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1. Introduction

We consider here some extensions of our results on the nonlinear Robin

problem

ey" = f(t,y,y')s, a<t<b,
(N)
Pi¥(ase) - pyy'(a,e) = A, qyy(bse) + qpy'(bse) = B,

with f(t,y,y') = ﬁ_y'z + h(t,y) published in [8]. Specifically we are in-
terested in the existence and the asymptotic behavior (as ¢ » 0+) of so]utidns
of the problem (N) whose righthand side f satisfies f(t,y,y') = 0(|y'|n) as
ly'| + » for n > 2. Such "superquadratic" problems have been considered by
the author in [9] for functions f of the form f(t,y,y') = h(t,y)a(t,y,y")
where g(t,y,y') = 0(|ly'|™, n>2, and g>v>0 forall (t,y,y') of
interest. However this positivity assumption on g effectively eliminates the
participation of nonsingular solutions-of the reduced equation f(t,y,y') =0

in the asymptotic description of solutions of the problem (N) for small values
of ¢ > 0. The results of [8] for the quadratic functions f(t,y,y') = :y'z
+ h(t,y) clearly show that nonsingular solutions of f = 0 play an interesting
and important role in analyzing how solutions of (N) behave as ¢ » 0%, Thus
it seems of irterest to us to examine similar questions in the case that
f(t.y,y')
f(t.y,y')

0(ly'|™ as |y'| += for n >2 without the restriction that

h(t,y)g(t,y,y').
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Such problems have not received much attention in the literature on
singular perturbations apparently due to the highly nonlinear dependence of
f on y'. The author's papers [8] and [9] contain the latest results on the
problem (N) for the functions f discussed above as well as references to the
work of others. Since the writing of [9] L. Perko [15] has examined turning
point phenomena for problems related to (N) using methods developed in his

previous work [12], [14].

2. A First-Order Problem

In order to discuss the problem (N) we will need some results on stability
theory which are most clearly illustrated by a class of first-order problems.
The theory discussed in this section is very straightforward and certainly not
new (cf. [17; Chapter 1] or [3; Chapter 4]); however, we have not seen it ex-
pressed before in quite the exact form that we need for our purposes here.

Consider then the singularly perturbed initial value problem
(F) ez' = f(z), a<t<b, z(a,e) = 2

for finite values of a and b and for small values of e > 0. If the equa-
tion f(z) = 0 has a solution z=o0 and if o 1is stable in a sense to be
made precise shortly then we anticipate that the problem (F) has a solution

z = z(t,e) such that

(2.1) lim z(t,e)=o for a <t <b.
e->0+
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(Indeed, if f(zo)= 0 then z(t,e) = z, is itself a solution.) In order
that the 1imiting relation (2.1) hold it is enough to require that either

o =125 or (if o# ZO)
(2.2) (0 - zo)f(x) >0 for all x in (c,zo] or [zo,d).

This follows immediately once we make the change of variable t = (t - a)e-],
rewrite ez' = f(z) as g%-= f(z), and note that condition (2.2) is just the
condition for z = ¢ to be an asymptotically stable rest point of the t-equation
(cf. [6; Chapter 3]).

Our result on (F) is contained in the following lemma.

Lemma 2.1. Assume that the equation f(z) = 0 has a solution z = ¢ and

that the function f s continuously differentiable in [c,zo] U [zo,o]. Then

for all values of 2z, such that zj =0 or (if zj#0) (o - z))f(x) >0

for all a in (c,zo] or [zo,a) the problem (F) has a solution z = z(t,e)

for each sufficiently small ¢ > 0. Moreover, for t in [a,b] we have that

Z(t,e) = o + WL(t,E)a

where w, (a,e) =z, -0 and lim w (t,e) =0 for a <t <b.
o 0 MR or =
e+0

To illustrate the content of this lemma we discuss briefly some simple

examples.

B —————
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Example 2.1. The Tlinear problem ez' = -kz, t > 0, 2z(0,e) = 2 for

k a positive constant, has the unique solution z(t,e) = zoe'kte ; and so
113+ z(t,e) =0 for t>0 (if 2 = 0 then z(t,e) = 0). Here f(z) = -kz
€
has the unique zero o = 0 which is certainly stable since for Z, #0,
-zof(A) = kZOA >0 for A in (0,20] or [20,0).
Example 2.2. A similar result holds for the nonlinear problem ez' = -z - 23,
3

t>0, 2z(0,e) = z,- This follows because the only real zero of f(¢) = -v - o
is o = 0 which is stable in the sense that for 2, #0, -zof(x) = zox(l + Az)

>0 for A in (0;20] or [20,0). In particular, we note that |[z(t,e)|
1

< |zole'te for t>0 since -z - 23 = -z(1 + zz) > -z(< - z) if z s
negative (positive).
Example 2.3. As our final example we consider the problem e2z' = 22,

2

t>0, z(0,e) = z,- The function f(o) = ¢~ has o = 0 as its only zero

and we note that (for zg < 0) -zof(A) >0 If 2y A < 0 while (for z) > 0)

<0,

- zof(A) 70 if 0< 2 2z, Thus Lemma 2.1 is only applicable for z) <

in which case we have that z(t,e) 0" for t>0 as ¢ - o*.

If z, >0 we expect that this limiting relation will not obtain since if

0
z(t,e) » 0" as e+ 0" then z'(t,e) <0 for t> 0; however, the equation

implies that z'(t,e) > 0. Indeed the exact solution of this problem is

z(t,e) = 10(1 - zote'])']. Consequently, for z; > 0 this function has a

1

> 0, that is, for fixed e > 0, 1lim_ z(t,e) = =.
t+t0

vertical asymptote at t; = eza
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A result analogous to Lemma 2.1 is valid if the problem (F) is replaced

by the problem
(6) ez' = f(z), a<t<b, z(b,e) = z;.

This follows after replacing t by a+b -t in (G) and applying Lemma

2.1 to the transformed problem. We state this result here for future reference.

Lemma 2.2. Assume that the equation f(z) = 0 has a solution z = o and

that the function f is continuously differentiable in [q,zl] v [21,0]. Then

for all values of 2z, such that z, =0 or (if z, #0) (o-2)f(x) <0

for all A in (o,z]] or [z],o) the problem (G) has a solution z = z(t,e)

for each sufficiently small ¢ > 0. Moreover, for t in [a,b] we have that

z(t,e) = o + wR(t,e)s

13+ weltse) =0 for a<t<b.

where wR(b,e) =2 -0 and 1
€
We note in passing that the more general problem ez' = f(z,e), a <t < b,
z(a,e) = zo(e), must be approached with some caution as the following examples
show. Consider first the problem ez' = 22 - ez, t>0, z(0,e) = z,. It is
not difficult to see that for all values of 2y < =€ the solution z = z(t,e)
of this problem satisfies lig+ z(t,e) =0 for t> 0 (cf. Example 2.3).
€

However the solutions of the related problem ez' = 22 + ez. t>0, z(0,¢)

=25 behave entirely differently in the sense that no matter how 2z, is

|

i il il i i
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7
chosen the solution z(t,e) has a vertical asymptote at a point ty = to(e)

> 0, that is, lim_ z(t,e) = =. What is especially disheartening about these
t>t
0

2

two examples is that although f(z,0) = z :

the (formally) small term ¢~ has
an order one effect on the qualitative behavior of solutions.

The results of Lemmas 2.1 and 2.2 have a direct connection with a special
class of Robin problems of the form (N) and this is the content of the next

section.

3. Some Special Problems

We turn now to a discussion of the problem (N) when the right hand side

f has a particularly simple form, namely the brob]em

8y“=f(y')! a<t<b,
(N;)
Piy(ase) - poy'(ase) = A, qpy(bse) + quy'(bse) = B.

Here the constants Pys Pps Q and q, are nonnegative with Py + 9y 0
and p, +q,>0, and f(z) = 0(|z|") as |z| >~ for n> 2. The results
we obtain for solutions of (N]) will turn out to be characteristic for most
solutions of the general problem (N).

Suppose first that Py = 0 and Py = 1. We consider then the problem

ey" = f(y'), a<t<b,
(N
-y'(a,e) = A, q¥(bse) + a,y' (bse) = B.
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After setting z = y' “and disregarding (for the moment) the boundary condi-
tion at t = b we see that the problem (NZ) ‘is precisely the initial value
problem (F) of the previous section with z, = -A. Now solutions of (F)
are described throughout [a,b] by the stable zeros of the function f with
the possible exception of a small neighborhood of the point t =a (cf.
Lemma 2.1). Returning to the problem (Nz) we expect that if a stable solution
u of f(u') =0 also satisfies the right hand boundary condition, that is,
if q1u(b) + qzu'(b) = B, then the solution of (N2) for small e > 0 is
represented throughout [a,b] by this function u. This leads us to consider

the so-called reduced problem
(RR) f(u') =0, a<t<b, q]u(b) + qzu'(b) = B,

and to seek solutions of (RR) which are stable in the sense described in Lemma
2.1. The solutions of f(u') = 0 are clearly straight lines of slope o where
f(o) = 0 and therefore the solution of (RR) is u-= uR(t) = ot + ¢ where
c= q;][B - o(q]b + qz)]. (Note that qy > 0 by our above assumptions since
py = 0.)

