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ABSTRACT 

Piopcrtlcs of programs can be mathematically proved.  This report concerns 
tlin u.sp of such mathematical proofs as a means of verifying that programs satisfy 
their specifications and other expectations of proper behavior.   Moreover, the 
theorj by means of which programs are proved can bo used in the formal reasoning 
nredrd to construct and maintain programs.  The primary current needs are: (1) 
expansion of the theory to encompass more aspects of program correctness, (2) 
evolution of the theory's mathematical content and form to make it more effective 
In verifyinf, programs, (3) experimentation with new and current techniques for 
using  the theory  In   verification  and construction, (^1) df-velopment of human 
knowledge and skills to fulfill human roles of specifying and guiding program 
proofs, (6) technological support to take over mechanical parts of the proofs and 
follow human guidance In elaborating them. 

The needrd breakthroughs toward the uso of program proving as a normal 
programming activity are: (1) a coherent connection with program testing, (2) 
evolution of the theory to the point where significant amounts of new program 
proofs are adapted or reused from previous proofs, (3) development of experimental 
methodology for eflectivcly evaluating various paradigms and techniques for 
program proving. (1) greatly increased mechanical theorem proving capacity to 
reduce the burden on human verifiers, (5) large-scale demonstrations of program 
proving to evaluate the validity of the activity and to stimulate future research 
and development. 

The ultimate effects of program verification are partly the Intangibles of 
deeper understanding of programs and raising of standards to more closely 
approximate the theoretical perfectibility of programs. More tangible effects are 
having formal reasoning methods available throughout program construction 
(especially applird to software components) and backed up by extensive formal 
proofs of final products where warranted. Proofs are seen as a necessary 
complement to the experimental verification provided by testing. 

I 
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"It is of cnur.sc Important that some efforts bo made to verify the 
correctness of assertions that are made about a routine. There are 
cssenllaUy two types ol method available, the theoretical and the 
fM-oi .mental. In the extreme form of the theoretical method a 
u.iterlir.ht mathematical proof is provided for the assertion In the 
r.\ (reme form of the experimental method the routine Is tried out on the 
m.ichine with a variety of initial conditions and is pronounced fit If the 
asscrlions hold in each case. Both methods have their weaknesses " 
--Al.m   lunnr..  circa   1960. Proiremmm' Handbook   for the  Manchester 

I    INTKODUCTION 

H'foro   lookinr.   into   the   future   of   program   verification   it   is   worth 
i-consulerinr. Turlnf.'s advice of nearly three decades ago. especially regarding the 
w.Mkncsscs of the two extreme positions. The theoretical approach must deal with 
t .r f.ict that very few mathematicians ever carry out a proof down to the last 
d.-lail of axioms and rules of inference because the process is simply too exhausting 
for both  writer and reader and is still prone to error.   (Unlike Turing   we can 
envision the possibility of mechanizing much of the detailed proof effort, although 
this is one of the hardest problems of all.) The experimental approach must address 
the question. »Jly  what sound argument can you claim that the program will 
satisfy   the   assertions   when   executed   on   data   which   was   not   part   of   the 
rvpcrlmont.  even   if   the  program  executed  perfectly  for  all  data  within  the 
pxperiment?"   The   only   possible   answer   is  another   mathematical   argument 
Surprisingly, there has been little real progress In either discovering or disproving 

thr existence of such arguments.) 

Given two flawed extreme approaches, what docs one do? In the Programmers' 
fhvuhok  for the Manchester Computer, Turing recommends the ever-popular, but 
hnrd.   'desk checking-'-hand checking conscientiously while summarizing and 
organizing  via "check sheets." He also argues for having another programmer 
complete, a reduced version of the check sheets and for deliberately forgetting the 
purpose   and   method   of   a   routine   to   avoid   missing   program   errors   due   to 
preconceived ideas.   He counsels against making alterations In the middle of the 
rou   nc Without verifying that the earlier parts are unaffected, and recommends 
r.v Plicitly checking by program that Input assumptions are satisfied. Turing claims 
that  most errors will bo found by such thorough checking, but also cites an 
Pxamplc where the probability of selecting the right case to reveal a particular 
PI ror was 2'»-1 o. It is also recommended that the state of the ,. achlne be described 
by mathematical expressions, In oraor to convey the "theory of a routine " His 
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ovcr.ill approach mediates the two extremes: experimental in the use of carefully 
selected actual data and theoretical in the use of human reasoning to meticulously 
check for errors and to make assertions which display the underlying theory and 
provide the guide for checking the program. 

This quotation and summary are useful for starting to think about the future 
of program verification for several reasons: 

1. They show more common sense motivation, technique, and caution than 
most modern textbooks or programmer handbooks, which view verification as 
either testing or proving, or which don't discuss it at all. 

?.. As in Turing's time, common sense tells us that taking any extreme 
position is fraught with potential disaster. The most rational course is moderate, 
combining the strengths and avoiding the weaknesses of the two methods. To 
dr<iinatl7.c the point, consider your feelings upon stepping onto an aircraft piloted 
by n completely computerized aircraft control system. How would you feel if told 
thp .software had never been tested but had been thoroughly proved? Or that it had 
licrn tf.ited according to the latest standards--say at least by executing every 
M.itement and a wide variety of conjectured conditions—but never exposed to a 
iii.iUiPinatical argument concerning untested conditions? Given the few current 
dfiDonstrations of practical proving, we would probably feel safer about the latter. 
Hut if we Investigate Jar enough to discover the inadequacy of the current theory 
bi'hind testing and if we remember the surprises that continually follow upon the 
release of "thoroughly tested" software, we should also have some misgivings 
about testing alone. Most of us would rationally prefer that correctness had been 
strongly argued for all data and had been fully demonstrated for considerable data. 
We might alsc demand that the entire computer system—hardware, software, and 
human operators—be justified in terms of probabilistic reliability arguments. 

3. lUit for the sake of scientific study, we must choose one of the extreme 
points and investigate it thoroughly in its separate context: develop its theoretical 
basis-, explore a variety of paradigms and techniques for performing its associated 
activities; subject these paradigms to experimental investigation to evaluate their 
feasibility, practicality, and applicability to various types of problems; identify and 
acquire the skills and tools for performing the experiments and eventually 
pursuing the activity in practice; and identify, understand, and accept its overall 
strengths and weaknesses. 

The present discussion is meant to be followed in the light of common sense: 
neither proving nor testing warrants full confidence as the only method of 
program verification. Ultimately, the best course may be (1) some combination of 
mathematical arguments with testing, (2) application of one or the other methods 
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in rcco^nizjbly acceptable situations, or (3) perhaps the simultaneous performance 
of the two activitir.s Independently hut In moderation. Before any of these threu 
combinations can be properly Investigated, there must be a greater understanding 
of program testing than currently exists; ideally we would like a real theory. This 
further Justifies the study of program proving as not merely our only current way 
to reason formally about programs but also as a stimulus to a theoretical basis for 
trr.ling. 

