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Chapter 1 

Introduction 

Image edges can be defined as local changes or 

discontinuities in an image attribute such as luminance, 

tristimulus value, or texture [1], These changes are 

important in the analysis of images because they often 

provide an indication of the physical extent of objects 

within the image. A-. operator used to detect these changes 

is called an edge detector. This operator transforms an 

image into a binary array containing ones where the 

magnitude of the discontinuity is significant and zeros 

elsewhere. The binary array obtained is usually called an 

edge map. This transformation is useful in image 

understanding systems, because while the edge map retains 

much of the basic structure of the image, less 

computational effort is required for analysis as compared 

to the original image. 

1.1  Edge Detection Techniques 

There are many techniques which can be used in edge 

detection. These include simple differential operators, 

template matching,  least   square  edge   fitting,   and 



techniques based on statistical detection theory. There 

are also many heuristic methods developed for edge 

detection. A complete survey of all edge detectors is not 

a simple task, and can even be confusing. Hence, only a 

group of the most useful operators will be discussed in the 

following sections. 

Linear differential operators are commonly employed in 

edge detection.   In  this method,  edges are enhanced by 

convolving the image with a set of discrete differential 

operator masks.  A corresponding edge map is obtained by 

thresholding some function of the outputs of  these masks. 

One of  the differential  operators used is the gradient. 

The gradient is approximately calculated by convolving  the 

image with two masks  that measure the pixels luminance 

change in any two orthogonal directions.  The  sum of  the 

squares of  the masks output is a measure of the gradient 

magnitude squared.  Roberts has used 2x2 masks  to compute 

the  luminance Difference across the diagonals (2), while 

Prewitt |3] and Sobel [4] have used 3x3 Tiasks  to measure 

the difference  in the horizontal and vertical directions. 

Another differential operator, which has been used in edge 

enhancement,  is  the Laplacian operator.  Examples of the 

Laplacian masks are given in [1, 3J.   However,  since  the 

Laplacian operator  is more sensitive to points and lines 

than to edges 15], it is not an efficient method  for  edge 

detection.   In general,  all  of  the linear differential 
2 
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operators have the advantage of using simple mathematical 

formulas which require short computation time. Their major 

disadvantage is their sensitivity to noise. One method to 

improve the performance of differential operators, in the 

presence of noise, is to increase the masks size. This can 

be noticed in comparing the performances of the Roberts and 

,,u? Sobel operators. Another, and rather better method, is 

to design edge detectors taking into consideration the 

effect of noise. This leads to using template matching in 

edge detection. 

The problem of edge detection can be  reformulated  as 

follows  [1]:  given  a  subregion  of  the image, find one 

member of a finite group of  templates  representing  edges 

and no edges, such that this member matches the subregion 

as close as possible and label the  subregion  accordingly. 

Matching  is  usually measured in terms of the mean square 

difference between  the  subregion  and   the   templates. 

Calculation can be simplified by expanding the mean square 

difference and neglecting the slowly varying  terms.  The 

remaining  term  is  the cross correlation between the 

subregion and the templates.  Thi« term should  be maximum 

for  the best match.  Cross-correlation template watching 

has been used in edge detection.  One of  the template 

matching operators was  introduced by Prewitt |3).  The 

Prewitt method aimed at finding a better evaluation of  the 

gradient operator  by using  a  set of oriented edges and 
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searching sequentially at each point for the best match. 

In this method, gradient magnitude is equated with the 

maximum response, and direction is taken parallel to the 

orientation of the corresponding detector [3]. The 

templates correspond to horizontal, vertical and diagonal 

edges. Other forms of templates were later introduced by 

Kirsch [6] and Robinson [7]. The basic advantages of these 

operators are that they can be implemented with a 

relatively small computation effort. In addition, proper 

choice of the template coefficients gives almost optimum 

performance. However, optimum performance can never be 

achieved since the number of templates used is always 

finite. A different approach to achieve optimum 

performance was later introduced by Hueckel. 

In Hueckel's algorithm 18], edges are detected by 

fitting circular subregions of the image to ideal edge 

models. If the fit is sufficiently accurate, an edge is 

assumed to exist with the same parameters as the ideal edge 

model. The edge model used is a two-dimensional step in a 

circular disc. The parameters of this model are the 

luminance levels, the edge orientation and distance from 

the center. The accuracy of edge fitting is measured in 

terms of the mean square error criterion. Hueckel 

introduced a polar Fourier expansion and used the first 

eight coefficients in the minimization procedure. Although 

this approximation simplifies the computation needed, it 
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affects  the accuracy of  the  minimization  procedure. 

Hueckel has not provided any evaluation of this problem. 

Another method to achieve optimum edge detection is to 

introduce  statistical  detection  theory concepts.  In the 

statistical model, images are considered to be the  sum of 

two components; the first is an ideal image in which edges 

of different orientations  and  heights  are distributed, 

while  the second consists of a random additive noise.  For 

this model, edge detectors are designed  to achieve an 

optimum probability of correct decisions.  Griffith has 

used this approach in the analysis of scenes consisting  of 

prismatic solids.  He  introduced a detailed study of the 

distortion and noise affecting the image, and implemented a 

decision procedure based on computing the probability that 

a line representing a real edge  is centered  in and 

traverses some long narrow band.  But, the computation of 

this probability was a difficult  '-ask,  and the final 

results were based on many unjustified approximations [91. 

A different approach to statistical edge detection was 

proposed  by Yakimovsky  U')].  in this approach,  two 

adjacent regions of the image are tested;  first assuming 

that they have the same average luminance,  and then 

assuming that they have two different luminance levels. 

Maximum likelihood estimates  in both cases are compared, 

and an edge is indicated if it  is more likely that  the 

regions  have  two  different  luminance  levels.   A 
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disadvantage of the Griffith and Yakimovsky algorithms is 

that they are designed to detect edges of a certain 

orientation. They are less sensitive to edges with other 

orientations. To avoid this problem, the operator is 

usually applied with enough orientations to give uniform 

response. The different resulcs are then combined to form 

the edge map. 

A completely different approach to edge detection  is 

to use  the a priori  knowledge of the image objects in 

searching for their boundaries.  Examples can be  found  in 

the work of Kelly (11] and Chow J12].  Kelly introduced a 

program for extracting an accurate outline of a man's head 

from a digital picture 111].  His method consisted of three 

steps.  First, a new digital picture was prepared from  the 

original;  the new picture is smaller and has less detail. 

Then edges of objects are located in the  reduced  picture. 

Finally, the edges found in the reduced picture are used as 

a plan for finding edges in  the original  picture.  Chow 

studied  the problem of detecting the boundary of the human 

heart  in a cineagiogram  [12J.   He  assumed  that  the 

probability distribution of any small region of the picture 

that contains only object or only background  is unimodal, 

and a region that conte/ins both object and background will 

be a mixture of  the two distributions.  The unimodal 

distributions are assumed to be Gaussian.  Starting from 

these  assumptions,  Chow's  algorithm  examines   the 
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probability distribution of the image subregions. If the 

standard deviation is large, the probability distribution 

is fitted to a bimodal Gaussian. The bimodality is 

measured by computing the vslley-to-peak ratio. If this 

ratio is high, the points in the subregion are classified 

as a part of the object or the background depending on 

their intensity. Although the Chow algorithm is successful 

in determining the boundary in single-object scenes, it is 

not directly extendable to scenes with many objects. This 

later case is more important in scene analysis. Because 

the previous operators are limited in their applications, 

they will not be considerd further in this dissertation. 

1.2 Edge Detector Evaluation 

Another field of study in edge detection, which has 

not been given enough consideration, is the performance 

evaluation of edge detectors. As stated in reference 11], 

this evaluation is difficult because of the large number of 

proposed methods, the difficulties in determining the best 

parameters associated with each technique, and the lack of 

definite performance criteria. One method for edge 

detection evaluation was suggested by Fram and Deutsch 

[13]. In thin method, a test image in the form of ideal 

ramped edge with additive Gaussian noise is used to 

evaluate the performance of edge detectors suggested by 

Hueckel,  Macleod,  and Rosenfeld.  Two parameters are used 
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in this evaluation, the first is the maximum likelihood 

estimate of the ratio between the number of correct 

detections of edges and the total number of detected edges. 

The practical significance of the second parameter is not 

clear. The results are compared with human ability to 

perceive edges. In this experiment, the results obtained 

with the Hueckel operator appear to be inferior. This can 

be partially explained by the fact that the huecke] 

internal parameters used are far from the optimum choice. 

Another method for measuring the performance of edge 

detectors was given by Pratt [1], This method uses a 

figure of merit which is sensitive to the different kinds 

of errors encountered in edge detection: missing or 

displacing a true edge and the false detection of noise. 

The figure of merit introduced has been used to measure the 

optimum performance of the Roberts, Sobel, Kirsch, and 

compass gradient operators in the case of an artifical 

image of a vertical edge with additive Gaussian white 

noise. The experiment shows that the Kirsch and the Sobel 

operators have relatively high figures of merit followed by 

the compass gradient operator and finally the Roberts 

operator.  These results agree with the visual data. 

1.3 Organization of Dissertation 

In the previous survey it should be noticed that while 

there  are many operators  that can be used  in edge 
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detection, the effort given to the comparison and 

evaluation of these operators has not been sufficient. A 

quantitative evaluation of the edge detectors is needed if 

these operators are to be efficiently used as a part of an 

image understanding system. The following chapters will be 

devoted to the introduction of quantitative methods into 

edge detection problems. In Chapter 2, a detailed 

discussion of the basic edge detection operators, used in 

this dissertation, is given. An image model is developed 

in Chapter 3, and used to evaluate the performance of these 

edge detection operators. In Chapter 4, edge detection is 

formulated as a pattern classification problem, end a least 

square error algorithm is used to determine the edge 

detectors parameters. The figure of merit derived by Pratt 

is used in Chapter 5 to evaluate the performance of the 

different operatois in the case of vertical or diagonal 

edges. The results obtained in these chapters are uaed in 

the improvement of existing operators and in the 

introduction of new methods for edge detection. These are 

given in Chapters 6 and 7, respectively. In Chapter 8, 

some final conclusions are presented. 
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Chapter 2 

Review of Edge Detection Operators 

The edge detectors of interest in this dissertation 

can be defined as local operators which are able to detect 

image dicontinuities without any a priori knowledge of the 

image content. These local operators are useful as a first 

step in many image understanding systems. Most of the 

local edge detectors can be classified into two basic 

groups. The first is the edge enhancement/thresholding 

methods that includes the use of simple differential 

operators and template matching. The second is the edge 

fitting technique. For purposes of design and analysis, 

the input to the edge detector is assumed to be an ideal 

ramp edge as shown in Figure 2.1. The function represented 

in this figu.e is usually the luminance attribute. 

Parameters that describe this edge are its location, 

orientation, edge width and height. These parameters are 

to be estimated by the edge detector. One of the factors 

which determine the edge detector's performan e, is the 

operator's accuracy in estimating the edge parameters. 

In this chapter, a detailed analysis of some of the 

edge detection operators is given.  Section 2.1 reviews the 

10 
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Figure  2.1.     Edge model 

11 

■ -* • ■ y- 



edge  enhancement/thresholding  operators. Section 2.2 

evaluates  the edge detectors performance using an ideal 

edge model. Section 2.3 discusses the edge fitting 

technique. 

2.1  Edge Enhancement/Thresholding Methods 

The edge enhancement/thresholding technique can be 

represented by the block diagram shown in Figure 2.2. Tn 

this model, the image F(j,k) is first convolved with a set 

of linear spatial operators {H-(j,k))f the output G^(j,k) 

is given by 

Gi(j,k) = Hi(j,k) • F(j,k) (2.1) 

where i * l,2,...,m. A nonlinear function of the set 

(G.(j,k)} is then calculated. The output A(j,k) is 

described by the equation 

A(j,k) = g(G1(j,k),G2(j,k),...,Gm(j,k)j (2.2) 

Typical forms of the function g(.) are the sum of squares, 

the square root, the magnitude, the maximum or combinations 

of these functions. The output A(j,k) is a measure of the 

discontinuity at the center of the convolvinq masks; it can 

be used to form a grey-levei ec'qe map. In order to improve 

edge visibility, and to reduce ^he edge map complexity at 

the same time, the grey-level edge map is compared with a 

threshold t, and an edge is detected if 

12 
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A(j,k) > t (2.3a) 

while if 

A(j,k) < t (2.3b) 

the decision is no edge. The threshold t defines the 

resulting edge map; if it is chosen too high, then 

low-amplitude changes will not be detected, and if it 13 

chosen too low, noise can be falsely detected as edges [1]. 

If an edge is detected, it is often useful to 

determine its orientation and height. This information can 

be obtained from the set {Gj_(j,k)} , as will be shown later. 

After this general introduction to the edge 

enhancement/thresholding technique, some important examples 

of the simple differential operators and template matching 

operators will be given. 

2.1.1 Simple Differential Operators 

This group of edge detectors includes the Roberts 12], 

the Sobel |4), and an operator suggested by Prewitt [i]. 

