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%7Most local operators used in edge detection can be modelled by one
of two methods: edge enhancement/thresholding and edge fitting. This
dissertation presents a quantitative design and performance evaluation
of these methods. The design techniques are based on statistical
detection theory and deterministic pattern recognition classification
procedure. The performance evaluation methods developed include:
(a) deterministic measurement of the edge gradient amplituaz; (b)
comparison of the probabilities of correct and false edge detection;
and (c) figure of merit computation. The design techniques developed
are used to optimally design a variety of small and large mask edge
enhancement/thresholding operators. A performance cdmparison is given
between these edge detectors. A new edge fitting algorithm is intro-
duced. The new algorithm is derived in the discrete domain, this
allows a direct optimization of the operator's performance. The
advantages of the new algorithm are better performance with real world
pictures and less sensitivity to signal-to-noise ratio‘xy
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Chapter 1

Introduction

Imege edues can be defined as 1local changes or
discontinuities in an image attribute such as luminance,
tristimulus value, or texture |{1]. These changes are
important in the analysis of images because they often
provide an indicetion of the physical extent of objects
within the image. A~ operator used to detect these changes
is called an edge detector. This operator transforms an
image into a binary array rcontaining ones where the
magnitude of the discontinuity 1is significant and zeros
elsewhere, The binary array obtained is usually called an
edge map. This transformation is useful in image
understanding systems, because while the edge map retains
much of the basic structure of the image, less
computational effort 1is required for analysis as compared

to the original image.

1.1 Edge Detection Techniques

There are meny techniques which can be used in edge
detection. These include simple ditferential operators,

template matching, least squarce edge fitting, and
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techniques based on statistical detection theory. There
are also many heuristic methods developed for edge
detection. A complete survey of all edge detectors is not
a simple task, and can even be confusing. Hence, only a
group of the most useful operators will be discussed in the

following sections.

Linear differential operators are commonly employed in
edge detection. In this method, edges are enhanced by
convolving the image with a set of discrete differential
operator masks. A corresponding edge map is obtained by
thresholding some function of the outputs of these masks.
One of the differentiel operators used is the gradient.
The gradient is approximately calculated by convolving the
image with two masks that measure the pixels luminance
change in any two orthogonal directions. The sum of the
squares of the masks output is 2 measure of the gradient
magnitude squared. Roberts has used 2x2 masks to compute
the luminance oifference across the diagonels {2], while
Prewitt [3] and Sobel [4] have used 3x3 masks to measure
the difference 1in the horizontal and vertical directions.
Another ditferential operator, which has been used in edge
enhancement, is the Laplacian operator. Examples of the
Laplacian maske are given in [1, 3}. However, since the
Laplacian operator is more sensitive to points and lines

than to edges [5), it is not an efficient method for edge

detection. In general, all of the linear differential
2




operators have the a2dvantage of using simple mathematical
formulas which require short computation time. Their major
disadvantage is their csensitivity to noise. One mcthod to
improve the performance of differential operators, in the
presence of ncise, is to increase the masks size. This can
be noticed in comparing the performances of the Roberts and
1@ Sobel operators. Another, and rather better method, is
to design edge detectors taking into consideration the
effect of noise. This leads to using template matching in

edge detection.

The problem of edge detection can be reformulated as
fuvllows |[1]: given a subregion of the image, find one
member of a finite group of templates representing edges
and no edges, such that this member matches the subregion
as close as possible and label the subregion accordingly.
Matching is wusually measured in terms of the mean sauare
difference between the subregion and the templates.
Calculation can be simplified by expanding the mean sqguare
difference and neglecting the slowly varying terms. The
remaining term 1is the cross correlation between the
subregion and the templates. This term should be maximunm
for the best match. Cross-correlation template matching
has been used in edge detection. One of the template
matching operators was introduced by Prewitt [3]. The
Prewitt method aimed at finding a better evaluation of the

gradient operator by using 2 set of oriented edges and
3
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searching sequentielly at each point for the best match.
In this method, gradient magnitude 1is equated with the
maximum response, and direction is taken parallel to the
orientation of the corresponding detector [3], The
templates correspond to horizontal, vertical and diagonal
edges. Other forms of templates were later introduced by
Kirsch [6] and Robinson [7]. The basic advantages of these
operators are that they can be implemented with a
relatively small computation effort. 1In addition, proper
choice of the template coefficients gives almost cptimum
performance. However, optimum performance can never be
achieved since the number of templates used is always
finite. A different approach to achieve optimum

performance was later introduced by Hueckel.

In Hueckel's algorithm (8], edges are detected by
fitting circular subregions of the image to ideal edge
models. If the fit is sufficiently accurate, an edge is
assumed to exist with the same parameters as the ideal edge
model. The edge model used is a two-dimensional step in o
circular disc. The parameters of this model are the
luminance levels, the edge orientation and distance from
the center. The accuracy of edge fitting is measured in
terms of the mean square error criterion, Hueckel
introduced a polar Fourier expansion and used the first
eight coefficients in the minimization procedure. Although

this approximation simplifies the computation needed, it

4




affects the accuracy of the minimization procedure.,

Hueckel has not provided any evalustion of this problem.

Ancther method to achieve optimum edge detection is to
introduce statisticael detection theory concepts. 1In the
statisticzl model, images are considered to be the sum of
two components; the first is an ideal image in which edges
of different orientations and heights are distributed,
while the second congists of a rendom additive noise. For
this model, edge detectors are designed to achieve an
optimum probability of correct decisions. Griffith has
used this approach in the analysis of scenes consisting of
prismatic solids. He introduced a detailed study of the
distortion and noise affecting the image, and implemented a
decision procedure based on computing the probability that
8 line representing a real edge 1is centered in and
traverses socme 1long narrow band. But, the computation of
tiiis probability was a difficult *+“ask, and the final
results were based on many unjustified approximations [9].
A different epproach to statistical edge detection wes
proposed by Yakimovsky [19]. In this approach, two
adjacent regions of the image are tested; first assuming
that they have the same average luminance, and then
assuming that they have two different Iluminance lievels.
Maximum 1likelihood estimates 1in both cases are compared,
and an edge is i1ndicated 1f it is more 1likely that the

regions have two different luminance levels. A

5
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disadvaentage of the Griffith and Yakimovsky algorithms is
that they are designed to detect edges of 2 certain
orientation. They are less sensitive to edges with other
orientations. To avoid this problem, the operator is
usually applied with enough orientations to give wuniform
response, The different results are then combined to form

the edge map.

A completely different approach to edge detection 1is
to use the a priori knowledge of the image objects in
searching for their boundaries. Examples can be found in
the work of Kelly [11] and Chow {12}, Kelly introduced a
program for extracting an accurate outline of a man's head
from a digital picture {11]. His method consisted c¢f three
steps. First, a new digitel picture was prepared from the
original; the new picture is smaller and has less detail.
Then edges of objects are located in the reduced picture.
Finally, the edges found in the reduced picture are used as
a plan for finding edges in the original picture,. Chow
studied the problem of detecting the boundary of the human
heart in & <cineagiogram [12]. He assumed that the
probability distribution of any small region of the picture
that contains only object or only background is wunimodal,
and a region that contains both object and background will
be a mixture of the two distributions. The unimodal
distributions are assumed to be Gaussian. Starting from

these assumptions, Chow's algorithm examines the
6
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probability distribution of the image subregions. If the
standard deviation is large, the probability distribution
is fitted to a bimodal Gaussian. The bimodality is
measured by computing the v:zlley-to-peak ratio. If this
ratio 1is high, the points in the subregion are classified
as a part of the object or the background depending on
their intensity. Although the Chow algorithm is successful
in determining the boundary in single-object scenes, it 1is
not directly extendable to scenes with many objects. This
later case is more important in scene analysis. Because
the previous operators are limited in their applications,

they will not be considerd further in this dissertation.

1.2 Edge Detector Evaluation

Another field of study in edge detection, which has
not been given enough consideration, is the performance
evaluation of edge detectors. As stated in reference [1],
this evaluation is difficult because of the large number of
proposed methods, the difficulties in determining the best
parameters associated with each technique, and the lack of
definite performance criteria. One  method for edge
detection evaluation was suggested by Fram and Deutsch
[13]. 1In thig method, a test image in the form of ideal
ramped edge with additive Gaussian noise 1is used to
evaluate the performance of edge detectore suggested by

Hueckel, Macleod, and Rosenfeld. Two parameters arc used

7
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in this evaluation, the first 1is the maximum likelihood
estimate of the ratio between the number of correct
detections of edges and the total number of detected edges.
The practical <cignificance of the second parameter is not
clear. The results are compared with bhuman ability to
perceive edges. In this experiment, the results obtained
with the Hueckel operator appear to be infericvr. This can
be partially explained by. the fact that the Lueckel
internal parameters used are far from the optimum choice.
Another method for measuring the performance of edge
detectors was given by Pratt [1]. This method uses a
fiqure of merit which is sensitive to the different kinds
of errors encountered 1in edge detection: missing or
displacing a true edge and the false detection of noise.
The figure of merit introduced has been used to measure the
optimum performence of the Roberts, Sobel, Kirsch, and
compass gradient operators in the case of an artifical
image of a vertical edge with additive Gaussian white
noice. The experiment shows that the Kirsch and the Sobel
operators have relatively high fiqures of merit followed by
the compass gradient operator and finally the Roberts

operator. These results agree with the visual dato.
1.3 Organization of Dissertation

In the previous survey it should be noticed that while

there are many operators thet can be used 1in edge

8




detection, the effort given to the comparison and
eveluation of these operators has not been sufficient. A
guantitative evaluatiorn of the edqe detectors is needed if
these operators are to be efficiently used @2s a part of an
image understanding system. The following chapters will be
devoted to the introduction of gquantitative methods into
edge detection problems. In Chepter 2, a detailed
discussion of the basic edge detection opere.ors, uced in
this dissertation, is given. An image model 1is developed
in Chapter 3, and used to evaluate the performance of these
edge detection operators. 1In Chapter 4, edge detection is
formulated as a pattern classification problem, &nd 2 least
square error algorithm 1is wused to determine the edge
detectors parameters. The figure of merit derived by Pratt
is used in Chapter 5 to evaluate the performance of the
different operatots in the case of vertical or diagonal
edges. The results obtained in these chapters are used in
the improvement of existing operators and in the
introduction of new methods for edge detection. These are
given in Chapters 6 and 7, respectively. In Chapter 8,

some final conclusions are presented.




Chapter 2

Review of Edge Detection Operators

The edqge detectors of interest in this dissertation
can be defined as local operators which are able to detect
image dicontinuities without any a priori knocwledge of the
image content. These local operatoirs are useful as a first
step in many image wunderstanding csystems. Most of the
local edge detecctors can be classified into two basic
groups. The first 1is the edge enhancement/thresholding
methods that includes the use of simple Jdifferential
operators and template matching. The second 1is the edge
fitting technique. For purpecses of design and analysis,
the input to the edge detector is assumed to be an ideal
ramp edge as shown in Fiqure 2.1. The function represented
in this fiqgu.e 1is wusually the luminance attribute,
Parameters that describe this edge are 1its location,
orientation, edge width and height. These parameters are
to be estimated by the edge detector. One of the factors
which determine the edge detector's performan.e, 1is the

operator's accuracy in estimating the edqge parameters,
P Y

In this chapter, a detziled analysis of some of the

edge detection operators 1s given, Section 2.1 reviews the
10
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Figure 2.1. Edge model




edge enhancement/thresholding operators. Section 2.2
evaluates the edge detectors performance using an ideal
edge model. Section 2.3 discusses the edge fitting

technique.
2.1 FEdge Enhancement/Thresholding Methods

The edge enhancement/thresholding technique ca2n be
represented by the block diagram shown in Figure 2.2. 1In
this model, the image F(j,k) is first convolved with a set
of linear spatial operators {Hi(j,k)}, the output G (j,k)

is given by
G; (3,k) = H;(j,k) ® F(j,k) (2.1)

where 1 = 1,2,...,m. A nonlinear function of the set
{Gi(j,k)} is then calculated. The output A(j,k) is

described by the equation
A(3,k) = g(cl(j.m.szu.k).....c,,,(j.k)) (2.2)

Typical forms of the function g(.) are the sum of squares,
the square root, the magnitude, the maximum or combinations
of these functions. The output A(j,k) is a measure of the
discontinuity at the center of the convolving masks; it can
be used to form a grey-level ecae map. In order to improve
edge visibility, and to reduce 'he edge map complexity at
the same time, the grey-level edge map is compared with a

threct.uld t, and an edge is detected if

12
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A(],k) —>‘ t (2.38)
while if

A(j,k) < t /.2.3b)

the decision is no edge. The threshold t defines the
resulting edge map; if it 1is chosen too high, then
low-amplitude changes will not be detected, and if it 15

chosen too low, noise can be falsely detected as edges [1].

