
create, insert, and print.,‘Only the ciuster is allowed access to the interna representation of

the abstraction by means of cut, which stands for the object’s internal representation.

Abstraction facilities have aiso influenced and been influenced by design methodoiogy and
verification considerations. The encapsulation of representation and operations eases
verification, and suggests guidelines in the design process for the decomposition of programs

[10, 13, 37]

v ——

T ———— e ¥ o . To—— T T T v — B AT T —— b — el ol g
” " A

The Abstraction of Control Constructs 21

4. The Absiraction of Control Constructs

The development of control abstraction does nol paralle! the evolution of programming
languages as we!' as does the developmenl of object abstractions. The procedure has been
present since the first assembly languages, and many ot the control constructs In use were
first introduced when languages started abstracting away from the machine. A control
scheme paraltel to the concept of abstract data types has nol emerged, unless It Is the
procedure mechanism that has been with us all along. However, there have been

improvements developed in the proper support for difterent types of controt abstraction.

4.1. What can be abstracted from control constructs?

What does it mean o form abstractions with respect to flow of control? An abstraction
emphasizes the regularities among items, suppressing the less-important ditferences. 1t also
indicales the intended use of an item, so that the item can be used without respect to the

details of implementation.

The abstraction of conlrol constructs reflects regularities in the tlow of control. Since
abstraction mechanisms indicale the general control flow, a reader can determine the orde.r of
execution of various parts of the program and how they Interact without knowing their
detalls. Controt abstractions also guide the reader’s focus of attention. Good programming
style uses indentation to emphasize the regutarity provided by conirot abstractions. When a
reader encounters a control abstraction, he can assume that it groups activities that.form a
conceptual activity. Unless concurrent execution is involved, the tlow of control will remain
within the area demarcated by the scope ot a control abstraction. For Instance, the reader
may salely assume that control will remain within a WHILE loop as long as the loop condition

is satlsfied, and that a procedure will complete execution before returning control to Its
caller.

The basic control-flow elements provided by computer hardware are sequencing (the linear
order of Instruction execution wilhin the machine's memory) and branching, both condltional
and unconditional. All control abstractions are built up from data manipulation and these

flow-conirol elements,

14

o s i e

NRDPEE

The Abstraction of Control Constructs , 22

4.2, Statement level control abstractions

Machine and assembly languages used the control eiements of the hardware transparently.
Programmers had the complete freedom of the machine, butl with it shouldered the compiele
responsibiiity. Disciplined uses of the control elements arose to support such abstractions as

procedures and iteration. For instance, the following conventions were adopled for
procedure calls and parameter passing on the IBM 704%: '

TSX ROUTINE, 4
PZ2E address of parameter 1
PZE address of parameter 2

PZE address of parameter n

For all procedure calls, index register 4 was expected to hold the address of the routine call.
The called routine knew the number of parameters il expected, so il could calculale the
return address. It would retrieve its paramelers indirectly through the addresses that were
stored In the code (note that such a techinique makcs sthe code non-reentrant). FORTRAN
relieved the programmer of the necessily of remembering the delails of the ¢

convention by providing a subroutine call notalion and generating the proper code. In

FORTRAN, the programmer wouid make the above call by wriling

CALL ROUTINE(parameter 1, parameter 2, ,,, pararzter n)

FORTRAN also provided improved control abstraclion by its notation for arithmetic expressions
[20), which relieved the programmer from register allocation responsibliities and concerns

wilh order of évaluation. Inslead of wriling

LD A
MUL B
ST TEMP
Lb ¢
MUL D
ADD TEMP
ST F

*TSX means "Transfer and Set Index”; it stores the program counter Into the Indicated

_index register and then does a transter. PZE stands for "Plus Zero", and Is an assembler

pseudo-op that generales a word conlaining only an address.

The Abstraction of Conltroi Construcls ' - . 23

the programmer could write

F = A%B + C*D

Through DO loops, three-way conditionai branching and subroutine mechanisms, FORTRAN

provided a nolation for the control discipiines established in assembly language.

ALGOL 60, designed with the goal of describing computational processes, Introduced
improved statement-ievel control abstraclions. Block structure enabied the programmer to
treal a group of stalemenls as a single statcment without the overhead of a procedure call.
The IF-THEN-ELSE slatement provided a convenlen! abstraclion for conditionai execution. In

ALGOL, the programmer can use these control abstractions to write

IF X = Y THEN
BEGIN
X « X-1
YeO
£0

ELSE
BEGIN
X & X+41
Ye-1.
END:

while In FORTRAN, he would have to specify transfer of controi explicitiy:

IF (X ,NE, Y) GO TO 10
X = X-1
Y=0
GO T0O 20
10 CONTINUE
X = X+1
Y = -1
20 CONTINUE

LOOplng mechanisms were provided by FOR-WHILE statemenls. Looping mechanisms are
‘particuiarly useful absiractlons because they relieve the programmer from lhe drudgery of

decrementing counters and expliclliy testing loop termination conditions, eand also provide a

standard repetition mechanism with which the programme} can become famiiiar. Errors.
. L]

invalving one loo many or loo few ilerations around a ioop were much more common before

such looping mechanlsms entered ianguages.