To summarize, in our context program verification (hereafter abbreviated as 
TV) means mathematical proof of the consistency of the program with assertions 
about It, the cxlemal assertions usually being called "specifications." The 
definition emphasizes consistency, recognizing that specifications must separately 
b«' related to the full demands of the user. However, we will follow current 
tcrinlnologv in loosely referring to consistency as "correctness" and the associated 
activity as "program proving." The current view of the goals of PV is to attain a 
high degree of confidence that the program satisfies its specifications relative to 
given semantics of and assumptions about the software, hardware, and user 
environment and to the absence of errors in the verification process. Of course, 
this is no certainty at all, the environment being almost impossible to describe 
completely and the process being error-prone. The confidence comes from having a 
theoretically sound and systematic method for arguing consistency, tools and skills 
for carrying out the process, dedication of sufficient resources for its completion, 
and various chocks lor errors during the process. Having all these stimulates the 
improvement of the environment in both fact and description so as to reinforce the 

confidence gained by formal reasoning. 

TV has an important payoff besides verification. It takes a view of programs 
.1. ninthematical objects and requires a theory about them. As we shall see, xhis 
theory suggests that programs can bo classified and then studied by class, for 
example by task or technique; shows that there may bo certain structures and 
relations between those structures that generate a large range of programs 
independent of their assigned task; rejects programs which are unduly disorganized 
or which fail to display their underlying organization; and begins to explain the 
complexity and difficulty of programming and to suggest ways of surmounting 
those. In other words, TV demands a thorough and basic understanding of 
programs, including language and design principles, that may ultimately strongly 
influence their construction. Many researchers now view this theory as the 
central reason for studying I'V, a view which will be emphasized in this report. 
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'?.  CUHRI NT PROBI I MS. ODSTACLES, AND STEPS TO OVERCOME THEM 

Wr will explore two approaches to 1111(^51311(1111^, the current state of PV: (1) 
Ail enumeration classified as theory, technique, people, and technology and (2) a 
historical and psychological analysis which reveals sources of confusion, tension, 
and conflict which block a clear view of what is happening and what should 
h.ippen. Other surveys of program verification are [hondon77a,77c] and 
[l,m:kham77]. 

The mathematical theory of programs is multilevel. A first level relates 
.slatenient and declaration lanf.ua/'.e constructs to piedicates. All current 
fonnalisnis look something like that popularized in [Dijkstra76] as the "predicate 
ttansfornier" wlp(S.U), the "weakest liberal precondition for a state to satisfy in 
01 ihr that the predicate 0 be satisfied for the state resulting from executing the 
st.itiinrnt S." This gives I'JwlpCG.O) as the correctness theorem for a program G 
with specifications V for input and 0 for output. A second level deals with the 
expressions of the language, requiring some axiomatization of the data types of the 
l.uiguage. A third Ir vel is the assertion language, which Is usually a superset of the 
expression language. Cutting across all three levels is some language of logic, 
including means lor expressing quantification, eqiality, implication, etc. For 
rxamplc, denoting the predicate transformers for the conditional and assignment 
statements iy 

wlp(if 1) then S fi, 0)=(n a wlp(S,Q)) A (-B ^ 0) 
wlp(V: = F., 0)-u[K substituted for free occurrences of V] 

and letting t be a binary tree and S a stack, 

wlp(if Hight(t)/nil then S:=PushStack(S.Hight(t)) fi, 
KoNilNodesOnStack(S))= 

=(lllght(t)/nil a NoNilNodesOnStackU-ushStack^RightU)))) 
A(Hight(t)=nll 3 NoNilNodesOnStack(S)) 

whore IMoNilNode.sOnStack(S) is some predicate defined for stacks. 

These are the types of theorems, sometimes called verification conditions or verification 
lemmas, that arc usually subjected to detailed proofs in current techniques. 

Another level of theory deals with the way data types and statement level 
theories should be organized to facilitate efficient theorem proving, which we will 
discuss further under technology. Of course, any individual program proof also 
requires the theory associated with its problem domain. 



lhr.ro arc many technical  Issues dealing with  the theory.   The kinds of 
correctness which can be addressed ranflc from "partial correctness." which Ignores 
t' > ....nation questions, through various decrees of termination. e.g., "cleanne'ss" in 
not   aborlln*  on   inexecutable operations and/or  "nonlooplng."  to  inclusion  of 
Performance constraints. Current theories Iran toward partial correctness with the 
question of nonloopinr. handled by bounded counters or well-ordered functions 
Cleanness is addressed by treating the conditions for proper execution of operations 
like the input spec.!,cations of functions.  But exceptional conditions   Including 
e. lors. in user Input, other software components, and even hardware are aspects of 
correctness that have yet to be adequately addressed. 

Thmdical hohlem /. Theory must address requirements far wider than "partial 
conectness,  including recognition and handling of abnormal conditions. 

This Is not simply a verification problem, since languages and methodology hav^ 
only recently considered it seriously. Correctness theory may be especially usefu. 
in r.i.aranteeinr. robustness and handling exceptions, since it already formally 
describes how properties are affected as they flow through the program, including 
properties relating to exceptions. Steps in this direction are f Levin??] on exception 
Handling. [Pratt??] on separating various nondeterministic termination issues 
I-ampson??] with "legality assertions" for proper execution of expressions, and 

l»ii7UKi7/]on checking array bounds. 

Any good theory must have the qualities of "soundness." i.e.. that all theo,emS 

are valid In the desired sense, and "completeness." i.e.. that all true and interesting 
statements can be proved. For a correctness theory, the question is whether the 
theory fully and accurately captures the semantics of the associated language In 
this respect great progress has been niudo In developing a general theory of 
semantics as the foundation for program proving [deBakker??] and in considerable 
nformal experimentation with proof rules for various languages and individual 

language constructs (HoareVa. London77b]. However, current languages have 

complicated proof rules which are hard to justify semantlcally. 

Theoretical Problem 2 Current theory must be stretched to include more features 
Of real languages and, concurrently, languages must be designed which admit 
reasonably simple and complete semantic descriptions. 

Jovial Is addressed successfully in [Elspas??]. concurrent programming constructs 
are aviomatlzed in fOwlcki?6]. pointers and records are handled In [Luckham76l 
and microprograms of significant complexity are handled in [Carter??] New 
languages with a full complement of necessary features are being developed in 
conjunction with some degree of formalized semantics and goals of verifiability 
[Ambler??. Lampson??, Liskov??. Wulf?6]. but there will be a gap for several 



G 

yi'.irs botwonn theory and current lanßua^es, e.g., PL/1, BLISS, etc. It is unlikely 
tli.it this "clnan-up" operation n languages would have occurred as urgently 
without the motivation and formalism of PV. However, it nay be that proving the 
hmguagc-lndepcndent aspects of algorithms and data structures will achieve most 
of the benefits of verification and that language-dependent questions may be 
resolved by proving equivalence of programs or by relying on compiler-like 
checks. 

