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PREFACE

This report should be of interest to people involved in
genera ting high—level languages that incorporate facilities for
manipulating fixed-point data.

ED WARD C. WHITMAN
By direction
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CHAPTER I

INTRODUCTION

This report is an investigation into the design of a fixed
point arithmetic compiler for mini computers. The cc~mpiler iscapable of translating single statement arithmetic equations into
assembly language code where the symbolic address var iables of the
equation refer to single precision two’s complement numbers.

The investigation begins with a study of fixed point numbers
to define the characteristics that force the mathematical manipu-
lations to be programmer dependent. Once defined , a compiler
algorithm is designed to use these characteristics to minimize the
need for the programmer to be concerned with binary points, or clip-
ping and truncation errors no matter how complex the equation.

The design approach chosen for equation evaluation is to parse
the arithmetic equation into a series of macro statements. Each
macro statement contains an indication of which mathematical oper-
ation is to be performed , the appropriate symbolic addresses , and
the shift parameters derived from the characteristics of each of
the operands. The arithmetic compiler contains sets of precoded
macros for any possible fixed point mathematical operation. One
macro is chosen for each operation in the equation, the symbolic
addresses and shift parameters are incorporated , and the symbolic
code is entered into the body of the program being assembled. A
standardization is achieved in equation evaluation using the macro
approach that was never possible with each programmer coding his
own realizations.

Other than this overall approach to the design , it is not prac-
tical to discuss an arithmetic compiler that will apply to all mini
computers when taken as a group. The variety of arithmetic units,
existing software, and physical constraints make it necessary to
choose a specific machine and implement the macro approach on it
as an i l lustration. The a r i thmet ic  un i t  only directly affects  the
for-rn of the mathematical macros, whereas the existing software and
the physical characteristics of the machine influence the actual
coding of the compiler itself. Clearly the less available core
and the lack of flexibility of the existing assembler will complicate
the generation of the compiler. These two factors are critical
considerations as to whether or not it is possible to implement
the design on any particular machine.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ TT JT
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A. The Problem

Mini computers have seen ir4creased use as modular components
within real time digital systems. The machines are programmed to
analyze or simulate real world processes by realizing the mathemat-
ical models. An arithmetic compiler simplifies the programming
operation.

Floa ting point ari thmetic compilers are available in the more
sophisticated languages such as FORTRAN and ALGOL, bu t are no t
practical in this application because of speed and available core
restrictions.

Mini computers have fixed point arithmetic units. Floating
poin t opera tions have to be software simula ted, which greatly in-
creases the execu tion time of the pro gram , and hinders operation in
real time. Software simulation is not only slow, but takes addition—
al core which is not always available. The efficient coding that a
fixed poin t ari thmetic compiler could genera te wou ld mee t the spee d
and core requirements of real time operation.

A cri terion is esta blishe d to which such a fixed point compiler
must conform. It must be incorporated into the existing assembler
of the machine such that the output listings and object code of
pro grams assemble d before its inser tion shall be iden tical to the
listings and object code of the programs assembled afterwards.
Where feasi ble , the standard macros must display maximum speed and
!ninimum length. Optimization must be performed between macros to
eliminate unnecessary loading and storing of partial results that
would slow down the execution of the entire equation.

B. The Machine

The ari thme tic compiler desi gn is implemen ted on the Dig ital
Simulator and Computer (DISAC). It has the need for a concise method
of handling arithmetic equations because of its use in adaptive
signal processing and digital simulation. Being a first generation
mini computer , its 8—microsecond cycle time is an order of magnitude
slower than the state of the art. This further emphasizes the need
for efficient coding. The physical and operational characteristics
are listed in brief below; reference 1 offers more detail.

1. Two’s complement and logical functions are performed in
either-of the two operational registers, the AC (accumula tor ) or the
MQ (multiplier—quotient) . Interregister and from-memory operations
can be performed . Both registers have variable length logical shift
capability with the full complement of arithmetic shifts being
reserved for the MQ alone.

2. Word length is 24 bits with the memory access instructions
being able to directly address the entire 4096 words of random access
core. Indirect addressing is not necessary.

6
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3. Addition , subtraction , loading and storing , and increment
and decrement testing of the three 12—bit hardware index registers
are provided for a powerful addressing scheme.

4. DISAC assembly language programs are assembled by the DISAC
Object Program Encoder , referred to by its acronym as DOPE. Source
programs are entered through the card reader and the images are
copied onto magnetic t~apc unit twc a This enables multiple passes
through the source deck at tape unit speed. Tape unit two is also
the library tape which contains DOPE and all the standard library
subroutines.

DOPE produces absolute or relocatable object deck images that
are loaded and linked at run time by the resident system of DISAC.
Fur ther information on the System and DOPE is available in reference 1.
In order to incorporate the arithmetic compiler , the str u c t u r e  of
DOPE had to be modified . Distinction between the two versions is
made by the prefix ‘old ’ in the discussion to follow.

Old DOPE was a two-pass assembler with each pass being a single
long absolute program (32658 first pass and 32~ 1~ second pass).
Each occupied essentially the same area of core, Lhe second pass
overwr iting the first at the appropriate time. The System scanned
the library tape on unit two and read the first pass into core.
Pass 1 read the source deck from the card reader and performed its
function of creating the symbol table and copying the card images
also on tape unit twoa At the end of the first pass, the System
scanned the library tape again and loaded the second pass into core.
This action was initiated by the recognition of the END card by
pass 1. The second pass read the card images of pass 1 from tape
uni t two and performed its function by making use of the symbol
table. Its output was the image of the object deck and listing
on tape uni t one.

Any modification attempt of old DOPE would depend heavily on
the availability of core and the ease with which changes could be
implemented in its program code. The available core in pass 1 is
all the memory not dedicated to the System, the first pass , and
the symbol table. This is approximately 900 decimal locations.
The second pass has slightly more room, 920 locations. The programs
that make up the arithmetic compiler must fit in this space or another
pass will  have to be added . If this  is necessary, it would be desir-
able to have DOPE operate as the three—pass compiler while  s t i l l
remaining a two—pass assembler.

The fact that each pass of DOPE was a single long absolute
program made it very difficult to modify . Every change or addition
would require reassembly of the entire pass. A new approach was
taken ; each existing pass was broken down into small functional
relocatable subprograms. With this approach , a single subprogram
could be modified , assembled , and debugged independently of the rest
of the pass. This relocatable version of DOPE requires a different7
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loading sequence from the System to place it in core during the
assembly process. The System no longer loads a single absolute
program; instead it scans the library tape for each of the functional
subprograms, relocatably loads them into core , then l ink s them in to
a unified pass. The second pass is loaded in the same manner after
the recognition of the END card.

The modifications to old DOPE were made with the result that
no change can be observed between the object code and the listing
created by old DOPE and the listing and object code generated by
the new relocatable version. With the assembler in a form that
could be easily modified , the implementation of the ari thmetic
compiler could begin.

8
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CHAPTER II

THE MACRO APPROACH

With DOPE modified to easily accept additional programs , an
investigation was made into different possible ways that a fixed
point arithmetic compiler could be implemented . Only two choices
were considered . The first is that each mathematical operation in
the equation could be implemented with general purpose closed sub-
routines, one per different operation. The second choice is that
each operation could be implemented with a specialized open
subroutine implanted in the body of the program .

The closed subroutine approach has two apparent advantages.
The first is that only one general purpose ‘add’ subroutine, for
example, would be needed for a program irregardless of how many
equations it contained or how many add operations were indicated .
The second advantage is that within the body of the program there
are only ‘calls’ to the external subroutine.

There is a subtle point to the ‘call’ procedure, however , that
turns out to be a major disadvantage. It will be shown later that
most mathematical operations involve three arguments and three shift
parameters. These six pieces of information , or their addresses,
would be stored in the body of the program sequentially following
the ‘call’ statementa Therefore, for each mathematical operation,
approximately seven words of core would be required for each transfer
to the external subroutine.

The second disadvantage is that the closed subroutine has to
be general in designa As will be shown later , for example, there
are 405 possible ways to add two fixed point numbers and place the
result in a third storage location in DISAC. Code must exist in
the one closed subroutine to realize all of these possibilities.
Just from the sheer bulk of these statistics, it can be concluded

• that the closed subroutine is going to be lengthy , consisting mainly
of bookkeeping algorithms, and be extremely slow.

The open subroutine , or macro approach, uses specialized blocks
of code called macros. Each macro consists of code entirely dedicat-
ed to performing the mathematical operation . Bookkeeping chores and
the deciding of which macro is to be used are determined by the arith—
metic compiler at compile time. The disadvantage of having to have
an ‘add ’ macro, for example, inser ted into the body of the program
each time a (+) appears in the equation, is not serious. The average
length of all the 405 possible add macros is less than five instruc—
tions in length. This is shorter than the calling sequence alone

9
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for the closed subroutine approach.

The macro approach is the only feasible method of attack to
choose and still stay within the scope of the problem, to produce
optimum code with maximum speed and minimum length.

A. Compiler Via the Macro Approach

The macro approach allows the ari thmetic compiler to be
functionally divided into three distinct programs: Parsing Algorithm ,
Macro Optimization , and Macro Expansion. The Parsing Algorithm
routine resides in the first pass of DOPE with Macro Expansion in
the second. A new pass has to be added between pass 1 and pass 2
to hold Macro Optimization. To indicate its relative position in
the compilation process, it is logically named pass 1.5.

A program containing an ari thmetic equation is operated on
by DOPE under control of the System. The library tape is scanned
and all the functional subprograms that make up pass 1, including
the Parsing Algorithm, are loaded and linked . This first pass oper-
ates as a normal first pass of an assembler on all assembler
instructions. It reads the source deck from the card reader and
creates an output buffer tape of source card images and first pass
bookkeeping statistics. The Parsing Algorithm operates only on
the arithmetic equation and creates its own images on the output
tape. At the end of pass 1, the library tape is scanned again,and
all the functional subprograms of pass 1.5 are loaded and linked .

Macro Optimization of pass 1.5 reads the output buffer tape
of pass 1 in search of the images created by the Parsing Algor ithm.
All other card images are copied onto the output tape of pass 1.5
with only minor bookkeeping changes. The Macro Optimization routine
operates primarily on the Parsing Algorithm images, then wri tes the
modified forms on the output buffer tape. At the end of pass 1.5,
the library tape is scanned for the third and final time and the
pass 2 functional subprograms are loaded and linked.

Pass 2 reads the output buffer tape of pass 1.5 and performs
normal second pass functions on all the assembler instruction images.
The Macro Expansion routine searches for the modified images of
the Macro Optimization routine and expands each into a block of
assembler code. At the termination of pass 2, an object deck has
been created that consists of all the instructions originally in
the Source deck plus the instructions inserted by the arithmetic
compiler to realize the equation. The accompanying output listing
also shows both the original assembler instructions and the compiler
created code.

10
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B. Compiler Card Images

The only card image formats of concern to the programmer are
those of the input equation and the output listing. In addition
to these, there are two other compiler dependent card images, the
general macro of the Parsing Algorithm and the specific macro of
Macro Optimization. Below is given an explanation of each format.

1. Format of the Input Equation. The input source card has
the unique mnemonic, LET, in its instruction field to distinguish
it from all other source cards. Any allowable FORTRAN equation
that can be derived from the Precedence Table of Appendix B can
appear in the variable field. An example of a card with a label
is shown below. The variables, or arguments, in the equation are
the symbolic addresses of the fixed point data.

CLYD LET ALFA = BETA + C * (A + GAMA)

2. Format of the General Macro. The general macro images
that the Parsing Algorithm generates can have one of seven unique
mnemonics in the instruction field. The seven are listed below.

General Macro Mnemonic Operation

ADDM add ition -

SUBM subtraction

MULM multiplication

DVSM division

EXPM exponentiation

EQUM equality

CALM subroutine call

The variable field of this image contains a maximum of three
arguments which are either orig inal variables of the input equation
or symbolic addresses created by the Parsing Algorithm to hold partial
results. Examples of typical general macros are shown below. Note
the $ delimiter.

ADDM A  B $VOO $

SUBM ARG1 ARG2 $V02 $

EQUM $VO3 BETA $

11
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3. Format of the Specific Macro. The specific macro card
image generated by the Macro Optimization routine are two-part
transformations of the general macros. The first part is the gener—
ation of a unique specific macro mnemonic for the instruction field.
The scheme converts the second alphabetic character of the general
macro mnemonic to a D, E, or F; the third character is changed to
a 1, 2, 3, 4, 5, 6, 7, or 8; and the fourth character transforms
to a 0, 1, or 2. Therefore an ADDM could be transformed into an
AF52, or an MULM could become an MPH . Not all of the above possible
specific macro mnemonics are valid; the ones that are realized in
the arithmetic compiler are shown in Appendix C.

The second portion of the transformation is performed on the
variable field of the image with the addition of shift parameters
and the possible substitution of a reserved mnemonic for an argument.

The variable field of the specific macro card image contains
a maximum of three arguments and three shift parameters. One or
more of the arguments may be replaced by one of the special reserved
compiler symbols, $AC$ or $MQ$, to indicate that the argument is
in the AC or MQ respectively . Two examples of possible
transformations are shown below.

ADDM A B $VOO $ ‘ AF2O A B $MQ$ $YY 1

MULM BETA ALFA $V03 $ ‘ ME11 $MQ$ ALFA $AC$ $YY 3 4

Note that the $ is expanded to the $YY in—between the argument
and the parameter fields. YY is a number from 01 to 99 that indi-
cates the order in which the mathematical operations are performed .
They can be used to distinguish and point to individual macros within
the equation expansion. If YY was an 03, then the macro is the
third one in the macro string . Having a means of referring to an
individual macro gives the programmer a way of bypassing or insert—

• ing BMT information into the equation on the macro level. This
flexibility is explained in the CORR discussion of section IIIC3.

4. Format of the Listing. The assembler instruction mnemonics
that appear in the listing as a result of the expansion of the spe-
cific macro are indistinguishable from the assembler instructions
that were in the source deck. To make it possible to distinguish
the code, each macro image and the original LET card are written
out on the listing as remarks. This makes it possible to bracket
the öode that realizes the equation. A brief portion of the program
listing is shown below.

12
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Input card in the Source Deck

CLYD LET A B + C - D

Listing

LET A = B + C - D
AF3O B C $MQ$ $1 1 2 1

0010 2040 00S1 CLYD LDMQ C
0011 54000001 AQRS 2
0012 20 200052 LDAC B
0013 5600000 2 ALS 1
0014 12500000 AACQ
0015 54000001 AQRS 1

• SD81 $MQ$ D $MQ$ $2 0 1 1
0016 20 20005 3 LDAC D
0017 56000001 ALS 1
0020 12540000 SACQ
0021 54000001 AQRS 1
0022 63600050 STMQ A

0050 0034 2131 A ~OCT 00342131
0051 77770302 B OCT 77770302
0052 00662211 C OCT 00662211
0053 000000 10 D OCT 00000010

C. Syntax of LET, General and Specific Macros

The syntax of the LET statement, general macro, and the specific
macro have a designated field structure. The position and widths
of each field are identical. to those of the normal assembler instruc—
tions as explained in reference 1 section 5. Columns 1 through
7 may contain any continuous string of alphanumeric characters of
which one of the last four must be a letter; only the last four
characters are recognized as the label. Columns 8 through 12 contain
the instruction mnemonic. Beginning in column 13 and inclusive

. through column 72 is the variable field. It is in this field that
the three card images have their greatest differences.

- 
The variable field of the LET statement must contain an equation

of allowable operators and symbolic addresses. The seven allowable
operations are listed in section 11B2. Precedence indicators, the

11 13
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parentheses, and the index operator, the comma, may also appear.
There is no restriction on where within the variable field the equa-
tion may begin or how many blank spaces may appear between operator
and argument. All arguments on the right side of the equal sign
must appear in an ASSN pseudo—op in the program or on the left side
of an equal sign of a previous LET. It is optional whether they
also appear as label. The single argument on the left of the equal
sign does not have to appear in an ASSN statement or as a label.
This relationship between the ASSN pseudo—op and the symbolic address
argument is explained in section IIIC1.

The variable field of the general macro contains no more than
three arguments separated by any number of blank spaces. The argu-
ments may be simple symbolic addresses or any combination of symbolic
addresses. Any address field that is allowed in a normal assembler

• instruction can be an argument. The $ delimiter terminates the
argument s tr ing .

The variable field of the specific macro is identical to the
general macro with the addition of the shift parameter data string
and the $YY delimiter . There can be no greater than three shift
parameters in the string . Each one is a decimal number separated
by any number of blank spaces. Section IIB3 offers examples of
both general and specific macro variable fields.

14
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CHAPTE R I I I

FIXED POINT NUMBER SYSTEM

The programmer makes use of certain characteristics of the
fixed point numbers when he manually generates code to realize an
equation. In order to design a compiler to be as efficient , these
characteristics must be made available. A comparison between fixed
and floating point numbers is made to emphasize that the compiler
complexity is due to the input and use of this additional information .
Programmer dependence is therefore reduced to just the initial de-
scription of the fixed point numbers, leaving t he manipulation of
all intermediate results to the compiler.

A. Format of Fixed Point and Floating Point Numbers

The floating point format is fairly well known, because it is
very similar to ‘scientific notation ’ in which all numbers are
represented as normalized fractions raised to a power of 10. Examples
are shown below.

Number Scientific Notation

235 .235 *

5 ~5 * 101

.0029 .29 * 10 2

Assume for the purpose of this discussion that there exists
a computer identical to the one described in section lB except that
it has a floating point ari thmetic unit. The 24—bit floating point
numbers of this machine are proposed to have the base 2 format as
opposed to the base 10 of scientific notation.

32 8 2 1/2
I I I I I I I I I I ~ I I I I I ~ ~ I I I I I I ~
I ~ , I

I I I

6 bits of ‘ 17 bits of normalized
I , , I
+

‘— ‘ exponent I argument I

I , I

24 17 0
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Numbers have an approximate dynamic range of + or

-2~~ (1012) to + or _2 23 (l0~~ ) with full 17—bit accuracy
on the normalized argument. An important feature of this
format is that the pattern of l’s and Q I~~ that make up the
number is unique. An example is shown below.