The Roberts operator is applied on 2x2 subregions of the 

image as sketched in Figure 2.3a. The output A(j,k) is 

given by 

A(j,k) - |(f2-f3)
2 + (f1-f4)

2J <2.4) 

14 



£1 f2 

£3 f4 

a.  2x2 Subregion 

fl       f2        f3 

f4       f5       f6 

f7       f8        f9 

b.  3x3 Subregion 

Figure 2.3.  Image subregions 
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Equation 2.4 can be viewed as two convolutions 

X(j,k) 
-1 

0 
© F(j,k) (2.5a) 

Y(j,k) - 
"-1   0 

L o  l. 

followed by the nonlinearity 

• F(j,k) (2.5b) 

A(j,k) =  (X(j, k))
2 + (Y(j,k))2 (2.6) 

Roberts has also introduced a magnitude operator, in which 

the discrete gradient is alternatively calculated as 

A(j,k) = |X(j,k)| + |Y(j,k)| (2.7) 

In both operators, an edge is detected if A(j,k) > t, where 

t is a given threshold. If an edge is detected, its 

orientation is given by 

8(j,k) = J + ta 
-l/Y(j,k)\ n VxTTfkTJ (2.8) 

The angle 0(j,k) is measured with respect to the horizontal 

axis. 

Approximations of the discrete gradient function by 

3x3 operators were given by Prewitt 13] and later by Sofcel 

|4J. These operators are applied on 3x3 subregions of the 

image as sketched in Figure  2.3b.  The outputs X(j,k) and 

16 
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Y(j,k) are given by 

X(j,k) = 

n 
c 

1 

0 

0 

0 

-1 

-c 

-1 

F(j,k) (2.9a) 

Y(j,k) = 

■1 

0 

1 

-c -1 

0 0 

c   1 

• F(j,k) (2.9b) 

where the constants c is 1 in the Prewitt and 2 in the 

Sobel operator. The output A(j,k) is still given by 

Eq. 2.6, while the edge orientation with respect to the 

horizontal axis is calculated by 

9(j,k)  = tan 
l/Y(i,k)\ (2.10) 

2.1.2 Template Matching Operators 

The compass gradient (3], Kirsch (61, 3-level and 

5-level operators I"7J are examples of template matching 

operators. In this technique, the input image is convolved 

with the set of linear masks {H ^(j ,k)} shown in Figure 2.4. 

The outputs (G-(j,k)} measure the gradient components along 

the basic orientations. The enhanced edge is formed as the 

maximum of the gradient arrays.  Thus 

A(j,k) = max||G1(j,k)|,|G2(j,k) |,...,|Gm(j,k)|}   (2,11) 

If A(j,k) is greater than the threshold t, an edge is 
17 
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ii) Kirsch 
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b) mask H3 L 

1      -1       -1 3     -5     -5 
1      -2       -1 3      0-5 

1        1        1 3      3       3 

i) Compass 
gradient 

ii) Kirsch 

0      -1      -! 0      -1     "2 

1      0     -i 1     o   -i 
1        1       0 2       1       0 

iii) 3-level iv) 5-level 

O mask H. > 

Figure 2.4.  Template matching operators 
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detected with orientation  8(j,k)  given by the compass 

direction of the largest gradient component. Because of 

the symmetry of the 3-level and 5-level masks, they can be 

implemented using the first four masks only. 

In Chapter 1, it was mentioned that the previous four 

operators can be considered as cross-correlation template 

matching operators. This can be shown as follows; assume 

that it is required to match a subregion of the image with 

one of m templates, where the elements of the 1'th template 

are shown in Figure 2.5. The 1'th cross correlation is 

given by 

R, * 5-»f*(b + o. ,h) (2.12) 
*      -j   J J » * 

The first term of Eq. 2.12 is constant for a given 

subregion. In addition h is proportional to y] a. -f.. 

Thus maximizing  Eq. 2.12  is equivalent  to  maximizing 

In this section a survey of the edge 

enhancement/thresholding operators has been given. It 

should be noticed that, because of the diversity of the 

operators used, it is useful to compare the performance of 

these operators quantitatively. There are different 

approaches that can be used in this comparison. One 

example is to compare the edge detectors outputs for a set 

of  ideal  edges.  This technique will be considered in the 
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Figure 2.5.  Elements of the fc'th template 
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following section. Other methods that implement 

statistical detection theory will be discussed in 

Chapter 3. 

2.2 Edge Detectors Performance, Case of Ideal Edge 

In this analysis, the edge model shown in Figure 2.1 

is used. Here the edge is assumed to be of zero width 

(ideal step function). When an edge detector is applied on 

this edge model, the output will be determined by the edge 

position and orientation. To simplify the analysis, the 

effect of each parameter is considered separately. First, 

the edge is assumed to pass through the center of the edge 

detector with general edge orientation <t>. Second, the edge 

is assumed to have a fixed orientation while its distance 

from the edge-detector center is varied. In both cases the 

outputs of the different edge detectors are evaluated. 

2.2.1 Case of Central Edge with orientation <J>. 

The average intensities of the different pixels, of a 

2x2 and a 3x3 image subregion containing a central edge, 

are shown in Figure 2.6. These intensities are given as a 

function of the edge orientation <$> . Because of the 

symmetry of the edge detectors, it is sufficient to measure 

the operators performace for 0 < ♦ < -j. 

when the Sobel operator is applied on this edge model, 
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the  values of  the output A*  and  the estimated  edge 

orientation  are as follow. 

'4hlsec(<fr) ] 

A= L£i£-^T[[-9tan
2($)+22tan($)-l] 

+[7tan2($)+6tan{$)-1]2J^ 

0 < 4> < tan_1(j) 

(2.13) 

tan_1(i) < $ < J 

tan 

0 < <J> < tan" (y) 

l/Ztan2(»)+6tan(»)-l \  ^-1 (1} 
\-9tan (<j))+22tan((j))-l/ 

(2.14) 
4, < 

Similar expressions can be obtained for  the other simple 

differential operators. 

When the Kirsch operator is applied, the values of A 

and 9 are as follows. 

A = 

12h 0 < <t>  <  tan"1!1) 

h[12"(3ttan^)1~] tan"1*!* 1 * 1 tan"1*1)  (2.15; 

. [., (l-tan(4>))?1  „, -1,1» <  A  € n hL12—tiHT«n—J   tan   (2-) - ♦ - * 

0 = 
IT 

4" 

0 < 41 < tan_1(j) 

tan"1 (j)< $ < J 
(2.16) 

Similar expressions can be obtained for the other  template 

matching operators. 

* Starting with this section,  the  (j,k) coordinates are 

dropped. 
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Plots of the values of A and 9 for different edge 

enhancement/thresolding operators are given in Figures 2.7 

and 2.8. In these curves, the value of A is normalized 

with respect to its value for a vertical edge. From these 

curves, it is clear that all the edge detectors are not 

isotropic because A varies with $ . This variation is 

smaller in the template matching operators compared to the 

simple differential operators. Also, the estimated edge 

orientation, 8 is usually different from the actual 

orientation, <j> . This difference is smaller for the simple 

differential operators than for the template matching 

operator This is basically because the template matching 

operators measure the edge orientation in a quantized step. 

2.2.2 Case of a  Fixed-Orientation Edge with  Varying 

Displacement 

In this case, the edge is assumed to have a fixed 

orientation, while its distance to the center of the edge 

detector is changed. The edge orientations chosen are the 

vertical and the diagonal, with ♦= Ü and TT/4, 

respectively. Similar results can be obtained for 

horizontal and - TT/4 orientation edges. These are the only 

edge orientations tor which the continuous-edge shape is 

preserved after sampling. 

The  intensities of  the different  pixels   for   a 

displaced  vertical edge are shown in Figure 2.9.  When the 
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Sobel operator is applied on thin edge model, the value of 

the output A is given by 

4h 

4h(~-d) 

0 < d < 

1 <r A   ^ 3 

2 i d £ 2 

(2.17) 

When the Kirsch operator is used, A is given by 

A = 

12h(|fl)   0 < d < ^ 
(2.18) 

15h(J-d) 1 <r * <  3 ? £ d £ J 

Plots of A for  the different operators are shown  in 

Figure 2.1Ua. 

In the case of a diagonal edge, the average 

intensities become e second order polynomial of the 

distance across the diagonal. The output A for the Sobel 

operator is given by 

A = 

h(3~2d ) 0 < d < -- 

h[l-(d---)2+2(/2-d)2} — < d < /Z 

h(—d) 

/2 
2 

and   for   the Kirsch operator 

h|5+10(l-d2)-(—d)2J 

A = 

/2_ 

hi5-5(d-—)2+2(/J-d)2J 

5h(-^—d)2 

/2   - 

/5  <  d  < 
/2~ 

0   <  d   < 
ft 

±- < d < n. 

n < d < — 

(2.19) 

(2.20) 
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Plots ot A tor the ditlerent operators are given in 

Figure 2.1U. In these curves, A is normalized with respect 

to its value tor a central edge. These curves can be used 

to determine edge detector resolution. It should be 

noticed that small size operators have better resolution. 

Also, lor operators with the same mask size, the resolution 

is slightly dependent on the mask shape. 

The results obtained in this section show that edge 

detector petormance in the case ol edges with general 

location and orientation can be approximately determined 

Irom their performance in the case ot central edges with 

vertical or diagonal orientations. This last case is used 

as the ideal edge model in the following chapters. 

2.3 Edge Fitting Method - Hueckel's Algorithm 

In edge titting, the image function F(x,y) defined 

over a subregion £ is compared with an ideal edge model 

S (x,y), where £ is the edge parameters vector. The 

difference between the actual and ideal models is function 

ot p, and by changing these parameters the difference can 

be minimized. Edge acceptance is based on the value of the 

minimum difference. It it is less than a given threshold 

t, the image subregion is classified as an edge with the 

corresponding parameter Emin« Usually the mean square 

error is used to measure the difference between the ideal 

and actual edge. This error is given in the form 

31 



\- 
[F(x,y)-S (x,y)pdxdy (2.21) 

B 
Minimization of the error E  can be obtained by an 

E 
iterative procedure which is time consuming. However it is 

possible to introduce approximations of Eq. 2.21 such that 

its minimization can be achieved by simple analytic 

methods. This was the basic contribution of hueckel in his 

papers published in 1971 and 1973. In the first paper, 

Hueckel used an orthogonal transformation to solve the 

problem of edge fitting [8]. Later, he extended his ideas 

to general edge-line fitting [14]. The Hueckel algorithm 

can be summarized as follows: A circular subregion of the 

image is compared with the edge model shown in Figure 2.11. 

The luminance function S (x,y) of this edge-line model is 

given by 

b_ 

b +t 

b_+t_+t+ 

A < r_ < r+ 

r < A  < r 

r_ < r+ < A 

(2.22) 

where 

E " lcx 
c
y 

r- r+ t-    t+    bJ (2.23! 

The functions F(x,y) and S (x,y) are expanded using a set 

of two dimensional orthogonal functions 'H^Q. This set is 

chosen to be separable into the product of an angular and 

radial component.  The error E  is now in the form 
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E = £ (a.-s.) 
E  i=0  x x 

(2.24) 

where 

i- II Hi(x' y)F(x,y)dxdy (2.25) 

3 

. =  j j Hi(x,y)S (x,y)dxdy (2.26) 

3 
The series i.i Eq. 2.24 is approximated by  its  first  nine 

components.  The minimization of this truncated form and 

calculation of the corresponding p .  can be achieved by 
nun 

solving simple algebraic equations. Hueckel argued that 

the truncation of the error series does not affect the 

performance of his algorithm because high frequency 

components are more related to image noise than to its 

signal contents. 

The Hueckel algorithm has been considered by many as 

an almost optimum procedure for edge detection. A detailed 

analysis of this algorithm shows that this is not true. 

The basic difficulties with the Hueckel algorithm are the 

effect of the truncation of the series expansion and 

inaccuracies in the minimization procedure and computation 

of the edge parameters. These problems are discussed in 

Appendix A. 
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A major criticism of the previous approach to edge 

fitting is the fact that although images are usually 

discrete functions, the optimization procedure is derived 

in the continuous domain, thus the results obtained are 

suboptimum. This difficulty can be avoided by using the 

discrete image model in the derivation of the minimization 

procedure. An algorithm based on this idea will be 

introduced in Chapter 7. 

2.4 Conclusion 

In this chapter a review of some of the basic edge 

detection operators has been given. The operators chosen 

have the advantage of possessing simple mathematical 

formulas defined over a small region of the image, and thus 

it is not difficult to introduce a quantitative evaluation 

of their performance. In Chapters 3, 4, 5 and 6, different 

quantitative methods are used in the design and evaluation 

of the edge enhancement/thresholding operators. In 

Chapter 7, further investigation of the edge fitting 

technique is given. 
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Chapter 3 

Statistical Model for Edge Detection 

One of the methods which can be used in the evaluation 

of edge detection operators, is to test their performance 

in the case of an ideal signal with additive noise. This 

test is easy to implement. In addition, if the noise is 

assumed to be additive, white, and Gaussian, analytical 

results are not difficult to derive. Since edge detectors 

are used to classify different illumination inputs into 

edges or no edges, their performance can be tested by 

introducing inputs in the form of a noisy edge, or no edge, 

and then estimating the probability of making the right 

decision in each case. The following sections develop a 

statistical model for edge detection. Section 3.1 is a 

review of different decision rules used in 

hypothesis-testing. Section 3.2 evaluates the performance 

of the edge detectors for noisy edges. Section 3.3 

discusses the estimation of the edge orientation. 

3.1  Edge Detection as a Hypothesis-Testing Problem [4, 15, 

and 16] 

In Section 2.1,  the edge  enhancement/thresholding 
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technique was described in detail. This technique closely 

resembles the hypothesis-testing algorithms used in 

classical statistical decision theory. The edge 

enhancement/thresholding operators have as an input an 

image subregion, with one of two hypotheses to be true, 

H,:  The subregion corresponds to an edge; 

H?:  The subregion corresponds to a no edge. 

The edge detector calculates a  function A of  the  input 

image,  and  accepts one of the two hypotheses according to 

the rule: Accept H.. if 

A > t (3.1) 

otherwise accept H_. 