If an edge is detected, it 1is often useful to
determine its orientation and height. This information can

be obtained from the set {G;(j,k}} , as will be shown later.

After this general introduction to the edge
enhancement/thresholding technique, some important examples
of the simple differential operators and template moatching

operators will be given,
2.1.1 Simple Diftereantial Operators

This group of edge detectors includes the Roberts [2],
the Sobel [4], and an operator suggested by Prewitt [31.
The Roberts operator is applied on 2x2 subregions of the

image as sketched 1in Figure 2.3a. The output A(j,k) is

given by
AGiLk) = |(f,-€.0% + (£,-£,)2 i (2.4)
+ T2 73 “1 74
14
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b'

Figure 2.3.

2x2 Subregion

2 3
fq £e
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3x3 Subregion

Image subregions
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Equation 2.4 can be viewed as two convolutions

0 -1
X(j, k) = @ F(j,k) (2.5a)
1 0
-1 0
Y(j,k) = 8 F(j,k) (2.5b)
4] 1
foliowed by the nonlinearity
[ 2 2 |
A(3,k) = [(x(j.k)) + (Y (5,K)) (2.6)
Roberts has also introcduced a magnitude operator, in which
the discrete gradient is alternatively calculated as
A(3,k) = |X(5,k)] + [YG.%) ] (2.7)

In both operators, an edge is detected if A(j,k) > t, where

t is a given threshold. If an edge is detected, its

orientation is given by

B(3,k) = + tan'l(“f(l—ﬂ‘]:‘f’-)

The angle 0 (3,k) is measured with respect to the horizontal

(2.8)

axis.

Approximations of the discrete gradient function by

3x3 operators were given by Prewitt [3] and later by Sotel
[4). These operators are applied on 3x3 subregions of the
image 2.3b.

as sketched in Figqure The outputs X(j,k) and

16
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Y(j,k) are given by

1 0 -1
X(3,k) =}]¢c -c| ® F(j,k) (2.9a)
1 o0 -1
-1 -C -1
Y(j,k) =} 0 0 0| ® F(j,k) (2.9b)
1 ¢ 1

where the constants ¢ is 1 in the Prewitt and 2 in the
Sobel operator. The output A(j,k) 1is still given by
Eg. 2.6, while the edge orientatior with respect to the

horizontal axis is calculated by

: = -1{Y(j,k) (2.10)
8(j,k) = tan (§7%7E7>

2.1.2 Template Matching Operators

The compass gradient (3], Kirsch [6], 3-level and
5-level operators |7] are examples of template matching
operators, in this technique, the input image is convolved
with the set of linear masks {H;(j,k)} shown in Figure 2.4.
The outputs {Gi(j,k)} measure the gradient components along
the basic orientations. The enhanced edge is formed as the

maximum of thc groadient arrays. Thus

A(j,k) = max{|Gl(j,k)|,|Gz(j.k)|,---,|Gm(j:k)|} (2.11)

If A(J,k) is greater than the threshold t, an edge is
17
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a) compass directions

i) Compass
gradient

i) 3~ level
b)
I -1
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detected with orientation 6(j,k) given by the compass
direction of the largest gradient component. Because of
the symmetry of the 3-level and 5-level masks, they can be

implemented using the first four masks only.

In Chapter 1, it was mentioned that the previous four
operators can be considered as cross-correlation template
matching operators. This can be shown as follows; assume
that it is required to match a subregion of the image with
one of m templates, where the elements of the 1'th template
are shown in Figure 2.5. The 1'th cross correlation is

The first term of Eq. 2.12 1is constant for a given

subregion. In addition h 1is proportional to Z f

u- ‘e
3,273
Thus maximizing Eq. 2.12 1is equivalent to maximizing
2, Eae
ILINS
]

In this section a survey of the edge
enhancement/thresholding operators has been given. It
should be noticed that, because of the diversity of the
operators used, it is useful to compare the performance of
these operators quentitatively. There are different
approaches that can be used in this comparison. One

cxample is to compare the edge detectors outputs for a set

cf ideal edges. This technique will be considered in the
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Figqure 2.5. Elements of the .'th template




following section., Other methods that imrlement
statistical detection theory will be discussed in

Chapter 3.
2.2 Edge Detectors Performance, Casc of Ideal Edge

In this analysis, the edge model shown in Figure 2.1
is used. Here the edge is assumed to be of zero width
(ideal step function). When an edge detector is applied on
this edge model, the output will be determined by the edge
position and orientation. To simplify the analysis, the
effect of each parameter is considered separately. First,
tlie edge ic assumed to pass through the center of the edge
detector with general edge orientation ¢, Second, the edge
is assumed to have a fixed orientation while 1its distance
from the edge-detector center is varied. 1In both cases the

outputs of the different edge detectors are evaluated.
2.2.1 Case of Central Edge with orientation ¢.

The average intensities of the different pixels, of a
2x2 and a 3x3 image subregion containing a central edge,
are shown in Fiqure 2.6. These intensities are given as a
function of the edge orientation ¢ . Because of the
symmetry of the edge detectors, it is sufficient to measure

n
the operators performace for 0 < ¢ ¢ 7.

when the Sobel operator is applied on this edge model,

21
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the values of the output A* and the e¢stimated edge

orientation are as follow.

thisec (¢)] 0 < <tantid
A= h b-9tan2(¢)+22tan(¢)-1]2 12.13
~ Y4tan (¢) 12.13)
-1,1 Ll
tan (3) < ¢ < <
+[7tan2(¢)+6tan(¢)-1]2]% S
’ ¢ 0<¢ < tan-l(%-)
8 = 2 (2.14)
tan-1(7tan (6) +6tan (9) -1 tanld) <o <l
-9tan” (¢)+22tan(¢)-1

Similar expressions can be obtained for the other simple

differential operators.

When the Kirsch operator is applied, the values of A

and 6 are as follows.

12h 0 <¢ < tan'l<1)
2
A = h[lz-(3t::g%;;l) ] tan"1(3) <o < tan"hm)  (2.15)
2
h[lz-(lzzﬁﬁgﬁ)) ] tan1(3) <4 <]
0 0 < ¢ < tan"L(})
0= i (2.16)
2 tan"t )< 6 < §

Similar expressions can be obtained for the other template

matching operators.

* Starting with this section, the (j,k) coordinates are

dropped.
23




Plots of the values of A and 6 for different edge
enhancement/thresolding operators 2re given in Figures 2.7
and 2.8. 1In these curves, the value of A is normelized
with respect to its value for a vertical edge. From these
curves, it is clear that all the e¢dge detectors are not
isotropic because A varies with ¢ . This variation is
smaller in the template matching operators compared to the
simple differential operators. Also, the estimated edge
orientation, 8 is wusually different from the actuval
orientation, ¢ . This difference is smaller for the simple
differential operators than for the templeate matching
operator - This is basically because the template matching

operators measure the edge orientation in a quantized step.

2.2.2 Case of @ Fixed-Orientation Edge with Verying

Displacement

In this case, the edge is assumed to have a fixed
orientation, while i%ts distance to the center of the edge
detector 1s changed. The edyge orientations chosen are the
vertical and the diagonal, with $=0 and Tn/4,
respectively. Similar results can be obtazined for
horizontal and -w/4 orientation edges. These are the only
edge orientations for which the continuous-edge shape is

preserved after sampling.

The intensities of the different pixels for 2

displaced vertical edge are shown in Figure 2.9. When the
24
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Sobel operator is applied on this edge model, the value

the output A is given by

‘ ah 0<ac<s
A = (2.
3 1 3
e 4h(§wd) 5 < d < 5
When the Kirsch operator is uged, A is given by
1205+ 0 < d <3
A = (2.

15h(3-d) 5

I A
Q
I A
YW

Plots of A for the different operators are shown

Figure 2.1l0a.

of

17)

18)

in

In the case of a diagonal edge, the average

intensities become & second order polynomial of

the

distance across the diagonal. The output A for the Sobel

operator is given by

h(3-2d%) 0<d<i
- 2
A= {nn-@-22vz-a?) = <d <2 "
V2 V2 o
h(—d)? /I<d<
2 V2
and for the Kirsch operator
his+10(1-2%)-(2-d)?) 0 <a <1
2 V2
A= {nis-s@a-L2a2wi-a3?) L <a <z (2.
2 V2
5h(=--d) /I<d<
2 /2

19)

20)
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Pilots ot A tor the ditterent operators are dgiven 1n

Figure 2.1U0. 1In these curves, A 1s normalized with respect

(as

to 1ts value tor a centrai eddge. These curves can be used
to determine edge detector resolution, It should be
noticed that small size operators have better resolution.

Also, tor operators with the same mask size, the resolution

1s slightly dependent on the mask shzape.

The results obtainrd 1n this section show that edge
detector petormance 1n the <case o0f edges with general
location and orientation can be approximately determined
trom their pertormance 1i1n the case ot central edges with
vertical or diagonal orientat.ions., 'This last case is used

as the 1deal edge model 1n the tollowing chapters.
2.3 Edge Fitting Method - Hueckel's Algorithm

In edge titting, the 1mage tunction F(x,y) detined
over a subregion S 1is compared with an 1deal edge model
SE(x,y), where p 1s the edge parameters vector. The
ditference between the actual and 1deal models 1s tunction
ot p, and by changing these parameters the ditterence can
be minimized. Edge acceptance 1s based on the value ot the
minimum ditterence. It 1t 15 less than a given threshold
t, the 1mage subregion 18 classitied as an edge with the

corresponding parameter Usually the mean square

Bmin®
error 15 used tO measure the ditterence between the 1ideal

and actual edge. This error 18 given in the torm
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v

EB = J I [F(x,y)-SE(x,y)lzdxdy (2.21)
b

Minimization of the error Ep can be obtained by an

iterative procedure which is time consuming. However it is
possible to introduce approximations of Eg. 2.21 such that
its minimization can be achieved by simple analytic
methods. This was the basic contribution of hueckel in his
papers published in 1971 and 1973. 1In the first paper,
Hueckel used an orthogonal transformation to solve the
problem of edge fitting [8]. Later, he extended his ideas
to general edge-line fitting [14]. The Hueckel algorithm
can be summarized as follows: A circular subregion of the
image is compared with the edge model shown in Figure 2.11.

The 1luminance function S!§x,y) of this edge-line model is

given by
{ b_ A<r_<r,
SE = b_+t_ r_ <A < r, (2.22)
b_+t_+t+ EoN S Be S A
where
= | ol r r t t b ]T (2.23
B = €y Yy - + - + - -23)

The functions F(x,y) and S_(x,y) are expanded using a set

B

of two dimensional orthogonal functions {Hiio. This set is

chosen to be separable into the product of an anqular and

radial component. The error EE is now in the form




Figure 2.11. Hueckel's edge-line model
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Ep:= E: (ai—si)2 (2.24)
i=0

where

a; = I f Hi(x,y)F(x,y)dxdy (2.25)
b

5, = I j Hi(x,y)SE(x,y)dxdy (2.26)
b
The series ian Eq. 2.24 is approximated by its first naine
components. The minimization of this truncated form and
calculation of the corresponding Emin can be achieved by
solving simple algebraic egquations. Hueckel argqued that
the truncation of the error series does not affect the
per formance of his algorithm because high frequency

components are more related to image noise than to its

! signal contents.

The Hueckel algorithm has been consicered Ly many as
an almost optimum procedure for edge deotection. A detailed
analysis of this algorithm shows that this is not true.

, The basic ditficulties with the Hueckel algorithm are the
effect of the truncation of the series expansion and
inaccuracies in the minimization procedure and computation

of the edge parameters. These problems are discussed in

Appendix A.




A major criticism of the previous approach to edge
fitting 1is the fact that although images are usually
discrete functions, the optimization procedure 1is derived
in the continuous domain, thus the results obtained are
suboptimum. This difficulty can be avoided by wusing the
discrete image model in the derivation of the minimization
procedure. An algorithm based on this idea will be

introduced in Chapter 7.

2.4 Conclusion

In this chapter a review of sonie of the basic edge
detection operators has been given. The operators chosen
have the advantage of possessing simple mathematical
formulas defined over a small region of the image, and thus
it is not difficult to introduce a qyuantitative evaluation
of their performance. In Chapters 3, 4, 5 and 6, different
guantitative methods are used in the design and evaluation
of the edge enhancement/thresholding operators. In
Chapter 7, further investigation of the edge fitting

technique is given.
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Chapter 3

Statistical Model for Edge Detection

Onc of the methods which can be used in the evaluation
of edge detection operators, is to test their performance
in the case of an ideel signal with additive noise. This
test 1is easy to implement. 1In addition, if the noise is
assumed to be additive, white, and Gaussian, analytical
results are not difficult to derive, Since edge detectors
are used to classify different illumination inputs into
edges or no edges, their performance can be tested by
introducing inputs in the form of a noisy edge, or no edge,
and then estimating the probability of making the right
decision in each case. The following sections develop a
statistical model for edge detection. Section 3.1 is a
review of different decision rules used in
hypothesis-testing. Section 3.2 evaluates the performance
of the edge detectors for noisy edges. Section 3.3

discusses the estimation of the edge orientation,

3.1 Edge Detection as a Hypothesis-Testing Problem [4, 15,
and 16]

In Section 2.1, the edge enhancement/thresholding

3e
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technique was described in detail. This technique closely
rescmbles the hypothesis—-testing algorithms used in
classical statistical decision theory. The edqge
enhancement/thresholding operators have as an input an
image subregion, with one of two hypotheses to be true,

H.: The subregion corresponds to an edge;

1

HZ: The subregion correspords to a no edge.
The edge detector calculates a function A of the input
image, and accepts one of the two hypotheses according to

the rule: Accept Hl if

A>t (3.4 )

otherwise accept Hz.