The Introduction-of looping constructs and the desire to reduce or eiiminale the use ot GO

P T P e NV T TR

FTrTage .

g

TER O LSS ST

The Abstraclion of Control Constructs 24

TO's In programming [9) led to the search for iooping construcls with the fiexiblility to permit
graceful ioop exil bul the controi regularity to retain control decomposition advantages.
Languages contain loop construcls with the exil tests al the beginning, middle, and end of the
ioop. WHILE loops conlinue as long as a condition hoids, UNTIL ioops as long as a condilion
" does not hold. EXIT stalements permit the programmer lo exil a icop at any point; BREAK
slatemenls permit the programmer to advance io the next iteraiion of a loop at any point.
MESA, EUCLID, CLU, and ALPHARD permit FOR loops fo iterate over ali the elements of a coitection
of arbitrary types, instead of jusl over a sequence of Integers. For instance, in CLU the

general form of the FOR slalemeni Is

for declarations In fterator do
body

ends ‘
The user provides iterators with a coilection definition; these ite ators are used to yield the
elemenls of the coilection. Hence, it we defined a lype Set, we could declare the iterator

ElementsOf and use I1:
for xt SetEl ln ElementsOf(MySet) dg

process x

ends

Language consirucls such as the FOREACH statement in the SAIL language permil the
programmer lo absliract away from the order in which elemenits are processed, simply
specifying that all the elements of a sel arc to be used. Programmers have been given more

freedom o specify the ileralive aclion and the termination condition.

More convenient means of grouping compound statements were proposed. For instance,
BEGIN and END can be replaced by parentheses in BLiss [45] and ALGOL 68. Some languages
introduce closing detimiters for control constructs. In ALGoL 68, iooping structures repeat all
stalements belween the delimiters DO and OD. Fl is used lo Indicate the termination of an IF
statement, eliminating the dangling ELSE probiem [5]): in the following program fragment, it s
unclear whether the ELSE belongs with the first IF or the second IF.

IF X =0 THEN IF Y = 0 THEN 2 « 0 ELSE 2 « |

It can be disambigualed with the use af F1 as a cio.ing delimiter.

sl et

"

s . R e At A - S it S BRAE N~ WL Ly i 8t

S & s o e i R B S + ot it 2
e e R e SR R S L S A e e ./ (T R il 5 - e £

The Abstraction of Controi Canstructs 25

Fl
ELSE 2 ¢« 1
FI

4.3. Procedures as control constructs

1]

A programmer can name an activity or group of actions and then consider them to be a;
single actlon. The ianguage features that provide this abillty are procedures (or functions or
subroutines) and macros. The procedure, one of the first controi abstraction mechanisms, is
still the most common and useful. A procedure call specifies that control be passed to
another program unit, which wiil return controi to the calling point when it has flnished its
tz;sk. Parameter-passing mechanisms provide a means for the program units to explicitly

exchange information,

Procedures permit the programmer the advantages of naming, discussed In sectlon a1, In

" his use of cantrol abstraction. The ability to group actions and refer to them by name permits

the programmer to Indicate the essential features of the group of actlons. The abstraction
advantages of this abilily are greates.t if the program units have minimai Interaction and if the
interactions they do possess are Indicated explicitiy. If this is the case, we can view a

procedure as a machine instruction that affects oniy Its parameters.

Procedures can indicate their direct effect on the state of a program by.returning values.
Languages piace different restrictions on the amount and type of information+that a
proced‘ure can return. In ALGOL 68, procedures aiways return vaiues (aithough the type of
t.he return vaiue may be the VOID value EMPTY). In FORTRAN, a distinction |s drawn between
functions, which return a single value, and subroutines, which return no values. By use of the
language features of constructors and extractors, MEsA permits a procedure to retlurn many
values [14]. Procedures can also affect the program state indirectly by changing the value of
global varlables. Since such an indirect effect on the program state reduces the control
abstraction advantages of a procedure, languages that permit multiple return values

encourage the programmer in exploiting procedural controi abstrar.tlon.

