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LIST OF SYMBOLS

- l.c. alpha V - script D
B — l.c. beta F - script F
y - 1.c. gan,na G - script G

- l.c. delta H - script H
c - 1.c. epsilon N -. script N
c - 1.c. zeta R - script R
ii — l.c. eta P - real numbers

o - l.c. theta 0 - big oh Landau symbol (script 0)
x - l.c. lambda o - small oh Landau symbol (script o)

l.c. mu

- l.c. flu

a - l.c. sigma

r -l.c. tau

w - l.c. omega
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1. Introduction

We consider here some extensions of our resul ts on the nonli near Robi n

problem

~y” = f(t,y,y’), a < t < b ,

(N)

p1y(a,c) 
— p2y’(a,e) 

= A , q1y(b,c) + q2y’(b,~) = B,

with f(t,yy ’) = +y ’2 + h(t,y) published in [8]. Specifically we are in-

terested in the existence and the asymptotic behavior (as c -‘~ 0+) of solutions

of the problem (N) whose righthand side f satisfies f(t,y,y’) = 0(1y 1 1
fl

) as

I y’ ÷ for n > 2. Such “superquadratic’1 probl ems have been considered by

the author in [9] for functions f of the form f(t,y,y’) h(t,y)g(t,y,y’)

where g(t,y,y’) = 0 ( I y ’ I ~’) ,  n > 2, and g > v  > 0 for all (t y,y’) of

interest. However this positivity assumption on g effectively eliminates the

4 participation of nonsingular solutions-of the reduced equation f(t,y,y’) = 0

in the asymptotic description of solutions of the problem (N) for small values

of c > 0. The results of [8] for the quadratic functions f(t,y,y’) =

j + h(t,y) clearly show that nonsingular solutions of f = 0 play an i nteresting

and important role in analyzing how solutions of (N) behave as ~ - 0~. Thus

It seems of irterest to us to examine similar questions in the case that

f(t,y,y’) = 0( 1~~11 n1) as Iy ’ I  ÷~~~ for n >2 without the restriction that

f(t,y,y’) = h(t,y)g(t,y,y’).

- -  — — —~~- —
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Such problems have not received much attention in the l iterature on

singular perturbations apparently due to the highly nonlinear dependence of

f on y’. The author ’s papers [8] and [9] contain the latest results on the

problem (N) for the functions f discussed above as well as references to the

work of others. Since the writi ng of [9] 1. Perko [15] has examined turning

point phenomena for problems related to (N) using methods developed in his

previous work [12], [14].

2. A First-Order Problem

In order to di scuss the probl em (N) we wil l need some results on stabi l ity

theory which are most clearly illustrated by a class of first-order problems.

The theory discussed in this section is very straightforward and certainly not

new (cf. [17; Chapter 1] or [3; Chapter 4]); however, we have not seen it ex—

pressed before in quite the exact form that we need for our purposes here.

Consider then the singularly perturbed initial value problem

(F) ~z’ = f(z), a < t < b, z(a,c) = ZO~

for finite values of a and b and for small values of c > 0. If the equa—

tlon f(z) = 0 has a solution z=a and if a is stable In a. sense to be

made precise shortly then we anticipate that the problem (F) has a solution

z = z(t,c) such that

(2.1) lim z(t,c)~~o for a < t b.
+£4.0

— - -w - .  — -

‘t. ~~~~~~~~~~~~~~~~~~~~~~~~ - - - 1. - 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ —- — - —



4

(Indeed, if f(z0)= 0 then z(t,c) z0 is itself a solution.) In order

that the limiting relation (2.1) hold it is enough to require that either

a = z0 or (if a~~ z0
)

(2.2) (a - z0)f(x) > 0 for all A in (a,20] or [z0,ó).

This fol lows immediately once we make the change of variable r = (t - a)~~
1 ,

rewrite cZ ’ = f(z) as = f(z), and note that condition (2.2) is just the

condition for z = a to be an asymptotically stable rest point of the t-equation

(cf. [6; Chapter 3]).

Our resul t on (F) is contained in the following lemma.

Lemma 2.1. Assume that the equation f(z) = 0 has a solution z = ~, and
that the function f is continuously differentiable in [a,Z0] U [z0,a]. Then

for all val ues of z0 such that z0 
= a or (if 20 ~ a) (a - z0)f(A) > 0

for all A in (a,z0] or [z0,o) the problem (F) has a solution z = z(t,E)

for each sufficiently small £ > 0. Moreover, for t in [a,b) we have that

z(t,e) = a + wL(t,€)~

where wL(a,c) = z0 
- a and u r n  w1(t,c) 

= 0 for a < t < b.
c40

To illustrate the content of this lemma we discuss briefly some simple

examples.

78 
~~~~~~~~~~~~~~~~~~~~
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Example 2.1. The linear problem £z’ = -kz, t > 0, z(O,€) = 20, for
—l

k a positive constant, has the unique solution z(t,c) = z0e~~
tC ; and so

lim~ z(tc) = 0 for t > 0  (if z0 
= 0 then z(t,c) 0). Here f(z) = -kz

c~O
has the unique zero a = 0 which is certainly stable since for z0 ~ 0,

-z0f(A) = kz0A > 0 for A in (0,z0] or [z0,0).

Example 2.2. A similar result holds for the nonlinear problem cZ’ = —z -

t > 0, z(0,c) = 20. This follows because the only real zero of f(a) = -a -

is a 0 which is stable in the sense that for z0 $ 0, -z0f(A) 
= z0A (l + A

2
)

> 0 for A In (O)z0] or [z0,O). In particular, we note that (z(t,c)(
—1

~~. Iz 0 Ie~~ for t > 0 since —z — z3 = -z(l + z2) > -z(< - z) if z is

negative (positive).

Example 2.3. As our final example we consider the problem cZ’ = z2,

t > 0, z(0,c) = z0. The function f (a )  = a2 has a = 0 as its only zero

and we note that (for z0 < 0) -z0f(A) > 0 if z0 < A < 0 while (for 20 > 0)

- z0f(A) / 0 If 0 < A < z0. Thus Lemma 2.1 is only applicable for 20 ~

In which case we have that z(t,c) + 0 for t > 0 as c ÷ 0+.

if z0 > 0 we expect that this limiting relation will not obtain since if

z(t,c) + 0+ as £ + 0+ then z’(t,c) < 0 for t > 0; however, the equation

Imp lies that z’(t,e) > 0. Indeed the exact solution of this problem is

z(t,c) z0(l — z0tE
1)’. Consequently, for 20 > 0 this function has a

vertical asymptote at t0 = > 0, that is, for fixed c > 0, llm Z(t,e) = 
~~~.t+to

-- 
- 

- 
. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~ T~~~-i~
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A result analogous to Lemma 2.1 is valid if the problem (F) is replaced

by the problem

(G) £2 ’ = f(z), a < t < b, z(b,c) = z1.

This follows after replacing t by a + b - t in (G) and applying Lemma

2.1 to the transformed probl em. We state this result here for future reference.

Lemma 2.2. Assume that the equation f(z) = 0 has a solution z a and

that the function f is continuously differentiable in [a,z1] U [z1 ,a). Then

for all values of z1 such that 21 
= a or (if z1 $ a) (a - z1 )f(A) < 0

for all A in (a,z1] or [z1,a) the problem (G) has a solution z = z(t,c)

for each sufficiently smal l ~ > 0. Moreover, for t in [a,b] we have that

z(t,c) = a + wR(t,c),

where wR(b,c) = 21 
- a and lifli~ WR(t,C) = 0 for a < t < b.

e~0

We note in passing that the more general problem cZ’ f(z c), a < t < b,

z(a,c) = z0(c), must be approached wi th some caution as the followi ng examples I

show. Consider first the problem eZ’ = - ~
2, ~ > 0, z(0,c) = z0. It is

not difficult to see that for all values of z0 < -c the solution z = z(t,c)

of this problem satisfies 1im~ z(t,c) = 0 for t > 0 (cf. Example 2.3).

However the solutions of th: related problem ~~ = z2 + ~
2, ~ > 0, z(O,c)

behave entirely differently in the sense that no matter how .20 is
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chosen the solution z(t,e) has a vertical asymptote at a point t0 
= t0(c)

> 0, that is, lim _ z(t,c) = 
~~~. What is especiall y di sheartening about theset+to

two examples is that although f(z O) = z2 the (formally) small term ~
2 has

an order one effect on the qualitative behavior of solutions.

The results of Lemmas 2.1 and 2.2 have a direct connection with a special

class of Robin problems of the form (N) and this is the content of the next

section.

3. Some Special Problems

We turn now to a discussion of the problem (N) when the right hand side

f has a particularly simple form, namely the problem

cy” f(y’), a < t < b ,

(N1)

p1y(a,c) — p2y’(a,c) = A , q1y(b,c) + q2y’(b,c) 
= B.

Here the constants p1, p2, q1 and q2 are nonnegative with p1 + q1 > 0

and p2 + q2 > 0, and f(z) = O ( J z~~) as I z I  + for n > 2. The results

we obtain for solutions of (N1) wi ll turn out to be characteristic for most

solutions of the general problem (N).

Suppose first that p1 
= 0 and p2 = 1. We consider then the problem

cy” f(y’), a < t < b,

(N2)

—y’(a,c) A , q1y(b,c) + q2y’(b,c) 
= B.

- --—I ~~~ .~~ - ~~~~~~~~~ 
j — —- ~~~~~~~~~~~~ 

— 
— ~~~~~~ 

.--- —
~~
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After setting z = y ’ and disregarding (for the moment) the boundary condi-

tion at t = b we see that the problem (N2) ‘is precisely the initial value

problem (F) of the previous section wi th 20 
= -A. Now solutions of (F)

are described throughout [a ,b] by the stable zeros of the function f wi th

the possible exception of a small neighborhood of the point t = a (cf.

Lemma 2.1). Returning to the problem (N2) we expect that if a stable solution

u of f(u’) = 0 also satisfies the right hand boundary condi tion , that is,

~f q1u(b) + q2u’(b) = B, then the solution of (N2) for small c > 0 is

represented throughout [a,b] by this function u. This leads us to consider

the so-called reduced problem

(RR) f(u’) = 0, a < t < b, q1u(b) + q2u ’(b) = B,

and to seek solutions of (RR) which are stable in the sense described in Lemma

2.1. The solutions of f(u’) = 0 are clearly straight lines of slope a where

f(a) = 0 and therefore the soluti on of (RR) i s u = uR(t) = at + c where

c = q~
1[B - a(q1b + q2)]. (Note that q1 > 0 by our above assump tions since

p1 
= 0.)

We can now state and prove an existence and estimation resul t for the

problem (N2).

Theorem 3.1. Assume that the reduced problem (RR) has a solution u = uR(t)

= aRt + c and that the function f is continuously differentiable in

[aR,_A] U [-A IaR]. Assume also that either °R 
= A 

~~~~~. ~ °R ~ -A)

+ A)f(A) > 0 for all A in (aR,-A) or [_A ,aR). Then there exists an

_ _ _ _ _ _ _ _ _ _ _ _  ~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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> 0 such that the problem (N2) has a unique solution y = y(t,c) whenever

0 < c < c.~. In additi on, for t in [a,b] we have that

y(t,c) = uR(t) + 0(w1(t,c))

(3.1) and

y’(t,c) = a
R 
+

where the function wL is a solution of cw~ = + wL), a < t < b ,

w~(a,c) = —
~~R 

+ A), satisfying 1im~ wL(t,c) = 0 for a < t < b and

lim~ w~(t,c) = 0 for a < t < b.
C9O

Proof. The uniqueness of y follows immediately from the maximum principle

(cf. [16]). To prove the existence of a solution satisfyi ng the limi ting re-

lations (3.1) we assume wi thout loss of generality that aR 
= 0 (and so

uR(t) c = q~~B). If A = 0 then y(t,e) 0 (and wL 0). Thus suppose

that A $ 0. The existence of a function WL wi th the above properties follows

from our stability assumption (cf. Section 2) if c is sufficiently small , say

O < c < £0. In addition , if -A < 0 then w1 > 0 and if —A > U then

wL < 0.