I I I I I ~ I I I I I I I I ~ I I I I I I I I I I

~0 0 0 0 1 1 1 1 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0  01
I I

24 17 12 0

The above pattern represents the number .5 * 2~ which is equalto decimal 64. It is the partitioning of the word into an exponent
and a normalized argument that makes this pattern uniquely 64; no
programmer interpretation is needed. Mathematical operations with
the floating point arithmetic unit produce results in the same
unambiguous format.

The fixed point format requires programmer interpretation ,
or interaction , to make the pattern of 1I 5 and Ot s a unique number.
Using the standard two’s complement weighting notation reviewed
in reference 1 section 2.1, and introducing the binary point concept,
the programmer can state that the same pattern above is the number
7.5 B17. The dXnamic range of a fifld point number is from approx-
imately + or —2~~ (l0~) to + or —2 ’’ (l0 ’). Bit accuracy is a
variable depending on the actual position of the binary point.

The use of the binary point is a method of partitioning the
24—bit word into an integer and a fractional part. All bits to
the left of the binary point are integer magnitude bits and all

• the bits to the right make up the fractional part of the number.
An example is shown below.

8 4 2 1 1/4
I I I I I I I I I I I I I I I I I I I I I I I I I

I I

I I

I I

‘ O O O O l l l l O O O O O O O O O O O O O O O O ’
I I

24 17 12 0

Dy positioning the binary point at 817, which is having 17
bits to its right , the pattern is evaluated.

16
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+0*2~ +0*2
3 +1*22 +1*21 +1*20 +l*2~~ +0*2”2 + ..

I

...+0 + 0  + 4  + 2  + 1  + 1/2 + 0  + ...

+ 7.5

The ambiguity is immediately obvious. The above pattern could
just as easily represent any one of 23 other numbers depending solely
on where the programmer positions the binary point. If he positions
it at Bl8, then the above same pattern is evaluated to 3.75 B18.

Programmer interaction is required not only in number
interpretation, but also in performing the mathematical operations.
Section IV goes into detail on the set up and the interpretation

• of results for all fixed point mathematical operations.

A simple comparison of addition in both formats is given below
to emphasize the degree of d i f f e r e n c e  in the programmer in teract ion
required .

235 .235 *

5 .5*101

To add the above two floating point numbers, the exponents
must be made to coincide. Depending on the scheme built into the
f loating point adder hardware ,  the shifting of one of the normalized
arguments (.5*lO l to .005*10’)) is done by the adder hardware. The
addition is then performed which yields a result of .240 * l0~~.
The programmer does not have to concern himself with the fact that
the exponents were not equal before the additon operation , the
arithmetic unit took care of it for him.

In the fixed point system, the programmer must align the binary
points of his numbers under program control before the hardware
addition can take place.

7.5 Bl7

3.75 818

To add the above two fixed point numbers, one of them must be
shifted to make them both B18 or both B17. Choosing B18 dictates
that 7.5 B17 must be left shifted one position to make it 7.5 B18.
The result of the addition yields 11.25 B18 only because the
programmer is aware that the b inary  point is at Bl8 .

For the arithmetic compiler to manipulate the fixed point numbers
with the same proficiency as the programmer , it too must have the
binary point information. Having exposed the primary restriction
that the fixed point number system implies, it remains to implement

17
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a means of supplying information , such as location of the binary
potht, to the ari thmetic compiler.

B. Fixed Point Number Representation

During any mathematical operation with fixed point numbers ,
the programmer must be aware of the binary points of the original
numbers as well as for all results of mathematical operations.
There are two other characteristics about the fixed point numbers
that the programmer must be aware of. These are the number of bits
to the left, and to the right, of the binary point. The primary
concern in adding two fixed point numbers, as shown before, is that
the binary points must be made to align. To accomplish this, the
programmer must left or right shift one or both of the numbers.
It is this shifting that must take into account both the number

• of magnitude and fractional bits in the numbers. Serious clipping
errors can result by left shifting the high—order bits out of the
left end of the AC or MQ; likewise truncation inaccuracies may accumu-
late by right shifting the low—order bits out of the right end of
the AC or MQ. A clipping example is shown below from which an
understanding of the truncation problem can be visualized also.

64 16 4 1 1/4
I I I I I I I I I I ~ I I I I I I I I I I I I I I

I I

I I

‘ 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  O l
I I

24 16 0

37.75 B16

4 2 1 1/4
~ I I I I I I I I I I I I I I I I I I I I I I I I

I I

I I

‘ 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ’

24 20 0

3.125 B20

The programmer wants to add the two numbers, 37.75 Bl6 and
3.125 B20. If he were to write the following assembler program

18
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to perform the calculation , he would not get the desired result
of 40.875.

LDMQ A load the MQ with 37.75 Bl6

QLS 4 shift MQ left 4 positions, 37.75 B20

ADMQ B add 3.125 B20 to 37.75 B20

*

*

*

*

*

A DEC 37.75 Bl6

B DEC 3.125 B20

The programmer failed to take into account that he clipped
the 37.75 by left shifting some of the high—order bits out of the
MO in his attempt to align the binary points. The top two bits
were lost; it was effectively 5.75 820 that was added to 3.125 820
to yield -7.125 820 instead of the expected result. The program
that should have been wri tten to take into considerate n the clipping
possibility is shown below.

LDMQ B load the MQ with 3.125 B20

AQRS 4 s h i f t  MQ r igh t  4 positions, 3.125 816

ADMQ A add 37.75 Bl6 to 3.125 816

*

*

* 

19
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The result of the correctly written program is 40.875 816 and
is shown below as it appears in the MQ.

64 16 1 1/4
I I I I I I I I I I I I I I I I I I I I I I I I I 

—
I I

I I

I I

I I

10 0 0 1 0  1 0  0 0 1 1 1 0  0 0  0 0 0 0  0 0 0 0  01
I I

24 16 0

The result of the incorrectly written program was —7.125 820
and is shown below as it appeared in the MQ. Note the high-order
bits that were lost.

LOST

8 1 1/4
I I I I I I I I I I I I I I I I I I I I I I I I I

I I

I I
I I

1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
I I

24 20 0

A convenient notation was developed for describing the binary
point and bit content of fixed point numbers. The data number ,
A , above is said to be B16, M6 , P2 , where the B field is the position
of the binary point, the M field is the number of magnitude bits,
and the P field is the number of fraction bits. These definitions
hold for positive M and P fields, but negative fields are also pos-
sible. Negative M is defined to be the number of bits to the right
of the binary point before a fraction bit is reached, and negative
T is the number of bits to the left of the binary point before a
magnitude bit is reached . Both negative situations are illustrated

• below.

M-4
I I I I I I I I I I I I I I I I I I I I I I I~~~ I

I I

I I
I I

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ’ o l o Q O o o Q o I
I I

24 12 P6 0
The number is .03125 B12 with M 4, T6.

20 
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T-2
I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I

I I

I O U  O O l O l O O l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
I I

- I

24 M8 12 0

The number 164 Bl2 with M8, T—2.

The negative M and T fields are important because they can
allow a number to be shifted such that the binary point can reside
outside of the operational register without losing any information
bits. In the first example above, the only information in the number
lies in the bits between the end of the M field and the end of the
T field. In the second example this is also true. Therefore the
numbers can be shifted as shown below with no harm done.

T6
I I I I I I I I I I I I I I I I I I I I I I I I I

I 1 I

I I

I I

O 0 ’ O O l O O O O O O O O O O O O O O O O O O O O  0 ’
I I

I I

26 M 4  • 12

The number is .03125 B26 with M—4, T6.
T-2

I I I I I I I I I I I I I I I I I I I I I I I I I I

• —I
I I

I I

I I

‘ O O O O O O O O O O O O O O O O O O O l O l O O l O O

• I I

24 12 M8 —2

The number is 164 B—2 with M8, T—2.

If the M and T fields are preserved before any mathematical
operation, then no inaccuracies will result because of the operation
other than the inherent quantatization errors that arise from
representing numbers with only 24 bits.

It should be clear that the BMT representation does not uniquely
define any fixed point number with the exception of some trivial
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cases. In the general case, sets of num bers ~rç s~eg~ f~ çd whoseelements can be counted by the formula * = 2(~~~
) 

~~~‘- -‘-~~ for posit ive
M and T. The description Bl6, M6, T2 could be a number from 63.75
to 32.25, both with a binary point of Bl6. An example of each extreme
is shown below .

M6 T2
I I I I I I I I I I I I I I I I I I I I I I I I ~

1 I

I I

I I

10 0 1 1 1 1 1 1 1 1 0  0 0 0 0 0 0 0 0 0  0 0 00 I

I I

24 16 0

This number is 63.75 B16 with M6, T2.

M6 T2
I I I I I I I I I I I I I I I I I I I I I I I I I

I r • I

I I

I I

1 0 0  1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
I I

24 16 0

This number is 32.25 816 with M6 , T2.

Notice that the most significant and the least significant bits
of both extremes are always ll s for positive numbers. Substituting
the M and T fields for this example into the equation , it is foun d
that # = 2(6—1) + (2—1) or 26 = 64 fixed point numbers fi t the BMT
description.

Wi th the information needed to specify the fixed point numbers
known, it remains to find a convenient way to enter this information

• into the arithmetic compiler.

C. Ar i thme t i c  Compiler Informat ion Vehicles

Pass 1 forms the symbol table for the program being assembled.
It contains a three-word set for each symbolic address that either
appears in the label field of an instruction or is entered by a
pseudo—op instruction . Reference 1 section 5.10 defines th~ pseudo—op to be a non-executable instruction that affects the assembly
process or the program being assembled during that assembly process.
Since the symbol table resides in core through all passes of DOPE,
it is chosen to hold the BMT data and other descriptions for the

22
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equation arguments which are also symbolic addresses. The limited
capability of the symbol table pseudo—ops is expanded,to incorporate
the old method of label entry and the BMT storage requirement,into
three new pseudo—op instructions: ASSN , DIMN , and CORR. The ASSN
statement stores and associates BMT information with one or more
symbolic addresses, the DIMN statement enters the airay length for
those symbolic addresses that are single dimensioned variables ,
and the CORR statement gives the programmer the capability of affect-
ing the BMT information within an equation expansion on the macro
level. DIMN is evaluated during pass 1, while the ASSN and CORR
evaluations occur in pass 1.5.

The format for the three—word set for every entry in the symbol
table is shown below.

I I

Four BCD Character Symbolic Address SYMB

-r

Array Length Relative Address ‘ SYML

Flags M Field T Field B Field SIFW

The SYMB word stores the four—character BCD mnemonic symbolic
address, six bits per character. The SYML word has two fields.
The first is reserved for the relative location of the label as

• it appears in the program , and the second holds the array length
if the symbolic address is a dimensioned array . The BMT information
is stored in the SIFW word requiring only 18 of the available 24
bits.

- Using the ASSN or DIMN pseudo—ops eliminates the need of having
symbolic addresses also appear as labels in the source program.
The compiler will reserve locations at the end of the program for
all single entry or dimensioned array symbolic addresses in the

• order that they appear in the pseudo—ops. If the programmer wishes
to have the reserved locations other than at the end of the program ,
he must have the symbolic addresses appear as labels.

23

_ _ _ _ _ _ _ _ _  ---~~~~~~~~~~~~ — -~~ —
~~—~~•—.~~~

—  -



NSWC/WOL TR 77-65

1. The ASSN Pseudo Operation

The function of the ASSN pseudo—op i~ to store the BMT para-
meters that are associated with an equation argument in the symbol
table. The syntax of the card image is shown below.

Card Column
8 13 72
ASSN XXXX ,XXXX , ‘XXXX ( ) XXXX , • ‘XXXX ( ) XXXX ,

XXXX is a maximum four—character argument. Enclosed within
the set of parentheses is the BMT information which is associated
with the preceding string of arguments. The second string of argu-
ments is associated with the BMT parameters within the second set
of parentheses. Argument strings and parenLL~ses sets may continuethrough card column 72.

The format of the information within the parentheses is rigid.
To ‘not specify 1 a field , the YY is left blank.

(BYY , MYY , TYY)

YY is a one- or two-digit decimal number ranging from 0 to 63.
Typically it is rarely greater than 24. The YY number associated
with the B is the binary point, M is the number of bits to the left
of the binary point, and T is the number of bits to the right.
Two examples are shown below.

ASSN ALFA (B12, M9 , T6)

The parameters of a Bl2 binary point, 9 bits to the left and
6 bits to the right,are associated with a fixed point number referred
to by the symbolic address of ALFA.

ASSN A , B, GAMA (B6, M2, T3) C, BD (818, M3 , P17)

The parameters of (B6, M2 , T3) are associated with the symbolic
addresses A , B, and GAMA . The parameters of (B18, M3, T17) are
associated with C and BD.

• In the B field of the SIFW word , the twol s complement form of• the BYY field is stored. This is not the case with the MYY and
TYY fields. It is convenient for the programmer to think in terms
of number of bits to the left and right of the binary point. It
is convenient for the compiler to think in terms of number of shifts
that the number can be left or right shifted . The ASSN routine
transforms both M and P from ‘number of bits ’ to ‘number of shifts’
and stores these values in the SIFW word. The transformation equa—
tions are shown below.

*1.s. = 22—(B+M) U.s. is the number of left shifts

$r.s. = B—P *r.s. is the number of right shifts

24
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2. The DIMN Pseudo Operation

The function of the DIMN pseudo—op is to store the array length
associated with a label in the SYML word. The syntax of the card

• image is shown below.

Card Column

8 13 72

DIMN XXXX ,XXXX, XXXX ( ) XXXX ,’’XXXX ( ) XXXX~

The only difference between the above and the syntax of the
ASSN card image is the content of the set of parentheses; the decimal
length of the array , a maximum of 2047, is the data enclosed. Two

• examples are shown below.

DIMN ALFA (1024)

The array referred to by the label ALFA will have a 1024-word
block reserved at the end of the program if it does not also appear
as a label.

DIMN A, B, GAMA (20) C, BD (128)

The arrays referred to by the symbolic addresses A, B, and
GAMA will all have 20—word blocks reserved in the order of A first
followed by B and GAMA at the end of the program . Two 128-word
blocks immediately follow, C and BD respectively. These blocks
will be reserved at the end of the program only if they do not also
appear as labels.

3. The CORR Pseudo Operation

• The function of the CORR pseudo—op is to affect the result
of a normal compilation by overwriting the BMT description generated
for the result of a macro operation. The programmer can use this
to affect the code being generated if he knows more about his data
than just the BMT information.

• • As in the ASSN and DIMN pseudo—ops, the CORR information appears
in the variable field of the card image. The syntax is shown below.

Card Column

8 13 72

• - CORR $YY( ) $YY( ) $YY( ) • 
~ ~ ~ $YY( )

The CORR card is placed anywhere before the equation it is
to affect. The $YY is the delimiter on the macro image that the
information within the set of parentheses refers to. The format

25
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within the parentheses is identical to that of the ASSN pseudo—op
also allowing one or more of the fields to be missing . The BMT
information that does appear is placed on the symbol table associated
with the $YY which is treated as a symbol. Each time the BMT para-
meters of a macro result are calculated , a scan of the symbol table
is made with the delimiter that appears on the macro card image.
If a match is found, then the associated BMT parameters overwrite
the ones calculated by the compiler. The $YY symbol is then deleted
from the symbol table. Two examples are shown below.

CORR $l(Bl2,M3,T2)

The result generated in the first macro of the following LET
statement will be treated as a Bl2 number with three magnitude and
two truncation bits. The BMT description generated by the compiler
will be ignored.

CORR $3(B,M3,T) $l3(8,M4 ,T0)

The result of the third macro in the following LET statement
will have the B and T descriptions generated by the compiler , but
the M field will be M3. The thirteenth macro of the same LET state-
ment will have the compiler—generated description of its B field ,
but will have magnitude and truncation descriptions of M4 and TO.

26
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CHAPTER IV

DETERMINA TION OF M AND T

An important feature of the arithmetic compiler is the
determination of the BMT descriptions of the outputs of the macros,
the intermediate results. They are derived from the BMT descriptions
of the equation arguments given in the ASSN pseudo—ops. BMT para-
meters describe the maximum number of bits of the fixed point data
to eliminate clipping and truncation errors. There is a problem
with this technique that shows up in a long string of mathematical
operations. The results of each macro have a tendency to become
more and more ‘safe’ with respect to clipping and truncation. It
is conceivable that a result will have its #l.s. and #r.s. parameters
tend toward zero in the limit. When this happens, a result is charac-
terized as having all 24 bits essential when in reality they may
not be. A simple example of clipping that illustrates the problem
is shown below.

I I I I I I I I I I I I I I I I I I I I I I I I I

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I

I I
I I
I I: o o o o 0 0 0 0 i o o o o o o o o 0 0 0 o o o o :
I I
I I
I I

24 12 0

This number is 8 812.

I I I I I I I I I I I I I I I I I I I I I I I I I
I I

I I
I I
I I

10 0 0 0 0 0 0 0 0  1 0 0 0 0 0  0 0 0 0  0 0 0  0 0~I I
I I

24 12 0

This number is 4 Bl2.

• At compile time, the arithmetic compiler only knows that 812,
M4, TO number is to be added to a 812, M3, TO number . To avoid
clipping, it has to assume that the maximum positive numbers fitting
the descriptions are going to be added. It therefore assumes that
15 Bl2 and 7 Bl2 will produce 22 Bl2 which requires five magnitude

27
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bits, 812, M5 , TO. This assumption of maximum arguments has produced
an extra bit of safety that is not necessary. The result of the
addition at run time for the actual numbers 8 812 and 4 812 yields
12 B12 which can be represented with just four magnitude bits, B12,
M4, TO.

The situation does exist that will cause a snowball effect
of safety. The arithmetic compiler is designed to stop and produce
an error message if safety chokes intermediate results to such an
extent that they cannot be shifted , or would require greater than
single precision mathematics to carry on the computation without
error. The programmer is able to interpret the error message during
pass 1.5 and insert a CORR pseudo—op in the source deck. When assem-
bly is begun again, pass 1.5 will correct the $YY level of the
equation expansion.

The calculation algorithms for the BMT parameters of each of
the seven mathematical operations are given in the following discus-
sions as they are implemented in Macro Optimization of pass 1.5.

A. Addition and Subtraction M and P Fields

The calculation of #l.s. and *r.s. parameters for addition
• and subtraction are the same because the sign of the arguments is

not known at compile time. It is assumed that the result of any
addition or subtraction will yield a sum with an M field of +1 greater
than the largest M field of the two arguments. This amounts to• treating all additions as having positive arguments and all subtrac-
tions as having negative arguments. If the programmer knows the
polarity of his arguments, he can use the CORR pseudo—op. The maxi-
mum number concept for addition and subtraction can be expressed
as a pair of conditional equations; they are shown below where M1is the M f ield of ARG1 and M2 is the M field of ARG2.

Mres lt = M1 + 1 if < M2

Mresult = M 2 + l  if M1 < M 2

The above equations state that Mresult is independent of the
numerical values of the input arguments. This is because the worse
case addition or subtraction occurs when both of the arguments have
the same M field and, in fact, are the same number. Adding a number
to itself merely doubles the value which requires only one more
magnitude bit. A pair of examples illustrating this is shown below.

I I I I I I I I I I I I I I I I I I I I I I I I I
I ______________________________________________________ 

I
I I
I I
I I
:00 0 0 0 0 1 1 1 1 1 1 0 0 0 0  o 0 0 0 0 0 0 0 :
I I

24 12 0
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• This number is 63 Bl2, M6, TO.

I I I I I I I I I I I I I I I I I I I I I I I I I
I I
I ______________________________________________________ I
I I
I I

: 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 o :
I I

24 12 0

This number is 1 Bl2, Ml , TO.

I I I I I I I I I I I I I I I I I I I I I I I I I

I I
I I

0 0 0 0 0 1 0  0 0 0 0  0 0  0 0  0 0 0  0 0 0 0 0  0
I I
I I
I I

24 12 0

This number is the sum of 63 Bl2 and 1 812 which is 64 Bl2 ,
147, TO. The N field of the sum is one greater than the largest
M field of the input arguments.

I I I I I I I I I I I I I I I I I I I I I I I I I I
I ______________________________________________________ I
I I
I I

: 0 0 0 0 0 l l l l l l 0 0 0 0 0 0 0 0 0 0 0 0 0 :
I I

24 12 0

This number is the sum of 63 812 and 63 812 which is
126 812, M7 , TO. The M field of this sum is also one greater
than the largest M field of the input arguments.

The choice for the T field of the result is the smallest field
of the input arguments. The conditional equations are shown below.

Tresult = T1 if P1 < T2

Tresuit = T2 if T1 >
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B. Multiplication M and T Fields

Binary multiplication of two arguments with M fields of M1 and
M2 yields a product with an M field whose length is the sum of
the M fields of the argumants. This is the result of the maximum
number concept which leaves open the possibility of creating an
extra safety bit. Two examples are shown below verifying this result.

I I I I I I I I I I I I I I I I I I I I I I I I I
I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I
I I
I I

: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0:
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I

24 6 0

This number is 31 B6 , M5 , TO.

I I I I I I I I I I I I I I I I I I I I I I I I I
I I

I I
I I

: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 :
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I

24 6 0

This number is 7 86, M3 , TO.

I I I I I I I I I I I I I I I I I I I I I I I I I

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I
I I
I I
I I

: 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0:
I I

24 12 0

This number is the product of 31 86 and 7 B6 which is 217 312,
M8, TO. The M field of the product is the sum of the M fields of
the input arguments.
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C. Division M and T Fields

Binary division of two arguments with M fields of M1 and M2,
where H1 is the dividend and M2 the divisor , will yield a quotient
with an M field whose length is their respective difference plus
1. As in multiplication , this is a result of the maximum number
concept which leaves open the possibility of creating an extra safety
bit. Two examples are shown below illustrating this result.

I I I I I I I I I I I I I I I I I I I I I I I I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I

I I
I I
I I
‘ O O O O O O O l l l l l O O O O O O O O O O O O ’
I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I

24 9 0

This number is 248 B9, M8, TO.

I I I I I I I I I I I I I I I I I I I I I I I I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I

I I
I I
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Q 0 0 0

I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I

I

24 3 0

This number is 8 B3, M4 , TO.

I I I I I I I I I I I I I I I I I I I I I I I I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I
I I
I I
I I

~0 0 0 0 0 0 0 0 0  0 0  0 0 1 1 1 1 1 0  0 0 0 0 a:
I I
I 

• 
I

24 6 0

This number is the quotient of 248 B9 and 8 83 which is 31 B6,
M5, TO. The M field of the quotient is the difference of the M field
of the dividend and the divisor + 1.

I I I I I I I I I I I I I I I I I I I I I I I I 

—

0 0 0 0 0 0 0 l 0 0 0 0 l l l 0 0 0 0 0 0 0 0 0
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I

24 9 0
32
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This number is 135 B9, M8, TO.

I I I I I I I I I I I I I I I I I I I I I I I I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I

!o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 a!

24 3 0

This number is 15 B3, M4, TO.

I I I I I I I I I I I I I I I I I I I I I I I I I
I I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I
I I

‘
IQ 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 1 0 0 0 0 0  0

24 6 0

This number is the quotient of 135 B9 and 15 83 which is 9
B3, M5, TO. The M field is calculated as the difference between
the M field of the dividend and the divisor + 1 which results in
an extra safety bit being generated.

The T field of the quotient is chosen to be the smaller field
of the input arguments. The conditional equations are shown below.

Mresuit = M1 — M2 + 1

Tr s l t  = T1 
- if T1 < T2

T 1t = T2 if P1 >

D. Subroutine Call M and P Fields

• A-il subroutine calls used in equations assume that arguments
are passed in the MQ with predetermined BMT fields. A table of

• allowable library subroutines and their BMT formats is kept within
the compiler. If a programmer wishes to use his own subroutine
call and enter the routine at run time, the compiler will assume
it to have both input and output formats of Bll, Mll, Tll. If the
subroutine uses a different format, correction can be made with
a CORR pseudo—op. The M and T ranges for the results of each sub-
routine as a function the input are given below. The T field
for the majority of th’ results is arbitrarily set to T6. If the

33
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programmer is confident of the number of bits he wishes to carry,
he can make use of the CORR pseudo—op again to enter his own T field .

LOG (e)

INPUT M OUTPUT M T = 6

ll= M > 6  M =  3

5 = M > 3  M = 2

2 = M > 0  M = l

M =  2

— 5 = M > — l l  M =  3

EXP (e)

INPUT M OUTPUT M T = 6

M = 3  M = 1 1

M = 2  M = 6

M = l  M = 3

M = 0  M = 2

LOG2 (2)

INPUT M OUTPUT M T = 6

l l = M > 9  M = 4

• 8 = M > 5 M = 3

4 = M > 2  M = 2

l = M > 0  M = l

—1 M > — 2 M =  2

— 3 = M > — 6  M =  3

—7 = M > — 1 0  M =  4

34 •
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EXP2 (2)

INPUT H OUTPUT M T = 6

M = 4  M = l l

M = 3  M = 8

M 2  M = 4

M 1  M = 2

M 0  M l

LOGC (10)

INPUT H OUTPUT M T = 6

1 1 = 1 4 > 6  M = 2

5 = M > 0  M = l

— l = M > — l O  M =  2

SIN(rad)

INPUT M OUTPUT M T = 6

M > 0  M = l

M~~~-l M = M input

COS (rad)

INPUT M OUTPUT M T = 6

any M M = l

35 
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SIND(deg) 
S

INPUT M - OUTPUT M T = 6

M > 7  M = l

— 6 < M < 6  M = M— — Input

COSD(deg)

INPUT M OUTPUT M P = 6

any M M = l

AS IN

INPUT M OUTPUT M P = 6

M < - l  
S 

M M i~~~ t

M = 0  M 1

• ACOS

INPUT M OUTPUT H T = 6

any M M 1

ASND

INPUT M OUTPUT M P = 6

M~~~—1 M = M input + S

M = 0  M = 7

S ~~~

- •