The advantages of procedures as control abstractions can be diminished by language

features that permlt side effects. Because of the possibliity of parameter evaluation causing

rﬁi " e o Rl B e g R B B L s g e el T e i e R S SRR il R L

e e

- ok

The Abstraction of Conirol Constructs 26

side effects, It Is Impossible to write a procedure with two integer parameters called by name
that will always swap the values of those parameters [12). As a miid éxample, conslder
calling the procedure with subscripled paramelers, e.g. SWAP(J,A[J]). The exchange wili not

always occur properly.

The use of global variables in procedures permits a procedure to affect the state of a
program in ways that are not obvious from inspection of the procedure call. Certain
parameter mechanisms, such as cail by reference, permit aliasing; that |s, they permit two
different names within a name scope to refer to the same storage locatlon. If aliasing can
occur, the programmer can not reliably determine what abstract action a procedure provides

by inspecling the procedure apart from its context in a program {20).

4.4, Exceplion handling

The limited focus of attention permitted by control abstractions and the nested call-return
discipline of procedures aids the programmer in building up his program in an orderly fashlon,
but occasions. arise in which such control disciplines unduly constrain the programmer.
Conditlons occur that cannot be handied locally but which Must be brought to the attention of
some other part of the program, such as the caller of a procedure. Such conditions are
known as exceptional conditions or exceptlons. For example, a procedure may discover that
it has been passed Invalid parameters and cannot perform its function; a storage allocator
may run out of storage to allocate; an 1/0 device may encounter an end-of-file when trying
to read data LlG} In demonstrating ditferent mechanisms for handling exceptionai conditions,

we shail use the exampie of a storage ailocator GetBlock that runs out of storage.

Many ianguages provide no special language assistance for deaiing with exceptional
conditions, forcing the programmer to >mploy standard language features for this purpose. A
procedure can return a "return code” indicating success or the exceplion that arose during Its
call. The calling program must then test the return code expilicitly at the conclusion of every
operation, a ciumsy and costly process that obscures the iogic of the main program. In
Ia‘nguages that permit procedures to return no more than one value, the programmer is
obliged to return the function vaiue Indirectly, either through a global varlable or by altering

a parameter. In such a language we might declare our storage allocator:

" -
- - NI TR NI — R ——— ISR GRS S W S i

The Abstraction of Control Constructs , 27

TYPE RetVal = {success,Out0fStorage,badParameterh
PROCEDURE GetBlock (var ptri BlockPtr)t RetVali

and we could use it in the foltowing way.

CASE GetBlock(newBlock) OF
success! ,,., continue normal processing
OutOfStoraget ,,, garbage collect and try to allocate block again
" badParameter! ,,,issue error message and abort

A program can deal with exceptional conditions by calling an exception-handling routine
when it encounters an exception. This permits the handling routine to inspect the
environment of the exception In its attempts to recover from it. Furthermore, all valid
computations can be saved and need not be'reCOmputed. However, if the handling routine
cannot gracefully recover from the exception, control must still return to the exception site,
from which it may be difficull to proceed in any reasonable manner. Hence, our storage

altocator might include the following sequence:

PROCEDURE GetBLock: BlockPtrs
BEGIN ‘ {
IF OutOfStorage THEN
OutOfStorage ¢ ~GarbageCollection()s !garbage collection

1F OutOfStorage THEN |returns true if more
Aborts: | storage was obtained
END

Languages that support procedure varlables, like ALGOL 68, provide more flexibility In the
assignment of different handlers to an exceplion condilion in different environments. A
procedure variable is associated with each candition, and the procedure referenced by the
variable is called when the condltion arises. A subprogram can create Its own handler for a
condition by declaring a locat variable of the same name and assigning Its handter to It. The
scope rules of block structured tanguages ensure that the handter most recently created wiil

be Invoked. An environment arranges to catch only those conditions it thinks it can handte.

Consider procedures Proc! and Proc2, both of which calt the storage attocator; furthermore,

Proci calls Proc2.

e B e, AW R S e T - TR s e Wl

e Mo e . At

P d

N T
e -

B s biiier

e Dok Rl e R RN 2 T i, o S e R N i 5 A A S G i e W Ukl L N S e e CR i

The Abstraclion of Control Construcls 28

PROCEDURE GetBlock: BlockPtrs
BEGIN

IF OutOfStorage THEN OutOfStorage « ~GetMoreStorage()t

ENDs

PROCEDURE Procls
BEGIN

GetMoreStorage ¢ GetStorageFromSystems
newBlock ¢ GetBlock()s

Proc2()

END:

PROCEDURE Proc2s
BEGIN

GetMoreStorage + GarbageCollectlons
myBik & GetBlock()s

ENDs
If CetBlock runs out of storage when called from Proc2, it wili call GarbageCollection; if it

runs out of storage when cailed from Procl, it wiii call GetStoragefromSystem.

