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ABSTRACT 

Consider a system consisting of n separately maintained independent 

components where the components alternate between intervals in which 

they are "up" and in which they are "down." When the i  component 

goes up [down] then, independent of the past, it remains up [down] 

for a random length of time having distribution F. [G ]  and then goes 

down [up]. We say that component i is failed at time t  if it has 

been "down" at all time points s e [t - A,t] ; otherwise it is said 

to be working.  Thus a component is failed if it is down and has been 

down for the previous A time units. Assuming that all components 

initially start "up" let T denote the first time they are all failed, 

at which point we say the system Is failed. We obtain the moment 

generating function of T when n ■ 1 , for general F and G , thus 

generalizing previous results which assumed that at least one of these 

distributions be exponential.  In addition we present a condition under 

which T is an NBU (new better than used) random variable.  Finally 

we assume that all the up and down distributions F. , G. , 1 ■ 1, . ■., n , 

are exponential and we obtain an exact expression for E(T)  for general 

n ; in addition we obtain bounds for all higher moments of  T by showing 

that T is NBU. 
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ON THE FIRST TIME A SEPARATELY MAINTAINED PARALLEL 
SYSTEM HAS  BEEN DOWN FOR A  FIXED TIME 

by 

Sheldon M.  Ross and Jack Schechtman 

0.     INTRODUCTION AND SUMMARY 

-'In considering a system that works for a random time and when 

failed  is fixed  in a length of  time that  is also  random an important 

question is the study of  the first  time the  system is not working for 

an  interval of   time  longer  than some prespecified value.     For instance 

in a nuclear reactor, when  the safety system is out  for  some critical 

time it is necessary to shut down the complete system with all the 

problems this entails.     In  the  food  industry where food  must  in general 

be kept at a certain temperature,  an important question when the 

refrigeration system goes down is how long this situation can be main- 

tained before the food becomes spoiled. 

In "this papers we'consider a system consisting of     n    separately 

maintained  independent components where the  components alternate between 

intervals in which  they are "up" and in which they are  "down."- When 

the i      component goes up   [down]   then,   independent of   the past,   it 

remains up  [down]   for a random length of  time having distribution 

F, [G, ]    and then goes down   [up].    We say that component     i    is failed 

at time    t    if  it has been "down" at all time points    s e  [t - A,t]   ; 

otherwise it is  said to be working.    Thus a component   is failed if it 

is down and has been down  for the previous    A    time units.     Assuming 

that all components   initially start "up" let    T    denote  the  first 

time they are all failed,   at which point we say  the system is failed. 

.■...^.■-A^'^^WÄ.«»':- 
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In Section 1 we obtain the moment generating function of T when 

n = 1 , for general F and G , thus generalizing results in [2] and 

[3] which assumed that at least one of these distributions be exponential. 

In Section 2 we present a condition under which T is an NBU (new better 

than used) random variable.  In Section 3 we assume that all the up 

and down distributions F  , G  , 1 = 1, ..., n , are exponential and 

we obtain an exact expression for E(T) for general n ; in addition 

we obtain bounds for all higher moments of T by showing that T is NBU. 

tättk ■■ -       •^a^'^:i^■   Jj-'' — ^£ZZ 



1.  The Case n - 1 

Let us denote by N the number of "up" intervals that occur before 

the component fails. Then given N » k. , we can represent T by 

(1) T - X, + ••• + X. + Y^ + •'• + Yf , + A 1        k   1        k-1 

th A 
where X  denotes the length of the i  up cycle and  Y  the length of 

the i  down cycle. All the random variables in the representation (1) 

are independent with the X  having distribution F and the Y? having 

distribution 

< x I Y < Al ./G(A) .{Y*<.x}.p._„ , . - 
x > A 

where    F    is the distribution of an up cycle and    G    that  of  a down cycle, 

As 

P{N - k}  - GCAHGU))11"1  , k - 1,   ... 

where G ■ 1 - G , we obtain the moment generating function of T by 

conditioning on N as follows. 

E[e8T] - E[E[eSI j N]] 

:^(Vs),»(Vs,)-] 
(2) 

es%Y(3)G(A) 
X      k 

I      l^isH  A(s)G(A)\
k"1 

eSA(Dx(8)G(A) 

1 - G(AHX(8H A(8) 

-:.'tifc\i • i  ■'*' ''■•- ■:'-- ■        ■  ■ ttf'     i 



where 

*x(s)  =  E[eSX]   - JesxdF(x) 

0 

* A(s)   - E 
yA 

[e3^] -  E[e
sY   |   Y < A] 

A 
esxdG(x) 

/ G(A) 
0 

For  the  special case  in which    X    is exponential wi:h mean    1/X 

and    Y    is exponential with mean    1/u    we have 

W r(y-s)A 

s    -   (X + u)s + Xue 

X(M -  s)e 

a result  previously obtained in  [2]  and   [3]. 

All of  the moments ^an now be obtained by successive differentiation 

of   (2),   or by a direct conditioning argument.     For instance we obtain 

E[T]  - E[E[T  |   Nl] 

- E[NE[X]  +  (N - 1)E[Y   |  Y < A]  + A] 

A 

f xdG(x) 
(3) 

0 
.iM+0  + A  . 

G(A) G(A) 

By viewing the working-failed system as an alternating renewal 

process it follows that the long run proportion of time the component 

is failed is 

^"M- ""'■  ■   i i  fcj—^M^^^^frjfay^ 



E[Y - A I Y > A] _   c ...   r   .,    . 
E[T] -H E[Y - A | Y > A] " ProPortion of time failed 

which can be s'iown to equal 

I G(y)dy 

_A  
E[YJ + EfX] 

proportion of  time failed. 