If the input image is noise free, it 13 possible to
find a perfect decision strategqy. On the other hand, if
the image is affected by noise there will always be a
possibility of making a wrong decision. For this case,

four probabilities can be derived

P (edge|edge) = P(A>t|edge) (3.2)
P(no edge|no edge) = P(A<t|no edge) (3.3)
P(no edge|edge) = P(A<t|edge) (3.4)
P (edge|no edge) = P(A>t|no edge) (3.5)

The first two equatinns correspond to correct decisions,
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while the other two correspond to incorrect decisions.

I1f the probsbilities of occurance of edges and no
edges in a given image are known, then the probability of

error will be in the form

P(error) = P(no edge|edge)P (edge)--P(.dge:no edge) (3.6)
*P (no edge)

A decision procedure to minimize this probability of error

is given by the rule: Decide an edge if

o (A|edge) , P(no edge)
»(A[no edge) - P(adge) (3.7)

and decide no edge otherwise. This method is known as the
Bayes decision rule for minimum probability of error. 1In
Eq. 3.7, p(Aledge) and p(Alno edge) are the conditional
probability density functions of A, A sketch of these
probabilities is shown in Figure 3.1. The threshold t is
set at a value which satisfies Eg. 3.7. 1In the speciol

case, it edges and no edges are equally probable,
t = a 13.8)

where a 1s the point of intersection of the two conditional

probabilities.

I1f, in addition, the costs of taking onre of the four
decisons are known, namely C(edgeledge), AN .

C(no edge|no edge), then a decision procedure to minimize

the average cost is to decide an edge if
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p(A|edge) (C(edge|no edge)-C(no edge|no edge)]
p(Ajro edge) 2 TC(no cdge[edye)-C(edgeedge)]

P (no edge) (3.9)
Pledgei

Otherwise, decide no edge. The threshold t can be

specified accordingly.

In more general cases, when the probabilities of edges
or no edges are not known. The threshold t can be set by

one of the following two methods.

\

\

In the first method, t is <cet to achieve a given
probability of missing an edge, P(no edge|edge), while
minimizing the probability of false detection,
P(edge|no edge). In this case, t is the solution of the
equation

t

P(no edge|edge) = I p(x|edge)dAa (3.10)

-0

This method, known as the Neyman-Pearson criterion, is

frequently used in Radar detection.

In the second method, t is set to minimize the maximum
possible error, that occurs when the prohabilities of ecyes
or no edges change for different input images. In  this

case the edge detector threshold is chosen such thet

P(edge|ro edge) = P(no edge|edge) (3.11a)
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o 2

J p(A|no edge)dA = f p(A|edge)dA (3. 111 6)
t

-

This is known as the minimax criterion.

Any of the previous decision strategies can be used in
the design of edge detectors, ecpecially thc Neyman-Pearson
criterion, which does not require the knowledge of tho
probabilities of edges or no edges. After choosing the
threshuld t, the performance of the edge detector can be
evaluated as a function of the probabilities of detection
and falce detection. Computstiorn of these probabiiities

for the edge enhancement/thresholding operators is given in

the following section.

3.2 Edge Detector Performance, Case of Ideal Edge Plus

Noise

In the model used in this section, en image subregion
is considered to be the sum of two components. The first
is an ideal cecntral edge with orientations ¢ = 0 or n/4,
while the second is an additive white Gaussian noise with
zero mean and :ktandard devietion g. The actual intensity

f is then given by
)

f. = s. + n. (3.12)

where Sj and nj are the ideal and noise components,

respectively. The random variable fj has the protability
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— o=

density function

Ll

20

2
p(f.) = (chzflfexp{-(fj SJ') ]
J (3.13)

When an edge detector is applied on this image model, the

output of the i'th convolving mask is given by

G, = Zmi(j)fj (3.14)
]

where M (j) are the components of the mask Hy. In this
i

case ({G,} will be joint Gaussian with the probu™ility
i

density function

m
- - l ~ T —l . .
p@ = 2m 2| Fexplze @ LTHEDT (5 )

In Eq. 3.15, G and G are vectors of the actual and ideal

masks outputs given by

T
G = [Gl G2 = 13l Gm] (3.16)
with
5. = 2 M. (j)s. (3.18)
i 3 i j

Also, the coveriance matrix 2: is given by
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2 2 . L] L] . 2
11 ‘12 %1m
2 2 L] L] 2
> . |[&m 2" %2m (3.19)
2 2 P
%1 m2 m
L =
with
. - (3.20
Oy = O zj:Mk(J)MR(J) )

The analysis introduced so far applies to both simple
differential and tei, te matching operators. To obtain
expressions for the probability density function of A, each

group of edge detectors has to be considered separately.
3.2.1 Simple Differential Operators

With the Roberts, Sobel, and Prewitt operators, two
convolving masks are used. The outputs X and Y are joint
Gaussian with mean and covariance matrix as given in

Table 3.1.

From Table 3.1, it can be noticed that the random
variables X and Y are independent. If the nonlinear

function used is the sguar: root, then
A= (x24y) ¥ (3.21)

and the probability density function of A in the case of no

edge is given by [17). Thus,




TARLE 3.1

Mean Vector and Civariance Matrix of
Differential Gradient Operators

G
Operator Z
vertical diagonal =t
no edge edge edge
o 1 B /I o]
Roberts h h o
O_J -] 0 0o V2 _J
(0] [4] [3] /17 o]
Sobel h h /T3 L]
0 0 3 0
[°) ] ] )
i
o E 2 A
Prewitt h h o
0] 0 _J 2] 0 /%
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while in the case of an edge

2yt
—AZ e:»(p[-(A +a2 )]IO( Aaz) A>0
o 20r G 13.23)

p(A) =
0 A <O

where o, is the diagonal elements of _Z_: , and
a2 = ;2 o §2 (3.24)

In Eg. 3.23, IO(~) is the modified Bessel function of zerc

order.

The previous probability density functions can be used
to determine the probability of false detection Py and the
probability of correct detection Pp, for a given threshold

t. These probabilities are of the form [18]

t2
PF = exp (-7—~7) { 3.525)
20
r
a ¢t (3.26)
P. = Ql——
> = o)

where Q(a,b) is Marcum's Q-function defined as

® 2. 2 ’
Q(a,b) = J X exp[—a X ]Io(ax)dx (3..27)
b 2
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If the nonlinear function used,is the sumof magnitudes
A= |x|] + |y| (3.28)

the probability density tunction p(A) can be derived in the

form
1 A2+a2
p(A) = exp |\-——»
2/?or 4o
~ o~ ~ ~ -~~ -~ "N (3.29)
[pl(X,Y)+pl(X,-Y)+pl( X,Y)+pl( X,~Y)]
where

(X-Y)A-XY A+X+Y A-X-Y .
(X,Y) = ex ————— erf( )+erf( )] (3.30)
F1 p[ 20 ] [ /7or /for

The corresponding probabilities P _ and PD are

F

-
P = 1- 2erf( t )2 (3.31)
F /30 }
L r
PD = ]1- erf(t+x+y)+erf(t-x-y)
4 V20 Y20 /]
- S -~ - T
erf<t+x-Y)+erf(S X+Y) (3.32)
L &Or /2-01_
In the previous equations
X 2
erf(x) = J ‘—1'-‘ exp(-xi-)dy (3.3_’)
Y2n

0

To compare the performance of the Roberts, Sobel and
Prewitt operators, the probability ot correct detection PD
1s plotted as a tunction ot the probability of false

detection Pp. Figure 3.2 presents such plots tor vertical
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of false detection for simple differential

operators
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and m/4 edges, with signal-to-noise ratios, SNR* = 1.0 and
10.0. From these curves 1t 1is clear that the Sobel and
Prewitt operators are superior to the Roberts operator.
The prewitt operator 1s better than the Sobel operator tor
a vertical edge. But, tor a diagonal eddge, the Sobel

operator 1S € iperior.

3.2.2 Template Matching Operators

With the compass gradient, Kirsch, 3-level, and
5-level operators, ei1ght convolving masks are used. The

output vector G 1s @a joint Gaussian with mean and

1

covariance matrix as given 1in Table 3.2. The mean

ig
zero tor no edge, and § tor m/4 edge 1s the same as G tor
vertical edge with all the components shitted one position

downward.

For these operators, computation ot p(A) is not
straight torward. However, their pcrtormance c¢an be
evaluated using the probability density tunction p(G). As

an example

*'he si1gnal-to-noi1se ratio 1s detincd as

SNR = edge height 2
) noise standard deviation
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TABLE 3.2

Yy

Mean Vector and Covariance Matrix of
Template Matching Operators for a Vertical Edge

OPERATOR ~ A
G et
[ 3] (6 4 0 -4 -6 -4 0 4
2 4 6 4 0 -4 -6 -4 0
0 0 . .
3-Level :§ h :2 o ‘1 a?
-2 -4 . .
0 0 . .
| 2] | 4 : -]
[ 4] (12 8 o0 -8-12 -8 0 8]
K} 8 12 8 0o -8 -12 -8 0
0 0 . .
-3 -8 . . Py
5-Level Y L -12 . g
-3 -8 . .
0 0 . .
J L ' . s
[ 3] (12 8 4 0o o o 4 8]
{ 2 8 12 8 4 0 0 0 4
0 4 . .
Compass :g h g - ‘1 a?
Gradient -2 0 5 5
0 4 . .
2 8 . .




lae!
]

P(A > t|no edge)

P(|G,| > t*OR-|G

ll 5l > t...:OR- Ggl > t]no edge)

(3.34)

]

t t
1- J e [ p(Glno edge)dG,dG,...dG,
=it -t

Equation 3.34 can be evaluated numerically using the
parameters 1n Table 3.2. 1In Figure 3.3, PD 1s plotted acs a
tunction ot PF tor the ditierent template matching
operators tor SNR = 1.0 and 1lU.0, From these curves, it is
clear that the 3-level and 5-level operators have the best
pertormances, tftollowed by the Kirsch and finally the
compass gradient operator. This can be explained by the
fact that with the Kirsch and compass gradient operators
more points are used 1n evaluating A, and thus, more noilse

1s 1introduced, while these points are combined in such a

way that they do not enhance the edge output.
3.3 Estimation of the Edge Orientation

The analysis 1n the previous section can be extended
to the estimation ot edge orientation. For the simple
ditferenti1al operators, the edge orientation is determined

by the angie

0, = tan”] (g) (3.35)

it X and Y correspond tO no edge, they are zero mean
Gaussian random variables. In tnis case, Gols a random

variable with p(eo) given by
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ol
P(eo) = B (3.36)

for 0 < 6o < 2m It Y and X correspond to an edge, their

means are non zero 1in general, and p(eo)ls given by [19Y]

2

e—a“ 1+2erf(Q%%fx) 2 2
p(6,) = 1+2/macosy exp(a“cos“y) (3.37)

2w 2
where
2.2
o= (’—‘-—”“—’52-)35 (3.38)
20
r
and
= eo—tam'1 14 (3.39)

The conditional probability ot estimating the edge
orientation, within a tolerance A¢, given that the region
corresponds to an edge with orientation 4, 15 1n the torm

o+A¢
P(¢—A¢£Q:¢+A¢|edqe,<¢) = f pi{?ledge,<d)d¢ (3.40)

¢-0%
it should be noticed that the probability o: the exact

estimation ot the orientation ot a nolsy edge 1s zero.

For the template matching operators, the detection ot
the edge orientation angle can be considered as

multiple-hypotheses testing. If the actual edge angle 1s

@, the probability ot making a correct decision 18




p(@:gi{edge,<ei) = P(GiszVkledge,<Oi)

0 G,

= 1

- G,=t fc _---[picleage, <0;)a6,a5,.. a6,
i~ 'S

k

k#i (3.41)

Equation 3.41 can be evaluated numerically.

