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ABSTRACT

Properties of programs can be mathematically proved. This report concerns
the use of such mathematical proofs as a nieans of verifying that programs satisfy
their specifications and other expectations of proper behavior. Moreover, the
theory by means of vshich progranis are proved can be used in the formal reasoning
neceded to construct and maintain programs. The primary current needs are: (1)
expansion of the theory to cncompass more aspects of program correctness, (2)
evolution of the theory's mathematical content and form to make it more effective
in verifying programs, (3) experimentation with new and current techniques for
using the theory in verification and construction, (4) development of human
knowledge and skills to fulfill human roles of specifying and guiding program
proofs, (6) technological support to take over mechanical parts of the proofs and
follow human guidance in elaborating them.

The necded breakthroughs toward the use of pProgram proving as a normal
programming activity are: (1) a coherent connection with program testing, (2)
evolution of the theory to the point where significant amounts of new program
proofs are adapted or reused from previous proofs, (3) development of experimental
mecthodology for effectively evaluating various paradigms and techniques for
program proving, (4) greatly increased mechanical theorem proving capacity to
reduce the burden on human verifiers, (5) large-scale demonstrations of program
proving to evaluate the validity of the activity and to stimulate future research
ansd development.

The ultimate effects of program verification are partly the intangibles of
decper understanding of programs and raising of standards to more closely
approximate the theoretical perfectibility of programs. More tangible effects are
having formal reasoning methods available throughout program construction
(especially applied to software components) and backed up by extensive formal
proofs of final products where warranted. Proofs are seen as a necessary
complement to the experimental verification provided by testing.




"It is of course important that some efforts be made to verify the

correctness of assertions that are made about a routine, There are
cisentially two types of method available, the theoretical and the
experimental, In the extreme form of the theoretical method a
watertight mathematical proof is provided for the assertion. In the
extreme form of the experimental metho? the routine is tried out on the
machine with a variety of initial conditions and is pronounced fit if the
assertions hold in each case. Both methods have their weaknesses."
--Alan Turing, circa 1950, Programmers' Handbook for the Manchester
(.'mu[zurcr

I. INTRODUCTION

Before looking into the future of program verification it is worth
reconsidering Turing's ad vice of nearly three decades ago, especially regarding the
woeaknesses of the two extreme positions. The theoretical approack must deal with
the fact that very few mathematicians ever carry out a proof down to the last
detail of axioms and rules of inference because the process is simply too exhavusting
for both writer and reader and 1s still prone to error. (Unlike Turing, we can
envision the possibility of mechanizing much of the detailed proof effort, although
this is one of the hardest problems of all.) The experimental approach must address
the guestion, "By what sound argument can you claim that the program will
satisfy the assertions when executed on data which was not part of the
cxperiment, even if the program cxecuted perfectly for all data within the
oxperinient?” The only possible answer is another matheinatical argument,
(Surprisingly, there has been little real progress in either discovering or disproving
thie existence of such arguments,)

Given two flawed extreme approaches, what does one do? In the Programmers’
Handbook  for the Alanchester Computer, Turing recommends the ever-popular, but
hard, "desk checking"--hand checking conscientiously while summarizing and
organizing via "check sheets.” He also argues for having another programmer
complete a reduced version of the check sheets and for deliberately forgetting the
purpose and method of a routine to avoid missing program errors due to
preconceived ideas. e counsels against making altcrations in the middle nf the
routine without verifying that the earlier parts are unaffected, and recominends
explicitly checking by program that input assumptions are satisfied, Turing claims
that most errors will be found by such thorough checking, but also cites an
example where the probability of selecting the right case to reveal a particular
error was 2**-10, It is also recommended that the state of the ...achine be described
by mathematical eXPpressions, in oracr to convey the "theory of a routine." His
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overall approach mediates the two extremes: experimental in the use of carefully
svlected actual data and theoretical in the use of human reasoning to meticulously
chieck for errors and to make assertions which display the underlying theory and
provide the guidce for checking the program.

This quotation and summary are useful for starting to think about the future
of program verification for several reasons:

1. They show more common sense motivation, technique, and caution than
nost modern textbooks or programmer handbooks, which view verification as
either testing or proving, or which don't discuss it at all.

7. As in Turing's time, common sense tells us that taking any exireme
position is fraught with potential disaster. The most rational course is moderate,
combining the strengiths and avoiding the weaknesses of the two methods. To
dramatize the point, consider your feelings upon stepping onto an aircraft piloted
by a completely computerized aircraft control system. How would you feel if told
the software had never been tested but had been thoroughly proved? Or that it had
been tested according to the latest standards--say at least by executing every
statement and a wide variety of conjectured conditions--but never exposed to a
mathematical argument concerning untested conditions? Given the few current
demonstrations of practical proving, we would probably feel safer about the latter.
Bnt if we investigate far enough to discover the inadequacy of the current theory
behind testing and if we remember the surprises that continually follow upon the
release of “thoroughly tested” software, we should also have somme misgivings
about testing alone. Most of us would rationally prefer that correctness had been
strongly argued for all data and had been fully demonstrated for considerable data.
We might alsc demand that the entire computer system--hardware, software, and
human operators--be justified in terms of probabilistic reliability arguments.

3. But for the sake of scientific study, we must choose one of the extreme
points and investigate it thoroughly in its separate context: develop its theoretical
basis; explore a varicty of paradigms and techniques for performing its associated
activities; subject these paradigis to experimental investigation to evaluate their
feasibility, practicality, and applicability to various types of problems; identify and
acquire the skills and tools for performing the experiments and eventually
pursuing the activity in practice; and identify, understand, and accept its overall
strengths and weaknesses.

