
O
CD

OS
Hi
©
<

ARPA ORDER NO. 2223

ISI/RR 78-71
August l'J78

v N*^

Susan L. Gerhart

Program Verification in the 1980s:

Problems, Perspectives,
and Opportunities

D O O

^ SEp 25 19T8

Ut.

. - •

I V/l ERSITY Of SOllHliRN CALIFORNIA mr INFORMATION SCIENCES INSTITUTE

4676 Adnmaliy Way/Marina del Rey I California 90291

(213)8221511

■■

 '— ■ ■ - ,

——— «im iwiiLmini ^m

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wh»n Dmlm Entered)

REPORT DOCUMENTATION PAGE
1 REPORT NUMBER 2 COVT ACCESSION NO.

«■■TITLE (

SI/RR-78-71
mnd'Subtltlm)

I
; Program Verification in the I98J0S:

Problems, Perspectives, and Opportunities .

7. AUTMORr»;

; I Susan L./Gerhart

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TyPE_OF REPORT.»je£Rlfla.Q.Q^RED

' 1 Research ^ f t
S. PERFORMING ORO. REPORT NUMBE«

0. CONTRACT OR GRANT NUMBERfiJ

9. PERFORMING ORGANIZATION NAME ANDt ADDRESS

USC/lnformation Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90291
ßON.TROLLINGOFFlCE NAME AND ADDRESS

letense Advanced Research Projects Agency z^//

1400 Wilson Blvd.
Arlington, VA 22209

i DAHC 15-72-C-0308; /\\-

10. PROGRAM ELEMENT. PROJECT, TASK
AREA i WORK UNIT NUMBERS

ARPA Order #2223

., .^O^OT "ATE ■

14. MONITORING AGENCY NAME a ADDRESSC/f d<»»r»n'from Controdln« O/fic;

NUMBF1« OT PAS«?

35
IS SECURITY CLASS, fo/ ihi» Teporl)

Unclassified/'/2

15a. DECLASSIFICAVfÖ»*/o
SCHEDULE

/
lOWHCRADlNG

16. DISTRIBUTION STATEMENT (ol thl. Report)

This document approved for public release and sale; distribution unlimited.

17. DISTR^UTION STATEMENT (el the .b.tr.c, entered ,n Block 30. II dlllernt Iron, Report)

IB. SUPPLEMENTARY NOTES

Also presented at the conference Oregon Report on Computing: Problems

of the 1980$, Portland, Oregon, March 1978.

"9 KEY WORDS (Continue on rever.e elde II n.c...«y end Identity by block number)

program proving, program testing, program verification, programming methodology,

software engineering

20 ABSTRACT (Continue on revere, elde II necee.fy -id Identity by block number)

Properties of programs can be mathematically proved. Th.s report concerns the u e of
such mathematical proofs as a means of verifying that programs satisfy the.r speaf.ca-
tions and other expectations of proper behavior. Moreover, the theory by means of
which programs are proved can be used in the formal reasoning needed oconitruct
and maintain programs. The primary current needs are: (I) expansion of the theory to
encompass more aspects of program correctness, (2) evolut.on of the theory S mathe-
mntird content and form to make it more effective in verifymg programs, and (cant.)

S

DD \ FANM73 1^73 COITION OF 1 NOV 65 IS OBSOLETE
S/N 010 2-0M-M01

UNCLASSIFIED

yo I I
SECURITY CLASSIFICATION OF THIS ^AOE (Whe* D,t, Mnl—*)

(

BEST
AVAILABLE COPY

;1~

i"W» |i.miH,ipwi|ip«« WWIIP w ipwiUJiiiwnnm«!

UNCLASSIFIED

V
SECURITY CLASSIFICATION Or THIS PAGEnWi»n D«(« gn^fd;

, ,20.

•vJfG) experimentation with new and current techniques for using the theory in verification
and construction, (4) development of human knowledge and skills to fulfill human roles
of specifying and guiding program proofs, (5) technological support to take over mech-
anical parts of the proofs and follow human guidance in elaborating them.
The needed breakthroughs toward the use of program proving as a normal programming
activity are: (I) a coherent connection with program testing, (2) evolution of the theory
to the point where significant amounts of new program proofs are adapted or reused from
previous proofs, (3) development of experimental methodology for effectively evaluating
various paradigms and techniques for program proving, (4) greatly increased mechanical
theorem proving capacity to reduce the burden on human verifiers, (5) large-scale
demonstrations or program proving to evaluate the validity of the activity and to stim-
ulate future research and development.

The ultimate effects of program verification are partly the intangibles of deeper under-
standing of programs and raising of standards to more closely approximate the theoretical
perfectibility of programs. More tangible effects are having formal reasoning methods
available throughout program construction (especially applied to software components)
and backed up by extensive formal proofs of final products where warranted. Proofs
are seen as a necessary complement to the experimental verification provided by testing.

UNf.ASSIFIED
SECURITY CLASSIFICATION OF THIS P AOEC^.n Dmlm Enltrmd)

 _ ! l|Wppiip||l|lpi*l|<NIW|ll"'l)IUWiHI.IIWII|ill I..JU (pM)|g_p|ppppp||p|ppni)ppiH||IJ||.l|ip|IJ|lf,|lP|lJW.unil

ARPA ORDER NO. 2223

m/RR-78-71
August 1978

Susa L. Gerhart

Program Verification in the 1980s:
Problems, Perspectives,

and Opportunities

INFORMATION SCIENCES INSTITUTE

UNIVERSITY OF SOUTHERN CALIFORNIA MI 4676 Adnmally Way I Marina del Key/Calif ornia 90291
(213) 822-15U

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15_72 C 0308, ARPA ORDER

NO 2223,

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF ARPA, THE US GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

jjtY*^--., ^ii . ^"fiiljiBiiMtfiiai

<mm mw**imm^^ wi*m i.M.»«,.i««,iu imwnm'.wiummtmmm

Hi

CONTENTS

Acknowledgments iv

Abstract v

1, IiitroducUon I

P.. Current Problems, Obstacles, and
Steps to Overcome Them 4

3. Needed Advances and Breakthroughs 14

4. Kf feels of I'V Solution/Breakthroughs
on Computing. In the 1980s 16

Appendix 19

lU-ferences 26

wmmiF]' m '^ munmmimmmmm!iMfm''m'lM --^^iwfw«^ip!pwiiwB«iPwwfPW«iSpiip»ii^^

IV

ACKNOWLEDGMENTS

The ISI

ftna! version. iiowcveT a„vTl'l ^ '"'*' '"" '" cr"lclzln« 'he

mank Brian Handcll for sending me the Tnrlng material.

i

ABSTRACT

Piopcrtlcs of programs can be mathematically proved. This report concerns
tlin u.sp of such mathematical proofs as a means of verifying that programs satisfy
their specifications and other expectations of proper behavior. Moreover, the
theorj by means of which programs are proved can bo used in the formal reasoning
nredrd to construct and maintain programs. The primary current needs are: (1)
expansion of the theory to encompass more aspects of program correctness, (2)
evolution of the theory's mathematical content and form to make it more effective
In verifyinf, programs, (3) experimentation with new and current techniques for
using the theory In verification and construction, (^1) df-velopment of human
knowledge and skills to fulfill human roles of specifying and guiding program
proofs, (6) technological support to take over mechanical parts of the proofs and
follow human guidance In elaborating them.

The needrd breakthroughs toward the uso of program proving as a normal
programming activity are: (1) a coherent connection with program testing, (2)
evolution of the theory to the point where significant amounts of new program
proofs are adapted or reused from previous proofs, (3) development of experimental
methodology for eflectivcly evaluating various paradigms and techniques for
program proving. (1) greatly increased mechanical theorem proving capacity to
reduce the burden on human verifiers, (5) large-scale demonstrations of program
proving to evaluate the validity of the activity and to stimulate future research
and development.

The ultimate effects of program verification are partly the Intangibles of
deeper understanding of programs and raising of standards to more closely
approximate the theoretical perfectibility of programs. More tangible effects are
having formal reasoning methods available throughout program construction
(especially applird to software components) and backed up by extensive formal
proofs of final products where warranted. Proofs are seen as a necessary
complement to the experimental verification provided by testing.

