
CD
CJ)

AFOSR-TR- 7 8" 125 mg.
CriU-CS-78-112

t

THE B^ TREE SEARCH ALGORITHM:
A BEST-FIRST PROOF PROCEDURE

Hans J. BerIi ner

April, 1978

DEPARTMENT
of

COMPUTER SCIENCE

Carnegie-Mel Ion University

05 064 Approved for public release;
distribution unllnlted.

ik»-

T DOCJMuNTA'i ION PAGE

'OSR frR- 7 8-1 2 HI 2. GOVT ACCESSION NO

UEfond Sublllle)

/JHE |-"- TREE S.EARCH ALGORITHM
tROof PF(0CEDURE/9

7. AUTHORfs;

ans J./Berl iner , \
^

KKAU INSTkuCTIONS
BEFORE COMPLETING FORM

3. RECIPll.N f'S CAT ALOG NUMBER

STYPE OF REPORT & P&RIQO COVERED

im ftpti'
CMU-CS-78-112

1BER

jVRAi^f OR dl^ANT NUMB^Rf^

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

t^

11. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1^00 Wilson Blvd.
Arlington, Virginia 22209

L—j ^"n6M-U- \
10, PROGRAM ELEMENT, PRC/jesiT-T*»)^ J / / j

AREA & WORK UNIT NUMBERS A<, '". [f \ß\

6noiE
A02i(66/7

14, MONITORING AGENCY NAME ä ADDRESSfJ/ diiierent from Controlling Ollice)

Air Force Office of Scientific Research/NM
Boiling AFB, Washington, DC 20332

UXA-
April 1978

IT NÜMBWCT PAGE'

21
15. SECURITY CLASS, (ol this report)

UNCLASSIFIED
15a, DECLASSIFI CATION/DOWN GRADING

SCHEDULE

rfelease; distribution unlimited,

17, DISTRIBUTION STATEMENT (ol the abstract entered in Block 20, II dlllerent Irom Report)

IB, SUPPLEMENTARY NOTES

19, KEY WORDS CConl/nuo on reverse side II necessary and Iden'lly by block number)

20, ACT (Continue on reverse siaa II necessary and Identlly by block number)

In this paper we present a new algorithm for searching trees. The
algorithm, which we have named B*, finds a proof that an arc at the root of
a search tree is better than any other. It does this by attempting to find
both the best arc at the root and the simplest proof, in best-first fashion
This strategy determines the order of node expansion. Any node that is
expanded is assigned two values: an upper (or optimistic) bound and a
lower (or pessimistic) bound. During the course of a search, these bounds
at a node tend to converge, producing natural termination of the search. —

DD , JANM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASS I F I ED

) ^ -v'
kf

JRITY CLASSIFICATION OF THIS PAGE (When D*!H
£

ko4
20. Ais tract

'As long as all nodal bounds in a sub-tree are valid, B* will select the
best arc at the root of that sub-tree.-- We present experimental and
analytic evidence that B* is much more ieffeetive than present methods
of searching adversary trees. ^

^The B* method assigns a greater responsibility for guiding the search
to the evaluation functions that compute the bounds than has been done
before. In this way knowledge, rather than a se". of arbitrary predefined
limits can be used to terminate the search itself. it is interesting to
note that the evaluation functions may, measure any properties of the
domain, thus resulting in selecting the arc that leads to the greatest
quantity of whatever is being measured
is that used by chess masters in analy^Png chess trees,

We conjecture that this method

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEl'Vfh»" r1«'« Fnr«r«rf)

■ i ilNN—i———'**-

L.iü-i:S-78-112

THE B^ TREE SEARCH ALGORITHM:
A BEST-FIRST PROOF PROCEDURE

Hans J. BerIiner

April, 1978

Co. (juter Science Department
Carnocie-Mellon University

Pittsburgh, Pa. 15213

•

■

■

AIR FORCE OFFIfTF. OF SCIENTIFIC RESEARd (AFSG)

NOTICE OFT-'; ^ ^^L rB,l9Md and la

approv ' .

This work was supported by the Advanced Research Projects Agency of the Office cf
the Secretary of Defense (Contract F44620-73-C-0074) and is monitored by the Air
Force Office of Scientific Research.

/ h 9 06^1
-—. •-..-

ABSTRACT

In this paper we present a new algorithm for searching trees. The algorithm, which
we have named B*, finds a proof that an arc at the root of a search tree is better
than any other. It does this by attempting to find both the best arc at the roof and
the simplest proof, in best-first fashion. This strategy determines the order of node
expansion. Any node that is expanded is assigned two values: an upper (or
optimistic) bound and a lower (or pessimistic) bound. During the course of a
search, these bounds at a node tend to converge, producing natural termination
of the search. As long as all nodal bounds in a sub-tree are valid, B« will select the
best arc at the root of that sub-tree. We present experimental and analytic evidence
that B* is much more effective than present methods of searching adversary

trees.
»

The B* method assigns a greater responsibility for guiding the search to the
evaluation functions that compute the bounds than has been done before. In this
way knowledge, rather than a set of arbitrary predefined limits can be used to
terminate the search itself. It is interesting to note that the evaluation functions
may measure any properties of the domain, thus resulting in selecting the arc that
leads to the greatest quantity of whatever is being measured. We conjecture that
this method is that used by chess masters in analyzing chess trees.