- <■«■>■ im 
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2.  WHEN IS  T NBU,  n - 1 

The nonnegative random variable  W  is said to be new better 

than used (written NBU) if 

P{W > s + t | W > s) <_ P{W > t}   Vs , t >_ 0 . 

If we think of W as representing the life of some object then W 

NBU means that the additional remaining life of any s year old (i.e., 

used) item is stochastically smaller than that of a new item, for all s 

If  W  is NBU and has distribution function H then we also say 

that H  is NBU. 

Proposition 1: 

If  X , the length of an up time, is NBU then so is T . 

Proof; 

Suppose failure has not yet occurred by time s .  Now there are 

2 possibilities: 

Case 1; 

At   time    s    the component is up and has been up for a  time    t   . 

In this  case the remaining time to failure has the distribution of  the 

convolution of     F      and    H ,  where    F       Is  the distribution of remaining 

up  time   for a component that has been up  for a time    t    and    H    is  the 

distribution of  time to failure starting with the component  initially 

down.     But since    F      is stochastically smaller than    F    (definition 

of    X    being NBU)  this distribution is stochastically smaller  than  the 

convolution of    F    and    H , which is   the distribution of    T  . 

.■i£at^_ i fa" a 



Case 2: 

At time  s  the component is down and has been down for a time  t 

(necessarily,  t ^ A).  In this case the remaining time to failure has 

some distribution call it D .  However the distribution of T can be 

written as the convolution of D and the diBtribution of the first 

time that the component has been down for  t consecutive time units. 

This Matter convolution distribution is clearly stochastically larger 

than D . 

Thus in all cases the distribution of T is stochastically larger 

than the distribution of remaining time until failure. Hence T is 

NBU.I I 
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3.     EXPONENTIAL LIFETIMES. GENERAL    n 

In this  section we suppose there are    n    components and the 

distribution of up  [down] time  for the  I      component is exponential with 

rate    A.lu.]   ,   1-1,   ..., n .    We start   ay deriving   E[Tl   ,  the expected 

time until the system fails,  that is until all  components are failed, 

starting with all components up. 

We can write    T    as the sum of independent random variables as 

follows 

(4) T - TA.0 + Z 

where T. _ denotes the first time that all components are down (It la 

thus equal to T in the special case A - 0) and Z the extra (or 

additional) time from T - until all components are failed.  Now Brown 

in [1] has computed E[T. -J and showed it to equal 

k \ k 
n r-J- - (-1)* 

J-l Ai n j-l i. 

k«! 1 <i <•••<! 1 1 2     k 
j-i \   j   if 

Thus ir remains to compute E[Z] . Let M denote an exponential random 

n 
r 

variable with rate    w = /, u.   .    Then by conditioning on whether or not 
1    1 

all components remain down in the    A    time units following time    T    _    we 

obtain 

E[Z]  - Ae"uA + (1 - e"uA)lE[M   |   M <■  A] + E[Dl + E[Z)] 



where D  Is the time until all components are down given that they 

were all down and one has Just gone up.  Thus, from the above, we 

obtain 

n 

xe  dx 

(5) E[Z] - A + (eUA - 1)  0     ■   + E[D]  . 
1 - e 

However,   Ross   In  [5]  has shown that 

ii 
(6) E(D] -  i^L-J 1 

n     n    X 
y JJ n —J— 

and thus the expression for E['l] follows from (A), (5) and (6). 

The next proposition partly characterizes the distribution of 

T and will enable us to obtain bounds on all higher moments of T . 

Proposition 2; 

T  is NBU. 

Proof: 

Suppose that all components have never been simultaneously failed 

by time s .  There are 2 cases. 

Case 1; 

At time a all components are down, the one that has been down 

for the shortest time having been down for a time t (where necessarily 

t  < k),     Since T can be expressed as TA   (the first time all 
A"t 

V-T:, iirtwp 
■H:. 
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components have been down for the past  t  time unLts) plus a random 

variable having the same distribution as the remaining time Co failure 

of the system, it follows that T  Is stochastically larger than the 

remaining time to system failure in this case. 

Case 2: 

Not all components are down at time s .  In this case the remaining 

time to system failure can be written as the time until all components 

are down plus an independent random variable having the same distribu- 

tion as Z  in the representation (A).  Now Ross in [6] has shown that 

the time until all components are down is stochastically larger starting 

with all being initially up than starting in any other position. Hence, 

from the representation (4), it follows that the remaining time to 

system failure at time s  is stochastically smaller than T . 

Hence, in all cases T is stochastically larger than the remaining 

time to system failure; thus proving the result. || 

The above result is particularly useful as it enables us to obtain 

bounds on E(f(T)]  whenever f  is an increasing convex function, by 

use of the following special case of Theorem 4.6 of Marshall and Proschan 

[4]. 

Proposition 3: 

If  X  is NBU with mean  1/X , then 

/ 
E[f(X)] < f f(xUe~AxdA 

ir-S*? 
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for all Increasing convex functions f . 

in words Proposition 3 says that If X  Is NBU then 

E[f(X)] ^_ F[f(M)]  for all Increasing convex  f , where M  Is an 

exponential random variable having the same mean as X . 

Corollary 1: j 

I 
Var(T) <_  (E(T])2 . 

Proof; \ 

Follows Immediately from Propositions 2 and 3 by use of the 

2 
function f(x) • x . 

--    - & 
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