Define now for t in [a,b] and 0 < c <

ci(t ,c) = c + w1(t,e)

If -A >0 ,

C

and 

-~~~~~ ‘ -
. - .— ‘

~

S — .~—‘—- - ‘. ~~~~~~~~~~~~~~~~~ . 
- 

- ~~~~~~~~~
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cz(t,c) c

= 

if -A < 0.

8(t,e) C + W
L
(t,E)

We consider below just the case -A < C s nce the case -A > 0 is handled

similarly. Tt is clear that —a ’(a,c) < A < —
~~~

‘ (a,e), q1cc(b,e) + q
2a

’(b,c)

< B < q18(b,c) + q28’(b,c), and that ca” > f(a’) and €8” < f(B ’) for t

in (a,b) and 0 < c < c
~
. If we could conclude that the problem (N2) had a

solution y = y(t,c) satisfying c i ( t , c )  < y(t,c) < e(t,c) for t in [a,b]

and 0 < c < then the theorem would be proved . However such a conclusion

cannot be drawn immediately here since f(y’) = 0(Iy ’ I ”) as Iy ’ I  ÷ for

n > 2 (cf. [11]). What is required (cf. Heidel ’s theorem in [7] or [9]) is

an a ’priori bound on the derivati ve of any solution y of €y” = f(y’),

a < t < b, satisfying c t ( t ,c)  < y(t,c) <B (t,c). It will turn out (not

surprisingly) that

(3.2) —A < y ’(t,c) < 0 for a < t < b ,

and therefore the conclusion of Theorem 3.1 follows from Heidel ’s theorem.

To verify (3.2) (and at the same time obtain a sharper estimate for y’(t,c))

note first that y’(t,c) < 0 by the maximum principle (cf. [16] or [2; Sec.

2]). In calculati ng a lower bound on y’ we proceed indirectly by noting

that for a 
~~
y < 8, y is a solution of the following Di richlet problem in

(t1,t2) C (a,b)

.— -——— ---—- —--‘. .— -  .‘.- — .. -
~,-

- -——‘ I - — — — - - ‘— — —
—----— -

_ *~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~
‘—
‘.. -- — - — -‘~~-~~~ k~ - . - .-—S--- .-----
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cy ” = f(y ’), t
1 

< t <

(K)

y(t1,c) = c + ri(t1,c), y(t2,c) C +

where the positive function r~ is of order 0(w L (t Ic)) and ~(t1,c) >

Fix t0 in (a ,b] and let t1 
= t0 

- and t2 
= t0 for a small positi ve

constant S.~. Define now for t in [t1,t2] and 0< c

c + n (t2,c) — p (t0 
— t),

81(t,c) = C + ~(t 2,c) + ~(t0 - t),

where ~i 
= p (c) = &~~

1
(~i (t

0 
— 51,c) - ~(t0,c)) is positive and of order

0(w~(t0,c)). Clearly cz
1
(t~~c) < y(t~,c) < 8 1 (t~~e) for j = 1 , 2 and we

just have to show that ca~ ~ f(a~) and c8~ < f(8~)~ that is , f(u~) < 0

< f(~~). However these inequalities follow di rectly from our stability assump-

tion for f(a~) = f(~) < 0 < f(-~) = f(B~) s ince ~i > 0. Therefore the func-

tion y (which is a solution of the problem (K) wi th t1 
= - 6.1 and t2 t0)

satisfies al ~~y ~ 
B
~
, that is, y(t,c) — c1 1 <p( t0 — t) for < t < t0

and c1 
= c + ~(t0,c). We conclude directly that jy’(t~,c)I < p , so that in

particular Iy ’(t0,c)I <~~~ . Thus for each t in (a,b], Iy ’(t,c)I ~~‘(t,c)

where p(t,c) = 0(Iw~(t,c)I). Finally we have that y’(a,c) > —A since

c < y(t,c) < C + W
L(t,C) in [a,b]. This concludes the proof of Theorem 3.1.

-- . ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~__ ~~~~~~ ~~~~~~~~~~~~~~~~~
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We consider now the general problem (N1) under the asstinption that

p1 > 0 and p2 > 0. As with the problem (N2) we assume that the associated

reduced problem 
~~~ 

has a solution u = uR(t). If UR is stable in a sense

analogous to that described in Theorem 3.1 we expect that the problem (N1)

has a solution y = y(t,c) which is close to UR 
in [a,b). The precise

result is the next theorem.

Theorem 3.2. Assume that the reduced problem (RR) has a solution u = uR(t)

= aRt + c and that the function f is continuously differentable in

[aR,p~~
(pluR(a) — A)] ii [p

~
1(pluR(a) — A),aR]. Assume also that either pluR(a)

• 
- 

~2
0R 

= A or (if pluR(a) - p2aR $ A) (pluR(a) - P2aR 
- A)f(A) < 0 for all

A in (aR,p~~
(p luR(a) — A)) or [p

~~
(pluR(a) — A),aR). Then the conclusion

of Theorem 3.1 is valid with the exception that the function WL satisfies

w~(a,c) = p
~
1(pl uR(a) — p2aR 

— A) instead of w~(a,€) = -(ag + A).

Proof. This theorem is proved In exactly the same manner as Theorem 3.1.

After normalizing so that aR = 0 simply define for a < t < b and £ > 0

sufficiently small

cz(t,€) E C

if pluR(a) < A ,

8(t,c) = c + wL(t,c)

and

a(t,c) = C + W
L
(t,C)

if pluR (a) > A,

B(t,E) C

and proceed as before.

—‘ - —-- - -w — -.
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The basic assumption in the two previous theorems was the existence of

a stable solution u of the reduced equation f(u’) = 0 which satisfied the

righthand boundary condition. We could just as well have assumed that u

satisfied the lefthand boundary condition and then proceeded to impose stability

conditions on It so that the result corresponding to Theorem 3.2 was valid

(cf. Lemma 2.2). The appropriate reduced problem is then

(R1) f(u’)=O , a < t b, p1u(a) — p2u ’(a) = A ,

and the next result follows by making the change of variable t + a + b - t

and applyi ng Theorem 3.2 to the transformed problem. (Note that we now require

q1 > 0  and q2 > 0.)

Theorem 3.3. Assume that the reduced problem (R1) has a solution u = uL(t)

4 = a
L
t + c and that the function f is continuously differentiable In

4 [a1,q~
1(B - q1u1(b))3 U [q~~(B 

- q1u~(b))~a1). Assume also that either

q1u~(b) + q2a1 
= B or (if q1u~(b) 4’ q2a~ $ B (q 1u~(b) + q2a~ 

- B)f(A) < 0

for all A in (o~~q~
1(B — q1u1(b))] or [q~

1(B — q1u1(b)),a1). Then there

exists an > 0 such that the problem (N1) with q2 > 0 has a unique solution

y = y(t,c) whenever 0 < c < 
~
0. In addition, for t in [a,b] we have that

y(t,c) = UL(t) +

y’(t,€) = aL + 0(w~(t,c)),

4
• 
— —-

~~~~~~~~~~ 
-

- . •
~ ‘ - 

-—
p 41L. .s. . s _._ 

~~~~~~~~~~~~~~ —
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where the function WR is a solution of £W~ = 

~~°L 
+ wj~)1 a < t < b,

w~(b,e) = q~
1(B - q1u1(b) - q2a1), satisfying lim÷ wR(t,c) = 0 for a < t

e-~O
< b and lim~ w~(t,€) = 0 for a < t < b.

£90

Up to now we have considered how solutions of the problem (N1) can exhi bit

nonuniform behavior at t = a or t = b (that is, boundary layer behavior).

Suppose though that the following situation presents Itself: The reduced

problems (RL) and (RR) have solutions u = uL(t) = aL
t + c and u = uR(t)

= aRt + C (aL $-aR) which intersect at a point t0 In (a,b), that Is,

uL(t0) = uR(to) and u~(t0) $ u~(t0). If these solutions are stable in the

sense that f’(aL) > 0 and f’(aR) < 0 it is reasonable to ask under what

additional conditions there exists a solution y = y(t,€) of the problem (N 1)

which converges to the “angular” path u1(t) defined by u1(t) = uL(t) for

a < t < to and u1(t) uR(t) for t0 < t < b. Indeed, this question was

answered many years ago by Haber and Levinson [5] for the Dirichlet problem

(N) (that is, p1 
= q1 

= 1 and p2 = q2 = 0). Their result for the simpler

Dirichiet problem (N 1) Is that if the corresponding reduced problems (RL) and

(RR) have such stable intersecting solutions u1 and UR 
then the problem

j (N1) has a solution y = y(t,€) for each sufficiently small c > 0 such

that lim , y(t,c) = u1(t) for a < t < b, and
£90

for a < t < t 0,

lim÷ y’(t,c) =c+0
for t0 < t < b,

______________________________ ~~~~~~~ .!. ~
, ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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provided - aL)f(X) > 0 ftr all A in (aL,aR) or (aR,aL).

It is possible to state an analogous result for the Robi n problem (N1)

under the additi onal assumption that p1 > 0 and q1 > 0. This is the content

of the next theorem.

Theorem 3.4. Assume that the reduced problems (RL) ~~~~~~~~ 
(RR) have solutions

u = u1(t) = aLt + C afld U = UR(t) = a
R
t + c’ (a1 $ aR) which intersect at a

• point t0 in (a,b). Assume also that the function f is continuously dif-

ferentiable in [aL,aR] U [aR,aL] and that (aR -a1) f (A )  > 0 for all A in

(aL,aR) or (aRlol). Then there exists an > 0 such that the problem (NT)

wi th p1 > 0 and q1 > 0 has a unique solution y = y(t,€) whenever 0 < c < £0.

In addition, we have that

y(t,c) = u1(t) + 0(~(t,c ) )  for a < t < b,

y’(t,c) = 
°L 

+ 0(w ’(t,c) )  for a t < t0,

and

y’(t,c) = °R 
+ 0(w’(t,€ ) )  for t0 < t < b.

Here the continuous function w Is a solution of

= f(a
1 
+ w’), a < t < t0, w’(t~,c) = 

~~°R 
—

ew” = f(aR + w), t0 < t < b, w’(t~,c) = - aR),

—S — — —-—-—‘ - 
,

. — -
__________________________ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~. ~~.L. 

. 
~~~~~~~ . -

~~~
- ,~~~~ 

.~~~~



16

satisfying lim~ w(t,€) = 0 for a < t < b and 1im~ w’(t,6) = 0 for
£40 £40

a < t  < t o and to < t < b .

Proof. This theorem is proved in essentially the same manner as Theorem

3.1. The bounding functions a and B are defined as follows:

(I) if °L 
< °R then

ct(t,c) = u1(t), a t < b,

and

uL(t) + w(t,c) + p2p~~w’(a,c), a < t < to,
B(t,c) =

- UR(t) + w(t,c) - q2q~
1w’(b,c), to t < b;

(ii) if °L 
> aR then

• 
“ u1(t) + w(t,c) + p1p~~w’(a,€), a < t < to,

a(t,c) =

~
U
R
(t) + w(t,c) - q2qj

1w’(b,c), to < t < b,

B(t,~) = u1(t), a -c ~ < b.

In case (1), for example, EU~ 
= f(u~), cu~ = f(u~) In (a,b) and q1u~(b)

+ q2c1 < B, pluR(a) - P2aR < A , and consequently cs(t,c) = u1(t)

= max{uL(t),uR(t)} Is a lower solution (Cf. [11]). Moreover, with w as

above, 8’(t ,~) 
= 8’(t~,e) 

• + aR) and ce” < f(B’) for t in

• 
‘ 

(a,t0) u (t01b), that Is, B Is an upper solution. Finally it Is easy to see

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~~~T . - -
• 

—
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that y’(t,c) = 01 + 0(w’(t,c)) in [a,t0] and y’(t,c) = °R + 0(w’(t,c))

in [t0,b). Thus the conclusion of the theorem follows from Heidel ’s theorem

[7]. Case (ii) is handled similarly.

Before discussing some examples we make several remarks.

Remark 3.1. If u = u1(t) is a solution of the reduced problem 
~~~