The present discussion is meant to be followed in the light of common sense:
neither proving nor testing warrants full confidence as the only method of
program verification. Ultimately, the best course may be (1) some combination of
mathematical arguments with testing, (2) application of one or the other methods
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in recognizably acceptable situations, or (3) perhaps the simultaneous performance
of the two activities fndependently but in moderation. Before any of these three
combinations can be properly investigated, there must be a greater understanding
of program testing than currently exists; ideally we would like a real theory. This
further justifies the study of program proving as not merely our only current way
to reason formally about programs but also as a stimulus to a theoretical basis for

testing,

To sunimarize, in our context program verification (hereafter abbreviated as
I'V) means mathematical proof of the consistency of the program with assertions
about {t, the cxternal assertions usually being called “specifications." The
definition emphasizes consistency, recognizing that specifications must separately
¢ related to the full demands of the user. llowever, we will follow current
teriminolosy in looscly referring to consistency as “correctness" and the associated
activity as “program proving." The current view of the goals of PV is to attain a
high degree of coufidence that the program satisfies its specifications relative to
given semantics of and assumptions about the software, hardware, and user
environment and to the absence of errors in the verification process. Of course,
this is no certainty at all, the environment being almost iinpossible to describe
completely and the process being error-prone. The confidence comes from having a
theoretically sound and systematic method for arguing consistency, tools and skills
for carrying out the process, dedication of sufficient resources for its completion,
and various checks for errors during the process. llaving all these stimulates the
improvement of the environment in both fact and description so as to reinforce the

confidence gained by formal reasoning,

'V bas an important payoff besides verification. It takes a view of programs
a5 matheniatical objects and requires a theory about them. As we shall see, this
theory sugsests that programs can be classified and then studied by class, for
example by task or technique; shows that there may be certain structures and
relations between these structures that generate a large range of programs
independent of their assigned task; reject. prograns which are unduly disorganized
or which fail to display their underlying organization; and begins to explain the
complexity and difficulty of programming and to suggest ways of surmnounting
these, In other words, I'V demands a thorough and basic understanding of
programs, including language and design principles, that may ultimately strongly
influence their construction, Mauny researchers now view this theory as the
central reason for stndying 'V, a view which will be emphasized in this report.



2. CURRENT PROBI FMS, OBSTACLES, AND STEPS TO OVERCOME THEM

We will explore two approaches to understanding, the current state of PV: (1)
an cenumeration classified as theory, technique, people, and technology and (2) a
historical and psychological analysis which reveals sources of confusion, tension,
aund counflict which block a clear view of what is happening and what should
happen,.  Other surveys of program verification are [London77a,77c] and
[Imckham77].

The mathematical theory of programs is multilevel, A first level relates
statement and declaration language constructs to predicates., All current
formalisms look something like that popularized in [Dijkstra76] as the "predicate
transformer” wip(s,0), the “"weakest liberal precondition for a state to satisfy in
order that the predicate Q be satisfied for the state resulting from executing the
statewent S This gives Powlp(G,Q) as the corvectness theorem for a program G
with specifications 1' for input and Q for output, A second level deals with the
cxpressions of the language, requiring some axiomatization of the data types of the
longuage. A third !revel is the assertion languagie, which is usually a superset of the
expression langtuage. Cutting across all three levels is some language of logic,
inclunding means for expressing quantification, eqaoality, implication, etc. For
example, denotingt the predicate transformers for the conditional and assignment
statements yy

wlip(if B then S fi, Q)=(B > wilp(S,Q))A (~B> Q)
wlp(V:=F, Q)=Q[E substituted for free occurrences of V]

and letting t be a binary tree and S a stack,

wlip(if Right(t)/nil then S:=PushStack(S,Right(t)) fi,
NoNilNodesOnStack(S))=
=(Right(1)/nil > NoNilNodesOnStack(PushStack(S,Right(t))))
A(Right(t)=nil > NoNilNodesOnStack(S))
where NoNilNodesOnStack(S) is some predicate defined for stacks.

These are the types of theorems, sometimes called veri fication conditions or verification
lemmas, that are usually subjected to detailed proofs in current techniques.

Another level of theory deals with the way data types and statement level
theories should be organized to facilitate efficient theorem proving, which we will
discuss further under technology. Of course, any individual program proof also
requires the theory associated with its problem domain.
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There are many technical issues dealing with the theory. The kinds of
correctness which can be addressed range from "partial correctness,” which ignores
terimination questions, through varicus degrees of termination, e.g., "cleanness" in
not aborting on inexecutable operations and/or "nonlooping," to inclusion of
performance constraints, Current theories lcan toward partial correctness with the
question of nonlooping handled by bounded counters or well-ordered functions.
Cleanness is addressed by treating the conditions for proper execution of operations
like the input specifications of functions, But exceptional conditions, including
errors, in user input, other sof tware components, and even hardware are aspects of
coriectness that have yet to be adequately addressed.

T'heoretical Problem |: Theory must address requirements far wider than "partial
correctness,” including recognition and handling of abnormal conditions.

This is not simply a verification problem, since languages and methodology have
only recently considered it seriously, Correctness theory may be especially usefu}
In guaranteeing robustness and handling exceptions, since it already formally
describes how properties are affected as they flow through the program, including
broperties relating to exceptions, Steps in thisdirection are [Levin??] on exception
handling, [Pratt77] on scparating various nondeterministic termination issues,

[Lampson77] with "legality assertions" for proper execution of expressions, and
[Suzuki??¢]on checking array bounds.

Any good theory must have the qualities of "soundness," i.e., that all theorems
are valid in the desired sense, and "completeness,” i.e., that all true and interesting
statements can be proved. For a correctness theory, the question is whether the
theory fully and accurately captures the semantics of the associated language. In
this respect great progress has been made in developing a general theory of
semantics as the foundation for Program proving [deBakker77] and in considerable
informal experimentation with proof rules for various languages and individual
languase constructs [Hoare73, London77b]. However, current languages have
complicated proof rules which are hard to justify semantically,

Theoretical Problem 2: Current theory must be stretched to include more features
of real languages and, concurrently, languages must be designed which admit
reasonably somple and complete semantic descriptions.

Jovial is addressed successfully in [E]spas??], concurrent programming constructs
are aviomatized in [Owicki76], pointers and records are handled 1n [Luckham76],
and microprograms of significant complexity are handled in [Carter??], New
languages with a full complement of necessary features are being developed in
conjunction with some degree of formalized semantics and goals of verifiability
[Ambler7, Lampson77, Liskov77?, Wulf76], but there will b- a gap for several
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yevars between theory and current languages, e.g., ’'L/1, BLISS, etc. It is unlikely
that this "cleau-up" operation 'n languages would have occurred as urgently
without the motivation and formalism of PV. However, it may be that proving the
longuage-indepeudent aspects of algorithms and data structures will achieve most
of the benefits of verification and that language-dependent questions may be
resolved by proving equivalence of programs or by relying on compiler-like
checks,

(e of the dee,  ~nd most dirt!cult parts of mathematics is mathematical
induction, which alows reasoning about the structure and properties of
potentially infinite objects. Correctness theory started off with the notion of
“Invariants,” asscrtions that hold at every iteration of a lvop. Another early
inductive form of argument was based on the "structure" of objects [ Burstall69]:
assuming a property for its components, the property was proved for an arbitrary
instance of a well-defined object. Mbnre recent variations are subgoal induction
[ Morvis77], which reasons with invariants both forward and backward, and
intermittent assertions | Manna76], which reason from omne iteration of a loop to
some future, but not necessarily the next, iteration. The question is whether it
makuvs any difference which inductive method is chosen and, if so, when. As in
traditional mathematics, it is critically important to get the statement of the
theorem exactly right for an induction argument, after which the argument
usually goes through smoothly.