One of the der, -nd most diii.'cult parts of malhematics is mathematical 
induction, which a lows reasoning about the structure and properties of 
potentially infinite objects. Correctness theory started off with the notion of 
"invtirianls," assertions that hold at every iteration of a loop. Another early 
inductive form of argument was based on the "structure" of objects [BuTStall69]: 
.1.,liming a properly for its components, the property was proved for an artiilrary 
insUmce of a well-defined object. More recent variations are subgoal induction 
| Mori is'//1. which reasons with invariants both forward and backward, and 
intermittent assertions (MannaVO], which reason from one iteration of a loop to 
sfuiio future, but not necessarily the next, iteration. 'Die question is whether it 
m.ikt s any dilierenco which inductive method is chosen and, if so, when. As in 
traditional mathematics, it is critically important to get the statement of the 
throrcm exactly right for an induction argument, after which the argument 
usually goes through smoothly. 

T/icoiclient f'ich/rm 3: More insight is needed into the basic nature of inductive 
at[iiiments in program proving, when to use which type of argument and hoxu to 
fonnu/atc the inductive assertions. 

Some work has been done on mechanical generation of inductive fr.sertions from 
programs and from specifications (Wcgb/eitV'l], but the problem is so hard that 
the.-.p approaches may work only in very simple instances. Anotl er approach is to 
accumulate Inductive assertions during program derivations as they are made in a 
specific context lor a specific purpose at a useful level of abstraction, rather than 
all at the end. 

The predicate calculus is not the most understandable language, either to 
casual readers or fluent mathematicians. 

T/ieotefical f'toh/rm 4: Ways must be found to improve the expressibi/ity and 
undability of fotmc/isms. both at the semantic and at the assertion level. 

The algebraic approach |GuUag76, Burstall77b] promises some alleviation by 
orienting reasoning toward equalities. The key notion may be simply the right 
notation for the concepts of interest. 



Miilhcmatlcians never use a theory at Its axiomatic level for very lonf,. 
In.stf.id, they develop general aiiH leiidinf, theorems wtiich express the important 
properties of the concepts of the theory and which suggest new variations and 
di-rivotives of Ihcso. Program provm/1, is currently like reading, the first chapter of 
n ni.itheinatics tc.%t to find the axioms and basic definitions and then trying to do 
tho hard exercises at the end of the book. Because the intermediate theory is 
in I.'.sin/1,, each exercise requires building up intermediate concepts and techniques 
or brute force applications of axioms. 

Theoretical Problem 5.- The theory of programs based on correctness properties 
mint evolve to higher levels of geneiality in both theorems and techniques. 

An active area of theory building, at least at the axiomatic level for data structures, 
is [CitillagVO], leading possibly to an overall theory of the structure of such 
.ixiomatic theories (IJurstallVVb]. Further examples of this higher level theory 
will be given shortly. While not yet highly visible, this type of theory is the key 
to making I'M follow the successful route of mathematics, namely pursuit of 
stimulating and general statements about the objects (here programs) of Interest. 

Turning from theory to those techniques that use the theory for proving 
programs, the basic question Is what theorems to prove. The current paradigm has 
two disjoint phases: (1) to completely transform assertions into predicates 
containing only expressions, not statements, from the program and then (2) to 
prove these predicates. This paradigm, though conceptually simple, has numerous 
practical difficulties: the generated predicates may lose all traces of structure from 
tho program, thereby foiling attempts to find a proof of them based on reasoning 
about the program; recovery from an error, no matter how minor, In either 
program or assertions is almost impossible without a complete restart; and the 
"calculus of programs" cannot bo brought into play. This calculus consists of 
derived properties of predicate transformers, e.g., 

wlp(S,AAB)=wlp(S,A)Awlp(S,B), 
(P'wlp(S,Q))=(sp(S>P)^Q), 

whrre sp is a "strongest postcondition" transformer. 
Thrr.p properties allow considerably more flexibility in organizing proofs and are 
perfectly legal ways of proving programs, although excluded by the two-stage 
paradigm. 

It is also possible to prove concrete programs correct by virtue of their being 
instances of more abstract programs. The appendix contains an iterative version of 
a program schema that is proved to compute a recursive function, stated in terms of 
abstract operations F, hO, hi, h2, h3, G, where only the definition of F and the 
associativity of G arc known. This schema can be instantiated to variations of tree 
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traversal and perhaps to other functions. One proof at the schema level Is used for 
two proofs at the concrete level with the further fiain that schema level proofs, 
freed from the distraction of concrete operations, are easier to find and understand. 

At another level are theorems which allow correctness to be transferred from 
onr. pro-am to another without complete reproof of the second pro-am. A Context 
I hoorvm informally says that the correctness of an entire program is equivalent to 
IMovinn the correctness of every statement of the pro-am in a "context" which 

nZnuL"*.     Tr0n'CSl     POSSiblC    ^cconditio»"    and     "weakest     necessary 
IraZTZ t0 th0 SpCCiflCations ™* assertions in  the rest  of  the 

: ,' " . I T'0^ a 1<0I'laCemcnt Thco^ Which informally says that one 
•s .. ment S can be replaced by another S' in a program G to give a program G' that 
will be correct if G was correct and if S« is correct in the context of S wfthin G   The 

7 ^Tr.T,0'^ ^ ^nCra,,Zed and '^"y Proved, leaving just a residue 
of P.oof related to the problem domain.  These theorems lead to a paradigm for 

wiTbe ^THTT ^ SUCCCSSiVe transferral al0^ - chain of replacements; it 
M     nrn    is  r    .  " f

th0
i

aPPCndiX-  Thc "correctness-preserving transformation" 
C   rUrZ 1 Ä  '       e y  PUrSUCd  ln'  am0nR 0thCrS'  tBa,zer76    Burstall77a. 

l^r.^,1^,v,n,0lh>^^t,K^0rC^, SUrPOrlS thC USC 0f GhoSt (or Auxiliary) Variables 
- art/ö], winch have no influence on the result of the program, but which are 
"'"   to express histories, used-up values, or missing abstractions.  The theorem 

s..y« that a program proved correct using these as regular program variables is still 

c7    nti  I r T VliriableS are deleted fr0m the Pr0ßram and ***** existentially 
t'..        aTUOnS 0n thC PrOVCd Pr0firam- Schcnias often — an abstract 

d. ta  object   fron,   which  some  other  value  or  data  object  is computed   in   an 
1-^tant atlon   of   the schema,  after  which  the abstraction  is  removed     In   the 
apprndix  example, the tree traversal computes a list of nodes of the tree upon 
^ hlch a count is made. Only the count is of interest, so the nodclist is deleted. 