Another approach to exception handiing is o transfer controi to a handling routine by
means of a GOTO, overlaying the current computation. This solves the problem of how to get
rid of the environment In which. the exceplion occurred, with the condition handler deciding
where to resume computation. However, it is Impossible to resume from the point of the
exception if the handler finds it not to be fatal. Because there is nu detailed information
about individual exception occurrences, it is difficult to do anything but treat all occurrences
uniformly. One cannot determine whether one instance of an end-of-flle was expected and
can be ignored, whiie another Is a fatal error. Our storage aliocator might include the

statements

IF OutOfStorage THEN GOTD NoStorageExlits:

NoStoragcExitt PrintError(“Out of Storage”): Aborts

" PL/1, the first language to attempt lo provide an explicit ianguage mechanism for dealing

it ™= o

oL il R L B Sl o L S R o & SR DR PR g TR L S v SRl DT B it i A

The Absiractlon of Controt Constructs 29

with exceptional condltions, uses such an approach. Conditlons can be declared, and handlers
are explicitly specifled and associated with conditions dynamically by means of ON statements.
Control transters are achieved by means of non-local GOTOs, and parameler passing to
excepliocn handlers is not supporfed; this hampers the effecliveness of thls mechanism for

cealing with many conditions.

Buiss provides another, more sophisticated variant of this second method of condition
handling with the more flexible SIGNAL and ENABLE n:echanism. When an exceptional
condition is encountered, a signal is raised by name. The signal propagales backwards
through the calt stack, looking for the most recent block or procedure thal executed an
ENABLE of the named condition. When it finds that ENABLE, it Invokes the associated
condition-handting routine. Upon completion of the handler, the btock enabling the condition
is terminated. The SIGNAL mechanism permits the condition handling routine io be specified
dynamically, and it altows the exceptional condition to be handlcd by the parl of the program
fhat can best deal with il. However, it is impossible ta return to the site of the condition it
the handler can correct the condition. The condition is considered fatal by all catls untll one
Is found that provides a handler. With this mechanism we could program Proc! and Proc?2 as

fotlows:

PROCEDURE GetBLock! BlockPtr:
BEGIN

IF OutDfStorage THEN SIGNAL NoMoreStorages

ENDs

F._’-

T T ——

The Abstraclion of Control Constructs ‘ 30

PROCEDURE Procls
BEGIN ENABLE
NoMoreStoraget
BEGIN
IF GetStorageFromSystem THEN
Procl !
ELSE Abort '
ENDs

newBlk ¢ GetBlocks

Proc2(ENABLE leall Proc2 from within Procl
NoMoreStorage!
BEGIN
IF GarbageCollection THEN
Proc2
ELSE Abort
END):

END:

1f the storage allocator runs out of storage when called from this invocatlon of Proc2, the
invocation of Proc2 will catch the signal, call GarbageCollection and try again |f more storage
was obtained. If the storage allocalor runs sut of memory when called from Procl, the same

aclion Is taken but CetStoragefromSystem is called instead of GarbageCollection.

A compromise between the method of handling an exception in Its own environment and
the method of transferring to another recovery environment Is provided by . the
exception-handling mechanism In MEsa [15]. It considers a signal o be a procedure call on
the handler, except that the call binding is dynamically delermined by the execution history,
rather than slatically by the lexicographic structure of the program. Parameters can be
passed and returned, and the handler has the option of returning control to the condition site,
permitling the signal to continue propagating up the call stack, or termirating the block it is
associated with and continuing execution after the block. With thls mechanlsm we would

program Proc! and Proc2 as follows:

PROCEDURE GetBLockt BlockPtrs
BEGIN

IF QutOfStorage THEN SIGNAL NoMoreStorages
d Al

END:

it ECVES (R 5. ATt Wk iee B Pt e, T S vl L e et 9001 20t R v e R TR,
r? : w2 TR e P o Lk TSN, L " SEA O e S8t . i ey oo W 3 e, 2. .. 1
-l St o o il it e P TR e e A L TR

" The Abstraction of Control Constructs 31

PROCEDURE Procls

BEGIN

BEGIN NoMoreStorage!
BEGIN
1F GetStorageFromSystem THEN

RESUME '

ELSE Abort
END:3

i et e L et

newBlk ¢ GetBlocks

N

h Proc2(]NoMoreStorage! lcall Proc? from within Proc!
BEGIN

; IF GarbageCollection THEN

b RESUME
END)

ENDs

If the storage allocator runs out of storage during this invocation of Proc2, the signal will be
caught and GarbageCollection called. If more storage is found, we pick up from where we left
off In the storage allocator; If storage Is not found, the signal continues up the call stack and
is taken by Procl. It calls GetStorageFromSystem; if more storage has been oblained, we pick

up where we left off in the allocator. If we still haven't obtained enough storage, we abort.
i

One drawback to this mechanism Is that handlers must be located In thé current nest of
procedure calls. It Is not possible, for instance, to invoke a handler associated with a data

abstraction for all conditions associaled with the abstraction.