Since the estimation ot the edge orientation 1is
aftected by more sources ot error, compared with the
detection of the edge presence or absence, this additional
intormation should be used carefully. An unwise usage ot
the estimated edye orientation may reduce edge detector
pertormance. More research 18 needed to find an optimum

strategy tor using edge orientation information,
3.4 Conciusion

In this chapter, a statistical model tor edge
detection has been aeveloped., The pertormance ot the
ditferent edge detectors 18 evaluated tor actual centrsal
edges with specitic edge orientations. The success in
introducing such a model helps 1in transterring the
communication theory concepts 1nto edge detection problems.
This 1s & major poinu 1n the analysis and design ot edge
detectors, because many problems 1n edge detection have

already been solved 1n communication theory. It 1s

interesting to notice that the magnitude and angle ot the
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simple ditterential operators have the same pronability
density functions ot the envelope and phase ot nerrowband
signal with additive Gaussian noise |19]. Other examples

b ~an be noticed and used successtully.




Chapter 4

Edge Detection as a Pattern Classification Problem

Edge detection as a hypothecis-testing problem was
presented in Chapter 3. Another approach, which is
introduced 1n this chapter, is to consider edge detection
as a pattern classification problem. The edge detector has
as its input different image subregions, and it is required
to classify these subregions into the class ot edges Ql'
and the class of no edges Qz. The decision strateqy given

by Eq. 2.3 can be written in the form

If w(l)A + w(2) > 0 then A ¢ Ql (4.1a)
and if w(l)A + w(2) < 0 then A ¢ QZ (4.1b)
where the weighting vector w = [w(1) w(2)]T is related to
the threshold t by the relation
_ _ w(2)
t = wil} (4.2)

The components of w oare obtained by training the edge
detector using o set of known edge and no cdge patterns.

After this training phase, the edge detector is wused to

classify unknown prototypes in actual imaqges. The
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performance with actual images will depend on the procedure
used 1in the training phase. There are different methods
that can be used in training & pattern clessifier. A
review of these methods is given in Section 4.1. One of
these methods, the Ho-Kashyap algorithm, will be wused in
the edge detectors design. The basic concepts of this
algorithm and the reason behind its choice are discussed in
Section 4.2. Experimental results are summarized in

Section 4.3.

4.1 Training Methods for Pattern Classifiers

The decision function in Eg. 4.1 1is based on the
scalar variable A. This decision function can be

generalized to the n-dimensional case

T

dix,) = W x + wintl) (4.3)
where ln = [x(l),x(2),...,x(n)]T is the pattern vector and
!n = [w(l),w(2),...,w(n)lT is the weight vector. Usually,

Eg. 4.3 is expressed in the form

d(x) = QTE (4.4)
where x = [x(l),x(Z),...,x(n),l]T is an augmented pattern
vector and W= {w(l),w(2),...,w(n),w(n+l)IT is an

augmented weight vector, [20]). The decision strategy is

then
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If ETE >0 = x e Q (4.5a)

and if !Ti <0 = x¢@ (4.5b)

In the training phase, the pattern classifier is given two

1 and

sets of prototype patterns {X,,X.,...,X } e Q
{§N+1'§N+2""'§2N } £ Q. The weight vector w s
determined such that gTz > 0 for all patterns of ,, and

ET§ < 0 for all patterns of Qz.

multiplied by (-1), the reguired condition becomes ETx >0

If the patterns of Qz are

for all patterns. The pattern classification problem is

then reduced to finding a vector w such that
Xw>0 (4.6)

is satisfied, where E

(4.7)

Lizn
if there exists a w which satisfies Eg. 4.6, the classes

are said to be separable; otherwise they are nonseperable

[20].

One approach tc the solution of the set of linear
inequalities of Eg. 4.6 is to define a criterion function

J(w) that becomes minimum if w satisfies Eg. 4.6, This

reduces the problem to one of minimizing a scalar function;
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a problem that can be solved by a gradient descent
procedure [4]. An example of a criterion function. that

can be used, is the perceptron criterion function

I, = 2 w'x) (4.8)
xey

where Z is the set of samples misclassified by w. Anotber

example 1is

T 2
s =L 2 (Wwx-b) (4.9)
r= 2 XeX 2
- (B3]
where now % is the set of samples for which !TZ < b. The
previous two <criterion ftunctions tocus their attention on
the misclassified samples. A ditferent criterion function

that involves all the samples is

g w = |Ixw - bl (4.10)

where the components of b are all positive. The
minimization of Js(!) depends on the value ot b. It b is
fixed arbitrarily there 1s no guarantee that the so!ution
will give ¢ separating vector in the linearly separable
case. Tc avoid that, b and w are allowed to vary 1n the
minimization procedure. This 1s the basic concept ot the
Ho-Kashyap olgorithm, Another approach to solve the

inequalities 1n Eq. 4.6 1s to use linear programming

procedures. Details ot these procedures and analysis of

the other previous methods are given in references |4, 20].
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In order to use any of the previous methods in the
design of edge detectors, two conditions for the resulting
vector w are reqguired. First, if the training patterns are
separable, the training procedure should converge to a w
which classifies the patterns correctly. Second, if the
training patterns are not separable, a case which is
usually encountered in edge detection, the training
procedure should detect the nonseparability and yield a
solution which can be wused practically. These two
conditions are achieved only by the Ho-Kashyap algorithm
[21], and by a linear programming procedure that minimizes
the perceptron «criterion function [22]. Any of these two
methods can be used in edge detector design. The
performance of each method will depend on the distribution
of the classes. A comparison between the two methods is
outside the scope of this dissertation. Therefore, in the
following section a discussion of one of then, the
Ho-Kashyap algorithm, and its application 1in edge
detection, is given. A similar anaysis can be developed

for the linear programming procedure.
4.2 The Ho-Kashyap Algerithm

In this algorithm, the solution of the inequalities in
Eq. 4.6 has been reformulated as 2 problem of finding w and
b > 0 such that Js(g) in Eq. 4.10 is minimized. The

minimizations can be arlieved by a steepest descent
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procedure that implements the gradient functions

3J
_ 85 - 7 - (4.112)
and
9 g
—3§=9-§1~_ (4.11b)

9J
: 3 ; S : :
Since there is no constraint on w, 3~ = 0 implies

T -1§T9

- 5#2 (4.12)
where 5# is the pseudoinverse of X. Since all the
components of b are constrained to be positive, this vector
must be varied in such a manner to never violate this

constraint. This can be accomplished by letting

b(k+1) = b(k) + 8b(k) (4.13)
where

§b(k) = cle(k) + |e(k)]|] (4.14a)
and

e(k) = X w(k) - b(k) (4.14Db)

In Eqs. 4.13 and 4.14, k dcnotes the iteration index, ¢ is
a positive correction increment, and lg(k)l indicates the
absolute value of each component of the error vector e(k)

{20). From Egs. 4.12 and 4.13,
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w(k+l) = w(k) + X'6b(k) (4.15)

Thus, Eq. 4.10 can be minimized through the iteration

w(l) = X"b(1) (4.16)
e(k) = X w(k) - b(k) (4.17)
wik+l) = wik) + cz(_#[_e_(k)+|g(k)|] (4.18)
b(k+l) = b(k) + cle(k)+]e(k)|] (4.19)

where b(1l) > 0 but otherwise is arbitrary, and c is a

constant such that 0 < c < 1.

I1f the patterns are separable, Egs. 4.17 to 4.19 can
be repeaxted until all components of e(k) converge to zero,
or to any reasonably small value. On the other hand, if
the components of e(k) cease to be positive, but are not
all zero, at any iteration step, this will indicaete <that
the classes are not separable [20, 21]. These two
characteristics of the Ho-Kashyap algorithm are important,
especially when the algorithm is wused to design edge
detectors. Because the degree of separability of the
classes of edges and no edges changes for different image
models, the procedure used in the edge detector design

should be able to handle both separable and nonseparable

patterns.




4.3 Application of the Ho-Kashyap Algorithm to Edge

Detection

The Ho-Kashyap algorithm is used in the design of edge
enhancement/thresholding operators. In this experiment,
patterns of vertical edges, and patterns of no <2dges, are
generated. Gaussian noise is added to produce edge
prototypes with SNR = 1.0 or 10.0. The outputs of the

different edge detectors in the case of a vertical edge

{Al,Az,...,AN}, and in the case of no edge
{AN+1'AN+2""'A2N}' are used to construct the augmented
A 1]
matrix 1
X = AN 1
B “Bgeg 4
. (¢.20)
o R

The number of patterns of each class 1is chosen to be
N = 20, This ensures that the performance on design and
test data will be similer [4). The initial components of
b(l) are chosen to be wunity, and iteration given by
Egs. 4.17 to 4.1Y is repeated up to 500 times. The
experiment is ended if the components of e(k) are all less
than a small value, (0.001), or if nonseparability is
proved. It 1is sometimes useful to end the iteration when

the threshold t = -w(2)/w(l) stabililzes within a

relatively small variation.




pe g

After the training phase is finished, the values of w
obtained are tested with a2 new set of 250 prototypes
generated with the same model. The probability of
detection in the case of an edge, and the probability of
false detection in the case of a no edge, are calculated.
The results obtained are compared with the theoretical
results derived in Chapter 3. These results are given in
Table 4.1 for different edge detectors with vertical and
n/4 edges and SNR = 1,0 and 10.0, respectively. It should
be noticed that in many cases the edge detector threshold t
converdes to a value which results in equal prcbabilities

of error
P~ 1-P (4.21)

This satisfies the Bayes minimum error criterion if edges
and no edges are equally probable. Thus, the results
obtained with the Ho-Kashyap algorithm have practiceal

significance.
4,4 Conclusion

In this chapter, it has been shown that edge detectors
can be designed using pattern classification techniques.
As an example, the Ho-Kashyap algorithm, was used to design
ditferent edge enhancement/thresholding operarors. The
edge model used was an ideaj edge plus Gaussian noise.

This model helps in comparing the experimental results with
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the theoretical ones obtained in Chapter 3. The same
technique can be easily extended to the design of any edge

4 detector with any erbitrary noise model.
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Chapter 5

Figure of Merit Comparison of Edge Detectors

The methods introduced 1n the previous two chapters
can be wused 1n both the evaluation and the design of edge
detectors. In this chapter, a third method which can be
used only in the evaluation of edge detectors performance,
is 1ntroduced. The procedure used in this chapter can be
summarized as tollows. First, an artificial test image is
generated. Second, an edge detector is applied on this
test 1image, Third, the quality cf the resulting edge map
is measured in terms ot a scalar function. That function
can be considered as a tigure of merit of the corresponding
edge detector, The figure of merit used should be
sensitive to the ditferent expected errors so that it is
max imum when the edge map is pertect, and decreases as the
error 1n the edge map increases. Methods based on the
previous technique have been 1introduccd by Fram and Deutsch
(131, and by Pratt [(1). This latter method has two
advantages: it weights the different errors according to
their importence; and it allows each edge detector to be
tuned to 1ts best capabilities, which guarantees a fair

comparison, Because of these adventages, the experiments
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discussed in tine tollowing sections will be based on the
tigure of merit developed by Pratt. Section 5.1 expleins
the basic 1deas of this technique. Section 5.2 summarizes
the resulits obtained with simple test imaoges. Section 5.2
introduces conclusions based on the results of Chapters 3,4

and 5.
5.1 Figure ct Merit Concepts

The procedure introduced by Pratt utilizes a test
image consisting of a 64 x 64 pilxels array over a 0 to 255
amplitude range with a vertically oriented edge of variable
contrast and slope placed at its center. Independent
Ganssian noise ot standerd deviation ¢ 1is adaed to the
edge 1image, and the resultant picture is clipped to the
maximum display limits. As in the previous chapters, the

signal-to-no1se ratio 15 detined as

smz=(3‘-)2 (5.1)

where h is the edge height,

When an edge detector 1s applied cn this test image,
three major types of error will aftect the resulting edge
map: (a), missing ot valid edge poi1nt; (b), tailure to
localize edge points; (c), classiticaition of noise pulses
as cadge points. Examples ot these errors are shown in

Figure 5.1.




{
b+h
b .
d
I
N=even integer
N
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2
a) vertical edge test ima e
i
B
E
b) ideal c) fragmented
d) offset e) smeared

Figure 5.1. Types of edge detection errors
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The quality of the resulting edge map may be assessed

by the tigqure ot merit detined by

1'-l-\
! 1
eI, U
maxtlpeIal (7] 1+ad (5.2)

where II and IA represent the number ot ideal and actual
edge map points, respectively, & is a scaling constant, and
d 1s the separation distance of an actual edge point normal
to a line ot ideal edge points. The rating tactor is
normalized so that F = 1 tor a perfectly detected edge.
The scaling tactor o may be adjusted to penalize edges
which are localized but otfset from the true position.
Normal ization by the maximum of the actual and ideal number
of cdge points insures 2 penalty tor smeared or ftragmented
edges. This figqure of merit gives higher rating for e
smeared edge than tor an ottset edge. This 1is reasonable

because it 1s possible to thin the smeared edge by

post-processing (1l].