'n'f:^7j''1'lr 'i rhJ tWOitagc Scnerate-an^prove venfication lemmas 
at'tnoach muu be relaxed to admit natural higher level proof techniques and 
pufnorcd p,ona,ns. The variant paradigms must becl/arly foZlad 
fo, malty jusUfitd. and subjected to experimentation. formutatea. 

iy/n,1qZ f'T!m  K r,0,"nS morc Seneral tf,eorms red"<" overall  proof 

CU.r example illustrates these techniques and their problems. The data structure 
.- .Mract.on methodology addresses these problems, but the full range of paradigms 
and theorem power has not yet been reached. 
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TIMIC arc soinn pror.raniniin^, lanf.ua^cs which emphasize functions, e.g., 
l.ISl', but most Innguagcs favor iteration as the main form of looping and 
st-quencing of statements as the main form of composition. Some experience shows 
tli.it it is much cisior to prove properties about functions because they generate 
modularity, discourage unnecessary sequencing by parallel evaluation of 
mguments to function calls, and direct attention toward the objects being 
computed. There is no loss in practice if the proved functions can bo translated to 
ii'iation and the proofs can be transferred. 

Ttcfmique Fioblem 3: Which is bitter, function or iteration representation of 
piogtams? How can they be used interchangeably? 

The argument for functions is given by [Manna77, Boyer75], while [Dijkstra76] 
argues for Iteration. 

Oiven the fallibility of programmers and provcrs, an interesting problem is 

Tcclmique Problem 4: How much of a proof is still valid after certain types of 
modifications to the piogram or to assertions? 

The only work in this area so far is [MoriconiY?]. 

Constantly plaguing those who publish in PV and try to write proofs is 

Technique Problem 5: How docs one present a pioof with sufficient structure 
that remaining details can be filled in, but without so much detail that readers 
an- oveiwhelmed? 

[Wegbreityy] suggests various means of "justifying" proofs as normal program 
additions and annotations. 

I'rograms are created by people who should know enough about them to 
create proofs. But this is not so when rigorous mathematical standards are applied, 
or even when loose informal arguments are acceptable. Creating a proof requires 
the ability to design notation that captures the basic concepts, knowledge of rules 
of logic for sequencing steps of a proof, and an understanding of the axioms that 
describe the objects of interest. A basic grounding in mathematical knowledge is 
inescapable, but also necessary is the creative component which is not taught in 
elementary math courses. 

People Problem 1. Potential program provers must not only be taught 
mathematical facts and techniques, but must also be led to develop their 
manipulative skills and creative powers. 
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[I)ijk.sira74] presents an enlightening discussion of this problem. 

Any now formalism or formal discipline is criticized as being an unnecessary 
academicians' toy for which no practical use can be foreseen and which is just too 
complicated for ordinary people to understand. BNF was probably seen in this 
light, especially when followed by a flurry of papers about syntax and parsing. 
Yet It is now widely accepted and taught without mystery, Its use having been 
found and separated from the formalism which refined it. 

/Vd/dV Problem ?: The rebellion against formalism and the excess of formalism 
in eatly stages must be accepted as normal. 

It m.iy take a while for people to accept the fact that "programming is a discipline 

of a mathematical nature" [l)ijkslra74], 

Programs can be proved without any type of mechanical support, just as 
mathematicians have proved theorems for hundreds of years. But program proving 
differs in that it requires many small and not always Interesting theorems. As 
argued and Illustrated above, there are metatheorems which support interesting 
proof techniques and general theorems which implicitly define interesting classes 
of programs, but at the concrete level there are always many little problem domain 
facts and tricky chains of reasoning needed to glue together a proof. Some 
computer assistance is needed both in handling domains where people don't think 
well (e.g., integer arithmetic and chains of inequalities) and in making sure every 
step nf a proof is legitimate. Some initial capability in this area exists in present PV 
sy.stems, but theio is no overall theory of how to handle either the large number of 
disparate domains (basically one per program data type) or the extremely large 
search space that can be generated in finding proof steps. 

Technological Problem I: It appears necessary to find specific domains that are 
highly useful in PV and concentrate on increasing potency within them. But an 
overall theory of handling these domains is still needed. 

Steps In the.-^e directions arc (Nelson77] with coordinated fast simplifiers, 
(l,.iiikford77 | on the properties and use of rewrite rule systems, and [Boyer77b] on 
the use of lemmas and induction generalization techniques. 

As mentioned earlier, the generate-and-prove paradigm is conceptually clean 
and the generate phase is easily implemented, provided the language semantics are 
given and clean. But the paradigm fails in practice, and though newer ones are 
known, they are not yet implemented. 
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Technological Ptoblcm 2: FV systems must be extended to permit use of the 
"calculus of programs," transferral of correctness between programs, and 
hierarchical development of programs. 

Theory and Implomcntatlons of some of those Ideas appear In [Good77, Elspas77, 
Mussor77, Gerhart76]. 

I'V systems arc systems In the true sense, containing the semantic analogs of 
compilers in predicate transformers, multiple theorem provers working in 
cooperation and possibly in parallel, input and output routines to manage data in 
user terms, data bases of previously proved formulae, bookkeeping for the status of 
proofs, etc. As such they suffer the usual trauma of complexity and bear the 
additional burden that proofs must proceed interactively without confusing or 
boring the user. Neither humans nor systems can manage the task of PV alone; the 
effort must be cooperative and synergistic. 

Technological Problem 3: PV systems must be made habitable before they can be 
experimented with seriously, let alone be put into production use. 

Of course, there is the fundamental dilemma: How do you know the verifier is 
correct? 

Technological Problem 4: PV systems must be constructed so clearly and so tuell 
that their correctness can be accepted after sufficient periods of reliable usage. 

ll.iving looked at various problems and steps regarding the theory, 
techniques, people and technology of program proving, wo will now explore our 
second approach. While not the type of pure scientific analysis we might like to 
see in a paper on tho future of a scientific activity, the following historical and 
psychological analysis is still important in determining the course of the field. 
Hesnarchors are seldom as objective as they might like, but--as in everyday llfe-- 
find it hard to identify all the determinants of their actions. Understanding the 
trends In human terms may make it possible to break out of ruts and make better 
intermediate decisions about what problems to tackle next. 

In the development of a theory , there is first a pre-theory stage where some 
activity goes on guided only by intuition and common sense until someone 
foinuilntcs axioms and rules of inference which provide the language and 
reasoning mechanisms for discussing the activity and which generate the true 
siatoments of interest. Next some useful and general theorems are proved from 
which more specific, interesting theorems can be proved without recourse to the 
axioms. Concurrently comes the development of proof techi ques that telescope 
pi oof steps or systematize reasoning. Some time later key theorems are recognized, 

__ 
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.ind proofs hp^.i» to br or^nni^cd around certain similar themes that eventually 
lii'conic standardised throughout education and research. Finally, some new 
problrnis or insights generate doubts and major revisions. 

Itdnted to this progression Is the way we view objects and the stylos of 
manipulation performed upon them. First there is the concrete view and "b'.ind," 
ad hoc manipulation. Then certain patterns evolve which cover most situations 
and lead to disciplines, still at the concrete level. With sufficient understanding of 
patterns of manipulation and of similarity of structures comes the ability to 
/V'nerallze from details and thus reach more abstract levels. As abstraction becomes 
more widely appreciated. It comes to be used before details are considered, though 
indecision, lack of clarity, and old habits of thought make its use inconsistent. 
Fvnitually the emrrgence ol patterns of abstraction leads to disciplines and 

ultimately to some standardization. 