" Debates continue over the appropriale'conlrol path and context to use in handling such
conditions. At present, languages provide few features for the support of =xceptional
condition handling. Levin [30] and Goodenough [16] survey and discuss techniques and

language features for dealing with exceptional conditions and proposes additional solutions.

4.5. Effect of inappropriale coniroi absiractions

The lack of appropriale and useful control abstractions has hindered certaln control

constructs from entering higher level languages. The hope of exploiting the concept of

parallelism has enticed computer scientists for decades, but has met with little practical

o % e el v Akt Tt Ml . e S Sttt

e A e W i i s

I g e o - aw - - 3 e
e - T L -k VNS O o R s Pt LR 2 MR M B MR k v N

The Abstraclion of Conlrol Construcls 32

success because of the lack of a proper abslraction for Incorporatin arailellsm Into
P P B

programming languages.

One of the few languages to explicilly supporl parallel execulion is ALGOL 68, which
provides the PARBEGIN and PAR:ND constructs lo give explicit indications of parallelism. This
Is a primitive tool for supporting parallelism, however. 1f a parallel activity begins In a
routine, It must finlsh within the rouline; parallel stalements can neither take parameters nor
return values; synchronizalion must lake place by means of expliclt semapholres [181 We see
that the programmer is forced to deal wilth the details of discovering opportunities for
parallelism and controlling the interactions produced by parallel execution. The language
offers no assistance in discovering and developing such opportunities. Hence It provides
none ol the guidance and regularity thal a useful abslraction should. A proposal for an
additional language facillty that provides a more appropriate parallelism abstraction s

presented in [18])

A more successful incorporation of parallelism Is achieved by APL. APL provides powerful
array-manipulation facilities that permil a high degree of parallelism in their implementallons.
For instance, when two arrays are added, all array elements can be added In parallel. The
programmer, however, deals with the array abstractions withoul any need for considering

thelr implementations. Hence APL has a much more usable control abstraction for parailelism.

Another ralated control construct that has floundered for lack of an appropriate
abstraction is the coroutine. Coroutines imitate the interleaved execution of parallel
processes, but deal with synchronization between programs more explicitly and in a ‘simpler

manner.

Coroutines are symmetric subroutines. One coroutine cails another, preserving lts
execution state just as a procedure does when il calls another procedure. However, a called
procedure "returns”, eliminating Its local environment and ali trace of Its executlon. A
coroutine can, instead of returning, relinquish control by calling another coroutine. Every time
a coroutlne is called, it resumes execution wherever it left off when It last relinquished

control.

Consider an Edit coroutine: If accepts input that consists of text and editing characters

such as character, word and tine deletions; It produces the edited llnes as output. Any

coroutine that needs edited lines would pass control to Edit. 1t would read characters, edit

the line untit it came to a line feed, and then pass the line and controt to the calling coroutine.

=

!
i
P
:
3

i e e e e e e T e e e e o

The Abstraction of Control Constructs 33

Edit appears to call a procedure to process cdited lines. The other coroutine appears to call

a procedure to produce lines.

Language problems arlse In creating and starting coroutines and In conveniently and
flexibly specifylng to whom a coroutine is passing control. In some cases, a coroutine needs
to explicitly specify which coroutine it Is calling; in other cases, it may need to pass control to
whichever coroutine called it. It may be desirable that one coroutine be responsible for
scheduling the others. If coroutines can pass parameters, these considerations become yet
more difficult. Krutar [26] describes an efficient and flexible coroutine environment, and

argues for their use in system construction.

Few languages provide construcls thal permit the programmer to specity such Interactions
and guide him in the use of this tool. CLU's iteralors are a constrained form of coroutine that
are used only within FOR loops [33) SIMULA 67 provides a coroutine abstraction (8]
particularly useful in simulation with a standard language extension that provides automatic
scheduling to imitate the passage of time within the simulation. MESA also provides support for

a simulation abstraction that permits parameter passing and flexibility in passage of control.

L
e

A

-~

P8

P T it M T b e b ¥ i S et

s . iy i . el

Conclusion 34

5. Conclusion

We have outlined how the success and usefulness of programming languages has been
Intimately tied to their support of abstraction. This support has evolved as language

designers have learned how to provide more effective assistance to the programmer.