I

jiii iai ■■■■•> mm iumi» ii, ■iiji.mMip" .m,mwnr*mnm \ mi\imim\im

"It is of cnur.sc Important that some efforts bo made to verify the
correctness of assertions that are made about a routine. There are
cssenllaUy two types ol method available, the theoretical and the
fM-oi .mental. In the extreme form of the theoretical method a
u.iterlir.ht mathematical proof is provided for the assertion In the
r.\ (reme form of the experimental method the routine Is tried out on the
m.ichine with a variety of initial conditions and is pronounced fit If the
asscrlions hold in each case. Both methods have their weaknesses "
--Al.m lunnr.. circa 1960. Proiremmm' Handbook for the Manchester

I INTKODUCTION

H'foro lookinr. into the future of program verification it is worth
i-consulerinr. Turlnf.'s advice of nearly three decades ago. especially regarding the
w.Mkncsscs of the two extreme positions. The theoretical approach must deal with
t .r f.ict that very few mathematicians ever carry out a proof down to the last
d.-lail of axioms and rules of inference because the process is simply too exhausting
for both writer and reader and is still prone to error. (Unlike Turing we can
envision the possibility of mechanizing much of the detailed proof effort, although
this is one of the hardest problems of all.) The experimental approach must address
the question. »Jly what sound argument can you claim that the program will
satisfy the assertions when executed on data which was not part of the
rvpcrlmont. even if the program executed perfectly for all data within the
pxperiment?" The only possible answer is another mathematical argument
Surprisingly, there has been little real progress In either discovering or disproving

thr existence of such arguments.)

Given two flawed extreme approaches, what docs one do? In the Programmers'
fhvuhok for the Manchester Computer, Turing recommends the ever-popular, but
hnrd. 'desk checking-'-hand checking conscientiously while summarizing and
organizing via "check sheets." He also argues for having another programmer
complete, a reduced version of the check sheets and for deliberately forgetting the
purpose and method of a routine to avoid missing program errors due to
preconceived ideas. He counsels against making alterations In the middle of the
rou nc Without verifying that the earlier parts are unaffected, and recommends
r.v Plicitly checking by program that Input assumptions are satisfied. Turing claims
that most errors will bo found by such thorough checking, but also cites an
Pxamplc where the probability of selecting the right case to reveal a particular
PI ror was 2'»-1 o. It is also recommended that the state of the ,. achlne be described
by mathematical expressions, In oraor to convey the "theory of a routine " His

-^^mmmr-

?.

ovcr.ill approach mediates the two extremes: experimental in the use of carefully
selected actual data and theoretical in the use of human reasoning to meticulously
check for errors and to make assertions which display the underlying theory and
provide the guide for checking the program.

This quotation and summary are useful for starting to think about the future
of program verification for several reasons:

1. They show more common sense motivation, technique, and caution than
most modern textbooks or programmer handbooks, which view verification as
either testing or proving, or which don't discuss it at all.

?.. As in Turing's time, common sense tells us that taking any extreme
position is fraught with potential disaster. The most rational course is moderate,
combining the strengths and avoiding the weaknesses of the two methods. To
dr<iinatl7.c the point, consider your feelings upon stepping onto an aircraft piloted
by n completely computerized aircraft control system. How would you feel if told
thp .software had never been tested but had been thoroughly proved? Or that it had
licrn tf.ited according to the latest standards--say at least by executing every
M.itement and a wide variety of conjectured conditions—but never exposed to a
iii.iUiPinatical argument concerning untested conditions? Given the few current
dfiDonstrations of practical proving, we would probably feel safer about the latter.
Hut if we Investigate Jar enough to discover the inadequacy of the current theory
bi'hind testing and if we remember the surprises that continually follow upon the
release of "thoroughly tested" software, we should also have some misgivings
about testing alone. Most of us would rationally prefer that correctness had been
strongly argued for all data and had been fully demonstrated for considerable data.
We might alsc demand that the entire computer system—hardware, software, and
human operators—be justified in terms of probabilistic reliability arguments.

3. lUit for the sake of scientific study, we must choose one of the extreme
points and investigate it thoroughly in its separate context: develop its theoretical
basis-, explore a variety of paradigms and techniques for performing its associated
activities; subject these paradigms to experimental investigation to evaluate their
feasibility, practicality, and applicability to various types of problems; identify and
acquire the skills and tools for performing the experiments and eventually
pursuing the activity in practice; and identify, understand, and accept its overall
strengths and weaknesses.

The present discussion is meant to be followed in the light of common sense:
neither proving nor testing warrants full confidence as the only method of
program verification. Ultimately, the best course may be (1) some combination of
mathematical arguments with testing, (2) application of one or the other methods

' "— '

in rcco^nizjbly acceptable situations, or (3) perhaps the simultaneous performance
of the two activitir.s Independently hut In moderation. Before any of these threu
combinations can be properly Investigated, there must be a greater understanding
of program testing than currently exists; ideally we would like a real theory. This
further Justifies the study of program proving as not merely our only current way
to reason formally about programs but also as a stimulus to a theoretical basis for
trr.ling.

To summarize, in our context program verification (hereafter abbreviated as
TV) means mathematical proof of the consistency of the program with assertions
about It, the cxlemal assertions usually being called "specifications." The
definition emphasizes consistency, recognizing that specifications must separately
b«' related to the full demands of the user. However, we will follow current
tcrinlnologv in loosely referring to consistency as "correctness" and the associated
activity as "program proving." The current view of the goals of PV is to attain a
high degree of confidence that the program satisfies its specifications relative to
given semantics of and assumptions about the software, hardware, and user
environment and to the absence of errors in the verification process. Of course,
this is no certainty at all, the environment being almost impossible to describe
completely and the process being error-prone. The confidence comes from having a
theoretically sound and systematic method for arguing consistency, tools and skills
for carrying out the process, dedication of sufficient resources for its completion,
and various chocks lor errors during the process. Having all these stimulates the
improvement of the environment in both fact and description so as to reinforce the

confidence gained by formal reasoning.

TV has an important payoff besides verification. It takes a view of programs
.1. ninthematical objects and requires a theory about them. As we shall see, xhis
theory suggests that programs can bo classified and then studied by class, for
example by task or technique; shows that there may bo certain structures and
relations between those structures that generate a large range of programs
independent of their assigned task; rejects programs which are unduly disorganized
or which fail to display their underlying organization; and begins to explain the
complexity and difficulty of programming and to suggest ways of surmounting
those. In other words, TV demands a thorough and basic understanding of
programs, including language and design principles, that may ultimately strongly
influence their construction. Many researchers now view this theory as the
central reason for studying I'V, a view which will be emphasized in this report.

'nmmrmm -

'?. CUHRI NT PROBI I MS. ODSTACLES, AND STEPS TO OVERCOME THEM

Wr will explore two approaches to 1111(^51311(1111^, the current state of PV: (1)
Ail enumeration classified as theory, technique, people, and technology and (2) a
historical and psychological analysis which reveals sources of confusion, tension,
and conflict which block a clear view of what is happening and what should
h.ippen. Other surveys of program verification are [hondon77a,77c] and
[l,m:kham77].

The mathematical theory of programs is multilevel. A first level relates
.slatenient and declaration lanf.ua/'.e constructs to piedicates. All current
fonnalisnis look something like that popularized in [Dijkstra76] as the "predicate
ttansfornier" wlp(S.U), the "weakest liberal precondition for a state to satisfy in
01 ihr that the predicate 0 be satisfied for the state resulting from executing the
st.itiinrnt S." This gives I'JwlpCG.O) as the correctness theorem for a program G
with specifications V for input and 0 for output. A second level deals with the
expressions of the language, requiring some axiomatization of the data types of the
l.uiguage. A third Ir vel is the assertion language, which Is usually a superset of the
expression language. Cutting across all three levels is some language of logic,
including means lor expressing quantification, eqiality, implication, etc. For
rxamplc, denoting the predicate transformers for the conditional and assignment
statements iy

wlp(if 1) then S fi, 0)=(n a wlp(S,Q)) A (-B ^ 0)
wlp(V: = F., 0)-u[K substituted for free occurrences of V]

and letting t be a binary tree and S a stack,

wlp(if Hight(t)/nil then S:=PushStack(S.Hight(t)) fi,
KoNilNodesOnStack(S))=

=(lllght(t)/nil a NoNilNodesOnStackU-ushStack^RightU))))
A(Hight(t)=nll 3 NoNilNodesOnStack(S))

whore IMoNilNode.sOnStack(S) is some predicate defined for stacks.

These are the types of theorems, sometimes called verification conditions or verification
lemmas, that arc usually subjected to detailed proofs in current techniques.