ACj^V 1/
Whit« lection |ft
Bui; action □

O

ii SPECWl

Ll

1. Introduction

Tree searching permeates all of Artificial Intelligence and much of what is
computation. Searches are conducted whenever selection cannot be done
effectively by computing a function of some state description of the competing

alternatives. The problem with tree searching is that the search ipace grows as B^,
where B (branching factor) is the average breadth of alternatives and D the depth
to which the search must penetrate.

i

We find it useful to distinguish between searches that continue until they have
reached a goal, and those that attempt to solve a problem by iteration; the nth
iteration be:ng' assumed to take the solving process closer to the solution (which in
most cases will never be seen by the search) than the n-lst iteration did. Searches
that look for a goal must either succeed or fail. However, searches that work by
iteration are expected to produce a meaningful answer at each iteration, for
better or for worse.

If a proH^m has a very large search space and can be solved by iteration (unlike
theorem proving which cannot), there is usually no alternative to using the iterative
approach. Here, there is a serious problem in bounding the effort so that the
search is tractable. For this reason, the search is usually limited in some way (.e.g.
number of nodes to be expanded, or maximum depth to which it may go). Since it is
not expected that a goal node will be encourttered, an evaluation function must
be invoked to decide the approximate closeness to the goal of a given node at the
periphery of the search. This or a similar function can also be used for deciding which
tip node to sprout from next in a best-first search. Thus evaluation functions and
effort limits appear to be necessary for finding a solution by iteration. However,
such conditionr on the search appear to cause other problems such as the horizon
effect [Berliner, 19 ?3].

It is desirable to have a search proceed in best-first fashion for several reasons. If
we can specify a certain degree of closeness to a goal as a terminating condition,
this reduces the degree of arbitrariness in stopping when no goal is encountered.
Therefore, Harris [Harris, 1974] advanced the notion of a bandwidth. A reference level
together with a bandwidth heuristic would guarantee a solution of value no greater
than the bandwidth away from the reference level, providing the search terminated.
However, this method results in terminating the search under the artificial condition
of posing an o priori reference level and bandwidth. For a complex game like chess,
an expectation level of (say) maintaining the status quo, is reasonable. If the error
bounds are as large as a pawn, the search will continue until it finds that one side
must win or lose a pawn. This may be an infinite search, if this condition cannot be
met. For smaller bandwidths, spurious fluctuations in the evaluation, which are
inevitable as different aspects appear, look promising, and are then ultimately
decided upon, can cause the bandwidth condition to be satisfied when it is not at all
clear that it should be.

Best-first searches fend to put the searching effort into those sub-trees that
seem most promising (i.e. have the most likelihood of containing the solution).
However, best-first searches require a great deal of bookkeeping for keeping track

of all compeling nodes, contrary to the great efficiencies possible in depth-first

searches.

Depth-first searches, on the other hand, tend to be forced to stop at inappropriate
moments thus giving rise to the horizon effect. They also tend to investigate huge
trees, large parts of which have nothing to do with any solution (since every
potential arc of the losing side must be refuted). However, these targe trees
sometimes turn up something that the evaluation functions would not have found were
they guiding the -.earch. This method of discovery has become quite popular of late,
since new efficiencies in managing the search have been found [Slate & Atkin,
1977]. At the moment the efficiencies and discovery potential of the
depth-first methods appear to outweigh what best-first methods have to offer.

II. The B« Algorithm

In present methods for doing iterative searches, there is no natural way to stop the
search. Further, for any given effort limit, the algorithm's idea of what is best at the
root, may change so that each new effort increment could produce a radical change in
the algorithm's idea of what is correct. To prevent this and to^provide for natural
termination, the B* search provides that each node has two evaluations: an optimistic
one and a pessimistic one. Together, these provide a range on the values that are
(likely) to be found in the node's sub-tree. Intuitively, these bounds delimit the
area of uncertainty in the evaluation. If the evaluations are valid bounds, they do
define a range. If not, some simple corrective processes are possible, and we discuss
these later in this paper. In either case, the values in a given sub-tree will tend to
be within the range of the root of the sub-tree. As new nodes in the sub-tree
are expanded and this information is backed up, this will force a gradual reduction
of the range of the root node of any sub-tree until, if necessary, it converges on
a single value. This feature of our method augurs well for the tractability of searches.
In fact, a simple best-first search in the two valued system would converge;
however, as we shall show, a B» search converges more rapidly.

The' domain of B* is both 1-person (optimality) searches and 2-person (adversary)
searches. We shall explain the B* algorithm using adversary searches, where one
player tries to maximize a given function while the other tries to minimize it. In the
canonical case where nodes have a single value [Nilsson, 1971], MAX is assumed to be
on move at the root, and the arc chosen at the root has a backed-up minimax value
that is no worse than that of any other arc at the root. In the two valued system
that we introduced above, this condition is slightly relaxed: MAX need only show that
the pessimistLc value of an arc at the root is no worse than the optimistic value of any
of the other arts at the root. This is the terminal condition for finding the best arc.

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmtm

[19,10]

Figure 1 - Start of a B* search

We show the basic situation at the start of a ternary search tree in Figure 1. The
optimistic and pessimistic values associated with any node are shown next to it in
brackets, the optimistic value being the lefmost of the pair. These values will be
updated as the search progresses. In Figure 1, it appears that the leftmost arc has
the greatest potential for being the best. It should be noted that if this search
were with single (optimistic) valued nodes and this were maximum depth, the search
would terminate here without exploring the question of the uncertainty in the
evaluation. In the case of B*, there are no terminating conditions other than the one
previously enunciated. Thus the search at this point may pursue one of two
strategies:

1) It may try to show that the lower bound of the leftmost node is no worse
than the upper bound of the other nodes at this depth. We will call this the
PROVEBEST strategy.