The first higher-level languages provided built-in dala abstractions, procedure mechanlsms,
and control abstraction facilities of varying degrees of sophisticalion and effectiveness. The
advantages of this use of abstraction were negaled by program languages becoming too
baroque and providing too many such elemenls. As language designers recognized the need
for meta-abstraction mechanisms to manage the overwhelming amount of det'all. later language
designs were simplified, bul the tools were provided in the language for the programmer to

construct his own abslractions.
Acknowledgements

I wish to thank my advisor, Nico Habermann, for valuable guidance In developlng the ideas
In this paper. Additionally, my thanks go o Brian Reid, for his help in devising examples, for
his knowledge of early languages and machines, and for his assistance In the organization and

style of thls paper.

This document was produced using the SCRIBE Document Production System.

e~ M i e e st R e il L DR D S L N SR L R e | b S L SR

o PSS N T = TN - e e Bl e U i - R T S .
TRl K r B et o o RN B, w5, e CQE S X il » o

References 35

References

(1]
(2]

et Gl ok

(3]

(4]

(5]

e e WS g el et 1 B A . B i Al N A Nt e

(6]

' u Ny)
st o

(7]

(8]

(81

- [to]

===, ASA Standard FORTRAN. Communications of the ACM (October 1974).

--=, /-5A Standard Cobol. Codasy! COBOL Journal of Development. National Bureau of
Stardards, Handbook 106 (1968).

---, ALGOL 68 User Manual. Carnegie Mellon University Computer Science Department
Technical Report (1977).

JW. Backus, RJ. Beeber, S. Best, R. Goldberg, LM. Haibt, HL. Herrick, R.A. Nelson,
D. Sayre, P.B. Sheridan, H. Stern, 1. Ziller, RA. Hughes, and R. Nutt, The FORTRAN

Automalic Coding System. Proceedings of the Weslern Joint Computer Conference
(1957), 188-198.

An enlighlening display of the goals and efforts of one of the first higher -level
fanguage and compiler efforts. Motivations for the project are discussed, the language
defined, and the lranslator described a. great length. Heavy emphasis on optimization,

P.W. Abrahams, A Firal Solution to the Dangling else of Algol 60 an¢ Related
Languages. Comrmunications of the ACM 9,8 (September 1966), 679-¢72.

Defines the dangling else problem, discusses solutions adrpted by various languages
and proposes syntax equations lo eliminate the ambiguities.

P. Brinch Hansen, The Programming Language Concurrent Pascal. JEEE Transactions
on Software Engineering 1, 2 (June 1975), 199-207.

Introduces Concurrent Pascal, a language for concuirent programming. Extends Pascal
with modules called processes, monitors and classes, altempting to combine module use
for abstraction with module use for synchronization.

Dahi, Myhrhlaug, and Nygaard, The SIMULA 67 Common Base Language. Norweglan
Computing Centre, Oslo (1968).

SIMULA 67 language definition,

O.-J. Dahl and C.AR. Hoare, Hierarchical Program Structure. In Structured
Programming, Dahl, Dijkstra, and Hoare, Academic Press, London, 1972, 175-220.

Discusses features of SIMULA 67 in light of developing programming methodologies.

Describes the use of SIMULA in modeling data abstractions, and discusses the use of
coroutines in the lanyuage.

E.W. Dijkstra, GOTO Statement Considered Harmful. Communications of the ACM 11,3
{March 1968), 147—148.

Landmark paper presenling the benefits of controt structure and the difticulties caused
by the GOTO statement. -

E.W. Dijkstra, Notes on Structured Prograinming. In Structured Programming, Dahl,
Dijkstra, and Hoare, Academic Press, London, 1972, 1-82.

B e S .

gy Y "

References 36

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

Introduced programming design methodology to deai with the mounting complexity of
computer programt. Proposes enumeration, ‘nduction and abstraction as the basic
elements of program design. Marks a turning point In the awareness of the use of
abstraction in programming.

E.W. Dijkstra, The Siruclure of the "THE" Multiprogramming oystem Communicattons of
the ACM 11, 5 (May 1968), 341-346.

Introduces the use of strictly hierarchical design as a tool in writing large software
systems, U

A.C. Fleck, On the Impossibiiity of Content Exchange through the By-Name Parameter
Transmission Mechanism. ACM SigPlan !1, ! (November 1976), 38-41.

Proof of the impossibility of writing a swap routine using call by name.

L. Flon, Program Design with Abstract Data Types, Carnegie Mellon Department of
Computer Science.

Explores the use of abstract data types as a modularization and structuring technique
in the design of programs. Emphasis on design aspects of data abstraction. Weil
presented, with many examples.

C.M. Geschke and JG. Mitchell, On the Problem of Uniform References to Data
Structures. IEEE Transactions on Software Engincering, SE-1, 2 (June 1975), 207-219.