Another level of theory deals with the way data types and statement level
theories should be organized to facilitate efficient theorem proving, which we will
discuss further under technology. Of course, any individual program proof also
requires the theory associated with its problem domain.

lhr.ro arc many technical Issues dealing with the theory. The kinds of
correctness which can be addressed ranflc from "partial correctness." which Ignores
t' >nation questions, through various decrees of termination. e.g., "cleanne'ss" in
not aborlln* on inexecutable operations and/or "nonlooplng." to inclusion of
Performance constraints. Current theories Iran toward partial correctness with the
question of nonloopinr. handled by bounded counters or well-ordered functions
Cleanness is addressed by treating the conditions for proper execution of operations
like the input spec.!,cations of functions. But exceptional conditions Including
e. lors. in user Input, other software components, and even hardware are aspects of
correctness that have yet to be adequately addressed.

Thmdical hohlem /. Theory must address requirements far wider than "partial
conectness, including recognition and handling of abnormal conditions.

This Is not simply a verification problem, since languages and methodology hav^
only recently considered it seriously. Correctness theory may be especially usefu.
in r.i.aranteeinr. robustness and handling exceptions, since it already formally
describes how properties are affected as they flow through the program, including
properties relating to exceptions. Steps in this direction are f Levin??] on exception
Handling. [Pratt??] on separating various nondeterministic termination issues
I-ampson??] with "legality assertions" for proper execution of expressions, and

l»ii7UKi7/]on checking array bounds.

Any good theory must have the qualities of "soundness." i.e.. that all theo,emS

are valid In the desired sense, and "completeness." i.e.. that all true and interesting
statements can be proved. For a correctness theory, the question is whether the
theory fully and accurately captures the semantics of the associated language In
this respect great progress has been niudo In developing a general theory of
semantics as the foundation for program proving [deBakker??] and in considerable
nformal experimentation with proof rules for various languages and individual

language constructs (HoareVa. London77b]. However, current languages have

complicated proof rules which are hard to justify semantlcally.

Theoretical Problem 2 Current theory must be stretched to include more features
Of real languages and, concurrently, languages must be designed which admit
reasonably simple and complete semantic descriptions.

Jovial Is addressed successfully in [Elspas??]. concurrent programming constructs
are aviomatlzed in fOwlcki?6]. pointers and records are handled In [Luckham76l
and microprograms of significant complexity are handled in [Carter??] New
languages with a full complement of necessary features are being developed in
conjunction with some degree of formalized semantics and goals of verifiability
[Ambler??. Lampson??, Liskov??. Wulf?6]. but there will be a gap for several

G

yi'.irs botwonn theory and current lanßua^es, e.g., PL/1, BLISS, etc. It is unlikely
tli.it this "clnan-up" operation n languages would have occurred as urgently
without the motivation and formalism of PV. However, it nay be that proving the
hmguagc-lndepcndent aspects of algorithms and data structures will achieve most
of the benefits of verification and that language-dependent questions may be
resolved by proving equivalence of programs or by relying on compiler-like
checks.

One of the der, -nd most diii.'cult parts of malhematics is mathematical
induction, which a lows reasoning about the structure and properties of
potentially infinite objects. Correctness theory started off with the notion of
"invtirianls," assertions that hold at every iteration of a loop. Another early
inductive form of argument was based on the "structure" of objects [BuTStall69]:
.1.,liming a properly for its components, the property was proved for an artiilrary
insUmce of a well-defined object. More recent variations are subgoal induction
| Mori is'//1. which reasons with invariants both forward and backward, and
intermittent assertions (MannaVO], which reason from one iteration of a loop to
sfuiio future, but not necessarily the next, iteration. 'Die question is whether it
m.ikt s any dilierenco which inductive method is chosen and, if so, when. As in
traditional mathematics, it is critically important to get the statement of the
throrcm exactly right for an induction argument, after which the argument
usually goes through smoothly.

T/icoiclient f'ich/rm 3: More insight is needed into the basic nature of inductive
at[iiiments in program proving, when to use which type of argument and hoxu to
fonnu/atc the inductive assertions.

Some work has been done on mechanical generation of inductive fr.sertions from
programs and from specifications (Wcgb/eitV'l], but the problem is so hard that
the.-.p approaches may work only in very simple instances. Anotl er approach is to
accumulate Inductive assertions during program derivations as they are made in a
specific context lor a specific purpose at a useful level of abstraction, rather than
all at the end.

The predicate calculus is not the most understandable language, either to
casual readers or fluent mathematicians.

T/ieotefical f'toh/rm 4: Ways must be found to improve the expressibi/ity and
undability of fotmc/isms. both at the semantic and at the assertion level.

The algebraic approach |GuUag76, Burstall77b] promises some alleviation by
orienting reasoning toward equalities. The key notion may be simply the right
notation for the concepts of interest.

Miilhcmatlcians never use a theory at Its axiomatic level for very lonf,.
In.stf.id, they develop general aiiH leiidinf, theorems wtiich express the important
properties of the concepts of the theory and which suggest new variations and
di-rivotives of Ihcso. Program provm/1, is currently like reading, the first chapter of
n ni.itheinatics tc.%t to find the axioms and basic definitions and then trying to do
tho hard exercises at the end of the book. Because the intermediate theory is
in I.'.sin/1,, each exercise requires building up intermediate concepts and techniques
or brute force applications of axioms.

Theoretical Problem 5.- The theory of programs based on correctness properties
mint evolve to higher levels of geneiality in both theorems and techniques.

An active area of theory building, at least at the axiomatic level for data structures,
is [CitillagVO], leading possibly to an overall theory of the structure of such
.ixiomatic theories (IJurstallVVb]. Further examples of this higher level theory
will be given shortly. While not yet highly visible, this type of theory is the key
to making I'M follow the successful route of mathematics, namely pursuit of
stimulating and general statements about the objects (here programs) of Interest.

Turning from theory to those techniques that use the theory for proving
programs, the basic question Is what theorems to prove. The current paradigm has
two disjoint phases: (1) to completely transform assertions into predicates
containing only expressions, not statements, from the program and then (2) to
prove these predicates. This paradigm, though conceptually simple, has numerous
practical difficulties: the generated predicates may lose all traces of structure from
tho program, thereby foiling attempts to find a proof of them based on reasoning
about the program; recovery from an error, no matter how minor, In either
program or assertions is almost impossible without a complete restart; and the
"calculus of programs" cannot bo brought into play. This calculus consists of
derived properties of predicate transformers, e.g.,

wlp(S,AAB)=wlp(S,A)Awlp(S,B),
(P'wlp(S,Q))=(sp(S>P)^Q),

whrre sp is a "strongest postcondition" transformer.
Thrr.p properties allow considerably more flexibility in organizing proofs and are
perfectly legal ways of proving programs, although excluded by the two-stage
paradigm.

It is also possible to prove concrete programs correct by virtue of their being
instances of more abstract programs. The appendix contains an iterative version of
a program schema that is proved to compute a recursive function, stated in terms of
abstract operations F, hO, hi, h2, h3, G, where only the definition of F and the
associativity of G arc known. This schema can be instantiated to variations of tree

8

traversal and perhaps to other functions. One proof at the schema level Is used for
two proofs at the concrete level with the further fiain that schema level proofs,
freed from the distraction of concrete operations, are easier to find and understand.

At another level are theorems which allow correctness to be transferred from
onr. pro-am to another without complete reproof of the second pro-am. A Context
I hoorvm informally says that the correctness of an entire program is equivalent to
IMovinn the correctness of every statement of the pro-am in a "context" which

nZnuL"*. Tr0n'CSl POSSiblC ^cconditio»" and "weakest necessary
IraZTZ t0 th0 SpCCiflCations ™* assertions in the rest of the

: ,' " . I T'0^ a 1<0I'laCemcnt Thco^ Which informally says that one
•s .. ment S can be replaced by another S' in a program G to give a program G' that
will be correct if G was correct and if S« is correct in the context of S wfthin G The

7 ^Tr.T,0'^ ^ ^nCra,,Zed and '^"y Proved, leaving just a residue
of P.oof related to the problem domain. These theorems lead to a paradigm for

wiTbe ^THTT ^ SUCCCSSiVe transferral al0^ - chain of replacements; it
M nrn is r . " f

th0
i

aPPCndiX- Thc "correctness-preserving transformation"
C rUrZ 1 Ä ' e y PUrSUCd ln' am0nR 0thCrS' tBa,zer76 Burstall77a.

l^r.^,1^,v,n,0lh>^^t,K^0rC^, SUrPOrlS thC USC 0f GhoSt (or Auxiliary) Variables
- art/ö], winch have no influence on the result of the program, but which are
"'" to express histories, used-up values, or missing abstractions. The theorem

s..y« that a program proved correct using these as regular program variables is still

c7 nti I r T VliriableS are deleted fr0m the Pr0ßram and ***** existentially
t'.. aTUOnS 0n thC PrOVCd Pr0firam- Schcnias often — an abstract

d. ta object fron, which some other value or data object is computed in an
1-^tant atlon of the schema, after which the abstraction is removed In the
apprndix example, the tree traversal computes a list of nodes of the tree upon
^ hlch a count is made. Only the count is of interest, so the nodclist is deleted.