then a necessary condition that UL be stable in the sense described in

• Theorem 3.3 is that f’(a1) > 0. Similarly a solution u = uR(t) of (RR)

can be stable in the sense described in Theorem 3.2 only if 
~~~~ 

~- °•

Reniark 3.2. The boundary layer functions wL and wR have particularly

simple forms if there is a positive constant k such that 
- 

~
‘
~°R~ 

< -k -c 0

and f’(a
1
) > k > 0. It is not difficult to see that in the case of Theorems

- 

13.1 and 3.2 we can set w1(t,c) 
= ck~ ~°R + A)e and w1(t,c)

~ 1= -ck~ p~ (pluR(a) - ~2°R 
- A)e , respectively, for a positive

constant < k. In the case of Theorem 3.3 we can set wR(t,c)

1 1 — k 1 (b—t )c 1
= ck~ q~ (B — q1u1(b) - q2a~)e

j  
Similarly, in the case of Theorem 3.4 if there is a positive constant k

such that f’(a1) > k > 0 and f’(aR) < -k < 0 then the interior layer func-

tion w assumes a simple form. Namely we can set

1 k (t—t )c
1

w(t,c) uL(t) + ~tk~~(aR 
- a1)e 1 - 0

for t in [at0] and

* 

.
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1 1 —k1(t—t )c~w(t,c) = UR(t) + -2tk~ ~°R 

- aL)e 
0

for t in [t0 b].

Remark 3.3. The assumption regarding the positivity of p1 and q1 is

necessary for the validity of Theorem 3.4; cf. Example 3.3 below.

Remark 3.4. There is a connection between the nonoccurrence of boundary
• layer behavior as described by Theorems 3.2 and 3.3 and the occurrence of

interior layer behavior as described by Theorem 3.4. Suppose for simplicity

that p1 = q1 = p2 = q2 = 1 in (N1) and suppose that the reduced problems

and (RR) have stable solutions u = uL(t) = a
L
t + c and u = uR(t)

= ORt + c’ with 01 < 0R~ 
If u1(b) + UI < B and uR(a) - aR < A but

f(B - u1(b)) < 0 and f(uR(a) - A) < 0 then Theorems 3.2 and 3.3 are in-

• appl icable because the required inequaliti es are violated by such A and B.

We claim that if 1u 1(t) — uR(r)I is not too large for ~ = a and t = b

then in fact uL(a) > uR(a) and uL(b) < uR(b), that is, u1 and UR inter-

sect at a point in (a,b). To see this, note first that for w = uR(a) — .

o > f(uR(a) - A) = f(ci1 + w), and so the stability of a1 implies that w < 0

if ~~ is not too large. Similarly, for v = uR(b) - uL(b)~ 
0 > f(B - u1(b))

+ v), and so the stability of 0R implies that v > 0 if Iv~ is not

too large. Thus there is a chance that Theorem 3.4 will apply to the functions

UL and uR if f(A) > 0 for A in (aLIaR). This Inequality is certainly

satisfied If and are adjacent stable zeros of f.

— 
—

— — — - — -  S ~~~ . ~~~4!~~— - -. - -~~-— -
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On, the other hand if 01 > 0R’ u1(b) + 0L > B, f(B - uL(b)) > 0,

uR(a) - > A and f(uR(a) - A) > 0 then it follows as before that

uL(a) < uR(a) and uL(b) > uR(b). Consequently u1 and U
R In tersect In

(a,b) and we are led again to consider the possibility of a crossing as de-

• scribed by Theorem 3.4.

We turn now to a discussion of several examples which i l l ustrate the

theory of this section.

Example 3.1. Consider first the problem (cf. Example 2.2)

O < t < 1 , 
5-

-

(El) 
• 

-

py(O,c) — y’(O,c) = A , y(1,c) = B,

for p > 0. The reduced equation f(a) = -a - a3 = 0 has a = 0 as its only

real solution and since f’(o) = -l we make the corresponding reduced solution

u satisfy u(l) = B (cf. Remark 3.1), that is , we consider u = uR(t) B.

Suppose first that p = 0. If A = 0 then y(t,c) B is the solution of

(El); however, if A $ 0 then Af(A) = -AA (l + A 2) > 0 for A in (0,-A]

or [-A ,0). Consequently we deduce from Theorem 3.1 that for all A the

problem (El) has a unique solution y = y(t,c) such that y(t,c) = B

—l
+ O(eIAIe ts ) in [0,1]. Finally if p > 0 then for A = pB y(t,e) B Is

the solution of (El); while if A $ pB then (pB - A)f(A) = -A(pB - A)(1 + A 2)

< 0 for A in (0,pB - A) or [pB - A,O). Thus by Theorem 3.2 the problem
(El) has a unique solution y — y(t,c) for all A and B such that y(t,c)

B + O(cIpB - A Ie
_tt ) in [0,1].

— ________________________
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We note that the DirichIet problem (cf. [1], [4]) cy” = -y’. - y’3, 0 < t

< 1, y(0,c) = A, y(1,c) = B, has no solution if A $ B and £ > 0 is suf-

ficiently small.

Example 3.2. Consider next the problem

= y’ - y’3, 0 < t < 1,

• (E2)

y(0,c) — y’(O,c) = A , y(1,c) + y’(l ,c) = B.

The reduced equation f(u’) = u ’ - u’3 = 0 has now three solutions Uj = 1 ,

u~ = -1 and u~ = 0 which are such that f’(±l) = -2 and f’(O) = 1. Thus

we make u1 and u2 satisfy u~(l) + uj(l) = B for j = 1 , 2, that is,

u1(t) = t + B - 2 and u2(t) = -t + B + 2, and we make U
3 

satisfy u3(0)

- u~(O) = A , that is, u3(t) A. Consider first U1. If A B — 3 then

u1(0) - uj(0) 
= A and so y(t,c) = t + B — 2 is the solution of (E2). How-

ever if A < B - 3 then (u1(0) - 1 - A)f(A) = (B - 3 - A)A(l - A 2) < 0 for

A in (1,8 - 2 - A] and so we apply Theorem 3.2 to deduce that the problem

(E2) has a unique solution y = y(t,c) such that y(t,c) = u1(t)

+ O(~c(B - 3 — A)e_2t€ 
1
) in [0,1]. Finally if A B - 3 we have that

(B- 3 -A)A(l - x 2)< 0 for A in [B - 2 - A ,1) provided that B - 2 - A > 0 .

Again from Theorem 3.2 we deduce the existence of a unique solution y = y(t,c)

of (E2) (with B - 3 < A < B - 2) such that In [0,1], y(t,c) — u1(t)

+ O(k~ c I B - 3 - Ale 1 
~ 

for a positive constant k1 < 2.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-F.’ — 

•, ~~~~~~~~~~~~~~~~~~~~ ~— ~~~~~~~~~~~~~~~~~~~~~~~ 

—•--- 
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The asymptotic behavior described by the function u2 is clearly a re- 
S

flection of that described by u1. Therefore if B + 3 < A the problem (E2)

has a unique solution y = y(t,c) such that y(t,c) = u2(t)
—1

+ O(J�tIB + 3 - A Ie _2tc ) in [0,1]. While if B + 2 < A < B + 3 the solution

—k tc~y(t,c) satisfies y(t,c) = u2(t) + O(k~
1c(B + 3 — A)e ~ ) in [0,1] for

a positive constant k1 < 2.

Next consider the function u3 A. If A = B then y(t,c) A Is the

solution of (E2), whi’e if A < B(A - B)f(A) = (A — B)x(l — A
2

) < 0 for A

in (0,B - A] if B - A < 1 , and if A > B(A - B)f(x) < 0 for A in

[B - A ,O) if B - A > -1. Thus for B - 1 < A < B + 1 we deduce from Theorem

3.3 the existence of a unique solution y = y(t,c) of (E2) such that in [0,1]

1 —k (l—t)c 1
y(t,c) — O(k~ cIB — A le 1 ) for posltve constant k1 < 1.

Note that we have proved the existence of a solution of (E2) for all

boundary values A and B except those satisfying the inequalities B - 2

< A < B - 1 and B + 1 < A < B + 2. These are precisely th~ boundary values

for which the boundary layer behavior described by Theorems 3.2 and 3.3 is

impossible. Thus (cf. Remark 3.4) we are led to consider the “angular” paths

0 -c t -c t0, u3(t), 0 < t

u4(t) = and u5(t) —

u1(t), t0 - c t c l , u2(t), ~0 < t < 1 .

It follows directly that t0 belongs to (0,1) if and only if B - 2 -c A -c B - 1

while 1~ belongs to (0,1) if a-nd only if B + 1 -c A c B + 2. Consider first

___________ S -- - ~~~~-~~~~~~~-.~~--—----- - —- -~~~~~- 
.,_ 

— _:___ • -•-S•I• ,~~-~-~~~~~~~~ S~~~~~~~~.% &- - . ~~~~ -S—a—- -- -~~~~~
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u4. For 01 
= 0 and °R 

= 1 we see that (OR 
- a1)f(A) 

= A(l - A 2) > 0

for A in (0,1) and so Theorem 4.1 allows us to deduce the existence of

a solution y = y(t,c) of (E2) for B - 2 < A < B - 1 such that in [0,l]y(t,c)
—k It— t (c

1

u4(t) + O(~k~~ce 
1 0 

~ with 0 < k1 < 1. Similarly In the case of u5,

for = 0 and 0R = -l we see that (aR 
- oL)f(A ) = - A( l  - A

2
) > 0 for A

in (-1,0) and so the problem (E2) for B + 1 < A < B + 2 has a solution

-k It-~ l € ~’
y = y(t,c) such that in [0,1]y(t,c) u5(t) + O(~k~~ce 

1 0

Finally if A = B - 2 then it is easy to show that (E2) has a solution

y = y(t,c) such that y(t,c) ÷ t + B - 2 as c ÷ 0~ (as expected). Similarly

If A = B - 1 or A = B + 1 a solution y exists and satisfies y(t,c) -‘ 0

as c + O , while if A = B + 2  then y(t,c )÷-t + B + 2  as ~ ÷ot The

convergence is of course uniform In [0,1] for these choi ces of A and B.

Example 3.3. In this final example we illustra te the remark that Theorem

3.4 is not necessarily valid If either p1 
= 0 or q1 

= 0. The problem is

(E3) cy” = 1 — y’4, 0 t -c 1, —y’(O) = 1 , y(l) = 0,

which has the unique solution y(t,c) 1 - t for all c. Consider however

the “angular” path defined by u1(t) = u1(t) = -t for 0 < t <~~~ and

u1(t) — uR(t) = t — 1 for -
~~
- <  t < 1. The functions uL and UR are stable

in the sense that f’(uL) = 4 > 0 and f’(u~) = -4 < 0; moreover, (OR - a1)f(A)

— 2(1 - A4) > 0 for (A ( -c 1. Nevertheless there is no solution of (E3) which

Is close to u1(t) in [0,1].

- ~~. 
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~.. -~ - 
T ’