2) It may try to show that the upper bounds of all the other nodes itt depth 1
are no better than the lower bound of the leftmost node. We will call this
the DISPROVEBEST strategy.

In either case, the strategy will have to create a proof tree to demonstrate that it
has succeeded. We show the simplest cases of the -tlternate strategies in Figures 2
and 3. In the figures, the numbers inside the node symbols indicate the order of node
expansion, and backed up values are shown above the bracketed values they replace.
In the case of adversary trees, we insist that one node of every descendant set have
a bound equal to that of its parent.

[l<?,10]

[fc2,3<a]

ÖfaM Ölzs^]

Figure 2 - The PROVEBEST Strategy

Ol>^] Olwi
Figure 3 - The DISPROVEREST Strategy

From Figures 2 and 3 it can be seen that, if conditions are right, the seemingly more
cumbersome DISPROVEBEST strategy can involve less effort than the PROVEBEST
strategy. Further, there is no guarantee that the node with the original best optimistic
value will be the ultimate best node. Thus it can be seen that the selection of a
method to establish which arc is best at the root will not be a trivial problem.

_

The B* algorithm addresses itself to this task by doing a best-first proving search. In
this search, backing up will occur whenever one of the following conditions is true at a

node:

1) The Optimistic and Pessimistic values converge to be equal thus defining
the value of that node.

2) There is a more optimistic branch to pursue for either side.

3) The optimistic or pessimistic value achieved is sufficient to be a proof about
the sub-tree that it is in.

The combination of these rules assures that the best branch for both sides Is always
pursued in the search, but only until it has reached a value sufficient to prove
the stated aim of the search. A small economy is also possible in the generation of
descendants. Since any descendant may provide a sufficient conditton for causing
backup, they may be generated and tested, one at a time, thus saving the cost of
doing a complete successor generation at nodes where backup is possible. It should
be noted that in cases 2 and 3 above, search may be terminated at a node only
temporarily.

In backing up, the best optimistic value of the set of descendants of a node becomes
its pessimistic value, and the best pessimistic value of the set of descendants
becomes its optimistic value. For MAX, optimistic values are larger than
pessimistc, while for MIN optimistic values are smaller than pessimistic. Backing up is
applied iteratively as long as there are new values to back up. As backed up values
become available, it may be that certain nodes will become logically eliminated from
the search. These may be deleted or ignored; it is only a matter of convenience
in bookkeeping, as they can not influence the result.

Two features distinguish a B* search from a simple best-first search:

1) While a best-first search only backs up to always sprout from the best
minimaxed node, the B* search also backs up whenever one of the
bounds of the current branch is sufficient for a proof that the arc at the
root which gave rise to this sub-tree is better (worse) than a given
reference value. There is a subtle point involved here. It is senseless to
extend a branch, the value of which is good enough to be part of a proof;
improving its value will not change the status of the proof. However, a
pure best-first search would not understand this.

2) The B* search can choose a strategy whenever it is at the root of the tree.
This allows directing the search effort in such a way that the most
meaningful contribution to the proof of which arc is best can be made in the
most inexpensive way.

The algorithm requires several reference values for its operation:

1) The optimistic and pessimistic values at each node delimit the range of

values that can still be achieved by optimal selection of arcs in its
sub-tree. These values are updated as the search progresses,

2) At each depth there is kept the value (which we call BESTALT) of the best
alternative in ihe search to this point for the side on move at that depth.
These values are updated as the search progresses from the root, by
bringing down the value from 2-ply earlier in the tree and updating it if the
value of the best alternative at this depth is better. This provides the
necessary information for the search to back up when a better
alternative is available somewhere.

3) The search may be pursuing the PROVEBEST strategy or the
D1SPROVEREST strategy, and this must be known .throughout the tree
since certain decisions depend upon it

|i t

A) Whenever the search departs from the root, there is defined a reference
value called ASPIR. This value is what the proof is about; PROVEBEST trying
to prove this sub-tree to be better than the value, while
DISPROVEREST tries to prove its sub-tree worse than the value.

The following five decision rules define when the search backs up:

Rule 1 - If the optimistic and pessimistic vai'je at a node are identical then
the value of this node is known and the search backs up permanently from
this node.

Rules 2 ä 4 - When the optimistic value of the node being searched becomes
worse th^n the BESTALT value at that depth, the search backs up to
search the alternative. This assures that the search backtracks
whenever there is a more optimistic alternative for either side at some
earlier node (as in a best-first search).

Rules 3 & 5 - When doing a PROVEBEST search, if the pessimistic value of a MAX
node is no worse than ASPIR, or when the optimistic value of a MIN node is
no better than ASPIR, this demonstrates that the value of this branch is
sufficient to prove that the sub-tree rooted at the root is no worse than
ASPIR. A complementary set of tests exists for the DISPROVEREST strategy.

The combination of these rules assures that only nodes where no more optimistic
alternative exists for either side, nor where this branch is not clearly already
sufficient for a proof are expanded. The irst action is something that depth-first
searches cannot do, while the second is «imething that best-first searches are not
aware of.

We now present the B* algorithm. It utilizes the variable CURNODE to keep track of
the current node, DEPTH to remember the distance of CURNODE from the root,
MAXOPTIM to keep track of the most optimistic value of all successors to CURNODE,
MAXPESS to keep track of the best pessimistic value of all successors to CURNODE,
and the vector BESTALT to keep track of the value of the side-on-move's best

8

alternative up »o that depth. There are several tests. in the algorithm, and all
are presented from MAX's point of view. We introduce the operator *" " to
indicate that a quantity should be complemented to get MIN's point of view; i.e. >'
becomes <, MAXPESS' becomes MAX0PT1M, etc.