~~~~~~ 
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ACSD

INPUT M OUTPUT M T = 6

any M M = 7

• SORT

INPUT M OUTPUT M T =

any H M = Min~ut

ATAN

INPUT M OUTPUT M T = 6

any M M = l

ATND

INPUT M OUTPUT M T = 6

any M M = 7

E. Equality M and T Fields

The equality operation is always the last operation in the
evaluation of an equation. If the argument on the left of the equal
sign does not appear in an ASSN statement or has all three BMT fields
unspecified , then the BMT fields of the final result on the righ t
side of the equation will be assigned to it. If the argument is
defined by an ASSN with only the B field specified , then the result

S on the right is shifted to make it obey the ASSN B field. The M
and P fields of the right side result are assigned to the argument.
In summary, the BMT fields of an argument that are specified in
an ASSN statement overwrite the ones generated by the right side

• 37
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of the equation . When B is not specified , the argument is shif ted
to make its u .s. parameter equal to zero.

F. Exponentiation H and T Fields

The exponentiation operation uses two subroutines , EXP2 and
LOG2, to realize the raising of an argument to an argument power.
A multiplication is also performed within the macro in the order
LOG2, multiply , and EXP2. Using the rule for multiplication and
the transformations for the subroutines, the M and T fields for
the result of exponentiation can be obtained .

C

38 
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CHAPTER V

SPECIFIC MACRO REALI ZATION

The Macro Approach discussion of section II states that the
compiler will create a string of specific macros to most efficiently
realize the equation. For the macro approach to be feasible, all
the specific macro expansions must fit in the remaining pass 2 core
after the Macro Expansion routine itself has been entered ; there
are only 920 decimal locations to house both the routine and the
expansions.

The number of the specific macros for each operation is based
on the problem of having an argument with three arbitrary parameters ,
U.s., *r.s., and B, being operated on by another argumen t also
with three arbitrary parameters. Prior to the operation , each argu-
ment can be in core, the AC, or the MQ. At the completion of the
operation, the result can be stored in core, left in the MO, or
left in the AC with an arbitrary binary point different from the
one immediately generated by the operation .

The addition and subtraction macros were investigated first
since they require alignment of the binary points which is not

• necessary for the other operations. Principles and short cuts
revealed in these investigations are applied to the other operations.

A. Addition and Subtraction Investigation

Section IVA stated that there is no difference between addition
and subtraction in the calculation of the MT data. The general
macro mnemonic , ADDM, is the name of the set that contains all the

• addition specific macros; each specific macro is an element of ADDM.
• SUBM is the name of the set that contains all the subtraction speci-

fic macro elements; they have a one—to—one correspondence with each
element of ADDM. In the discussions to follow, addition will be
synonomous with both addition and subtraction. This investigation

• will determine the minimum number of specific macros necessary to
realize any possible addition situation .

• The minimum number of elements in ADDM, and the form of each,
is found by using the product rule of combination and permutation
theory. First the maximum theoretical number of elements is found
based on the arbitrary parameters of the arguments , then the ele-
ments that are meaningless or not unique are eliminated . In the
product rule shown below, the symbol tA stands for the number of

• add macros. CORR flexibility is not taken into account in the
element elimination process.

39
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

ARG1 in AC,MQ,or core
:~ARG2 in AC,MQ,or core

= (3) (3) (3) (3) (3) (3) = 729 ARG1 L.s.,R.s.,N.s.
ARG2 L.s.,R.s.,N.s.
ARG3 L.s.,R.s.,N.s.
ARG3 in AC,MQ,or core

With an average length of five instructions per macro, there
are (5) (729) = 3645 memory locations needed to hold the ADDM set
alone. Only C 920 — Macro Expansion code ) are available for all
the operations, so element elimination is critical.

Combining the location of the input argument and the possible
shif t, the product rule can be rearranged. For brevity , 1 and 2
will refer to ARG1 and ARG2 respectively. As an example, 1AC—2C
will be ARG1 in the AC and ARG2 in core.

((1AC-2C) (1AC-2AC) (1AC-2MQ)
1(1MQ-2AC) (IMQ-2MQ) (IMQ-2C)
((2AC—1MQ ) (2AC—lC) (1C—2C )

ARG3 in AC,MQ,or core
tA = (9) (9) (3) (3) = 729 ~~ARG3 L.s.,R.s.,N.s.

((lLs—2Ls) (lLs—2Rs) (lLs—2Ns)

~ 
(lRs—2Ls) (lRs—2Rs) (lRs—2Ns)
((lNs—2Ls) (lNs—2Rs) (lMs—2Ns)

Only one of the input arguments can be in the AC or MQ prior
to macro entry even though addition can occur between operational
registers. This is consistent with optimization between macros,• and not across , as stated in section IA. It is also impossible
for both ARG1 and ARG2 to be simultaneously in the AC, or the MQ.

S Therefore the following combinations of input arguments can be
eliminated.

ARG1 in AC, ARG2 in AC (1AC—2AC)

ARG1 in MQ, ARG2 in MQ (1MQ—2MQ)

ARG1 in AC, ARG2 in MQ (1AC-2MQ)

ARG1 in MQ, ARG2 in AC (1MQ—2AC)

This is a significant reduction in the number of elements in
ADDM

tA = (5) (9) (3) (3) = 405
It is not obvious, but within the remaining 405 elements there

is an extra degree of freedom that has no effect on the result of •
• the addition as it is described by its MT parameters. It is imma—

terial where within the 24 bits that the addition is performed as
• long as the binary points of the input arguments align and the #l.s. 

S
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and *r.s. barriers are not violated . Since it does not matter ,
a restriction can be imposed without any effect on the possible
addition situations that can be realized by ADDM.

There are a number of possible restrictions, but the most
- advantageous in both the minimization of the number of specific

macros and in computational accuracy is the #l.s. parameter zero
criterion. It requires the shifting of the input arguments such
that the result has its #l.s. parameter equal to zero. In the
addition of two arguments , the one with the largest H field is left
shifted until its U.s. parameter is zero. The other argument is
shifted to align the binary points. The immediate result of the
addition has an M field of +1 greater than the largest M field of
the input which yields a U.s. parameter of —1. The result is right
shifted one position to conform to the criterion. Computational
accuracy is enhanced by the left shifting because an unofficial
P field of arguments and results is carried throughout the macro
string that can compensate for the choice of smallest T field for
results and P6 assumption for subroutine calls. Below is shown
a further detailed account of the remaining 405 specific macros
according to the location of the input arguments.

lC—2MQ (9) (3) (3) = 81 ARG1 in core, ARG2 in MQ
S 

1C—2AC (9) (3) (3) = 81 ARG1 in core, ARG2 in AC

2C—1MQ (9) (3) (3) = 81 ARG2 in core, ARG1 in MQ

2C—1AC (9) (3) (3) = 81 ARG2 in core, ARG1 in AC

1C—2C (9) (3) (3) = 81 ARG1 in core, ARG2 in core

405 add macros

With every macro always right shifting the result one position
to meet the criterion , the no shift and left shift possibilities
of the result are eliminated. The criterion also eliminates the
possibility of shifting both input arguments right. It is impossible
to shift both right and obtain a result that has to be shifted right
one position to make its #l.s. parameter equal to zero. The elimin-
ation of the right shift of both input arguments reduces the input
shift combination from (9) to (8). The elimination of the no shift
(Ns) and left shift (Ls) of the result reduces the output shift
combination from (3) to (1).

43~
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Eliminated Combinations

1C—2MQ (8) (1) (3) = 24 (lRs—2Rs) ARG3 Ls, Ns

lC—2AC (8) (1) (3) = 24 (lRs—2Rs) ARG3 Ls, Ns

2C—1MQ (8) (1) (3) = 24 (lRs—2Rs) ARG3 Ls, Ns

2C—1AC (8) (1) (3) = 24 (lRs—2Rs) ARG3 Ls, Ns

1C—2C (8) (1) (3) = 24 (lRs—2Rs ) ARG3 Ls, Ns

T2~~ add macros
The hardware limitation discussed in section lB restricted

arithmetic right shifting to the MQ alone. The AC can perform only
S logical shifts; it cannot execute an arithmetic right shift which

is necessary with negative arguments. Below are shown the macro
possibilities that this fact eliminates.

Eliminated Combinations

1C—2MQ (8) (1) (3) = 24

- 
S 

lC—2AC (6) (1) (3) = 18 (lLs—2Rs) (lNs—2Rs)

2C—1MQ (8) (1) (3) = 24

2C—1AC (6) (1) (3) = 18 (2Ls—lRs) (2Ns—lRs)

• lC—2C (8) (1) (3) = 24

T~~~~ add macros
The U.s. parameter zero criterion assures that all results

that are generated by one of the macro sets will have their U.s.
parameter equal to zero. The only way a macro can have an input
argument appear in an operational register is for it to have been
left there by a previous macro. Therefore by definition it has
its U.s. parameter equal to zero and cannot be left shifted . Below
are shown the macro possibilities that this fact eliminates.

Eliminated Combinations

lC—2MQ (5) (1) (3) = 15 (2Ls—lLs) (2Ls—lRs) (2Ls—lNs)

1C—2AC (3) (1) (3) = 9 (2Ls—lLs) (2Ls—lRs) (2Ls—lNs)

2C—1MQ (5) (1) (3) = 15 (2Ls—lLs) (2Ls—lRs) (2Ls—lNs)

2C-1AC (3) (1) (3) = 9 (2Ls—lLs) (2Ls—1RS) (2Ls—lNs)

1C—2C (8) (1) (3) = 24

S 

~ add macros

42
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Before any further reductions are made, the table is shown
again with the remaining shift possibilities innumerated for clarity .

1C—2MQ (lLs—2Rs ) (lLs—2Ns ) (lRs—2Ns) (lNs—2Rs) (lNs—2Ns)

lC—2AC (lRs—2Ns) (lLs—2Ns) (lNs—2Ns)

2C—1MQ (2Ls—lRs ) (2Ls—lNs) (2Rs—lNs) (2Ns—lRs ) (2Ns—lNs)

2C—1AC (2Rs—lNs) (2Ls—lNs) (2Ns—lNs)

lC—2C (lLs—2Ls) (lLs—2Rs) (lLs—2Ns) (lRs—2Ls) (lRs—2Ns)

(lNs—2Ls) (lNs—2Rs ) (lNs—2Ns)

In the 1C—2MQ line, ARG2 is in the MQ so ARC1 cannot be right
shifted. This eliminates the (lRs—2Ns) possibility .