From yet another viewpoint, consider the way problems emerge and are dealt 
with. Froblems may be recognized informally for a long time before the right 
concepts and terms are found to describe them. Then comes the formalization of 
former informal techniques as well as new techniques which follow logically 
from the newly recognized concepts. These arc explored haphazardly until some 
sit of critical questions can be posed and some experimental methodology 
developed. With experimentation, strengths and weaknesses and areas of 
applications are clarified. Somewhere along the line, techniques become useful 
enough that dissemination occurs throughout and even outside of the research 
community, Fvrntually, a few standard approaches emerge, but by then new 
Problems are being recognized relative to old problems, the new solutions, or 
externally generated new problems. 

The overall cflect of these progressions is considerable confusion, tension, 
frustration, and conflict. In the computer field, these are compounded by the 
r.ipidity of developments and by economic and social pressures to provide nearly 
instantaneous solutions to barely understood and grossly underestimated problems. 
Consider some observations about the current problems of PV in the light of these 
progressions: 

1.   In programming methodology, tl toward abstraction occurred at 
almost the same time as the move towt le discipline.  On the one hand, 
people believed that sticking with thrct mental control structures would 
solve many problems, while they were being told that abstraction (whatever that 
was) was the way to manage complexity. There was the conflict between 
discipline at one level and ad hocness at another. PV is at a similar transition stage: 
some gain has been made at the concrete level, while abstraction promises much 
more, at the temporary sacrifice of familiarity and some acquired discipline. 

   A 
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P.. When trying to apply a new theory which exists only at the axiom level, 
the pi.icticinf, provcr soon notices that many mathematical properties and 
ttchiilques f,ot rediscovered or redone and that starting from scratch on every 
piohlem Is cxcrucintinr.ly slow and painful, as well as stupid. But, if provnrs start 
consciously developing, the theory in a systematic fashion, the amount of notation, 
throrems, and techniques soon becomes disorganized and unmanageable (witness 
the size and complexity of mathematics books). Furthermore, there are still so 
ninny programs to be proved that each new one can find very little well organized 
old material to le.m on. Our earlier analogy with proving the hard exercises at the 
end of the book given only the first chapter encapsulates the dilemma of PV, which 
only time and concentrated effort can cure. Notice that the above-mentioned 
theorems arc really lormalizations of common Informal reasoning. 

3. Hf>laled to the previous observation Is doubt about the ability to scale up 
from the small and simple problems used to develop theory and techniques to the 
me.s.sy real problems. At some point, a great deal of effort must be expended in just 
this scaling up, forcing theory development and introducing new problems of size 
and interaction complexity. 

1. Continually disturbing is the "oversell/overbuy" phenomenon. The new 
solutions look more promising than the old ones before there is adequate 
recognition of the new problems that will accompany the new solutions. PV has 
been accepted by large portions of the research world as a major theme for viewing 
and attacking all kinds of problems. At least some significant portion of the 
practicing programming world recognizes its existence and uses it in some diluted 
form or is affected by such byproducts as newer and cleaner languages. But it'is 
difficult to measure the value of these byproducts and attitude changes relative to 
the ultimate (but as yet unachieved) goal. 

'«. It takes a long time to develop adequate experimental methods to evaluate 
various proposed solutions or paradigms, not to mention the time it takes to 
perform the experiments. Consequently, the evaluations are hasty, unquantified, 
and subjective. Therefore, there is always further doubt about validity and 
usefulness which never has time to be either objectively dispelled or supported. 
PV, as well as many other parts of computer science, lacks the experimental 
methodology for conscientiously evaluating its competing methods and validating 
its claims. 

H. Technology for assisting manual techniques always lags far behind 
because methods must be shown to have some theoretical validity and be somewhat 
formalized before they can be incorporated Into languages which can then be 
meshed with previous technology. Furthermore, it simply takes a long time to 
dovt' )p comfortable and reliable technological suppd i. This also goes along with 

^—      —    - 
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tlir bottleneck of experimentation: In order to do any large scale experimentation, 
technology is necessary, but it is difficult to know how to direct the technology 
hi'fore usefulness has been demonstrated. In TV, the gap between methodology and 
technology must be filled by languages, although some new paradigms may be 
explored at the concrete level and with conventions for current languages. 

7. One further complication is that as soon as some solution looks promising, 
its earliest version is disseminated. Of course, this early version has difficulties 
which cause frustrations and doubt; even if it gets mastered, ingrained habits and 
inertia may cause improved methods to be rejected as they come along. The 
invariant assertion method associated with full verification condition generation 
on concrete programs has now been widely written up and is frequently taught. 
While this conveys some of the fundamental ideas of PV, the inflexibility and 
distasteful separation from program construction make it unduly difficult in 
practice and misrepresent the difficulties of TV. 

0. .Since everyone learned programming early in her (or his) computer 
science career and usually got along well enough fc several years with that 
amount of knowledge, there is reluctance to accept the unpleasant fact that there is 
always so much more to learn, especially when it means breaking years of habit. 
TV confronts programmers with their lack of understanding of programs and their 
inability to express what they do understand. Sometimes the challenge is accepted 
and proving is mastered, but sometimes the frustration at not understanding gets 
displaced to proving rather than programming. 

These eight points all relate to the compression of many stages of research and 
development Into a very short period of time and to our basic human tendencies to 
expect too much too soon for too little effort. While not "solvable" in any sense, 
they can explain problems which must be endured without distraction from the 
u 111 mate goals, 

3.   NEEDED ADVANCES AND BREAKTHROUGHS 

Breakthrough I: A theory which unifies testing and proving or selects bettveen 
them. 

Since tiltimately verification will consist of some combination of testing and 
proving, it would greatly help both camps to have better perspective. The 
breakthrough will probably have to come from the testing end of verification, 
because program proving researchers see their approach, which is based on a 
rapidly developing mathematical theory, as more promising. The considerable 
amount of research on sampling and probabilistic testing has neither convinced nor 
Interested the program proving cOi.imunity.  The cost of efforts in this direction 



16 

could bo small, since the breakthrough would most likely come from some 
Ingenious twist on current r« ^jrch to yield the critical insight. Some unifying 
steps are (Goodonough77, Howden77]. which emphasize errors and their relation to 
both testing and proving. The important factor is that researchers be receptive to, 
rather than at war with (or, even worse, ignoring) the other camp. 

Ihcaktfnougfi  2: A significant increase in the power of mechanical theorem 
provcrs. 