*-•,

l)DCPTH«-0; CURNODE^-O; 8ESTALT[-2] <-Oj

2) if DEPTH < 0 then EXIT.

3) if CURNODE has not been expanded yet then generate, name, and evaluate
successors, p,ive each pointer to pirBflt.

4) BESTNODE *- ■• ■ 2 of successor with best OPTIM value;
ALTERN *■ name of successor with second best OPTIM value;
MAXOPTIM *- OPTIM[BESTNODE];
MAXPESS *- VaJue of the best PESSIM value of all successors;

5) Back up MAXOPTIM «.nd MAXPESS and far as necessary, if a change is made to
descendants of root, then (DEPTH «- 0; CURNODE <- 0; go to 4);

6) if MAXOPTIM - MAXPESS then go to 16; ! Rule 1

7) BESTALT[DEPTH] - BESTALT[DEPTH-2]; ! Bring down BESTALT

8) if DEPTH " 0 then decide STRATEGY,
if STRATEGY » DISPROVEREST then

(ASPIR *■ MAXPESS; BESTALT[0] *■ MAXPESS; BESTALT[-1] «- OPTIM[ALTERN]);
if STRATEGY - PROVEBEST then
(ASPIR «- 0PT1M[ALTERN]; BESTALT[-I] - MAXPESS; BESTALT[0] ^ 0PTIM[ALTERN]);

9) if MAXPESS >' BESTALT[DEPTH-1] then goto 16; ! Rule 2: MIN can do belter

10) if STRATEGY - PROVEBEST then
if MAXPESS' *' ASPIR then go»o 16; I Rule 3: PROVEBEST proof achieved

11) if MAXOPTIM <' BESTALT[DEPTH1 then goto 16; ! Rule 4: MAX can do better

12) if STRATEGY = DISPROVEREST then
if MAXOPTIM' S' ASPIR then goto 16; ! Rule 5: Leg of DISPROVEREST proof

13) if DEPTH ri 0 then
if 0PT1M[ALTERN] >' BESTALT[DEPTH] then BESTALT[DEPTH] «■ OPTIM[ALTERN];

14) if (DEPTH - 0) and (STRATEGY - DISPROVEREST) then CURNODE «- ALTERN
else CURNODE «- BESTNODE;

15) DEPTH <- DEPTH+1; go to 3.

16) DEPTH «- DEPTH-1; if DEPTH < 0 then ANSWER ♦- BESTNODE
else (CURNODE «- PAR£NT[CURNODE]; go to 2);

It should be noted that there is never any point to invoking the DISPROVEREST
strrtegy unless PESS1M[BESTN0DE] - MAXPESS. This Is because there will be at
least one node in the alternative set, the value of which cannot be lowered below

m^^

10

MAXPESS. As long as this value is greater than PESSIM[BESTNODE], then this proof
cannot succeed. Also, if two or more successors are tied for the, best OPTIM value,
BESTNODE ; - the one with the smallest range.

III. Tests of the B* Algorithm

We have simulated the conduct of searches with several versions of the B*
algorithm. In the simulation, adversary trees of constant width were generated,
with the lange of admissible values at the root and the width of, the tree varying
over sets of runs. As explained in Appendix A, if is possible to generate such
trees so that any node in the tree will have its initial bounds determined as a function
of its position in the tree and the run number, regardless of when the node is
searched. This quarantees that each algorithm searches the same trees.

In assigning each descendant its bounds, we invoked the proviso that at least one
descendant must have an optimistic value equal to that of the parent, and one must
have a pessimistic value equal to that of the parent. It was possible in this process,
for a descendant to have the same values as its parent.

Searches were performed according to the following scheme. A run consisted of 1600
tree searches. In these there were two principal variables, the range and the width of
the tree.

1) The range (the number of discrete values) of
was varied from 100 to 6400 by factors of four.

the evaluation function

2) The width of branching was varied from 3 to 10 in increments of 1.
■ (

Thus there were 50 tree searches for each variable pair. For each such run a
different search algorithm was tested. Any search that penetrated beyond depth
100, or which put more than 30,000 nodes into its nodes dictionary was declared
intractable and aborted.

Several observations could be made from the data. In general, tree size grew with
width. Range, on the other hand, turned out to be a non-monotonic function. Searches
with the smallest and largest ranges required the least effort in general. Searches
of range ^OOwere hardly ever the largest for any given width and algorithm,
while searches of width 1600 were hardly ever the smallest for any given width
and algorithm. We cannot interpret this result beyond it indicating that there
seems to be a range value for which searches will require most effort and that
ranges above and below this will require less.

As we tested the basic B* algorithm presented earlier, potentially useful variations
suggested themselves. Earlier, we indicated that the search would prove a given arc
best using PROVEBEST, or an arc worse than the best arc using DISPR0VEREST.
This involves setting ASPIR, the value that must be achieved in the proof, at
the optimistic value of the best alternative at the root for PROVEBEST, and at the
pessimistic value of the best arc at the root for DISPROVEREST (see step 8 of
algorithm). However, this can create wasted effort if, for instance, the range of

V-»«.^-*-

11

the sub-tree being worked on is considerably narrower than the sub-rree that would
be searched under the other strategy. By setting ASP1R somewhere between the
above values, some proving of each type could occur, creating an overall savmg of

effort. This did, in fact, prove to be the case.