~~~~~~I! ~~~~ - 
— 
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4. The General Problem

In this section we discuss several results for the general problem

cy” = f(t,y,,y’), a < t < b ,

(N)

p1y(a,c) — p2y ’(a ,c) = A , q1y(b,c) + q2y’(b,c) = B,

for constants p1, p2, q1 and q2 with the same properties as in Section 3.

The function f is assumed to be at least continuous for all t in [a,b]

and for all values of y and y’ under consideration; moreover, for (t,y)

in compact subsets of [a,b] xR , f(t,y,y’) = o( ly ’l ’~) as fy ’l ÷ for

n > 2. Recalling our results in Section 3 we now define certain reduced problems

whose solutions we will use to study the existence and the asymptotic behavior of

solutions of (N), namely -

f(t,u,u’) = 0, a < t < t1 < b,

p1u (a) 
- p2u~~~) = A ,

f(t,u,u’) = 0, a < tR -c t c b,

(RR)

q1u(b) + q2u’(b) = B,

and 

- 

~~~~~~~~~~~~~~~~~ 

~~~~~~ ‘: 
- 

:~~~
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(R) f(t,u,u’) = 0, a < t < b.

Solutions of 
~~~ 

(RR) and (R) will be denoted by u1, UR and u1 respectively.

Our experience wi th the simp ler problem (w 1) leads us to consider only

solutions of these reduced problems which are stable in senses to be stated

shortly. First we need to define some regions in (t,y,y’)-space. Let solutions

U = uR(t) and u = uL(t) of (RR) and (R1) exist in [a,b] and let WR 
= pl uR(a)

- p2u~(a) and W
I 

= q1u~(b) + q2u~(b). Then we define the domains O(uR) and

V(u1) as follows: (Here and below 6, 6
~
, 62 etc. denote small positi ve

constants.)

V(uR) = {(t,y,y’):a < t < b ,(y - uR(t)I < 6~,~y ’ - u~(t)( < dR(t)}

where dR is a smooth positive function such that if p2 > 0 then

P~~I A _ w R l IdR(t)1P 2 I A _ W R I + 6 2 for a < t < a + o / 2  and

for a + 6 < t < b, while if p2 = 0 then dR(t) < in [a ,b];

-V (u1) = {(t,y,y’):a < t < b ,Iy - uL(t)l < o3,~y’ - u~(t)f < dL(t)}

where dL Is a smooth positi ve function such that If q2 > 0 then

q~~ B - < dL(t) < q~
1
IB - w11 + 6

4 
for b - 6/2 < t < b and d1(t)

< 64 for a < t < b - 6, while if q2 
= 0 then d1(t) < 64 in [a b].

- - -,--- ~~ •- - ---~~ — - - — • .- - • --- --- , • - S.- - 
- --- —

- ~~~~~~~. - -~~~~~~~ S - - . - 
~~~~~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~
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Suppose next that u = u 1(t) is a solution of the reduced equation

(R) in [a,b]. Then we define the domain 0(u1) as 0(u1) = 0(u1)

fl V (u~) where in the domains 0(u1) and V(uR) just defined u1 and

U
R 

are replaced by u1.

We wil l also consider solution paths of the form

u1(t), a < t < t0(< t1),

u1 (-t) 
= (if t1 > t

R)

uR(t), (tR <)t0 < t < b,

u1(t), a < t < t1,

u2(t) = u
1
(t), t1 < t <

UR(t), :t2 <
‘:t < b

u1(t), a < t < t 2,

u3(t) —

uR(t) t2 < t < b ,

and

uL(t), a < t < t1,

u4(t)

u1(t), t1 -c ~ < b,

— 
-S •— 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~ 
—a. .

~ ~~~~~~~~~~~~ 
-
~~ —
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and so we define the following domains:

0(u1) = {(t,y,y’):a < t < b,~y - u1(t)l < 61,Iy ’ — u~(t)l -c d1(t)}

where d1 is a smooth positive function such that lu~(t0) - u~(t0)( < d 1(t)

- u~(t0)( + 62 for t0 - 6/2 < t -c t0 + 6/2 and d1(t) < 6~ for

t in [a,t0 
- o] U [t0 +

0(u2) = {(t,y,y’):a < t < b ,(y - u2(t)l < 63,fy ’ - u~(t)( < d2(t)}

where d2 is a smooth positive function such that (u~(t1) — uj(t1)( < d 2(t)

~ lu~(t~) 
- u~(t1 )l + 6

4 
for t1 

- 6/2 < t < t1 + o/2, 1u (t2) - u~(t2)(

< d~(t) < uj(t2) 
- u~(t2)f + 64 for t2 - 6/2 ~ t ~ t2 + 6/2 and d2(t)

64 
for t in [a,t1 — 6] U [t~ + 6,t~ — 6] U [t2 +

0(u3) = {(t,y,y’):a < t <  b,(y - u3(t)( < 6 5,~y’ - u~(t)I < d 3(t)}

where d3 is a smooth positive function such that Iu~(t2) 
- u~(t2)l < d 3(t)

< (u~(t2) - u~(t2)( + 66 for t2 
- 6/2 < t < t2 + o/2, d3(t) < 66 

for t

in [a + o,t2 
- 6] ii [-t2 + 6,b], and d3(t) = dR(t) for t in [a,a + 6/2]

with uR replaced by U
1
;

0(u4) = {(t,y,y’):a < t < b,~y - u4(t)l ~~. 67,Iy’ - u4(t)I < d4(t)}

where d4 Is a smooth positive function such that Iu~(t1) 
- u~(t1)I < d 4(t)

- _ _ _ _ _  
, . TT-~
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~~. lu~(t1) - uj(t1)I + 68 for t1 - o/2 ~ t ~ 
t1 + o/2 d4(t) ~ 

for t

in [a,t1 - 6] U (t1 + 6,b — 6], and d4(t) = dL(t) for t in [b - 6/2,b]

with u1 replaced by U 1.

Finally if u is any one of the solutions or solution paths defined

above then we define the domain 06(u) as

06(u) = {(t,y,y’):a < t < b,(y — u(t)J < &,(y’ — u’(t)J -c 6).

We now define the various types of stability which solutiuii: of the reduced

problems can possess. In what follows the function f is assumed to be con-

tInuously differenti able wi th respect to y and y ’ in the appropriate

dome in.

Definition 4.1. A solution u = uR(t) of (RR) which exists in [a,b)

$ Is said to be strongly (weakly) y’-stable if there is a positive constant

k such that f~ 1— k < 0 (fy ~o) i~. 
06 (u~) .

Definiti on 4.2. A solution u = u1(t) of (R1) which exists in ta b]

is said to be strongly (weakly) y’-stable If there is a positive constant

k such that f~ ~ k > 0 (fy ~~. 0) i~. 
V6(u1).

• DefinitIon 4.3. A solution u = u1(t) of (R) which exists in [a,b)

is said to be locally strongly (weakly) y’-stable if there isa positive

constant k such that fyi ~ -k -c 0 (f~, ~~. 
0) fl ~. 

06(u1) fl [a,a + 6] ii
pluI(a) - ~2u~(~~ $ A wi th p2 >0 !~~. 

fyi 1k >0 (fy~ ~ O) ill. 06 (u 1 )

fl lb - 6,b] if q1u1(b) + q2u~(b) $ B with q2 > 0.

~~-ç-~~;-~~~ --
~~~~~~~~~~~~~~~~~~~~~~ •à_ , S~~ - - ~~~S. - ~~~d.L . • . ~~~~~~~~~~~~~~~~~~~ . •
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Definition 4.4. A solution path u = u1(t) with u~(t0)$ u~(t0) Is

said to be strongly (weakly) y’-stable if there is a positive constant k

such that fy i ~ k > 0 (f y i 
~ 
0) 1~ V6

(u 1) fl [a,t0] ~~ 
fy~ ~ -k -c 0

(1~y i < 0) in 06(u 1 ) fl [ t0,b].

Definition 4.5. A solution path u = u2( t )  with u~(t1) $ u~(t 1 ) and/ or

u~(t 2) $ u~(t2) is said to be strongly (weakly) y ’-stable if there is a

positive constant k such that f~ ~ 
k > 0 (f y i > 0) in 06 (u 2) (1 [t1 — 6,t1]

!!! ~. 
l~y i ~ -k < 0 (fy i < 0) in 06 (u 2) (1 [t1 ,t1 + 6] and/or f~1 > k > 0

(fyi ~~ . 0) iii 06 (u 2) n [t2 - o,t
2] ~ii~ 

fy i ~ -k < 0 (fy i ~ 0) .t~. 
06(u2 ) -

n [t~,t2 + o].

Definition 4.6. A solution path u = u3(t) is said to be locally strongly

(weakly) y’-stable if there Is a positive constant k such that fy i ~ -k < 0

(f~ < 0) in V6 (u 3) fl [a ,a + 6]; moreover, if u~(t2) $ u~(t2) then we re-

quire also that f~ > k > 0 (f
f1 > 0) In V6 (u 3 ) fl [t~ - 6,t2] and ~~

— k -c 0 (f
f1 < 0) in 06 (u 3) (1 [t2,t2 + 6].

Definition 4.7. A solution path u = u4(t) is said to be locally strongly

(weakly) y’-stable if there is a positive constant k such that f~ > k > 0

(f
r. 