If the input image is noise free, it is possible to 

find a perfect decision strategy. On the other hand, if 

the image is affected by noise there will always be a 

possibility of making a wrong decision. For this case, 

four probabilities can be derived 

Pledge|edge) = P(A>t|edge) 

P(no edge|no edge) = P(A<t|no edge) 

P(no edge|edge) = P(A<t|edge) 

Pledge|no edge) = P(A>t|no edge) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The first two equations correspond  to correct decisions, 
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while the other two correspond to incorrect decisions. 

If the probabilities of occurance of edges and no 

edges in a given image are known, then the probability of 

error will be in the form 

P(error) = P(no edge|edge)P(edge)-P(edgejno edge)   (3.6) 

•P(no edge) 

A decision procedure to minimize this probability of error 

is given by the rule: Decide an edge if 

p(A 
pTÄ 

edge)    > P(no edg 
no edge) — P(edge) (3.7) 

and decide no edge otherwise. This method is known as the 

Bayes decision rule for minimum probability of error. In 

Eq. 3.7, p(A ledge) and p(A |no edge) are the conditional 

probability density functions of A. A sketch of these 

probabilities is shown in Figure 3.1. The threshold t is 

set at a value which satisfies Eq. 3.7. In the special 

case, it edges and no edges are equally probable, 

t = a (3.8) 

where a is the point of intersection of the two conditional 

probabilities. 

If, in addition, the costs of taking one of the four 

decisons are known, namely C(edge ledge), ... , 

C(no edge|no edge), then a decision procedure to minimize 

the average cost is to decide an edge if 
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p(AI edge)     [C(edge|no edge)-C(no edge|no edge)] 
p (Ajr O edge) *.   fc(no edge | edge)-C (edge | edge) ] 

P(no edge) 
P(edge) 

(3.9) 

Otherwise, decide no edge.  The threshold t can  be 

specified accordingly. 

In more general cases, when the probabilities of edges 

or no edges are not known. The threshold t can be set by 

one of the following two methods. 

In the first method, t is set to achieve a given 

probability of missing an edge, P(no edge|edge), while 

minimizing the probability of false detection, 

P(edge|no edge). In this case, t is the solution of the 

equation 

t 

P(no edge)edge) = p(A|edge)dA (3.10) 

This method, known as the Neynan-Pearson criterion,  is 

frequently used in Radar detection. 

In the second method, t is set to minimize the maximum 

possible error, that occurs when the probabilities of edyes 

or no edges change for different input images. In this 

case the edge detector threshold is chosen such thet 

P(edgejno edge) = P(no edge|edge) (3.11a) 

or 
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>t 
p(A|no edge)dA =  |  p(A|edge)dA (3.11b) 

This is known as the minimax criterion. 

Any of the previous decision strategies can be used in 

the design of edge detectors, especially the Neyman-Pearson 

criterion, which does not require the knowledge of th.o 

probabilities of edges or no edges. After choosing the 

threshold t, the performance of the edge detector can be 

evaluated as a function of the probabilities of detection 

and false detection. Computation of these probabilities 

for the edge enhancement/thresholding operators is given in 

the following section. 

3.2 Edge Detector Performance, Case of  Ideal  Edge Plus 

Noise 

In the model used in this section, an image subregion 

is considered  to be the sum of two components.  The first 

is an ideal central edge with orientations $   =  0  or TT/4, 

while  the second is an additive white Gaussian noise with 

zero mean and standard deviation a.  The  actual  intensity 

f  is then given by 
j 

f. . s. ♦ n. (3.12) 

where s.  and  n-  are  the  ideal  and  noise  components, 

respectively.   The  random variable f • has the probability 
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density function 

p(f.) = (27rg2I%exPr-(fj"SJ) 1 
y (3.13) 

When an edge detector is applied on this image model,  the 

output of the i'th convolving mask is given by 

G. = £M. (j)f. 
l   *-' l J  ] 

(3.14) 

where M.(j) are the components of the mask H.^.  In this 

case  {G.} will be joint Gaussian with the probcMlity 

density function 

_m 

P(G) = (2TT) 
2fc\~hexp[-±(G-G)T'E~ll9.-V)- (3a5) 

In Eq. 3.15, G and G are vectors of the actual and  ideal 

masks outputs given by 

G = [G1  G2 • •  GJ m (3.16) 

with 

G= [Gx        G2  . . .  Gm]T 

G, = 2-> M. (j ))s. 

Also, the covariance matrix  ^  is given by 

(3.17) 

(3.18) 
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Z- 

2 
11 
2 
21 

2 
12 
2 
22 

2 
Im 
2 
2m (3.19) 

'ml 'm2 mm 

with 

akl =  ° 
1 

Mk(j)M£(j) (3.20) 

The analysis introduced so far applies to both simple 

differential and ten te matching operators. To obtain 

expressions for the probability density function of A, each 

group of edge detectors has to be considered separately. 

3.2.1 Simple Differential Operators 

With the Roberts, Sobel, and Prewitt operators, two 

convolving masks are used. The outputs X and Y are joint 

Gaussian with mean and covariance matrix as given in 

Table 3.1. 

From Table 3.1, it can be noticed that the random 

variables X and Y are independent. If the nonlinear 

function used is the square root, then 

A - (X2+Y2)* (3.21) 

and the probability density function of A in the case of no 

edge is given by 117). Thus, 
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TABLE 3.1 

Mean Vector and C;,variance Matrix of 

Differential Gradient Operators 

Operator 
G 

no edge vertical 
edge 

diagonal 
edge 

L 
r -| r* "i 

Roberts 
0 l 

h 
1 

h 
/I  0 

0 -j 0 0  /J 

Sobel 
0 

0 

4 

0 
h 

3 

J 
h 

/n   o 
o /n 

- 

n 

Prewitt 
0 

0 

3 

0 
h 

2 

2 
h 

/%       0 

0 /£ 
0 
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p(A) 
a   2 r 

0 

exp [-6) A > 0 

A < 0 

(3.22) 

while in the case of an edge 

2. 2 

1  exP 
(A '+a2)]T / Aa \    . x 

r  J   r ' 
p(A) = 

where a    is the diagonal elements of L*i   , anc 

(3.23) 

A < 0 

2   ~2   ~2 (3.24) 

In Eq. 3.23, In(*) is the modified Bessel function of  zero 

order. 

The previous probability density functions can be used 

to determine the probability of false detection Pp and the 

probability of correct detection PD, for a given threshold 

t. These probabilities are of the form [18] 

PF = exp (-6) (3.25) 

PD = Q (H) (3.26) 

where Q(a,b) is Marcum's Q-function defined as 

Q(a,b) = [-*-¥} 
2+ 2- 

x exp|-^-Tj— |lQ(ax)dx (3.27) 
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If the nonlinear function used,is the sum of magnitudes 

A = |X| + |Y| (3.28) 

the probability density tunction p(A) can be derived in the 

form 

P(A) = 1      /A2+a
2\   exp ( 7 ) 

2/?ar   \ 4o// 

[P;L (X,Y)+px (X,-Y) +px (-X,Y) +p± (-X,~Y) ] (3.29) 

where 

,v„.      [(X-Y)A-XY I f r/A+X+Y\   ,/A-X-Y\] 
Pl,x,». «P[-^T—j H-^j+er'bir]J 

The corresponding probabilities P_ and Pn ate 
F D 

(3.30) 

PF=   1 

,     |     c/t+X+YV      Cft-X-Y\ 

i tix^\+erf/tzx±v 
) 

In the previous equations 

erf(x) 

0 

  exp(-4-)dy 
/2?   V 2/ 

(3.31) 

(3.32) 

(3.33) 

To compare the performance of the Roberts, Sobel and 

Prewitt operators, the probability of correct detection P_ 

is plotted as a tunction of the probability of false 

detection PF.  Figure 3.2 presents such plots for vertical 

46 



1.0 

Sobel diagonal 
&Prewitt vertical 

Sobel 
vertical & 
Prewitt 
diagonal 

Roberts 
diagonal 

Roberts vertical 

0-0    0.2    0.4    0.6    0.8 1.0 

a)  SNR =1.0 

Figur*» 3.2.  Probability of detection versus probability 

of false detection for simple differential 

operators 

47 



Sobel diagonal &Prewitt vertical 

Roberts 
vertical 

Roberts diagonal 

I verticals, Prewitt 
diagonal 

0.2 

0.0' 
0.0 

-L 
0.2 0.4 0.6 

PF 
b)     SNR  =10.0 

Figure  3.2.    (Continued) 

0.8 1.0 

48 



and IT/4 edges, with signal-to-noise ratios, SNR* = i.U and 

1U.U. From these curves it is clear that the Sobel and 

Prewitt operators are superior to the Roberts operator. 

The prewitt operator is better than the Sobel operator tor 

a vertical edge. But, tor a diagonal edge, the Sobel 

operator is superior. 

i.2.2    Template Matching Operators 

With the compass gradient, Kirsch, 3-ievel, and 

5-level operators, eight convolving masks are used. The 

output vector G is a joint Gaussian with mean and 

covariance matrix as given in Table i.2. The mean G is 

zero tor no edge, and G tor V4 edge is the same as G tor 

vertical edge with all the components shitted one position 

downward. 

For these operators, computation ot p(A) is not 

straight torward. However, their pcrtormance can be 

evaluated using the probability density tunction p(G). As 

an example 

The signai-to-noise ratio is defined as 

SN R= I     ,  edge ntüght   \ 
\ noise standard deviation/ 
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TABLE 3 .2 

Mean Vector and Covariance Matrix of 

Template Matching Operators for a Vertical Edge 

OPERATOR 
G L 

3-Level 

r a- 
2 
0 

-2 
-3 
-2 

0 
2 

h 

" 6       4       0-4-6-4       0       4" 
4       6       4       0-4-6-4       0 
0 

-4 
-6 
-4 

0 
4 

a' 

5-L«vel 

4 
3 
0 

-3 
-4 
-3 

0 
3 

h 

f 12       8       0-8  -12     -8       0       8" 
8     12       8       0-8  -12     -8       0 
0 

-8 
-12 
-8 

!   o 
[   8 

0* 

Compass 
Gradient 

' 3" 
2 
0 

-2 
-3 
-2 

0 
2 

h 

12       8       4       0       0       0       4       8' 
8     12       840004 
4 
0 
0 
0 
4 
8 

a1 

Kirsch 

12" 
3 
0 

-8 
-12 
-8 

0 
8 

h 

120     56     -8   -72   -72   -72     -8     56" 
56   120     56     -8   -72   -72   -72     -8 
-e 

-72 
-72 
-72 
-8 
56 

a' 
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P = P(A > t|no edge) 

= P(|G.| > t'OR'|G-| > t...«OR«|GR| > t|no edge) 
1 

ft 
- 1- 

r 
p(G|no edge)dG,dG2...dGg       (3.34) 

-t   -t 

Equation 3.34 can be evaluated numerically using  the 

parameters in Table 3.2.  In Figure i.i,   PD is plotted as a 

function ot  P  tor  the different  template  matching 

operators tor SNR = l.U and lu.U.  From these curves, it is 

clear that the 3-Ievel and 5-level operators have the best 

performances,  toilowed  by  the Kirsch and  finally the 

compass gradient operator.  This can be explained  by  the 

tact  that with  the Kirsch and compass gradient operators 

more points are used in evaluating A, and thus, more noise 

is  introduced,  while  these points are combined in such a 

way that they do not enhance the edge output. 

3.3 Estimation ot the Edge Orientation 

The analysis in the previous section can be extended 

to the estimation ot edge orientation. For the simple 

differential operators, the edge orientation is determined 

by the angJe 

0Q = tan MO (3.3b) 

It X and Y correspond  to no edge,  they are  zero mean 

Gaussian  random variables.   In  tnis case, 0Q is a random 

variable with P(9n) given by 
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e(V = 2? (3.36) 

for 0 < 80 < 2TT .It Y and X correspond to an edqe,  their 

means are non zero in general, and pOn) is given by 119| 

-a 

P(V = TF 
r        /l+2erffcf4 
l+2/?acosYl * — '-] 

2   2 
exp(a cos y) 

j (3.37! 

where 

-(¥) (3.38) 

and 

Y = 80-tan  ^ (3.39) 

The conditional probability ot estimating the edge 

orientation, within a tolerance A<t>, given that the region 

corresponds to an edge with orientation <\>,   is in the torm 

$+A<J> 

P(4>-A4»£e<0+A^,|edge,<4>)   =   j       pledge, <4>)d<J> (3.40) 

4>-A4> 

it should be noticed that  the probability ot     the exact 

estimation ot the orientation ot a noisy edge is zero. 

For the template matching operators, the detection of 

the  edge  orientation  angle  can  be considered as 

multiple-hypotheses testing.  It the actual edge angle is 

Ö, the probability ot making a correct decision is 
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P(6=8.jedge,<9.) = P(G.>G, Vk[edge,<9.) 
1 X I-- K. X 

Gi=t 

fGi 
G. =-<» 
k 

k/i 

p(G|edge,<0. )dG,dG2. . .dGg 

(3.41) 

Equation 3.41 can be evaluated numerically. 

Since the estimation ot the edge orientation is 

affected by more sources ot error, compared with the 

detection ot the edge presence or absence, this additional 

information should be used carefully. An unwise usage of 

the estimated edge orientation may reduce edge detector 

performance. More research is needed to find an optimum 

strategy for using edge orientation information. 

3.4 Conclusion 

In this chapter,  a statistical model  tor  edge 

detection has been oeveloped.  The performance ot the 

different edge detectors is evaluated tor actual central 

edges with specific edge orientations.  The success in 

introducing such a model helps  in  transferring  the 

communication theory concepts into edge detection problems. 