The only difference between the (lLs—2Ns) and the (lNs—2Ns)
possibilities of lC—2MQ and the same ones of lC—2AC is the operational
register that ARG2 is located in. The redundancy is eliminated
by incorporating both possibilities into 2C—1MQ. A similar situation
exists between the (2Ls—lNs) and the (2Ns—lNs ) of 2C—1MQ and the
same ones of 2C—1AC. Both possibilities are incorporated into
2C—1MQ. The table below shows the specific macro elements that will
be contained in ADDM; the minimum set has been found .

1C—2MQ (4) (1) (3) = 12 ((lLs—2Rs) (lLs—2Ns )

(lNs—2Rs) (lNs—2Ns)

1C—2AC (1) (1) (3) = 3 (lRs—2Ns)

2C—1MQ (4) (1) (3) = 12 ((2Ls_lRs ) (2Ls—lNs)

(2Ns—lRs ) (2Ms—lNs)

2C—1AC (1) (1) (3) = 3 (2Rs—lNs)

3 1C—2C (8) (1) (3) = 24 all eight possibilities
- 

• 5T add macros in ADDM

- The tl.s. parameter zero criterion has been instrumental in
reducing ADDt4 to just 54 specific macro elements. SUBM also has

- 54 elements. The eight subsets that house the elements are shown
in Appendix C complete with the expansion code of each element.
They are AX1X through AX8X for addition , SX1X through SX8X for sub—

• traction; one subset for each possible shift combination.

The technique for determining the shift parameters of the
arguments and binary point of the sum can be expressed as conditional

• equations.
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PAR1 = ( U.s. of ARG1 if M~ > M2.

0 if B1 = B2 and U.s. of ARG1 or ARG2 is zero.

I difference between the adjusted binary point of ARG2
~ and the unadjusted binary point of ARG1 if M2 > M1.

PAR2 = U.s. of ARG2 if M2 > M1. 
S

0 if 
~2 

= and #I.s. of ARG2 or ARG1 is zero.
difference Between the adjusted binary point of ARG1
and the unadjusted binary point of ARG2 if H1 > M2.

PAR3 = 1

BARG3 = J adjusted binary point of ARG1 — 1 if M1 > M2.
(ad justed binary point of ARG2 — 1 if H2 > H1.

Adjusted binary point is defined to be the sum of the U.s.
parameter of an argument and its binary point. Adjusted binary
points are compared to determine the PAR1 and PAR2 of a macro to
be consistent wi th the #l.s. parameter zero criterion .

B. Multiplication Investigation

The variety of possible multiply Situations is not as great
as in addition and subtraction because alignment of the binary points 

S

is not necessary . The #l.s. parameter zero criterion also simplifies
the macro investigation . The individual multiply macro must however
take into account the limitations imposed by the DISAC hardware.
Only positive numbers can be multiplied with the most significant
bits of the double precision result in the AC and the least signifi-
cant in the MQ. A further restriction dictates that one of the
arguments must be in memory and the other in the HQ prior to the
execution of the operation. The input arguments are shifted such
that the result will have its U.s. parameter equal to zero and
will appear in the AC.

The mechanics of fixed point multiplication can be expressed
in terms of the binary points of the input arguments even though
the operation itself is independent of the concept. Two arguments
with binary points of BX and BY respectively , will yield a result
with a binary point of BX + BY. As an example, if ARG1 is 318 in
the MQ with the AC zero, and ARG2 is B12 in core, the double pre-
cision product will have a B30 binary point treating the AC and
the MQ as a single 48—bit register . This was first introduced in
section IVB without explanation and without the restrictions of
the tl.s. parameter zero criterion imposed.

The restriction of a single precision result using only positive
arguments is realized by left shifting the input arguments so the
result will have the greatest binary point possible. This insures
that the H field of the result will be left justified in the AC

44
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(most significant par t) and the T field will extend over into the
MQ (least significant part). By retaining the AC as the single
precision result, the most significant parts of the M and P fields
will describe the result. A 330 binary point becomes (30 — 24)
= 6 or B6 with the discarding of the MQ bits. This single precision
restriction independently approaches the design of the U.s. para-
meter zero criterion though not completely. There still exists
some latitude as to what extent the arguments are left shifted .
If both arguments are shifted such that their #l.s. parameters are
zero, the immediate result of the multiplication would have a U.s.
parameter equal to 2. The result would have to be left shifted
twice to make it conform with the criterion . The left shift of
the result is cumbersome since addition and subtraction always right
shift the result one position. Since the input arguments are made
positive, and DISAC’s hardware is not a signed multiplier , they can
be shifted two positions beyond the U.s. parameter barrier without
clipping the data. If one of the input arguments was left shifted
until it had a U.s. parameter equal to —2 and the other shifted
until its #l.s. parameter was —1 , then the multiplication would
yield a result that would have to be right shifted one position
to make the #l.s. parameter equal to zero. This is desirable because
now multiplica tion, addition, and subtraction would all shift results
in the same fashion, but this is an artificial shift. The shift
instruction can be saved by shifting each input argument until the
#1.s. parameter is equal to —1. The result of the multiplication
will always have its #l.s. parameter equal to zero with no additional
shift required . The same effect could be achieved by the method
of shifting one argument until its #l.s. parameter was —2 and the
other until its U.s. parameter was 0. This was considered but
not chosen because it would at least triple the number of multi—
plication• specific macros for only a 6% savings in code per macro
and a 2% savings in speed. As a result, the general macro HULM
has only one subset, HX1X , which contains the nine specific macro
elements. The need for the nine elements can be determined from
the product rule as in addition.

______________ ARG3 in AC, MQ, or core
= (3) (1) (1) (~~~) = 9 ‘(lC—2C) (1MQ—2C) (2HQ—lC)

(lLs—2Ls)
ARG3 Ns

The expanded list of each specific macro is shown in Appendix C.

• The technique for determining the shift parameters of the
arguments and the binary point of the product is shown below.

PAR1 = U.s. of ARG1 + 1

• PAR2 #1.s. 0f ARG2+l

PAR3 = 0
BARG3 = ~~~ + #l.S.)ARG1 + (B + #l.s.)ARG2 - 22
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C. Division Investigation

As with multiplication, division is not dependent on the
alignment of the binary points of th4 arguments. The individual
division macro must take into account certain restrictions imposed
by the DISAC hardware. Only a positive number can be divided .
A fur ther restriction is that the magnitude of the mos t significant
bits of the dividend must be less than the magnitude of the divisor .
The divisor must also be a positive number and must be located in
core. The single precision result must have its #l.s. parameter
equal to zero and will appear in the MQ.

The mechanics of fixed point division can be expressed in terms
of the binary points of the input arguments. If the dividend has
a b inary point of BX and the divisor has BY, then the quotient will
have a binary point of BX — BY. As an example, if ARG1 (the divi-
dend) is Bl8 in the MQ with the AC zero and ARG2 is Bl2 in core,
the quotient will be 36 in the MQ. If the above binary points were
the left justified versions of the arguments, then ARG1 has an M
field of 4 and ARG2 had an H field of 10. The equations of section
IVC dictate that the quotient should have an H field of (4 — 10 + 1) or
—5. The — 5 M field combined with the B6 binary point yields a #l.s.
parameter of the quotient of 21. Therefore it would have to be
left shifted 21 times to comply with *l.s. parameter zero criterion .
This unacceptable development can be corrected by considering the
dividend to be a double precision number.

Multiplica tion of a single precision number in the MQ by a
single precision number from core yields a double precision result
in the AC and the MQ with the most significant bits in the AC.
Since division is the inverse of multiplication , a double precision
d ividend wi th the most significant bits in the AC and least signifi-
cant bits in the MQ yields a single precision quotient in the HQ
when divided by a single precision number from core.

In the example above, ARG1 is placed in the AC to give the
dividend a binary point of (18 + 24) or 342; its low-order bits
in the MQ are set to zero. This double precision dividend is divided
by ARG2 which is in core and has its binary point at Bl2. The M
fields of the arguments are the same as before. After the division ,
the quotient is (42 — 12) or B30 in the MQ with an M field of —5.
The #1.s. parameter of the quotient is —3 which would require a
right shift of three to make it zero. The right shift is a
possibility , but it can be avoided . The division was done with
both ARG1 and ARG2 left justified with their #l.s. parameters equal
to zero. Since only positive division is allowed, the divisor can
be made to have its U.s. parameter set to —2 before the division S

without clipping errors. ARG2 would now be 314, in the example,
to yield a quotient of B27 if the dividend is shifted left 23 times
from the MQ into the AC to make it have a U.s. parameter of 1.
Therefore the quotient is B27, (41 — 14) , with an M field of —5
and a #l.s. parameter of zero which is consistent with the criterion .
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With the placing of the ARG1 in the AC, the restriction of
the magnitude of ARG2 (divisor) being greater than the magnitude
of ARG1 becomes potentially hazardous. If this condition is not
met, an erroneous quotient is generated by the division hardware .
Below is illustrated how the —2 divisor and +1 dividend U.s. para-
meter method tends to reduce the chances of an illegal division .
For an error to occur , the dividend must have its M field exactly
describe the data and the M field of the divisor must be over—
specified by four bit positions.

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I , I I I I I I I I I I I I I
I I
I I
I , I

The MQ is zero
000 ’M field IT field

I I I I I
I I

48 B 24 0

Th e above is the representation of the double precision dividend
with a U.s. parameter equal to 1.

I I I I I I I I I I I I I I I I I I I I I I
I I

I I

M field T f i eld
I I
I ________________________ I

24 B 0

The above is the representation of the divisor with a U.s.
parameter of —2.

The f i r s t  three bits of the dividend are always zero , and the
divisor always has its M field left justified. This three—bit differ-
ence should afford enough safety to eliminate the division hazard for
all practical purposes. Should it arise, it can be corrected with the
CORR pseudo-op.

The criterion and the hardware limitations of DISAC cause DVSM
- to have only one subset, Dxix , to house all nine of the division

specific macros. The need for the nine can be determined from the
product rule.

___________ ARG3 in AC , MQ, or core
= (3) (1) (1) (3) = 9 (1C—2C) (1MQ—2C) (2MQ—1C)

___________________ 
(lLs—2Ls)

ARG3 Ns

The expanded list of each specific macro is shown in
Appendix C.
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The technique for determining the shift parameters of the
arguments and the binary point of the quotient is shown below.

PAR1 = #l.s. of ARG1 + 23

PAR 2 = #l.s. of ARG2 + 2

PAR3 O

BARG3 = (B + tL5
~~ARGl — ((3 + t1•

~~
•
~~ARG2 — 21)

D. Subroutine Call Investigation

All the standard DISAC l ib ra ry  subrout ines require the passing
of a single precision argument in the MQ when the subroutine is
called. Argument passing in the AC is not realized . Binary point
alignment is necessary to make the argument conform wi th the input
format of the routine. The *l.s. parameter zero criterion states
that the result of the macro must have its *l.s. parameter equal
to zero. The immediate result of the subroutine must be shifted
to comply before the result is stored in core or left in an oper-
ational register. For both input and output, all three shif t
possibilities exist, but only the right shift of the result is used
to determine the number of specific macros.

The general macro CALM has three subsets, CX1X through CX3X,
with a total of 15 specific elements. The product rule can be used
to obtain this result.

ARG2 in core
— ARG2 Ls, Rs, Ns

IC = (1) (3) (3) (1) = 9 ‘ARG3 Rs
ARG3 in AC, MQ, or core

ARG2 in MQ
_______________-ARG2 Rs, Ns

= (1) (2) (3) (1) = 6 ‘ ARG3 Rs
ARG3 in AC, MQ, or core

15 call macros

Note that the conditions of the input argument being found in the
AC and the result being left shifted are absent. This is because
these conditions are not consistent with the criterion . The expanded
list of each specific macro is shown in Appendix C.

The technique for determining the shift parameter for the input
argument is to form the difference between the binary point of the •
argument and the binary point that the subroutine expects to see.
The absolute value of this difference is the value of the parameter .
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= IB format in - BARG2 I
The shift parameter for the result is shown below.

PAR 3 = 
~~forma t out + Mformat out~ 

— 22

The table of input and output BMT formats for the library
subroutines is given in section IVD .

E. Equality Investigation

The equality macro stores the result of a macro string in core.
The operation is dependent on the binary points of the two arguments.
The input, ARG1, must be shif ted to meet the b inary point of ARG2
if a binary point has been specified by an ASSW pseudo—op. All
three shift possibilities exist for this operation. EQUM has three
subsets , QX1X through QX3 X, which contain only five specific macro
elements in total. The product rule can again be used to show how
the five were determined .

________________________ ARG1 in core
= (1) (3) (1) = 3 ARG1 Ls, Rs, Ns

ARG2 in core

_____________________ ARGI in MQ
= (1) (2) (1) = 2 ~ ARG1 Ls , Rs

ARG2 in core
3 equality macros

The absence of leaving the result in the AC or MQ exists because
the function of the macro is to store the resul t  in core. The no
shift possibility is missing when the input is found in the MQ
because if no shift were to be performed , the previous macro would
have stored the result in core itself and eliminated the need for
the EQUM macro.

The technique for determining the shift parameter for the argument
and the binary point of the result can be expressed as conditional
equations.

- BARG2 ~~ARG1 if 8ARG2 is not specified

= BARG2 if BARG 2 is specified

PAR1 = BARG2 - BARG1 if 8ARG2 is specified

PAR1 = 0 if 8ARG2 is not specified
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F. Exponent ia t ion Inves t iga t ion

Exponentiation is realized wi th the EXP2 and LOG2 subroutines ,
and a multiplication as stated in section IVF. This is possible
because the raising of a variable to a variable power can be broken
down into a simpler expression as shown below.

y = ab or ARG3 = ARG1ARG2

in2 (ARG3) = ln2(ARG1~~~
2)

ln2(ARG3) = (ARG2)ln2(ARG1)

ln 2(ARG3) (ARG2)ln2(ARG1)2 = 2

ln2(ARG3) (ARG2)n 2(ARG1)2 = A R G 3 = 2

ARG2
The exponentiation of ARG1 is realized by taking the

logarithm to the base 2 of ARG1, multiplying it by ARG2, and f inally
the base 2 is raised to this product power. The calling of sub— S

routines and multiplication have previously been defined as macros.
It is possible to use them to realize exponentiation and thereby
eliminate the need for any further investigat ion into creat ing a
separate macro for exponentiation . Instead of seven mathematical
operations being realized , only six need be considered from this
point on. Shown below is the macro realization of EXPM.

EXPM B A $V00 $ CALM EXP2 B $V00
MULM $V00 A $V00
CALM LOG2 $V00 $V00

Being able to make this transformation is a considerable savings
in pass 1.5 and pass 2. No evaluation routines are needed for expo—
nentiation in pass 1.5 and the expansion code for all the exponentia—
tion specific macros can be elimir

~
ted from pass 2.
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CHAPTER VI

THE DOPE ASSEMBLER AND THE ARIT HMETIC COMPILER

A minimum level, or two pass , assembler requires two scans
through the source deck. The first pass enters into the symbol
table every symbolic add ress that appears as a label on a source
card along wi th  i t s  re la t ive  location w i t h i n  the program . The second
pass recognizes the mnemonic in the instruc tion field and obtains
a matching machine code from a stored table. If the i n s t r u c t i o n
references a symbolic add ress in the program , a match is sought
in the symbol table. The r e l a t i ve  location is obtained and inser ted
in to the 24 bi t machine ins truc tion . The N mnemonic instructions
in the source deck have a one-to-one correspondence with the N machine
code i’~structions in the object deck.

The idea of the minimum assembler is the foundation for the
more sophisticated assemblers even as they approach the level of
the compiler. The design philosophy behind the addition of compiler
statements is to perform additional evaluations in pass 1 to t ransform
the statements to assembler code. Pass 2 is then kept as that of
the minimum assembler. With unlimited core, this can be done; but
DISAC has a very stringent core res tric tion that causes d istor tion
between the functional passes and the actual physical passes of
the DOPE assembler. The addition of the arithmetic compiler com-
pounds the problem to the extent that another physical pass has
to be added , pass 1.5.

The Parsing Algorithm is the prior evaluation routine added
to physical pass 1, Macro Optimization is the prior evaluation
routine spilled over into pass 1.5, and Macro Expansion is a com-
bination functional pass 1 — pass 2 routine residing in physical
pass 2.

A. Pass 1 and the Parsing Algorithm

Three features require special emphasis within this pass because
of their relation to the arithmetic compiler.

- Subroutine calls to external routines require the crea tion
of a transfer vector . This is explained in reference 1 section 5.15.3.
In brief , the BCD name of each external routine is placed in a core
location at the physical end of the program . When the System links
the routines at run time, the absolute address of each subroutine
replaces the BCD name. Access is made through these addresses ,
the transfer vector. Every different subroutine mnemonic that appears
in a LET equation must also have an entry in the transfer vector .
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The Parsing Algorithm keeps a table of such entries that is saved
and interrogated when the transfer vector is created at the
termination of pass 1.5.

The second fea ture is the incremen ting of the locat ion counter
by some value if a general or specific macro is realized . For the
specific macro , the exac t length is obtained from a table, and the
location counter incremented by that amount. This gap is filled
in with the machine instructions that realize the specific macro
by Macro Expansion of pass 2. It is the length of the longest macro
of the set that is used to increment the location counter for the
general macro. When Macro Optimization of pass 1.5 replaces the
general macro mnemonic wi th the specific macro , the gap is
appropriately adjusted.

The general macro decision is the third feature added because
of the arithmetic compiler. The System always assumes that there
are no general macros or LET statements in a program ; therefore
it will Just load pass 1 and pass 2 in the assembly process unless
directed otherwise. Upon recognition or generation of a general
macro , a flag is set in the System selecting pass 1.5 as the next
pass to be loaded . A discussion of this capability of having both
general and specific macros in the source deck , not genera ted by
the Parsing Algorithm, is deferred until section VII.

B. Parsing Algor ithm Theory

The Parsing Algorithm conver ts the equation within the variable
field of the LET card image into one or more general macro card
images. The heirarchy of precedence of the operators, the order
in which the arguments appear , and the arguments being operated

S 
on, together determine which general macros are created .

In the operation of the Parsing Algorithm , the equation is scanned
from left to right on a character by character basis. It is able
to decide when it has scanned enough characters to form an argument ,
and to recognize that the argument is bounded on either side by
operators. Pushdown stacks are used to remember which arguments
and which operators have been scanned. In a systematic way , the
arguments and operators are tested to see if their relation to each
other matches an allowed combination as specified by the Precedence

5 Table. When appropriate combinations are recognized , general macro
images are created which specify the operation and the arguments
to be operated on.