We can now state and prove an existence and estimation result for the

problem (NZ)'

Theorem 3.1. Assume that the reduced problem (RR) has a solution u = uR(t)

= oRt + ¢ and that the function f is continuously differentiable in

[oR.-A] U [-A,op]. Assume also that either op = -A or (if op # -A)

(oR + A)f(r) >0 for all a in (aR,-A] or [-A.oR). Then there exists an

.~
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€g > 0 such that the problem (NZ) has a unique solution y = y(t,e) whenever

0<ce < ggr In addition, for t in [a,b] we have that

,Y(t,e) i UR(t) + O(WL(tsC)) j
(3.1) and
,Y'(t,e) 3 OR + O(WL(tse))s

where the function W is a solution of ewt = f(oR + wi), a<tc<b,

w'(a,e) = =(o, + A), satisfying lim, w, (t,e) =0 for a < t<b and

L R SasiSLOng iy L Aasesh g ; {
Tim, wi(t,e) =0 for a < t<b,
>0 i 1

Proof. The uniqueness of y follows immediately from the maximum principle
(cf. [16]). To prove the existence of a solution satisfying the limiting re-
lations (3.1) we assume without loss of generality that op = 0 (and so
up(t)

that A # 0. The existence of a function W with the above properties follows

Hi

c = q;]B). If A=0 then y(t,e) =0 (and W = 0). Thus suppose

from our stability assumption (cf. Section 2) if ¢ is sufficiently small, say
0<e < €p In addition, if -A <0 then w >0 and if -A> 0 then
W< 0.

Define now for t in [a,b] and 0<e <¢,

a(t,e) = ¢c + wL(t,e)

1f -A > 0,

B(t.,s-s -

"
(2]

and.
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(!(t,e) =

"
(2]

if =A< 0.

B(t,e) = ¢ + WL(t,e)

We consider below just the case -A < G since the case -A > 0 1is handled
similarly. It is clear that -o'(a,e) < A < -g' (a,e), q]a(b,e) + qza'(b,s)
<B g_q]B(b,a) + qZB'(b’E)’ and that ea" > f(a') and eg" < f(B') for t
in (a,b) and 0 < ¢ < €p- If we could conclude that the problem (NZ) had a
solution y = y(t,e) satisfying o(t,e) < y(t,e) < B(t,e) for t in [a,b]
and 0 < e < ey then the theorem would be proved. However such a conc]usion'
cannot be drawn immediately here since f(y') = 0(|y'|") as |y'| + for
n>2 (cf. [11]). What is required (cf. Heidel's theorem in [7] or [9]) is
an a'priori bound on the derivative of any solution y of ey" = f(y'),
a<tc<h, sdtisfying a(t,e) < y(t,e) < B(t,e). It will turn out (not

surprisingly) that
(3.2) -A<y'(tye) <0 for ac<tc<hb,

and therefore the conclusion of Theorem 3.1 follows from Heidel's theorem.

To verify (3.2) (and at the same time obtain a sharper estimate for y'(t,e))
note first that y'(t,e) < 0 by the maximum principle (cf. [16] or [2; Sec.
2]). In calculating a lower bound on y' we proceed indirectly by noting
that for « <y <8, y fis a solution of the following Dirichlet problem in

(t)5t,) € (a,b)

A

F—
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ey" = f(y'), ty<t<ty,
(H)
¥(tyse) = ¢+ n(tyse), y(tyse) = ¢ + nltye),

where the positive function n 1is of order O(WL(t,s)) and n(t],s) g_n(tz,e).

Fix t, 1in (a,b] and let t; =t - 8 and t, = tg for a small positive

0
constant §,. Define now for t in [t],tz] and 0 <e <¢gq

ap(tse) = ¢ + n(ty,e) - ulty - t),
B](tye) =NC n(tzse) + U(to = t)’

where p = u(e) = 6;1(n(t0 - al,e) - n(to,e)) is positive and of order
0(wl‘_(t0.e)). Clearly a-l(tj,e) iy(tj,e) < B-I(tj,e) for j =1, 2 and we

just have to show that eaj 3_f(ai) and €] g_f(si), that is, f(ai) <0
g_f(ei). However these inequalities follow directly from our stability assump-
tion for f(“i) = f(u) < 0 < f(-u) = f(Bi) since u > 0. Therefore the func-
tion y (which is a solution of the problem (H) with t; =ty - & and t, = to)
satisfies o) <y < 8y, that is, ly(tse) = ¢l <ty -t) for t5- 8, <tc<ty
and c; = c * n(ty,e). We conclude directly that ly'(tgse)] < u, so that in
particular |y'(t0,e)| < u. Thus for each t in (a,b], |y'(t,e)| < u(t,e)
where u(t,e) = O(|w (t,e)|). Finally we have that y'(a,e) > -A since

c <y(tye) <c+ wL(t,e) in [a,b]. This concludes the proof of Theorem 3.1.
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We consider now the general problem (N,) under the assumption that

P; 20 and p, > 0. As with the problem (N,) we assume that the associated

reduced problem (RR) has a solution u = uR(t). If up is stable in a sense
analogous to that described in Theorem 3.1 we expect that the problem (N])
has a solution y = y(t,e) which is close to up in [a,b]. The precise

result is the next theorem.

Theorem 3.2. Assume that the reduced problem (RR) has a solution u = uR(t)

= aRt + ¢ and that the function f is continuously differentable in

[°R’p51(p]"R(a) -A)Ju [pE](p]uR(a) - A).oR]. Assume also that ejther p]uR(a)

- Pyop = A or (if p]uR(a) - PO # A) (p]uR(a) - Pyop - A)f(r) < 0 for all

A in (oR,pi](p]uR(a) - A)] or [pé](p]uR(a) - A),oR). Then the conclusion

of Theorem 3.1 is valid with the exception that the function W satisfies

wi(a.e) = pél(p]uR(a) - Pyop - A) instead of wi(a,e) = -(oR + A).

Proof. This theorem is proved in exactly the same manner as Theorem 3.1.
After normalizing so that op = 0 simply define for a<t<b and >0

sufficiently small

a(t,e) =

1
(9}

if p]uR(a) <A,
B(t,e) = c + WL(t.e)
and

alt,e) = ¢ + w (t,e)

4 p]uR(a) > A,

B(t,E) E

Ll
O

and‘proceed as before.
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The basic assumption in the two previous theorems was the existence of
a stable solution u of the reduced equation f(u') = 0 which satisfied the
righthand boundary condition. We could just as well have assumed that u
satisfied the Tefthand boundary condition and then proceeded to impose stability
conditions on it so that the result corresponding to Theorem 3.2 was valid
(cf. Lemma 2.2). The appropriate reduced problem is then

(R f(u')=0, a<tc<hb, p]u(a) - pzu'(a) = A,

L)

and the next result follows by making the change of variable t-+a +b -t
and applying Theorem 3.2 to the transformed problem. (Note that we now require

q, >0 and q, > 0.)

Theorem 3.3. Assume that the reduced problem (RL) has a solution u = uL(t)

= oLt + ¢ and that the function f 1is continuously differentiable in

[°L’q§](8 - q]uL(b))] U [qE](B - q]"L(b))’°L]' Assume also that either

q]UL(b) + 90 = B or (if q]uL(b) + 99, 7B (q]UL(b) + o i B)f(x) < 0
forall A in (o,,a; (B - a;u (b))] or [a;'(B - quu (b)),0 ). Then there
exists an e, > 0 such that the problem (N]) with q, > 0 has a unique solution

y = y(t,e) whenever 0 < ¢ <eg- In addition, for t in [a,b] we have that

.Y(t,E) e uL(t) + O(WR(tse)),

y'(te) = o + Olwg(tse)),s

o e b
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where the function wp is a solution of ewﬁ = f(oL + wé), a<tc«<hb,

wé(b,e) = qél(B - q]uL(b) - qzaL), satisfying lig+ wR(t,e) =0 for ac<t

<b and Tim, wﬁ(t,e) =0 for a<t«<b.
e+0

Up to now we have considered how solutions of the problem (N]) can exhibit
nonuniform behavior at t=a or t=0b (that is, boundary layer behavior).
Suppose though that the following situation presents itself: The reduced
problems (RL) and (RR) have solutions u = uL(t) =g t+c and u = uR(t)
= opt + ¢* Gﬁ_#vR) which intersect at a point t, in (a,b), that is,
uL(to) = uR(to) and ui(to) # ué(to). If these solutions are stable in the -
sense that f'(oL) >0 and f'(oR) < 0 it is reasonable to ask under what
additional conditions there exists a solution y = y(t,e) of the problem (N])
which converges to the "angular" path u](t) defined by u1(t) = uL(t) for
a<ts<ty and up(t) = up(t) for tj <t <b. Indeed, this question was
answered many years ago by Haber and Levinson [5] for the Dirichlet problem

(N) (that is, Py =9 = 1 and Pp =0y = 0). Their result for the simpler

Dirichlet problem (N1) is that if the corresponding reduced problems (RL) and
(RR) have such stable intersecting solutions u and up then the problem
(N]) has a solution y = y(t,e) for each sufficiently small e > 0 such
that Tim_ y(t,e) = u1(t) for a<t<b, and

e+0

o for a<t«< tys

Tim, y'(tye) =
e+0

%R for to <tz<b,
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provided (oR - oL)f(A) >0 forall A in (oL,cR) or (oR,oL).
It is possible to state an analogous result for the Robin problem (N])
under the additional assumption that Py > 0 and qQ; > 0. This is the content

of the next theorem.

Theorem 3.4. Assume that the reduced problems (R ) and (Rp) have solutions

u=ul(t)=ot+c and u-= up(t) = opt + ¢' (o, # op) which intersect at a

point to in (a,b). Assume also that the function f is continuously dif-

ferentiable in [oL,oR] 1] [oR,cL] and that (oR -cL)f(A) >0 for all A in

(oL,cR) or (opso;). Then there exists an eg > 0 such that the problem (N;)

with p; >0 and q; >0 has a unique solution y = y(t,c) whenever 0 < e <e

oo

In addition, we have that

,Y(t,e) = U](t) + o(w(t’e)) m a < t < b,

{
15 y'(tse) = o + 0(w'(t,e))

-+

for a<tc<t

y'(tse) = op + 0(w'(t,e)) for t

Here the continuous function w is a solution of

ew' = flop +w'), a<tc<ty witge)= %("R . L

EW" = f(oR + W'), to < t«< b' W'(t;,e) = %(OL - OR))
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satisfying Tim, w(t,e) =0 for a <t <b and lim w'(t,e) =0 for
>0 >0 e

a<t«<t, and to <t <bh.