Develops notation for allowing a program to operate on a data object in a manner

. Independent of its underiying representation. Describes many features of the MESA

language.

C.M. Geschke, JH. Morris and EH. Satterthwaite, Early Expenence with Mesa
Communications of the ACM 20,8 (August 1977), 540-553."

Discusses experience with strict type-checking and moduiarizat_ion within the Mesa
system with an eye toward the interaction of language design and programming
methodogy.

J.B. Goodenough, Exception Handling: Issues and z Proposed Notation. Communications
of the ACM (December 1975), 683-696.

Defines exception conditions, discusses requirements on exception handling fanguage -

. features, surveys existing approaches to exception handiing and proposes new

ianguages features to handle exception conditions. Good motivation for exception

handling constructs and anatysis of related lssues, but only deals with-language support

up through PL/1.

R. Griswold, J. Poage and I. Polonsky, The Snobold Programming Language,
Prentice-Hall, 1971.

SNoBOL language definltion and user manual. Excellent tutorial.

P. Hibbard, Parallel Processing Facilities. In New Directions ir Algorithmic Languages

or B i e L e L TE L LR SR R toi S0 VSRR WO W 02 R oo R ORI - 1, 5 R -+ Tl O

References 37

(19]

[20]

[el]

[22]

(23]

[26]

(27}

1976, S.A. Schuman(ed), Inslitute De Techerche D'Informatique et D’Automalique, 12786,
1-7. Discusses some weaknesses with ALGOL 60’s parallelism mechanisms and proposes
eventual varlables as an allernative.

C.AR. Hoare, Notes on Data Structuring. In Structured Prcgrn.mming, Dahl, Dijkstra,
and Heare, Academic Press, London, 1972, 83-174. '

An excellent discussion of the usefulness of data abstraction In programming.
Discusses the concept of type and proposes particular methods of data structuring.

C.A.R.' Hoare, Hints on Programming Language Design, Stanford Computer Science
Department Report No. CS-403..

An excellent paper, presenting suggestions for designing languages that wlill mos! aid

the programmer in the difficult aspects of programming, program design, documentation

and debugging. Conlains a brief annolated reading list.

C.AR. Hoare and N. Wirth, An Axiomalic Definilion of the Programming Language
Pascal. Acta Informatica 2 (1973), 335-355.

A definition of PASCAL inlended to be rigorous semantically as well as syntactically.
Syntax diagrams used for syntax definitions and Hoare axioms used for semantic
definitions. '

C.AR. Hoare, Data Reliability. ACM SigPlan 10,6 (October 1975), 528-533.

Discusses a method of data structuring and description, drawing paraitels with methods
of program structuring. evaluation.

J.J. Horning, Some Desirable Properties of Data Abstraction Facilltles. ACM SigPlan 8,2
{March 1976), 60-£2. . :

Draws parallels between procedures and abstract data types, particularly as regards
the domain of corputational structure.

K.E. lverson, A Frogramming Language, Wiley, 1962

R.G. Herriot, Towards the Ideal Programming Language. Proceedings of an ACM
Conference on Language Detign for Reliable Software, ACM SigPlan 12,3 (March 1977),
57-62.

Suggestions for ellminating unnecessary redundancy and adding usetful redundancy In
programing languages, modeling suggestions after English language usage.

RA. Krutar, Flexors (Modification Mechanisms), Carnegie Mellon University Department

“of Computer Science.

Includes.arguments for the use of coroutines in system building, and a description of an
efficient, flexible coroutine environment. Difficult r:ading, particularly for those
unfamiliar with the concepts discussed. Bibliography contains references to other

. sources for coroutines.

B.W. Lampson, J.J. Horning, RL. London, JG. Mitchell, and G.J. Popek, Report on the

e o P b

case

R D e o
it e s s b e s B M . . o

References 38

[30]

[311

(32

' [33)

(34]

(35]

Programming Language Euclid. ACM SigPlan 12, 2 (February 1977).

Language definition presented in the style of the ®ASCAL report. EUCLID Is Interesting
as a language deslgned to aid verification. While there is some discussion of the effect
of this goal on the language design, most of the report deals strictly with language
definition.

C.P. Lecht, The Programmer's PL/1, McGraw-Hill, 1968.
A clear reference manual for PL/1, Not a tutorial.

H.F. Ledgard and M.AA. Marcotly, A Genealogy of Control Structures. Commumcauons
of the ACM (November 1975), 629-639.

Reviews theoreticat resulls on control structures and explores thelr practicat
Implications. Excellent survey of proposed control abstractions, sound theoreticaly, but
also sound conclusions on the effectiv ness of control structures In programming task.