Technological improvements in speed and capacity of computers will help, but the 
real need is for a theory that unifies various strategies in such a way that small but 
important domains can be well handled. This is one area where optimistic 
projections for lull mastery of the typo of theorem proving we want today, namely 
interactive guidance by user-supplied strategies through fully mechanized 
subproofs, arc ten years, with full capabilities for finding proofs, although not 
necessarily finding interesting theorems, in thirty years. There are really only two 
schools of present theorem proving: the resolutionists, who haven't yet seriously 
considered I'M applications, and the nonresolutionists [Bledsoe74], v ho have made 
a major, but ad hoc, attack on PV-related problems. Considerably more research 
funding could go to this area, but there arc not yet many researchers capable of, or 
interested in, attacking such a hard, long-term problem. It requires a unique 
combination of mathematical and programming depth of knowledge and 
experience. A clean theory of mechanical theorem proving will require good 
implementation to be effective, while good programming skills must be backed up 
by sound theory and deep insight. However, mechanical theorem proving is not 
necessary to achieve many of the benefits of program proving; it is necessary only 
for the highest attainable degree of certainty, 

fireakthrough 9: More than one large-scale demonstration of PV. 

Kvcn as a combination of manual and mechanical proofs, such demonstrations 
would command attention and give momentum to PV. Given the current state of 
technology, skills, and basic knowledge, this seems possible with sufficient 
dfdication of resources. The number of snags will probably be large, but these will 
suggest many now and interesting research and development tasks. A failure can 
be attributed either to basic flaws in the approach or to underestimation and 
undercommitment of resources, either of which would still provide important 
impetus in the direction of verification efforts. The costs are the dedication of 
sufficient human and computer time and energy, perhaps at the expense of other 
theoretical and practical developments. 

fiieakthrough 4: Development of sound experimental methodology for evaluating 
various PV paradigms. 

__ 
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Such methodology could clarify and speed up the evaluation of vague paradignis 
This miitfit bo nothing more than the amount of real and computer time required to 
push through a v.irioty of examples on an existing system, together with the 
qu.intity of transfused knowledge and strategic direction provided by users. 
Unfortunately, current systems are not powerful enough to handle multiple 
p.ir.idigms, and cross-comparisons between systems would be difficult. 
Nevertheless, even if the experiments cannot bo performed for lack of apparatus, 
the formulation of the experiments and their limited manual application could be 
v.iluable. The cost of such an effort would primarily be associated with some 
coordinating body which selected paradigms, designed experiments, and evaluated 
results from several projects. 

fiteakt/trough 5. The accumulation of sufficient theoretical results to reach a 
critical mass where new progiam proofs can reuse significant portions of 
previous proofs. 

I'logram proofs which start from scratch, as currently, will be prohibitively 
expensive, If not completely unmanageable. The main problem is translating 
current Informal knowledge about programs into theoretical terms and organizing 
this nmss of knowledge so that it may bo studied and mechanically accessed. This 
should accompany the normal growth of PV, but it may be possible sometime In the 
next decade to seriously concentrate on this problem. Our confidence in PV arises 
from this combination of widely accepted and used higher level theorems with 
mechanized lower level proof checking, mediated by human creativity in 
organizing proofs. 

Breakthrough 6   The management of complexity of PV systems and the design 
fot synergistic human-machine interaction. 

The complexity problem exists for current systems which are nowhere near their 
end goals. One system which works extremely well for users other than its 
designers will show the direction for other PV systems. The sustained support of 
present PV projects, which are well aware of this problem and headed in this 
direction, should be sufficient, especially when more users gain access to the 
Systems. 

4.   IIFFCTS OF PV SOI UTION/RREAKTHROUCHS 
ON COMPUTING IN THE 1980s 

The effects of PV must be separated into the tangibles and intangibles. 

(Intangible) Effect I: The education of programmers can be vastly improved and 
accelerated. 

. ,  
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Those of us associated with education constantly sec the improving quantity and 
quality of material taught in courses. For example, basic data structure material 
that was unknown, in a systematic way, by Ph.D. graduates of the early 1970's is 
now taught routinely to college freshmen. The impact of PV may be to sort out this 
basic programming material, organize it more systematically, and present it more 
coherently. Programs with invariant assertions are no more, and probably less, 
mysterious than unasscrtcd. and often unspecified, programs. It is likely that the 
tfxtbooks of the lJ)80s will routinely use program proving ideas without any 
special fuss about verification. Then more people will be able to read and perform 
proofs, thcrrby increasing the validity of PV. l.i light of the productivity 
variations between programmers, simply teaching more programmers more 
in -^ i lal shoul'i improve the overaU quality of programming. 

(Intangible) Effect 2: The standards of quality in programs and programmers 
should improve. 

There can be little doubt that software quality has been low both because little 
more was expected and because low quality was acceptable. PV makes very high 
dmiands on the quality of programs and reveals deficiencies. If at least some 
"perfect" programs, in every sense of their quality, can be produced and widely 
disseminated, then perhaps the quest for perfection will be more broadly sought, 
especially if perfection turns out to pay off. An example in this direction is the 
Unix operating system, which has gained widespread use simply because it is clean, 
comfortable, and reliable, if not all-purpose and fancy. 

(Tangible) Effect 3: The construction and maintenance of programs will rely 
guatly on formal reasoning, although not always formal proofs. 

Program proving as pure verification separated from construction will probably 
disappear. This may leave testing as the primary mode of verification, both as 
confirmation and exhibition of program quality. If niaintenancc--that is, the 
fixing of deficiencies as they are recognized plus the adjustment of function to 
inret new demands—is as expensive as figures seem to indicate, then PV may pay 
off most here. Even if proofs are not performed or are not reliable in the sense of 
vt'iification, they dmiand that programs be fully specified and fully documented 
in the form of assertions. Such assertions may guide a new form of maintenance, 
i.r., systematic modification preserving correctness as stated in assertions. As 
pointed out in [HalzerVS], it may be feasible to shift maintenance from the level of 
concrete code up to appropriate abstract levels, reimplementing when modification 
is necessary. 

(Tangible)  Effect  4:  Significant  sized  programs   will  le  proved,  albeit  at 
considerable expense. 
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Wo will prob.ibly «JC sonir programs of hundreds of lines of code selected from real 
npl'Hcations brinf. proved before 1980, For programs intended for wide 
distribution and critical applications, the expense will be fully Justifiable and will 
have to bo borne. The challenge will be to reduce the expense for full-scale proofs 
and to appropriately compromise expense with uncertainty for sralcd-down proofs. 

(TangtNi) Effect 5- Standardized components will be built and verified and 
used. 

The long-tenn goal of software engineering Includes the development of 
off-thr-shelf components for many common tasks. This has required specification 
ttchniques so that components can be selected and composed, verification 
techniques so that the components can bo trusted, theory and experience to show 
what should bo standardized, and adaptation techniques so that components can be 
usfd In many ways in many environments. Theory and practice seom to be 
riMching the point where this goal can be a reality. 

Of course, the ultimate effect may be chaos or destruction. That we can 
vorify software to a high degree of certainty docs not moan it will fit well into 
human social and economic systems. One cannot help but fool the accelerating use 
of computing systems: electronic fund transfer, maintenance of power facilities, 
innnltoiing of real time systems, electronic mail, speech communication, home 
computers for everyone's daily activities, hospital patient monitoring systems, data 
bases, etc. While computer scientists cannot solve the issues involved with the 
disparate uses of computer«, perhaps we should try to integrate our painful 
experience with fallibility with the social and economic systems that will use our 
results. 