0

Proof. This theorem is proved in essentially the same manner as Theorem
3.1. The bounding functions o« and B are defined as follows:

(i) if o < % then
u(tse) * U](t), a<t _<_b:

and

uL(t) + w(t,e) + pzp;]w‘(a,e), ac<tst
B(t,e) =
uR(t) + w(t,e) - qzq;]w'(b,e), t, 2« teb;

(i1) if o > % then
{%U)*Mhﬂ*Pﬂ;Whﬁh a stz ty,

a(t,e) il

)

|up(®) + wltie) - agai'w(bie)s o< b,
B(tye) = u](t), a<tc<bh.

In case (i), for example, eut = f(ui), euﬁ = f(ué) in (a,b) and q]uL(b)

+ 9,9 <B, pup(a) - pyop <A, and consequently alt,c) = uy(t)

= max{uL(t),uR(t)} is a lower solution (cf. [11]). Moreover, with w as
above, s'(ta.e) = 3'(t;’°) = %(cL +op) and ep" < f(g') for t in

(a,to) u (to,b). that is, B is an upper solution. Finally it is easy to see
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that y'(t.,e) = o * O(w'(t,e)) in [a,to] and y'(t,e) = op + O(w'(t,e))
in [to,b]. Thus the conclusion of the theorem follows from Heidel's theorem
[7]. Case (ii) is handled similarly.

Before discussing some examples we make several remarks.

Remark 3.1. If u = uL(t) is a solution of the reduced problem (RL)
then a necessary condition that u be stable in the sense described in
Theorem 3.3 is that f'(cL) > 0. Similarly a solution u = uR(t) of (RR)

can be stable in the sense described in Theorem 3.2 only if f‘(cR) < 0.

Remark 3.2. The boundary layer functions w and Wp have particu]arly
‘simple forms if there is a positive constant k such that 'f'(oR) <-k<0
and f'(aL) > k > 0. It is not difficult to see that in the case of Theorems

‘1 -k](t-a)e-]
3.1 and 3.2 we can set wL(t,s) = (-:k.l (oR + A)e

-1
o] ~kp(t-a)e : :
= -ek] Po (p]uR(a) - Poop - A)e » respectively, for a positive

and wL(t,e)

constant k; < k. In the case of Theorem 3.3 we can set QR(t,e)

o441 ~ky (b-t)e ™!
= ek] 9, (B - q]uL(b) - q2°L)e 2

Similarly, in the case of Theorem 3.4 if there is a positive constant k

such that f'(oL) >k>0 and f'(oR) < -k < 0 then the interior layer func-

tion w assumes a simple form. Namely we can set

1

w(t,e) = uL(t) + %ek;](oR - oL)e

for t in [agto] and
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W(t,e) = up(t) + 37 (op - o )e

for t in [to,b].

Remark 3.3. The assumption regarding the positivity of P and 4y is
necessary for the validity of Theorem 3.4; cf. Example 3.3 below.

Remark 3.4. There is a connection between the nonoccurrence of boundary
layer behavior as described by Theorems 3.2 and 3.3 and the occurrence of
interior layer behavior as described by Theorem 3.4. Suppose for simplicity

that Py =9 =Py =0, = 1 1in (N]) and suppose that the geduced problems

-(RL) and (RR) have stable solutions u = uL(t) = oLt +¢c and u= uR(t)

=opt + ¢' with o <op. If u(b) + o <B and up(a) - op <A but

f(B - uL(b)) <0 and f(uR(a) - A) < 0 then Theorems 3.2 and 3.3 are in-
applicable because the required inequalities are violated by such A and B.

We claim that if IuL(r) - up(t)| 1is not too large for t=a and 7 =b

then in fact uL(a) > uR(a) and uL(b) < uR(b), that is, u and up inter-
sect at a point in (a,b). To see this, note first that for o = uR(a) --uL(a),
0> f(uR(a) -A) = f(cL + w), and so the stability of oL implies that w < 0
if |w| 1is not too large. Similarly, for v = uR(b) - uL(b), 0> f(B - "L(b))

= f(oR + v), and so the stability of o, implies that v > 0 if '[vi is not

R
too large. Thus there is a chance that Theorem 3.4 will apply to the functions
u and up if f(A) >0 for A in (°L'°R)‘ This inequality is certainly

satisfied if 9 and %R are adjacent stable zeros of f.
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On. the other hand if o uL(b) to > B, f(B - uL(b)) > B,

L’ %R
uR(a) - op > A and f(uR(a) - A) >0 then it follows as before that
uL(a) < uR(a) and uL(b) > uR(b). Consequently u and up intersect in
(a,b) and we are led again to consider the possibility of a crossing as de-
scribed by Theorem 3.4.

We turn now to a discussion of several examples which illustrate the

theory of this section.

Example 3.1. Consider first the problem (cf. Example 2.2)

‘Y' i ¥'3, 0<tcx< ]9

ey
(E1)
py(O,e) i y'(O’E) = A, Y(],E) = B,

-0 - 03 =0 has o =0 as its only

for p > 0. The reduced equation f(o)
real solution and since f'(0) = -1 we make the corresponding reduced solution

u satisfy u(1) = B (cf. Remark 3.1), that is, we consider u = uR(t) z B.

Suppose first that p = 0. If A=0 then y(tse) = B is the solution of
(E1); however, if A #0 then Af(x) = -M(1 +2%) >0 for A in (0,-A]
or [-A,0). Consequently we deduce from Theorem 3.1 that for all A the

problem (E1) has a unique solution y = y(t,e) such that y(t,e) =B

+ 0(c|Ale”® ') in [0,1]. Finally if p > 0 then for A = pB y(t,e) = B is
the solution of (E1); while if A # pB then (pB - A)F(r) = -A(pB - A)(1 + 2%)
<0 for » in (O0,pB - A] or [pB - A,0). Thus by Theorem 3.2 the problem
(E1) has a unique solution y = y(t,e) for all A and B such that y(t,e)

-3
= B+ 0(c|pB - Ale ™ ) in [0,1].

el G

-y
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We note that the Dirichlet problem (cf. [1], [4]) ey" = -y' - y'3, 0<t
<1, y(0,e) = A, y(l,e) = B, has no solution if A#B and ¢ > 0 is suf-

ficiently small.

Example 3.2. Consider next the problem
R (] l3
ey =yt =¥, G ted,
(E2)
y(0,e) - y'(0,e) = A, y(l,e) + y'(1,e) = B.

3

The reduced equation f(u') = u' - u'” = 0 has now three solutions ui =1,

ué = -1 and ué = 0 which are such that f'(+1) = -2 and f'(0) = 1. Thus
we make U, and Uy satisfy uj(l) + ué(l) =B for j=1, 2, that is,
u](t) =t+B-2 and uz(t) = -t +B + 2, and we make us satisfy u3(0)
- ué(o) = A, that is, u3(t) = A. Consider first u,. If A=B - 3 then
u](o) - ui(o) =A and so y(t,e) =t + B -2 is the solution of (E2). How-
ever if A <B -3 then (u](o) - 1<A)f(r) =(B=-3-AN( - Az) <0 for
A in (1,B ~ 2 - A] and so we apply Theorem 3.2 to deduce that the problem

(E2) has a unique solution y = y(t,e) such that y(t,e) = u](t)

+ 0(z=(B - 3 - Me2E) in [0,11. Finally if A>B -3 we have that
(B-3-AA(1-2% <0 for A in [B-2-A,1) provided that B - 2 - A > 0.
Again from Theorem 3.2 we deduce the existence of a unique solution y = y(t,e)
of (E2) (with B-3<A <]B - 2) such that in [0,1], y(t,e) = u1(t)

-k te”

+0(ky'e[B - 3 - Ale !

) for a positive constant k] < 2.
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The asymptotic behavior described by the function u, is clearly a re-
flection of that described by uy- Therefore if B + 3 < A the problem (E2)
has a unique solution y = y(t,e) such that y(t,e) = uz(t)

¥
+0(Je|B + 3 - Ale?® ') in [0,1]. While if B+2<A<B+3 the solution

-1
-k, te
y(t,e) satisfies y(t,e) = uz(t) + O(k;]e(B +3-A)e 1 ) in [0,1] for

a positive constant k] < 2.

A is the
B)f(x) = (A - B)A(1 - 2%) <0 for A
in (0,8 - A] if B-A<1, and if A > B(A - B)f(A) <0 for A in

Next consider the function ug = A. If A=B then y(t,e)
solution of (E2), while if A < B(A

[B - A,0) if B-A> -1. Thus for B-1<A<B+1 we deduce from Theorem

3.3 the existence of a unique solution y = y(t,e) of (E2) such that in [0,1]

-1
_-I 'k](]‘t)e
y(t,e) = 0(ky e|B - Ale

) for positve constant k] < 1.

Note that we have proved the existence of a solution of (E2) for all
boundary values A and B except those satisfying the inequalities B - 2
<A<B-1 and B+ 1<A<B+ 2. These are precisely the boundary values
for which the boundary layer behavior described by Theorems 3.2 and 3.3 is

impossible. Thus (cf. Remark 3.4) we are led to consider the "angular" paths

u3(t)' 0<tc< tO’ U3(t), Oet _<_'f0,
uy(t) = and ug(t) =
u](t), toitg_'l, uz(t), %0 etel.