This is z.  major point in the analysis and design of edge 

detectors,  because many problems  in edge detection have 

already been solved in communication theory.  It  is 

interesting  to notice that the magnitude and angle of the 
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simple ditterential operators have the same probability 

density tunctions ot the envelope and phase or narrowband 

signal with additive Gaussian noise |19J. Other examples 

ran be noticed and used successfully. 
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Chapter 4 

Edge .Detection as a Pattern Classification Problem 

Edge detection as a hypothesis-testing problem was 

presented in Chapter 3. Another approach, which is 

introduced in this chapter, is to consider edge detection 

as a pattern classification problem. The edge detector has 

as its input different image subregions, and it is required 

to classify these subregions into the class ot edges ft., 

and the class of no edges ft?. The decision strategy given 

by Eq. 2.3 can be written in the form 

If w(l)A + w(2) > 0 then A c ft. (4.1a) 

and if w(l)A + w(2) <0 then A e ft. (4.1b) 

where the weighting vector w = (rf(l) w(2)]  is  related  to 

the threshold t by the relation 

w(2) 
1  = " wTTT (4.2) 

The components of w arc obtained  by  training  the edge 

detector  using  a  set of known edge and no edge patterns. 

After this training phase, the edge detector  is used  to 

classify  unknown  prototypes  in actual  images.  The 
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performance with actual images will depend on the procedure 

used in the training phase. There are different methods 

that can be used in training a pattern classifier. A 

review of these methods is given in Section 4.1. One of 

these methods, the Ho-Kashyap algorithm, will be used in 

the edge detectors design. The basic concepts of this 

algorithm and the reason behind its choice are discussed in 

Section 4.2. Experimental results are summarized in 

Section 4.3. 

4.1 Training Methods for Pattern Classifiers 

The decision function in Eq. 4.1 is based on the 

scalar variable A. This decision function can be 

generalized to the n-dimensional case 

d(x ) - w x + w(n+l) —n   —n—n (4.3) 

where x = [x(1),x(2),...,x(n)1T is the pattern vector  and 
~n 

w = |w(l),w(2),...,w(n)| r is the weight vector.  Usually, 
n 

Eq. 4.3 is expressed in the form 

d (x) = w x (4.4! 

where x  = (x (1), x(2),...,x(n),1 ]  is an augmented  pattern 

T vector   and  w = |w(1),w(2),...,w(n),w(n+1))    is   an 

augmented weight vector, |2U|.  The  decision  strategy  is 

then 
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If  w x > 0 x e ß. (4.5a) 

and if T        v w x < 0 =f    x e ft. (4.5b) 

In the training phase, the pattern classifier is given  two 

sets  of  prototype patterns  {x ,x ,... ,x } e Q ,  and 

{-N+l'-N+2",,'-2N } z Q2' The  weight  vector  w  is 

determined  such  that w x > 0 for all patterns of £h, and 

T w x < 0 for all patterns of ß_.  If the patterns of Q~ are 

T multiplied by (-1), the required condition becomes w x > 0 

for all patterns.  The pattern classification problem is 

then reduced to finding a vector w such that 

X w > 0 (4.6) 

is satisfied, where 

X = 

T 

T 
^2 

b •2N (4.7) 

if there exists a w which satisfies Eq. 4.6, the classes 

are said to be separable; otherwise they are nonseparable 

120]. 

One approach tc »le solution of  the set of  linear 

inequalities of  Eq. 4.6 is to define a criterion function 

J(w) that becomes minimum if w satisfies Eq. 4.6.  This 

reduces the problem to one of minimizing a scalar function; 
59 
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a problem that can be solved by a gradient descent 

procedure [4J. An example of a criterion function,, that 

can be used, is the perceptron criterion function 

J (w) = £ (-wTx) 

where X  is the set of samples misciassified by w. 

example is 

(4.8) 

Another 

J (w) r — 
(wAx-b)' (4.9) 

where now X is the set of samples tor which wTx < b. The 

previous two criterion functions focus their attention on 

the misciassifled samples. A different criterion function 

that involves all the samples is 

J (w) = ||X w - b|| l (4.10) 
s —    " — —  —" 

where  the components of  b are  all  positive.   The 

minimization of  J (w) depends on the value of b.  It b is 
s ~~ 

fixed arbitrarily there is no guarantee that the solution 

will give v separating vector in the linearly separable 

case. To avoid that, b and w are allowed to vary in the 

minimization procedure. This is the basic concept of the 

Ho-Kashyap algorithm. Another approach to solve the 

inequalities in Eq. 4.6 is to use linear programming 

procedures.  Details of these procedures and analysis of 

the other previous methods are given in references |4, 2ÜJ. 
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In order to use any of the previous methods in the 

design of edge detectors, two conditions for the resulting 

vector w are required. First, if the training patterns are 

separable, the training procedure should converge to a w 

which classifies the patterns correctly. Second, if the 

training patterns are not separable, a case which is 

usually encountered in edge detection, the training 

procedure should detect the nonseparability and yield a 

solution which can be used practically. These two 

conditions are achieved only by the Ho-Kashyap algorithm 

[21], and by a linear programming procedure that minimizes 

the perceptron criterion function [22]. Any of these two 

methods can be used in edge detector design. The 

performance of each method will depend on the distribution 

of the classes. A comparison between the two methods is 

outside the scope of this dissertation. Therefore, in the 

following section o discussion of one of them, the 

Ho-Kashyap algorithm, and its application in edge 

detection, is given. A similar anaysis can be developed 

for the linear programming procedure. 

4.2 The Ho-Kashyap Algorithm 

In this algorithm, the solution of the inequalities in 

Eq. 4.6 has been reformulated as a problem of finding w and 

b > Ü such that J (w) in Eq. 4.10 is minimized. The 

minimizations  can be achieved by a steepest descent 
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procedure   that   implements   the gradient   functions 

3J 

and 

3w 

cKJs 

3b 

s - XT(X w - b) (4.11a) 

= b - X w (4.11b) 

3J. 
Since there is no constraint on w,-g^-= 0 implies 

T  -IT 
w = (XXX) 1Xib 

X#b (4.12) 

where X is the pseudoinverse of X. Since all the 

components of b are constrained to be positive, this vector 

must be varied in such a manner to never violate this 

constraint.  This can be accomplished by letting 

b(k+l) = b(k) + 6b(k) (4.13) 

where 

6b(k) = c(e(k) + |e(k) |] (4.14a) 

and 

e(k) = X w(k) - b(k) (4.14b) 

In Eqs. 4.13 and 4.14, k denotes the iteration index, c  is 

a positive correction increment, and |e(k)| indicates the 

absolute value of each component of the error vector e(k) 

120J .  From Eqs. 4.12 and 4.13, 
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w(k+l) = w(k) + X*6b(k) (4.15) 

Thus, Eq. 4.1U can be minimized through the iteration 

w(l) = Xffb(l) (4.16) 

e(k) = X w(k) - b(k) (4.17) 

w(k+l) = w(k) + cX* [e(k) + |e(k) | ] (4.18) 

b(k+l) = b(k) + c[e(k) + |e(k) | J (4.19) 

where b(l) > 0 but otherwise  is  arbitrary,  and  c  is a 

constant such that Ü < c < I. 

If the patterns are separable, Eqs. 4.17 to 4.19  can 

be  repeated until all components of e(k) converge to zero, 

or to any reasonably small value.  On the other  hand,  if 

the components of  e(k) cease to be positive, but are not 

all zero, at any iteration step, this will  indicate  chat 

the  classes are not  separable  [20,  211.  These  two 

characteristics of the Ho-Kashyap algorithm ate  important, 

especially when the algorithm  is used  to design edge 

detectors.  Because  the degree of  separability of  the 

classes of edges and no edges changes for different image 

models, the procedure used  in  the edge detector design 

should be able  to handle both separable and nonseparable 

patterns. 
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4.3  Application  of  the Ho-Kashyap Algorithm  to Edge 

Detection 

The Ho-Kashyap algorithm is used in the design of edge 

enhancement/thresholding operators.   In  this experiment, 

patterns of vertical edges, and patterns of no edges, are 

generated.   Gaussian noise  is added  to produce edge 

prototypes with SNR = 1.0 or  10.0.   The  outputs of the 

different edge detectors  in  the case of a vertical edge 

1 A, ,A_,...,Aj, N and in  the  case of no edge 

{AN+l'AN+2' 

matrix 

,A_ },  are used  to construct the augmented 

X = -A 'N 
N+l 

-A 2N 

1 
-1 

-1 

(4.20) 

The number of patterns of each class is chosen to be 

N = 20. This ensures that the performance on design and 

test data will be similar 14]. The initial components of 

b(l) are chosen to be unity, and iteration given by 

Eqs. 4.17 to 4.19 is repeated up to 500 times. The 

experiment is ended if the components of e(k) are all less 

than a small value, (0.001)» or if nonseparability is 

proved. It is sometimes useful to end the iteration when 

the threshold t * -w(2)/w(l) stabililzes within a 

relatively small variation. 
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After the training phase is finished, the values of w 

obtained are tested with a new set of 250 prototypes 

generated with the same model. The probability of 

detection in the case of an edge, and the probability of 

false detection in the case of a no edge, are calculated. 

The results obtained are compared with the theoretical 

results derived in Chapter 3. These results are given in 

TabJ.e 4.1 for different edge detectors with vertical and 

TT/4 edges and SNR = 1.0 and 10.0, respectively. It should 

be noticed that in many cases the edge detector threshold t 

converges to a value which results in equal probabilities 

of error 

PF ~ l-
p
D (4.21) 

This satisfies the Bayes minimum error criterion if edges 

and no edges are equally probable. Thus, the results 

obtained with the Ho-Kashyap algorithm have practical 

significance. 

4.4 Conclusion 

In this chapter, it has been shown that edge detectors 

can be designed using pattern classification techniques. 

As an example, the Ho-Kashyap algorithm, was used to design 

different edge enhancement/thresholding operarors. The 

edge model used was an idea] edge plus Gaussian noise. 

This model helps in comparing the experimental results with 
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the theoretical ones obtained in Chapter 3. The same 

technique can be easily extended to the design of any edge 

detector with any arbitrary noise model. 
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Chapter 5 

Figure of Merit Comparison of Edge Detectors 

The methods introduced in the previous two chapters 

can be used in both the evaluation and the design of edge 

detectors. In this chapter, a third method which can be 

used only in the evaluation of edge detectors performance, 

is introduced. The procedure used in this chapter can be 

summarized as follows. First, an artificial test image is 

generated. Second, an edge detector is applied on this 

test image. Third, the quality of the resulting edge map 

is measured in terms of a scalar function. That function 

can be considered as a figure of merit of the corresponding 

edge detector. The figure of merit used should be 

sensitive to the different expected errors so that it is 

maximum when the edge map is perfect, and decreases as the 

error in the edge map increases. Methods based on the 

previous technique have been introduced by Fram and Deutsch 

[1JI, and by Pratt |lj. This latter method has two 

advantages: it weights the ditferent errors according to 

their importance; and it allows each edge detector to be 

tuned to its best capabilities, which guarantees a fair 

comparison.  Because of theso advantages, the experiments 
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discussed in the following sections will be based on the 

tigure of merit developed by Pratt. Section 5.1 explains 

the basic ideas of this technique. Section 5.2 summarizes 

the results obtained with simple test images. Section 5.3 

introduces conclusions based on the results of Chapters 3,4 

and 5. 

5.1 Figure ct Merit Concepts 

The procedure introduced by Pratt utilizes a test 

image consisting of a 64 x 64 pixels array over a Ü to 255 

amplitude range with a vertically oriented edge of variable 

contrast and slope placed at its center. Independent 

Gaussian noise of standard deviation o is added to the 

edge image, and the resultant picture is clipped to the 

maximum display limits. As in the previous chapters, the 

signal-to-noise ratio is defined as 

SNR 
■(«) 

(5.1) 

where h is the edge height. 

When an edge detector is applied on this test image, 

three major types of error will affect the resulting edge 

map: (a), missing of valid edge point; (b) , failure to 

localize edge points; (c), classification of noise pulses 

as edge points. Examples of these errors are shown in 

Figure 5.1. 
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N = even integer 

a)  vertical edge test ima^e 

a 
B 
• i 

b)  ideal c)  fragmented 

d)  offset e)  smeared 

Figure 5.1.  Types of edge detection errors 
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The quality of the resulting edge map may be  assessed 

by the tigure of merit defined by 

F = - i     y   x 
max{I

I'1? ~ l^d7 (5.2) 

where I and I. represent the number of ideal and actual 

edge map points, respectively, a is a scaling constant, and 

d is the separation distance of an actual edge point normal 

to a line of ideal edge points. The rating factor is 

normalized so that F = 1 for a perfectly detected edge. 

The scaling factor a may be adjusted to penalize edges 

which are localized but offset from the true position. 

Normalization by the maximum of the actual and ideal number 

of ^dge points insures a penalty for smeared or fragmented 

edges. This figure of merit gives higher rating tor a 

smeared edge than tor an offset edge. This is reasonable 

because it is possible to thin the smeared edge by 

post-processing [1J. 