> 0) in 06(u4) fl lb - .5,b]; moreover if u1 (t1) $ uj(t1) then we re-

quire also that f~1 > k > 0 (f
r. 

> o~ in D6(u4) fl [ t1 - 6,t1 ] and f~1

0 (f ~ < 0) in 06 (u4) fl [ t 1,t1 + 6].

The final defini tion of stability we will need involves the partial

derivative f~ and for this reason will be termed y-stability in conformity

with the previous definitions of y’-stability which involve f
r
,. More

5

__ _ _ 

:~~~ -~- :~~J -- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
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general defini tions of y-stabllity are often needed and the reader can con-

sult [8] or [9] for such definitions.

Definition 4.8. A solution or solution path u = u(t) is said to be

y-stable if there is a positive constant m such that f~ > m > 0 in 06(u)
() {yi ,y i = u’(t)).

Using these definitions of stability we can begin our study of the non-

linear problem (N). In the theorems below we assume wi thout stating so each

time that the function f is continuous in (t,y,yi) and continuously dif-

ferentiable in y and y’ for all values of t, y, y’ in the domain 0(u)

where u ~s the reduced solution under consideration. Moreover, we tacitly

assume that a solution of a reduced problem (R1) , (RR) or (R) i s of class

in Its interval of existence. (With regard to the iiangular ii path u1 and pos-

sibly u2, u3 and u4 - we assume that the functIons uL, uR and U
1 

which

comprise these paths are of class C~
2
~ in their respective intervals of

existence.)

Our first result is the analog of Theorem 3.2 of the previous section and
IS 

so we assume that p2 > 0.

Theorem 4.1. Assume that the reduced problem 
~~~ 

has a solut ion u = uR(t)

which exists in [a,b] and which Is strongly or weakly y i ..stable and y-

stable. Assume also that either pluR(a) — p2u~(a) = A or (if pluR(a)

— p2u~(a) $ A) (pluR(a) - p2u~(a) - A)f(a ,uR (a) ,A) < 0 for all A in

(u~(a),p~
1 (p1u~(a) - A)] or [p

~~
(pluR(a) - A) ,u~(a)). Then there exists an

CO > 0 such that the problem (N) with p2 > 0 has a solution y — y(t,c)

- - - .  __ T
~~~~~ S~~~~~ ‘—i-~~’~~~ ~~~~~~~~~~~~~~~ 

i._
~~
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whenever 0 < c < c~ . In addition , for t in [a,b] we have that

y(t,c) = uR(t) + 0(w1(t,c)) + O(c)

and

y’(t,c) = u~(t) + 0(wL (t,c)) + 0(c),

where WL satisfies wL (a,E) = p
~~
(pluR (a) - p2u~(a) - A) , lim~ wL(t,c) =

for a ~~ t < b and lirn~ w~(t,c) = 0 for a < t < b..
c-’O

Proof. Despite the general nature of the function f the proof of this

theorem is essentially a repetition of the proof of Theorem 3.1. Suppose for

defini teness that pluR (a) - p2uj~(a) 
< A and define for a < t < b and

0 < £ 
~~

= uR(t) — Cym
1, 

-

B(t ,c) = UR(t) + W1(t ,c) +

where y > 0 is a constant to be determined momentarily and the function WI > 0

has the above properties for 0 < e < c~ . Clearly p1a(a,c) - p2a’(a,c) < A

~ p~8(a c) - p2B’(a,c) and q1a(b,c) + q2a’(b,c) < B < q18(b,c) + q2B ’(b ,c)

by our choice of w1. It is just as easy to see that c& > f(t,a,a’) and

eB” < f(t,B,B’) in (a,b) if y is chosen properly. Since f(t,a,a ’)
= f(t,uR,u~

) + {f(t,a,u~) - f(t ,uR,u~)} + {f(t,a,a ’) - f (t ,a,u~) we have

first that - ,



- f(t,~,~’) = cu~ - f(t uR,u~
) + ~~~~~~~~~~~~ 
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> -cM + c y > 0  if ~~~M maxIuj~I.

(Here 
~l 

= UR + 0(c) is the appropriate intermediate point.) Secondly

- c~~
’ = f(t,u~,u~) + f~(t~~2 u~)[w1+ cym~~]

+ {f(t,8,~’) — f(t,~,u~)} — £U~ — cW j .

By the stability assumptions of the theorem the quanti ty {.}_cWj Is non-

negative in [a,a + o) and of order o(v(t,c)) in [a + 6,b) for v(t,c)

= max{c,w1(t,c)} wi th t in [a + 6,b]. Therefore f(t,8,B ’) — cB ” > 0  in

(a,b ) for y > H.
The final step in the proof consists in establishing a bound on yi(t,c)

for a solution of cy” = f(t,y,y’) satisfying ct < y  < ~. However it follows

directly that y’(t,c) = u~(t) + 0(w~(t ,c) )  + 0(c) by arguing as in the proof

of Theorem 3.1 and using the y’- and y-stability of UR. For example, if

uR(t) - -tc - M (t0 
- t) with I > 0 and p > 0 then

f(t a1~aj )  = f(t,uR,u~
) - f~(t~~~LQ[tc + p (t0 - t)] + f~~i(t~a1~~ 2

)~ < 0

since f~ > 0 and fyi ~ 0 for UR + 0(e) and = u~ +

Thus Theorem 4.1 follows from Heidel ’s theorem [7].

1 1

-- :-~~i ~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , -
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The result corresponding to Theorem 4.1 for the reduced solution

u = u1(t) (wi th q2 > 0) follows now by making the change Of variable

t ÷ a + b - t and applying Theorem 4.1 to the transformed problem, namely

Theorem 4.2. Assume that the reduced problem (R1
) has a solution

u = u1(t) which exists in [a,b] and which is strongly or weakly y’—stable

and y—stable . Assume also that either q1u1(b) + q2u~(b) 
= B or (if

q1u1(b) + q2u~
(b ) $ B) (q1u1(b) + q2u~(b) — B)f(b ,u1(b) ,A ) < 0 for all A

in (u~(b),q~~(B - q1u1(b))J or [q~
1(B — q1u1(b)),u~(b)). Then there exists

an £0 > 0 such that the problem (N) wi th q2 > 0 has a solution y = y(t,e)

whenever 0 < c < C~~. In addition, for t in la b] we have that

y(t,c) = u1(t) + 0(wR(t,e)) + 0(c)

• and

y’(t,c) = uL(t) + 0(w~(t,c)) + 0(c),

where WR satisfies w~(b,c) = q~
1 (B - q1u~(b) - q2u~(b)), lim~ wR(t,c) = 0

ciO

for a < t < b and lim ÷ w~(t,c) = 0 for a < t < b.

It is often the case wi th the nonlinear problems under consideration here

that the reduced equation has solutions u = u1(t) which cannot be made to

satisfy either boundary condition. However if u1 Is locally y’—stable

and y—stable then it is not Unreasonable to expect that the problem (N) with

> 0 and q2 > 0 has a solution y = y(t,e) which is approximated by u1

In [a b). This follows because the nonuniform behavior of y’ is confi ned

to small neighborhoods of t = a and/or t — b where we have y’-stability

iT~ ~~~~~~~~~~~~~~~~~~ ~~~~ - -  
— —w -

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________
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and because the y-stability of UI is global . These heuri stic ideas are

made precise In the next theorem whi ch can be v iewed as a combination of

Theorems 4.1 and 4.2; its proof is omitted.

Theorem 4.3. Assume that the reduced equation (R) has a solution u = uI(t)

which is locally strongly or weakly y i _stable arvj y-stable. Assume also that

p1u1 (a) — p2uj(a) = A or (p1u1 (a) — p2uj(a) — A)f(a,u1(a),A) < 0 for all A

In (u~(a),p~~(p1u1 (a) - A)] or [p~~(p1u1 (a) — A ) u~(a)) and that q1u1(b)

+ q2u~(b ) = B or (q1u1(b) + q2u~(b ) - B) f(b,uI(b) ,A ) < 0 for all A in

(u (b) ,q~~(B — q1u1(b))) or [q~
1(B - q1u1(b)),u~(b)). Then there ex i sts an

> 0 such that the problem (N) wi th p2 > 0 and q2 > 0 has a solution

y = y(t,c) whenever 0 < c < c~ . In addition, for t in [a,b] we have that

y(t,c) = u 1(t) + 0(WL(t,c)) + 0(wR(t ,c)) + 0(c)

and

y’(t,c) = u~(t) + 0(w~(t,c) )  + 0(w~(t,c)) + 0(c),

where wL(wR) has the properties given in the conclusion of Theorem 4.1 (Theorem

4.2) with uR(uL) replaced by u1.

We consider next the situation in which the reduced problems (R1
) and

(RR) have solutions UL and uR which intersect at a point t0 in (a,b).

later (cf. Remark 4.4) we will see that such behavior is related to the non-

occurrence of the type of boundary layer behavior described in Theorems 4.1

and 4.2. Recalling Theorem 3.4 we are led to the following theorem.

-_ - _—. , 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ S-s-. — ~~~~~~~~ ~ S_;~~~~~~~ ;_~~~~~

-
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Theorem 4.4. Assume that the reduced problems (RL
) and (RR ) have

solutions u- = u1(t) and u = uR(t) in [a,t1) and - (tR,b) respectively

with ti > tR such that UL(tO
) = uR(tO) = c 

~~ 
0L = uL(t O ) $ u~(t0) =

at a point t0 la (tR,tL). Assume also that the path u = u1 (t) is strongly

or weakly y’-stabl e and y-stable and that (OR 
- OL)f(to,c

,A ) > 0 for all

A 
~~~~~ ~°L’°R~ ~~ 

(0R~
0L). Then there exists an £0 > 0 such that the

prob lem (N) has a solution y = y(t,c) whenever 0 < c < £0• In addi tion, we

have that

y(t,c) = u1(t) + 0(w(t,c)) + O(~) for a < t < b ,

y’(t,c) = u~ ( t )  + 0(w’(t,c)) + 0(c) for a < t <

and

y’(t,c) = u~(t) + 0(w’(t,c)) + 0(c) for t0 < t < b ,

where the continuous function w satisfies w’(t~,c) = 
~
(aR - 0

1
) ,  wi(t~,c)

- OR
) lim~ w(t,c) = 0 for a < t < b and lim~ w’(t,e) = 0 for

c+O c4-O

a < t c t 0 and t0
< t c b .

Proof. Define for a < t < b and 0 < £ < CO

ci(t,c) = u1(t) — cym 1 
1

f f 01 -c aR

B(t ,e) u1(t) + w(t,e) + cym
1

- ~~~ •__~~~ - -  
—

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
-

~~ -- • , • , -



35

and

a(t,c) = u1 (t) + w(t,c) 
-

~ 0L >

~(t,c) = u1(t) + eym 1

where w has the above properties for 0 < £ < £0. Then one ver if ies eas ily

that each of the inequalities of Heidel ’s theorem is valid. To obtain a bound

on y’(t,c) we estimate y’(t ,c) in [t0,b] as in Theorem 4.1 and y’(t~,c)

in [at0] using the y’- and y—stability of uR and u1 respectively. -

Suppose now that the reduced problems (R1) , (R) and (RR ) have solutions

u = u1(t), u = u1 (t) and u = uR(t) such that uL(tl ) = u1(t1 ) and uI(t2)

= uR(t2) at distinct points t1 and t2 in (a ,b) wi th t1 < tL and

tR -c t2. If uL (ti) = u~(t 1) and uj(t2) u~(t2) it is clear (cf. the proof

of Theorem 4.4) that if the path u = u2(t) is y-stable then the problem (N) 
- •

has a solution y = y(t,c) for 0 < c < such that y(t,c) = u2(t) + 0(c)

and y’(t,c) = u~(t) + O(c) for a < t < b. However if u~(t1) $ uj(t1
) and/or

uj(t2) $ u~(t2) then we have the situation 
described in Theorem 4.4 at t = t1

and/or t = t2. The proof of the following result can be patterned after the

proof of Theorem 4.4.