The Precedence Table is shown in Appendix B along with the
rules for its use which together specify the syntax for the subset
of FORTRAN realized by the arithmetic compiler. All allowable rela-
tionships between argument and operator can be generated , or deter—
mined , from this table. The recursive definition approach is strictly
followed in the logic of the Parsing Algorithm . Appendix A illustrates
the use of the table in a simple compilation example.
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-
• C. Pushdown Stacks and Tables

Two pushdown stacks, Opt and Opn, are needed to store ,
respectively , the operators and arguments that have been scanned
but not yet used to create a general macro. Entries and deletions
occur in pairs such that an argument and its following operator
are always entered and removed simultaneously from their respec tive
stacks. Since parentheses just rearrange precedence and are not
strict mathematical operators, they are just single entries which
leave a correspond ing void in the Opri stack.

The use of pushdown stacks greatly simplifies the logic needed
to generate general macros. The latest entries into the stacks
and the c u r r e n t  argument being interrogated always make up the current
general macro. There is very little programming needed to do the
actual parsing . Only 128 decimal locations are needed to parse any
allowable FORTRAN equation . This includes detection of errors in
syntax. Less than 5% of the code required to realize the arithmetic
compiler is dedicated to parsing .

Only one table is needed in the Parsing Algorithm . This is
the TMPR table which keeps track of the temporary storage location
mnemonics. Symbolic addresses allowed by DOPE must consist entirely
of numerals or letters , wi th at least one letter. No special charac-
ters are allowed. For the temporary storage locations, the mnemonic

— 
was chosen. The 

— 
are numerals that range from 00 to 99.

One hundred temporary locations are possible within a program , but
rarely will $V05 be exceeded even for the most complex equation.
Due to the TMPR table, it is the most complex equation , and not

S the number of LET statements, that determines how many temporary
storage locations a program will require.

When the first general macro image is created , the three
argumen ts, ARG1, ARG2 , and ARG3 are Opn (I), OPND, and $VOO respec-
tively . The temporary storage location, $VOO, is entered in TMPR.
The result of the mathematical operation performed on ARG1 and ARG2
is to be stored in $VOO. In a subsequent general macro, from the
same equation , $VOO will eventually appear as an ARG1 or ARG2.
When it does, its purpose of saving the partial result is completed
and it can be used again as an ARG3. Below is shown a typical string

• of general macros in which no effor t is made to reuse available
— 
locations.

ADDM ALFA B $VOO
SUBM $VOO C $VOl
MULM DLTA ETS $V02
ADDM $VO1 $VO2 $V03
DVSM F $V03 $V04
EQUM $V04 ANSW

Five temporary storage locations are indicated , $VOO through
$V04. The program which has the equation that generated the above
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string of macros will have to be five locations longer to accomodate
them. 

S

Using the TMPR table to remember which of the $V ‘s can be
reused, would yield the following string of macros for the same
equation .

ADDM ALFA B $VOO
SUBM $VOO C $VOO
MULM DLTA ETA $VOl
ADDM $VOO $VOl $VOO
DVSM F $VOO $VOO
EQUH $VOO ANSW

The string now requires only two temporary storage locations,
$VOO and $VO1.

New temporary storage locations are created by starting at
the original entry of TMPR, which is always $VOO, and scanning until
the last $V 

— 
is seen. For example, SVO3 could be the last entry

in TMPR. TFie new $V will use the next highest numerical mnemonic;
in this example it is ~VO4. Each time a $V is used as an ARG1
or ARG 2, its mnemonic is taken out of the table. Below is shown
a typical TMPR table before $V03 is used as an ARG1 or ARG2. The
end of TMPR is at K = 6.

- K TMPR

0 $VOO
1 $VOl
2 $V02
3 $V03
4 $V04
5 $VO5
6

After $V03 is used, it is removed as shown below.

K TMPR

0 $VOO
1 $VOl

- 2  $V02
3
4 $V04
5 $VO5
6

The effective end of the table is now at K = 3. When there
- 

is a need for a new temporary storage location, $V03 will be created ,
S 

not $V06.
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This technique minimizes the number of possible temporary storage
locations that have to be added to the program .

There is one of the $V ~ that is reserved and not affected
by the TMPR table. It is $V9L the location that is needed if a
MULM or DVSM macro occurs in the program. Due to the fact that
DISAC’s hardware multiplier/divider cannot handle signed numbers ,
the values of the arguments must be made positive. This temporary
storage location holds the absolute value of the multiplier/divisor
which keeps the original value of the argument unchanged in core.

D. Pass 1.5. and Macro Optimization

As previously stated , pass 1.5 was created expressly for the
macro optimization function because there was not enough core avail-
able in pass 1. Pass 1.5 also updates the symbol table and the
card image relative location values, and inserts certain symbolic
addresses and the transfer vector at the physical end of the • program.
The size of the program is fixed at the termination of pass 1.5.

Each card image that comes through pass 1 from the source deck
has associated with it a relative location value. Gaps in successive
relative location values corresponding to the length of the longest
specific macro were introduced between general macros. Once a speci-
fic macro is chosen to replace the general macro, the gap must be
updated. Not only is the relative location of every card image
affected from that image to the end of the program , but the correction
factor itself is accumulative. Every time a specific macro choice
is made, the correction factor must be updated .

Recognition of the END card causes a scan to be made of the symbol
table to find all the symbolic addresses that do not have their
relative location fields filled in. Use of the ASSN and DIMN pseudo—
ops can cause this condition, as well as each time a $V is created
in pass 1. The symbolic addresses that are found are entered at
the end of the program as successive labels thus reserving a core
location for each. The transfer vector is inserted immediately
after the label list; the writing of the END mnemonic is delayed

j  until the end of the transfer vector. When it is copied onto the
output buffer tape, pass 1.5 is terminated and control goes back

- 
to the System to bring in pass 2.

E. Macro Optimization Theory

Optimization has many connotations. The nuance implied here
S is to eliminate the needless storing and loading of partial results

throughout the macro string . No attempt is made to realize the
equation in any other way than the programmer wrote it. Macro op—
timization , not equation optimization , is the intent.

The function of Macro Optimization is to convert a string of
general macro card images into a string of specific macros. There
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is a general macro mnemonic for each of the seven mathematical opera-
tions. It specifies the operation , and the variable field holds
the arguments involved. As mentioned before, the general macro
mnemonic can be considered to be the name of the set of all possible
macros that perform the operation. The number of elements in each
set was determined in section V.

Figure Cl is a pictorial representation of the set concept
for the six independent mathematical operations. The subset structure
is shown for each. The finer details of macro group and specific

S element are shown in Figures C2 through CS.

The macro approach yields a four—step procedure that must be
used for specific macro selection. The first step is the operation
determination which has already been discussed ; it is performed by
the Parsing Algorithm when it selects a general macro mnemonic.
Macro Optimization realizes the remaining three steps.

The second step is concerned with the positioning of the input
arguments according to an evaluation criterion that has been estab-
lished. This is the #1.s. parameter zero criterion discussed in
section VA. All elements of a general macro set can be segregated
into subsets according to how the input arguments are shifted .

The third step takes into account how the input arguments are• obtained. Within each subset there are groups of elements according
to whether the input arguments are obtained from core or one of
the operational registers.

The final step is concerned with the depositing of the result.
Within a macro group there can be three specific elements. They
differ from each other only in what they do with the result of the
operation. The possibilities are to leave it in the AC, the MQ,
or to deposit it in core.

In summary, Macro Optimization makes a series of choices.
A macro subset is selected from the general macro set based entirely

H on the SIFW word parameters of the arguments in the variable field.
A macro group is chosen from the subset with the result of the previous
macro taken into account. The final choice is the selection of

S 

- a specific macro element from the group based on the input to the
following macro.

F. Partition Concept of Specific Macros

The set structure implies that the specific macro code consists
of parts that are independent of each other. The sole determin-
ation of macro subset for the Kth macro of a string is based on
the SIFW word parameters of its arguments. Exactly where the argu-
ments come from or where the result is to be stored does not affect
the subset choice. The operation, the input , and the output portions
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of the code are equally independent of each other. This characteristic
is described as the partition concept and is illustrated below.
The AD1O specific macro is used as the example.

AD1O LDMQ ARG1 Partition 1
- LDAC ARG2

QLS PAR1
ALS PAR2 Partition 2
AACQ
AQRS PAR3
STMQ ARG3 Partition 3

This version of AD1O is slightly different from the one shown
in Appendix C. It is rearranged above to illustrate a visible divi-
sion between the partitions. They have equivalent functional
divisions.

Partition 1 obtains the input arguments , partition 2 performs
the mathematical oper~tion , and partition 3 stores the result.Taking AD1O as the ~tn macro of a string , it can be seen that the
code of partition 2 cannot be reduced. There is the possibility
for instruction reduction for partitions 1 and 3, however , depending
on the preceding and following macros. Below is shown a portion
of a string before the optimization process is begun. The illus-
tration assumes both additions are represented by AD1O for simplicity.
This string could be generated from the section of the following
equation.

LET B + C + D +

Kth _ 2

AD1O LDMQ B
LDAC C Partition 1
QLS PAR1
ALS PAR2

Kt~ — 1 AACQ - Partition 2
S 

AQRS PAR3
____________ STMQ $VOO Partition 3

AD1O LDMQ $VOO
LDAC D Partition 1

S - QLS PAR1
Kth ALS PAR2

- AACQ Partition 2
- AQRS PAR3

___________ STMQ $VOO Partition 3

Kth + l

• The last thing partition 3 does is to store the result of its
• operation in $VOO and the first thing that partition 1 of the follow—

ing macro does is load that result from location $VOO. At the end
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of partition 2 of the Kth — 1, the result is in the MQ. At the
beginning of partition 2 of the Kth, that result is back in the S

MQ. Both the store and load (STMQ $VOO and LDMQ $VOO) can be elimi-
nated without affecting the performance of either mathematical oper-
ation. Just in this one boundary alone, there can be a savings
of two memory locations in length and four machine cycles in speed.
This result is consistent with the definition of optimization stated
in seci ion IA.

G. Pass 2 and Macro Expansion

The pr imary responsibility of pass 2 is to use the symbol table
generated by pass 1, and its own opcode table, to form the 24 bit
machine language word for each mnemonic card image read from the
input buffer tape. This function is performed in an ‘appropriate
evaluation routine ’ depending on which mnemonic is in the instruction
field. If a specific macro is detected , then control is transferred
to the Macro Expansion routine.

There are 54 specific add macros, 54 subtraction, 9
multiplication, 9 division, 5 equality , and 15 subroutine call spe-
cific macros. This is a total of 146 specific macro mnemonics that
must appear in a comparison table to determine if the input image
is in fact a specific macro. The checking procedure would be time—
consuming since each input image would not only have to be compared
with the opcode table to find the appropriate evaluation routine ,
but also with the 146 images of the macro comparison table. The
opcode comparison table is unavoidable, the macro table is not.

S At the time it was presented , there seemed to be no reason for
choosing the D_ 

—
, _E 

—
, and _F element distinction within a

group and the use of t1~e numerical ~igits in the last two positionsof each mnemonic. By doing so, the 146 comparisons can be reduced
to six mask and compare operations with a macro comparison table
of length six. The BCD characters D, E, and F differ from each other
in the six bit numerical code by just the final two bit positions;
D = 010100, E = 010101, and F = 010110. All BCD numerals can be
distinguT~hed from aI~habetic characters expressed in this code ina similar fashion. Combining this with the unique first character
of each mnemonic, the macro comparison table need contain only six
entries; AD , SD , MD , DD , CD , and QD . The nota-
tion means ih~ bit p~tter~ ~f th~ ~emai~ii~g 24 bit w~rd of e~cT~ mnemon-ic is zero. The mnemonic on the card image is masked so that if the
second- BCD character is a D, E, or F it will become a D, and if the
last two BCD characters are numerals, they will become a pattern
of all zeros. An alphabetic character in those positions will not 

S

yield a pattern of all zeros and no match will be found on the macro
comparison table. Using this mnemonic scheme yields a worst case
savings of approximately 76% in time for the scanning procedure and
a savings of approximately 140 decimal words of pass 2 core which

S is at a premium .
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The opcode table consists of two data lists. The first , LIST1,
S contains every allowable mnemonic that can be placed in the instruc—

tion field of a card image. When a match is found through a scanning
process, the data word is obtained from the corresponding position
in the second list, LIST2. Twelve bits of this 24 bit word contain
the address of the appropriate evaluation routine and the remaining
12 bits contain the bit pattern for the opcode portion of the machine
language equivalent to the card image instruction.

H. Macro Expansion Theory

Macro expansion is necessary in pass 2 because there is not
enough core in pass 1 to hold the BCD expansion of each of the 146
specific macros. If this were possible, then instead of specific
macro mnemonics, a string of card images would be generated with
a single BCD assembler instruction per image. Pass 2 would then
be unable to distinguish the generated assembler images from the
ones that appear in the source program and would only have to deter-
mine the appropriate evaluation routine to use for each assembler
instruction. -

Under normal use, pass 2 expects to see BCD instruction mnemonics
and BCD symbols in the address field of the card image. It can write
the BCD card image directly on the output buffer tape as a part of
the listing. It uses the opcode table to transform from BCD mnemonic
to numerical machine code for the instruction field. This constructed
machine code instruction is written on the output buffer tape as
a part of the object deck. BCD instruction mnemonics require 24
bits (1 core word) of storage, six bits per character. The machine
code equivalent can be contained within 12 bits. Since core is scarce
in pass 2, it becomes advantageous to store the expansion of each
macro in machine code. This would leave 12 bits per word for a coding
scheme indicating how the address portion of each expansion instruction
is to be filled in.

Storing the machine code means that the BCD equivalent of each
instruction must be obtained to place in the listing. This is accom-
plished by using the opcode table in the reverse direction than which
it was originally designed. A 12 bit match is sought in LIST2 and
the corresponding BCD mnemonic is obtained in LIST1. The mnemonic
is placed in the instruction field of the card image that is being

- built in the CBUF buffer.

The address to the appropriate evaluation routine is retained
during the scan of LIST2. With the deciphering of the coding scheme
in the remaining 12 bits of the expansion instruction , the address
field of the card image in CBUF is filled in with BCD information .
Control is then given to the evaluation routine pointed to by the
LIST2 address and the card image is evaluated just as if it had ori-
ginally appeared in the source deck. The evaluation routine finishes
the task of forming the 24 bit machine instruction equivalent for
the object deck, then writes this machine language and the BCD card
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image on the output buffer tape as part of the object deck and the
listing respectively.

I. Core Requirements for Specific Macros

Appendix C holds the expanded versions of all 146 specific macros.
Even with the storing of the numerical machine language equivalent
and the address field coding scheme, one word of core per instruction
is required . It would take approximately 120010 core locations
to hold all the macros; this still exceeds the available locations.
The problem is solved by a technique called ‘selective loading ’.

There is similarity in the code for all the macros of a given
set and also similarities between certain pairs of sets; ADDM and
SUBM, MULM and DVSM, and CALM and EQUM. It is possible to map any
one of the specific macro elements into one of these three categories;
CASE1 for ADDM and SUBM, CASE2 for MULM and DVSM, and CASE3 for CALM
and EQUM. It is possible to associate with each CASE a list of
machine instructions from which any one of the specific macros in
that particular category can be formed . Assuming this is possible,
each specific macro would have a control word associated with it to
point to which instruction within the list is to be used in forming
the code for the macro.

The format for the control word is that every bit within the
control word is associated with one instruction within the list.
The left most bit is associated with the first instruction in the
list and the fifth bit from the left is associated with the fifth
instruction in the list. Care must be taken in the forming of the
CASE_ list since the order of instructions for all macros within the
category must be preserved within the single list. The control word
dictates which instructions are to be deleted or used proceding from
top to bottom of the list. There is no order information in the
control word; order has to be inherent in the list. This is one reason
why more than a single list is needed for all 146 specific macros.
A second reason is that control words have only 24 bits which implies
that it has control only on the first 24 instructions of the list.
Every macro within a category must be able to be formed by controlling
the first 24 instructions.

A ‘1’ in a control word bit position dictates that the
corresponding instruction is to be deleted in the forming of the
specific macro; a ‘0’ means it is to be used. The actual control
word is not limited to 24 bits in the general case. It can be consid-
ered to be a variable length word of which the left most 24 bits
can be ‘1’ or ‘0’ and the rest of it all zeros. The length of the
control word is equal to the length of the list. If there was a
macro (fictitious example) whole list was 124 instructions long, the
control word would have 124 bits. Only the first 24 could be speci—
fied ; the last 100 bits would be all ‘0’ which would cause the last
100 instructions from the list to be used in the generation of this
macro.
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Since a single list for all macros would have to be different
in more than the first 24 positions to accommoda te all 146 macros ,
three CASE_ lists are needed and are shown below.

- 
CASE1 CASE2 CASE3

LDMQ ARG1 LDAC ARG2 LDMQ ARG1
LDMQ ARG2 PMQA AQRS PAR1
LDAC ARG2 TACP *+2 LDMQ ARG2
QLS PAR1 CHSA AQRS PAR 2
AQRS PAR1 ALS PAR2 QLS PAR1
QLS PAR2 STAC $V99 QLS PAR2
AQRS PAR 2 LDAC ARG 2 CALL ARG 1
LDAC ARG2 PMQA AQRS PAR3
LDAC ARG1 LDMQ ARG1 NOP
ALS PAR 2 EMQA
ALS PAR1 ARS 23
AACQ SRAC *+6
SACQ TMQP *+2
AMQA CHSQ
SMQA ZAC
ADMQ ARG2 QLS PAR1
SBMQ ARG2 LLS PAR1
ADMQ ARG 1 DPDV $V99
SBMQ ARG1 MPY $V99
PACQ PACQ
CHSQ PADA **
AQRS PAR 3 TAC Z *+2
NOP CHSQ

AQRS PAR 3
NOP

The NOP position in each CASE is filled in with STMQ ARG3,
PMQA, or left blank depending on wT~ether the specific macro is a
_D 

—
, _E_ 

—
, or F_ 

— 
respectively.

An example is shown below illustrating the form and use of the
control word in generating a specific macro from a CASE list.