The tigure of merit method has beei. used to evaluate 

the performance of the Roberts, Kirsch, Sobel, and compass 

gradient-operators.  In each case,  the thresholds are 

chosen to maximize the tigure of merit, plots of these 

maximum values are given in |1|.  The results obtained  in 

this experiment can be predicted theoretically using the 

probabilities of detection of  central  edges  P_,  of 

detection of displaced edges PD;S» and of false detection 
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Ppf for a given edge detector. As an example, if a 3x3 

edge detector is applied to the test image shown in 

Figure 5.1, there will be a central edge at column j + 1, 

displaced edges at the two adjacent columns, and no true 

edges elsewhere.  For this case, Eq. 5.2 reduces to 

_N 2P 
PD + 

Dis 
1+a + P, 

N        N , 

V^2 ^   tl   1+adI/ (5.3) 

where 

IN = max{N,[PD+2PDis+(N-3)Pp]N} (5.4) 

The analysis introduced thus tar is based on a test 

image that contains a vertical edge. The same analysis can 

be extended to other image models, but in these cases the 

evaluation of Eq. 5.2 will become more difficult. Another 

test image which is relatively easy to analyze is one that 

contains a diagonal edge. As has been shown in Cnapter 2, 

the results obtained tro:n the vertical and the diagonal 

edge models are sufficient to determine edge detector 

performance. 

A test image that contains a diagonal edge is shown in 

Figure 5.2. The image consists of 12b x 12d pixels 

generated with the same signal and noise models used in the 

test image that contains the vertical edge. To simplify 

the comparison of the results obtained in both cases, only 
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Figure 5.2.  Figure of merit test image 

geometry for diagonal edge 
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the central part of the diagonal edge is used in 

calculating the figure of merit. This central region is 

shown bounded by dotted lines in Figure 5.2. The number of 

edge pixels in this region is chosen to be equal to the 

number of edge pixels in the vertical edge model. But, the 

number of non-edge pixels in the diagonal edge model is 

twice their number in the vertical edge model. The effect 

of this difference is compensated by scaling the diagonal 

distance d by a factor /2. The results obtained with these 

two test images will be given in the following section. 

5.2 Experimental Results 

The Sobel, Prewitt, compass gradient, Kirsch, 3-level 

and 5-level operators are evaluated using the figure of 

merit defined previously. The test images are generated in 

the form of ideal steps with vertical or diagonal 

orientations. The height is h = 2b. Gaussian noise is 

added to the ideal step with signal-to-noise ratios 1.0, 

5.0, 1U.0, 2U.0, 1UU.Ü, respectively. Each edge detector 

is applied on the different test images, and the threshold 

t is varied untili the figure of merit is maximum. Plots 

of the figure of merit as a function of signal-to-noise 

ratio are shown in Figures 5.3 and 5.4. The figures of 

merit generally follow expected trends: small for low 

signal-to-noise ratios and large in the opposite case. 

Some of  the edge detection methods are superior to others 
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for all test- images. Examples of the edge maps, obtained 

in the previous experiments, ere shown in Figure 5.5. It 

should be noticed that the figures of merit are correlated 

with visual quality of the edge maps. 

The figures of merit plotted in Figures 5.3 and 5.4 

can be related to the response of an edge detector to 

displaced edges, shown in Figure 2.1U , and to the 

operating characteristics of an edge detector, as shown in 

Figures 3.2 and 3.3. The figure of merit is large when the 

edge detectors have good performance in the presence of 

noise, and when the edge detectors suppress non central 

edges efficiently. 

5.3 Conclusion 

In general, the results obtained in Chapters 3, 4 and 

5 show that the 3-level operator has better performance 

than any of the other edge detectors. Its performance can 

be compared only to the performance of the Prewitt 

operator. The advantage of the 3-level operator is that it 

has almost the same performance tor all edge orientations, 

while the advantage of the Prewitt is that it requires less 

computation effort, especially if the square root is 

replaced by the sum of magnitudes. 
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a)  Prewitt square root 

vertical edge, SNR=1 

b)  Prewitt square root 

vertical edge, SNR=10 

c)  Prewitt square root     d)  Prewitt square root 

vertical edge, SNR=100      diagonal edge, SNR=10 

Figur« J . D . Edge maps for 2x2 and 3x3 operators 
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e)  Sobel square root 

vertical edge, SNR=10 

f)  Roberts square root 

vertical edge, SNR=10 

g)  3-level 

vertical edge, SNR=10 

h)  Kirsch 

vertical edge, SNR=10 

Figure 5.5.  (Continued) 
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Chapter 6 

New Edge Enhancement/Thresholding Methods 

The analysis introduced so far has been concerned with 

the evaluation of existing edge detection operators. This 

evaluation is one of two objectives of the dissertation. 

The other objective being to introduce new edge detection 

techniques and to evaluate their performance. In this 

chapter, some new trends in edge enhancement/thresholding 

are given. In Chapter 7, a new edge fitting algorithm is 

discussed. 

There are some modifications that can be introduced to 

the edge enhancement/thresholding operators, such as 

changing the mask size, weighting ehe mask elements, and 

using an adaptive thresholding procedure. Before 

introducing these modifications, it is useful to evaluate 

their effects and to decide if they actually improve the 

edge detector performance. This will be the subject of the 

following sections. In Section 6.1, the effect of 

increasing the mask size is evaluated. In Section 6.2, the 

effect of weighting the mask elements is discussed. In 

Section 6.3, some adaptive edge thresholding methods are 

introduced. 
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6.1 Eftect of Changing Mask Size 

The 3x3 edge detectors can be considered as a special 

case of general (2K+1) x (2K+1) edge detectors. Extension 

of the two masks of the Prewitt operator, is shown in 

Figures 6.1a and b. Also, the set of four masks of 

Figure 6.1 represent an extension of the 3-level operator. 

Increasing the mask size will affect edge detector 

performance in two ways. First, the operator will be less 

sensitive to noise because it bases its decision on a 

larger number of pixels. Second, the edge detector will 

have a lower resolution. A discussion of there two effects 

in the case of the 3-level and the Prewitt operators is 

given in the following paragraphs. 

The performance of the  (2K+1) x (2K+1)  operators  in 

the  presence  of noise,  can be evaluated using the 

statistical model of Chapter 3.  In the case of the 3-level 

operator,  the covarianc matrix 2-«» 

of the form 

"2K(2K+1)    2K(K+1)       0      -2K(K+H 

-2KCK+1)    2K(2K+1)   2K(K+i)      0 
(6.1) 

and mean vector G„* are 

Gj = h[K(2K+l) k(K+l) -K(K+1)]J 

*G denotes the mean vector for a vertical edge 

(6.2) 
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+1 

-I 

a)  vertical b)  horizontal 

c)  positive diagonal d)  negative diagonal 

Figure 6.1.  Extended masks for the Prewitt 

and the 3-level operators 
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In the case of the Prewitt operator, the output of the 

vertical and horizontal masks are independent Gaussian 

random variables, with covariance matrix 2-i, and the mean 

vector G , in the turm 

2K(2K+1) 

0 2K(2K+1) (6.3) 

G_v = h[K(2K+l) 0] (6.4) 

The probabilities of detection and false detection can be 

evaluated as in Chapter i. Plots of the edge detector 

operating characteristics tor a signal-to-noise ratio of 

1.0, and operator mask sizes of bxb, 7x7, and 9x9 are given 

in Figure 6.2. From these piots, it is clear that the 

performance of the J-level operator is better than the 

performance of the Prewitt operator tor diagonal edges, 

while it is slightly less than the performance of the 

Prewitt operator for vertical edges. Also, it can be 

easily noticed that performance improves as the mask size 

increases. On the other hand, increasing the mask size 

will reduce the edge detector resolution. This effect can 

be shown by plotting edge detector output as a function of 

the distance between the edge and the center of the 

operator.  Plots of the normalized outputs of  JxJ,  bx5, 
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p 9X9 
rD 

r^lx7 

 3-level 
 Prewitt vertical 
 Prewitt diagonal 

40 60 80 100 

Figure 6.2. Probability of detection versus probability 

of false detection for extended Prewitt and 

3-level operators 

96 

\. '*■» *^~-~*m&0 



7x7, and 9x9 mask operators, in the case of a vertical 

edge, are shown in Figure 6.3. It is clear that, as the 

mask size increases, the region over which the edge is 

detected increases. This will reduce the operator's 

ability to detect the finer details of the image. 

The previous two effects can be measured 

simultaneously by using the figure of merit defined in 

Chapter 5. The 3-levei and the Prewitt operators are 

applied on the test images containing a vertical and a 

diagonal edge. The figure of merit is plotted as a 

function of the signal-to-noise ratio. These curves are 

shown in Figure 6.4. The results agree with the previous 

analysis: for low signal-to-noise ratio, the operators with 

large mask size have better performance because they are 

less sensitive to noise, which is a dominant factor in this 

case, while for large signal-to-noise ratio, the operators 

with small mask size have better performance because they 

are more accurate in detecting edge location. Examples of 

the edge maps for the vertical edge with SNR = 1.0 ?re 

shown in Figure 6.5. These examples give a visual 

indication of the improvement achieved by increasing the 

mask size. 

Since the 3-level and the Prewitt operators achieve en 

almost optimum performance while using simple computation 

procedures, the performance of these operators can be used 
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a)  5x5 mask b)  7x7 mask 

c)  9x5 mask 

Figure 6.5.  Edge maps for extended Prewitt 

operator, vertical test image 

with SNR=1 

k^S 
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as a standard to which any other edge detector performance 

should be compared. As an example, the performance of the 

convential 69 pixel Hueckel operator is compared with the 

performances of a 7x7 or a 9x9 mask operators in Appendix 

A. This comparison indicates that the 3-level and the 

Prewitt operators has better performances than the Hueckel 

operator. 

6.2 Use of Weighted Masks 

The resolution of edge detectors with large mask  size 

can be  improved by weighting the mask elements, such that 

they are maximum near the mask center and decrease to zero 

as they approach  the mask periphery.  There are many 

examples of weighted masks that can be used  in edge 

detection.  Argyle  123]  has proposed a  split Gaussian 

function defined in one dimension as 

.2 1     /  xM 
  exp I y ) 
27k    V  2k2/ 

x > 0 
/27k 

h(x) » { 0 x = 0        (6.5) 

ZL-  exp (- 4) 
/5?k    V  2k2 / 

x < 0 

wher * k is •> spree;-1 constant. Macleod 1241 introduced a 

continuous Gaussian Junction} ~. special case of the Macleod 

function is given by 

H,x,y, . e*p(-£) jeXp[-(^)
2]-exp[-(*lE)2] J   „.„ 

wher«; p ana t are spread constants.  Another example of the 
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weighting functions is the polynomial 

-^T   -^T x > o 
l+oty    1+ax 

H(x,y) ={0 x = 0    (6.7) 

-^T  -=l~7 x <  ° 
1+ay   1+ax 

where a is an adjustable scaling factor. The elements of 

the previous weighted masks are not integers, and thus 

require more computation tir.e compared with the 3-level 

simple mask. This problem can be avoided if the weighted 

mask is chosen to be the pyramid shaped mask shown in 

Figure 6.6. 

To test the resolution of the different weighted 

maoks, the outputs of 7x7 weighted mask operators for 

displaced vertical edges are plotted in Figure 6.7. in 

this experiment, k = p * t = 4.0* and ct= 1/9. The results 

show that the pyramid-shaped mask has the best resolution 

followed by the polynomial, the Argyle, the simple i-level, 

and finally the Macleod weighted mask. 

The statistical model ot Chapter 5 can be used to 

evaluate the performance ot the weighted mask operators. 

As an example, tor the weighted Prewitt operator, the 

performance will oepend on the ratio between the ideal edge 

output (a), and the noise  standard deviation  (a ).   The 

•These are the parameters suggested by Fram and Deutsch in 

their paper |1J|. 
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Figure 6.6.  Pyramid operator 
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Q) 
"D 

Q. 
E 
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C 
0) 
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O 

O» 0.2 

a) 

0.0 

Pyramid 

Macleod 

Simple 

Argyle 

Polynomial 

1 
aO  0t5     1.0    1.5   2.0   2.5   3.0   3.5   4.0 

edge displacement, d 

Figure 6.7.  Edge gradient amplitude response as a 

function of edge displacement for 

weighted 7x7 operators 
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larger  this  ratio,  the better  the  performance.   In 

Table 6.1,  the values ol a/a     lor the 7x7 weighted mask 
r ^ 

operators are given. These ratios, and hence the 

performance of the weighted mask operators depend on the 

shape of the weighting function used. In general, the edge 

detector will have a better performance in the presence of 

noise if the mask elements are more uniform, with the 

optimum performance achieved by using equal mask elements. 

The different weighted-mask edge detectors can be 

evaluated using the figure of merit of Chapter 5. In this 

experiment, the vertical edge test image is used to 

evaluate the Argyle, Macleod, polynomial and pyramid shaped 

operators with a mask size 7x7. Results are shown in 

Figure 6.8. It is clear that, excluding the Macleod 

operator, most of the weighted mask operators have 

approximately identical performances. The interior 

performance ot the Macleod operator can be improved by 

changing its parameters. 

6.3 Use ot Adaptive Thresholding 

In the previous experiments,  the value  of  the 

threshold t was  found to be a function ot the absolute 

signal levels and the signal-to-noise  ratio.   In  simpJe 

test  images,  t can be a constant for all  the image 

subregions.  In real world images,  however, a constant 

threshold should not be used because it will enhance the 
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boundaries between high intensity regions more than the 

boundaries between low intensity regions. This problem can 

be avoided if the output of the edge detectors is compared 

with a function of the subregion intensities. This can be 

considered as a local adaptive thresholding procedure I7j. 

Examples of the functions that can be used are the average 

= o^ La (6.8) 

j-l 

the root mean square 

/ J    V 
(6.9) 

and in general 

t = 4 ■> Y ■ -. {£■>) 
i. 

(6.10) 

In Eqs. 6.Ö  to 6.1U.,  t j_,t 2#... #£ j  are  the  pixels 

intensities, and ap a2 are constants that can be adjusted. 