Theoretical Problem 3: More insight is needed into the basic nature of inductive
arguments in program proving, when to use which type of argument and how to
formulate the inductive assertions.

Some work has been done on mechanical generation of inductive assertions from
programs and from specifications [ Wegtbreit74], but the problem is so hard that
these approaches may work only in very simple instances. Ancotler approach is to
accumulate inductive assertions during program derivations as they are made in a
specific context for a specific purpose at a useful level of abstraction, rather than

all at the end,.

The predicate calculus is not the most understandable language, either to
casual readers or fluent mathematicians,

Theovetical Problem 4: Ways must be found to improve the expressibility and
readability of formalisms. both at the semantic and at the assertion level.

The algebraic approach [Guttag76, Burstall77b] promises some alleviation by
orienting reasoning toward equalities. The key notion may be simply the right
notation for the councepts of interest,




Mathematicians never use a theory at its axiomatic level for very long.
Instead, they develop general an? leading theorems which express the important
properties of the concepts of the theory and which suggest new variations and
derivatives of these. Program proving is currently like reading the first chapter of
2 mathematics te..t to find the axioms and basic definitions and then trying to do
the hard exercises at the eud of the book. Because the intermediate theory is
niissing, each exercise requires building up intermediate concepts and techniques
or rute force applications of axioms.

T heoretical Problem 5 The theory of programs based on correctness propertics
must evolve to higher levels of generality in both theorems and techniques.

An active areca of theory building, at least at the axiomatic level for data structures,
is [Guttag76G ], leading possibly to an overall theory of the structure of such
axiomatic thicories [Burstall77b]. Further examples of this higher level theory
will he given shortly, While not yet highly visible, this type of theory is the key
to making I'V follow the successful route of mathematics, namely pursuit of
stimulating and general statermnents about the objects (here programs) of interest.

Turning from theory to those techniques that use the theory for proving
programs, the basic question is what theorems to prove. The current paradigm has
two disjoint phases: (1) to completely transform asscertions into predicates
containing only expressions, not statements, from the program and then (2) to
prove these predicates. This paradigm, though conceptually simple, has numerous
practical difficulties: the generated predicates may lose all traces of structure from
the program, thereby foiling attempts to find a proof of them based on reasoning
about the program; recovery from an error, no matter how minor, in either
progiranl or assertions is almost impossible without a complete restart; and the
"calculus of programs" cannot be brought into play. This calculus consists of
derived properties of predicate transformers, e.g.,

wIp(S,AAB)=wlp(S,A)Awlp(S,B),
(r>wip(5,Q))=(sp(S,P)>N),
where sp is a "strongiest postcondition"” transformer.
These properties allow considerably more flexibility in organizing proofs and are
perfectly legsal ways of proving programs, although excluded by the two-stage
paradigm,

It is also possible to prove concrete programs correct by virtue of their being
instances of niore abstract programs, The appendix contains an iterative version of
a program schema that is proved to compute arecursive function, stated in terms of
abstract operations ¥, hO, hil, h2, h3, G, where only the definition of F and the
associativity of G are known. This schema can be instantiated to variations of tree




traversal and perhaps to other functions. One proof at the schen.= level is used for
two proofs at the concrete level with the further gain that scheina level proofs,
freed from the distraction of concrete operations, are easier to find and understand,

At another level are theorems which allow correctness to be transferred from
one program to another without complete reproof of the second program. A Context
Theorem Iinformally says that the correctness of an entire program is equivalent to
proving the correctuness of every statement of the program in a "context" which
describes  its "stronglest  possible precondition” and "weakest necessary
postcondition" relative to the specifications and assertions in the rest of the
program, This supports a Replacement Theorem which informally says that one
statement S can be replaced by another S' in a profram G to give a program G' that
will be correct if G was correct and if S'is correct in the context of S within G. The
replacements can often be £eneralized and partially proved, leaving just a residue
of proof related to the problem domain. These theorems lead to a paradigm for
PTroving progrrams correct by successive transferral along a chain of replacements; it
will be illustrated in the appendix. The "correctness-preserving transformation"
pParvadigm is being actively pursued in, among others, [Balzer76 Burstall77a,
Gerhart7s].

Yet another theorem supports the use of Ghost (or Auxiliary) Variables
l(‘:r'rlmrt'/{i]. which have no influence on the result of the program, but which are
useful to express historics, used-up values, or missing ahstractions. The theorem
Says that a program proved correct using these as regular program variables is still
correct when the variables are deleted from the program and appcar existentially
quantified in the asscrtions on the proved program. Schemas often use an abstract
data olject from which some other value or data object is computed in an
instantiation of the schema, after which the abstraction is removed. In the
appeudix example, the tree traversal computes a list of nodes of the tree upon
which a count is made, Only the count is of interest, so the nodelist is deleted.

Technique Prodem 1: The two stage generate-and-prove verification lemmas
approach must be relaxed to admit natural higher level proof techniques and
preproved  programs. The variant paradigms must be cearly formulated,
fermally justifred, and subjected to experimentation,

Technique Problem 2. Proving more general theorems reduces overall proof
cf fort, but what are the useful theorems and what are the right levels for their
statements and proofs?

Our example illustrates these techniques and their problems, The data structure
alvitraction methodolosy addresses these problenis, but the full range of paradigims
and thcorem power has not yYct been reached.
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There are some programming languages which emphasize functions, e.g.,
LIS, but most languages favor iteration as the main form of looping and
sequencing of statements as the main form of composition. Some experience shows
that it is much easier to prove properties about functions because they generate
modularity, discourage unnccessary scquencing by parallel evaluation of
arguments to function calls, and direct attention toward the objects being
computed. There is no loss in practice if the proved functions can be translated to
fteration and the proofs can be transferred,

Techmique Problem 3: Which is better, function or iteration representation of
programs? How can they be used interchangeably?