'n'f:^7j''1'lr 'i rhJ tWOitagc Scnerate-an^prove venfication lemmas
at'tnoach muu be relaxed to admit natural higher level proof techniques and
pufnorcd p,ona,ns. The variant paradigms must becl/arly foZlad
fo, malty jusUfitd. and subjected to experimentation. formutatea.

iy/n,1qZ f'T!m K r,0,"nS morc Seneral tf,eorms red"<" overall proof

CU.r example illustrates these techniques and their problems. The data structure
.- .Mract.on methodology addresses these problems, but the full range of paradigms
and theorem power has not yet been reached.

n

TIMIC arc soinn pror.raniniin^, lanf.ua^cs which emphasize functions, e.g.,
l.ISl', but most Innguagcs favor iteration as the main form of looping and
st-quencing of statements as the main form of composition. Some experience shows
tli.it it is much cisior to prove properties about functions because they generate
modularity, discourage unnecessary sequencing by parallel evaluation of
mguments to function calls, and direct attention toward the objects being
computed. There is no loss in practice if the proved functions can bo translated to
ii'iation and the proofs can be transferred.

Ttcfmique Fioblem 3: Which is bitter, function or iteration representation of
piogtams? How can they be used interchangeably?

The argument for functions is given by [Manna77, Boyer75], while [Dijkstra76]
argues for Iteration.

Oiven the fallibility of programmers and provcrs, an interesting problem is

Tcclmique Problem 4: How much of a proof is still valid after certain types of
modifications to the piogram or to assertions?

The only work in this area so far is [MoriconiY?].

Constantly plaguing those who publish in PV and try to write proofs is

Technique Problem 5: How docs one present a pioof with sufficient structure
that remaining details can be filled in, but without so much detail that readers
an- oveiwhelmed?

[Wegbreityy] suggests various means of "justifying" proofs as normal program
additions and annotations.

I'rograms are created by people who should know enough about them to
create proofs. But this is not so when rigorous mathematical standards are applied,
or even when loose informal arguments are acceptable. Creating a proof requires
the ability to design notation that captures the basic concepts, knowledge of rules
of logic for sequencing steps of a proof, and an understanding of the axioms that
describe the objects of interest. A basic grounding in mathematical knowledge is
inescapable, but also necessary is the creative component which is not taught in
elementary math courses.

People Problem 1. Potential program provers must not only be taught
mathematical facts and techniques, but must also be led to develop their
manipulative skills and creative powers.

10

[I)ijk.sira74] presents an enlightening discussion of this problem.

Any now formalism or formal discipline is criticized as being an unnecessary
academicians' toy for which no practical use can be foreseen and which is just too
complicated for ordinary people to understand. BNF was probably seen in this
light, especially when followed by a flurry of papers about syntax and parsing.
Yet It is now widely accepted and taught without mystery, Its use having been
found and separated from the formalism which refined it.

/Vd/dV Problem ?: The rebellion against formalism and the excess of formalism
in eatly stages must be accepted as normal.

It m.iy take a while for people to accept the fact that "programming is a discipline

of a mathematical nature" [l)ijkslra74],

Programs can be proved without any type of mechanical support, just as
mathematicians have proved theorems for hundreds of years. But program proving
differs in that it requires many small and not always Interesting theorems. As
argued and Illustrated above, there are metatheorems which support interesting
proof techniques and general theorems which implicitly define interesting classes
of programs, but at the concrete level there are always many little problem domain
facts and tricky chains of reasoning needed to glue together a proof. Some
computer assistance is needed both in handling domains where people don't think
well (e.g., integer arithmetic and chains of inequalities) and in making sure every
step nf a proof is legitimate. Some initial capability in this area exists in present PV
sy.stems, but theio is no overall theory of how to handle either the large number of
disparate domains (basically one per program data type) or the extremely large
search space that can be generated in finding proof steps.

Technological Problem I: It appears necessary to find specific domains that are
highly useful in PV and concentrate on increasing potency within them. But an
overall theory of handling these domains is still needed.

Steps In the.-^e directions arc (Nelson77] with coordinated fast simplifiers,
(l,.iiikford77 | on the properties and use of rewrite rule systems, and [Boyer77b] on
the use of lemmas and induction generalization techniques.

As mentioned earlier, the generate-and-prove paradigm is conceptually clean
and the generate phase is easily implemented, provided the language semantics are
given and clean. But the paradigm fails in practice, and though newer ones are
known, they are not yet implemented.

11

Technological Ptoblcm 2: FV systems must be extended to permit use of the
"calculus of programs," transferral of correctness between programs, and
hierarchical development of programs.

Theory and Implomcntatlons of some of those Ideas appear In [Good77, Elspas77,
Mussor77, Gerhart76].

I'V systems arc systems In the true sense, containing the semantic analogs of
compilers in predicate transformers, multiple theorem provers working in
cooperation and possibly in parallel, input and output routines to manage data in
user terms, data bases of previously proved formulae, bookkeeping for the status of
proofs, etc. As such they suffer the usual trauma of complexity and bear the
additional burden that proofs must proceed interactively without confusing or
boring the user. Neither humans nor systems can manage the task of PV alone; the
effort must be cooperative and synergistic.

Technological Problem 3: PV systems must be made habitable before they can be
experimented with seriously, let alone be put into production use.

Of course, there is the fundamental dilemma: How do you know the verifier is
correct?

Technological Problem 4: PV systems must be constructed so clearly and so tuell
that their correctness can be accepted after sufficient periods of reliable usage.

ll.iving looked at various problems and steps regarding the theory,
techniques, people and technology of program proving, wo will now explore our
second approach. While not the type of pure scientific analysis we might like to
see in a paper on tho future of a scientific activity, the following historical and
psychological analysis is still important in determining the course of the field.
Hesnarchors are seldom as objective as they might like, but--as in everyday llfe--
find it hard to identify all the determinants of their actions. Understanding the
trends In human terms may make it possible to break out of ruts and make better
intermediate decisions about what problems to tackle next.

In the development of a theory , there is first a pre-theory stage where some
activity goes on guided only by intuition and common sense until someone
foinuilntcs axioms and rules of inference which provide the language and
reasoning mechanisms for discussing the activity and which generate the true
siatoments of interest. Next some useful and general theorems are proved from
which more specific, interesting theorems can be proved without recourse to the
axioms. Concurrently comes the development of proof techi ques that telescope
pi oof steps or systematize reasoning. Some time later key theorems are recognized,

__

\?.

.ind proofs hp^.i» to br or^nni^cd around certain similar themes that eventually
lii'conic standardised throughout education and research. Finally, some new
problrnis or insights generate doubts and major revisions.

Itdnted to this progression Is the way we view objects and the stylos of
manipulation performed upon them. First there is the concrete view and "b'.ind,"
ad hoc manipulation. Then certain patterns evolve which cover most situations
and lead to disciplines, still at the concrete level. With sufficient understanding of
patterns of manipulation and of similarity of structures comes the ability to
/V'nerallze from details and thus reach more abstract levels. As abstraction becomes
more widely appreciated. It comes to be used before details are considered, though
indecision, lack of clarity, and old habits of thought make its use inconsistent.
Fvnitually the emrrgence ol patterns of abstraction leads to disciplines and

ultimately to some standardization.

From yet another viewpoint, consider the way problems emerge and are dealt
with. Froblems may be recognized informally for a long time before the right
concepts and terms are found to describe them. Then comes the formalization of
former informal techniques as well as new techniques which follow logically
from the newly recognized concepts. These arc explored haphazardly until some
sit of critical questions can be posed and some experimental methodology
developed. With experimentation, strengths and weaknesses and areas of
applications are clarified. Somewhere along the line, techniques become useful
enough that dissemination occurs throughout and even outside of the research
community, Fvrntually, a few standard approaches emerge, but by then new
Problems are being recognized relative to old problems, the new solutions, or
externally generated new problems.