It follows directly that ty belongs to (0,1) if and only if B-2<A<B -1
while %0 belongs to (0,1) if and only if B+ 1 <A < B + 2. Consider first
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Uy For o = 0 and op = 1 we see that (oR - oL)f(A) = (1 - AZ) >0
for 2 in (0,1) and so Theorem 4.1 allows us to deduce the existence of

a solution y = y(t,e) of (E2) for B -2 <A <B -1 such that in [0,1]y(t,e)

-1
-k, |t-t,.|e
2 Loy ity

) with 0 < k1 < 1. Similarly in the case of Ugs
for o, =0 and op = -1 we see that (oR - oL)f(A) = (1 - AZ) >0 for A
in (-1,0) and so the problem (E2) for B+ 1 <A < B + 2 has a solution

-1
‘k] lt"%ole )

y = y(t,e) such that in [0,1]y(t,e) = u5(t) + 0(%k;]ee
Finally if A =B - 2 then it is easy to show that (E2) has a solution
y = y(t,e) such that y(t,e) >t +B -2 as e+ ot (as expected). Similarly

if A=B-1 or A=B+ 1 a solution y exists and satisfies y(t,e) > 0
as €+ 0", while if A=B+2 then y(tye) >-t+B+2 as ¢+0'. The

convergence is of course uniform in [0,1] for these c.oices of A and B.

Example 3.3. In this final example we illustrate the remark that Theorem
3.4 is not necessarily valid if either Py = 0 or q; = 0. The problem is

(E3) ey' =1-y% 0<t<1, -y'(0) =1, y(1) =0,

which has the unique solution y(t,e) =1 -t for all e. Consider however
the "angular" path defined by u1(t) = uL(t) = -t for 0<t 5.%- and
uy(t) = up(t) = t -1 for %-g_t‘i 1. The functions u ~and u, are stable

in the sense that f'(ui) =4>0 and f'(ué) = -4 < 0; moreover, (oR - aL)f(A)

= 2(1 - A4) >0 for [A| < 1. Nevertheless there is no solution of (E3) which
is close to u](t) in [0,1].
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4. The General Problem

In this section we discuss several results for the general problem

ey" = f(t,y,y'), a<tc<b,
(N)
p]y(ase) i pzy'(a’e) = As qu(bse) + q2.y'(ba€) = B,

for constants Pys Pps O and 9, with the same properties as in Section 3.
The function f is assumed to be at least continuous for all t in [a,b]

and for all values of y and y' under consideration; moreover, for (t,y)

in compact subsets of [a,b] xR, f(t,y,y') = o(ly'|™ as |y'| +« for

n > 2. Recalling our results in Section 3 we now define certain reduced problems
whose solutions we will use to study the existence and the asymptotic behavior of

solutions of (N), namely

f(t,u,u') =0, a<t<t <b,

(R)

pyu(a) - pyu'(a) = A,

f(t,u,u') =0, a<ty<tc<b,
(Rp)

qyu(b) + qyu'(b) = B,
and

e

|
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(R) f(t’u’ul) - 09 a<t«<b,

Solutions of (RL), (RR) and (R) will be denoted by u, up and up respectively.

Our experience with the simpler problem (N]) leads us to consider only
solutions of these reduced problems which are stable in senses to be stated
shortly. First we need to define some regions in (t,y,y')-space. Let solutions
u= uR(t) and u = uL(t) of (RR) and (RL) exist in [a,b] and let wp = p]uR(a)
- pzuﬁ(a) and o = q]"L(b) + qzui(b). Then we define the domains v(uR) and
D(uL) as follows: (Here and below &, 6], 62 etc. denote small positive

constants.)

D(ug) = ((tayoy')ia s t < bly = (O] < 67uly" - (O] < dp(t))

where dR is a smooth positive function such that if Py > 0 then
Po 1A - ugl < de(t) < p;'|A - wp| + 8, for a<t<a+s/2 and doft) <5
for a+ 6 <tc<b, while if Py = 0 then dR(t).i 85 in [a,b];

D(u) = {(taysy'):a < t < byly - u (t)] < 65 y" - u/(t)] < d (t)}
where dL is a smooth positive function such that if q, > 0 then

qéllB - mL| g_dL(t) g_qE]IB - mLI + s, for b-6/2<t<b and dL(t)
LA for a<t<b-6, while if G, = 0 then dL(t) <8, in [a,b].
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Suppose next that u = uI(t) is a solution of the reduced equation
(R) in [a,b]. Then we define the domain D(uI) as D(uI) = D(uL)
n D(uR) where in the demains D(uL) and v(uR) just defined u and
up are replaced by ug-

We will also consider solution paths of the form

u(t), a<tetylct)

u](t) = (if tL > tR)

uR(t), (tR <)t0 <t % b,

2’
u3(t) =
uR(t), t2 < £ < by
and
uL(t). a<tstg,
uy(t) =

ul(t). t <t < b,
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and so we define the following domains:

D(uy) = ((taysy')ia < t < by = ug(t)] < 8q]y" - ug(t)] < dy(t))
where d, 1is a smooth positive function such that |u£(t0) - ué(to)l < dy(t)
1lui(t0) - uplty)] + 6, for t;-6/2<tc<ty+s/, and d,(t) <8, for
t in [a,t; - 61U [t; + s,b];

D(uy) = {(toy,y'):a < t < byly - up(t)] < 6351y - up(t)] < dp(t)}

where d2 is a smooth positive function such that lui(t]) - ui(t1)| 5_d2(t)

|A

|ui(t]) - ui(t1)| +8, for t,-68/2<t<ty+6/2, Iui(tz) - ué(tz)l

|A

dy(t) < Jup(t,) - up(ty)| + 6, for t, -6/2<t<t,+s/2, and dy(t)

A

§4 for t in [a,t] -s8Ju [1:1 + 8.t - sju (t2 + §,b];
D(ug) = {(tay,y'):a < t < byly - ug(t)] < 6, [y" - uz(t)] < dg(t))

where d, is a smooth positive function such that [uj(t,) - up(t,)] < da(t)

3
< lug(ty) - upl(ty)]| + 65 for t, - 8/2<t <ty §/2, dg(t) < s¢ for t
in [a * s,tz -68]U [t2 + §,b], and d3(t) = dR(t) for t in [a,a + &/2]

with up replaced by ups
D(u,) = ((toy,y'):a < t < b,y = up(t)]| < 855y - ug(t)| < dy(t)}

where d, is a smooth positive function such that Iui(t]) - ui(t])l :_d4(t)

.

sl
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g_lui(t]) - ui(t])l + &g for t; - §/2 <t <ty 8/2, d4(t) < &g for t
in [a,t] - 5]V [t] + 6,b - 8], and d4(t) = dL(t) for t in [b - &/2,b]
with u replaced by up-
Finally if u is any one of the solutions or solution paths defined

above then we define the domain Dd(u) as
D (u) = {(taysy'):a < t < b,y - u(t)] <8,]y" - u'(t)] < 6.

We now define the various types of stability which solutioins of the reduced
problems can possess. In what follows the function f is assumed to be con-
tinuously differentiable with respect to y and y' in the appropriate

domain.

Definition 4.1. A solution u = ug(t) of (Rp) which exists in [a,b]

is said to be strongly (weakly) y'-stable if there is a positive constant

k such that fy. <=k <0 (fy. <0) in Dc(uR).

Definition 4.2. A solution u =y (t) gf_(RL) which exists in [a,b]

is said to be strongly (weakly) y'-stable if there is a positive constant

k such that f, > k>0 (fy. 20) in Dg(u).

Definition 4.3. A solution u = u;(t) of (R) which exists in [a,b]

is said to be locally strongly (weakly) y'-stable if there is a positive

constant k such that fy. <-k<0 (fy-.i 0) in 9, (u;) N [a,a + 6] if

p]ul(a) - pzui(a) # A with p,> 0 and fy' >k>0 (fy' >0) in Dc(ul)
n [b - sb] if q]ul(b) + qzui(b) #B with q, > 0.
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Definition 4.4. A solution path u = u](t) wi th ui(to)f ué(to) is

said to be strongly (weakly) y'-stable if there is a positive constant k

such that fy. >k>0 (fy. >0) in ?,(u;) 0 [a,t;] and fy. <-k<0
(f,e <0) in D4(u;) N [tg,b].

Definition 4.5. A solution path u = u2(t) with ui(t]) # ui(t]) and/or

ui(tz) # ué(tz) is said to be strongly (weakly) y'-stable if there is a

positive constant k such that fy. >k>0 (fy. > 0) in Dé(uz) n [t] - G,t]]
and fy' < -k <0 (fy' < 0) in Dd(uz) n [t],t] + 8] and/or fy' >k>0
(f,r 200 dn Dylu)) N[ty - 8,t)] and . < -k <0 (f,, <0) in Dyluy) .

n [tz,t2 + 6].

Definition 4.6. A solution path u = u3(t) is said to be locally strongly

(weakly) y'-stable if there is a positive constant k such that fy. <-k<0

(fy. <0) in ?,(u;) N [a,a + §]; moreover, if u;(t,) # “ﬁ(tz) then we re-

quire also that fy, >k>0 (fy. >0) in Dg(us) n [t, - &,t,] and fy'
<=-k<0 (fy. <0) in ?,(u3) N [tz,t2 =8,

Definition 4.7. A solution path u = u4(t) is said to be locally strongly

(weakly) y'-stable if there is a positive constant k such that fy. >k>0

(fy. >0) in 0. (uy) n [b - 8,b]; moreover, if uj(t;) # ui(t) then we re-

quire also that fy. >k>0 (fy. >0) in DG(u4) n [t1 - 6,t1] and fy.
<=k <0 (fy' < 0) in 06(u4) n [t],t] + 8],

The final definition of stability we will need involves the partial
derivative fy and for this reason will be termed y-stability in conformity

with the previous definitions of y'-stability which involve fy.. More
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general definitions of y-stability are often needed and the reader can con-

sult [8] or [9] for such definitions.