R. Levin, Program Struclures For Exceptional Condition Handling, Carnegie Mellon
Universlty Deparlment of Computer Science. ~

' !
Contains an excellent survey of exceptionat condition handling mechanisms, for both
sequential and parallel programs, A new mechanism |s proposed and analyzed with
regard {o verifiabllity, uniformity, adequacy, and practicality. Lengthy but well written.

B. Liskov, The Des.ign of the Venus Operating System. Communications of the ACM
15,3 (March 1972), 144-149. .

Operating system constructed as a hierarchy of levels of abstraction. Hardware of the
machine made more suitable to the system by means of microcode, creating more
appropriate machine.

B. Liskov and S. Zllles, Programming with Abstract Data Types. ACM SigPlan Notices,
9 (September 1974), 50-59. .

Argues for the need for abstract data type support In programming languages, and
progoses clusters as such a mechanism.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, Abstractlon Mechanisms In Clu.
Communications of the ACM 20,8 (August 1977), 564-576.

Provides introduction to CLU's abstraciion mechanisms, supporting data, procedural and '
controt abstractlon. Weltl written and wett motivated, explaining how the abstraction
features of CLU suppor! the programming task.

J. McCarthy, Recursive Functions of Symbolic Expressions and Thelr'ComputaNon by
Machine. Communications of the ACM (April 1960), 184-195.

Describes the formalism used by LISP for defining functlons recurslvety. Discusses the
Implementation of a LISP system by means of list structures.

G.J. Myers, Software Reliability - Principles and Practices, Wiley, 1976.

References 39

(36]

(37]

(38)

‘[39]

(40]

(41]

[42]

(43]

(44]

Chapler 15, Programming Languages and Retiability, conlains examplesiof some
non-intuitlve results produced by PL./1's defaull and coercion rules.

P. Naur(ed.), Revised Repor! on the Algorithmic Language Algol 60. Communications of
the ACM (January 1963).

A landmark In language design and definilion. First altempt to rigorously define
language synlax via BNF. Draws distinction between the reference language,
publication language, and hardware representation. Rigorous tanguage definition makes
report more usefut as reference than tutorial. Atcot 60's contral structuring facillties
greatly Influenced fulure language design, and ALGOL implementation spurred compller
writing lechnliques.

D.L. Parnas, Information Distribution Aspects of Design Melhodology. Proceedings of

the IFIP Congress (1971), 26-30.

M. Shaw(ed.), IC Study Problems, Carnegie Mellon University Department of Computer
Science,

A collection of programming problems for exploring languages and programming
techniques. One problem has been used in this paper as an example of language
Influence on solulion design.

M. Shaw(ed.), IC Study Problems Solution Collection, Carnegie Mellon Unlversity
Depariment of Computer Science.

The solulions to the problems given in {he above lechnical report.

P. Wegner, Programming Languages -- The Firsl 25 Years. JEEE Transactions on
Cemputers, Vol. C-25, No. 12 (December 1976), 1207-1225. '

An excellent overview of the principal concepls and programming languages developed
since the 1950%. Each "mileposi” is presenied, with a discussion of whal the
significance oi =ach is.

N. Wirth, The Programming Language Pascal. Acta Informatica 1 (1971), 35-63.
Defining report for PASCAL.

N. Wirth, The design of a Pascal Compiler. Software, Practice and Experience { (1971),
309-333.

N. Wirth, Systematic Frogramming: An Introduction, Prentice-Hall, Inc,, 1973.

Introduction lo programming principles. Includes a brief description of the process of
stepwlise refinement. '

N. Wirth, Moduta: A Language for Modular Multiprogramming. Software -- Practice
and Experience, 7 No. 1 (1977), 3-35.

Goals, philosophy and language definilion of Modula.

e

% [45]

(46]

R BT L

(47)

st Tt el il A A 5

References 40

W.A. Wulf, D.B. Russell and ANN. Habermann, BLISS: A Language for Systems
Programming. Communications of the ACM 14, 12 (December 1971), 780-790.

BLISS language definilion with emphasis on features that support systems programming.
Not a rigorous definition, but emphasizng goals and philosophy. ‘

W. Wulf and M. Shaw, Global Variables Considered Harmful. ACM SigPlan 8,2
(February 1973), 28-34.

Discusses adverse effect of use of non-local variables on comprehensibllity of
programs.

W.A, Wulf, RL. London and M. Shaw, Abstraction and Verificalion in ALPHARD:
Introduction to Language and Methodology, Carnegie Mellon Unlversity Department of
Computer Science.

Discusses Influence of ALPHARD's goals of support for development of well-structured
programs and the formal verificaticn of these programs. Presents current status of
language, with references to olher relevan! sources.