Specific Macro Control Word Expanded Control Word

AD1O 335 27773 OllOlllOlOlOlllllllllOll

AD1O LDMQ ARG1
QLS PAR1 —

LDAC ARG2 —
ALS PAR 2
AACQ
AQRS PAR 3
STMQ ARG3
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The saving in core made by using the selective loading technique
makes the arithmetic compiler for DISAC feasible. There needs to
be two tables each 52 locations long. The first table contains group
mnemonic , D , for each macro. The second is a corresponding table
of the conEr~l words. A single control word can be used for all
three elements since the D , E , F informa tion just affec ts
the entry into NOP. The ~~A~~E 1ists re~uir~ only 58 core locationsand the two tables require (2* 52) just 104 core locations. Therefore
approximately 162 locations are used in the storage of the expansion
of all 146 specific macros. The remaining core of the available
920 locations can be used for the code that builds up the macros
and interprets the address coding scheme.

J. Address Field Coding

A macro is made up of the same assembler instructions that the
programmer has available to him when he generates his source deck.
The coding scheme must be capable of representing any allowable address
field in the remaining 14 bits of the 24 bit word. Earlier , the
breakdown between the machine code equivalent instruction field and
the address field was 12 to 12, but only 10 bits are needed for the
opcode. Reference 1 section 4 gives a detailed discussion of the
format within each machine instruction . When the search is made
for the BCD equivalent in the opcode table, two zero bits are joined
to the 10 bit opcode to make it a 12 bit search. These two bits
are reserved in the coding scheme to specify which index register
has been used in the instruction .

The object is to represent BCD address fields that could be a
maximum of six BCD digits long (36 bits) in the available 14 bits
of the expansion instruction word. If saving core wa~ not the object,then two core words per instruction could be used. Twelve of the
14 available bits of the first word could hold two BCD digits and
the 24 bits of the second word could hold the remaining four . Using
50 words of pass 2 core to represent a 25 word macro is not
acceptable.

The coding scheme can make efficient use of the 14 bits to
represent nearly all possible address fields. Those that can not
be coded require the two—word format. Below is shown two tables of
possible address field requirements and an example of each. The
first table is codeable, the second is not. With the exception of
subroutine call, and the $V99 symbolic address, the other two entries
of the second table never appear in a mathematical macro.

Codeable Addresses

Address Field Possibility Example

1. Positive relative addressing STAC *+79

2a. Negative relative addressing LDAC *_]5
b. Relative addressing indexed STMQ *+13,3

62

— ____________ —5—- — S•________ ~~~5 555 ‘_ — -— - —5---- — 5- —— 5 
I _~_~ 

~~~~~~~~~~~~~~~~~~~~~~ — - 5 5 ~~ ~~ _j .__
555

55Y
5• 5 _  - - —



NSWC/WOL PR 77-65

3a. Unspecified address LDMQ **
b. Unspecified address indexed LDXR ~~~~~, 1

4. No address PMQA

- 5. Reference to macro ar gument LDMQ ARG1

6. Reference to macro parameter QLS PAR2

Non Codeable Addresses

Address Field Possibility Example

7a. Relative addressing greater than 79 STAC *+89
b. Call to subroutine CALL SQRT
c. Symbolic address STMQ TEMP
d. Symbolic address indexed STMQ TEMP,2

There are seven address possibi l i t ies  shown which can be
expressed in terms of what information is placed in the address field
of the card image be ing bu i l t  in CBUF .

1. Entry of the two BCD symbols, *+ , and the remaining 9 bits of
the word interpreted as two BCD characters.

2. Entry of the two BCD symbols, ~~~ and the remaining 9 bits of
the word interpreted as two BCD characters.

3. Entry of the two BCD symbols, **, that are in the remaining 12
bits of the word.

4. Entry of a blank address field.

5. Entry of the BCD form of the macro argument pointed to by the
remaining 9 bits of the word interpreted as a binary number.

6. Entry of the BCD form of the macro parameter pointed to by the
remaining 9 bits of the word interpreted as a binary number.

7. Entry of six BCD characters, two of which are in the remaining
9 bits of the word and four of which are in the next consecutive

• memory location.

Three bits are needed to represent which of the seven states is
indicated , which leaves only nine bits of information. The maximum
number that can be expressed in 9 bits is 79 which explains the dif-
ference between line (1) of the codeable addresses and line (7a) of
the non codeable addresses. The two index bits that have been ignored

- so far are used to specify one of the three index registers. If the
bits are nonzero, then a comma and the BCD number equivalent to the
two bits are entered in the card image address field.
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The specification for a macro argument or parameter is done
by a binary number from 1 to 3 for an argument and a parameter .
The number refers to ARG1, ARG2, or ARG3 respectively and PAR1 , PAR2,
or PAR3 respectively as they appeared on the input specific macro
card. This image held the BCD forms of all arguments and parameters.
The ARGs’ position and the PARs’ BCD values are placed in separate
tables from which their BCD forms can be transferred to the assembler
instruction card image being built in BLOC. A negative PAR3 for
an ARG3 causes a right shift to become a left shift , and a zero PAR3
causes the elimination of the instruction from the expansion.

With the writing of the last instruction of the last LET state-
ment onto the output buffer tape. the arithmetic compiler function
of DOPE is complete. Control returns to the System when the END
card is recognized ; the output listing and object deck are stored
on the output buffer tape.

I
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CHAPTER VII

RESULTS AND CONCLUSIONS

A useful fixed point arithmetic compiler can be implemented
on a mini computer with the macros approach realization . The objec-
tives and criteria established in section I have been met. A brief
summary of the merits and deficiencies of the general design and
the DISAC implementation is offered below.

A. Areas of Improvement

There are five major areas where the compiler could be improved ;
three for the arithmetic compiler in general and two for the specific
DISAC implementation . It would be convenient to be able to have
constants (numbers) appear directly in the LET statement. Numbers
with no binary point specified would be assigned the BMT parameters
calculated from the number of decimal digits to the left and right
of the decimal point; the binary point would be calculated to make
the *l.s. parameter equal to zero. Binary point specification would
override the #l.s. parameter zero criterion . Numbers that are multi-
plicative factors would be checked to see if they are powers of 2.
If so, the product would be reduced to a left or right shift. Numbers
that are exponents would be checked to see if they were small integers.
If so, successive multiplications or divisions would be implemented
instead of the subroutine calls.

A second area of improvement would be to use a more rigorous
rule for the calculation of the P fields for the intermediate results
of the macros and the results of the library subroutines.

A third area to be improved in the general design would be to
realize optimization across macros. This can be done while still
avoiding equation optimization . The situations can aFise where an
intermediate result could be left in the AC of the Ktfl_l macro , the
Kth macro could perform a manipulation between the MQ and core, and
the Kth+l macro combine the results in the AC and MQ. These sit-
uations are rare, but they would be useful to realize.

• A subtle feature occurs in the DISAC implementation that wastes
symbol table space. Three words of core are required for every
symbolic address that appears as a LET statement argument. This is
necessary , but the three—word set is also reserved for every other
symbolic address in the program that appears as a label. This is
a loss of approximately 30% of the total symbol capability that a
program can have. With the three—word format, programs are restrict-
ed to approximately 150 symbols. If a two—word format could be
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implemented for non LET statement symbolic addresses, this would
increase to over 200 symbols.

The second shortcoming for DISAC is the three pass compilation
process. A two pass compiler would not only be faster with less
wear on the tape units , but would be less susceptible to input and
output errors.

B. Useful Features

Although the arithmetic compiler has a primary function to convert
LET statements into machine code, the macro approach of the Parsing
Algorithm , Macro Optimization , and Macro Expansion has additional
flexibility inherent in its structure. The Macro Optimization routine
just looks for and operates on general macro images. It assumes
they come from the Parsing Algorithm , but it cannot distinguish one
so generated from one entered directly in the source deck. This
capability in conjunction with the CORR pseudo—op, gives the pro-
grammer direct control over the general macro level of the DOPE gener-
ated Code. Inserting general macros still requires pass 1.5 to
generate the shift parameters and choose a specific macro.

Macro Expansion of pass 2 expects to see specific macros
generated by Macro Optimization , but it also does not care where
they come from. The programmer can also enter specific macro cards
in his source deck. In doing so, he must calculate his own shift
parameters, but he can avoid pass 1.5.

These two natural extensions to the macro approach make the
arithmetic compiler more powerful than the original design specified .
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APPENDIX A

Compilation Example

In the text of this report, the structure of the arithmetic
compiler has been given. The functional breakdown of the Parsing
Algorithm , Macro Optimization , and Macro Expansion shows how each
routine works in theory. Using this structure, an equation is
compiled to show how each routine works in practice.

A. Pass 1 Operation

In the source deck , the programmer has written the following
program where each line corresponds to a card.

JOB
DOPE
ASSN A(Bl2,M,T)B(B6,M2,T3)
ASSN C(B8,M4,T1)D(Bl5,M3,T6)
ASSN E(B6,M6,T6)F(B9,M—3 ,T6)

STRT LDMQ A
SRMQ LOAF

CLYD LET A=(((B+C)*D)+E)*F
LOAF PADQ **

SRMQ *..l
HALT

B DEC 3.l25B6
C DEC l5.5B8
D DEC —5. 172Bl5
E DEC 53.8B6
F DEC .1B9

END

Pass 1 operates on this program to produce a symbol table.
The ASSN statements are evaluated first and store the BCD form of
the six arguments in their respective SYMB locations. The SYML word
is left untouched as the BMT data is entered into the SIFW word of
each. Two equations from section IIIC1 are reproduced here to show
the conversion from MT parameters of the ASSN statement to the #1.s.
and #r.s. parameters stored in the SIFW word. The three—word set
that was introduced in section IIIC is shown below for the argument
D. The other five arguments have similar entries in the symbol table.
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I ~ I I I I ~ I I I I ~ I I I I ~ I I I I I I I I

I 
______________________________________________________ I

I I
I I

‘ O l O l O O l l O O O O l l O O O O l l O O O O  SYMB
I I
I 
________________________________________________________ I

24 60 60 60
D blank blank blank

I I I I I I ~ I I I I I I I I I I ~ I I I ~ I I I

, 
________________________________________________________ 

I

I I
I I

‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ’  SYML
I I
I ________________________________________________________ I

array length I relative location
I I I I I I I ~ I I I I I I I I I I S I I I I ~
I __________________________________________________  S
I I

I I

‘0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 lI  SIFW
I 
___________________________________________________________ 

I

00 ‘ 04 ‘ 11 I 17
#1.s. = 4 # r . s .  = 9 B = 15

#l .s .  = 22 — (B+M) = 22 — (15+3) = 4

S #r . s .  = B — T = 15 — 6 = 9
B = B = l 5

The array length and relative location fields of SYML are filled
in when the argument is recognized as a label. Since none of the
arguments in the ASSN statements are dimensioned variables, array
length will be set to 0001.

The symbol STRT is put in the symbol table and given the location
0000; CLYD is given location 0002. At this point in pass 1, the
Parsing Algorithm is entered and the evaluation of the LET statement
is begun. When it terminates, there is a gap in the relative location
values between the symbol CLYD and the symbol LOAF. Space is re-
served for the object Code to be inserted by Macro Expansion of pass 2.
In this specific case, 67$ locations are reserved. The symbol LOAF
is given a relative location of 00719. Beginning with B at OO74~,the consecutive relative locations are entered into the SYML words
of the arguments already created by the ASSN pseudo—ops.

B. Interpretation of the Equation

Scanning for arguments in the equation is done from left to
S right. The variable field of the LET statement is stored in a buffer
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S 
called CEUF. Each individual character of the equation can be
referenced by indexin9 CBUF with J. If J is set to 15, then CBUF(J)
would point to the 15th character in the equation . A similar index I
is used to reference the entries of the Opn and Opt stacks. This
indexing is used in the flow diagrams , the following discussions, and
in the Precedence Table of Appendix B.

1. A scanning of CBUF for an operator terminates with CBUF(J)
pointing at an = , J = 3. All characters that came before J = 3 and
after the last seen operator constitute a variable. Since the pre-
vious operator was the blank equation delimiter , the object A is
defined to be a variable. Variable appears twice on the right side
of the table in Appendix B. The default match appears in line (8)
and a following operator match in line (12). Adhering to the
precedence of a match as stated in rule b, the following operator
match is realized. Rule f causes Opn and Opt to appear as shown.

I O~~ O~~

2. Continuing at J = 4, the scan terminates at J = 8 with the
three open parentheses being stored in Opt and the object B being
defined as a variable. The following operator can be referenced
as CBUF(J) just as the preceding operator in Opt(I); I and J having
their current values.

I Opt (I) Object CBUF(J)
T A  = B +

3. With B as the object, CBUF(J) is the + and Opt(I) is the
(. A match for these combinations is sought on the table. The
object is first a variable. The default option has to be taken,
which redefines the object as a primary. The primary appears three
times on the right side of the table. CBUF(J) is not a ** so there
is no following operator match , and Opt(I) is not a ~~~~ The only
match is the default which redefines the object to be a factor.
Factor appears twice on the table. Since the object is not preceded
by a * or /, it is redefined to be a term by default. Term appears

- 
twice on the table. The object again only matches the default con-
dition for a term since it is not preceded by a + or — . The object
is now an arithmetic expression which appears three times on the
table. Beginning at the top and checking for following operator

• matches first, it is seen that the object is not followed by a ).
CBUF(J) does equal a + so the following operator match is finally
found. This object and the following operator are stored
respectively on the Opn and Opt stacks.

69

~~~ 55

-- -- --5 - 5 5 - --  -S —~~,--~~~ ~~— S

55 — -—— 5 5 -  - — 
I 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~



NSWC/WOL PR 77-65

L2E~ 2~~
1 A =

2 (

3

4

S B  +

4. Continuing at J = 9 and terminating at J = 10, a new object
is scanned for. The object is C and has CBUF(J) equal to ) .

I 
~~ ~~~ Opt(I) Object CBUF(J)

1 A = + C

2

3

4

5 B +

5. The object is now C, its following operator is a ) ,  and
its preceding operator is the +. This object defaults down to a
term where a match in the table is found with the preceding operator.
Rule d states that a preceding operator match causes the latest
entries to be erased from the stacks and a macro to be outputted.
The macro is a general macro card image incorporating the present
object, Opn(I), and the current temporary storage location.

Output Macro I

CLYD ADDM B C $VOO $ 1 A =

2

3

4

6. $VOO is the new object that the table operates on and is
defined as an arithmetic expression corresponding to the defining
line where the match was found. With the removal of the latest
entries from the stacks, Opt(I) becomes (. Note J is still equal
to 10.
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I Opt(I) Object CBUF(J)
- 

1 A = C $VOO

2

3

4

7. With $VOO as the object, a parenthesis match is found which
is treated as a special case. Since no mathematical operation is
performed by a set of parentheses, no macro is outputted . I is
decremented thereby removing the latest entry on Opt which was the
preceding operator , and J is incremented to skip over the following
operator. With the set of parentheses removed , the object is still
$VOO but is now a primary via the line the parenthesis match was
found on.

I Opt(I) Object CBUF(J)

1 A = ( $VOO *

2

3

8. The object $VOO defaults down to a term and the following
operator match is found. CBUF(J) and $VOO are entered in the stacks.

1 A = -

2

3

4 $VOO *

9. The scan for the next object is begun with J = 12 and
terminates with J = 13. The new object D is considered first to
be a variable.

I Opt(I) Object CBUF(J)

1 A = * D

2 (
3

4 $VOO *
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10. D defaults down to a factor and the preceding operator
match is found. The latest entries on the stacks are removed , a —

macro is outputted , and the temporary storage location mnemonic
becomes the new object. Since an optimizing routine in the Parsing
Algorithm minimizes the number of temporary locations created, $VOO
can be reused in the general macro as the temporary location mnemonic.

Output Macro I

MULM $VOO D $VOO $ 1 A =

2

3

11. $VOO is the new object. It is a term which defaults down S

to an arithmetic expression. With the removal of the latest entries
on the stacks, Opt(I) is now the C . The index J is still equal to
13; CBUF(J) is the ) .

I Opt(I) Object CBUF(J)

1 A = C $VOO

2

3

12. $VOO is the object and has the C as its preceding operator
with the ) as its following operator. This is the same circumstance
as in step (7) above. The result is to increment J to look beyond
the closed parenthesis, and to remove the latest entries from the
stacks. With J now equal to 14, CBUF(J) is the + . Opt(I) is now
C . $VOO is the new object now defined as a primary.

I Opt(I) Object CBUF(J)

1 A = C $VOO +

2

13. $VOO defaults down to an arithmetic expression and the
following operator match is found. The entries are made into the

4 stacks.

1 A =

2 (
3 $VOO +
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19. The scan for the next object is initiated with J = 18 and
terminates with J = 19 at the end of the equation. F is the new
object which is subjected to the table as a variable.

I Opt(I) Object CBUFCJ)

1 A = * F

2 $VOO *

20. F defaults down to a factor where the preceding operator
match is found. This is the same situation as in step (10) above.

Output Macro I 2E~
MULM $VOO F $VOO $ 1 A =

21. $VOO is the new object. It is a term which defaults down
to an arithmetic expression. J is at the end of the equation so
it is not incremented . With the removal of the latest entries from
the stacks, Opt(I) is now the = .