A quantitative evaluation of these adaptive 

thresholding methods is not simple because it requires the 

knowledge ot the image model. A discussion of the problem 

will be given in Chapter b. Some ot the experimental 

results obtained with the adaptive thresholding edge 

detectors will be shown in Appendix E. 

6.4 Conclusion 
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In this chapter, various modifications in the edge 

enhancement/thresholding operators have been considered. 

The purpose ot these changes is to achieve a compromise 

between better resolution and acceptable performance in the 

presence ot noise. It is believed that this compromise 

should be one ot the basic objectives in edge detector 

design. Other methods that acnieve better edge resolution 

through edge thinning can be tound in the works ot 

Rosenfeld [b,2bl.   and Herskovits [2bJ. 
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Chapter 7 

A New Edge Fitting Algorithm 

Minimum-error surface fitting techniques have been 

considered by many as an optimum solution to the edge 

detection problem. Although this is true theoretically, in 

practical applications, the surface fitting algorithms 

suffer from two drawbacks. The first is that the image is 

usually defined over a sampled domain while most of tho 

surface fitting algorithms are derived for continuous 

functions. The second is that even assuming the image to 

be continuous, the optimization procedures require the 

solution of implicit functions of the edge parameters. 

This solution can be achieved through iterative procedures, 

which are time consuming and thus cannot be practically 

used in edge detection. Usually some approximations are 

made to avoid this iterative solution. As an example, in 

the Hueckel operator, the optimization procedure is 

simplified by using truncated Fourier expansions of the 

image subregion and the ideal edge model. The effect of 

this approximation on the optimality of the solution cannot 

be easily evaluated. 
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The previous difficulties can be avoided by using edge 

fitting algorithms based on the discrete image model. One 

of these algorithms will be introduced in the following 

sections. In Section 7.1, a one-dimensional edge fitting 

algorithm is discussed. In Section 7.2, the model is 

extended to the more important case of two-dimensional edge 

fitting, in Section 7.3, evaluation of the edge fitting 

algorithm performance is given. 

7.1 One-Dimensional Edge Fitting 

Th? problem of one-dimensional edge fitting can be 

stated as follows: given a continuous function f(x) defined 

for -b < x <  b, it is required to find a piecewise linear 

function s (x) such that the error 
E 

E„ = f   (s (x) - f(x))2dx (7.1) 
E  J -b  E 

is minimum. The problem can be simplified by assuming that 

the function s (x) is centered around the origin, as shown 
E 

in Figure 7.1.  In this case s (x) is given by 

a-AxQ     -b < x < -x_ 

s (x) ■  j a+Ax      -xQ < x < x0 (7.2) 

a+AxQ     x. < x < b 

where a is the average value of s (x), A is the ramp slope, 
si 

and  x  is the half ramp width.  These three parameters are 
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intensity 
function sn(x) 

distance from center, x 

Figure 7.1.  One-dimensional edge model 
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combined in the vector 

p = [ a x0] (7.3) 

The value of g that minimizes Eq. 7.1  is obtained by 

solving the set of equations 

3E 
"5a 

= 0 (7.4a) 

3E = 0 (7.4b) 

3E 

**0 
= 0 

Substituting  in  une previous equations, 

parameter vector p is given by 

b 

(7.4c) 

the  optimum 

1 
a = 2E -b 

f(x)dx (7.5a) 

xf(x)dx = iAx^b ♦ \nx] (7.5b) 

f(x)dx = AxQ(b-x0) (7.5c) f"xo        b 
J  u f(x)dx - 
-b x0 

It is clear  that even for  this simplified case,  the 

solution is based on implicit functions of y« and A. 

Instead of solving Eqs. 7.5b and c through an iterative 

procedure, it has been found that reformulating the problem 

in the discrete domain will save computation time, while 

giving a solution that is feasible. 
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In the discrete domain, the functions t(x)  end  s (x) 

are defined only  tor the set of points (-N,...,0,...,N). 

In all of the following discussions,  the  ramped part  of 

s (x) is assumed to start and end at sample points -n  and n 
E 

respectively.  This assumption simplifies  the computation 

without  a  substantial  change  in  the accuracy of  the 

results.  The curve fitting procedure  reduces  to  finding 

the parameter vector 

£ = I a  A  n ]T (7.6) 

such that the error 

N 

E =  £  (s (i) - f(i))2 (7.7) 
E   i-N  £ 

is minimum. Since n assumes a  finite number of  integer 

values, the minimization problem can be solved by repeating 

the computation for each value of n and choosing th^ value 

of n that minimizes E ,  In addition, by differentiating 

with respect to ?, it can be shown that tor any value of n, 

the optimum a  is independent of n and is given by the 

average 

N 

a = 2lHT  £ f(i) (7'8) 

Substituting the values of s (i) in Eq. 7.7 and arranging 
E 

the terms, E can be expressed in the form 
E 

2 (7 9) 
E - Cn  + C.A + C-A* {''*} 
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where 

N 

C_ = £ (a-f(i))2 <7-^> 
'°   -N 

-(n+1)        n N 

C, = 2n  S f(i)"2 £if(i)-2n2f (i)    C7-1 1
       -N        '-n       n+1 

and 

Ob) 

-(n+1)     n       N 

C, -  E n2 + X; i2 + E n2        !7.10el 
1 -N       -n     n+1 

Equation 7.9 can be minimized by choosing 

A = -Ik. (7.11) 

and for this value of A, E  is given by 

One-dimensional edge fitting can be achieved by the 

following procedure: given a function f(i) defined over the 

range |-N,NJ, the average (a) is computed using  Eq. 7.8. 

Assuming that f(i) can be fitted to a ramp s (i) with width 

n, the optimum value of A and  the corresponding minimum 

error E  are computed  using Eqs. 7.11  and  7.12.  The 

computation is repeated for different values of n, and  the 

minimum error  in each case is compared.  The values of n 

and A that result in a global minimum error are chosen as 

the edge parameters.  Finally, the acceptance of the edge 
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fitting can be determined from the  signal-to-noise  ratio, 

2 
A /E , .   If  this ratio is larger than a threshold t, the 

mm 

edge fitting is accepted. 

7.2  Two-Dimensional Edge Fitting 

The  previous  analysis  can  be extended   to 

two-dimensional  edge  fitting.   In  this case, the image 

function f(i,j) defined over a subregion is compared with 

an ideal edge model S (i,j), where 

p = [ a   6.    A   n ]T (7.13) 

is the parameter vector.  The variables a, 0., A and n are 
l 

defined as  in Section 7.1  where 8  indicates the edge 
i 

orientation.  In the following experiments, 9  assumes one 
l 

of  four  basic orientations, horizontal, vertical and the 

two diagonals.  The effect of  this approximation on thf 

accuracy  of  the edge  fitting,  will  be discussed in 

Section 7.3.  The edge fitting is achieved by changing the 

edge parameter vector  p to minimize the error 

N     N . 2 

En =  £    L (s(i,j)-f(i,j))        (7.14) 

Following the analysis in Section 7.1,  it  can be shown 

that, for the minimum error, the pa. *meter a is given by 

(2N+1P   i   i 
2J Z)f<i,j) (7.15) 
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The parameters 0. and n can be changed in finite steps, and 

for  each combination of 9. and n, the error E  is in the 1 E 
form 

where 

and 

E  = Cn + C.A + C0A' p    0    1     2 

C0 = £53 (a-f(i.j)Y 
i i  v      ' 

(7.16) 

(7.17) 

-(n+1) n N 

Ci = 2n 53 F<i) " 2 53 ip<i) " 2n 2J P(i)  (7.18 
i=-N        i=-n i=n+l 

a) 

C2 = (2N+1) 

n   , 

I 2(N-n)n2 + 53 i2 (7.18Ü) 

for vertical and horizontal ramps, while 
-(n+1) -1 

C » 2n 23 lF(i)+F(i+i)]- 53 IiF(i)+(i+i)F(i+i)] 
1     i=-N i=-n 

n N 

53 [iFU) + (i-i)F(i-i)l-n 53 lP(i)*F(i-j)l 
i=l i=n+l (7.19a) 

C2 ■ 2(N-n) [2{N-r) 
n i 

+l]n2+25J l2(N-i)+l]i2+[2(N-i)+2] (i-*)2[ 
1 l (7.19b) 

In Eqs. 7.1b and 7.19, the axis is taken  perpendicular  to 

the edge side,  and F(i)  indicates  the sum of all the 

elements at distance i from the edge.   Sketches of  the 

masks used  for  vertical  and diagonal edges are shown in 
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Figure 7.2. Since the expression of E is the same for 

both one- and two-dimensional edge fitting, the values of 

and E ,  are still given by Eqs. 7.11  and  7.12.  Thus, 
nun *       ^ 

two-dimensional edge fitting can be achieved by the same 

procedure described in the previous section. The only 

changes are that the computation has to be repeated for the 

different 6. , and that the values of CQ, C^ and C2 are now 

giver, by Eqs. 7.17 to 7.iy. 

The number of computations required for a 7x7 edge 

fitting algorithm is 273 additions and 112 multiplications. 

This can be compared to 152 additions and 1 multiplication 

needed for a 7x7 template matching operator. The effort 

needed for accessing the image intensities and comparing 

the masks' outputs is the same for both operators. The CPU 

times needed by a PDP-10 KL processor to process a 64x64 

image, using the 7x7 edge fitting algorithm and template 

matching operator, are lb  and lb seconds respectively. 

7.3 Performance Evaluation 

The performance of the edge fitting algorithm has been 

evaluated using  three different  approaches.  First, the 

output of  the edge  fittinq operators  for  edges with 

different orientations and distances from the center arc 

compared.  Second,  a preliminary  evaluation  of  the 

performance  for  noisy edges are given.  Third, the figure 

of merit for the edge fitting algorithm is calculated. 
110 
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Figure 7.2.  Two-dimensio >al edge mode.J.3 
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In the first approach, edge fitting algorithms with 

mask sizes 5x5, 7x5 and 9x9 are used to process image 

subregions containing ideal central edges with variable 

orientation and ideal vertical edges with varying distance 

from the mask center.  Plots of /E 7/  A for  the previous 
min c 

two cases are  shown in Figures 7.3 and 7.4 respectively. 

In these curves, the abrupt jumps in /E . /A occur when A 

changes  suddenly.  This  occurs when the width (n) of the 

edge model that fits  the  image data  is changed.  From 

Figure 7.3,  it  is obvious that the edge fitting algorithm 

is not isotropic; the algorithm has  the best performance 

for  a vertical  edges, it is less sensitive to edges with 

orientation TT/9 < <f> < TT/6,  the performance  begins  to 

improve again as  $ approaches TT/4.  Also, it should be 

noticed that the output for TT/4  is not  zero.  This  is 

because  the edge model  used does not include a diagonal 

step which corresponds to ramp width n * 1/2.  The diagonal 

edges with  fractional  ramp width were excluded to save 

computation effort,  and  to  keep the numbers of edge 

prototypes equal  for  both  tne vertical and the diagonal 

edge models.  The curves in Figure 7,4 show that the error 

JE   . /A increases sharply as  the edge is displaced off 
min 

center. This feature prevents the multiple detection of 

the same edge point. The threshold of the edge fitting 

algorithm can be chosen to allow the detection of central 

edges  with  a  specified minimum edge height,  while 
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10        20        30        40        50 

edge orientation, c£, degrees 

Figure 7.3.  Edge fitting normalized error /E . /A, nun 
as a function of actual edge orientation 
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Figure 7.4.  Edge fitting normalized error ^m^n/^> 

as a function of edge displacement 
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suppressing displaced edges. Also, it should be noticed 

that by increasing the number of discrete angles (0.), the 

edge fitting performance will become more uniform. It 

seems, however, that this change is not necessary, because 

the performance of the edge fitting algorithm with four 

basic orientations is sufficiently accurate for all 

practical applications. 

The statistical analysis introduced in Chapter 3 can 

be used to evaluate the edge fitting algorithm. 

Derivations of the probability density functions of the 

coefficients C , C and C and of the error E , are 

straightforward. These derivations are not needed, 

however, because as a result of the large mask sizes used 

in the edge fitting algorithms, the noise is usually 

averaged out. The decision strategy can be derived from 

the deterministic analysis given previously. To prove the 

validity of  this assumption,  the values of /E T/ A are 
* r min 

plotted as a function of the edge orientation in the case 

of a noisy central edge. The results are shown in 

Figure 7.5. The edge fitting mask is 7x7 and the 

signal-to-nose ratios are 1.0, 1U.0 and luu.O. It should 

be noticed that for practical levels of SNR, the effect of 

noie is negligible. 

The edge fitting algorithms, with mask sizes 5x5, 7x7 

and 9x9,  have been evaluated using the figure of merit of 
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•   edge with SNR=100 
x   edge with SNR=10 
-   edgewithSNR=l 
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-/ 

10 20 30 40 50 

edge orientation, c£, degrees 

Figure 7.5. Edge fitting normalized error /EL. /A» min 
as a function of actual edge orientation 

for noisy edges 
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Chapter 5. The results obtained, for the vertical and the 

diagonal test images, are shown in Figure 7.C. Examples of 

the edge maps for SNR = 1.0, are shown in Figure 7.7. 

Comparing the previous results with the results obtained 

for 3-level simple operators with the same mask sizes, it 

can be noticed that for small mask size and very low SNR, 

the edge fitting algorithm is not as good as the simple 

mask operators. This observation can be explained by the 

fact that the edge fitting algorithm bases its decision on 

an estimation of the edge parameters. This estimation is 

sensitive to noise especially when the number of pixels 

used is small. However., the edge fitting algorithm has 

better performance for high SNR and for large mask size. 