Definition 4.8. A solution or solution path u = u(t) is said to be

y-stable if there is a positive constant m such that f.y >m>0 in Dc(u)

n {y':y' =u'(t)}.

Using these definitions of stability we can begin our study of the non-
linear problem (N). In the theorems below we assume without stating so each
time that the function f is continuous in (t,y,y') and continuously dif-
ferentiable in y and y' for all values of t, y, y' “in the domain 0(u)
where u 4s the reduced solution under consideration. Moreover, we tacitly
assume that a solution of a reduced problem (RL), (RR) or (R) is of class C(z)
in its interval of existence. (With regard to the "angular" path U and pos-
sibly Uys Uy and Uy - We assume that the functions U, Up and Uy which
comprise these paths are of class C(z) in their respective intervals of
existence.)

Our first result is the analog of Theorem 3.2 of the previous section and

so we assume that Py > 0.

Theorem 4.1. Assume that the reduced problem (RR) has a solution u = uR(t)

which exists in [a,b] and which is strongly or weakly y'-stable and y-

stable. Assume also that either p]uR(a) - pzué(a) = A or (if p]uR(a)

- pzuﬁ(a) #A) (p]uR(a) - pzué(a) - A)f(a,uR(a),A) <0 for all a in
(uﬁ(a),pé‘(p]uk(a) -A)] or [pEI(p]uR(a) - A),uﬁ(a)). Then there exists an

€g > 0 such that the problem (N) with Py > 0 has a solution y = y(t,e)

T T ——

Catr sreiad s T e aol s
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whenever 0 < e < ¢ej. In addition, for t in [a,b] we have that

y(tae) = uR(t) + O(WL(t’E)) + 0(5)

and

y'(t9€) = Ué(t) + O(Wi(t,e)) + 0(5)9

A y _ -1 ' ; =
where w, satisfies wL(a,e) =Py (p]uR(a) - pZUR(a) - R), llg+ wL(t,e) =0

for a<t<b and Tim w'(t,e) =0 for a<t<b.,
>0

Proof. Despite the general nature of the function f the proof of this
theorem is essentially a repetition of the proof of Theorem 3.1. Suppose for
definiteness that p1uR(a) - pzué(a) < A and define for a<t<b and
0<Ei€0

a(t,e) = up(t) - e,

B(t,E) i uR(t) + wL(toe) + EYm-]’

where y > 0 is a constant to be determined momentarily and the function w > 0
has the above properties for 0 < ¢ < eg. Clearly p]a(a,e) - pza'(a,e) <A
g_p]s(a.e) - pze'(a,e) and q]a(b,e) + qza'(b,e) <B< q]B(b,e) + q28'(b.e)

by our choice of W It is just as easy to see that ea" > f(t,a,a') and

eB" < f(t,8,8') in (a,b) if y is chosen properly. Since f(t,o,0')

= f(t.uR,ué) + {f(t,c,ué) - f(t,uR.ué)} + {f(t,o,0') - f(t,o,ué) we have

first that :

e
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ea" - f(t,a,a') = euﬁ - f(t,uR,ué) + fy(t,;l,ué)eym_]

>-eM+ ey >0 if y>M= maxluﬁl.
(Here B =upt 0(e) is the appropriate intermediate point.) Secondly
] (L ] ' ']
f(t’B’B ) o EB = f(tauR’uR) + fy(t’EZ’uR)[wU er ]
+ {f(t,8,8') - F(t.B,up)} - eup - ew'.
By the stability assumptions of the theorem the quantity {-}-ewE is non-
negative in [a,a + §) and of order o(v(t,e)) in [a + §,b] for v(t,e)
= max{e,wL(t,e)} with t in [a + 6,b]. Therefore f(t,8,8') - e8" >0 in

(a,b) for y > M.

The final step in the proof consists in establishing a bound on y'(t,e)

for a solution of ey f(t,y,y') satisfying o <y < 8. However it follows

directly that y'(t,e) ué(t) + 0(w£(t,e)) + 0(e) by arguing as in the proof
of Theorem 3.1 and using the y'- and y-stability of Up- For example, if

a](t,e) = uR(t) - Le - u(t0 -t) with £>0 and u > 0 then
f(tyaloa-i) o f(tauR,uﬁ) - fy(t,ﬁ,lﬁ)[le + H(to - t)] + fy.o(t:u] ,Ez)u <0

since fy > 0 and fy. <0 for g =up+ 0(¢) and £y = ué + 0(n).

Thus Theorem 4.1 follows from Heidel's theorem [7].
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The result corresponding to Theorem 4.1 for the reduced solution
u= uL(t) (with qp > 0) follows now by making the change of variable

t>a+b-t and applying Theorem 4.1 to the transformed probiem, namely

Theorem 4.2. Assume that the reduced problem (RL) has a solution

us= uL(t) which exists in [a,b] and which is strongly or weakly y'-stable

and y-stable. _Assume also that either q]uL(b) + qzui(b) =B or (if
q]uL(b) + qzui(b) # B) (q]uL(b) + qzui(b) - B)f(b,uL(b),A) <0 for all 2
in (ui(b),qél(B - q]uL(b))] or [qE](B - q]uL(b)),ui(b)). Then there exists

an e, > 0 such that the problem (N) with q, > 0 has a solution y = y(t,e)

whenever 0 < ¢ < €g In_addition, for t in [a,b] we ﬁave that

y(tse) = u (t) + 0(wp(t,e)) + 0(e)
y.(t’e) = ul'.(t) + O(Wé(t,e)) i o(e)s

, oo X 2
where wp satisfies wR(b,e) = q (B - q]uL(b) - qzui(b)), :lg+ wR(t,e) =0

for a<t<b and 1lim, wp(t,e) =0 for a <t <b.
>0

It is often the case with the nonlinear problems under consideration here
that the reduced equation has solutions u = uI(t) which cannot be made to
satisfy either boundary condition. However if up is locally y'-stable
and y-stable then it is not unreasonable to expect that the problem (N) with
P, >0 and gq, > 0 has a solution y = y(t,e) which is approximated by Uy
in [a,b]. This follows because the nonuniform behavior of y' is confined

to small neighborhoods of t = a and/or t = b where we have y'-stability
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and because the y-stability of Uy is global. These heuristic ideas are
made precise in the next theorem which can be viewed as a combination of

Theorems 4.1 and 4.2; its proof is omitted.

Theorem 4.3. Assume that the reduced equation (R) has a solution u = uI(t)

which is locally strongly or weakly y'-stable and y-stable. Assume also that

p]uI(a) - pzui(a) =A or (p]uI(a) - pzui(a) - A)f(a,uI(a),x) <0 for all a
in (uj(2).py (pyuy(a) = M1 or [py'(pyuy(a) - A),ui(a)) and that aqyu;(b)
*+ quup(b) = B or (gqqup(b) + quup(b) - B)f(b,u;(b),2) <0 for all A in

(ui(b),q51(8 - q]ul(b))] or [qé](B - q]ul(b)),ui(b)). Then there exists an’
€0 > 0 such that the problem (N) with Py > 0 and q, > 0 has a solution
y = y(t,e) whenever 0 < ¢ < g In addition, for t in [a,b] we have that

y(t,e) = uf(t) + O(w (tse)) + O(wp(t,e)) + 0(e)
y'(tse) = up(t) + 0w (t,e)) + Olwp(t,e)) + 0(e),

where wL(wR) has the properties given in the conclusion of Theorem 4.1 (Theorem

4.2) with uR(uL) replaced by up

We consider next the situation in which the reduced problems (RL) and
(RR) have solutions u and up which intersect at a point t, in (a,b).
Later (cf. Remark 4.4) we will see that such behavior is related to the non-
occurrence of the type of boundary layer behavior described in Theorems 4.1

and 4.2. Recalling Theorem 3.4 we are led to the following theorem.
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Theorem 4.4. Assume that the reduced problems (RL) and (RR) have

solutions u.=u (t) and u = up(t) in [a,t) and- (t;,b) respectively

with t > tp such that u (t;) = up(tg) = ¢ and o = u/(ty) # up(ty) = op

L
at a point t; in (tR,tL). Assume also_that the path u = u;(t) is strongly

or weakly y'-stable and y-stable _and that (oR - oL)f(to,c,A) > 0 for all

2 i (cL,cR) or (ops0;). Then there exists an e, > 0 such that the

problem (N) has a solution y = y(t,e) whenever 0 < ¢ < gg In addition, we

have that

y(tse) = uy(t) + 0(w(t,e)) + 0(e)  for a <t <b,

-4

y'(tse) = u/(t) + 0(w'(t,e)) + 0(e) for a<tc<ty,

and

4
o
-

y'(tse) = up(t) + 0(w'(tye)) + 0(¢) ty<teb,

where the continuous function w satisfies w‘(ta,e) = %{oR - oL), w'(ta,e)

= Yo, - op)s lim w(t,e) =0 for a<t<b and Vim, w'(t,e) =0 for
e+0 e+0

azt<t, and t, <t<b.