Theorem 4.5. Assume that the reduced problems (RL ) , (R) and (RR) have

solutions u = u1(t), u = u1 (t) and u — uR(t) such that u1(t 1 ) = u1(t1) = C1,

uI(t2) = uR(t2) = c2 01 
= u~(t1) $ uj(t1) — 

~~~~ 

and/or 
~2 

= u~(t2) $ u1~(t2) = p2.

Assume also that the path u = u2(t) is strongly or weakly y’—stable !~~ Y-

stable, and that (p
1 

— o1 )f( t1,c1,A) > 0 for all A in (o1,p 1
) or

(~1,a1) (i!~ 01 $ 
~1
) and/or - a2)f(t2,c2,A) > 0 for all A in

S • •
. 

-

~~~~

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(a2,~2) ~~~~~. 
(
~2~°2~ 

(1!. 02 $ Then there exists an £0 > 0 such

that the problem (N) has a soluti on y = y(t,c) whenever 0 < c < £ 0. In
addition , we have that

y( t ,c) = u2( t )  + 0(w1(t,c) )  + 0(W
2( t ,c) )  + 0(c) for a < t <

y’(t,c) = u~(t) + 0(w~(t~c)) + 0(c) for a < t < t1,

y’(t,e) = uj(t) + 0(w~(t~c)) + 0(w~(t ,c)) + 0(c) 12L t1 < t < t2,

y’ (t,c) = u4(t) + 0(w~(t,c)) + O(~) for t2 < t < b.

Here w
1 

(j = 1 , 2) are continuous functions satisfying wi (t ,c) = U
j  

-

w’(t~,c) = ~~~ - p . ) ,  lim~ w.( t,c) 0 for a < t < b and lim~ ~~(t,c) = 0j 
~ ‘~ ~I c-+O ~ 

— 

£40 ~~~~

for a < t <  t~ and t~ < t < b .

We consider finally the case in which the reduced equation (R) has a

sol ution u = u
~
(t) which intersects a solution UR of (R R ) or a solu tion

u1 of (RI) at a point in (tR,b) or (a ,tL). The following results can be

proved by combining the arguments for proving the boundary and Interior

layer theorems above.
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Theorem 4.6. Assume that the reduced problems (R) and (RR) have solutions

u = u1(t) and u = uR(t) such that u1(t2) = uR(t2) = c2 at a point t2 in

(tR,b). Assume also that the path u = u3(t) is locally strongly or weakly

y’-stable and y-stable and that either p1u1(a) - p2uj(a) = A or (if

p1u1(a) — p2uj(a) $ A) (p1u1(a) — p2uj(a) — A)f(a,uI(a),A) 
< 0 for all A in

(uj(a) p~
1(p 1u~(a) - A)] or [p~

1(p1u1(a) - A)u ~(a)). Assume finally that

j~ = u~(t2) $ u4(t2) = p
2 then 

~ 2 — o2)f(t2,c2,A ) > 0 for A In

(o2,p2
) or (~2, a2 ) .  Then there exists an £0 > 0 such that the problem (N)

with p2 > 0 has a solution y = y(t,c) whenever 0< £ < C 0. In addition,

we have that --

y(t,c) = u3(t) + O(w1(t,c) )  + O(w2(t,c)) + 0(c) for a < t < b,

y’(t,c) = uj(t) + O(wL(t,c)) + 0(w~(t,c)) + O(c) for a ~~. t ~~~ t2,

and

y’(t,c) = u~(t) + 0(w~(t,c)) + O(c) for t2 < t -c b .

Here w2(w1) has the properties given in the conclusion of Theorem 4.5

(Theorem 4.1 with u,, replaced by u1).

Theorem 4.7. Assume that the reduced problems (RI) and (R) have solutions

u = u1(t) ~~ u = uI(t) such that uL(tl) = u
~
(ti) = c1 at a point t1 in

(a,~~). Assume also that the path u — u4(t) is locally strongly or weakly

yi _ - 

~~~~~~~ 
y—stable and that either q1u~(b) + q2u~(b) = B or (if

q1u1(b) + q2u~(b) $ B) (q1u1(b) + q2u~(b) — B)f(b,u1(b),A) c 0 for all A in

(u~(b),q~~(B — q1u1(b))] ~~ [q~~(B — q1u1(b)),u~(b)). Assume finally that If

01 — u~(t1) $ u~(t1) = p
1 

then (p
1 

- o1)f (t 1,c 1, A)  > 0 for all A in

-

- 

5 ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ _. - 

- 
~~~~ 

~~~~~~~~~~~~~
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or (~1,u 1). Then there exists an > 0 such that the problem

(N) with q2 > 0 has a solution y = y(t,c) whenever 0 < £ < t~~. In

addition, we have that

y(t,c) = u4(t) + 0(w1(t,c)) + 0(wR(t,c)) + 0(c) for a < t < b,

y’(t,c) = u~(t) + 0(w~(t~c)) + 0(c) for a < t t1,

yi(t,c) = u~(t) + 0(w~(t~c)) + 0(w~(t,c)) + 0(c) for t1 < t b. 
-

We close this section with several remarks.

Remark 4.1. The boundary layer functions w1 and wR assume particularly

simple forms if uR and u1 (or u
~
) respectively are strongly (or locally

strongly) yi _stabie. Namely we can set w1(t,c) 
= — k~~p~~c(p 1u(a) - p2u i(a)

— k (t—a)c
1

- A)e 1 for u = or U1 and wR(t,c) = k q ~~c(q1~(b)

— k 1 (b—t)c~~
+ q2?P(b) 

- B)e for ~i u1 or 
~~ 

where k1 is a positive

constant, k1 < k.

Similarly, the interior layer functions w, w1 and w2 are of exponential

type if the reduced paths are strongly y’-stable. For example , in the case of

1 1 k1(t—t )~~
l

Theorem 4.4 we can define w as w(t,c) — -~k~ c (0
R 

- a1)e 
0 for

-i i 
- — k (t—t )e 1

a < t -c t
0 

and w(t,c) = -~k~ c(oR 
- o1

)e 1 0 for t0 c t c b, where

0 -c k1 k (cf. [17, [13)).

—— —~~ 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - ~~~~~~~~~~~~~~~~~~~~~~~ 

-— --~~~~~~~
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Remark 4.2. The y-stability of the various reduced solutions u implies

that the solutions of (N) described above are locally uni que in the sense that

for each choice of u there is only one solution y of (N) satisfying

lim+ y(t,c) = u(t) in [a,b]. However, for a gi ven pair of boundary values
c~O

A and B the problem (N) may have more than one solution for all values of

c > 0 sufficiently small; c-f. Example 6.3 below.

Remark 4.3. We note that it was not necessary to assume that p1 > 0

and q1 > 0 in the statement of Theorem 4.4 whereas these restrictions were

required for the validity of Theorem 3.4. This is due to the fact that the

path U
1 

is assumed to be y—stable in [a,b].

Remark 4.4. There is also a connection between the occurrence of interior

layer behavior and the nonoccurrence of boundary layer behavior for solutions

of the general problem (N) (cf. Remark 3.4). Suppose for example that the re-

duced problems 
~~~ 

and 
~~~ 

have strongly or weakly y’-stable and y-stable

solutions u1 and UR such that

uL(b) + uL (b) < B and uR(a) - u~(a) < A

(4.1) ~~
f(b,u1(b),b — u1(b)) < 0 and f(a,uR(a),uR(a) — A) < 0.

(Here we assume for simplic ity that p1 q1 = p2 
= q2 = 1 in (N).) Then

Theorems 4.1 and 4.2 are inapplicable; however, suppose that 1u1(r) - UR (t)l

is not too large for t = a  or t =b. We claim that

~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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( I )  u1( b ) -c uR(b) and

(ii) uL(a) > uR(a).

that is, u1 and uR intersec t at leas t once i n (a ,b). To verify inequality

(i) set w = u1( b ) - uR(b) and note that

0 > f(b,u1(b),B - u1(b)) f(b,uR(b) + w,u~(b)  -

(4.2) — fy(b~
uR(b) + ew ,u~(b) -

+ f(b,uR(b),u~
(b) - .- w) .

Suppose on the contrary that uL ( b ) > uR (b) , that is, w > 0. Then the y ’-

stability of UR implies that f(b ,uR(b),u
~

(b) - w) > 0 while the positivity

of fy implies that f~w > 0. Thus f~w + f(b,uR (b) ,u
~

(b) - ~) > 0 which

contradicts (4.2). Similarly, to verify inequality (ii) set v = uR (a) - u1(a) ,

then we have that

0 > f(a,uR (a) ,uR (a) - A) = f ( a ,u1(a) + v,u~(a) + v)

(4.3) = fy(a~u1(a) + ev,u~(a) + v) v

+ f(a ,ui(a) , uL(a) + ‘u). -

Suppose on the contrary that u1(a) < uR (a) , that is , v > 0. Then

f (a ,u1(a) ,u~(a) + v )>O by the y’—stability of ul while f~v >0 by the

positivity of fy~ Consequently f~v + f(a ,u1(a) ,u~(a) + v) > 0, which

contradicts (4.3).

—-
~~• —5 --- --5— — ~~~~

-.—
~

- _J
_
~ — ..- —

— —,~~~~ 
~~~~~~~~~~~~~~~~~ 5— ~~~~~ -~~~~-— ~.• ~~~~~~~~~~~~ -~~~~ -
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Thus when the inequalIties (4.1) obtain the functions uL and UR
intersec t in (a ,b) and we can check further to see if Theorem 4.4 is

applicable. Such will always be the case if u~(t0) and u~(t0) (u1(t0)
= uR(tO) 

= c) are adjacent zeros of f(t0,c,o). likewise if uL (b) + u~(b) > B

and uR (a) - u~(a) > A but f( b,u1(b),B - u1(b)) > 0 and f(a,uR (a) ,uR (a)  — A)

> 0 then U
1 

and UR intersec t at least once in (a ,b) and there is the

possibility of a crossing as described by Theorem 4.4.