We tested several distinct variations of the B* algorithm. These related to where
ASPIR was set and the criteria for selecting the strategy at the root. The

variations were:

1) Number of alternatives considered when making strategy decision at root.

2 - Best plus one alternative.

3 - Best plus two alternatives.

A - All alternatives.

T - Only when alternative(s) were tied with Best.

2) Criterion applied to decide strategy.

D - If the sum of the squares of the depths from which came the
knowledge of the optimistic bounds of the alternatives was less than
the square of the depth from which knowledge of: the best arc came,
then the best alternative was chosen, else the best arc. This favors
exploring sub-trees which have not yet been explored deeply.

R - Criterion information Ctr above or unity) was divided, by the range
of the node (thus favoring the searching of nodes with larger ranges).

3) Value ASPIR was set to:

L - At the limit for each strategy.

M - In the middle between the limits for both strategies.

These alpha-numeric keys are used to label column headings in Table I to show which
algorithm is being tested. BF indicates the results of running a best-first search on
the same data, and these are used as a base tor comparison.

The categories on the left are based upon how the best-firs^ search did on a given
tree A given tree is in the intractable category, if any of the algorithms tested
found it intractable. The entries in the table indicate the ratio of effort, in terms 01
nodes visited, compared to how the best-first search did on the set; e.g .50 means
that half the effort was required. The last row indicates the number of intractable

searches for each version.

'*y-ri»!*w"

12

TABLE I
Effor' Compared to Best-First for Various Implementations of 8*

SIZtA f)LC Bf 1R 2ÜL 20RL 2DM 20R« 30L 3Dn RDM 2DRnX
<50 1.00 .95 .82 .83 .82 .81 .83 .83 .Si .84
<200 1.00 .89 .65 .65 .65 .62 .64 .62 .64 .71
<1000 1.08 .88 .60 .55 .61 ,56 .51 '48 .47 .64
>1000 1.00 .72 .50 .48 .51 .48 .36 .35 .32 .56
Intractable i.00 .77 .71 .67 .70 .64 .62 .59 .52 .69
No. Intract. 226 112 106 85 100 76 96 83 71 81

The data support several conclusions:

1) There is a slight but definite advantage to having ASP1R in the center of
the range. The columns with "M" generally outdo those with "L" in the same
position. We should note here that we did try some methods of varying the
exact position of ASPIR between the limits, but found the mean to be as
good as any.

2) The greater the number of parameters considered when making the
strategy decision between PROVEBEST and D1SPROVEREST, the better the
result.

3) In general, the larger the tree, the more pronounced the effect of a good
algorithm.

A) The right-most column headed "2DRMXH is a test of what would happen
if the nodal bounds were not valid. Here we used algorithm ^DRM" but
allowed 57- of all nodes to have their successors have a range which
was 507. larger than the parent; i.e. 257. on either side. The net effect of
this appears to be a 5 - 107- increase in the amount of effort. Clearly, it is
possible to have more frequent aberations, but the effect here does not
seem to be serious.

It can be seen that the more flexible the algorithm is in being able to assign methods
for solution, the better the results, especially for large trees. Further, it seems to
us that with additional effort on improving the strategy selection criterion, the best
aigbrilhm could become twice as good as the "ADM" algorithm. Since the method of
selecting strategies and assigning limits in this experiment is essentially syntactic
(there is no use made of the semantics of the domain being searched), it seems
reasonable to suppose that the availability of semantic information would allow even
better decisions with consequent improvement in the search effort required.

We examined many of the cases where intractable searches occured. These are
due to the stringent wgy that values are assigned to descendants. When the
range of a node gets rather small, and there are a relatively large number of
descendants, the probability that at leas', one will have the same limits as its parent is
extremely high. This prevents any progress toward a solution at such a node, and if
the probability of this occuring is high enough, the probability of a string of such
occurencos can be quite high too. This was borne out when we did a run of the best
algorithm with the additional proviso tha* any node for which the range was

13

reduced to 2 or less arbilrarily received a value equal to the mean of its optimistic
and pessimistic value. For this change, the number of intractable searches went from
71 to ^, and each of these was due to overflow of the nodes dictionary rather
than exceeding the maximum depth. This method is somewhat reminiscent of Samuel's
idea [Samuel, 1959] of terminating search at a node when Alpha, and Beta are very
close together.

To get another benchmark for comparing B*, we ran a depth-first alpha-beta
search on the same data. Here, we allowed the forward prune pardigm, since the
bounds on any node were assumed valid. In a search without the, two-value system,
each node expansion could bring a value any distance from the value of its parent.
Since this cannot happen under the two-valua scheme it is logical to not search any
node the range of which indicates it cannot influence the solution. In order to
prevent the search from running away in depth, we used the iterative deepening
approach [Slate A Atkin, 1977] which goes to depth N, then to depth N+l, etc.,
until it finds a solution or becomes intractable. Searches were started with N-l.
The results showed that depth-first typically expands three to seven times as
many nodes as the best-first algorithm. Although it did manage to do a few problems
in fewer nodes than the best B» algorithm, it was unable to solve any problem of
depth greater than 19, and became intractable on almost twicers many searches
as the best-first algorithm. In contrast, the best algorithm solved some problems as
deep as 94 ply, though no doubt shallower solutions existed.

IV. Considerations that Led to the Discovery of the Algorithm ,

In the course of working on computer chess, we have had occasion to examine the
standard methods for searching adversary trees. The behavior of these algorithms
appeared more cumbersome than the searches which I, as a chess master, believed
myself capable of performing. The real issue was whether a well defined algorithm
existed for doing such searches.