The overall cflect of these progressions is considerable confusion, tension,
frustration, and conflict. In the computer field, these are compounded by the
r.ipidity of developments and by economic and social pressures to provide nearly
instantaneous solutions to barely understood and grossly underestimated problems.
Consider some observations about the current problems of PV in the light of these
progressions:

1. In programming methodology, tl toward abstraction occurred at
almost the same time as the move towt le discipline. On the one hand,
people believed that sticking with thrct mental control structures would
solve many problems, while they were being told that abstraction (whatever that
was) was the way to manage complexity. There was the conflict between
discipline at one level and ad hocness at another. PV is at a similar transition stage:
some gain has been made at the concrete level, while abstraction promises much
more, at the temporary sacrifice of familiarity and some acquired discipline.

 A

13

P.. When trying to apply a new theory which exists only at the axiom level,
the pi.icticinf, provcr soon notices that many mathematical properties and
ttchiilques f,ot rediscovered or redone and that starting from scratch on every
piohlem Is cxcrucintinr.ly slow and painful, as well as stupid. But, if provnrs start
consciously developing, the theory in a systematic fashion, the amount of notation,
throrems, and techniques soon becomes disorganized and unmanageable (witness
the size and complexity of mathematics books). Furthermore, there are still so
ninny programs to be proved that each new one can find very little well organized
old material to le.m on. Our earlier analogy with proving the hard exercises at the
end of the book given only the first chapter encapsulates the dilemma of PV, which
only time and concentrated effort can cure. Notice that the above-mentioned
theorems arc really lormalizations of common Informal reasoning.

3. Hf>laled to the previous observation Is doubt about the ability to scale up
from the small and simple problems used to develop theory and techniques to the
me.s.sy real problems. At some point, a great deal of effort must be expended in just
this scaling up, forcing theory development and introducing new problems of size
and interaction complexity.

1. Continually disturbing is the "oversell/overbuy" phenomenon. The new
solutions look more promising than the old ones before there is adequate
recognition of the new problems that will accompany the new solutions. PV has
been accepted by large portions of the research world as a major theme for viewing
and attacking all kinds of problems. At least some significant portion of the
practicing programming world recognizes its existence and uses it in some diluted
form or is affected by such byproducts as newer and cleaner languages. But it'is
difficult to measure the value of these byproducts and attitude changes relative to
the ultimate (but as yet unachieved) goal.

'«. It takes a long time to develop adequate experimental methods to evaluate
various proposed solutions or paradigms, not to mention the time it takes to
perform the experiments. Consequently, the evaluations are hasty, unquantified,
and subjective. Therefore, there is always further doubt about validity and
usefulness which never has time to be either objectively dispelled or supported.
PV, as well as many other parts of computer science, lacks the experimental
methodology for conscientiously evaluating its competing methods and validating
its claims.

H. Technology for assisting manual techniques always lags far behind
because methods must be shown to have some theoretical validity and be somewhat
formalized before they can be incorporated Into languages which can then be
meshed with previous technology. Furthermore, it simply takes a long time to
dovt')p comfortable and reliable technological suppd i. This also goes along with

^— — -

14

tlir bottleneck of experimentation: In order to do any large scale experimentation,
technology is necessary, but it is difficult to know how to direct the technology
hi'fore usefulness has been demonstrated. In TV, the gap between methodology and
technology must be filled by languages, although some new paradigms may be
explored at the concrete level and with conventions for current languages.

7. One further complication is that as soon as some solution looks promising,
its earliest version is disseminated. Of course, this early version has difficulties
which cause frustrations and doubt; even if it gets mastered, ingrained habits and
inertia may cause improved methods to be rejected as they come along. The
invariant assertion method associated with full verification condition generation
on concrete programs has now been widely written up and is frequently taught.
While this conveys some of the fundamental ideas of PV, the inflexibility and
distasteful separation from program construction make it unduly difficult in
practice and misrepresent the difficulties of TV.

0. .Since everyone learned programming early in her (or his) computer
science career and usually got along well enough fc several years with that
amount of knowledge, there is reluctance to accept the unpleasant fact that there is
always so much more to learn, especially when it means breaking years of habit.
TV confronts programmers with their lack of understanding of programs and their
inability to express what they do understand. Sometimes the challenge is accepted
and proving is mastered, but sometimes the frustration at not understanding gets
displaced to proving rather than programming.

These eight points all relate to the compression of many stages of research and
development Into a very short period of time and to our basic human tendencies to
expect too much too soon for too little effort. While not "solvable" in any sense,
they can explain problems which must be endured without distraction from the
u 111 mate goals,

3. NEEDED ADVANCES AND BREAKTHROUGHS

Breakthrough I: A theory which unifies testing and proving or selects bettveen
them.

Since tiltimately verification will consist of some combination of testing and
proving, it would greatly help both camps to have better perspective. The
breakthrough will probably have to come from the testing end of verification,
because program proving researchers see their approach, which is based on a
rapidly developing mathematical theory, as more promising. The considerable
amount of research on sampling and probabilistic testing has neither convinced nor
Interested the program proving cOi.imunity. The cost of efforts in this direction

16

could bo small, since the breakthrough would most likely come from some
Ingenious twist on current r« ^jrch to yield the critical insight. Some unifying
steps are (Goodonough77, Howden77]. which emphasize errors and their relation to
both testing and proving. The important factor is that researchers be receptive to,
rather than at war with (or, even worse, ignoring) the other camp.

Ihcaktfnougfi 2: A significant increase in the power of mechanical theorem
provcrs.

Technological improvements in speed and capacity of computers will help, but the
real need is for a theory that unifies various strategies in such a way that small but
important domains can be well handled. This is one area where optimistic
projections for lull mastery of the typo of theorem proving we want today, namely
interactive guidance by user-supplied strategies through fully mechanized
subproofs, arc ten years, with full capabilities for finding proofs, although not
necessarily finding interesting theorems, in thirty years. There are really only two
schools of present theorem proving: the resolutionists, who haven't yet seriously
considered I'M applications, and the nonresolutionists [Bledsoe74], v ho have made
a major, but ad hoc, attack on PV-related problems. Considerably more research
funding could go to this area, but there arc not yet many researchers capable of, or
interested in, attacking such a hard, long-term problem. It requires a unique
combination of mathematical and programming depth of knowledge and
experience. A clean theory of mechanical theorem proving will require good
implementation to be effective, while good programming skills must be backed up
by sound theory and deep insight. However, mechanical theorem proving is not
necessary to achieve many of the benefits of program proving; it is necessary only
for the highest attainable degree of certainty,

fireakthrough 9: More than one large-scale demonstration of PV.

Kvcn as a combination of manual and mechanical proofs, such demonstrations
would command attention and give momentum to PV. Given the current state of
technology, skills, and basic knowledge, this seems possible with sufficient
dfdication of resources. The number of snags will probably be large, but these will
suggest many now and interesting research and development tasks. A failure can
be attributed either to basic flaws in the approach or to underestimation and
undercommitment of resources, either of which would still provide important
impetus in the direction of verification efforts. The costs are the dedication of
sufficient human and computer time and energy, perhaps at the expense of other
theoretical and practical developments.

fiieakthrough 4: Development of sound experimental methodology for evaluating
various PV paradigms.

__

16

Such methodology could clarify and speed up the evaluation of vague paradignis
This miitfit bo nothing more than the amount of real and computer time required to
push through a v.irioty of examples on an existing system, together with the
qu.intity of transfused knowledge and strategic direction provided by users.
Unfortunately, current systems are not powerful enough to handle multiple
p.ir.idigms, and cross-comparisons between systems would be difficult.
Nevertheless, even if the experiments cannot bo performed for lack of apparatus,
the formulation of the experiments and their limited manual application could be
v.iluable. The cost of such an effort would primarily be associated with some
coordinating body which selected paradigms, designed experiments, and evaluated
results from several projects.

fiteakt/trough 5. The accumulation of sufficient theoretical results to reach a
critical mass where new progiam proofs can reuse significant portions of
previous proofs.

I'logram proofs which start from scratch, as currently, will be prohibitively
expensive, If not completely unmanageable. The main problem is translating
current Informal knowledge about programs into theoretical terms and organizing
this nmss of knowledge so that it may bo studied and mechanically accessed. This
should accompany the normal growth of PV, but it may be possible sometime In the
next decade to seriously concentrate on this problem. Our confidence in PV arises
from this combination of widely accepted and used higher level theorems with
mechanized lower level proof checking, mediated by human creativity in
organizing proofs.

Breakthrough 6 The management of complexity of PV systems and the design
fot synergistic human-machine interaction.

The complexity problem exists for current systems which are nowhere near their
end goals. One system which works extremely well for users other than its
designers will show the direction for other PV systems. The sustained support of
present PV projects, which are well aware of this problem and headed in this
direction, should be sufficient, especially when more users gain access to the
Systems.