This is because the edge fitting algorithm suppresses 

displaced edges efficiently. The edge fitting algorithm 

has the additional advantage of being less sensitive to 

changes in the signal-to-noise ratio of the image. This 

results from using a decision strategy that is based on the 

normalized fitting error. 

7.4 Conclusion 

In this chapter, a new edge fitting algorithm has been 

introduced. The new algorithm is derived in the discrete 

domain, this allows a direct optimization of the operator's 

performance. The performance of the new algorithm is 

better t.an that of the edge enhancement/thresholding 
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a)  original b)  5x5 mask 

c)  7x7 mask d)  7x7 mask 

Figure 7.7.  Edge maps for the edge fitting 

operator, diagonal test image with 

SNR=1 
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operators for a wicJe range of signal-to-noise ratios. 
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Chapter 8 

Conclusion and Further Work 

This chapter summarizes the basic findings of the 

dissertation, and discusses the subjects that will need 

further investigation. 

The objective of this work, was to introduce a 

quantitative analysis of the edge detectors, with an 

emphasis on the edge detectors as local opera ors, that can 

be us2d to preproceoS the input imagesr without any a 

priori knowledge of the images contents. The tools that 

have been used in this analysis are the statistical 

detection theory and pattern classirication. These 

concepts, help in a better understanding of the edge 

detection problem. Numerical ordering of the performance 

of the local edge detectors, was achieved by introducing a 

figure of merit defined for specific test images. New 

techniques for edge detection, including a discrete ec?ie 

fitting algorithm, have been discjssed. 

There are, however,  more questions  to be answered 

before a completo understanding of  the edge detection 

problem  xs achieved.   First,  in  the  case  of   the 
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ditterential edge detectors, the decision is based on 

measurements of the ditterences along two perpendicular 

axes. It is not clear, however, that combining these two 

differences in the sum of squares or the sum of magnitudes, 

is the optimum decision strategy. An optimum strategy can 

oe developed it the probability density function of the 

edge orientation p(<j>) , is known. 

Second, in all the previous analysis the edges are 

assumed to have specific orientations and heights. This is 

not true in real world images, where edges of various 

orientations and heights are present. The optimum 

threshold tor this general case, can be derived it the 

statistical properties of the image is kncwn. 

Third, there is no efficient procedure to utilize the 

additional information about the edge height and 

orientation. Also, the best compromise between the mask 

size, the number of masks used, and the distance between 

consecutive applications of the edge detector, is not yet 

known. 

The previous problems can be solved it a statistical 

image model is derived. This model will help in oxtending 

the techniques of this dissertation to the higher level of 

image understanding, such as edge linking and the 

recognition of image objects. 
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Appendix A 

Analysis of the Hueckel Algorithm 

Although the Hueckel <?;gorithm possesses a 

theoretically optimum performance, there dre two basic 

difficulties with the practical application of the 

operator. The first concerns the effect of truncation of 

the orthogonal expansion, while the "ccond results from 

inaccuracies in the minimization procedure and in the 

computation of edge parameters. These two problems will be 

discussed in the following sections. In Section A-l, a 

review of the Hueckel algorithm is given. In Sectiors A.2 

and A.3, the various difficult ifh with the algorithm are 

considered. 

A.l  A Review of the Hueckel Algorithm 

The Hueckel algorithm starts with the image 

intensities defined over a circular image subregion. A 

polar Fourier expansion of the image subregion is 

calculated, using the orthogonal functions given by 

Eqs. H.7* through H.8. The e. par.sion is truncated to the 

first  nine coefficients, a   ,a,,... ,a   .     These coefficients 

*This notation indicates equations in Hueckel's paper (14]. 
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are compared with the ideal edge-line model coefficients, 

(s ,s ,...,s ).   Expressions of  s. are given by Eqs. H.9 
Ü   1        o 1 

through H.1U. 

Acceptance of the edge  fitting is  based on  three 

sequential  decisions,  each decision taken as soon as the 

information needed is available.  The first decision  is 

based on the inequality: If 

8 
E2   27 
■ „ ai < "6T 

(A.l) 
i=0 

then classify the subregion as no-edge. Equation A.l 

discards the image subregions whose input amplitude varies 

less than that of u central edge of step height 1.5. 

The error between the ideal and the actual signals can 

be expressed in the form 

N 
2  2   1  2 , 1 2 , . 2 ,   ? , 1  2   1  2 

: lal     + Ia2  + 2"a3 * a4  + a5  + 7a6 + 2^7 

-M(Cx,C ) + f{[a.),£} 
(A.2) 

where 

M(Cx,Cy) - (e2Cx + e3Cy)  + e4Cx + e5Cy  (A.3) 

„22 
C ■ c  - c x   x    y 

(A.4) 

C * 2c c . 
y    x y 

(A.5) 
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The e.'sare defined between Eqs. H.17 and H.19, while f {• ,•} 

corresponds to the last five terms in Eq. H.12.  The vector 

2  is the ideal edge parameter vector defined  in  Eq. 2.23. 

The best edge fitting is obtained by changing the parameter 

vector r>, untill N becomes minimum.  Hueckel argued that at 

the minimum N,  the  function  f{»,«} vanishes.  Hence to 

minimize N, it is sufficient to maximize M(C ,C )  over  C 
x y        x 

and  C .   The maximization of M(C ,C )  is  achieved, 
y * y 

approximately, by Eqs. H.2U through H.21. 

The  signal  power, 2-<s-'  is  evaluated,  using  the 

coefficients  [a,] and the parameters C and C .  Then, the 1 iJ x     y 

second edge fitting decision is based  on  the  criterion: 

Classify the subregion as no-edge if 

2X    < £*i (A.6) 

This inequality indicates that the noise power exceeds  the 

signal power. 

The parameters r ,r ,t ,t and b_ are calculated by 

Eqs. H.2J through H.2L-. These equations satisfy the 

condition of f{.,.} being zero when N is minimum. 

The final, and most important decision in the edge 

fitting procedure, is to compare the fitting error with a 

variable threshold.  This is described by the criterion: If 
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£(a.-s.)2 < Conf(£s?) - Diff (A.7) 

classify the subregion as an edge. The constant "Cont" 

relates to the edge distinctness and "uitt" relates to the 

edge pronouncedness. In evaluating Eg. A.7, different 

forms of [s,] are used tor the three models, general 

edge-lines, edges, and lines, respectively. 

The previous discussion reviewed the basic concepts of 

the Hueckel algorithm. It should be noticed that while the 

algorithm is theoretically optimum, it suffers from some 

defficiencies in its practical application. These 

defficiencies will be explained in the following sections. 

A,2 Effect of Truncation of the Orthogonal Expansion 

Hueckel assumed that the use of eight, and later of 

nine,  coefficients of the orthogonal expansion will not 

affect the edge fitting performance because real edges are 

blurred  and  thus have small high spatial  frequency 

components, while these high frequency components usually 

result from noise. . This assumption is not true, especially 

it the subregion contains a line.  To determine the effect 

of  this approximation, the first nine Fourier coefficients 

of image subregions containing ideal edges and  lines are 

calculated and then used to reconstruct the original 

signal. The original and reconstructed signals,  in the 

case of ideal central edge and ideal lines of wiath i and 

127 

--^.-.■■fe^."--. 



3, are given in Figure A.l. The results? show the 

distortion introduced by truncation, especially in the case 

of thin lines. 

The previous experiment leads to two questions: The 

first, what is the advantage of an optimum procedure if the 

models used are far from ideal? It should be noticed that 

the Hueckel algorithm suffers from difficulties in the 

detection of very thin lines [27]. This can be explained 

by the fact that the first nine coefficients of the Fourier 

expansion are not sufficient to represent thin lines 

accurately. The second question is, are the orthogonal 

functions chosen by Hueckel the best for the truncated 

expansion? This point is not important if an infinite 

expansion is used, as long as the orthogonal functions form 

a complete space. However, if a truncated expansion is 

used, it is important to choose orthogonal functions that 

are more sensitive to the ideal signals of interest. This 

is not the case in the Hueckel algorithm, where the 

functions H^ are chosen such that the optimization 

procedure can be solved analytically. 

A.3 Effect of Inaccuracy in the Minimization Procedure. 

The minimization procedure implemented by Hueckel 

suffers from difficulties that results in a suboptimum 

solution.  These difficulties are summarized as follows: 
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First, in the minimization procedure the parameter 

vector (pj is allowed to assume complex values and also to 

indicate edges with centers outside the circular subregion. 

Although the previous two conditions do not represent 

acceptable solutions, Hueckel has to allow these 

generalized form to simplify the algorithm. The parameters 

are readjusted by neglecting the imaginary parts, and 

ignoring the edges whose centers are outside the circular 

subregion. It is clear that this solution will not be the 

same as the optimum solution obtained with the previous 

constraints taken into consideration. 

Second, the replacement of the minimization of Eq. A.2 

by the maximization of Eq. A.3 is based on the assumption 

that the minimum of f {(a. ],£} is zero. This assumption is 

valid only if £ is real 128], which is not true in general. 

In fact, for the terms of f(la. ] ,£} to vanish, the 

following equations should be satisfied 

bx(cx,cy) = X+ + X_ (A.8a) 

b2(cx'cy) = X+r+ + A-r- (A.8b) 

b3(cx'V = X+r+ + X-r- (A,8C) 

b4(cx,c ) = A+r* + X_r_
3 (A.8d) 
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where  the  b.'s  are  functions of  the  set [ a • 1 and  the 

parameters c  and c , while A, are defined as r x     v        + 

Xx = t. (3TT)*( +    + 
7r)^(l-r2)2 ) /4 

(A.9) 

It is clear that the solution of Eq. A.8 will, in general, 

result in complex values of A+,A_,r+,r._. A real solution 

will be guaranteed if and only if the image subregion 

corresponds to an ideal edge model. 

Third, in arranging  the  terms  in  Eq. H.12,  s8 is 

artificially set equal  to ag.  This assumption cannot be 

justified.  As a result of this constraint, the accuracy of 

the second Hueckel  algorithm 114], is not expected to be 

better than the accuracy of his first algorithm 18]. It 

seems that s was made equal to a« only to simplify the 

minimization procedure. 

A quantitative evaluation of the effect of the 

previous approximations on the Hueckel operator performance 

would be quite involved. Such an evaluation is not 

attempted here. Instead, an experimental evaluation of the 

operator's performance is given. In the experiment, the 

Hueckel operator is applied on the vertical test image 

introduced in Chapter 5. The figure of merit is plotted as 

a function of signal-to-noise ratio for different choices 

of Hueckel's parameters, Conf and Ditt. These plots are 

shown  in  Figure A.2.    It  can be noticed  that  the 
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performance of the Hueckel operator is inferior to that of 

the simple operators given in Chapter 6, and it is also 

inferior to the edge fitting algorithm introduced in 

Chapter 7. 
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Appendix B 

Orthogonal Transformation in Edge Detection 

One of the early applications of orthogonal 

transformation in edge detection was given by Hueckel in 

his edge fitting algorithm 18,14]. The method implements a 

truncated polar Fourier expansion in the fitting procedure. 

Later, a simplified version of the Hueckel algorithm was 

introduced by Mero and Vassy 129j. In this procedure, only 

two of the Fourier components are used in the edge 

detection. This simplification results in unacceptable 

loss in performance when detecting roisy edges [30}. 

In the Hueckel algorithm, the orthogonal 

transformation was used to simplify the edge fitting 

procedr^e. A different application of the orthogonal 

transformation is to use it as a multidimensional rotation 

of the feature space 131). This approach can be useful if 

the edge and no-edge features are enhanced by the 

transformation. The following sections discuss this new 

approach. In Sections B.l and B.2, calculations of the 

Fourier components of different edge and line models are 

given. In section B.3, a preliminary analysis of the 

performance of this new technique is introduced. 
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B.l  Edge modeis in the Discrete Fourier Domain 

The edge model in the spatial domain is sketched in 

Figure B.l. The edges are assumed to have one of the four 

basic orientations: vertical, horizontal, positive slope 

diagonal, and negative slope diagonal. Central edges are 

considered first, and then the analysis is extended to 

non-central edges. If the edge is described by the 

function f(j,k), where -N <j,k < N, the corresponding 

Fourier coefficients i U', v) are defined as 

N N 

F(u,v) - £    Ef<j,Jowju+kv      (B.i) 
(2N+1)  k=-N  j=-N 

where 

w = exp (Ali) 
\ 2N+iy 

(B.2) 

In many cases, the corresponding discrete Fourier 

coefficients can be derived in closed forms. As sn 

example, in the case of the central vertical edge shown in 

figure B.lb, the Fourier coefficients ate of the form 

Fv(0,0) = b + j (B.3) 

otherwise 

,   ft.    h  fl + w<
N+1)u - wu1 

Vu'0) ■ 21T+T[I 
+
 —7^—J (B.4) 
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a)  (2N+l)x(2N+l) mask 

Figure B.l.  Edge models for the discrete Fourier transform 
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Fv(u,v) = 0 v f   0 (B.5) 

In the case of the central diagonal edge shown  in 

Figure B.ld, the Fourier coefficients are 

otherwise 

TT/4 (0,0) = b + V (B.6) 

Nu 
Fn/4(u'0) --Tafeir V, 

W - L 
u ft   0    (B.7) 

w"Nv FTT/4
(0

'
V)
 = UMTV^ v ft   0    (B.8) 

Fw/4(u,v) - 0 u,v f  0  (3.9) 

Similar expressions can be obtained for edges with  ♦ ■ f/2 

and $ ■ 3 TT/4 . 