I 
~~~ ~~~ 

Opt(I) Object CBUF(J)

1 A = = $VOO

22. $VOO is a term and it defaults down to an arithmetic
expression where the preceding operator match is found. The latest
entries from the stacks are removed which depletes them. This empty
condition is the indicator for terminating the Parsing Algorithm .
The final macro is outputted and the remainder of the program is
operated on by pass 1. The END card terminates pass 1.

Output Macro I

EQUM $VOO F $

C. Pass 1.5 Operation

The input program for pass 1.5 is shown below for comparison
with the program that was the input to pass 1.

- 
JOB
DOPE

55 ASSN A(B12,M,T)B(B6,M2,T3)
ASSN C(B8,M4,Tl)D(815,M3,T6)
ASSN E(B6,M6,T6)F(B9,M—3 ,T6)

0000 00000000 STRT LDMQ A
0001 00000000 SRMQ LOAF

LET A = ( C C B + C ) * D ) + E ) *F
0002 00000000 CLYD ADDM B C $VOO $
0010 00000000 MULM $VOO D $VOO $
0033 00000000 ADDM $VOO E $VOO $
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0042 00000000 MULM $VOO F $VOO $
0065 00000000 EQUM $VOO A $ S

0070 00000000 PADQ **
0071 00000000 SRMQ *_l
0072 00000 000 HALT
0073 00000310 B DEC 3.125B6
0074 00007600 C DEC lS.5B8
0075 77264700 D DEC —5.l72Bl5
0076 00006563 E DEC 53.8B6
0077 00000060 F DEC .lB9

END

Pass 1 has made a number of additions to the original source
program. The first is the insertion of the relative location values
and the eight digit octal fields for each instruction. Pass 2 will
insert the numeric code. Second is the addition of the general
macros and the LET statement appearing as a remark. Third , the
numerical values for the data have already been evaluated and entered .
Fourth, the gaps left for each macro correspond to the length of
the longest specific macro that could be selected by Macro Optimi-
zation; 

~8 
for (+) , l0~ for (~

) 
~~ 

for ( ) ,  238 for (* and /),
and for a subroutine call.

Pass 1.5 begins operation by scanning the individual card images
one at a time and writing them on the output buffer tape while search-
ing for the general macros. If the correction factor for macro
gap reduction is non zero, the symbol table relative location value
and the card image relative location value are updated. If the
factor is zero, no change is made.

1. The first general macro seen has the label that originally
appeared on the LET statement.

CLYD ADDM B C $VOO $

Since ADDM is the first macro seen in this string there is
no optimization made on its partition 1. The SIFW words are obtained
from the symbol table for ARG1 and ARG2, B and C respectively.
The parameters are tabulated below.

ARG tl.s. #r.s. Binary Point M T

B 14 3 6 2 3

C 10 7 8 4 1

The adjusted binary points are compared to determine which
of the specific macro subsets within the general macro set will
be chosen. The addition will be done as Bl8 requiring C to be left
shifted its maximum amount of 10. The argument B is also left
shifted , but just enough to align the binary points; it is shifted
12. This is a realization of the lef t  s h i f t  parameter zero cr i ter ion
discussed in section V. The condition of left shifting both arguments
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14. The scan for the next object is begun at J = 15 and
terminates at J = 16 with the recognition of the operator ) .  The S

new object, a variable, is E.

I Opt(I) Object CBUFCJ)

1 A = + E

2

3 $VOO +

15. E defaults down to a term and the preceding operator match
is found. This is similar to step (10) above.

Output Macro I

ADDM $VOO E $VOO $ 1 A =

2

16. $VOO is the new object and defaults down to an arithmetic
expression . J remains the same but the removal of the latest entries
causes OptCI) to become the C .

I ~p~t C I) Object CBUF (J)

1 A = C $VOO

2

17. $VOO is the object and is in the same situation as in
step (7) above. J is incremented beyond the closed parenthesis and
the decrementing of I allows Opt(I) to point to = .

I 
~~~ 

qptCl) Object CBUF(J)

1 A = = $VOO *

18. $VOO is the new object, a primary , and has * as its
following operator and the = as its preceding operator . $VOO defaults
down to a term and the following operator match is realized . The

S 
entries are made on the stacks.

-

1 A =

2 $VOO *
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is realized by the AX1O group within the subset of AX1X. The three
shift parameters , PAR1, PAR2, and PAR3 are already determined at S

this stage; they are 12, 10, and 1 respectively. The result of
the addition is assigned to ARG3 which is $VOO. In keeping with
the criterion , the result of the Bl8 addition is right shifted one
position, PAR3 = 1, to make its $1.s. parameter equal to zero.
The set of parameters associated with $VOO are shown in step 2 below.
The $r.s. parameter was arrived at by using the smallest T field
of ARG1 and ARG2 which is Tl of C. The determination of which spe-
cific macro element will be chosen from the AX1O group will depend
on the joint optimization of partition 1 of the next macro, $2,
and partition 3 of $1. The first macro has the following form at
this stage.

CLYD AX1O B C $VOO $1 12 10 1

2. The next macro in the string is the multiply macro.

MULM $VOO D $VOO $

The SIFW word parameters of $VOO are available and the parameters
of D are obtained from the symbol table.

ARG #1.s. *r.s. Binary Point M T

$V00 0 16 17 5 1

D 4 9 lS 3 6

Using the equation of section V for the multiplication operation ,
the binary point of the result is calculated to be B14. PAR1 and
PAR2 are found to be 1 and 5 respectively. The result of the multi-
plication is assigned to ARG3 which is $VOO. The shifts of PAR1
and PAR 2 assure that the result has its #1.s. parameter equal to
zero. The #r.s. parameter is arrived at by using the smallest T
field of ARG1 and ARG2 which is Ti of $VOO. The set of parameters
associated with $VOO (as ARG3) are shown in step 3 below. The spe-
cific macro subset is already chosen to be MX1X since it is the
only one within MULM. The joint optimization of partition 3 of $1
and ?artition 1 of $2 will determine the macro group for $2 and the
specific macro element for $1. Leaving the result of the addition
in the MQ instead of storing it in $VOO will yield optimum code
for both macros. This decision chooses the MXll group for $2 while
picking AF1O for $1. The specific element mnemonic replaces the
group mnemonic on the card image as it is written on the output S

buffer tape. The image is shown below. The difference update to
the correction factor for the choice of AF1O from ADDM is 1 yielding
a correction factor of 1.

CLYD AF1O B C $MQ$ $1 12 10 1

Note that the $VOO temporary storage location has been replaced
by the mnemonic $MQ$. This is done to indicate to the programmer 

S
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that the result is left in the MQ. The following macro, $2, expects
to see the value in the MQ as its ARG1. With the addition of the

- shift parameters and the replacing of the macro subset with the
group, the $2 macro has the following form.

- MX11 $MQ$ D $VOO $2 1 5 0

3. The third macro in the string is the addition macro.

ADDM $VOO E $VOO $

The SIFW word parameters of $VOO are available and the parameters
of B are obtained from the symbol table.

ARG $l.s. tr.s. Binary Point M T

S $V00 0 13 14 8 1

E 10 0 6 6 6

The adjusted binary points of the two arguments are compared;
B6 for E and B14 for $VOO. The decision is made to leave $VOO alone
and to do a shift of eight positions on E to the left to make it
also Bl4. This requires a shift parameter set of PAR1 = 0, PAR2 = 8,
and PAR3 = 1. The binary point of the result will be left B13 with
its #l.s. parameter equal to zero. The *r.s. parameter is chosen
as the smallest of the two arguments, Tl of $VOO. The specific
macro subset to accomplish this is AX8X. The set of parameters
associated with $VOO as ARG3 are shown in step 4 below. The opti—

S mization procedure of partition 3 of $2 and partition 1 of $3 chooses
the AX81 group for $3 and the specific element MF11 for $2. This
choice leaves the result of macro $2 in the MQ which again causes
the $MQ$ substitution to appear in the image. The second specific
macro written on the output buffer tape is shown below. The differ—
ence update for MFll of MULM is 2, yielding a correc tion fac tor
of 3.

MF11 $MQ$ D $MQ$ $2 1 5 0

Note that this macro received one of its arguments in the MQ
and left the result in the MQ for the following macro. This is
a saving of three storage locations; the instruction to load the
argument into the AC or MQ, the instruction to store the result in
core, and the temporary storage location that was not needed. Below
is shown the updated card image of macro $3 due to the optimization .

AX81 $MQ$ E $VOO $3 0 8 1

4. The fourth macro in the string is another multiplication
macro. 

S

MULM $VOO F $VOO $
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The SIFW word parameters of $VOO are available and the parameters
of F are obtained from the symbol table.

ARG tl.s. *r.s. Binary Point M T

$VOO 0 12 13 9 1

F 16 3 9 —3 6

The binary point of the product is calculated to be Bl6. PAR1
and PAR2 are found to be 1 and 17 respectively . The result of the
multiplication is assigned to $VOO (as ARG3) and the parameters
are shown in step 5 below. The u .s. parameter is assured to be
zero by the shifts of PAR1 and PAR2 prior to the operation. The
#r.s. parameter is obtained by using the smallest of the P fields
of ARG1 and ARG2 which is Ti. The macro subset MX1X is chosen from
MWJM since it is the only one within the set, and the optimization
procedure is begun on partition 3 of macro $3 and partition 1 of
macro $4. The result is the choice of the MX11 macro group for
$4 and the specific element AF81 for $3. This choice leaves the
result of the addition operation in the MQ for the multiplication
to follow. The $MQ$ mnemonic is entered on the $3 and $4 images
to indicate that the result is not stored in a temporary storage
location. The third specific macro to be written on the output
buffer tape is shown below. The difference update for the choice
of AF81 of ADDM is 2, yielding a correction factor of 5.

AF81 $MQ$ E $MQ$ $3 0 8 1

The $4 macro image has been updated and now has the following
form.

Mxli $MQ$ F $VOO $ 1 17 0

5. The next macro in the string is the terminating equality
macro.

EQUM $VOO A

The SIFW word parameters are available for $VOO and the
parameters for A are obtained from the symbol table.

ARG *1.5. * r • s • Binary Point M j

$VOO 0 15 16 6 1

A -- -- 12 -- --
The dashes C -— ) in the above table indicate that the ASSN

pseudo—op did not specify M and T fields for the result that is to
be stored in A. The binary point is specified , so result must be
shifted to become 812 but will retain the *l.s. and *r.s. parameters
that have been accumulated. The optimization of partition 3 of
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$4 and partition 1 of $5 reveals a choice of QD21 for $5 and MPh
for $4. Since EQUM is the last macro in the string , the procedure
of choosing a macro subset and then a macro group is eliminated .
The macro preceding the equality is changed to a _D_ 

— 
to combine

its operation with the function of the EQUM. The EQUM specific
- macro is not written out on the buffer tape. The $4 macro is shown

below as it terminates the string . The difference updates to the
correc tion fac tor for MF11 and QD21 are 2 and 1, yield ing a correc tion
factor of 108.

MD11 $MQ$ F A $4 117 4

The optimum choice stores the result directly in A af ter
combining the shift of the multiplication result four places to
the right to align the binary point to meet the 812 requirement
for A. The result of the equation is a number that will be stored
in the location referred to by the symbol A with its binary point
at B12, an M field parameter of 6 and a T field parameter of 1.

The optimization of the macros by Macro Optimization saved
nine locations of core memory from the fact that no temporary storage
locations ($V_ _ ‘s) were needed and four store - load pairs were
eliminated.

Macro Optimization resulted in four specific macrc card images
being written on the output buffer tape.

CLYD AF1O B C $MQ$ $1 12 10 1

MF11 $MQ$ D $MQ$ $ 2 l 5 0

AP81 $MQ$ E $MQ$ $ 3 0 8 l

MD11 $MQ$ F A $4 1 17 4

D. Pass 2 Operation

Pass 1.5 has generated an output buffer tape which is the input
to pass 2. This program is shown below for comparison with the
original source deck and the input program to pass 1.5.

JOB
DOPE
ASSN A(B12,M,T)B(B6 ,M2,T3)
ASSN C(B8,M4 ,Tl)D (Bl5 ,M3,T6)
ASSN E(B6 ,M6 ,T6)F(B9,M—3 ,T6)

0000 00000000 STRT LDMQ A
0001 00000000 SRMQ LOAF

LET A (C (B+C) *D)+E)*F
0002 00000000 CLYD AF1O B C $MQ $ $1 12 10 1
1010 00000000 MF11 $MQ$ D $MQ $ $2 1 5 0
)OI1 1 00000000 AF81 $MQ$ B $MQS $3 0 8 1
o3s ~0000000 MDhl $MQ$ F A $4 1 17 4
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0060 00000000 LOAF PADQ **
0061 0000000 0 SRMQ *_l
0062 00000 000 HALT
0063 00000310 B DEC 3.l25B6
0064 00007600 C DEC 15.5B8
0065 77264700 D DEC —5.l72Bl5
0066 00006563 E DEC 53.8B6
0067 00000060 F DEC .1B9
0070 00000000 A
0071 00000000 $V99

END

The differences that exist between the input program of pass
1.5 and this program can be seen in the above listings. The first
d ifference is the specific macro mnemonics have replaced the general
macros. Second, the shift parameters have been added. Third , the
gaps between successive macros have been updated to reflect the
optimization performed by pass 1.5. Fourth , two additional core
locations have been reserved at the physical end of the program .
The first location is for the symbol, A , that appeared in the ASSN
pseudo—op. The second location is for $V99 that is required by
the multiplication macro. It is emphasized that the gaps between
the macros correspond to the exac t length of each macro and no longer
to the largest macro of the set.

The control words for each of the specific macros are obtained
and the designated instructions are obtained from CASE_. After
the add ress fields are filled in via the coding scheme , source instruc-
tions and the CASE_ expansion instructions are indistinguishable .
Control is given to the appropriate evaluation routine. It uses
the symbol table for memory reference instructions, and uses BCD
to binary conversion routines for numerals appearing in address
fields. All information of the result of the assembly process is
contained in the output listing shown below.

JOB
DOPE
ASSN A(Bl2 ,M,T)B(B6,M2 ,T3)
ASSN C(B8,M4 ,Tl)D(Bh5,M3 ,T6)
ASSN E(B6,M6 ,T6)F(B9,M-3,T6)

0000 20400070 STRT LDMQ A
0001 63200060 SRMQ LOAF

LET A= ((CB+C) *D)+E)*F
S AF1O B C $MQ$ $1 12 10 1

0002 20400063 CI~YD LDMQ B
0003 51000014 QLS 12
0004 20200064 LDAC C
0005 56000012 ALS 10
0006 12500000 AACQ —

0007 54000 001 AQRS 1
MPh $MQ$ D $MQ$ $2 1 5 0

00 10 20200065 LDAC D
0011 04100013 TACP *+2
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0012 12240000 CHSA
~0l3 56000005 ALS 5

- 0014 62600071 STAC $V99
0015 20200065 LDAC D
0016 13100000 EMQA

- 0017 57000027 ARS 23
0020 62600026 SRAC *+6
0021 06100023 TMQP *+2
0022 13440000 CHSQ
0023 51000001 QLS 1
0024 73400071 MPY $V99
0025 12400000 PACQ
002 6 15200000 PADA **
0027 05000031 TACZ *+2
0030 13440000 CHSQ

AF81 $MQ$ E  $MQ$ $3 0 8 1
0031 20 200066 LDAC E
00 32 560000 10 ALS 8
0033 12500000 AACQ
0034 5400000 1 AQRS 1

MD11 $MQ$ F A $4 1 17 4
003S 20200067 LIDAC F
0036 04100040 TACP *+2
0037 12240000 CHSA
0040 56000021 ALS 17
004 1 62600071 STAC $V99
0042 20200067 LDAC F
0043 13100000 EMQA
0044 570000 27 ARS 23
0045 626000 53 SRAC *+6
0046 06100050 TMQP *+2
0047 13440000 CHSQ
0050 51000001 QLS 1
0051 73400071 MPY $V99
0052 12400000 PACQ
0053 15200000 PADA **
00S4 05000056 TACZ *+2
005 5 13440000 CHSQ
0056 54000004 AQRS 4
0057 63600070 STMQ A
0060 15400000 LOAF PADQ **
0061 63200060 SRMQ *_h
0062 00000000 HALT
0063 00000310 B DEC 3.l25B6
0064 00007600 C DEC h5.5B8
0065 77264700 D DEC —5.172Bh5
0066 00006563 8 DEC 53.886

— 0067 00000060 F DEC .1B9
- 0070 00000000 A

0071 00000000 $V99

END
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APPENDIX B 
S

Parsing Algorithm Precedence Table

The Precedence Table describes the syntax of FORTRAN equations
that is realized by the arithmetic compiler. The descriptions are
in the form of recursive definitions. The Parsing Algorithm of
pass 1 is an implementation of the table and the rules that govern
its use. Each character or string of characters in the equation
must fit one of the definitions or a syntax error will result.
This table detects and rejec ts incor rectly written equations as
it determines which mathematical operations are to be performed
on which arguments and in what order they are to occur .

Two pushdown stacks , Opn and Opt respectively, are used to
remember objects and operator s that have been scanned, but not yet
used in a general macro image. Object is used to refer to a partic-
ular argument as it is continually redefined in the search for
a preceding or following operator match.

Line (7) of the table, the number definition , is not realized
in this version of the arithmetic compiler. No constants can appear
in an equation. All mathematical operations must be between symbolic

S addresses. Examples of equations are shown below followed by the
table and its governing rules.

LET A=2* (BETA+ZETA)/3 not allowed

LET A=TWO*(BETA+ZETA) /THREE allowed

A. Precedence Table
S S I I I

1. letter A B C  x :y : z : s
I ~ I I I ~ I I I I

2. digit 0 h 2 3 4 5 6 7 8 9
- 

3. character letter digit (no character)
S 

I I I I I I

4. operator + _ * 1 / ** = sub (

5. special () ,
~~.!(blank)

S 

operator 
-

6. variable character letter character character

7. number digit digit digit ~~~
“ d ig i t
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I I

8. primary variable (arithmetic expression):
sub(arithmetic expression)

9. factor primary pr imary**pr imary
- 10. term factor term j* /

‘
~fac tor

11. arithmetic term arithmetic expressiont+ _\term
expression

12. arithmetic variable=arithmetic expression
assignment
statement

B. Governing Rules

Rule a. An object is a string of alphanumeric characters as
defined by line (3) that is separated from other arguments by oper-
ators as defined in hines (4) and (5). Each object has both a
preceding and a following operator as they appear in the LET
statement equation.

Rule b. Once an object is established as a variable via line
(6), it is subjected to the right side of the table beginning at
line (8). Proceding from line (8) to (12), the following and pre-
ceding operators are compared to the allowable operators that the
object can have as it is currently defined . Every line except (12)
has a default match which allows the object to be progressively
redefined from variable to primary, pr imary to fac tor , etc., until
a non default match is found.

Rule c. A following operator match causes the object to be
placed on the Opn stack and the operator on the Opt stack. The

S next argument in the equation is scanned for while storing all inter-
mediate operators on Opt. This argument is the new object and is
subjected to the table via rule a.

- Rule d. A preceding operator match causes the creation of
j a general macro using the preceding operator , the present object,

the latest entry on Opn, and a $V_ 
— 

from TMPR. The preceding oper-
ator and the Opn entry are removed from their respective stacks.
The $V_ 

— 
is the new object and is subjected to the table via rule a.