4. IIFFCTS OF PV SOI UTION/RREAKTHROUCHS
ON COMPUTING IN THE 1980s

The effects of PV must be separated into the tangibles and intangibles.

(Intangible) Effect I: The education of programmers can be vastly improved and
accelerated.

. ,

17

Those of us associated with education constantly sec the improving quantity and
quality of material taught in courses. For example, basic data structure material
that was unknown, in a systematic way, by Ph.D. graduates of the early 1970's is
now taught routinely to college freshmen. The impact of PV may be to sort out this
basic programming material, organize it more systematically, and present it more
coherently. Programs with invariant assertions are no more, and probably less,
mysterious than unasscrtcd. and often unspecified, programs. It is likely that the
tfxtbooks of the lJ)80s will routinely use program proving ideas without any
special fuss about verification. Then more people will be able to read and perform
proofs, thcrrby increasing the validity of PV. l.i light of the productivity
variations between programmers, simply teaching more programmers more
in -^ i lal shoul'i improve the overaU quality of programming.

(Intangible) Effect 2: The standards of quality in programs and programmers
should improve.

There can be little doubt that software quality has been low both because little
more was expected and because low quality was acceptable. PV makes very high
dmiands on the quality of programs and reveals deficiencies. If at least some
"perfect" programs, in every sense of their quality, can be produced and widely
disseminated, then perhaps the quest for perfection will be more broadly sought,
especially if perfection turns out to pay off. An example in this direction is the
Unix operating system, which has gained widespread use simply because it is clean,
comfortable, and reliable, if not all-purpose and fancy.

(Tangible) Effect 3: The construction and maintenance of programs will rely
guatly on formal reasoning, although not always formal proofs.

Program proving as pure verification separated from construction will probably
disappear. This may leave testing as the primary mode of verification, both as
confirmation and exhibition of program quality. If niaintenancc--that is, the
fixing of deficiencies as they are recognized plus the adjustment of function to
inret new demands—is as expensive as figures seem to indicate, then PV may pay
off most here. Even if proofs are not performed or are not reliable in the sense of
vt'iification, they dmiand that programs be fully specified and fully documented
in the form of assertions. Such assertions may guide a new form of maintenance,
i.r., systematic modification preserving correctness as stated in assertions. As
pointed out in [HalzerVS], it may be feasible to shift maintenance from the level of
concrete code up to appropriate abstract levels, reimplementing when modification
is necessary.

(Tangible) Effect 4: Significant sized programs will le proved, albeit at
considerable expense.

18

Wo will prob.ibly «JC sonir programs of hundreds of lines of code selected from real
npl'Hcations brinf. proved before 1980, For programs intended for wide
distribution and critical applications, the expense will be fully Justifiable and will
have to bo borne. The challenge will be to reduce the expense for full-scale proofs
and to appropriately compromise expense with uncertainty for sralcd-down proofs.

(TangtNi) Effect 5- Standardized components will be built and verified and
used.

The long-tenn goal of software engineering Includes the development of
off-thr-shelf components for many common tasks. This has required specification
ttchniques so that components can be selected and composed, verification
techniques so that the components can bo trusted, theory and experience to show
what should bo standardized, and adaptation techniques so that components can be
usfd In many ways in many environments. Theory and practice seom to be
riMching the point where this goal can be a reality.

Of course, the ultimate effect may be chaos or destruction. That we can
vorify software to a high degree of certainty docs not moan it will fit well into
human social and economic systems. One cannot help but fool the accelerating use
of computing systems: electronic fund transfer, maintenance of power facilities,
innnltoiing of real time systems, electronic mail, speech communication, home
computers for everyone's daily activities, hospital patient monitoring systems, data
bases, etc. While computer scientists cannot solve the issues involved with the
disparate uses of computer«, perhaps we should try to integrate our painful
experience with fallibility with the social and economic systems that will use our
results.

 .

 ■

19

I

Appendix

Example: Variations of Hinary Tree Traversal

Purpose« This example Is Intended to show an overall generality and variety of
techniques greater than commonly seen In the literature on program verification.
It emphasizes aspects of the correctness-based theory of programs described in the
p.ipor, specifically several types of theorems:

(1) Schemas (p.irtially Interpreted programs) for an Iterative version of a
special recursive function and the interpretation of this schema to the
more specific, but still generally described, task of preorder tree traversal,
lor the purpose of comparison with previous publications [London77a,
IUirstair/4]. the trees will be traversed to count the "tips" and the "leaves."

(P.) Several transformations which allow alteration of conditional statement
and loop structure.

(3) A "ghost variable" theorem which allows deletion of a variable used .n the
schema once it has been related to specific reasons for performing the
traversal.

Associated with these theorems are natural methods for proving programs:

(1) Hy Instantiation of proved Schemas to concrete programs

(P.) Ily transformation to transfer correctness, with little additional proof
effort, from one form to another one more desirable for non-correctness
r.-asons, say optimization or Implementation within a restricted set of
language constructs.

Those Hgher level methods all rely on the old, familiar invariant assertion
method, but partially shift its use to the schema and transformation level In
addition, by following this paradigm of Instantiational and transformational proof,
we arc able to conjecture some possible "laws" which govern the forms of
assertions.

Version I Schema for iterative version of a recursive function

I,r<t

F(x)=lf p(x)thenhO(x) else G(G(hl(x»,F(h2(x))), F(h3(x)))

!■ P,i||PPi.iWHili«W-IIW".

20

wfK-rc G is an associative operation with identity IG.
For case of reading, wc will write G as an infix operator, symbolized by •

F(x)=lf p(x)thrnhO(x) e^c hl(x) ® F(h?,(x))® F(h3(x))
An Iterative program for this function is

dnclarc S:Stjck (with the usual operations

Fii'hStack.ropStack.TopStack.CreateStack);
-riJlclare x: typo 1)1 with operations h2,h3 producing results of type Dl

and operations h 1 ,F producing results of type D2
and • an operation on type D2 producing a D2

Arc:=IG; x^x'; S:=CreateStack;
iQOU £5 F(x,)s Ace * F(x) • UnravelStack(S)
whi]c ^p(x) or S/CreateStack do
if ^p(x) then

Acc:= Ace® hl(x);

S:=rushStack(S,h3(x))i x:=h2(x)
rise

Ar.c:= Ace« h0(x);

x:=TopStack(S); S:=PopStack(S)

Ar;c:= Ace® h0(x);
a-sert F(x')=Acc

where UnraveKStack(S)=

if S^CrratcSlack th^n IG ei^c F .TopStack(S)) ® UnravelStack(PopStack(S))

The proof rule for the loop is
I^A, AA-B^Q, AAB{S}A

F(loop as A while B do S repeat}Q

The proof of this program is relatively easy using the standard Inductive assertion
method. Note that the only reasoning necessary or available for the proof is logic,
the associativity property of ® and "stack algebra" [Guttag76].

Version 2: Instantiation of the schema to tree traversal

Wow. assume type 1)1 is a binary tree of the usual form, either nil or containing left
and right subtrees, denoted Left(t) and Right(t), which are also trees. Let the type
112 be sfquences. denoted <...> with catenation denoted »D. in the above schema, F
on be instantiated to give a list of subtrees, either with or without nils, by
respectively

NodPs(t)= if t=nil then <> else <t> (B Nodes(Left(t)) P Nodes(Right(t))
or

Subtrees(t)= if t=nll then <nil> else <t> p. Subtrees(Left(t)) ^ Subtrees(Right(t))

—————

21

Here ® Is M, the catenation operator between sequences
hO(l) is <>, the empty sequence, for Nodes and <nil> for Subtrees
h 1 (l) is <t>. hP.(i) is Left(t), h3(t) is Right(t) for both Nodes and Subtrees

Therefore the following program computes Nodes
NodeList:=<>; t:=T; S:=CreateStack;
loop gs Nodns(T)« Nodel-ist I« Nodes(t) P> UnravelStack(S)
w)iile l/nil or S/CreateSlack do

(»•) comment statement to be added here;
if t/nil then

NodpList:= NodeList P <t>;
S:Bpu.shStack(StRight(t))i t:=Left(t)

else
C) NodcLisl:=NodeListP) <>;

t:=TopStack(S); S:=PopStack(S)
fi

repeat
(») NodpLisl: = NodeLlst fi <>;

.TvSfrt Nodr's(T)=NodeListj
The program for Subtrees differs only In the lines (*) as NodeList:=NodeLlst iß <nll>.