5. Some Singular Phenomena

The results of the previous section are distinguished by the fact that

the convergence of a solution of the problem (N) to a reduced solution takes

place under the assumption of strong stability either at a boundary point or

at an interior point. Namely, in the case of boundary layer behavior we re-

quired for example at t = a that if p1u(a ) - p2u’(a) $ A then (p1u(a)

— p2u ’(a) — A) f(a ,u(a),A ) < 0 for all A in (u’(a),p~~(p 1u(a ) - A) ]  or

4 [p~~(p 1u(a ) - A) ,u ’(a)). Here u = uR or u1. Similarly in the case of in—

ten or layer behavior we required that if u(t0) 
= ~i(t0) = c and = u ’(t~)

$ ?~‘(t~) = then (O
R 

- o1
) f ( t 0,C,A )  > 0 for al l  A in (al,aR) or

However it is possible that the same qualitative results are valid

if these strict inequalities are replaced by suitable nonstrict ones. We term

such phenomena “singular” since they invariably involve the case in which the

reduced equation f = 0 Is singular at one or more points in (a,b) and

along various solution trajectories. For example, if f~, (t0,y,y’) = 0 for

all y, y ’ of interest then the point t0 is a singular point of f (cf.

(10; Chapter 3]). It will become apparent shortly that the assumption of

— 
~~~~~~~~ ~~~~~~~~ --
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y-stability is crucial in obtaining the analogs of the theorems of the pre-

vious section. This is not surprising since if f(t0,u(t0),u’(t0)) — 0 and

f~.(t0~u(t0)~u’(t0)) = 0 the solu tion u loses y’-stability in passing

through t0 and so it has to derive stability from the y variable.

Consider first the case of boundary layer behavior. We only state and

prove the analog of Theorem 4.1 and then coimient on the modifications necessary

for proving the analogs of the other boundary layer results.

Theorem 5.1. Assume that the reduced problem 
~~~ 

has a solution u uR(t)

which exists in [a,b] and which is weakly y’-stable and y-stable. Assume -

also tha t 
-

(5.1) (pluR
(a) - p2u~(a) - A)f(t,y,y’) < 0 for ( t,y,y’) in V(u R) fl [a,a + 6].

Then there exists an c0 > 0 such that the problem (N) wi th p2 > 0 has a

solution y = y(t,c) whenever 0 < c < c 1~. In addition, for t in [a,b]

we have that

y(t,c) UR(t) + 0(w1(t ,c)) + 0(c)

y (t,c) — u~(t) + O(w~(t,c)) + O(e),

where w1(t,e) — -(uu ’e) 1”2 p 1(pluR (a) - p2u~(a) - A)e
_ (
~
C ) ( t a) 

~

a solution of ez” - ma, a < t < b, Z’($,c) — p2~ piuR (a) - p2u~(a) - A).

—-5 — --— — 
- — —. 5 —- 

—~~~~ 
— 

5~~ ____ 
—

—-5 —5 b— - 
— ~~~~ _,_.. - -



43

Proof. It is only necessary to construct appropriate bounding functions

a and ~. Define for a < t < b and c > 0

cs(t,c) = uR(t) - cym
’

if pluR
(a) - p

2uj~(a) ~ A

B(t,c) = uR(t
~ 

+ w1(t,c) + cym
1

and

a(t,c) = uR(t ) + w1(t ,c) — cym 1 -

i-f pluR
(a) - p2u~(a) >A.

8 ( t , c)  = uR(t) + cym~

5)

Consider just the case pluR (a) - p2u~(a) < A. Clearly ca ’ > f(t,a,a’) since

UR is y-stable. As for ~ we have that

f(t,B,8’) = f(t,uR,u~
) + (f(t,B,u~) — f ( t ,up~u4))

+ {f(t,B ,B ’) - f(t~e,uj~)}

= ~~~~~~~~~ - uR) + f.}

where ~ is the appropriate intermediate point. Therefore

S.- -~~~ — ——--
~~~ -~ —

—• -S.--- - - - 
—

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 5  ~
,- 

~~~~~~~~~~~~~~ - - -~~-5~- - -~~~~— - - --  - -
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— cB” = fy(t~~ u,~)(w1 + cym
1 ) + {

~
} — cuj~ — cwj

(M = ma~4u~ j )  > cy - cM + { .}

by our cho ice of w1. Now for t in [a,a + 6] the expression in parentheses

is nonnegative by assumption and for t in [a + 6,b] it is transcendentally

small , that is, {
~

} = O(cN) for all N > 1. Consequently, if y = M + 1 and

c is sufficiently small , say 0 < £ < CD, we have the desired inequality

cB” < f(t,B,8’) in (a ,b). 
-

For the situations described in Theorems 4.2, 4.3, 4.6 and 4.7 the cor-

- 
• 

respondin g “singular” analogs are val id if the weakl y y’-stable function u1
satisf ies

(5.2) (q1u1(b) + q2u~(b) 
- B)f(t,y,y’) <0 for (t,y,y ’) in V(u L) n [ b  -

and if the locally weakly y’-stable function u1 satisfies (5.1) and/or (5.2)

with UR and/or UL respectively replaced by u1.

Consider next the case of interior layer behavior. Once again we will only

state and prove the analog of Theorem 4.4 and simply indicate the modifications

required in the other interior layer results.

___________________________________________- - - - — — -
S.—

- ~~~~~~~~~~~~~~~~~~~~ -~~~~~~
-— • -•--- -S - -
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Theorem 5.2. Assume that the reduced problems 
~~~ 

and have solu-

tions ii = u1(t ) and u = uR ( t) in [a ,t1) and (t R,b] respectively with

tR < t1 sUch that u1(t0) = uR(to) and 01 = u~(t0) $ u~(t0) = °R at a

point t0 in (tR,tL). Assume also that the path u = u1 (t )  is weakly y’-

stable and y-stable. and that

(5.3) - a1)f(t,y,y’) > 0 for (t,y,y’) in V(u 1 ) fl [t0 - 6,t0 + 6].

Then there exists an CO > 0 such that the problem (N) has a solution y = y(t,c)

whenever 0 < £ < CO. In addi tion, we have that

y(t,c) = u 1(t) + O(w
~
(t,c) )  + O(wr(t,c) )  + 0 ( c)  for a < t <

5)

y’(t,c) = u~(t) + 0(w~(t,c)) + O(~) for

y’(t,c) = u~(t) + 0(w~(t,c)) + 0(c) for to < t < b.

~—l ~l/2 
-

1 l 1’2 ~ m,
Here wt(t,c) = ~(em ) ‘ (o~ - 0L)e is a solut ion of cZ” = mz,

p a < t -c t0, z’(t~,e) = 
~

(O
R 

- 0L)~ 
and wr(t,c) = 

~
-(cm

~~)
1”2(oR -

-(c 1m) 1~’2(t-t ) 
+• e 0 is a solution of cz” = mz, t0 < t < b, z’(t0,c) = 

~~°L - OR).

Proof. Suppose for example that 0L 0R and define for c > 0

a(t,c) = u1(t) - cyfll
1
, a c 

~ c b,

-

~

- - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -  • --- •~~~~~~•- —~~~~ - - - --~~~~~~~~
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and

u1(t )  + wt(t.c) + cym ’, a < t to,
8(t,c) =

uR(t) + Wr(t
~
E) + £ym 1 , to < t < b.

Then it is a straightforward matter to show that for y sufficiently large and

s suf fic iently small , say 0 < c < £0~ 
these func tions satisfy the correct -

Inequalities.

As regards the analogs of Theorems 4,5, 4.6 and 4.7 we must assume that

(5.4) ~~ — o
1
)f(t,y,y’) > 0 for (t,y,y’) in V(u ) fl [t,~ — 6~t~ + 6].

• Here j = 1 and/or 2 and u = u2, u3 or u4.
We close this section wi th two remarks.

Remark 5.1. In discussing certain problems it is necessary to amend con-

dition (5.1) as follows. First of all , if uj~ > 0 (< 0) in [a,a + 6] and

pluR(a) - p2u~(a) < A (> A) then the proof of Theorem 5.1 shows that It is

enough to assume in place in (5.1) that

(5.1)’ f(t,uR(t),A) > 0 (< 0) for t in [a,a + 6]

and for all A in [p
~
1(pluR (a) — A) ,u~(a)) ((u

~
(a),p

~~
(pluR(a) — A)]).

Secondly, if in the original condition (5.1) (pluR(a) - p2uj~(a) - A)f(t,y,y’) < p ( c )

for a positive function p which is such that p (c) L(e)e with L(c) 0(1)

_ _ _ _ _ _ __ _ _ _ _ _ _  - • ~~~~~~~~~~~~~~~~~~ -
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depending only on c , then the conclusion of Theorem 5.1 remaIns valid.

Similar remarks apply to the condition (5.2).

It is often necessary to also amend the condition (5.3). If u~ > 0

(< 0) and uj~ > 0 (< 0) in [t0 
- 6,t0) and [t0,t0 + o] respectively

and if 01. < °R ~~ 
> OR) then the conclusion of Theorem 5.2 is valid if

(5.3) is replaced by

(5.3)’ f(t u1(t),A) > 0 (< 0) for t in [t0 — 6,t0 + o]
and for all A in (oL~

aR) ~ °R’°L~~
•

Secondly, if in (5.3) (OR 
- a1) f( t,y,y’) < p (c) with p as before then the

conclusion of Theorem 5.2 is also valid. The conditions (5.4) can be modified

in a similar manner.

Remark 5.2. If we assume in the theorems of this section that the reduced

solutions are y—stable in a sense more general than that given in Definition

4.8 then the layer corrector terms w must be modified accordingly (cf. for

example [9]). The qualitative results are nevertheless the same.

- 6. Some Examples

We close the paper with several examples that illustrate the theory in

Sections 4 and 5.

Example 6.1. Consider the problem

-5-- - ~~~~~~~~~~~
-~~ — —S 

— - 
~~~~~~~~~~ 

L.~~ ~,
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cy” = y — ty’ — y’3 = f(t,y,y’), —l < t < 1,

(E4)

—y’(-l ,c) = A , y(l,c) B.

Note that solutions of (E4) are unique by the maximum principle (cf. [16]).

The reduced equation u = tu’ + U ’ 3 is a Clairaut equation (cf. [10; Chapter

3]) whose solutions are the straight lines u = u(t) = ct + c3 and their

envelope u = + —g_-(_~)
3~l2 which is a singular solution defined for t < 0;

-3J~see Figure 1.

Figure 1.

- t

-s~ ~~~~~~~~~~~ - -_~ ~~- 
- - - - : - - ~~~~~~~~~~ - - - ~ L~~. ~~~~~~~~~~~~~~~~~ -~
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Suppose first that B = 2. Then the straight line u = uR (t ) — t + 1

is a solution of the reduced problem (RR) corresponding to (E4) which is

strongly y’-stable in [-1 ,1) since fy~
[UR(t)] = -t - 3 ~ -2 there. In

order to apply Theorem 4.1 we must determine for what values of A

(-u~(-l) - A)f(_l,uR(-l),A) 
= (-1 A)x(l - x2) < 0

for all A in (uj~(-l)= 1 ,-A] or [—A ,l). If A = —l then y(t,c) = uR(t)

is the solution of (E4). If A > -1 then

(-1 - A)A (1 - A2) c 0 for A in [-A ,1) -

provided —A > 0, that is,for A c 0. Similarly, if A < -l then

(—1 — A)A (l — A
2
).c 0 for A in (1,—A)

provided —A > 1, that Is, for A < -1. Thus by Theorem 4.1 the problem (E4)

for A < 0 has a solution y = y(t,c) such that y(t c) + uR (t) = t + 1 in
- +(—1 ,1] and y’(t,c) + 1 in (—1 ,1] as c 0

Suppose next that A = 0 and B = 5/8. Then u = u1~ 0 is a solution

of the reduced problem (R1
) and u 

~ 
uR(t) 

= .
~-t + is a solution of

which Intersect at t0 = - The corresponding angular path u — u1 (t ) Is

strongly y’-stable since f~~[u1(t)] — -t >~~~~
- in (-1 ,- ~~~

] and fy~(uR(t)]

= -t - ~~- c - in [- -~,l]. To apply Theorem 4.4 we must check the condition

- - -‘-

~ 

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1TI~~ i .. -

~~~~~

--. .