The avpgument for functions is given by [Manna77, Boyer75], while [Dijkstra76]
argues for iteration.

Given the fallibility of programmers and provers, an interesting problem is

Technique Problem 4: How muckh of a proof is still valid after certain types of
modi frcations to the program or to assertions?

The only work in this area so far is [Moriconi77].
Constantly plaguing those who publish in PV and try to write proofs is

Technique Problem 5: How docs one present a proof with sufficient structure
that remaining details can be filled in, but without so much detail that readers
are ovcrwhelmed?

[Wegbreit?7] suggests various means of “"justifying" proofs as normal program
additions and annotations,

I'rogramms are created by people who should know enough about them to
create proofs. But this is not so when rigorous mathematical standards are applied,
or even when loose informal arguments are acceptable. Creating a proof requires
the ability to desipn notation that captures the basic concepts, knowledge of rules
of logic for sequencing steps of a proof, and an understanding of the axioms that
describe the objects of interest. A basic grounding in mathematical knowledge is
inescapable, but also necessary is the creative component which is not taught in
clementary math courses.

People Problem 1. Potential program provers must not only be taught
mathematical  facts and techniques, but must also be led to develop their
mani pulative skills and creative powers.
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[Dijkstra74] presents an enlightening discussion of this problem.

Any new formalism or formal discipline is criticized as being an unnecessary
academicians' toy for which no practical use can be foreseen and which is just too
complicated for ordinary people to understand. BNF was probably seen in this
ligtht, especially when followed by a flurry of papers about syntax and parsing.
Yet it is now widely accepted and taught without mystery, its use having been
found and separated from the formalism which refined it.

People Problem 2: The rebellion against formalism and the excess of formalism
in carly stages must be accepted as normal.

It mmay take a while for pcople to accept the fact that "programming is a discipline
of a mathematical nature" [Dijkstra74}].

I'rograms can be proved without any type of mechanical support, just as
mathermaticians have proved theorems for hundreds of years. But program proving
differs in that it requires many small and not always interesting theorems. As
argued and {llustrated above, there are metatheorems which support interesting
proof technigues and general theorems which implicitly define interesting classes
of programs, but at the concrete level there are always many little problem domain
facts and tricky chains of reasoning needed to glue together a proof, Some
computer assistauce is needed both in handling domains where people don't think
well (o.p., futeger arithmetic and chains of inequalities) and in making sure every
step of a proof is legitimate, Some initial capability in this area existsin present PV
systems, but theie is no overall theory of how to handle either the large nuinber of
disparate domains (basically one per program data type) or the extremely large
search space that can be generated in finding proof steps.

Technological Problem I: It appears necessary to find specific domains that are
highty useful in PV and concentrate on increasing potency within them. But an
ovcrall theory of handling these domains is still needed.

Steps in these directions are [Nelson77] with coordinated fast simplifiers,
[l.ankford”77] on the properties and use of rewrite rule systems, and [Boyer77b] on
the use of lemmas and induction generalization techniques.

As mentioned earlier, the generate-and-prove paradigm is conceptually clean
and the generate phase is easily implemented, provided the language semantics are
given and clean. But the paradigm fails in practice, and though newer ones are
kunown, they are not yet implemented.

]
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Technological Problem 2: PV systems must be extended to permit use of the
“calculus of frograms,” transferral of correctness between programs, and
hierarchical development of programs.

Theory and implementations of some of these ideas appear in [Good77, Elspas?7,
Musser?7, Gerhart76].

I'V systems are systems in the true sense, containing the semantic analogs of
compilers in predicate transformers, multiple theorem provers working in
cooperation and possibly in parallel, input and output routines to manage data in
nser terms, data bases of previously proved formulae, bookkeeping for the status of
proots, etc. As such they suffer the usual trauma of complexity and bear the
additional burden that proofs must proceed interactively without confusing or
boring, the user. Neither humans nor systems can manage the task of PV alone; the
effort must be cooperative and synergistic.

T'echnological Problem 3: PV systems must be made habitable before they can be
experimented with seriously, let alone be put into production use.

Of course, there is the fundamental dilemma: llow do you know the verifier is
correct?

T'echnological Problem 4: PV systems must be constructed so clearly and so well
that their correctness can be accepted after suf ficient periods of reliable usage.

ltaving looked at various problems and steps regarding the theory,
techniques, people and technology of program proving, we will now explore our
second approach. While not the type of pure scientific analysis we might like to
see iu a paper ou the future of a scientific activity, the following historical and
pnychological analysis is still important in determining the course of the field.
Rescarchers are seldom as objective as they might like, but--as in everyday life--
find it hard to identify all the determinants of their actions. Understanding the
trends in human terms may make it possible to break out of ruts and make better
intermediate decisions about what problems to tackle next.

Ii the development of a theory , there is first a pre-theory stage where some
activity goes ou guided only by intuition and common sense until someone
formnulates axioms and rules of inference which provide the language and
reasoning, mechanisms for discussing the activity and which generate the true
statements of interest. Next some useful and general theorems are proved from
which more specific, interesting theorems can be proved without recourse to the
axioms. Concurrently comes the development of proof techl:.ques that telescope
proof steps or systematize reasoning. Some time later key theorems are recognized,
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and proofs begin to be organized around certain similar themes that eventually
become standardized throughout education and research. Finally, some new
problems or insights generate doubts and major revisions.

Lielated to this progression is the way we view objects and the styles of
manipulation performed upon them. Yirst there is the concrete view and “bilind,"
ad hoc manipulation. Then certain patterns evolve which cover most situations
and lead to disciplines, still at the concrete level, With sufficient understanding of
patterns of manipulation and of similarity of structures comnes the ability to
feneralize from details and thus reach niore abstract levels. As abstraction becomes
more widely appreciated, it comes to be used before details are considered, though
indecision, lack of clarity, and old habits of thought make its use inconsistent,
Lventually the emergence of patterns of abstraction leads to disciplines and
ultimately to some standardization.