  . 
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Appendix 

Example: Variations of Hinary Tree Traversal 

Purpose« This example Is Intended to show an overall generality and variety of 
techniques greater than commonly seen In the literature on program verification. 
It emphasizes aspects of the correctness-based theory of programs described in the 
p.ipor, specifically several types of theorems: 

(1) Schemas (p.irtially Interpreted programs) for an Iterative version of a 
special recursive function and the interpretation of this schema to the 
more specific, but still generally described, task of preorder tree traversal, 
lor the purpose of comparison with previous publications [London77a, 
IUirstair/4]. the trees will be traversed to count the "tips" and the "leaves." 

(P.) Several transformations which allow alteration of conditional statement 
and loop structure. 

(3) A "ghost variable" theorem which allows deletion of a variable used .n the 
schema once it has been related to specific reasons for performing the 
traversal. 

Associated with these theorems are natural methods for proving programs: 

(1)   Hy Instantiation of proved Schemas to concrete programs 

(P.) Ily transformation to transfer correctness, with little additional proof 
effort, from one form to another one more desirable for non-correctness 
r.-asons, say optimization or Implementation within a restricted set of 
language constructs. 

Those Hgher level methods all rely on the old, familiar invariant assertion 
method, but partially shift its use to the schema and transformation level In 
addition, by following this paradigm of Instantiational and transformational proof, 
we arc able to conjecture some possible "laws" which govern the forms of 
assertions. 

Version I Schema for iterative version of a recursive function 

I,r<t 

F(x)=lf p(x)thenhO(x) else G(G(hl(x»,F(h2(x))), F(h3(x))) 
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wfK-rc G is an associative operation with identity IG. 
For case of reading, wc will write G as an infix operator, symbolized by • 

F(x)=lf p(x)thrnhO(x) e^c hl(x) ® F(h?,(x))® F(h3(x)) 
An Iterative program for this function is 

dnclarc S:Stjck (with the usual operations 

Fii'hStack.ropStack.TopStack.CreateStack); 
-riJlclare x: typo 1)1 with operations h2,h3 producing results of type Dl 

and operations h 1 ,F producing results of type D2 
and • an operation on type D2 producing a D2 

Arc:=IG; x^x'; S:=CreateStack; 
iQOU £5 F(x,)s Ace * F(x) • UnravelStack(S) 
whi]c ^p(x) or S/CreateStack do 
if ^p(x) then 

Acc:= Ace® hl(x); 

S:=rushStack(S,h3(x))i  x:=h2(x) 
rise 

Ar.c:= Ace« h0(x); 

x:=TopStack(S);   S:=PopStack(S) 

Ar;c:= Ace® h0(x); 
a-sert F(x')=Acc 

where UnraveKStack(S)= 

if S^CrratcSlack th^n IG   ei^c F .TopStack(S)) ® UnravelStack(PopStack(S)) 

The proof rule for the loop is 
I^A, AA-B^Q, AAB{S}A 

F(loop as A while B do S repeat}Q 

The proof of this program is relatively easy using the standard Inductive assertion 
method. Note that the only reasoning necessary or available for the proof is logic, 
the associativity property of ® and "stack algebra" [Guttag76]. 

Version 2: Instantiation of the schema to tree traversal 

Wow. assume type 1)1 is a binary tree of the usual form, either nil or containing left 
and right subtrees, denoted Left(t) and Right(t), which are also trees. Let the type 
112 be sfquences. denoted <...> with catenation denoted »D. in the above schema, F 
on be instantiated to give a list of subtrees, either with or without nils, by 
respectively 

NodPs(t)= if t=nil then <>   else <t> (B Nodes(Left(t)) P Nodes(Right(t)) 
or 

Subtrees(t)= if t=nll then <nil> else <t> p. Subtrees(Left(t)) ^ Subtrees(Right(t)) 
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Here ® Is M, the catenation operator between sequences 
hO(l) is <>, the empty sequence, for Nodes and <nil> for Subtrees 
h 1 (l) is <t>. hP.(i) is Left(t), h3(t) is Right(t)   for both Nodes and Subtrees 

Therefore the following program computes Nodes 
NodeList:=<>; t:=T; S:=CreateStack; 
loop gs Nodns(T)« Nodel-ist I« Nodes(t) P> UnravelStack(S) 
w)iile l/nil or S/CreateSlack do 

(»•)  comment statement to be added here; 
if t/nil then 

NodpList:= NodeList P <t>; 
S:Bpu.shStack(StRight(t))i t:=Left(t) 

else 
C)     NodcLisl:=NodeListP) <>; 

t:=TopStack(S); S:=PopStack(S) 
fi 

repeat 
(») NodpLisl: = NodeLlst fi <>; 

.TvSfrt Nodr's(T)=NodeListj 
The program for Subtrees differs only In the lines (*) as NodeList:=NodeLlst iß <nll>. 

I'etslon 3: Inclusion of counting operations during traversal 

Now suppose we want to traverse the tree in order to count something 
about its subtrees, say 

h Mr(t)= (t/nil)ALoft(t)=nllARight(t)=nll 
or 
tip(l)=(t=ni1) 

Wc c.ni do so by inserting C:=0 before the loop and make line (■•), respectively 
if t/iiilAl,cft(t)=nilAHight(t)=nil then C:=C+1 fi        in the Nodes program 
if t=inl then C^C+l U      in the Subtrees program 

and proving the additional loop assertions 
C-Count(Nodel,isl) 

where 
Count(NodeList)=if NodeList=<> then 0 

rise (iX q(I.,Tst(NodeLlst)) then 1 else 0) + Count(OtherThanLast(NodeLlst)) 
with q respectively leaf and tip. For q as leaf, this gives 

Nodel,lst:-<>; t:=T; S:=CrcateStack; 
C: = 0; 
hiojp as Nodes(T)= NodeList fi Not'esCt) P> UnravelStack(S) 

AC=Coiint(NodeLlst) 
while Vnil or S/CreateStack do 

if t/nilAi,eft(t)=nllAlhght(t)=nll then C:=C+1 fi; 
if t/nil theji 
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N(x]pList:= NodeLlslfo <l>; 

S:sl'«shStack(S,Ill|{ht(t))|    t:=Left(t) 
cj NO 

NodoList:=NodeLlst P <>; 
t:=TopSt.ick(S);    S:=PopStack(S) 

repent 
NodeLisl:= NodeLlst & <>; 

assort Nodcs(T)=NodeLlst   A   C=Count(NodeLlst) 

Version 4: Optimization of the leaf-counting version 

Now wo will go through a long string of optimizing transformations. 
First, wc move the counting operation Inside the if-then-else 

Part of program to be replaced 
r{ if IUAB2_thcnSl fi; 