1) Our initial motivation came from the fact that ail searches that were not expected
to reach a goal required effort limits. Such effort limits, in turn, appeared to bring
on undesirable consequences such as the horizon effect. While there are
patches to ameliorate such ideosyncracies of the search, the feeling that these
were not "natural" algorithms persisted.

2) There are two meaningful proposals to overcome the effort limit problem. Harris
[Harris, 1973] proposed a bandwidth condition for terminating the search.
However, this shifts the limiting quantity from a physical search effort limit, to a
error in measurement limit which, as indicated earlier, has other problems.
Another attempt to avoid these problems was to use a set of maximum depths
in a depth-first search for terminating searches which qualified moves for other
searches [Adelson-Velskij, et. al., 1975]. This is, in effect, a fail-soft approach to
effort limits. When there are a number of effort limits, the hope is that everything
of importance will somehow be covered. There are no reports of how this
approach worked out, but it would appear to have ihe same essential limitations
as all the other effort limited searches. This is borne out by the fact that the
authors have now implemented another method of searching for their chess

14

program KAISSA. In none of the existing tractable search procedures is
there a natural terminating condition without any parameters which specify
under what conditions to halt.

3) We have noted that standard searches may at times investigate a very large
number of nodes that have no apparent relevance to a solution. Consider the
following situation: If there is only one legal successor, to the root node, any
iterative solution technique can easily check for this condition and indicate this
is the best successor without further analysis. However, if| there is only one
icnstblc arc, a depth-first program will still insist on refuting all other arcs at
the root to the prescribed depth, while a best-first program may investigate
the one good arc ad infLnUum. Usually, it is possible to determine that the one
sensible arc is best without going at all deep in the search. l\ appears that some
essential ingredient is missing. We have felt for some time that the notion of
level of aspiration (as first put forward in [Newell, 1955]) was the key to the
proper construction. The Alpha-beta search procedure appears to have such a
level of aspiration scheme. However, this scheme has an aspiration level for each
side, and that only serves to bound those branches that can be a part of the
solution. To us, a level of aspiration is a focal point that each side tries to push a
little in the favorable direction. We attempted this construction in the search
scheme of CAPS-i! [Berliner, 1974], which relied heavily on notions of
optimism, pessimism and aspiration. These are the type of semantic or
domain-dependent notions that should control a search. However, we performed
depth limited depth-first searches in CAPS. Without the best-first requirement-
there was no need to keep track of best alternatives, nor to maintain the
optimistic and pessimistic values at each node.

4) We have always liked the way the search could be terminated at the root node,
when the backed up (sure) value of one alternative is better, than the optimistic
values of all the alternatives. This is the forward prune paradigm, and while it
can be used to keep the search from investigating branches that appear useless at
any depth, it only terminates the search if applicable at the root. However, when
a global ASPIR and local optimistic and pessimistic values exist, it is possible to
decide that a particular sub-tree at any depth cannot affect a given proof attempt.
This is like a forward prune, only the search may return to this node at a later
stage for another proof attempt.

5) Protocols of chess masters analyzing chess positions [De Groot, 1955] show a
phenomenon known as progressive deepening. Roughly, this appears to be the
investigaiing of a line of play, abandonment of the investigation of this line, and
the subsequent return to the investigation of the line, but with the analysis
being followed to a greater depth in the tree. The deepening process may occur
several times during the analysis. Since humans investigate very sparse trees and
chess masters play chess very well, it was thr^jght that this procedure
(whatever it consisted of) should be an effective w«/ of managing the search.
The real question was whether there was an actual search algorithm, or
whether the deepening was the result of ad hoc procedures. 1 have held to the
former view.

15

In fact, De Groot came very close to discovering our algorithm. In "Thought
and Choice in Chess" [De Groot, 1965], (pp. 2&-32), he outlines a proof
procedure involving the basic strategies for demonstrating that a move is
better than its nearest competitor, and shows that this seems to be at Ihe core
of many of the protocols he collected. However, he fails to relate it to a tree
searching procedure, and in fact speculates that the subjects are only using
this scheme as a basis for their investigations (which may be correct).

V. Evaluation Functions and Meaningful Bounds

During the course of our investigations, we have attempted to apply the B* algorithm
to some optimization problems, notably the 8-puzzle [Nilsson, 1971]. During this
effort, we succeeded in creating lower bounding functions which were monotonic
and se eral times more sensitive than any previously published for this particular
problem. However, we could not devise a really useful upper bounding function. Such
a function should form a reasonable range together with the lower bounding
function and should be monolonic. The most difficult 8-puzzle configurations can^be
solved in 30 steps [Schofield, 1967]. Our best upper bounding function "grabbed" at
about 8 ply from a solution. Thus problems of depth 12 or so could be solved easily
by B*, but for deeper problems the upper bounding function was not able to
contribute to the solution. i |

We have speculated about why the construction of the upper bounding function was
so difficult. It appears that, since the function to be optimized .is the cost of the
solution path, it is always possible to get good estimates of tl^e lower bound since it
involves estimating the elements required for a hypothetical, but frequently
unattainable path. No similar notion pertains for upper bounds, since longest paths,
while forming an upper bound and being monotonic, are too far removed from the
value of an ultimate solution to be a useful bound. However, for relatively short
paths (or nearby sub-goals) it is possible that useful upper bounding functions can
be constructed. The guiding principle for those that we were able to construct is
to use a pattern-based approach; i.e. a certain pattern was recognized as being
embedded at a node and requiring at most N steps for. a solution. We feel
that this distinction in the way effective bounding functions can be constructed is
extremely important, and could very well account for why humans do such a
good job at sub-optimizing tasks.