I'rom yet another viewpoint, consider the way problems emerge and are dealt
with. l'roblems mav be recognized informally for a long time before the right
concepts and terms are found to describe thein. Then coimnes the formalization of
former informal techniques as well as new techniques which follow logically
fiom the newly recognized concepts. Thesc are explored haphazardly until some
sot of critical questions can be posed and some experiniental methodology
developed,  With experimentation, strengths and weaknesses and areas of
applications are clarified. Somewhere along the line, technigues become useful
enough that disscmination occurs throughout and even outside of the research
community. Eventually, a few standard approaches emerge, but by then new
problems are being recognized relative to old problemns, the new solutions, or
cxternally generated new problems,

The overall effect of these progressions is considerable confusion, tension,
frustration, and conflict. 1n the computer field, these are compounded by the
rapidity of developments and by economic and social pressures to provide nearly
instantancous solutions to barely understood and grossly vnderestimated problems.
Consider some observations about the current problems of PV in the light of these

progiressions:

1. In programming methodology, t’ toward abstraction occurred at
almost the same time as the nove towse te discipline. On the one hand,
prople believed that sticking with threc mental control structures would

solve many problems, while they were being told that abstraction (whatever that
was) was the way to manage complexity. There was the conflict between
discipline at one lcvel and ad hocness at another. PV is at a similar transition stage:
some gain has teen made at the concrete level, while abstraction promises much
more, at the temporary sacrifice of familiarity and some acquired discipline.

d
4
i
1
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7. When trying to apply a new theory which exists only at the axiom level,
the practicing prover soon notices that many mathematical properties and
techniques get rediscovered or redone and that starting from scratch on every
problem is excruciatingly slow and painful, as well as stupid. But, if provers start
consciously developing the theory in a systematic fashion, the amount of notation,
theorems, and techuiques soon becomes disorganized and unmanageable (witness
the size and complexity of mathematics books). Furthermore, there are still so
lany programs to be proved that each new one can find very little well organized
old material to lean on. Our earlier analogy with proving the hard exercises at the
end of the book given only the first chapter encapsulates the dilemma of PV, which
only time and concentrated effort can cure. Notice that the above-mentioned
theorems are really formalizations of common informal reasoning.

3. Related to the previous observation is doubt about the ability to scale up
from the small and simple problems used to develop theory and techniques to the
messy real problems. At some point, a great deal of effort must be expended in Jjust
this scaling up, forcing theory development and introducing new problems of size
and interaction complexity.

4. Continually disturbing is the "oversell/overbuy" phenomenon. The new
solutions look wmore promising than the old ones before there is adequate
recognition of the new problems that will accompany the new solutions. PV has
been accepted by large portions of the research world as a major theme for viewing
and attacking all kinds of problems. At least some significant portion of the
practicing programming world recognizes its existence and uses it in some diluted
form or is affected by such byproducts as newer and cleaner languages. But it'is
difficult to measure the value of these byproducts and attitude changes relative to
the ultimate (but as yet unachieved) goal.

O. 1t takes a long tinie to develop adequate experimental methods to evaluate
various proposcd solutions or paradigms, not to mention the time it takes to
perform the experiments. Consequently, the evaluations are hasty, unquantified,
and subjective, Therefore, there is always further doubt about validity and
uscfulness which never has time to be either objectively dispelled or supported.
PV, as well as many other parts of computer science, lacks the experimental
methodology for conscientiously evaluating its competing methods and validating
its claims.

6. Technology for assisting manual techniques always lags far behind
because methods must be shown to have some theoretical validity and be somewhat
formalized before they can be incorporated into languages which can then be
meshed with previous technology. Furthermore, it simply takes a long time to
devr PHhp comifortable and reliable technological suppoit. This also goes along with
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the bottleneck of experimentation: in order to do any large scale experimentation,
technology is necessary, but it is difficult to know how to direct the technology
before usefulness has been demonstrated. In PV, the gap between methodology and
technology must be filled by languages, although some new paradigms may be
cxplored at the concrete level and with conventions for current languages.

7. One further complication is that as soon as some solution looks promising,
its carliest version is disseminated. Of course, this early version has difficulties
which cause frustrations and doubt; even if it gets mastered, ingrained habits and
inertia may cause improved methods to be rejected as they come along. The
invariant assertion method associated with full verification condition generation
on coucrete progirams has now been widely written up and is frequently taught.
While this conveys some of the fundamental ideas of PV, the inflexibility and
distasteful scparation from program construction make it unduly difficult in
practice and misrepresent the difficulties of PV,

8. Since everyone learned programming early in her (or his) computer
science career and usually got along well enough fou several years with that
amount of knowledge, there js reluctance to accept the unpleasant fact that there is
always so much more to learn, especially when it means breaking years of habit,
I'V confronts prograimmmers with their lack of understanding of programs and their
inability to express what they do understand. Sometimes the challenge is accepted
and proving is mastered, but sometimes the frustration at not understanding gets
displaced to proving rather than programming.

These eight points all relate to the compression of many stages of research and
development into a very short period of time and to our basic human tendencies to
expect too much too soon for too little effort. While not "solvable" in any sense,
they can explain problems which must be endured without distraction from the

ultimmate goals.
3. NEEDED ADVANCES AND BREAKTHROUGHS

Breakthrough 1: A theory which unifies testing and proving or selects between
them.

Since ultimately verification will consist of some combination of testing and
proving, it would greatly help both camps to have better perspective. The
breakthrough will probably have to come froimn the testing end of verification,
because program proving researchers sce their approach, which is based on a
rapidly developing mathematical theory, as more promising. The considerable
amouut of research on sampling and probabilistic testing has neither convinced nor
interested the program proving co.imunity. The cost of efforts in this direction
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could be small, since the breakthrough would most likely come from some
ingenious twist on current rescarch to yield the critical insight. Some unifying
steps are [Goodenough77, Howden77], which emphasize errors and their relation to
both testingt and proving. The important factor is that researchers be receptive to,
rather than at war with (or, even worse, ignoring) the other camp,

Brcakthrough 2: A significant increase in the power of mechanical theorem
provers,

Technological itmprovements in specd and capacity of computers will help, but the
real need is for a theory that unifies various strategies in such a way that small but
important domains can be well handled. This is one area where optimistic
projections for full mastery of the type of theorem proving we want today, namely
interactive guidance by user-supplied strategies through fully mechanized
snbproofs, are fen years, with full capabilities for finding proofs, although not
necessarily finding interesting theorems, in thirty years. There are really only two
schools of present theorem proving: the resolutionists, who haven't yet seriously
considered PV applications, and the nonresolutionists [ Bledsoe74], w ho have made
a major, but ad hoc, attack on PV-related problems. Considerably more research
funding could go to this area, but there are not yet many researchers capable of, or
interested in, attacking such a hard, long-term problem. It requires a unique
combination of nathematical and programming depth of knowledge and
experience. A clean theory of mechanical theorem proving will require good
implementation to be effective, while good programming skills must be backed up
by sound thcory and deep insight. However, mechanical theorem proving is not
necessary to achieve many of the benefits of program proving; it is necessary only
for the highest attainable degrec of certainty,

Dreakthrough 3: More than onc large-scale demonstration of PV.