The tigure ot merit method has beel. used to evaluate
the pertormance ot the Roberts, Kirsch, Sobel, and compass
gradient-operators. In each <case, the thresholds are
chosen to meximize the figqure of merit, plots of these
maximum values are given in |1])., The results obtained 1in
this experiment can be predicted theoretically using the

probabilities of detection of central edges P of

D’
and of talse detection
71
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PF, for a given edge detector. As an example, it a2 3 x 3
edge detector is applied to the test image shown in
Figure 5.1, there will be a central edge at column g- + 1,
displaced edges at the two adjacent columns, and no true

edges elsewhere. For this caese, Eg. 5.2 reduces to

]

N 2Ppig -é 1 32-:1 1
d=-2 d=2 (5.3)
where
IN = max{N,[PD+2PDis+(N-3)PF]N} (5.4)

The analysis introduced thus tar 1s based on a test
image that contains a vertical edge., The same analysis can
be extended to othlier 1mage models, but in these cases the
evaluation of Eg. 5.2 will beccome more ditficult. 2Another
test image which is relatively easy to analyze is one that
contains a diagonal edge. As has been shown in Cnhepter 2,
the results obtained trowm the verticel and the diagonal
edge models ar~ sutticient to determine edge detector

performance.

A test image that contains & diagonal edge 1is shown in
Figure 5.2. The image consists of 126 x 128 pixels
generated with the same signal and noise models used in the
test image that contains the vertical edge. To simplify

the comparison ot the results obtained 1n both cases, only
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Figure 5.2.

- A
— &

+—

.m— B

Figure of merit test image
geometry for diagonal edge
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the central part of the diagonal edge 1is wused 1in
calculating the fiqure of merit. This central region is
shown bounded by dotted lines in Figure 5.2. The number of
edge pixels in this reqion 1s chosen to be equal to the
number of edge pixels in the vertical edge model. But, the
number of non-edge pixels in the diagonal edge mecdel is
twice their number in the vertical edge model. The eftect
of this difference is compensated by scaling the diagonal
distance d by a factor /2. The results obtained with these

two test images will be given in the following section.

5.2 Experimental Results

The Sobel, Prewitt, compass gradient, Kirsch, 3-level
and b5-level operators are evaluated using the figure of
merit defined previously. The test images are generated in
the torm of 1ideal steps with vertical or diagonal
orientations. The height is h = 2b%, Gaussian noise 1s
added to the ideal step with signal-to-noise ratios 1.0,
5.0, 10.0, 20.0, 1U0.0, respectively. Each -edge detector
is applied on the ditferent test images, and the threshold
t 1s varied untill the figure of merit is maximum, Plots
ot the figure of merit as a tunction of signal-to-noise
ratio ere shown in Figures 5.3 and 5.4. The tigures of
merit generally tollow expected trends: small for low
signal-to-noi1se ratios and large 1in the opposite case.

Some of the edge detection methods are superior to others
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for all test 1images. Examples of the edge maps, obtained
in the previous experiments, are shown in Figure 5.5. 1t
should be noticed that the tigures of merit are correlated

with visual cuality of tae edge meps.

The tiqures of merit plotted in Figures 5.3 and 5.4
can be related to the response of an edge detector to
displaced edges, shown 1in Figure 2.10 , and to the
operating characteristics of an edge detector, as shown in
Figures 3.2 and 3.3. The fiqure of merit is large when the
edge detectors have good performance in the presence of
noise, and when the edge detectors suppress non central

edges efticiently.

5.3 Conclusion

In general, the results obtained in Chapters 3, 4 and
5 show that the 3-level operator has better performance
than any of the other edge detectors. 1Its performance can
be comparcd only to the performence of the Prewitt
operator. The advantage of the 3-level operator is that it
has almost the same performance for all edqe orientations,
while the advantage of the Prewitt is that it requires less

computation eftort, especisally 1f the square root 1is

replaced by the sum of magnitudes.
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Prewitt square root

vertical edge, SNR=1

Prewitt square root
vertical edge, SNR=100

roo

b)

d)

3

b
{
.l
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[
l.

Prewitt square root
vertical edge, SNR=10

Prewitt square root
diagonal edge, SNR=10

Figure 5.5. Edge maps for 2x2 and 3x3 operators
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e) Sobel square root f) Roberts square root

vertical edge, SNR=10 vertical edge, SNR=10

g) 3-level h) Kirsch
vertical edge, SNR=10 vertical edge, SNR=10

Figure 5.5. (Continued)




Chapter 6

New Edge Enhancement/Thresholding Methods

The analysis introduced so far has been concerned with
the =evaluation of existing edge detection operators. This
evaluation is one of two objectives of the dissertation.
The other objective being to introduce new edge detection
techniques and to evaluate their performance. In this
chapter, some new trends in edge enhancement/thresholding

are given. In Chap=-er 7, a new edge fitting algorithm is

discussed.

There are some moditications that can be introduced to
the edge enhancement/thresholding operators, such as
changing the mask size, weighting the mask elements, and
using an adaptive thresholding procedurc. Before
introducing these modifications, 1t is useful to evaluate
their eftects and to decide if they actually improva the
edge detector performance. This wili be the subject of the
following sections. In Section 6.1, the effect of
increasing the mask size is evaluated. In 5ection 6.2, the
eftect of welghting the mask elements is discussed. 1In

Section 6.3, some adaptive edge threshoiding methods are

introduced.
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6.1 Effect of Changing Mask Size

The 3x3 edge detectors can be considered as a special
case of general (2K+l1l) x (2K+l) edge detectors. Extension
of the two masks of the Prewitt operator, is shown in
Figures 6.1la and b. Also, the set of four masks of
Figure 6.1 represent an extension of the 3-level operator.
Increasing the mask size will affect edge detector
performance in two ways. First, the operator will be less
sensitive to noise because it bases 1its decision on a
larger number of pixels, Second, the edge detector will
have a lower resciution. A discussion of these two effects
in the case of the 3-level and the Prewitt operators is

given in the following paragraphs.

The performance of the (2K+1) x (2K+1) operators in
the presence of noise, car be evaluated using the
statistical model of Chapter 3. In the case of the 3-level
operator, the covarianc matrix z:rand mean vector‘évf are

of the form

2K (2K+1) 2K (K+1) 0 ~2K (K+1) |
~-2K{K+1) 2K (2K+1) 2K (K+1) 0
E- 52 (6.1)
L_ ¥ . . i J
G* = h[K(2K+1) K (K+1) 0 -K(K+1))T (6.2)

-V
*§v denotes the mean vector for a vertical edge
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Figure 6.1. Extended masks for the Prewitt
and the 3-level operators
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In the case of the Prewitt operator, the output of the
vertical and horizontal masks are independent Gaussian
random variables, with covariance matrix E,and the mean

vector EV’ in the tourm

2: [2x(2x+1) 0 ]

= 0 2K (2K+1) (6.3)

Gy = hIK(2K+1) 0] (6.4)
The probabilities of detection and faise detection can be
evaluated as 1in Chapter 3. Plots of the edge detector
operating characteristics tor a signal-to-noise ratio of
1.0, and operator mask sizes of 5x5, 7x7, and Yx9 are given
in Figure 6.2. From these piots, it 1is clear that the
performance of the 3-level operator 1is better ‘han the
performance of the Prewitt operator tor diagonal edges,
while it 1s slightly 1less than the performance of the
Prewitt operator for vertical edges. Also, it <can be
easily noticed that performance improves as the mesk size
increases. On the other hand, 1ncreasing the mask size
will reduce the edge detector resolution. This effect can
be shown by piotting edge detector output as a tunction of
the distance betwecen the edge 2and the center ot the

operator. Plots of the normalized outputs of 3x3, 5x5,
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Figure 6.2. Probability of detection versus probability
of false detection for extended Prewitt and

3~-level operators
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7x7, and Yx9 mesk operators, in the case of a vertical
edge, are shown in Figure 6.3. It is clear that, as the
mask =size increases, the region over which the edge is
detected increases. This will reduce the operator’'s

ability to detect the finer details of the image.

The previous two effects can be measured
simultaneously by using the tiqure of merit defined in
Chapter 5. The 3-level and the Prewitt operators are
applied on the test images conteaining 3 vertical and »a
diagonal edge. The fiqure of merit 1is plotted as a
function of the signal-to-nolse ratio. These curves are
shown in Figure 6.4, The results agree with the previous
analysis: for low signal-to-noise ratio, the operators with
large mask size have better performance because they are
less sensitivc to noise, which is a dominant factor in this
case, while for large signal-to-noise ratio, the operators
with small mask size have better performance because they
are more accurate in detecting edge location. Examples of
the edge maps for the vertical edge with SNR = 1.0 =2re
shown 1n Figure 6.5. These examples give a visual
indication of the improvement achieved by increasing the

mask size.

Since the 3-level and the Prewitt operators achieve an
almost optimum performance while using simple computation

procedures, the performance of these operators can be used
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a) 5x5 mask b) 7x7 nask

Figure 6.5.

U — | —

c) 9x5 mask

Edge maps for extended Prewitt
operator, vertical test image
with SNR=1
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as a standard to which any other edge detector performance
should be compared. As an example, the performance of the
convential 69 pixel Hueckel operator is compared with the
performances of a 7x7/ or a Yx9Y mask operators in Appendix
A, This compsrison indicates that the 3-level and the
Prevwitt operators has better performances than the Hueckel

operator.
6.2 Use of Weighted Masks

The resolution of edge detectors with large mask size
can be improved by weighting the mask elements, such that
they are maximum near the mask center and decrease to zero
as they approach the mask periphery. There are many
examples of weighted masks that can be used in edge
detection. Argyle 23] has proposed a split Gaussicn

function defined in one dimension as

2
exp (- 3L7) x>0

21k 2k
h(x) = 0 x =0 (6.5)
-1 ( x2
— exp |- ) x <0
Vimk ;;7

wher : kK 18 » sprea ¢npitant, Macleod (24| 1ntroduced a
continuous Gaussian function; = special case of the Macleod

tunction is given by

ll(x,y). = exp (":';) {exp[-(’ig}’-)z]-exp[-(%ﬁ)z]} (6.6)

whers p anu t are spread constants, Another example of the
93
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weighting functions 1s the polynomial

1 ) 1 m e e e . o X >0
1+ay 1+ax
H(x,y) = 0o . . +« +« + + . x=0 (6.7)
- 3 L F e oo .o X <0
l+ay” l+ax

where q 1s an adjustable scaling factor. The elements of
the previous weighted masks are not integers, and thus
require more computation tire compared with the 3-level
simple mask. This problem can be avoided if the weighted
mask is chosen to be the pyramid shaped mask shown 1in

Figure 6.6.

To test the resoiution ot the ditferent weighted
masks, the outputs of 7x7 weighted mask operators for
displaced vertical edges are plotted in Figure 6.7, In
this experiment, k = p =t = 4,0* and a= 1/9. The results
show that the pyramid-shaped mask has the best resolution
tollowed by the polynomial, the Argyle, the simple 3-level,

and tinally the Macleod weighted mask.

The statistical model ot Chapter 3 can be used to
evaluate the pertormance ot the welghted mask operators.
As an example, tor the weighted Prewitt operator, the
per formance will depend on the ratio between the ideai edge

output (a), and the noice standard deviation (or). The

*These are the parameters suggested by Fram and Deutsch in

their paper (14].
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Figure 6.7. Edge gradient amplitude response as a
function of edge displacement for
weighted 7x7 operators




larger this ratic, the better the pertormance. In
Table 6.1, the values ot a/’or tor the 7x7 weighted mask
operators are dgiven, These ratios, and hence the
performance of the weighted mask operators depend on the
shape ot the weighting tunction used. 1In general, the edge
detector w1ll have a better pertormance 1n the presence of
noise 1t the mask elements are more uniform, with the

optimum performance achieved by using egqual mask elements.

The ditferent welghted-mask edge detectors can be
evaluated using the tigure ot merit of Chapter 5. 1In this
experiment, the vertical edge test 1image 1s used to
evaluate the Argyle, Macleod, polynomial and pyramid shaped
operators with a mask size /x7,. Results are shown 1in
Figure 6.8. It 1s clear that, «cxcluding the Macleod
operator, most of the weighted mask cperators have
approximately 1dentical pertormances. The interior
performance ot the Macleod operator can be 1mproved by

changing 1ts parameters.
6.3 Use of Adaptive Thresholding

In the previous experiments, the value of the
threshold t was found to be 2 function of the absolute
signal levels and the signal-to-noise ratio. In simple
test 1imagee, t can be a constant tor all the image
subregions. In real world 1mages, however, a constant

threshold should not be used because 1t will enhance the
97
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boundaries between high intensity regions more than the
boundaries between low intensity regions. This problem can
be avoided if the output ot the edge detectors is compared
with a tunction ot the subreqion intensities. This can be
considered as a local zdaptive thresholding procedure [7].

Examples of the tunctions that can be used are the average

J
= o D £ (6.8)

=1

.

the root mean square

( ZJ: f.2)% (6.9)

=1

.

and in general

J
el Z )+ e (B
=1 / j=1 ]
i
In Egs. 6.8 to 6.10., ty,tp...,t5 are the pixels

intensities, and 01,02 are constants that can be adjusted,.