Actually, the notion of an optimal pat'^ goal implies that the search procedure
traverse such a path. Such a procec1 d not be iterative, else it could stop
short of a goal; Thus it seems that ity tasks are just not well suited lo
B+'s capabilities. Finding an optimal approximately equivalent to findirg the
shortest mate in a game of chess, and this is seldom relevant to making the best
move. An iterative algorithm prefers to find a good start on a path, which may be
optimal, but in any case meets a satisficing criterion, and can, be found with a
reasonable or mimimal effort (few nodes). Optimization problems just do not fit well
into such a mold. On the other hand, adversary situations are apparently much easier
to handle, since one person's optimistic unction is the other's pessimistic one.

We consider the basic issue here to be what constitutes a solution. If (as is almost

16

always the case) 1-person problems deal with optimizing the, cost of some path
function, then there appears to be little hope for applying B* to such problems
unless better upper bounding functions can be found. Howeyer, when iterative
solutions are desired or are the only ones that are tractable, the B* algorithm can be
used to find a series of first steps in the right direction.

The B* search can easily be structured to fit a given task. For instance, in chess an
ASPIR and evaluation functions can be chosen to support the search to determine
whether a given set of non-terminal goals is achievable. Further, and De Groot
presents some evidence to this point, humans probably change .the aspiration level
(and goals) at times when returning to the root. There is goojJ evidence that the
evaluation functions may be changing too [Berliner, 1977a].

Applying these ideas to the solution of 1-person problems leads,us to believe that
certain problems for which optimizing the cost is not the correct, formulation may be
solved by B*. Such a problem could exist when, for instance, it is most important to
get a solution for minimal computational resources (nodes visited in the search). This
would be the way humans would solve many such tasks. In an incomplete
information environment, this could be a reasonable enterprise. We propose two
examples:

1) Not analyzing which of several plausible replies an opponent would make
in a game of chess, when all the moves \o that point are clearly best.

2) In a robot navigation environment, not trying to plan a complete path when
the whole terrain cannot be viewed at the time a first solution is
attempted.

VI. Discussion and Summary >

There are two things that distinguish the B* algorithm from other known tree search
procedures:

1) The optimistic and pessimistic value system allows for termination of a search
without encountering a goal node, and without any effort limit.

2) The option to exercise either of two search strategies allows the search to
spread its effort through the shallowest portion of a tree where it is least
expensive, instead of being forced to pursue the best alternative to great
depths, or pursue all alternatives to the same depth.

In pursuit of the latter, it is best to have the aspiration level somewhere between the
best pessimistic value at the root and the optimistic value of the best alternative.
This allows both searchs strategies to be employed effectively. Use of the depth
from which the current evaluation has come, and the present range of a node also are
useful in determining the best strategy, as no doubt,, would be the
domain-dependent knowledge associated with an evaluation (not merely its magnitude).

It is interesting to compare the basic features of B* with those of well known search

*.,;

17

algorithms. Consider the A* search aleorithm [Nilsson, 1971]. It could easily operate
under the two value system in a mode that is satisfied to find the best arc at the
root, and the cost of the path without finding the complete path itself. This
algorithm would be equivalent to B* using only the PFOVEB^ ST strategy, and being
able to halt search on a branch only when a goal was reached or if the upper and
lower bounds on \he branch became equal; i.e. the cost of the path is known.
Another step in the direction of iteration would be to only use the PROVEBEST
strategy and allow the search to halt when a best node at the root had been
identified. In this mode the exact cost of the path would not be Known. This
produces the best-first algorithm used for the column headed BF in Table I.
Finally, the full-fledged B* algorithm working with both strategies discovers the best
node without the exact cost of the path. However, it does enough shallow searching
so that it explores considerably fewer nodes than any of the algorithms
described above.

Having the two strategies without the two value system has no meaning at all, since
there is no way of pronouncing one node at the root better than any other without
having an effort limit. Just using a depth-first iterative deepening procedure,
although it spreads the search over the shallower portions of the search tree,
investigates too many non-pertinent nodes.

Today's search algorithms rely on assigning a single value to a node, under the
assumption that each node expansion will bring in new and useful information that can
be backed up and used to produce a more informed opinion about the node's
sub-tree. However, this ignores the variability about tht estimate that is made
by the terminal evaluation function. It is precisely for this reason that chess
programs indulge in quiescence searches when the variability! at a terminal node is
considered too high. Our method can thus be considered to carry a specification of
variability of the evaluation for every node in the tree. Thus ,nny posed issue (as
represented by its variability) cannot be abandoned until it can be shown to be
irrelevant to determining the best solution.