LIl'ven as a combination of manual and mechanical proofs, such demonstrations
would command attention and give momentum to PV. Given the current state of
technologsty, skills, and basic knowledge, this scems possible with sufficient
dedication of resources. The number of snags will probably be large, but these will
sugrest many new and interesting research and development tasks. A failure can
be attributed either to basic flaws in the approach or to underestimation and
undercommitment of resources, either of which would still provide important
impetus in the direction of verification efforts. The costs are the dedication of
sufficient human and computer time and energy, perhaps at the expense of other
theoretical and practical developments,

Breakthrough 4: Development of sound experimental methodology for evaluating
various PV paradigms.
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Such methodology could clarify and speed up the evaluation of vaguc paradigms
This might be nothing more than the amount of real and computer time required to
push through a variety of examples on an existing systein, together with the
quantity of transfused knowledge and strategic direction provided by users.
Unfortunately, current systems are not powerful enough to handle multiple
paradigms, and cross-comparisons between systems would be difficult,
Nevertheless, even if the experiments cannot be performed for lack of apparatus,
the formulation of the experiments and their limited manual application could be
valnable. The cost of such an effort would primarily be associated with some
coordinating body which sclected paradigms, designed experiments, and evaluated

results from several projects.

Breakthrough 5: The accumulation of sufficient theoretical results to reach a
ritical mass where new program proofs can reuse significant portions of
frevious proofs.

Frogram proofs which start from scratch, as currently, will be prohibitively
cxpensive, if not completely unmanageable. The main problem is translating
current informal knowledge about programs into theoretical terms and organizing
this mass of knowledge so that it may be studied and mechanically accessed. This
should accompany the normal growth of PV, but it may be possible sometime in the
next decade to seriously concentrate on this problem. Our confidence in PV arises
from this combination of widely accepted and used higher level theorems with
mechanized lower level proof checking, mediated by human creativity in
organizing proofs.

Breakthrough 6: The management of complexity of PV systems and the design
for synergistic human-machine interaction.

The complexity problem exists for current systems which are nowhere near their
end goals. One system which works extremely well for users other than its
designers will show the direction for other PV systems., The sustained support of
present PV oprojects, which are well aware of this problein and headed in this
direction, should be sufficient, espccially when miore users gain access to the

systems,

4. FFFECTS OF PV SOLUTION/BREAKTHROUGHS
ON COMPUTING IN THE 1980s

The effects of 'V must be separated into the tangibles and intangibles.

(Intangible) E ffect I: The education of programmers can be vastly improved and
accelerated.
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Those of us associated with education constantly see the improving quantity and
quality of material taught {n courses. For example, basic data structure material
that was unknowi, in a systematic way, by Ph.D. graduates of the early 1970's is
now taught routinely to college freshmen. The fmpact of PV may be to sort out this
basic programming material, organize it more systematically, and present it more
coherently. Programs with invariant assertions are no more, and probably less,
mysterious than unasserted, and often unspecified, programs. 1t is likely that the
textbooks of the 1980s will routinely use program proving ideas without any
special fuss about verification, Then more people will be able to read and perform
proofs, thereby increasing the validity of PV. 1a light of the productivity
variations Lotween programmers, simply teaching more programmers more
m~tcrial shouli fmprove the overa'l quality of programming.

(Intangible) Effect 2: The standards of quality in programs and programmers
stiould im prove.

There can be little doubt that software quality has been low both because little
more was expected and because low quality was acceptable. PV makes very high
demands on the quality of programs and reveals deficiencies. If at least some
“perfect” programs, in every sense of their quality, can be produced and widely
disscminated, then perhaps the quest for perfection will be more broadly sought,
especially if perfection turns out to pay off. An example in this direction is the
Unix operating system, which has gained widespread use simply because it is clean,
comfortatle, and reliable, if not all-purpose and fancy.

(Tangible) Effect 3: The construction and maintenance of programs will rely
greatly on formal reasoning, although not always formal proofs.

Progiram proving as pure verification scparated from construction will probably
disappear. This may lcave testing as the primary mode of verification, both as
confirmation and exhibition of program quality. If maintenance--that is, the
fixing of deficiencics as they are recognized plus the adjustment of function to
meet new demands--is as expensive as figures seem to indicate, then PV may pay
off most here. Even if proofs are not performed or are not reliable in the sense of
verification, they demand that programs be fully specified and fully documented
in the form of asscrtions, Such assertions may guide a new form of maintenance,
i.c., systematic modification preserving correctness as stated in assertions. As
pointed out in [Balzer76], it may be feasible to shift maintenance from the level of
concrete code up to appropriate abstract levels, reimplementing when modification
is necessary.

(Tangible) Effect 4. Significant sized programs will be proved, albeit at
considerable expense.
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We will probably see some programs of hundreds of lines of code selected from real
applications being proved before 1980. For programs intended for wide
distribution and critical applications, the expense will be fully justifiable and will
have to be borne. The challenge will be to reduce the expense for full-scale proofs
and to appropriately compromise expense with uncertainty for scaled-down proofs.

(T'angible) Effect 5: Standardized components will be built and verified and
used.

The long-term goal of software engineering includes the development of
off-the-shelf components for many common tasks. This has required specification
techniques so that components can be selected and composed, verification
techiniques so that the components can be trusted, theory and experience to show
what should be standardized, and adaptation techniques so that components can be
used in many ways in many environments. Theory and practice seem to be
reaching the point where this goal can be a reality.