~~ 
—i 

______________
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that (O R 

- o1)f(- ~,0,A ) > 0 for A between and °R’ that is,

-~f ( -  -~-,0,A ) — ~-A(~ - A2) > 0

for A in (04). Thus we deduce from Theorem 4.4 that the problem (E4)

has a-solution y = y(t,c) such that

0, - l< t < - ~~,

y(t,c) 4 u1 (t) =

~- t + -~, - -~- < t < l ,

and

0, - l< t < - ~~, 
+y (t,e) -~~ as c + 0

.
~
.

-, -~~ < t < l ,

We consider finally two applications of Theorem 46. Set B - ~~~
-. The

unique solution u of the reduced equation f = 0 satisfying u(1) B is

u — uR(t) a 
~~~~~ + 

~y 
and it intersects the lower branch U1 (“ - ~~( t ) 312)

of the singular solution at the point t2 — - -

~~

- (cf. Figure 1). Since u1

is a singular we know also that u~(t2) = u~(t2) and so the corresponding

reduced path u — u3(t) is of class c(1)[_l,l]. It remains for us to determine

the values of A for which

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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(-u~(-l) - A)f(-1,u1(-l),A ) = (- ~L - A)(- ~~ + A - A 3) <~~~/ 5 3/5

for A in (.i_, - A] or [-A,~—-). Note that if A = - -~ —- then y(t,c)
/5 /5 /5

+ u3(t) and y’(t,c) -‘- u~(t) in [-1 ,1] as c + 0~. If however - _ !~~ - A
/ 5

> 0 then

( A)(- _ ? _~~~~ A - A 3 ) = (L+A )(A - -1--) 2 (A + i~) < 0
/5 315 15 15 15

for all A in (-1—-,-A], while if - —
~
— - A < 0 then (~1~ + A)(A - -1--)2(A + L)

/5 15 /5 15 /5
,t 0 for x in [- i_ ,_ ’~) . Consequently we can apply Theorem 4.6 only if

/ 5 / 5
A -c - tO conclude that the problem (E4) has a solution y = y(t,c) such

15
that y(t,c) + u3(t) in [—1 ,1] and y’(t,c) + u~(t) in (-1 ,1] as c + O~.

Suppose finall y that A = ~~
- and B = -

~~~
-. Then the un ique solu tion u of

f = 0 satisfy ing u( l )  = B is u = uR(t) = ~-t + ~~~~~
- and it intersects the upper

branch u 1(= —~-—(-t)
3’2) of the singular solution at t2 = - ~. For th is choice

3/5
of A and B note that 01 = Uj(_ ~) = - < u1~(- ~

) = = in contrast to

the previous problem. We first check the condition for a crossing at t2,

namely

(O R 
- a1)f(’ ~~~~~ — 

~~~,- + - A~ > 0

for A in (- 
~~~~~~ But

- 

~I~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~IT~~~~T. - --5 --— - ~.44
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-A 3 + ~A + = -(x + ~~)
2(A - 

~
) > o 

52

for such A and so there is a crossing at t2. Thus Theorem 4.6 tells us

that there is a solution y = y(t c) of (E4) such that

u1(t), — 1 < t < —

y(t,c) + u2(t)

- - 

UR(t), -~~- < t < l ,

and

$ 

u~(t)~ —1 < t < — -i-, 
+y (t,c) + as £ ~~ - 0

u~(t), — -
~~~< t c l ,

Example 6.2. Consider now the problem - - -

= y + ty’ + y e ” = -f(t,y,y’), -1 -c ~ 1 ,

(E5)

y(—l ,c) — y’(—l ,c) A, y(l,c) + y’(l,c) B,

for n an integer greater than two, which we will use to illustrate Theorem

4.3. Once again solutions of (E5) are unique by the maximum principle. The

function u1 0 is clearly a solution of the reduced equation f — 0 which

is locally strongly y’-stable since f
1
,[O] = t. Suppose first that n is

_____________________________________________________ 
________________________________ 

I
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odd. In order to apply Theorem 4.3 we must consider inequaliti es at t -1

and t = l , namely

(6.1) (u1(—l) — u~(—1) — A)f(—1,u1(—l),~) < 0 for A in

U1 ( — l )  — A) or [u~(—l) — A~u~(_l))

and

(6.2) (u1 ( l )  + u~( l )  — B) f(1 ,u1(l),A) < 0 for A in (u~( l )~B — u 1 ( l )] -

or [B — u 1 ( l )~u~( l ) ) .  
-

ConditIon (6.1) is equivalent to

—AA (l - A’~~) < 0 for A in (0,-A] or [—A ,0)

and this Is satisfied for IA I c l(A $ 0) since n is odd. On the other hand,

condition (6.2) is equivalent to

—BA(l + A’~
1 ) -c for A in (O ,B] or [B ,0)

which is true for all B $ 0. If A = B = 0 then y(t,c) 0 is the solution

of (E5) and so from Theorem 4.3 we deduce that if n is odd and IA I c 1 then

for all values of B the problem (E5) has a solution y = y(t,c) such that

__________________________  -5 S -5 ~~~~~~~~~~~~~~~~~~~~~~~~ ‘- - -— 

-
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(6.3) y(t,c) -, 0 in [-1 ,1] and y ’(t,c) 0 in (-1 ,1) as £ 01.

If now n is even then condition (6.1) is clearly satisfied by all

values of A > -l (A $ 0) while condition (6.2) Is satisfied by all va lues

of B > -l (B $ 0). Thus from Theorem 4.3 we deduce that if n is even and

A, B > -l then the problem (E5) has a solution y = y(t,c) satisfying the

limiting relations (6.3).

Example 6.3. ConsIder next the problem

cy” = ty’3 + y3 — y = f(t,y,y’), —l < t < 1 ,

(E6)

y(—l ,c) — y’(—l,c) = A , y(l ,c) + y’(l ,t) — B.

We will show that for certain choices of A and B this problem has at least

two solut ions.

The reduced equation f = 0 has many solutions but we single out just

the constant ones u1 1 and u2 -l which are y-stable since f~[~l] - 2.

Note also that both u1 and u2 are l ocally weakly y’-stable since f~.

3ty’2. We consider only u1 in detail since the corresponding results for

U
2 

follow by reflection (y + -y). To apply Theorem 4.3 we must check the

two Inequalities:

(6.4) (u1(—1) — u~(—l) — A)f (—1 ,u1(—1 ),A ) 0 for A in

(u~(—l)~u1(—l) — A] or [u~(—l) —

_
_
5 
- 

~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~ — S - 
--



55

(6.5) (u1( l )  + u~( l )  — B )f( l ,u1(l),A) < 0 for A in

(u~( 1)~B — u l(l)] or [B — ul ( l ) ,ul(l)).

Condition (6.4) is equivalent to

(1 - A) A3 > 0  for A In (0,1 - A] or [1 - A ,O),

which is satisfied for all A $ 1. Similarly condi tion (6.5) is equivalent to

(1 - B)A3 < 0 for A in (0,B — 1) or [B — 1,0),

which is satisfied for all B $1. Thus by Theorem 4.3 the problem (E6) has

a solution y = y1(t,e) such that for all A and B y1 (t ,c) + 1 In [-1 ,1]

and y~(t~e) + 0 in (-1 ,1) as £ + O~. Consequently this problem has another

solut ion y = y2(t,c) such that for all A and B y2(t,c) -.- -l in [—1,1)

and y~(t,c) + 0 in (—1 ,1) as £ 0~.

Example 6.4. In this final example we illustra te some of the singular

phenomena discussed In Section 5. The problem is

ey” — y - t y’3 = f(t,y,y’), a c t c b ,

(El)

—y’(~i,e) — A, q1y(b,c) + q2y’(b,c) = B,

- --
5- UT~ _ _ _ _ _ _ _ _ _ _ _ _ _-
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whose solutions are unique by the maximum principle. Suppose first that

a q2 = B = 0 and b = q1 
= 1, and consider the function u = U

R
(t )  0.

Clearly UR is a solut ion of f = 0 satisfying uR(l) = B which Is locally

weakly y ’-stable since ~~ — -3ty’2. Now f(0,O,O) = 0 and so we cannot

apply Theorem 4.1 but we suspect that for all values of A there is a solution

y y(t,c) of (E7) such that

(6.6) y(t,c) + 0 in [0,1] and y’(t,c) + 0 in (0,1] as c 0~.

To establish this we note that condition (5.1)’ (cf. Remark 5.1) of Theorem

5.1 holds, namely -

(—u~(O) - A )f( t ,uR(t),A) = Atx3 < 0

for t in [0,6] and A in (0,-A] or [-A ,0). Thus by Theorem 5.1 the

problem (El) has a solution y = y(t,c) satisfying the limi ting relations

(6.6) for all values of A.

Suppose next that a — -1 , A — q1 
= q2 = 1 and B = 2, and consider

the functions u = u1(t) —t and u — uR(t) = t. Clearly u1 is a solution

of the corresponding reduced problem (R.) while UR is a solu tion of

These functions intersect at = 0 and the angular path u = u1(t) = Iti

is weakly y’-stable since f
1
, = —3ty’2. However Theorem 4.4 is Inapplicable

because f(O,O,A) 0 for all A. We are led to consider applyi ng Theor~ i 5.2

since U
1 

is y—stable and so we have to verify condition (5.3)’ (cf. Remark

5.1), that Is,

1’ 
~~~~~~~~~~~~

- - -  ~~~~~~~~~~~~~~ -_ _ 5- -- -- - -
.5--- 
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f(t ,u 1(t),A) > 0  for It I  < 6  and IA ! < 1.

For t in [—6 ,0)f(t,u1(t),A) 
= —t(1 + A3) > 0 and for t In (O,6]f(t,u1(t),A)

= t(l - A3) > 0. Therefore Theorem 5.2 tells us that the problem (E7) has a

solution y = y(t,c) such that

y(t,c) + ,tI In [—1 ,1]

and

1, — i c t - c O ,

y’(t,c) + as c + O~.

1, 0< t < l ,
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