0

Proof. Define for a<t<b and 0<e <¢g

a(t,e) = u](f) - eym‘]

if oL < %R
1

B(t,e) = u](t) + w(t,e) + eym




1
3 ]
and
a(t,e) = u](t) + w(t,e) - eym'] 1
if OL > OR, 1
Bltse) = uy(t) + eym” |
where w has the above properties for 0 < ¢ < €p Then one verifies easily i
that each of the inequalities of Heidel's theorem is valid. To obtain a bound
on y'(t,e) we estimate y'(t ,e) in [to.b] as in Theorem 4.1 and y'(t+,q) 1

in [a,to] using the y'- and y-stability of up and u respectively.
Suppose now that the reduced problems (RL), (R) and (RR) have solutions

[ =4

= uL(t), u= uI(t) and u = uR(t) such that uL(t]) = uI(t]) and ul(tz)

uR(tZ) at distinct points t) and t, in (a,b) with t) < t and

tp < tz. If ui(t]) = ui(t]) and ui(tz) = ué(tz) it is clear (cf. the proof

RS, -

of Theorem 4.4) that if the path u = uz(t) is y-stable then the problem (N)
has a solution y = y(t,e) for 0 < e < €0 such that y(t,e) = uz(t) + 0(e)

and y'(t,e) = ué(t) + 0(e) for a <t <b. However if ui(t]) # ui(t]) and/or
ui(tz) # ué(tz) then we have the situation described in Theorem 4.4 at t = t,
and/or t = tz. The proof of the following result can be patterned after the

proof of Theorem 4.4.

Theorem 4.5. Assume that the reduced problems (RL), (R) and (RR) have

solutions u = uL(t), u-= ul(t) and u = uR(t) such that uL(t]) = uI(t]) = Cps
up(ty) = uplty) = ¢ps oy = u'(ty) # uj(ty) = u; and/or o, = up(ty) # ué(tz) = My

Assume also that the path u = uz(t) is strongly or weakly y'-stable and y-

stable, and that (u; - 0y)f(tscq02) > 0 for all A in (og.my) or
(u1,01) (if o E u]) and/or (uz - oz)f(tz,cz.x) >0 for all A in




(oz,uz) or (uz,oz) (if o, # “2)' Then there exists an €g > 0 such

that the problem (N) has a solution y = y(t,e) whenever 0 < e < ¢

addition, we have that

y(t,e) ol uz(t) + O(W](t,e)) + o(wz(tse)) T 0(5) fQE_ a i.t ﬁ_b’
yl(t’s) - ui(t) + o(wi(t’E)) + 0(8) fQE. a f_t ﬁ_t]s

¥'(te) = u(t) + 0(wi(t,e)) + 0lwalt,e)) + 0(e) for t; < t< t,,

y'(t,e) up(t) + O(W'Z(t,t:)) + 0(e) for t,<tcb.

Here W5 (3 =1, 2) are continuous functions satisfying w'(tg,e) = %(uj - oj),
), lim_ w.(t,e) =0 for a<t<b and Tim_wi(t,e) =0
ki e+0" =3

for a<t«< tj and tj <tc<b.

c(tte) = Mo, -
wj(tj’e) Z(Uj H

'

We consider finally the case in which the reduced equation (R) has a
solution u = uI(t) which intersects a solution Up of (RR) or a solution
u of (RL) at a point in (tpb) or (a,tL). The following results can be

proved by combining the arguments for proving the boundary and interior

layer theorems above.
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Theorem 4.6. Assume that the reduced problems (R) and (RR) have solutions
u=up(t) and u = up(t) such that up(ty) = up(t,) = c, ata point t, in
(tR,b). Assume also that the path u = u3(t) is locally strongly or weakly

y'-stable and y-stable and that either p]uI(a) - pzui(a) =A or_ (if

p]uI(a) - pzui(a) #A) (p]ul(a) - pzui(a) - A)f(a,ul(a),x) <0 for all a in

(ui(a),pél(p1ul(a) - A)] or [pél(p]ul(a) - A),ui(a)). Assume finally that
if o,= ui(tz) # up(ty) = u, then {u, - oz)f(tz,cz,x) >0 for 1 in

(°2’“2) or :(“2’02)' Then there exists an €g > 0 such that the problem (N)

with Py > 0 has a solution y = y(t,e) whenever 0 < ¢ < g In addition,

we have that
y(tse) = U3(t) + O(WL(taE)) + O(WZ(t,E)) + 0(5) fo__r a =< t ib’
y'(tse) = up(t) + 0w (t,e)) + O(wy(t,e)) + 0(e) for a <t < tss
and

y'(tse) = up(t) + 0(wy(t,e)) + 0(e) for t, <t<b.

Here wz(wL) has the properties given in the conclusion of Theorem 4.5

(Theorem 4.1 with Un replaced by "I)'

Theorem 4.7. Assume that the reduced problems (RL) and (R) have solutions

u= uL(t) and u = uI(t) such that uL(t]) = uI(t]) =c ata point t, in

(a,tL). Assume also that the path u = u4(t) is locally strongly or weakly
y'--  and y-stable and that either q]ul(b) + qzui(b) =B or (if

q]ul(b) + qzui(b) # B) (q]ul(b) + qzui(b) - B)f(b,ul(b),x) <0 for all a in
(ui(b).qél(B - q]ul(b))] or [qél(B - q]ul(b)),ui(b)). Assume finally that if

o = ui(t]) # ui(t]) = u; then (u1 - a])f(t],cl,x) >0 for all a in
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(o]=u1) or (u],o]). Then there exists an €g > 0 such that the problem

(N) with q, > 0 has a solution y = y(t,e) whenever 0 < ¢ <epe In

addition, we have that

y(tte) ~ U4(t) + O(W](t,e)) + O(WR(t9€)) + 0(5) io_r_ a < t <. b)

y'(tse) = u/(t) + 0w (t,e)) + 0(e) for actcty,

and

-

y'(tse) = up(t) + 0(wi(tse)) + O(wp(tse)) + 0(e) for t, < tc<b.

We close this section with several remarks.

Remark 4.1. The boundary layer functions w and Wp assume particularly
simple forms if up and u (or uI) respectively are strongly (or locally
strongly) y'-stable. Namely we can set wL(t,e) = -kilpéle(p]u(a) - pzu'(a)

-k1(t—a)e'] A e
- Ae for u=u or u and wR(t,e) = k] 9y e(qlu(b)
(b-t)e™"

-k
for U = u_ or up, where k] is a positive

+ q,8'(b) - Be L

constant, k]'g k.
Similarly, the interior layer functions w, Wy and w, are of exponential

type if the reduced paths are strongly y'-stable. For example, in the case of

Fis K (t-tge™!
Theorem 4.4 we can define w as w(t,e) = ikl e(oR - aL)e for

. : L : -k](t-to)e-]
a<tcty and w(t,e) = 5k, elop - oL)e for t; <t <b, where

0 < k] <k (cf. [17, [13]).

PO
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Remark 4.2. The y-stability of the various reduced solutions u implies
that the solutions of (N) described above are locally unique in the sense that
for each choice of u there is only one solution y of (N) satisfying

Tim, y(t,e) = u(t) in [a,b]. However, for a given pair of boundary values
e+

A and B the problem (N) may have more than one solution for all values of

e > 0 sufficiently small; cf. Example 6.3 below.

Remark 4.3. We note that it was not necessary to assume that Py > 0
and 9 > 0 1in the statement of Theorem 4.4 whereas these restrictions were
required for the validity of Theorem 3.4. This is due to the fact that the

path Uy is assumed to be y-stable in [a,b].

Remark 4.4. There is also a connection between the occurrence of interior
layer behavior and the nonoccurrence of boundary layer behavior for solutions
of the general problem (N) (cf. Remark 3.4). Suppose for example that the re-
duced problems (RL) and (RR) have strongly or weakly y'-stable and y-stable

solutions u and ug such that

uL(b) + ui(b) <B and uR(a) - ué(a) <A
(4.1)  but
f(b,uL(b),b - uL(b)) < 0 and f(a,uR(a),uR(a) - A) < 0.

(Here we assume for simplicity that Py =9y =Pp=0, = 1 in (N).) Then
Theorems 4.1 and 4.2 are inapplicable; however, suppose that luL(r) - uR(r)l

is not too large for t =a or t =b. We claim that
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(i) uL(b) < uR(b) and

(i1) u (a) > up(a),
that is, u and up intersect at least once in (a,b). To verify inequality
(i) set w = uL(b) - uR(b) and note that

0> f(b,uL(b).B - uL(b)) = f(b,uR(b) + w.uﬁ(b) - w)
(4.2) = fy(b,uR(b) + Gw.ué(b) - 0w
+ £(b,up(b)up(b) =-0).
Suppose on the contrary that uL(b) > uR(b), that is, o > 0. Then the y'-
stability of up implies that f(b,uR(b).ué(b) - w) > 0 while the positivity
of fy impiies that fyw > 0. Thus fym + f(b.uR(b),ué(b) - w) > 0 which

contradicts (4.2). Similarly, to verify inequality (ii) set v = uR(a) - uL(a),

then we have that

0> f(a,uR(a),uR(a) - A)

f(a,u (a) + v,u/(a) + v)

(4.3)

fy(a,uL(a) + ev,ui(a) + v)v

+

f(a,uL(a),ui(a) + v).

Suppose on the contrary that uL(a) < uR(a), that is, v > 0. Then
f(a,uL(a).ui(a) +.v) ; 0 by the y'-stability of u while fyv > 0 by the

positivity of fy. Consequently fy“ + f(a,uL(a),ui(a) + v) >0, which

contradicts (4.3).

A“"“—"-. e

i e e e e

* [ WRRIPRR e
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Thus when the inequalities (4.1) obtain the functions u and up
intersect in (a,b) and we can check further to see if Theorem 4.4 is
applicable. Such will always be the case if ui(to) and ué(to) ("L(to)
= uR(to) = ¢) are adjacent zeros of f(to.c,o). Likewise if uL(b) + ui(b) > B
and uR(a) - ué(a) > A but f(b.uL(b),B - uL(b)) >0 and f(a,uR(a),uR(a) - A)
> 0 then u and Up intersect at least once in (a,b) and there is the

possibility of a crossing as described by Theorem 4.4.