I'etslon 3: Inclusion of counting operations during traversal

Now suppose we want to traverse the tree in order to count something
about its subtrees, say

h Mr(t)= (t/nil)ALoft(t)=nllARight(t)=nll
or
tip(l)=(t=ni1)

Wc c.ni do so by inserting C:=0 before the loop and make line (■•), respectively
if t/iiilAl,cft(t)=nilAHight(t)=nil then C:=C+1 fi in the Nodes program
if t=inl then C^C+l U in the Subtrees program

and proving the additional loop assertions
C-Count(Nodel,isl)

where
Count(NodeList)=if NodeList=<> then 0

rise (iX q(I.,Tst(NodeLlst)) then 1 else 0) + Count(OtherThanLast(NodeLlst))
with q respectively leaf and tip. For q as leaf, this gives

Nodel,lst:-<>; t:=T; S:=CrcateStack;
C: = 0;
hiojp as Nodes(T)= NodeList fi Not'esCt) P> UnravelStack(S)

AC=Coiint(NodeLlst)
while Vnil or S/CreateStack do

if t/nilAi,eft(t)=nllAlhght(t)=nll then C:=C+1 fi;
if t/nil theji

—^——-—-^—

22

N(x]pList:= NodeLlslfo <l>;

S:sl'«shStack(S,Ill|{ht(t))| t:=Left(t)
cj NO

NodoList:=NodeLlst P <>;
t:=TopSt.ick(S); S:=PopStack(S)

repent
NodeLisl:= NodeLlst & <>;

assort Nodcs(T)=NodeLlst A C=Count(NodeLlst)

Version 4: Optimization of the leaf-counting version

Now wo will go through a long string of optimizing transformations.
First, wc move the counting operation Inside the if-then-else

Part of program to be replaced
r{ if IUAB2_thcnSl fi;

If H1 thrn S2 else S3 fi }Q
r=>

Replacing part
»'(JXBl then

if I?2 then S1 fi;
S2j

P1.so S3 fi

0)
Sufficient conditions for correctness preservation

whrn PABlABP^SOBl that is, SI docs not change Bl

because the t/nil is preserved over C:=C+1

Next, observe that, slacks usually being finitely implemented and therefore subject
to overflow, wc might want to avoid putting nil Right(t) on the stack, so we
introduce the statement if Hight(t)/nil then S:=PushStack(S,Right(t)) fi; using the
tr.insformation

l^SOO ==> r{jf BthonSl _fi}Q
when I'A^B a 0

In this transformation, the strongest precondition for SI, P, is
NodcsCDsNodnLlst1 P) Nodes(t) to UnravelStack(S)

AC^CountCWodoLlsl') A(t/nil or S;/CrcateStack)A(t/nil)
A(C= i£ 1-eft(t)--nil A Hight(t)=nil then C'+l else C)
ANodeList-NodeLlsf f>> <t>

U is Highl(l)=nll and 0, the weakest necessary postcondition, Is

HF ^

23

NodoS(T)=NodoLiSt p> Nodes{Left{t)) |B UnravelStack(S)
AC=Counl(NodpLJsl)

l^ ZTZt con(inion holds because NodeS(t)=<t> r. NodeS(Left(t)) ei

ZH f (t)) "^ N0dcs(H^ht^>=<>. This .llow. us to prove the additional

NoNilNodesOnStack(S)= (S=CreateStack or

TopStack(SVnilANoNilNodesOnStack(PopStack(S)))
r.l vinf, the result of all those transformations as

No(lrList:=<>; t:=T; S:=CroateStack;
C: = 0;

/nop 25 Nodcs(T)« NodoLlst *> Nodes(t) (D UnravelStack(S)
AC=Cniint(NodcList)

Al\JoNilNodcsOnStack(S)
üdbilS t/nil or S/CrealeStack dp

ilt/nilUirn

iri,r.ft(t)=iillAHifiht(t)=nilthcnC:=C+lfi;
NodoList:= NodeLisl ro <t>;

jf Hißht(t)/nilthcnS:=PushStack(S,Right(t))fi-
t: = 1.0ft(t)

Olsq

NodnI,ist:=NodeLlst P» <>;
t:=TopStack(S); S:=ropStack(S)

n
till Jli
NodpI,1sl:=NodcList fo <>j

•T^'II Nodcs(T)=NodeLlst AC=Count(NodGList)
Of course. NodoLlst is unnecessary in this program so, it can be deleted using
the Ghost Variable Theorem [Gcrhart78]

l:=T; S^CrejteStack;
C:=0;

loop 35 3 Nodcl.ist: (Nodes(T)= NodoLlst P NodeS(t) fi UnravelStack(S)
AC=COIK l^NodeLlsl)ANoNilNodesOnStack(S))

^jiL'c t/nil u ^/CrealeStack do
if t/nil thrn

ifLeft(t)=nnARight(t)=nllthenC:=C+lfi;
11 H'T.J'tCD/nil then S:=PushStack(S,Right(t)) fi;
t:=Left(t)

else

t!=TopStack(S)j S.=PopStack(S)
repeat

assert 3NodeLlsl (Nodes(T)=NodeList AC=Count(NodeList))
After proving the distributivity of Count over n, i.e.,

Count(arob)=Count(a)+Count(b), the assertions may be reworked to

--—"- 1

"mwv i mmmmimfmmmvi -i « — m

?A

Count(Nodes(T))=C + Count(NodCS(t)) + Count(UnravelStack(S))
and

C=Coiiiil(Nodcs(T))

nnd the Rhost variables arc all gone. Finally, there are many redundant tests
within the program, such as finding Lcft(t)=nil at the test before C:=C+1 making t
be I-c.fKt). then Unding t nil in the next loop traversal, and PopStackingRighUold
t) to become the new t. which can be shortened to t:=Right(t). Removing these
redundant tests by twisting around the paths of the program, proving that the
verification conditions for the new paths follow from those for the paths of the
previous programs, loaves the more efficient, but uglier,

t:=Ti S:=Crc.itcStack; C:=0;
II t/nil then

I,: gsscrt Count(Nodes(T))=C + Count(Nodes(t)) + Count(UnravelStack(S))
A t/nil ANoNilNodesOnStack(S);

|f Lof t(t)=nll then
jf Right(t)=nil then

C:=C+1;

if S=Cr(atcStack then goto Finish

£lsc t:=TopStack(S); S:=PopStack(S); gotoLfi
Hso t:=R1ght(t)| gotoL fi

else

il Right(t)/nil then S:=PushStack(S.t); t:=Left(t); goto L
£!££ t: = I,Pft(t); gotoL fi

Ü:
11:
Finish: assert Count(Nodes(T))=C!

Notice some of the characteristics of this program derivation:

(1) It is formally controlled. If a program gets into the wrong form, if an idea
occurs for a new and better form, or if there is simply a need to step up to
more complrx programs, then there U a bridge to systematically transfer
correctness from the old to the new form, which seldom requires much
now proof. However, the process is tedious and requires considerable
program rewriting.

i?.) The assertions have a clean structure which breaks into various parts:
Nodcs(T)=... the dominant clause, describing the goal of the

program

NoNilNodesOnStack(S)... a property which assisted a space
optimisation

C=Count(NodeList)... relates a concrete value C to an abstract value
NodoList

mmm1 m "' ' ri ^i—m-rr-—^--_j._j»u'SV...t" "^". i",,», ji, i ,IHII niMjinmRm^nn»

P.5

t/nil... a special condition picked up at the loop stan
From those, we can conjecture some possible "laws" of assertions:

(n) Ghost v.iriablcs represent missing abstractions,

(b) Assertion clauses may be classified as dominant, by association
with the least optimized abstract program, or optlmlzational, by
association with some property used for optimization,

(c) Assertion clauses may be proved one by one in some strategic
order,

(d) Many assertions have the form FinalResult=Current
...YelToIU'Done because they originate from functions.

(3) The versions 1 and 2 can be reused for other problems and other orders of tree
traversal may he modeled after this one. The price for this generality is that
the instantiated Schemas must be optimized. There is a tradeoff between
finding the optimizing transformations and the supporting assertion
increments and finding the fully optimized final program and the assertions
for it.

('I) There arc numerous questions about this approacht

(a) Are the laws valid? useful? (How do we decide this?)

(h) 1 low can the tedium of managing multiple versions be reduced?

(c) How hard is It to find Schemas? Are they worth the effort? What
Ifvel of abstraction provides the greatest payoff? For example, is
there a generalization of Version 1 from which tree traversal Is a
direct instantiation?

(d) How hard is it to maintain a catalog of Schemas and transformations?

mmwm "

Z6

REFERENCES

[Ambler??] Ambler, A. L., D. I. Good. J. C. Browne, W. F. Burger, R. M. Cohen.
CG. Hoch, and R E. Wells, "Gypsy: A language for specification and
Implementation of verifiable programs," Proceedings of an ACM Conference on
Language Design for Reliable Software, SICPLAN Notices, 12 (3), March 19??,
1-10.