The advantage of the two-value system is that it provides a method for naturally
terminating a search. It also allows the critical test which will pronounce one arc at
the root better than all the rest. However, it clearly requires good estimating
functions for its success. In difficult adversary domains such as chess this appears
doable, and we have constructed reasonable functions of this type for chess tactics.
The key is that in such situations, one side's optimism is the other's pessimism.
For domains in which optimality searches are usually done, it is difficult to find
useful upper bounding functions for path costs involving long paths. Therefore, B*
can probably only be used for such searches, when some other criterion of
success such as a reasonable solution at low computational cost is desired.
This is probably close to the criterion humans use in approaching such problems,
since they do not have the facilities to deal with the combinatorics of even mildly
difficult problems. I

Clearly, evaluation functions are very important. The B* search transfers the
responsibility for determining how much effort to spend (which has previously been
the responsibility of the search parameters, i. e. depth limit, effort limit,

_

18

etc.) to the evaluation functions which now determine the effort limit due to their
cri^pness and ability to narrow IN) -ange between optimistx and pessimistic. In
the final analysir-, the B* search is a conversation between an evaluation
function and a control procedure which terminates when enough has been
discovered in the search to justify a selection at the root. . If the evaluation
function estimates do not validly bound Ihe actual value of a node, then errors in
arc selection can occur. However, there is no reason why the^e should be more
severe than errors produced by any estimating function which is not applied at
domain defined terminal nodes. Unfortunately, very little appears ^0 have been done
toward making a science of the construction o< sensitive evaluation functions,
since the highly significant work of Samuels [Samuels, 1959 and 1969]. We have
been investigating how such evaluation functions can be constructed of many layers of
increasingly more complex primitives in connection with the 8-puzzle and backgammon
[Berliner, 1977b]. In the latter great amounts of knowledge need lo be brought to
bear, since search is not very practical.

The proof Schemas cited in De Groot, some of the protocol analysis (particularly pp.
213-217), and the fact that humans search very small, narrow trees lead us to
believe that the B* search is, in fact, what is being called progressive deepening.
In performing a search, the B* algorithm may go down a branch, several times, each
time looking to see whether a value sufficient for a proof can be found. The search

will abandon a branch when: ,

1) The branch is no longer best.

2) The proof is established.

In the first case, the deepening stops only fo be resumed at the now best branch,
possibly several ply nearer the root. In the second case, the deepening stops and
the search reverts to the root to determine whether the proof is complete (it may
not be if ASPIR is in the middle, as explained in section III). Such phenomena
could easily give rise to tlie notion of a best-first search with progressive
der.oening since the jumping around is observed at the level of the protocol, without
the underlying logic being apparent. Thus the B» algorithm fulfills all the basic
conditions.

1*1

19

BIÜÜOGRAPHY

Adelson-Velskiy, G. M., Arlasarov, V. L, and Donskoy, M. V. (1975), "Some Methods of
Controlling the Tree Search in Chess Programs", Artificial Intelligence,
Vol. 6, No. 4, 1975.

Berliner, HJ. (1973), "Some Neccessary Conditions for a Master Chess Program"
Proceedings of the 3rd. International Joint Conference on Artificial
Intelligence, pp. 77-85, August 1973.

Berliner, H. J. (1974), Chess as Problem Solving: The Devebpment of a Tactics
Analyzer, Ph. D. Dissertation, Computer Science Department,
Carnegie-Mellon University, March 1974.

Berliner, HJ. (1977a), "On the Use of Domain-Dependent Descriptions in Tree
Searching", in Perspectives on Computer Science, A. K. Jones (Ed.), Academic
Press, 1977.

Berliner, H. J. (1977b), "BKG — A Program that Plays Backgammon", Computer Science
Dept., Carnegie-Mellon University, 1977.

De Groot, A.D. (1965), Thought and Choice in Chess, Mouton and Co., 1965.

Harris, L (1974), "The Heuristic Search Under Conditions of. Error", Artificial
Intelligence, Vol. 5, No. 3, pp. 217-234, 1974.

Newell, A. (1955), "The Chess Machine: An Example of Dealing with a Complex Task
by Adaptation", Proceedings Western Joint Computer Conference, pp.
101-108, 1955.

Nilsson, N. J. (1971), Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill, 1971.

Samuel, A. L (1959), "Some Studies in Machine Learning Using the Game of
Checkers", IBM Journal of Research and Development, Vol. 3, No. 3,
1959, pp. 210-229.

Samuel, A. L (1969), "Some Studies in Machine Learning Using the Game of
Checkers, II - Recent Progress", IBM Journal of Research and
Development, Nov. 1967, pp. 601-617.

Schoficld, P. D. A. (1967), "Complete Solution of the 'Eight-Puzzle'", in Machine
Intelligence 1, N. L Collins & D. Michie (Eds.), American Elsevier Publishing
Co., 1967.

Slate, D. J. and Atkin, L R. (1977), "CHESS 4.5 ~ The Northwestern University Chess
Program", in Chess Skill in Man and Machine. P. Prey (Ed,), Springer-Verlag,
1977.

 I. 'I "«MU
^ i

20

APPENDIX A - How to Generale Canonical Trees of Uniform Width

We here show how to generate canonical trees which are independent of the order of
search. We note that a tree can receive a unique name by specifying the range of
values at its root, the width (number of immediate successors at each node), and the
iteration number for a tree of this type. To find a unique name for each node in
such a tree, we note thai if we assign the name "0" to the root, and have the
immediate descendants of any node be named

(parentname*widlh+l^(parentname*width+2), -- (parentname*width^width)

then this proviJ.ä a unique naming scheme. Now if is sel'-evident that the bounds
on a node that has not yel been sprouted from must be a function of its position in
the tree (name) and the name of the tree. Thus, if we initialize | the random number
generator that assigns values to the immediate descandants of a, node as a function
of its o. :[,inal bounds, its name, the width, and the iteration number, then the
descendants of node "X" will look the same for all trees with the same initial
parameters, regardless of the order of search or whether a node is actually ever
expanded. The actual function we use to initialize the random, number
generator is (Parcntname+width)*(ite;'ationnumber+range). This avoids
initializing at zero since width and range are never zero. The bounds of the
parent node serve as bounds on the range of values that the random number
generator is allowed to produce.