5. Some Singular Phenomena

The results of the previous section are distinguished by the fact that
the convergence of a solution of the problem (N) to a reduced solution takes
place under the assumption of strong stability either at a boundary point or
at an interior point. Namely, in the case of boundary layer behavior we re-
quired for example at t = a that if p]u(a) - pzu'(a) # A then (p1u(a)

- pzu'(a) - A)f(a,u(a),r) <0 for all A in (u'(a),pé](p]u(a) - A)] or
[pé](p]u(a) - A),u'(a)). Here u = up or up. Similarly in the case of in-
terior layer behavior we required that if u(to) = 3(t0) = ¢ and o = u'(ta)
#U(ty) = op then (op - o )F(tc,a) > 0 for all A in (o ,0p) oOF
(°R’°L)' However it is possible that the same qualitative results are valid
if these strict inequalities are replaced by suitable nonstrict ones. We term
such phenomena "singular" since they invariably involve the case in which the
reduced equation f = 0 is singular at one or more points in (a,b) and

along various solution trajectories. For example, if fy.(to.Y.Y') =0 for

Rl -,

all y, y' of interest then the point to is a singular point of f (cf.

[10; Chapter 3]). It will become apparent shortly that the assumption of
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y-stability is crucial in obtaining the analogs of the theorems of the pre-
vious section. This is not surprising since if f(to,u(to),u’(to)) = (0 and
fy.(to.u(to),u'(to)) = 0 the solution u 1loses y'-stability in passing

through t, and so it has to derive stability from the y variable.

0
Consider first the case of boundary layer behavior. We only state and
prove the analog of Theorem 4.1 and then comment on the modifications necessary

for proving the analogs of the other boundary layer results.

Theorem 5.1. Assume that the reduced problem (RR) has a solution u = uR(t)

which exists in [a,b] and which is weakly y'-stable and y-stable. Assume -

also that

(5.1)  (pup(a) - pyup(a) - A)f(t,y,y') <0 for (t.y,y') in 0(up) N [a,a + &].

Then there exists an €g > 0 such that the problem (N) with Py > 0 has a

solution y = y(t,e) whenever 0 < ¢ < €g- In addition, for t in [a,b]

we have that
¥(tse) = up(t) + 0(w (t,e)) + 0(e)

y'(t’t) - Ué(t) + O(Vli(t.c)) + 0(5);

-1,1/2
where w (t.e) = -(!-lt)llzpél(p]ua(l) - pyupla) - A)e-(m‘ } S is

a solution of ez" =mz, a<t<b, 2'(ase) = pil(p!un(a) - pzuﬁ(a) - A).

- Bt ]niiili!!::!!!E:5ZZE:Z:I:ZZ:ZZZJ:::::::::




4 e

43
Proof. It is only necessary to construct appropriate bounding functions
a and B. Define fora<t<b and € >0
a(t,e) = uR(t) - sym-]
if pyup(a) - poupla) < A

B(te) = ug(t) + w (t,e) + eym™!

and

Caltye) = up(t) + w (tye) - em')

if p1uR(a) - bzuﬁ(a) > A,
B(tse) = up(t) + e’

Consider just the case p]uR(a) - pzué(a) < A. Clearly ea" > f(t,a,a') since

up is y-stable. As for B we have that
f(t,8,8") = F(t,up,up) + (F(t.8,up) - f(t,up,ug))
+ (f(t,8,8") - f(t,8,up)}

= fy(tEoup) (B - up) + (-}

where & 1is the appropriate intermediate point. Therefore
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f(t,8,8"') - eB" fy(t,z.u,;)(wL + eym") + (-} - eup - ew'

"

W +ey - {} - eM - ew'

|v

(M= maliual) > ey - eM+ (¢}

by our choice of v . Now for t in [a,a + 6] the expression in parentheses
is nonnegativé by assumption and for t in [a + &,b] it is transcendentally
small, that is, (-} = O(eN) for all N > 1. Consequently, if y =M+ 1 and
e 1is sufficiently small, say 0 < ¢ S egs We have the desired inequality :
eB" < f(t,8,8') in (a,b). :

For the situations described in Theorems 4.2, 4.3, 4.6 and 4.7 the cor-
responding "singular" analogs are valid if the weakly y'-stable function u

satisfies
(5.2)  (qqu (b) + qui(b) - B)f(t,y,y') <0 for (t,y,y') in O(u) N [b - s,bl,

and if the locally weakly y'-stable function uy satisfies (5.1) and/or (5.2)
with ug and/or u respectively replaced by ug-

Consider next the case of interior layer behavior. Once again we will only
state and prove the analog of Theorem 4.4 and simply indicate the modifications

required in the other interior layer results.
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Theorem 5.2. Assume that the reduced problems (RL) and (RR) have solu-

tions u=uL(t) and u=uR(t) in [a,tL) and (tp,b] respectively with

tp < t_ such that uL(to) = uR(to) and o = ul'_(to) 7 up(ty) = op ata
point t, in (tR,tL). Assume also that the path u = u](t) is weakly y'-

stable and y-stable. and that
(5.3) (o - o )f(t.y,y') 20 for (t,y,y') in D(uy) n [ty - 6,t, + 6].

Then there exists an eg > 0 such that the problem (N) has a solution y = y(t,e)

whenever 0 < e < €or In addition, we have that

-

y(tie) =uy(t) + 0(wy(t,e)) + O(w (t,e)) + 0(c) for a <t <b,

y'(tse) = u|'_(t) L O(WL(’t,e)) + 0(¢) for a<tc<t,,
and
y'(tye) = ué(t) + O(N,'.(t.E)) + 0(e) for ty<tcb.
1, -1,1/2 (e-]'")w(t‘to) !
Here wz(t,e) = E(em (oR - oL)e is a solution of €z" = mz,

wiiyi o T TR <
a<tc< to, z'(to,e) = f(OR - oL). and wr(t,e) E(sm (oR oL)

-(C-]m)]/z(t-to) + ]
e e is a solution of €z" = mz, ty < t<b, z'(to,e) = 7(°L - °R)°

Proof. Suppose for example that 9 * % and define for ¢ > 0

G(_tDE) o U](t) =4 er-]9 a<tc<b,
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and

u (t) + wy(t,e) + eym-], a<tc<t
B(t,e) =

uR(t) + wr(t,e) + eym

0’

1
? t0 <tz<b.

Then it is a straightforward matter to show that for y sufficiently large and
¢ sufficiently small, say 0 < ¢ < g these functions satisfy the correct
inequalities.

As regards the analogs of Theorems 4,5, 4.6 and 4.7 we must assume that
(5.4) (uj - oj)f(t,y,y') >0 for (t,y,y') in D(u)n [tj - G,tj + 8].

Here j =1 and/or 2 and u = Ups Uy or u,.

We close this section with two remarks.

Remark 5.1. In discussing certain problems it is necessary to amend con-

dition (5.1) as follows. First of all, if ua

p]uR(a) - pzué(a) <A (> A) then the proof of Theorem 5.1 shows that it is

>0 (<0) in [a,a+ 6] and
enough to assume in place in (5.1) that

(5.1)"  flt,up(t)an) 2 0 (<0) for t in [a,a + 6]

and for all A in [p;'(pyug(a) = A),ua(a)) ((up(a),py'(pyug(a) - A)D).

Secondly, 1f in the original condition (5.1) (pyup(a) - ppup(a) - A)F(t,y,y') < ule)
for a positive function u which is such that wu(e) < L(e)e with L(e) = 0(1)
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depending only on ¢, then the conclusion of Theorem 5.1 remains valid.
Similar remarks apply to the condition (5.2).

It is often necessary to also amend the condition (5.3). If Uﬂ.l 0
(< 0) and up >0 (<0) in [t0 - 6,t0] and [to,t0 + §] respectively
and if o <o (cL > oR) then the conclusion of Theorem 5.2 is valid if

(5.3) is replaced by

(5.3)" f(t,u](t),x) >0 (<0) for t in [t0 - 8,ty + s8]
and for all- A in (oL.aR) ((oR,oL)).

Secondly, if in (5.3) (aR - oL)f(t,y,y') < u(e) with u as before then the
conclusion of Theorem 5.2 is also valid. The conditions (5.4) can be modified

in a similar manner.

Remark 5.2. If we assume in the theorems of this section that the reduced
solutions are y-stable in a sense more general than that given in Definition
4.8 then the layer corrector terms w must be modified accordingly (cf. for

example [9]). The qualitative results are nevertheless the same.

. 6. Some Examples

We close the paper with several examples that illustrate the theory in

Sections 4 and 5.

Example 6.1. Consider the problem

i s -
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ey' =y - ty' - y'3 = f(t,y,y'), -1<t<1,
(E4)
-y'(-1,e) = A, y(1,e) = B.

Note that solutions of (E4) are unique by the maximum principle (cf. [16]).

3 is a Clairaut equation (cf. [10; Chapter

3

The reduced equation u = tu' + u
3]) whose solutions are the straight lines u = u(t) = ct + ¢ and their

envelope u = 1\_——2--—(-t)3/2 which is a singular solution defined for t < 0;

see Figure 1.