[RalZer?G] Balzcr, K, N. Goldmin, and D. Wile, "On the transformational
implementation approach to programming," 2nd International Conference on
Software Engineering, October 1976.

[nicdsoo74] BledsoG, W. W. and P. Bruell, "A man-machine theorem-proving
system." Artificial Intelligence, 6(1), Spring 19?4, 61-?2.

[noyer?ö] Boyer. B. S., and J.S.Moore, "Proving theorems about Lisp functions,"
7. ^M. 2?. (D.January 19?5, 129-144.

[Boyer??] Beyer, B. S., and J S. Moore, "A lemma driven automatic theorem prover
for recursive function theory," Proceedings of the Uh International Joint
Conference on Artificial Intelligence, Boston, Massachusetts, August 19??
G11-Ö19.

[BurslallG9] Burslall, B.W., "Proving properties of programs by structural
Induction." r'.-Com/iurfryourrja/, 12(1). 1969,41-48.

[BurslaI174] Burstall. B.W.. "Program proving as hand simulation with a little
induction." Information Processing 74, Stockholm. Sweden. 19?4. 308-312.

[lUirstall??a] Burslall, B.W. and J. Darlington, "A transformation .ystem for
developing recursive programs."/. ^CM. 24(1). January 19??, 44-67.

[Burstall??b] Burslall. B., and J. Gogucn, "Putting theories together to make
specificallons." Proceedings of the Fifth International Joint Conference on
Artificial /"^//'^n«. Boston. Massachusetts. August 1977, 1045-1058.

{Carter??] Carter. W. C, II. A. Ellozy, W. H. Joyner, Jr., G. B. Leeman. Jr..
"Techniques for microprogram validation." IBM. T.J. Watson Besearch Center
Beport BC 6361.

.iijinj..iimiJjiPHJiM|Pj>>i*iiirwn«inpRp^fmini«jp^ —wivrr^^^mmm^mm

27

[dfHakkerVy] dpHnkkcr, J.W„ "Semantics and the foundations of program
proving." Infomation Processing 77, Toronto, Canada, August 1977, 279-284.

[nijkstra74] Dijkstra, E. W., "Programming as a discipline of a mathematical
n.ilurc," American Mathematical Monthly, Juno 1974, and Computers and People,
October lü/d.

[I>iJkstra7G] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, 1976.

[i;ispas77] Elspas, H., H. E. Shostak, and J.M.Spitzen, A verification system for
Jocit/J) programs (Rugged programming environment - RPEI2), Stanford
llfsearch Institute and Rome Air Development Center Technical Report
RAl)C-TR-77-229, June 19/7.

[Gerhart7G] Gerhnrt, S., "Proof theory of partial correctness verification systems,"
SI AM Journal of Computing, 6 (3), September 1976, 355-377.

[GerhartTa] Gcrhart, S., "Two proof techniques for transferral of program
correctness." (forthcoming).

[Good77] Good, 1). I., Constructing vcrifiably reliable and secure communications
processing systems, Institute for Computing Science and Computer Applications
Report ISCSA-CMP-6, The University of Texas at Austin, January 1977.

[Goodcnou|,,h77] Goodenough, J. and S. L. Gcrhart, "Toward a theory of testing:
d.ila solecllon criteria," in Current Trends in Programming Methodology, Vol. II,
Program Validation, R. T. Yeh (ed.), Prentice-Hall, 1977, 44-79.

[Gutlag7G] Guttag. J. V., E.Horowitz, and D. R. Musser, Abstract data types and
software validation. Information Sciences Insthute, ISI/RR-76-48, August
1076.

[IIoare73] Hoare, C. A. R., and N. Wlrth, "An axiomatic definition of the
programming language Pascal," Ada Informatica, 2 (4), 1973, 335-355.

[irowdpn76] Howden, W. E., "Reliability of the path analysis testing strategy,'
IEEE Transactions on Software Engineering, September 1976.

[I.ampson77] Lampson.B. W., J. J. Horning, R.L.London, J.G.Mitchell, and
G, J. Popck, "Report on the programming language Euclid," SIGPLAN Notices,
12(2), February 1977.

i. ■Jiiiuii.niii.iiiiiMllillllliliPpi

28

fI..inkford77] Lankford, D.S. and A. M. Ballantyne, Decision Procedures for Simple
I-.quational Theories with Commutative-associative Axioms: Complete Sets of
Commutative-associative Reductions, University of Texas Automatic Theorem
Vroving Project Report ATP-39, August 1977.

[Lcvin77] Levin. R., Program Structures for Exceptional Condition Handling, Ph.D.
thesis, Cajncf.ie-Mellon University, 1977.

[I.i.skov77] Llskov, B. H., A. Snyder. R. Atkinson, and C. Schaffert, "Abstraction
liicchanisms In Clu," Proceedings of an ACM Conference on Language Design for
Reliable Software, SIC PL AN Notices, 12 (3), March 1977, 166-178. Also
Comm. ACM, 20 (8). August 1977, 664-576.

[I,ondon77a] London. R. L., "Perspectives on program verification," in Current
Trends in Programming Methodology, Vol. II, Program Validation, R. T. Yeh (ed.),
Pientice-llall, 1977, 151-172.

[Loiidon77bl London. R. L., J. V. Guttag. J. J. Horning. B. W. Lampson,
J. G. Mitchell, and G. J. Popek, "Proof rules for the programming language
Luclid." AVa Informatica, 1978 (to appear).

[London77c] London. R. L.. "Program verification," in Research Directions in
Software Technology, Peter Wegner (ed.), (to appear).

[Luckham76.1 Luckham, D. C. and N. Suzuki, "Automatic program verification
V: Verification-oriented proof rules for arrays, records and pointers,"
Stanford University Artificial Intelligence Laboratory Memo AIM-278,
March 1976.

[Luckham77] Luckham, D. C, "Program verification and verification oriented
programming." Information Processing 77, Proceedings of IFIP Congress 77,
R. Gilchrist (ed.), North-Holland, 1977, 783-793.

[MannaTe] Manna, Z. and R. J. Waldingcr, "Is 'sometime' sometimes better than
'always'? Intermittent assertions In proving program correctness,"
Proceedings of the Second International Conference on Softtuare Engineering,
October 19/6, 32-39. Also Comm. /1C/W, 21, 2, February 1978.

[Manna77] Manna, Z. and R. Waldinger, "Synthesis: dreams => programs," SRI
InlcrnationalTechnicalNote 156. November 1977.

[Morlconl77] Moriconl, M., A system for incrementally designing and verifying
programs, Ph.D. thesis. University of Texas, Austin, November 1977. Also

29

1SI/KK-77-65 (Vol.1) and ISI/RR-77-66 (Vol.2), Information Sciences
Inslilule, November 1977.

[Morris??] Morris, J. H., Jr. and B. Wegbreit, "Subgoal induction," Comm. ACM, 20
(/l), April 1977, 209-.i22.

'! uisscr77] Musscr, D. R., "A data type verification system based on rewrite
rules," Sixth Texas Conference on Computing Systems, Austin, Texas, November

1977.

[Nclson78] Nelson, G. and D. C. Uppen, "A simplifier based on efficient decision
nir.orithms," Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages, Tucson, Arizona, January 1978.

[Owicki76] Owicki, S. S. and D. Gries, "Verifying properties of parallel
programs: An axiomatic approach," Comm. ACM 19 (5), May 1976, 279-285.

[PraU78] Pratt, V. and D. Harel, "Nondeterminism in logics of programs,"
Proceedings of the Fifth ACM Symposium on Principles of Programming

Languages, Tucson, Arizona, January 1978.

[Suzukl77] Suzuki, N. and K. Ishihata, "Implementation of an array bound
cliecker," Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Jauxiary 1977, 132-143.

[Wcgbreit74] Wegbreit, B., "The synthesis of loop predicates," Comm. ACM, 17 (5),
1974, 261-264.

[Wegbrcll77] Wogbreit, B., "Constructive methods in program verification," IEEE
Transactions on Software Engineering, SE-3 (3), May 1977, 193-209.

[Wiilf76] Wulf, W. A., R.L. London, and M.Shaw, "An introduction to the
construction and verification of Alphard programs," IEEE Transactions on
Software Engineering, SK-2 (4), December 1976, 263-265. See also
Carnegie-Mellon University and Information Sciences Institute Technical

Rpporls, 1976.