A quantitative evaluation ot these adaptive
thresholding methods 1s not simple because 1t requires the
knowledge ot the i1mage model. A discussion ot the problem
will be given 1in Chapter 8. Some ot the exp:rimental
results obtained with the adaptive thresholding edge

detectors will be shown 1n Appendix E.

6.4 Conclusion
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In this chapter, various wmoditications 1n the edge
enhancement/thresholding operators have been considered.
The purpose ot these cranges 1s to achieve a compromise
between better resolution and acceptable pe.formance 1n the
presence ot ncise. It 1s believed that this compromise
should be one ot the basic objectives in edge detector
design. Other methods that acnieve better edge resolution
through edge thinning can be tound in the works ot

Rosenfeld [5,2%)], and Herskovits |206}.
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Chapter 7

A New Edge Fitting Algorithm

Minimum-error surface fitting techniques have been
considered by many as an optimum solution to the edge
detection problem. Although this is true theoretically, in
practical applications, the surface fitting algorithms
suffer from two drawbacks. The first is that the image is
usually defined over a sampled domain while most of the
surtace fitting algorithms are derived for continuous
functions. The second is that even assuming the image to
be continuous, the optimization procedures require the
solution of implicit functions of +the edge parameters.
This solution can bte achieved through iterative procedures,
which are time consuming and thus cannot be practically
used 1n cdge detection, Usually some approximations are
made to avoid this 1terative solution. As an example, in
the Hueckel operator, the optimization procedure is
simplified by wusing truncated Fourier expensions of the
image subregion and the ideal edge model. The effect of
this approximation on the optimality of the solution cannot

be easily evaluated.

102

"—-

e g




W o

The previous difficulties can be avoided by using edge
fitting algorithms based on the discrete image model. One
of these algorithms will be introduced in the following
sections. In Section 7.1, a one-dimensional edge fitting
algorithm is discussed. In Section 7.2, the model is
extended to the more important case of two-dimensional edge
fitting. in Section 7.3, evaluation of the edge fitting

algorithm performance is givén.
7.1 One-Dimensional Edge Fitting

Th? problem of one-dimensional edge fitting can be
stated as follows: given a continuous function f(x) defined
for -b < x < b, it is required to find a piecewise linear

function SB(X) such that the error

b 2
e, - I | (sptx) - £ ax (7.1)

is minimum. The prcblem ca2n be simplified by assuming that

the function sp(x) is centered around the origin, as shown

-

in Figure 7.1. 1In this case SE(X) is given by

a-Ax0 -b < x < -Xg
SE(X) = a+ax “Xy < X <X, (7.2)
a+Ax0 x0 <X < b

where 2 15 the average value ot s (x), A is the ramp slope,

and x 0is the half ramp width, These three parameters are
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distance from center, x

Figure 7.1. 9ne-dimensional edge model
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combined in the vector

p=1la & xi' (7.3)

The value of p that minimizes Eg. 7.1 1s obtained by

solving the set of equations

dE _ 0 (7.4a)
ga

3E _
=% = 0 (7.4b)
)

X = 0 (7.4¢)

Substituting in <(he previous equations, the optimum

parameter vector p is given by

1 I P
a-= f (x)dx (7.5a)
2b -b
%o = 38x%b + ax? (7.5b)
xf(x)dx = X 3hxq 3
X
¢
~Xq b
f(x)dx - f(x)dx = Axo(b—xo) (7.5¢)
-b Xq

It is nlear that even for this simplified case, the
solution 1is based on implicit functions of ¥q and ;.
Instead of solving Egqs. 7.5b and ¢ through an iterative
procedure, it has been tound thot reformulating the problem
in the discrete domain will save computation time, while

giving a soiution that is teasible.
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In the discrete domain, the functions t(x) &nd sp(X)
are defined only tor the set of points {~N,...,0,...7N}.
In all of the tollowing discussions, the ramped part of
SE(X) is assumed to start and end at sample points -r and n
respectively. This assumption cimplifies the computation
without a substantial change 1in the accuracy of the

results., The curve fitting procedure reduces %o finding

the parameter vector

p=1la & n]’ (7.6)
such that the error
N
N2
E_ = (s_(i) - f(1)) (7.7)
2" 2 O

is minimum, Since n assumes a finite number of integer
values, the minimization problem can be solved by repeating
the computation for each value of n and choosing the value
of n that minimizes E . 1In addition, by differentiating
with respect to 2, 1t can be shuswn that tor any value of n,
the optimum a 1i1s independent o©f n and 1s given by the

average

N
e -
a = 7wl 3}“ £() (7.8)

Substituting the values of BB(i) in Eg. 7.7 and arranging

the terms, EE’can be expressed in the form

+ C,A +C A2 (7.3

E = C
B 0 1 2 106




where

N
cy = D, (a-£(i))? (7.102)
-N
- (n+l) n N
C, = 2n Z f(i)-2 Zif(i)—.?an(i) (7.10b)
! -N ‘-n n+l
and
-(n+1) n N
C, = }: n? + E 12 + Z n2 (7.10c¢)
-N -n n+l

Equetion 7.9 can be minimized by choosing

C
A= - (7.11)
2C2
and for this value of 4, BE is given by

2
C

- S (7.12)

EE = CO r—cz

Ore-dimensional edge fitting can be achieved by the
following procedure: given a function f(i) defined over the
range [-N,N], the avecrage (a) is computed using Eg. 7.8.
Assuming that t(i) can be titted to a ramp SE(i) with width
n, the optimum value of & and the corresponding minimum
error EE are computed using Egs. 7.11 and 7.12. The
computation is repeated for different values of n, and the
minimum error in each case is compared. The values of n
and A that result in a global minimum error are chosen as

the edge parameters. Finally, the acceptance of the edge
107
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fitting can be determined from the signal-to-noise ratio,

Az/Emin. If this ratio is larger than a threshold t, the

edge fitting is accepted.
7.2 Two-Dimensional Edge Fitting

The previous analysis can be extended to
two-dimensional edge fitting. In this case, the image
function £(i,j) defined over a subregion is compared with

an ideal edge model Sp(i,j), where
= T 7.13

is the parameter vector. The variables a, ei, A and n are
defined as 1in Section 7.1 where ei indicates the edge
orientation. 1In the following experiments, ei assumes one
of four bacic orientations, horizontal, vertical and the
two diagonals. The eftect of this approximation on the
accuracy of the edge fitting, will be discussed in
Section 7.3, The edge titting is achieved by changing the

edge parameter vector p to minimize the error

N N 2
E = Q. Z(s (i.j)-f(i,j)) (7.14)
E i==~N j:-N B ;

Following the analysis in Section 7.1, it can be shown

thet, for the minimum error, the pa. ameter a is given by

) ZZ
a = —— f£(i,)) (7.15)
(2N+1) i j
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The parameters Oi and n can be changed in finite steps, and

for each combination of ei and n, the error E_ is in the

form
E =C, +C.A +C A2 (7.16)
'E T 1 2 :
where
2
- TT (wr.n) 7.4
i 3
and

-(n+l)
C, = E Pli) = 2 Z iF(i) - 2n Z F(i) (7.18a)
i==-N i=-p i=n+l
n
C, = (2N+1) [2(N-n)n2 > 12] (7.18%)
=-n
for vertical and horizsntal ramps, while
- (n+l) -1
-~
Cl = 2n ’}L, [F(i)+F(i+%)]-_§: [iF(i)+(i+%)F(i+%)]
1=-N 1=-n
n N
-:E: [iF (i) +(i- 2)?(1 ?)] n :E:[F(1)+F(1 -3) |
i=1 i=n+l

(7.19a)

C, = 2(N-n) [2(N-r)+1]n +223l2m 1) 411124 (2 (N-1) +2] (i- z)zz

Z
(7.19b)
In Eqs. 7.18 and 7.19, the axis is taken perpendicular to

the edge side, and F(i) indicates the sum of 211 the
elements at cdigtance i trom the edge. Sketches of the

masks used for vertical and diagunal edges are shown in
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Figure 7.2. Since the expression of EE is the same for
both one- and two-dimensional edge fitting, the values of

and Emin are still given by Egs. 7.11 and 7.12. Thus,
two-dimensional edge fitting can be achieved by the same
procedure described in the previous section. The only
changes are that the computation has to be repeated for the

different ei, and that the values of Co, Cl and C, are now

giver. by Egs. 7.17 to 7.1Y.

The number of computations required for a 7x7 edge
fitting algorithm is 273 additions and 112 multiplications.
This can be compared to 152 additions and 1 multiplication
needed for a 7x7 template matchingy operator. The effort
needed for accessing the image intensities and comparing
the masks' outputs is the same for both operators. The CPU
times needed by a PDP-10 KL processor to process a2 64x64
image, wusing the 7x7 edge fitting algorithm and template

matching operator, are 18 and 1% seconds respectively.
7.3 Performance Evaluation

The performance of the edge titting algorithm has been
evaluated ueing three different approaches. First, the
output of the edge fitting operators for edges with
different orientations and distences from the center ere
compared. Secord, a preliminary evaluation of the
performance tor noisy edges are gyiven. Third, the fiqure

of merit for fthe edge fitting alqorithm is calculated.
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Figure 7.2. Two-dimensioal edge mode.l3

111

- pET—



In the first approach, edge fitting algorithms with
mask sizes 5x5, 7x5 and 9x9 are used to process image
subregions containing ideal central edges with variable
orientation and ideal vertical edges with varying distance
from the mask center. Plots of /E;E;/ 4 for the previous
two cases are shown in Figures 7.3 and 7.4 respectively.
In these curves, the abrupt jumps in /E;;;/A occur when A
changes suddenly. This occurs when the width (n) of the
edge model that fits the 1image data 1is changed. From
Figure 7.3, it 1is obvious that the edge fitting algorithm
is not isotropic; the alqgorithm has the best performance
for a wvertical edges, it is less sensitive to edges with
orientation ¢/9 < ¢ < n/6, the performance begins to
improve again as ¢ approaches n/4. Also, it should be
noticed that the output for 1n/4 is not zero. This is
because the edge model wused does not include a diagonal
step which corresponds to ramp width n = 1/2., The diagonal
edges with fractionsl ramp width were excluded to save
computation effort, and to keep the numbers of edge
prototypes equal for both the vertical and the diagonel
¢dge models. The curves in Figure 7.4 show that the error
ﬁ:;;VA increases sharply as the edge is displaced off
center. This feature prevents the multiple detection of
the same edge point. The threshold of the edge fitting
algorithm can be chosen to allow the detection of central

edges with a specified minimum edge height, while
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Figure 7.3. Edge fitting normalized error /Emin/A,
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Figure 7.4. Edge fitting normalized error /Emin/A,
as a function of edg: displacement
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suppressing displaced edges. Also, it should be noticed
that by increasing the number of discrete angles (Oi), the
edge fitting performsnce will become more wuniform. It
seems, however, thet this chenge is not necessary, because
the performance of the edge fitting algorithm with four
basic orientations is sufficiently accurate for all

practical applications.

The statistical analysis introduced in Chapter 3 can
be used to evaluate the edge fitting algorithm.
Derivations of the probapbility density functions of the

coefficients C C and C and of the error BE' are

I | 2

straightforward. These derivations are not needed,
however, because as a result of the large mask sizes used
in the edge fitting algorithms, the noise is usually
averaged out,. The decision strategy can be derived from
the deterministic analysis given previously. To prove the
validity of this assumption, the values of /E;;;/A are
plotted as a function of the edge orientation in the case
of a noisy central edgse. The results are shown in
Figure 7.5, The edge fitting mask is 7x7 and the
signal-to-nose ratios are 1.0, 10,0 and 100.0. It should

be noticed that for practical levels of SNR, the effect of

noie is negligible.

The edge fitting algorithms, with mask sizes 5x5, 7x7

and 9Yx9, have been evaluated using the figure of merit of
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Figure 7.5. Edge fitting normalized error /Emin/A,
as a function of actual edge orientation

for noisy edges
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Chapter 5. The results obtained, for the vertical ané¢ the
diagonal test images, are shown in Fiqure 7.¢. Examples of
the edge maps for SNR = 1,0, are shown 1in Figure 7.7,
Comparing the previous results with the results obtained
for 3-level simple operators with the same mask sizes, it
can be noticed that for small mask size and very low SNR,
the edge fitting algorithm is not as good as the simple
mask operators. This observation can be explained by the
fact that the edge fitting algorithm bases its decision on
an estimation of the edge parameters. This estimation is
sensitive to noise especially when the number of pixels
used 1is small. However, the edge fitting algorithm has
better performance for high SNR and for 1large mask size.
This is because the edge fitting algorithm suppresses
displaced edges efficiently. The edge fitting algorithm
lias the additional adventege of being less sensitive to
changes in the signal-to-noise ratio of the image. This
resulte from using a decision stretegy that is based on the

normalized fitting error.