Figure 1.
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Suppose first that B = 2. Then the straight line u = uR(t) =t+1

is a solution of the reduced problem (RR) corresponding to (E4) which is ]
strongly y'-stable in [-1,1] since fy.[uR(t)] = -t - 3 < -2 there. In

order to apply Theorem 4.1 we must determine for what values of A
(~up(-1) = MF(-T,up(-1),2) = (<1 = AR(1 - »%) <0

for all A in (ué(-1)= 1,-A] or [-A,1). If A= -1 then y(t,e) = uR(t)
is the solution of (E4). If A > -1 then

(<1-A)A(1-22) <0 for 2 in [-A,1)
provided -A > 0, that is,for A < 0. Similarly, if A < -1 then
(<1 < A1 -2%) <0 for A in (1,-A] {

provided -A > 1, that is, for A < -1. Thus by Theorem 4.1 the problem (E4) ;
for A <0 has a solution y = y(t,e) such that y(t,e) » uR(t) =t+1 in
[-1,1] and y'(t,e) + 1 din (-1,1] as e~ -
Suppose next that A=0 and B = 5/8. Then u = u = 0 is a solution
of the reduced problem (RL) and u = uR(t) = %t + %- is a solution of (RR)
which intersect at ty = - %u The corresponding angular path u = u](t) is

strongly y'-stable since fy.[uL(t)] = -t 3_%- in [-1,- %J and fy.[uR(t)]

= -t - %-5_--% in [- %;l]. To apply Theorem 4.4 we must check the condition
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that (oR-oL)f(- %,O,A) >0 for A between o, and ops that is,

L
1 1 1./1 2
é'f(- _4",0,A) s i’x(? = A ) > 0
for A in (0,%). Thus we deduce from Theorem 4.4 that the problem (E4)

has a solution y = y(t,e) such that

.Y(toe) = U](t) 5

and

1
3

+
y'(t,e) » as e¢+0.

We consider finally two applications of Theorem 4.6. Set B = %93 The

unique solution u of the reduced equation f = 0 satisfying u(l) =B is
1

u= uR(t) = %t t 57 and it intersects the lower branch u; (= - —g—{-t)alz)

3/3
of the singular solution at the point t2 = - %- (cf. Figure 1). Since up

is a singular we know aiso that ui(tz) = ué(tz) and so the corresponding

reduced path u = u3(t) is of class 6(1)[-1.1]. It remains for us to determine

the values of A for which

¢ p— R
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' s 1 2 3
(1) = MECLu D) = (- - A L -3 <o

1 1 " 1

for » in (—, - A] or [-A,—). Note that if A = - — then y(t,c)
/3 /3 /3

- u3(t) and y'(t,e) » u:'i(t) in [-1,1] as e » 0'. If however - s e A

3
> 0 then

(-]—-A)-—2—+A-A3=(—]-+A)(,\-—]-—)2A+-2— <0
3 (3/37 ; 3 /37( /37)

for all A in (1,-A], whileif - - A <0 then (L + A - D20 +2)
/3 /3 3 /3 /3

£0 for A in [- L,—l—). Consequently we can apply Theorem 4.6 only if
/3 /3

A<- ]F to conclude that the problem (E4) has a solution y = y(t,e) such
3

that y(t,e)->u3(t) in [-1,1] and y‘(t,e)-»ué(t) in (-1,1] as e+ 0.

Suppose finally that A = % and B = 7 Then the unique solution u of

f =0 satisfying u(1) =B is u-= uR(t) = %t + 587 and it intersects the upper

branch "I(= L(-t)s/z) of the singular solution at t2 = - -;— For this choice
3/3

5 ] l = ] L 1 = g. =
of A and B note that o = uI(- 3) - g uR( 3-) 3 = og in contrast to
the previous problem. We first check the condition for a crossing at tz,
namely

(OR - UL)f(‘ ij%‘ox) = 527' + ‘;‘X - X3 >0

,-g—) . But

W|—

for 2 in (-
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3, 1] 2

& 1,2 2
-2 +§A+ﬁ—-(x+/§) (A-3)>0
for such A2 and so there is a crossing at t2. Thus Theorem 4.6 tells us

that there is a solution y = y(t,e) of (E4) such that

1
uI(t)o e ] f_t :_' §3
Y(t,e) o uz(t) »
1
uR(t): 'iitf_]’

and
ur(t), -1<t<- L
J (il - 3’
y'(t,e) » as ¢+ 0",
' ;
UR(t), -3<ti1'
Example 6.2. Consider now the problem
ey' =y + ty' + y'" = f(t,y,y'), -1<t<1,
(ES5)

.Y(‘]se) o yl(']!e) = A, y(1.e) + .Y'(loe) = B,

for n an integer greater than two, which we will use to illustrate Theorem
4.3. Once again solutions of (E5) are unique by the maximum principle. The
function uy = 0 1s clearly a solution of the reduced equation f = 0 which

is locally strongly y'-stable since fy.[O] = t. Suppose first that n is

.

e

Al A .k

.L(qﬁﬁﬁﬂwb%ﬁmfmuq
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odd. In order to apply Theorem 4.3 we must consider inequalities at t = -1

and t =1, namely

(6.1) (ux(-l) - ui(-l) - A)f(-l,ul(-1),x) <0 for A in (ui(-]),

UI(-I) - A] or [ul(-l) - A,ui(-l))
and

(6.2) (ul(l) + ui(l) - B)f(l,ul(l),x) <0 for A in (ui(]),B - ul(l)] :

or [8 - ug(1),u}(1).
Condition (6.1) is equivalent to
-Ax(1 - A"']) <0 for 2 in (0,-A] or [-A,0)

and this is satisfied for |A| < 1(A # 0) since n is odd. On the other hand,
condition (6.2) is equivalent to

(1 + ™) <0 for » in (0,8] or [B,0)
which is true for al1 B#0. If A=B =0 then y(t,e) =0 is the solution

of (E5) and so from Theorem 4.3 we deduce that if n is odd and |A| < 1 then
for all values of B the problem (E5) has a solution y = y(t,e) such that
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(6.3) y(t,e) » 0 in [-1,1] and y'(t,e) + 0 in (-1,1) as € » 0.

If now n is even then condition (6.1) is clearly satisfied by all
values of A > -1 (A # 0) while condition (6.2) is satisfied by all values
of B>-1 (B#0). Thus from Theorem 4.3 we deduce that if n is even and
A, B > -1 then the problem (E5) has a solution y = y(t,e) satisfying the
limiting relations (6.3).

Example 6.3. Consider next the problem

'3"'.Y3'.V=f(t.y-y'). -1 <t<].

ey" = ty
(E6)

y(-1,e) - y'(-1,e) = A, y(1l,e) + y'(1,¢) = B.

We will show that for certain choices of A and B this problem has at least
two solutions.

The reduced equation f = 0 has many solutions but we single out just

the constant ones uy = 1 and u, & -1 which are y-stable since fy[gj] s 2,

Note also that both Uy and u, are locally weakly y'-stable since fy.
= 3ty'2. We consider only U in detail since the corresponding results for
u, follow by reflection (y + -y). To apply Theorem 4.3 we must check the

two inequalities:

(6.4) (ul(-l) - ui(-l) - A)f(-l,u](-1),x) <0 for A in

(u)(-1),uy (1) = A] or [uy(-1) - Auj(-1)s




T

55

(6.5) (u](l) + ui(l) - B)f(l.u‘(l).x) <0 for A in

(u(1),8 - uy (M or [B - uy(1),uy(1)).
Condition (6.4) is equivalent to
(1-A3>0 for A in (0,1 -A] or [1-A,0),
which is satisfied for all A # 1. Similarly condition (6.5) is equivalent to
(1-8n3<0 for A in (0,8-1] or [B- 1,0,

which is satisfied for all B # 1. Thus by Theorem 4.3 the problem (E6) has

a solution y = y](t,e) such that for all A and B yl(t,e) +1 in [-1,1]
and yi(t,e) +0 in (-1,1) as €+ o' Consequently this problem has another
solution y = yz(t,e) such that for all A and B yz(t,c) + -1 in [-1,1]
and yé(t,e) +0 in (-1,1) as e » o',

Example 6.4. In this final example we illustrate some of the singular
phenomena discussed in Section 5. The problem is

3

ey'=y - ty'" = f(t,y,y'), a<t<b,

(€7)

-y'(a,e) = A, q¥(bse) + qy'(b,e) = B,
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whose solutions are unique by the maximum principle. Suppose first that
a=gq,s= B=0 and b = q = 1, and consider the function u = uR(t) = 0.
Clearly Up is a solution of f = 0 satisfying uR(l) = B which is locally

weakly y'-stable since fy. = -3ty'2.

Now f(0,0,0) = 0 and so we cannot
apply Theorem 4.1 but we suspect that for all values of A there is a solution

y = y(t,e) of (E7) such that
(6.6)  y(t,e) >0 in [0,1] and y'(t,e) >0 in (0,1] as e~ 0.

To establish this we note that condition (5.1)' (cf. Remark 5.1) of Theorem
5.1 holds, namely :

3.0

(-up(0) - A)f(t,up(t),2) = Ata
for t in [0,6] and A in (0,-A] or [-A,0). Thus by Theorem 5.1 the
problem (E7) has a solution y = y(t,e) satisfying the limiting relations
(6.6) for all values of A.

Suppose next that a = -1, A= 9 =9, = 1 and B = 2, and consider
the functions u = uL(t) =-t and u = uR(t) = t. Clearly u is a solution
of the corresponding reduced problem (RL) while up is a solution of (RR).
These functions intersect at ty = 0 and the angular path u = u](t) = |t
is weakly y'-stable since fy. = -3ty'2. However Theorem 4.4 is inapplicable
because f(0,0,A) = C for all A. We are led to consider applying Theorem 5.2
since Uy is y-stable and so we have to verify condition (5.3)' (cf. Remark

5.1), that is,

.

T
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f(t.u](t).x) >0 for |t|] <6 and |r]| < 1.

For t in [-G,O]f(t,u](t).x) = -t(1 + A3) >0 and for t in [0.6]f(t,u](t).x)
= t(1 - A3) > 0. Therefore Theorem 5.2 tells us that the problem (E7) has a

solution y = y(t,e) such that
y(t,e) » |t] in [-1,1]
and

1, -12t<0,
y'(tye) » as ¢+0.
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