If H1 thrn S2 else S3 fi }Q 
r=> 

Replacing part 
»'(JXBl then 

if I?2 then S1 fi; 
S2j 

P1.so S3 fi 

0) 
Sufficient conditions for correctness preservation 

whrn PABlABP^SOBl   that is, SI docs not change Bl 

because the t/nil is preserved over C:=C+1 

Next, observe that, slacks usually being finitely implemented and therefore subject 
to overflow, wc might want to avoid putting nil Right(t) on the stack, so we 
introduce the statement if Hight(t)/nil then S:=PushStack(S,Right(t)) fi; using the 
tr.insformation 

l^SOO   ==>   r{jf BthonSl _fi}Q 
when I'A^B a 0 

In this transformation, the strongest precondition for SI, P, is 
NodcsCDsNodnLlst1 P) Nodes(t) to UnravelStack(S) 

AC^CountCWodoLlsl') A(t/nil or S;/CrcateStack)A(t/nil) 
A(C= i£ 1-eft(t)--nil A Hight(t)=nil then C'+l else C) 
ANodeList-NodeLlsf f>> <t> 

U is Highl(l)=nll and 0, the weakest necessary postcondition, Is 
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NodoS(T)=NodoLiSt p> Nodes{Left{t)) |B UnravelStack(S) 
AC=Counl(NodpLJsl) 

l^   ZTZt   con(inion    holds    because   NodeS(t)=<t>    r.    NodeS(Left(t))    ei 

ZH    f   (t)) "^ N0dcs(H^ht^>=<>.   This .llow. us to prove the additional 

NoNilNodesOnStack(S)= (S=CreateStack or 

TopStack(SVnilANoNilNodesOnStack(PopStack(S))) 
r.l vinf, the result of all those transformations as 

No(lrList:=<>; t:=T; S:=CroateStack; 
C: = 0; 

/nop 25 Nodcs(T)« NodoLlst *> Nodes(t) (D UnravelStack(S) 
AC=Cniint(NodcList) 

Al\JoNilNodcsOnStack(S) 
üdbilS t/nil or S/CrealeStack dp 

ilt/nilUirn 

iri,r.ft(t)=iillAHifiht(t)=nilthcnC:=C+lfi; 
NodoList:= NodeLisl ro <t>; 

jf Hißht(t)/nilthcnS:=PushStack(S,Right(t))fi- 
t: = 1.0ft(t) 

Olsq 

NodnI,ist:=NodeLlst P» <>; 
t:=TopStack(S);        S:=ropStack(S) 

n 
till Jli 
NodpI,1sl:=NodcList fo <>j 

•T^'II Nodcs(T)=NodeLlst   AC=Count(NodGList) 
Of course. NodoLlst is unnecessary in this program so, it can be deleted using 
the Ghost Variable Theorem [Gcrhart78] 

l:=T; S^CrejteStack; 
C:=0; 

loop 35 3 Nodcl.ist: ( Nodes(T)= NodoLlst P NodeS(t) fi UnravelStack(S) 
AC=COIK l^NodeLlsl)ANoNilNodesOnStack(S) ) 

^jiL'c t/nil u ^/CrealeStack do 
if t/nil thrn 

ifLeft(t)=nnARight(t)=nllthenC:=C+lfi; 
11 H'T.J'tCD/nil then S:=PushStack(S,Right(t)) fi; 
t:=Left(t) 

else 

t!=TopStack(S)j       S.=PopStack(S) 
repeat 

assert 3NodeLlsl (Nodes(T)=NodeList   AC=Count(NodeList)) 
After proving the distributivity of Count over n, i.e., 

Count(arob)=Count(a)+Count(b), the assertions may be reworked to 

--—"-    1 
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Count(Nodes(T))=C + Count(NodCS(t)) + Count(UnravelStack(S)) 
and 

C=Coiiiil(Nodcs(T)) 

nnd the Rhost variables arc all gone. Finally, there are many redundant tests 
within the program, such as finding Lcft(t)=nil at the test before C:=C+1 making t 
be I-c.fKt). then Unding t nil in the next loop traversal, and PopStackingRighUold 
t) to become the new t. which can be shortened to t:=Right(t). Removing these 
redundant tests by twisting around the paths of the program, proving that the 
verification conditions for the new paths follow from those for the paths of the 
previous programs, loaves the more efficient, but uglier, 

t:=Ti S:=Crc.itcStack; C:=0; 
II t/nil then 

I,: gsscrt Count(Nodes(T))=C + Count(Nodes(t)) + Count(UnravelStack(S)) 
A t/nil ANoNilNodesOnStack(S); 

|f Lof t(t)=nll then 
jf Right(t)=nil then 

C:=C+1; 

if S=Cr( atcStack then    goto Finish 

£lsc   t:=TopStack(S); S:=PopStack(S);    gotoLfi 
Hso   t:=R1ght(t)|   gotoL    fi 

else 

il Right(t)/nil then S:=PushStack(S.t); t:=Left(t);   goto L 
£!££    t: = I,Pft(t);    gotoL      fi 

Ü: 
11: 
Finish: assert Count(Nodes(T))=C! 

Notice some of the characteristics of this program derivation: 

(1) It is formally controlled. If a program gets into the wrong form, if an idea 
occurs for a new and better form, or if there is simply a need to step up to 
more complrx programs, then there U a bridge to systematically transfer 
correctness from the old to the new form, which seldom requires much 
now proof. However, the process is tedious and requires considerable 
program rewriting. 

i?.)  The assertions have a clean structure which breaks into various parts: 
Nodcs(T)=...   the dominant clause, describing the goal of the 

program 

NoNilNodesOnStack(S)... a property which assisted a space 
optimisation 

C=Count(NodeList)... relates a concrete value C to an abstract value 
NodoList 
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t/nil... a special condition picked up at the loop stan 
From those, we can conjecture some possible "laws" of assertions: 

(n)   Ghost v.iriablcs represent missing abstractions, 

(b) Assertion clauses may be classified as dominant, by association 
with the least optimized abstract program, or optlmlzational, by 
association with some property used for optimization, 

(c) Assertion clauses may be proved one by one in some strategic 
order, 

(d) Many assertions have the form FinalResult=Current 
...YelToIU'Done because they originate from functions. 

(3) The versions 1 and 2 can be reused for other problems and other orders of tree 
traversal may he modeled after this one. The price for this generality is that 
the instantiated Schemas must be optimized. There is a tradeoff between 
finding the optimizing transformations and the supporting assertion 
increments and finding the fully optimized final program and the assertions 
for it. 

('I)  There arc numerous questions about this approacht 

(a)   Are the laws valid? useful? (How do we decide this?) 

(h)   1 low can the tedium of managing multiple versions be reduced? 

(c) How hard is It to find Schemas? Are they worth the effort? What 
Ifvel of abstraction provides the greatest payoff? For example, is 
there a generalization of Version 1 from which tree traversal Is a 
direct instantiation? 

(d) How hard is it to maintain a catalog of Schemas and transformations? 
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