Of course, the ultimate effect may be chaos or destruction. That we can
verify software to a high degree of certainty does not mean it will fit well into
human social and econoniic systems. One cannot help but feel the accelerating use
of computing systems: electronic fund transfer, maintenance of power facilities,
monitoring of real time systens, clectronic mail, specech communication, home
computers for everyone's daily activities, hospital patient monitoring systems, data
bases, etc, While computer scientists cannot solve the issues involved with the
disparate uses of computers, perhaps we should try to integrate our painful
experience with fallibility with the social and economic systems that will use our
results,
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Appendix

lixample: Variations of Binary Tree Traversal

Purpose: This example fs intended to show an overall generality and variety of
techuiques greater than commonly seen in the literature on program verification,
It emphasizes aspects of the correctness-based theory of programs described in the
paper, specifically scveral types of theorems:

(1) Schemas (partially interpreted programs) for an iterative version of a
special recursive function and the interpretation of this schema to the
more specific, but still fcnerally described, task of preorder tree traversal.,
Vor the purpose of comparison with previous publications [London77a,
Burstall74], the trees will be traversed to count the "tips" and the "leaves."

(2) Several transformations which allow alteration of conditional statement
and loop structure,

(3) A "ghost variable” theorem which allows deletion of a variable used .n the
schema once it has been related to specific reasons for performing the
traversal,

Associated with these theorems are natural methods for proving programs:
(1) By instantiation of proved schemas to concrete programs

(2) By transformation to transfer correctness, with little additional proof
cffort, from one form to another one more desirable for non-correctness
reasons, say optimization or implementation within a restricted set of
language constructs.

These Figher 1ovel methods all rely on the old, familiar invariant assertion
method, but partially shift its use to the schema and transformation level. In
addition, by following this paradigm of {nstantiational and transformational proof,
we are able to conjecture some possible "laws" which govern the forms of
asscrtions,

Version I: Schema for iterative version of a recursive function

Let
F(x)= {f p(x) then hO(x) else G(G(h 1(x),F(h2(x))), F(h3(x)) )

. . =
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where G is an associative operation with identity IG,
For ease of reading, we will write G as an infix operator, symbolized by e
F(x)=if p(x) then hO(x) else h1(x) e F(h2(x)) e F(h3(x))
An iterative program for this function is
dreclare S:Stack (with the usual operations
P'ushStack,PopStack,TopStack,CreateStack );
declare x: type D1 with operations hZ,h3 producing results of type D1
and operations hi,F producing results of type D2
and ® an operation on type D2 producing a D2
Acc:=]1G; x:=x"; S:=CreateStack;
loop as F(x')= Acc ® F(x) ® UnravelStack(S)
Wwhile ~p(x) or S/CreateStack do
if ~p(x) then
Acc:= Acce h1(x);
S:=I'ushStack(S,h3(x)); x:=h2(x)
clse
Acc:= Acc ® hO(x);
x:=TopStack(S); S:=PopStack(S)
repeat;
Acc:= Acc @ hO(x);
assert F(x')=Acc
where UnravelStack(S)=
if S=CreateStack then IG ¢ise F TopStack(S)) e UnravelStack(PopStack(S))

The proof rule for the loop is
PoA, An~BoQ, AAB{S)A

P{loop as A while B do S repeat)}Q

The proof of this program is relatively easy using the standard inductive assertion
method. Note that the only reasoning necessary or available for the proof is logic,
the associativity property of @ and "stack algcbra" [Guttag76].

Version 2: Instantiation of the schema to tree traversal

Now, assume type D1 is a binary tree of the usual form, either nil or containing left
and rigtht subtrees, denoted Left(t) and Right(t), which are also trecs. Let the type
12 be scquences, denoted <...>» with catenation denoted ®. In the above schema, F
can be instantiated to give a list of subtrees, either with or without nils, by
respectively

Nodes(t)= if t=nil then <> else <t> ® Nodes(Left(t)) @ Nodes(Right(t))
or

Subtrees(t)= if t=nil then <nil> clse <t> ® Subtrees(Left(t)) ® Subtrees(Right(t))
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Here ® §s #, the catenation operator between sequences
hO(t) is <>, the empty sequence, for Nodes and <nil> for Subtrecs
h 1(1) is <t>, h2(1) is Left(t), h3(t) is Right(t) for both Nodes and Subtrees
Therefore the following program computes Nodes
Nodel.dst:=¢<)>; t:=T; S:=CreateStack;
1oop as Nodes('T')= Nodeliist ® Nodes(t) ® UnravelStack(S)
while t/nil or S/CreateStack do
(**) comment statement to be added here;
if t/nil then
NodeList:= NodeList ® <t)>;
S:=PushStack(S,Right(t)); t:=Left(t)
clse
(*) Nodclist:=NodcList ® <>;
t:=TopStack(S); S:=PopStack(S)
fi
repeat
(*) NodeList:=NodeList & <>;
assert Nodes('l')=NodeList;
The program for Subtrees differs only in the lines (*) as NodeList:=NodeList ® <nil>.

ersion 3: Inclusion of counting operations during traversal

Now suppose we want to traverse the tree in order to count something

about its subtrees, say
1eaf(t)= (t/nil)ALeft(t)=nilaRight(t)=nil

or
tip(t)= (t=nil)

We can do so by inserting C:=0 before the loop and make line (**), respectively
If t/nilaLeft(t)=nilARight(t)=nil then C:=C+1 fi in the Nodes program
if t=nilthen C:=C+1fi  in the Subtrees program

and proving the additional loop assertions

C=Count(Nodcl.ist)
where
Count(NodeList)=if NodcList=¢> then O
clse (if q(l.ast(NodeList)) then 1 else 0) + Count(OtherThanLast(NodeList))
with q respectively leaf and tip. For q as leaf, this gives
Nodellist:=<>; t:=T; S:=CrecateStack;
C:=0;
loop as Nodes('I')= Nodel.ist ® Noc s(t) ® UnravelStack(S)
AC=Connt(NodcList)
while t/nil or S/CreateStack do
if t/nilnLeft(t)=nilARight(t)=nil then C:=C+1 fi;
1f t/nil then
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Nodel.ist:= NodeList & <t);
S:=l'ushStack(S,Right(t)); t:=Left(t)
NodeList:=NodeList ® ¢);
t:=TopStack(S); S:=PopStack(S)

repeat

NodeList:= NodeList ® <);

assert Nodes('')=NodeList A C=Count(NodeList)

Version 4: Optimization of the leaf-counting version

Now we will go through a long string of optimizing transformations.
First, we move the counting operation inside the if-then-clse
Part of program to be replaced
P{if B1AB2 then S1 {fi;
il BY then S2 else S3 i }Q
=)