The previous analysis can be extended to the case of 

nonccntral edges and edges with general orientation. To 

avoid repetition, only one of these general cases is 

considered. This is the case of the displaced vertical 

edge shown in Figure B.lc. The corresponding discrete 

Fourier components are given by 

F,(0,0) « b ♦ 5- T2§JTy (B.10) 

138 

1 — ~'~* 



otherwise 

Fa(u,v) (2N+1) w 
.iu \   .   w(^-t)u-wu] 

} wu - 1   J (B.ll) 

Fa(u,v) = 0 v ji  0 (B.12) 

The discrete Fourier coefficients in the case of a 5x5 

central edge with different orientations are calculated. 

Results are tabulated in Figure B.2. From these results, 

it is clear that edc, "r icntation can be determined from 

the Fourier coefficients. A decision strategy based on 

these Fourier coefficients will be given in Section B.3. 

B.2 Line Models in the Discrete Fourier Domain 

Line detection was excluded from this dissertation for 

two reasons. First, lines can be detected as two 

consecutive edges, especially if the edge detector used, 

possesses smell masks. Second, template matching line 

detectors suffer from the problem of being very sensitive 

to the line orientation and position, and so far, it seems 

there is no practical solution to this ptoblem. It is 

hoped that the sensitivity problem can be avoided by using 

the discrete Fourier transformation. This approach will be 

introduced in the following paragraphs. 

Figur? B.3 shows discrete models  for  one-pixel-width 
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b+h 

b+h 

b+h 

b+h 

a)  Vertical line 

b+ 
0.914h 

b+ 
0,25h b 

b+ 
0.25h 

b+ 
0.914h 

b+ 
0.25h 

b • • 

b • 

b 

b 

b+ 
0.25h 

b+ 
0.25h 

b+ 
0.914h 

b)  Diagonal line 

Figure B.3.  A one-pixel-line model 
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lines  with  vertical  and diagonal  orientations.  The 

vertical line has the Fourier coefficients 

Vo<0) = h + mk) (013) 

otherwise 

Vu'0) = 72N+IT (B.14) 

Fy(u,v) = 0 v ft   0 (B.15) 

The diagonal line has the Fourier coefficients 

F„/4<0,0) = b + T2N+ rr[°- 914 + N 
T2N+ tr] 

otherwise 

(B.16) 

Fn/4(u'u) = (2N+ £rr [°-914 + T2T&T)cos(^n:)j (B.17) 

V4(U'-U) = 2(2N+1)
2 {~l) (B.18) 

F,/4(U'V) = 
- h     -N(-u+v) , u, -v.  *- w       (w +w  ) 

4(2N+1) 
(B.19) 

In the case of a vertical line at a distance 1 from 

the origin in the spatial plane, the discrete Fourier 

components become 
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otherwise 

V°<0) =b + 2^1 
(B.20) 

Vu'0) =IHTT (B.21) 

F£(u,v) = 0 v *   0 (B.22) 

It should be noticed that the only difference between the 

Fourier components of a central and a displaced vertical 

line is a phase factor in F.(u,0). The changes are more 

pronounced in the case of shifted diagonal lines. 

The Fourier coefficients of a 5x5 central line with 

different orientations are calculated and results are 

tabulated in Figure B.4. Again it is clear that the line 

orientation can be determined from the Fourier 

coefficients. 

To show the improvement in sensitivity that can be 

achieved by using the orthogonal transformation, the 

discrete Fourier coefficient of the rotated line shown in 

Figure B.5a are computed.  In this case, F (u,v) is given 

by 

Fr(0,0) = b + (B.23) 

otherwise 
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b+0.8h     b+0.2h 

b+0.4h     b+0.6h 

b+0.05h    b+0.9h  b+0.05h  b 

b+0.6h   b+0.4h  b 

b+0.2h   b+0.8h  b 

a)  Rotated vertical line 

+4 

+ 4 

+ 4 

+ 4 

+ 4 

-1 

-1 

-1 

-1 

-1 

b)  Vertical line template 

Figure B.5.  Detection of a rotated vertical line 
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Fr(u,v) = Y5    0.9+1.2cos^j + 0.4cos^j 

+0. lcosl -^-1 + 0. 8cos (—^ M. öcosl j= 1 
' (B.24)J 

The value of Fr(l,0) is 

F (1,1) = 0.1309h (B.25) 

This represents a ratio of 0.6b of the value FV(1,0). On 

the other hand, if the template matching operator, shown in 

Figure B.5b, is used, the output in the case of the rotated 

line will be 

X = 7.5h (B.26) 
r 

This represents a ratio of 0.3/5 of the value X  . 

B.3 Performance Analysis of the Discrete Fourier Transform 

Edge Detector 

The performance of the previous edge and line 

detectors can be evaluated using the statistical model of 

Chapter 3. In this model, the spatial function f(j,k) is 

the sum of a signal and a noise component 

f(j,k) = f(j,k) + n(j,k) (B.27) 

where n(j,k) is an additive white Gaussian noise with zero 

mean and standard deviation 0 •  The corresponding discrete 

Fourier coofficients F(u,v) will be,  in general,  complex 

random  variables.  The  real  and imaginary components of 
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F(u,v) can be arranged in the vector form 

F = 

FR(-N,N) 

FI(-N,N) 

FR(N,-N) 

Fj(N,-N) L 
where F is a joint Gaussian vector with mean 

L,   «Lf(j,k)cos| ^ 1 
3  k        L        J 

F = 
(2N+1) 

and the covariance matrix is 

-E Ef(j.M.i»[2ü&p)] _ 

(B.28) 

(B.29) 

(B.30) 
2(2N4l) 

In Eqs . B2 8 to B.3U, the term corresponding to F(0,0) is 

excluded. Therefore, the identity matrix I is of size 

2((2N+1)2-1]. 

The fact that the different components of F are 

independent Gaussian simplifies the performance evaluation. 

As an example, it the decision strategy is to detect a 

vertical edge when 

^(1,0)1 > tx <B-31> 

the probability of correct detection of a vertical edge is 
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P (vertical edge|vertijal edge) = 

1-erf[^<J^i-(t]-0.308h)]-erf[/?(2N+1)(t14-.308h)1
(B,32) 

and the probabi]ity of false detection is 

P{verticaJ -dge|no-edge) = l-2erf|/^(2N+1)t.l   (B.33) 

Similar expressions can be obtained for P (vertical 

edge |horizontal edge) and P (vertical edge |diagonal edge). 

The threshold t. can be chosen to satisfy a required 

probability of false detection while maximizing the 

probability of correct detection. 

Better performance can be achieved, however, if edge 

detection is based on simultaneous comparison of the 

Fourier coefficients. Thus, edge detection becomes 

multiple hypotheses testing in a vector space. This 

approach needs further investigation. 
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Appendix C 

Derivations of Eqs. 3.2y, 3.31 and 3.32 

In deriving these equations, it should be noticed that 

the equation 

A * 1X1 + |Y| (C.I) 

corresponds to lines 1, 2, 3 and 4 in Figure C.l.  Thus the 

probability density function p(A) is given by 

r  k ir A 
p(A) =     pY(A-Y)pv(Y)dY+ 

Jv=0 *      * 

f A Px(Y-A)py(Y)dY 
' v=0 y=0 

, 0 r 0 (C.2) 
+      Pv(-A-Y)pv(Y)dY+      p (A+Y)p (Y)dY 

'Y=-A 
X 'Y—A 

and 

0 t    Y 
P(A<t) = f    f     py(X)pv(Y)dXdY 

Jy=-tjX=-Y  A 

t t     Y 
f   f     p (X)pv(X)dY 
Jv=O^X=-Y  *    * 

(C.3) 
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©A = -X-Y 

©A*X+Y 

®A = X-Y 

Figure C.l.  The equation h  -   |xj + JY 
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Appendix D 

The Herskovits Algorithm 

Concepts of statistical detection theory were first 

utilized in the design of edge detectors by Griffith 19|, 

Yakimovsky 110], and Herskovits 126J. A brief discussion 

of Griffith and Yakimovsky techniques, was given in 

Chapter 1. In this appendix, a discussion of the 

Herskovits approach, and its resemblance to the statistical 

analysis of Chapter 3 is given. 

Herskovits was interested in processing images that 

contain polyhedra. The edges of a polyhedron can be in the 

form of ideal or defocussed steps and roofs. These 

intensity models should be distinguished from the unwanted 

signals that take the form of constant slow slopes and 

Gaussian noise. 

The Herskovits algorithm computes the second 

difference at every point.  This is given by 

(D.l) 
D{x) » tf(x+6) - f(x)] - (f(x) - f(x-6)] 

= -2f(x) + f(x+6) + f(x-6) 

where f(x) is the intensity function shown in Figure  7.1, 
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i l x   >   0 

sg(x)   =   1   0 x =   0 

1 -1 x   <   0 

and 6 is a fixed interval. A two sided cutoff (a) is put 

on D(x) so that if |D(x)|<ot, then D(x) is set. to 0. Next, 

the function F (x) is computed as 

6 5 

F_(x) = JL,   sg(D(x+i)) - 22   sg(D(x-i))       (D.2) 
s     i=l i=l 

where 

(D.3) 

Actually, F (x) is computed over a two-dimensional 

neighborhood. Finally, local maxima of F (x) ate found, 

and a line fitting procedure builds the complete edge 132). 

The edge detector parameters were chosen to maximize 

the probability of correct detection for a given 

probability of false detection. This approach resembles 

the statistical analysis introduced in Chapter 3. The 

basic differences between the Herskovits technique and the 

analysis of this dissertation can be summarized in the 

following. 

First, Herskovits was interested in a limited domain 

of images. Thus, the class of edges and no-edges were 

determined by a priori knowledge of the image contents and 

the imaging process. This kind of knowledge was not 

implemented in the present dissertation. 
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Second, in the analysis given by Herskovits, edges 

were assumed to be vertical. To detect other edge 

orientations, the operators should be rotated. This 

assumption simplified the derivation of a statistical 

model, but limited its application. The analysis given in 

Chapters 2 and ^ ol this dissertation is based on a general 

edge model, that has been used in evaluating the 

performance of different edge detectors. 

Third, Herskovits was attempting to achieve an almost 

error tree cetection because the systems used to recognize 

polyhedra are very sensitive to errors introduced in the 

low levels of image processing. Tt seems that a better 

strategy of image understanding systems should allow for 

larger probability ot error at the low levels, that can be 

improved later by feedback from the high levels of imagr 

process ing. 
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Appendix E 

Experimental Results 

The models used in edqe detectors evaluation assume 

that images consist of ideal steps or ramps affected by 

additive white Gaussian noise. In real world pictures, 

however, noise is often considered to be the irrelevant 

image intensities such as the background. It is important 

to determine edge detector performance for both artificial 

and actual image models. 

A simple procedure to achieve this comparison  is  to 

test  the  different edge detectors  using  real  world 

pictures.  Examples of this experiment are shown in Figures 

E.l,  E.2  and  E.3.   In  these examples, the 3x3 Prewitt 

operator, the 3x3 and 7x7 '-level operator,  the 7x7  edge 

fitting  algorithm and the Hueckel operator are applied on 

test pictures containing a girl, an  airport  and  a  tank. 

The  thresholds  tor  the Hueckel  and  the edge  fitting 

algorithms are  fixed at  optimum values;  Conf = (KB*), 

Di 11 = 100,  for  Hueckel and t = . 041J for the edge fitting 

algorithm.  The thresholds for the Prewitt and the  3-lrvel 

operators are chosen so that the number of edges detected 

equals  the  number  of  edges detected  by  the  Hueckel 
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a)  original b)  3x^ mask, Prewitt 

operator 

c)  3x3 mask, 3-level 

operator 

y^4 

d)      7x7   mask,   3-level 

operator 

Figure  E.l.      Example;   of   cdqe  maps,   girl   picture 
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e)  7x7 mask, edge 

fitting operator 

f)  69 pixels, Hueckel 

operator 

Figure E.l.  (Continued) 
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b)  3x3 mask, Prewitt 

operator 

c)  3x3 mask, 3-level 

operator 

cl)  7x7 mask, 3-level 

operator 

Figure E.2.  Examples of edge maps, airport picture 
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e)  7x7 mask, edge 

fitting operator 

f)  69 pixels, Hueckel 

operator 

Figure E.2.  (Continued) 
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a)  original b)  3x3 mask, Prewitt 

operator 

c)  3x3 mask, 3--1 eve 1 

operator 

d)  7x7 mask, 3-level 

opera tor 

Figure R.3.  Examples of edge maps, tank picture 
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e)  7x7 mask, edge 

fitting operator 

f)  6? pixels, Hueckel 

operator 

Figure E.3.  (Continued) 
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algorithm. 

In comparing the performance of the edge 

enhancement/thresholding operators with that of the edge 

fitting algorithms, it is seen that the edge fitting 

algorithms are better able to outline the "usually" 

relevant scene content. This results from the more general 

edge models used in the edge fitting algorithms, that allow 

for detection of out-of focus objects. Also, it should be 

observed that while the edge fitting algorithms use fixed 

thresholds, the thresholds of the edge 

enhancement/thresholding operators have to be varied for 

different images. 

For the edge enhancement/thresholding operators, the 

3x3 Prewitt and 3-level operators have practically the same 

performance. Also, the effects of increasing the mask 

size, namely, suppression of noise and lowering the 

operator resolution, are apparent in the tank pictures. 

The new edge fitting algorithm has better performance 

than that of the Hueckel operator because the new algorithm 

pr< serves more of the relevant structure of the pictures. 

These observations have been predicted previously in 

the dissertation. This shows that there is a correlation 

between the artificial and actual image models. Further 

investigation of  this assumption,  based on quantitative 
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measurements is still needed, 
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