7.4 Conclusion

In this chapter, 2 new edge fitting algorithm has been
introducea. The new algorithm is derived in the discrete
domain, this allows a direct optimization of the operator's
per formance. The performance of the new algorithm is

better t..an that of the edge enhsncement/thresholding
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a) original

c) 7x7 mask

Figure 7.7.

b) 5x5 mask

d) 7x7 mask

Edge maps for the edge fitting
operator, diagonal test image with
SNR=1
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operators for a wide range of signzl-to-noise ratios
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Chapter 8

Conclusion and Further Work

This chapter summarizes the basic findings of the
dissertation, and discusses the subjects that will need

further investigation.

The objective of this work, was to introduce a
quantitative analysis of the edge detectors, with an
emphasis on the edge detectors as local operaors, that can
be us2d to preprocess the input images, without any a
priori knowledge of the images contents. The tools that
have been used in this analysis are the statistical
detection theory and pattern classitication. These
concepts, help in a better understending of the edge
detection problem. Numerical ordering of the perfcrmance
of the local edge detectors, was achieved by introducing o
figure of merit defined for specific test images. New
techniques for edge detection, including a discrete oédge

fitting algorithm, have been disc.assed.

There are, however, more guestions to be answered

before a complete understanding of the edge detection

problem 15 achileved, First, 1in the case of the
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ditterential edge detectors, the decision 1s based on
measurements of the ditterences alorg two perpendicular
axes. It 1s not clear, however, that combining these two
agitferences 1n the sum of squares or the sum of magnitudes,
is the optimum decision strateqy. An optimum strateqgy can
ne developed it the probability density tunction ot the

edge orientation p(¢), 18 known.

Second, 1n all the previous arslysis the edges are
assumed to have specitic orientations and heights. Thils 1s
not true 1n real world 1mag-s, where edges of various
orientations and heights are present, The optimum
threshold tor this general case, can be derived 1t the

statistical properties ot the 1mage 1s kncwn.

Third, there i1s no efticient procedure to utilize the
additional information about the edge height 3and
orientation. Also, the best compromise between the mask
size, the number of masks used, and the distance between
consecutive agpplicat.ions ot *he eddge detector, 1s not yet

known.

The previous problems can be solved 1t a statisticel
1image model 15 derived. This model will help 15 cxtending
the techniques of this dissertation to the higher level Ot
1mage understasding, such as edge linking and the

recognition ot imade objects.
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Appendix A
Analyv'.is of the Hueckel Algorithm

Although the Hueckel crgorithm possesses 2
theoretically optimum pertormance, there are two besic
difficulties with the practical applicotion of the
operator, The first concerns the effect of truncation of
the orthogonal expansion, while the 3eccond results from
inaccureci.s in the minimization procedure and in the
computation of edge parameters. These two problems will be
discussed 1In the following sections. 1In Section A-1, a
review of the Hueckel algorithm is given. In Sectiors A.2
and A.,3, the various difficulties with the algorithm are

considered.
2.1 A Review of the Hueckel Algorithm

The Hueckel algorithm starts with the image
intensities defined over a circular image subregion. A
polar Fourier erpansion of the image subregion is
calculated, using the orthogonal functicns given by
Egs. H.7* through H.8. The e.poersion 1s truncated to the

first nine coefficients, ao,a_,...,aa. These coefficients
A

*This notation indicates equations in Hueckel's paper [(14].
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are compared with the ideal edge-line model coefficients,

(so,sl,...,se). Expressions of s, are agiven by Egs. H.9

through H,. 10,

Acceptance of the edge fitting is based on three
sequential decisions, each decision teken as soon as the
information needed is available. The first decision |is

based on the inequality: If

8
2 27
i=0

then classify the subregion as no-edge. Equation A.1l
discards the image subregions whose input ampiitude varies

less than that of « central edge of step height 1.5.

The error between the ideal end the actual signals can

be expressed in the form

' 2 1 2 1.2
N = éalz + %azz + %ag + a42 + as + 236 + 2a7
(A.2)
"M(Cxlcy) + f{ [ai] IE}
where
2
= + C

M(Cx,Cy) (e2Cx + e3CY) + 64Cx eg y (A. 3
C_ =cC 2 . c e (A.4)




The eisare definec between Egs. H.17 and H.19, while €{.,.}
corresponds to the last five terms in Eg. B.12. The vector
p is the ideal edge parameter vector defined in Eqg. 2.23,
The best edge fitting is obtained by chenging the parameter
vector p, untill N beccmes minimum. Hueckel arqgued that at
the minimum N, the function f{.,-} vanishes. Hence to
minimize N, it is sufficient to maximize M(Cx,Cy) over Cx
and c . The maximization of M(Cx,Cy) is echieved,

b4
approximately, by Egs. H.20 through H.21.

The signal power, z:si, is evaluated, using the
coefficients [ai} and the parameters Cx and Cy. Then, the
second edge fitting decision is based on the <criterion:

Classify the subregion as no-edge if

2 :E:si < '2: ai (A.6)

This inequality indicates that the noise power exceeds the

signal power.

The parameters r ,r+,t_,t+ and b_ are calculated by
Egs. H.23 through H.2%. These equations satisfy the

condition of f{.,.) being zero when N is minimum,

The final, and most important decision 1in the edge
fitting procedure, is to compare the fitting error with a

variable threshold. This is described by the criterion: If
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2:(&1-51)2 < Conf(z:si) - Diff (A.7)

classity the subregion as an edge. The constant "Cont”
relates to the edge distinctness and "vitt™ relates to the
edge pronouncedness. In evaluating Eg. A.7, different
torms of ij are used tor the three models, general

edge~lines, edges, and lines, respectively.

The previous discussion reviewed the basic concepts of
the Hueckel algorithm. It should be noticed that while the
algorithm is thenretically optimum, it sufters trom some
defficiencies in its practical application. These

defficiencies will be explained in the following sections,
A.2 Eftect of Truncation ot the Orthogonal Expansion

Hueckel assumed that the use ot eight, and later ot
nine, coefticients of the orthogonal expansion will not
atfect the edge titting pertormance because real edges are
blurred and thus have small high spatial ftrequency
components, while these high trequency components usually
result trom noise.. This assumption 1S not true, especially
1t the subregion contains a line., To determine the effect
ot this approximation, the tirst nine Fourier coefficients
of 1mage subregions containing 1deal edges and 1lines are
calculated and then used to reconstruct the original
signal. The original and reconstructed signals, 1in the

case ot 1deal central edge and 1deal lines ot wiath 1 and
127
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3, are given in Figure A.l. The resultes show the
distortion introduc=d by truncation, especially in the case

of thin lines.

The previous experiment leads to two guestions: Tpe
first, what is the advantage of an optimum procedure if the
models used are far from ideal? It should be noticed that
the Hueckel algorithm suffers from difficulties in the
detection of very thin lines {27]). This can be explained
by the fact that the first nine coefficients of the Fourier
expansion are not sufficient to represent thin lines
accurately. The second gquestion 1is, are the orthogonal
functions chosen by Hueckel the best for the truncated
expansion? This point 1is not important if an infirite
expansion is used, as long as the orthcgonal functions form
a complete space. However, 1if a truncated expansion is
used, it is important to choose orthogonsl functions that
are more sensitive cto the ideal signals of interest. This
is not the <case 1in the Hueckel algorithm, where the
functions H, are cnosen such that the optimization

procedure can be solved analytically.
A.3 Effect of Inaccuracy in the Minimization Procedure.

The minimization procedure implemented by Hueckel

suffers from difficulties that results in a suboptimum

solution. These difficulties are summarized as fnllows:
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First, in the minimization procedure the parameter
vector (p) is allowed to assume complex values and also to

! indicate edges with centers outside the circular subregion.

o

Although the previous ¢two conditions dc not represent
acceptable solutions, Hueckel has to allow these
generalized form to simplify the algorithm. The parameters
are readjusted by neglecting the imaginary parts, and
ignoring the edges whose centers are outside the circular
subregion. It is clear that this solution will not be the
same as the optimum solution obtained with the previous

constraints taken into consideration.

Second, the replacement of the minimization of Eg. A.2
by the maximization of Eq. A.3 is based on the assumption
that the minimum of f{[ai],g} is zero. This assumption |is
valid only if p is real [28], which is not true in genereal.

1 In fact, for the terms of f{le;],p} to vanish, the

following equations should be satisfied

bl(cx,cy) = A, 4+ A (A.8a)
1 = A + A.8b
bz(cx,cy) = A,r, E (A.8b)
b3(cx,cy) = A r, A (A.8¢)
b4(cx,cy) = A, v A r] (A.84)




where the b!s are functions of the set la;] and the
parameters S and cy, while Ai are defined as

\, = t, 3mE-r2)%/4 A
It is clear that the solution of Eq. A.8 will, in general,
result in complex values of A+,A_,r+,r". A real solution
will be quaranteed if and only if the 1image subregion

corresponds to an ideal edge model.

Third, in arranging the terms in Eq. H.12, sg 1is
artificially set equal to ag: This assumption cannot be
justified. As a result of this constraint, the accuracy of
the second Hueckel algorithm [14), is not expected to be
better than the accuracy of his first algorithm (8]. It

seems that 58 was made equal to ag only to simplify the

minimization procedure.

A quantitative -evaluation of the effect of the
previous approximations on the Hueckel operator performance
would be quite involved. Such an evaluation is not
attempted here. 1Instead, an experimental evaluation of the
operator's performance is given. In the experiment, the
Hueckel operator is applied on the vertical test image
introduced in Chapter 5. The fiqure of merit is plotted as
a function of signal-to-noise retio for different choices
of Hucckel's parameters, Conf and Ditt. These plots are

shown in Figure A.2. It can be noticed that the
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performance of the Hueckel operator is irnferior to that of

the simple operators given 1in Chapter 6, and it is also

inferior tc¢ the edge fitting algorithm introduc~d in

w

Chapter 7.




Appendix B

Orthogonal Transformation in Edge Detection

One of the early applications of orthogonel
transformation in edge detection was given by Hueckel in
his edge fitting algorithm [8,14]). The method implements a
truncated polar Fourier expansion in the fitting procedure.
Laver, a simplified version of the Hueckel algorithm wes
introduced by Mero and Vassy [29j. In this procedure, only
two of the Fourier components are used in the edge
detection. This simplification results in unacceptable

loss in performance when detecting roisy edges [30].

In the Hueckel algorithm, the orthogonal
transformation was used to simplify the edge fitting
procedice, A different application of the orthogonal
transformation 1is to use it as a multidimensional rotation
of the teature space {31). This approach can be useful if
the edge and no-edge features are enhanced by the
transformation. The following sections discuss this new
approach. In Sections B.1l and B.2, calculations of the
Fourier components of different edge and line models are
yiven. In section B.3, a preliminary analysis of the
performance cof this new technique is introduced.
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B.1 Edge models in the Discrete Fourier Domain

The edge mocdel in the spatial domain is sketched in
Figure B.1l. The edges are assumed to have one of the four
basic orientations: vertical, horizontal, positive slope
diagonal, and negative slope diagonal. Central edges are
considered first, and then the analysis 1is extended to
non-central edges. If the edge 1is Jdescribed by the
function £(j,k), where -N <j,k < N, the corresponding

Fourier coefficients ¥ v,v) are defined as

N N

3 ju+kv

Flu,v) = - ~——n Z Z £(j,k)wl" (B.1)
(2N+1)° k=-N Jj=-N

where
W = exp (-23&’1}1) (B.2)

In many cases, the «ccrresponding discrete Fourier
coefficients can be derived in closed forms. As 3n
example, in the case of the central vertical ~dge shown in

Figure E.lb, the Fourier coefficients aie ot the form

_ h
FV(O,O) = b + 3 (B.3)
otherwise
(N+1)u u
. - l’o 1 w - W
FVKU,O) = r‘N"’I [f + wu-l ] (8.4)
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b} central vertical edge

_Jb-l-h

i 1

c) displaced vertical edge

-N

a) (ZN+1)x(2N+1) mask

Figure B.l. Edge models for the discrete Fourier transform




Fv(u,v) =0 v#oO (B.5)

In the case of the central diagonal edge shown in

Figure B.ld, the Fourier coefficients are

Fﬂ/4(0,0) =Db + % (B.6)
otherwise
h wNu
-Nv
_ h w
Fﬂ/4(0,v) = N D) =2 v#0 (B.8)
Frsg(u,v) =0 u,v # 0 (3.9)

Similar expressions can be obtained for edges with ¢ = T/2

and ¢ = 3n/4.