Replacing part
I'{ if B1 then
if B2 then S1 fi;
S2;
rlse 83 fi
Q)
Sufficient conditions for correctness preservation
when I'ABIAB2 (S1} B1 that is, S1 does not change B1

because the tynil is preserved over C:=C+1

Next, observe that, stacks usually being finitely implemented and therefore subject
to overflow, we might want to avoid putting nil Right(t) on the stack, so we
introduce the statement if Right(t)#nil then S:=PushStack(S,Right(t)) fi; using the
transformation
r {SI)O ==> P{if Bthen S1 £i)Q
when I'n~B o Q
In this transformation, the strongest precondition for St, P, is

Nodes('I)=Nodelist' & Nodes(t) @ UnravelStack(S)

AC'=Count(NodeList') A(t/nil or S#CreateStack)A(t#nil)

A(C= {if Left(t)=nil A Right(t)=nil then C'+1 else C')

ANodelist=Nodel.ist' @ <t>
B is Right(t)=nil and Q, the weakest necessary postcondition, is

T T ey g e —
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Nodes(T)=NodcList ® Nodes(Left(t)) ® Un ravelStack(S)
AC=Count(NodeList)
The enabling condition holds because Nodes(t)=<t) ® Nodes(Left(t)) ®
Nodes(Right(t)) and Nodes(Right(t))=<>. This allows us to prove the additional
invarjant
NoNjlNodesOnStack(S)= ( S=CreateStack or
TopStack(S);lnilANoNilNodCSOnStack(PopStack(S)) )
£iving the result of all these transformations as
Nodelist:=<>; t:=T; S:=CreateStack;
C:=0;
100p as Nodes(')= NodeList » Nodes(t) ® UnravelStack(S)
AC=Count(NodeList)
ANoNilNodesOnStack(s)
while t/nil or S/CreateStack do
if t7nil then
It Lefut)=ni1ARight(t)=nil then C:=C+1 fi;
Nodelist:= NodeList @ {1;
if Right(t)#nil then S:=PushStack(S,Right(t)) fi;
t:=l.eft(t)
else
Nodel.ist:=NodeList & <;
t:=TopStack(S); S:=PopStack(S)
fi
el at
Nodelist:=Nodel.ist @ <;
assert Nodes(T)=NodeList AC=Count(NodeList)
Of course, Nodel.ist js unnecessary in this program so, it can be deleted using
the Ghost Variable Theorem [Gerhart78] ,
t:=T; S:=CreateStack; .
C:=0; !
loop as 4 Nodel.ist: ( Nodes(T)= NodeList @ Nodes(t) ® UnravelStack(S)
AC=Cour t{NodeList) ANoNilNodesOnStack(S) ) _
Wwhile t7nil .: 5/CreateStack do '-
if Lefu(t)=nilARight(t)=nil then C:=C+1 fi;
if Right(t)#nil then S:zPushStack(S,Right(t)) fi;
t:=Left(t)
else
t:=TopStack(S); S:=PopStack(s)
Iepeat
assert ANodeList (Nodes(T)=NodeList AC=Count(NodeList))
After proving the distributivity of Count over , 1i.e.,
Count(afob)=Count(a)+Count(b), the assertions may be reworked to
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Count(Nodoes(1'))=C + Count(Nodes(t)) + Count(UnravelStack(S))
and
C=Count(Nodes('T))
and the ghost variables are all gone. Finally, there are many redundant tests
within the program, such as finding Left(t)=nil at the test before C:=C+1, making t
be Lefi(t), then finding t nil in the next loop traversal, and PopStacking Right(old
t) to become the new t, which can be shortened to t:=Right(t). Removing these
redundant tests by twisting around the paths of the program, proving that the
verification conditions for the new paths follow from those for the paths of the
previous programs, leaves the more efficient, but uglier,
t:=T; S:=CreateStack; C:=0;
if t/nil then
L: assert Count(Nodes(T))=C + Count(Nodes(t)) + Count(UnravelStack(S))
A t/nil ANoNilNodesOnStack(S);
if Left(t)=nil then
if Right(t)=nil then
C:=C+1;
if S=CrcateStack then £oto Finish
¢lse t:=TopStack(S); S:=PopStack(S); gotoL fi
clse t:=Right(t); gotoL fi
if Right(t)/nil then S:=PushStack(S,t); t:=Left(t); Eoto L
Clse t:=left(t); gotoL fi
{i;
fi;
Finish: assert Count(Nodes(T))=C;

Notice some of the characteristics of this program derivation:

(1) It is formally controlled. If a program gets into the wrong form, if an idea
occurs for a new and better form, or if there is simply a need to step up to
more complex programs, then there is a bridge to systematically transfer
correctness from the old to the new form, which scldom requires much
liew proof. However, the process is tedious and requires considerable
program rewriting.

(2) The assertions have a clean structure which breaks into various parts:

Nodes(T)=... the dominant clause, describing the goal of the
Program

NoNilNodesOnStack(s) ... a property which assisted a space
optimization

C=Count(NodeList)... relates a concrete value C to an abstract value
NodeList

lI
|
|
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t/nil... aspecial eondition picked up at the loop star.
Frowm these, we can eon jeeture some possible "laws" of assertions:

(a) Ghost variables represent missing abstractions,

(b) Assertion clauses may be classified as dominant, by association
with the least optimized abstract program, or optimizational, by
association with some property used for optimization,

(c) Asscrtion clauses may be proved one by one in some strategie
ordcer,

(d) Many  assertions have the form  FinalResult=Current
...YetToBeDone because they originate from funetions.

(3) The versions 1 and 2 can be reused for other problems and other orders of tree
traversal may be modeled after this one, The price for this generality is that
the instantioted schemas must be optimized. There is a tradeoff between
finding the optimizing transformations and the supporting assertion

increments and finding the fully optimized final program and the assertions
for it,

(4) There are numerous questions about this approach:
(a) Are the laws valid? uscful? (How do we decide this?)
(b) lMow can the tedium of managing multiple versions be redueed ?
(c) How hard is it to find schemas? Are they worth the effort? What
lIervel of abstraction provides the greatest payoff? For example, is
there a generalization of Version 1 from whieh tree traversal is a

direct instantiation?

(d) How hard is it to maintain a eatalog of schemas and transtormations?

T P ———
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