The previous analysis can be extended to the case of
noncentral edges and edges with general orientetion. To
avoid repetition, only one of these general cases is
considered. Th:s 1is the case ot the displaced vertical
edge shown in Figure B.lc. The corresponding discrete

Fourier components are given by

3 h _ _ht
F, (0,0) = b + 5 = T3ueqy (R.10)
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otherwise

(N+1-2)u _u
h 2u |1 w -w
F,(u,v) = 53— W +
% (2N+1) [7 W - 1 ] (B.11)
Fg(u,v) = 0 v#0 (B.12)

The discrete Fourier coefficients in the case of a 5x5
central edge with different orientations are calculated.
Results are tabulated in Figure B.2. From these results,
it is clear that ed¢ o~ ientation can be determined from
the Fourier coefticients. A decision strategy based on

these Fourier coefficients will be given in Section B.3.
B.2 Line Models in the Discrete Fourier Domain

Line detection was excluded from this dissertation for
two reasons. Firat, lines can be detected as two
ccnsecutive edges, especially if the edge detector used,
possesses smcli  masks. Second, template matching line
detectors suffer from the problem of being very sensitive
to the line orientation and position, and so far, it seems
there is no practical solution to this pLoblem. 1t is
hoped that the sensitivity problem can be avoided by using
the discrete Fourier transformation. This approach will be

introduced in the following paragraphe.

Figu:» B.3 shows discrete models for one-pixel-width
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b b b b+h b b b

{ b b b b+h b b b
p
b b b b+h b b b
b b b k+h b b b

a) Vertical line

b+ b+
0.914h  0.25h b k b b b
b+ b+ b+
0.25h 0.914h 0.25h b . . b
“| }') ] ] ] b
b L ] L ] L ] b
b . . . b
b+
b : : 0.25h
b b b b b b+ D

0.25h 0.914h

b) Diagonal line

Figure B.3. A one-pixel-line model
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lines with vert.cal and diagonal orientations. The

vertical lin¢ has the Fourier coefficicnts
y
h
3 = UL Y R.13
| FV(O,O) b + (205 1) ( )
otherwise 1
;
F. (u,0) = h (B.14) ‘
v (2N+1)
1
Fylu,v) = 0 Sy (B.15) ]

The diagonal line has the Fourier coefficients

h

= | B.16 !
Fuya 10,00 = b+ oy [0-9“ * TTN+—1)'] (0. 10)

otherwise

- h N 2mu ‘
F_"/4 (u,u) = (—z"ﬁ‘m [0.914 + W)cos<m)] (B.17)

-h
) | = -1y 4 B.1&)
Frza(@mu) = 5 one)2 (71) (
g h N ( )
= -N(-u+v u, -v
F (u,v) = W u (W +w ") (B.19)
myid 4(2N+1) 2
In the case ot a vertical line at 2 distance 1 from
b the origin in the spatial plane, the discrete Fourier

components become




™

: h B. 20
F {0,0) = b + zos ( )

otherwise

hwlu
Fo(u,0) = 5537 (B.21)

It should be noticed that the only difference between the
Fourier components of a central and a displaced vertical
line is a phase factor in Fl(u,O). The changes are more

pronounced in the case of shifted diagonal lines.

The Fourier coefficients of a 5x5 central 1line with
different orientations are calculated and tesults are
tabulated in Figure B.4. Again it is clear that the 1line
orientation can be determined from the Fourier

coefficients.

To show the improvement in sensitivity that «can be
achieved by using the orthogonal transformation, the
discrete Fourier coefficient of the rotated line shown in
Figure B.5a are computed. 1In this case, Fr(u,v) is given

by

- h (B.23)
F.(0,0) =b + ¢

otherwise
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Figure B.5.

b+0. 8h b+0.2h b b
b+0. 4h b+0.6h b b
b+0.05h b+0.9h b+0.05h b
«
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a) Rotated vertical line {
4
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b) Vertical line template

Detection of a rotated vertical line
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h 2TV 4nv

Fr(urV) = E— [0.9+1.2COS(—-—5——)+0.4COS<—-5—)

- -2
+O.lcos<2—T§TX>+0.BCos<2ﬂ(g v) 1.6cos<_.._____2"‘“5 v)

(B.24
The value of Fy(1,0) is

Fr(l,t) = 0.130%h (B.25)

This represents a2 ratic of 0.65 of the value FV(I,O). On
the other hand, if the template matching operator, shown in
figure B.5b, 1t used, the output in the case of the rotated

line will be

X = 7.5h (B.26)
r

This represents 2 ratio of 0.375 of the value XV .

B.3 Pertormance Analysis of the Discrete Fourier Transform

Edge Detector

The performence of the previous edge and lire
detectors can be evaluated using the statistical model of
Chapter 3. In this model, the spatial function f(j,k) is

the sum of a signal and 2 noisc component

£(3,k) = £(j,k) + n(j, k) (B.27)

where n(j,k) is an additive white Gaussian noise with zero
mean and standard deviation g . The corresponding discrete

Fourier coecfficients F(u,v) will be, 1in gencral, complex

random variables, The real and imaginary components of
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F(u,v) can be arroenged in the vector form

r~ "

FR(—N,N)
FI(—N,N)
F = . (B.28)
FR(N,—N)

FI(N,—N)

- -

where F is o joint Gaussian vector with mean

Z Zf(] k)cos[-z-l%ﬁr{ﬁp—] i

- 1 ’ (B.29)

(2N+1) ’
_§: zk: (3 k)sm[—-z-l——I—-z"(NN:Nk)] |

and the covariance matrix is

1712

2
)
E: 2 ——— I (B.30)
2 (2N+1)

In Eqs . B2 8 to B.3U0, the term corresponding to F(0,0) is
excluded, Therefore, the identity matrix 1 is of size

2[(2N+1)2—l].

The fact that the different components of F are
independent Gaussian simplifies the performance evaluation.
As an example, it the decision strateyy 1is to detect &
vertical edge when

‘FI(I'O)‘ E.t]_ (B.31)

the probability of correct detection of a vertical edge is
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P(vertical edgel|verti_:al edge) =

‘ - (B.32)
l-erf [Qigﬁ‘—*—l—)<tl-o.3oah)]-erf [/Mi—ll(tl+. 308h)]
o o
and the probability of false detection is
P(vertical @dge|no—edge) = l-2erf[£zlg§illtl] {B.33)
o

Similar exj:essions can be obtained for P (verticel
edge |hcrizontal edge) and P (vertical edge|diagonal edge).
The threshold tl can be chosen to satisfy a required
probability of false detection while maximizing the

probability of correct detection.

Better performance can be achieved, however, if edge
detection 1is based on simwultaneous comparison of the
Fourier coefficients. Thus, edge detection becomes

multiple hypotheses testing in a vector space. This

approach needs further investigation.




Appendix C

Derivations of Egs. 3.29, 3.31 and 3.32

In deriving these equations, it should be noticed that

the equation

corresponds to lines 1, 2, 3 and 4 in Figure C.1. Thus the

prohability density function p(A) is given by

A A
p(A) = I p, (A-Y)p, (Y)dY+ I p (Y—A)pY(Y)dY
y=0 X Y y=0 X
0 0 (C.2)
+ (-A-Y)p, (Y)dY+ I Py (A+Y)p, (Y)dY
IY=-APX ¥ y=-a * Y

and

0 Y
P (A<t) = I I px(X)pY(Y)dXdY
y=-t/ X=-y -
(Y

[
+ Py (X) py, (X)dY
Y=0’X 2 ¥
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Figure C.l1. The equation A - |X! + |Y|
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Appendix D

The Herskovits Algorithm

Concepts of statistical detection theory were first
utilized in the design of edge detectors by Griffith (9],
Yakimovsky [10}, and Herskovits (26}. A brief discussion
of Griffith and Yakimovsky techniques, was given in
Chapter 1. In this appendix, o discussion of the
Herskovits approach, and its resemblance to the statistical

analysis of Chapter 3 is given.

Herskovits wes interested in processing images that
contain polyhedra. The edges of a polyhedron can be in the
form of ideal or defocussed steps and roofs. These
intensity models should be distinguished from the unwanted

signals that take the form of constant slow slopes and

Gaussian noise,.

The Herskovits algorithm computes the second

ditference at every point. This is given by

D{x) [f(x+8) - £(x)] - [f(x) - f(x-8)]

(D.1)

~2f(x) + f(x+8) + f{x=-86)

where f(x) 35 the intensity furction shown in Figure 7.1,
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and § is a tixed interval., A two sided cutoff (a) is put
on D(x) so that if |D(x)|<a, then D(x) is set to 0. Next,

the function Fs(x) is computed as

8 3
Fs(x) = ;;; sg(D(x+i)) - Eg; 8g (D(x-1)) (D.2)
where
1 x >0
sg(x) = ( © x =0 (D.3)
! x <0

Actually, Fs(x) is crmputed over a two-dimensicnal
neighborhocod. Finally, local maxima of Fs(x) are found,

and a line fitting procedure builds the complete edge [32].

The edge detectcr parameters were chosen to maximicze
the probability of correct detection for 2 given
probability of false detection. This approach resembles
the statistical anolysis introduced 1in Chapter 3. The
basic ditferences between the Herskovits technigque and the
analysis of this dissertation can be summarized in the

following.,

First, Herskovits was interested in a 1limited domain
of 1images. Thus, the <class of edges and no-edges were
determined by a priori knowledge ot the image contents and
the 1imaging process. This kind of knowledge was not

implemented in the present dissertation,
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Second, in the analysis given by Herskovits, edges
were assumed to be vertical. To detect other edge
orierntations, the operators should be rotated, This
assumption simplitied the derivation of a statistical
model, but limited 1ts application. The analysis given 1In
Chapters 2 and 3 ot this dissertation 1s based on a dgeneral
edge model, that has been used in evaluating the

performance ot difterent edge detectors.

Third, Herskovits was attempting to achieve an almost
error free cetection because the systems used to recognize
polyhedra are very sensitive to errors i1ntroduced 1n the
low levels ot 1image processing. 1t seems that a better
strateqgy ot 1mage understanding systems should allow ftor
larger probab:li1ty ot error at the low levels, that can be
improved ltater by teedback trom the high levels ot 1mage

processing.
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Appendix F

Experimental Results

The models used in edge detectors cvaluation assume
that 1images consist of ideal steps or ramps affected by
additive white Gaussian noise. In reel world pictures,
however, noise 1is often considered to be the irrelevant
image intensities such as the background, 1t is importeant
to determine edge detector performance for both artificial

and actual image models.

A simple procedure to achieve this comparison 1is to
test the ditferent edge detectors using real world
pictures. Examples of this experiment are shown in Figures
E.l1, FE.2 and E.3. In these examples, the 3x3 Prewitt
operator, the 3x3 and 7x7 !-level operator, the 7x7 edge
fitting algorithm and the Hucckel operator are applied on
test pictures containing a girl, an airport and a tank.
The thresholds tor the Hueckel and the edge fitting
algorithms oare fixed ot optimum values; Conf = 0.85,
Ditt = 100, for Hueckel and t = .04% tor the edge fitting
algorithm, The thresholds tor the Prewitt and the J1-level

operators are chosen so that the number of edges detected

equals the number of edges detected by the Hueckel
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a) original b) 3x? mask, Prewitt

operator

c)  3x3 mask, 3-level d)  7x7 mask, 3-level

operator operator

Fiqure E.1. Examplc . of edge maps, girl picture
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e) 7Tx7 mask, edge

f) 69 pixels, Hueckel

fitting operator operator

Figure E.l, (Continued)
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a) original b) 3x3 mask, Prewitt

c) 3x3 mask,

operator

Figure E.2.

operator

3-level d) 7x7 mask, 3-level

operator

Examples of edge maps, airport picture
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e) 7x7 mask, edqge f) 69 pixels, Hueckel

fitting operator operator

Figure FE.2. (Continued)




a) original b) 3x3 mask, Prewitt

c)  3x3 mask,

operator

Fiqure E,73.

operator

3-level d) 7x7 mask, 3-level

operator

Exanples of edge maps, tank picture
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e) 7x7 mask, edge

fitting operator

Figure E. 3.

T

{(Continued)

A T——————

operator

6¢ pixels, Hueckel
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algorithm,

In comparing the performance of the edge
enhancement/thresholding operators with that of the edge
fitting algorithms, it 1is seen thet the edge fitting
algorithms are better able to outline the "usually"
relevant scene content. This results from the more general
edge models used in the edge fitting algorithms, that allow
for detection of out-of focus objects. Also, it should be
observed that while the edge fitting algorithms use fixed
thresholds, the thresholds of the edge
enhancement/thresholding operators have to be varied for

different images.

For the edge enhancement/thresholding operators, the
3x3 Prewitt and 3-level operators have practicelly the came
performance. Also, the etfects of increasing the mask
size, namely, suppression of noise and lowering the

operator resolution, are apparent in the tank pictures.

The new edge fitting algorithm has better performance
than that of the Hueckel operator because the new algorithm

pr¢ serves more of the relevant structure of the pictures.

These obscrvations have been predicted previously in
the dissertation. This shows that there is 2 correlation
between the artificial and actusl image models. Further

investigation of this assumption, baced on quantitative
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measurements is still needed.
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