- Rule e. A syntax error results if no match is found in the

- 
table for the object.

Rule f. The process terminates with the preceding operator
match of line (12).

4
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APPENDIX C 
S

Specific Macro Expansions

Figure Cl shows the set structure for each of the independent
mathematical macros. Figures C2 through CS illustrate in detail
the association of the specific elements to group, groups to subset,
and subsets to set.

For all of the general macro sets , the solid lines in the figures
are the boundaries to the subsets. The _X_X notation iden ti f ies
the subsets where the first 

— 
is either an A, S, M, D, C, or Q and

the second 
— 

is a number from 1 to 8. They differ from each other
in the manner in which the input arguments are shifted. Section
V explains the decisions that were made to determine the number
of specific elements for each set.

The groups within a subset are distinguished from each other
by the last character of the four—character mnemonic. It can be
0, 1, or 2. The ‘0 ’  charac ter indicates that all elements in the
group expect to see input arguments in core. The Ill character
indicates that ARG1 is in an operational register with the ARG2
in core. The ‘2’ character indicates that ARG2 is in one of the
operational registers and the ARGh is in core.

The elements within a group are identical except for what they
do with the result of the operation. The second character of the
mnemonic is used to distinguish them. The _D_ 

— 
will store the

result in a core location referred to by ARG3, the _E_ 
— 

will leave
the result in the AC, and the _F_ 

— 
will heave the result in the

MQ.

The expanded code for each specific macro of each set is shown
immediately following the figures below.
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ADDM SUBM

AX8X AX1X SX8X SX1X

AX7X AX2X SX7X SX2X
AX3X SX3X

AX6X SX6X
SX4X

AX5X 
- 

AX4X SX5X

MULM DVSM

Q 

MX1X DX1X

EQUM CALM

- :::: ~~~~~~~~~~~ Q? LX 
Cxix

Figure Cl ARITHMETIC COMPILER SETS
WITH SUBSETS
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ADDM 
-

AD8O ‘ AD81 AD 1O
AX8X AE8O ~‘ AE81 AE1O - AX1X

AF8O AF81 AF1O

S 9

AD71 AD22 S AD2O
‘ AE71 AE22 g AE2O AX2X

AD7O ~ AF7 1 AF22 , AF2O
AX7 X AE7O ~AF7O

I

AD6O I

AE6O AD3O ‘

AF6O AE3O ~ AD32
- AF3O AE32

AF32
I AD62

AE62
AD61 AF62

AX6X AE6 1 ~AF61 ~ AD4O
AE4 0
AF4O

AD51 _ _- --7 _

AE51 .~~~~~ ,AD42
AD5O AF51 AD41 AE42 AX4X

AX5X AE5O AE4 1 AF4 2
AF5O AF41

—

-. I

AD52 ‘~ I
AE52
AF52 t

Figure C2 ADDITION SET WITH SUBSETS
S 

AND ELEMENTS IN GROUPS
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SUBM

- SD8O SD81 SD1O

SX8X SE8O I SE81 SE1O SX1X
SF80 I SF81 SF10

S 

I

SD7I SD22
~ SEll SE22 , SD2O

SD7O ‘ SF71 SF22 , SE2O SX2X
SX7X SE7O ~ ~ 

SF20
SF70

SD6O
SE6O SD3O ~ SD32SF60 i,” SE3O ‘ SE32

- ..
~~ 

— — SF30 SF32 SX3X

SD62
SD61 I SE62

SX6X SE61 I SF62
SF61 I SD4 O

• SE4O
S SF40 —

I SD51
SES1

% SF51 ‘ SD42
S SD5O “ SD41 SE42 SX4X

SX5X SE50 “ SE41 SF42
SF50 SF41 I

I

I
‘~~~ SDS2 I

SE52 i I
SF52 I

Figure C3 SUBTRACTION SET WITH SUBSETS
AND ELEMENTS IN GROUPS
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MULM

MD1 1
• MEhh MX1X
‘ MFhh

MD10
ME1O k
MF1O ‘ ‘

/ ~~~~~~~~~~

‘ MD12 \
ME12
MF12 DVSM

DDll
DEll Dxix
DF11

DD1O ~
DE1O
DF1O

I
f DD12

/ DE12
EQUM DF12

QX3X QD3O

QD1O ’ QX1X

- QD12 -

QD2O QX2X
/ QD22

Figure C4 MULTIPLICATION, DIVISION , AND
EQUALITY SETS WITH SUBSETS
AND ELEMENTS IN GROUPS
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CALM

CD3O
CE3 0
CF3O CD1O

CE1O CX1X
CX3X ~~~~~~~~~~~~~~~~ CF1O

CD32
CE32
CF32

/
I

CD2O
CE2O
CF2O / CD22

CE22
CX2X CF2 2

I

1-

Figure CS SUBROUTINE CALL SET WITH
SUBSETS AND ELEMENTS IN
GROUPS
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ADDM

AX1X (lL—2L)

AD1O
LDMQ ARG1
QLS PAR1
LDAC ARG2
ALS PAR2
AACQ
AQRS PAR3
STMQ ARG 3

AE1O
LDMQ ARG].
QLS PAR1
LDAC ARG2
ALS PAR2
AACQ
AQRS PAR 3
PMQA

AF1O
LDMQ ARG1
QLS PAR1
LDAC ARG2
ALS PAR2
AACQ
AQRS PAR3

I
3 -  55

1 1
- 3 -
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AX2C (hL—2N)

AD2O AD22
LDMQ ARG1 LDAC ARG1
QLS PAR1 ALS PAR1

- ADMQ ARG 2 AACQ
AQRS PAR3 AQRS PAR3
STMQ ARG3 STMQ ARG3

AE2O AE22
LDMQ ARG1 LDAC ARG1
QLS PAR1 ALS PAR1
ADMQ ARG2 AACQ
AQRS PAR3 AQRS PAR 3
PMQA PMQA

AF2O AF22
LDMQ ARG1 LDAC ARG1
QLS PAR1 ALS PAR1
ADMQ ARQ2 AACQ
AQRS PAR 3 AQRS PAR3
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AX3X (1L—2R)

AD3O AD32
LDMQ ARG2
AQRS PAR2 AQRS PAR2
LDAC ARG1 LDAC ARG1
ALS PAR1 ALS PAR1
AACQ AACQ
AQRS PAR3 AQRS PAR3
STMQ ARG3 STMQ ARG3

AE3O AE32
LDMQ ARG2

S AQRS PAR 2 AQRS PAR2 /
LDAC ARG1 LDAC ARG1
ALS PAR1 ALS PAR1
AACQ AACQ
AQRS PAR3 AQRS PAR3
PMQA PMQA

AF3O AF32
LDMQ ARG2
AQRS PAR2 AQRS PAR2
LDAC ARG1 LDAC ARG1
ALS PAR1 ALS PAR].
AACQ AACQ
AQRS PAR3 AQRS PAR3
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AX4X (1N—2R)

AD4O AD41 AD42
LDMQ ARG2 LDMQ ARG2
AQRS PAR 2 AQRS PAR2 AQRS PAR 2• ADMQ ARG1 AACQ ADMQ ARG1
AQRS PAR 3 AQRS PAR3 AQRS PAR3
STMQ ARG3 STMQ ARG3 STMQ ARG3

AE4O AE4 1 AE42
LDMQ ARG2 LDMQ ARG 2
AQRS PAR2 AQRS PAR2 AQRS PAR 2
ADMQ ARG1 AACQ ADMQ ARG1
AQRS PAR3 AQRS PAR3 AQRS PAR3
PMQA PMQA PMQA

AF4O AF41 AF42
LDMQ ARG2 LDMQ ARG 2
AQRS PAR2 AQRS PAR 2 AQRS PAR2
ADMQ ARG1 AACQ ADMQ ARG1
AQRS PAR3 AQRS PAR3 AQRS PAR 3
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AX5X (1W—2N)

AD5O AD51 AD52
LDMQ ARG1
ADMQ ARG2 ADMQ ARG2 ADMQ ARG1
AQRS PAR3 AQRS PAR3 AQRS PAR3
STMQ ARG3 STMQ ARG3 STMQ ARG3

AE5O AE51 AE52
LDMQ ARG1
ADMQ ARG 2 ADMQ ARG 2 ADMQ ARG1
AQRS PAR3 AQRS PAR3 AQRS PAR 3
PMQA PMQA PMQA

AF5O AF51 AF52
LDMQ ARG1
ADMQ ARG2 ADMQ ARG2 ADMQ ARG1
AQRS PAR3 AQRS PAR3 AQRS PAR3
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AX6X (1R—2N)

AD60 AD61 AD6 2
LDMQ ARG1 LDMQ ARG1
AQRS PAR]. AQRS PAR]. AQRS PAR1
ADMQ ARG 2 ADMQ ARG2 AACQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
STMQ ARG 3 STMQ ARG 3 STMQ ARG 3

AE6O AE61 AE62
LDMQ ARG1 LDMQ ARG1
AQRS PAR]. AQRS PAR]. AQRS PAR].
ADMQ ARG 2 ADMQ ARG 2 AACQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
PMQA PMQA PMQA

AF6O AF61 AF62
LDMQ ARG1 LDMQ ARG1
AQRS PAR]. AQRS PAR]. AQRS PAR].
ADMQ ARG 2 ADMQ ARG 2 AACQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
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AX7X (1R—2L)

AD7O AD71
LDMQ ARG1
AQRS PAR]. AQRS PAR ].
LDAC ARG2 LDAC ARG2
ALS PAR 2 ALS PAR 2
AACQ AACQ
AQRS PAR 3 AQRS PAR 3
STMQ ARG3 STMQ ARG3

AE7O AE71
LDMQ ARG1
AQRS PAR]. AQRS PAR].
LDAC ARG2 LDAC ARG2
ALS PAR2 ALS PAR 2
AACQ AACQ
AQRS PAR 3 AQRS PAR 3
PMQA PMQA

AF70 AP71
LDMQ ARG1
AQRS PAR]. AQRS PAR].
LDAC ARG2 LDAC ARG2
ALS PAR2 ALS PAR 2
AACQ AACQ
AQRS PAR 3 AQRS PAR 3
PMQA PMQA
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AX8X (1N—2L)

AD8O AD81
LDMQ ARG 2 LDAC ARG2
QLS PAR2 ALS PAR2

• ADMQ ARG1 AACQ
AQRS PAR 3 AQRS PAR3
STMQ ARG3 STMQ ARG3

AE8O AE8 1
LD!40 ARG2 LDAC ARG2
QLS PAR 2 ALS PAR2
ADMQ ARG1 AACQ
AQRS PAR3 AQRS PAR3
PMQA PMQA

AF8O AF81
LDMQ ARG 2 LDAC ARG2
QLS PAR2 ALS PAR 2
ADMQ ARG1 AACQ
AQRS PAR3 AQRS PAR3

I

- — 

~~~

- -- 

97 

-.-

~~~ 

- -

~ 

~~ - - -~~~~~ - - .



NSWC/WOL TR 77-65

SUBM

SX1X (1L—2L)

SD]. 0
LDMQ ARG1
QLS PAR1
LDAC ARG 2
ALS PAR2
SACQ
AQRS PAR3
STMQ ARG3

SE]. 0
LDMQ ARG1
QLS PAR].
LDAC ARG 2
ALS PAR2
SACQ
AQRS PAR3
PMQA

SF10
LDMQ ARG1
QLS PAR].
LDAC ARG 2
ALS PAR2
SACQ
AQRS PAR3
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SX2X (1L—2N)

SD2O SD22
LDMQ ARG1 LbAC ARG1

• QLS PAR1 ALS PAR].
SBMQ ARG 2 SMQA
AQRS PAR3 PACQ
STMQ ARG3 AQRS PAR3

STMQ ARG3

SE2O SE22 -

LDMQ ARG1 LDAC ARG1
QLS PAR1 ALS PAR].
SBMQ ARG 2 SMQA
AQRS PAR3 PACQ
PMQA AQRS PAR3

PMQA

SF20 SF22
LDMQ ARG1 LDAC ARC].
QLS PAR1 ALS PAR].
SBMQ ARG 2 SMQA
AQRS PAR3 PACQ

AQRS PAR3

— 
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SX3X (1L—2R)

SD3O SD32
LDMQ ARG2
AQRS PAR2 AQRS PAR2
LDAC ARC]. LDAC ARG1
ALS PAR1 ALS PAR1
SMQA SI4QA
PACQ PACQ
AQRS PAR3 AQRS PAR3
STMQ ARG3 STMQ ARG 3

SE3O SE32
LDMQ ARG2
AQRS PAR2 AQRS PAR 2
LDAC ARG1 LDAC ARG1
ALS PAR]. ALS PAR].
SMQA SMQA
PACQ PACQ
AQRS PAR3 AQRS PAR3
PMQA PMQA

SF30 SF32
LDMQ ARG2
AQRS PAR2 AQRS PAR2
LDAC ARG1 LDAC ARG].
ALS PAR]. ALS PAR].
SMQA SMQA
PACQ PACQ
AQRS PAR 3 AQRS PAR3
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SX4x- (1N—2R)

SD4O SD41 SD42
LDMQ ARG2 LDMQ ARG2
AQRS PAR2 AQRS PAR2 AQRS PAR2
SMBQ ARG1 SMQA SBMQ ARG1
CHSQ PACQ CHSQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
STMQ ARG3 STMQ ARG3 STMQ ARG 3

SE4O SE41 SE42
LDMQ ARG2 LDMQ ARG2
AQRS PAR 2 AQRS PAR2 AQRS PAR 2
SBMQ ARG1 SMQA SBMQ ARC].
CHSQ PACQ CHSQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
PMQA PMQA PMQA

SF40 SF41 SF42
LDMQ ARG 2 LDMQ ARG 2
AQRS PAR2 AQRS PAR2 AQRS PAR2
SBMQ ARG1 SMQA SBMQ ARC].
CHSQ PACQ- CHSQ
AQRS PAR3 AQRS PAR3 AQRS PAR 3
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SX5X (1N—2N)

SD5O SD51 SD52
LDMQ ARC]. LDMQ ARC].
SBMQ ARG2 SBMQ ARG2 SACQ
AQRS PAR3 AQRS PAR3 AQRS PAR 3
STMQ ARC3 STMQ ARG3 STMQ ARG3

SE5O SE51 SE52
LDMQ ARC]. LDMQ ARG1
SBMQ ARG2 SBMQ ARG2 SACQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
PMQA PMQA PMQA

SF50 SF51 SF52
LDMQ ARG1 LDMQ ARC].
SB?4Q ARG2 SSMQ ARC2 SACQ
AQRS PAR 3 AQRS PAR3 AQRS PAR3
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SX6X (1R—2N)

SD6O SD61 SD62
LDMQ ARC]. LDMQ ARG1
AQRS PAR1 AQRS PAR]. AQRS PAR1
SBMQ ARG 2 SBMQ ARG 2 SACQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
STMQ ARG 3 STMQ ARG 3 STMQ ARG 3

SE6O SE61 SE62
LDMQ ARC]. t~ MQ ARG1
AQRS PAR1 A~2RS PAR]. AQRS PAR].
SBMQ ARG2 SMBQ ARC2 SACQ
AQRS PAR3 AQRS PAR3 AQRS PAR3
PMQA PMQA PMQA

SF60 SF6]. SF62
LDMQ ARG1 LDMQ ARG1
AQRS PAR]. AQRS PAR1 AQRS PAR].
SBMQ ARG 2 SBMQ ARG 2 SACQ
AQRS PAR3 AQRS PARI AQRS PAR 3

PAR 3
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SX7X (1R—2L)

SD7O SD71
LDMQ ARG1
AQRS PAR]. AQRS PAR1
LDAC ARG 2 LDAC ARG 2
ALS PAR2 ALS PAR2
SACQ SACQ
AQRS PAR3 AQRS PAR3
STMQ ARG3 STMQ ARG3

SE7O SE71
LDMQ ARG1
AQRS PAR]. AQRS PAR1
LDAC ARG 2 LDAC ARG 2
ALS PAR2 ALS PAR2
SACQ SACQ
AQRS PAR3 AQRS PAR 3
PMQA PMQA

SF70 SF71
LDMQ ARG1
AQRS PAR1 AQRS PAR 1
LDAC ARG 2 LDAC ARG 2
ALS PAR2 ALS PAR2
SACQ SACQ
AQRS PAR3 AQRS PAR3

I
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SX8X ( 1N—2L)

SD8O SD8].
LDMQ ARG2 LDAC ARG2
QLS PAR2 ALS PAR2• SBMQ ARG]. SACQ
CHSQ AQRS PAR3
AQRS PAR3 STMQ ARG 3
STMQ ARG3

SE8O SE81
LDMQ ARG2 LDAC ARG2
QLS PAR 2 ALS PAR2
SBMQ ARG1 SACQ
CHSQ AQRS PAR 3
AQRS PAR 3 PMQA
PMQA

SF80 SF8].
LDMQ ARG2 LDAC ARG2
QLS PAR2 ALS PAR2
SBMQ ARG1 SACQ
CHSQ AQRS PAR 3
AQRS PAR3

j I
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Mxix ( 1L—2L)

MD].0 MD1]. MD12
LDAC ARG 2 PMQA
TACP *+2 LDAC ARG2 TACP *42
CHSA TACP *+2 CHSA
ALS PAR2 CHSA ALS PAR2
STAC $V9 9 ALS PAR2 STAC $V99
LDAC ARG 2 STAC $V99 PMQA
LDMQ ARG1 LDAC ARG2 LDMQ ARG].
EMQA EMQA EMQA
ARS 23 ARS 23 ARS 23
SRAC *+6 SRAC *46 SRAC *46
TMQP *+2 TMQP *42 TMQP *42
CESQ CHSQ CHSQ
QLS PAR]. QLS PAR]. QLS PAR].
MPY $V9 9 MPY $V99 MPY $V99
PACQ PACQ PACQ
PADA ** PADA ** PADA **
TACZ *+2 TACZ *+2 TAC Z *+2
CHSQ CHSQ CHSQ
STMQ ARG 3 STMQ ARC3 STMQ ARG 3

c
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Mxix (iL- 2L)

ME1O MEl]. ME].2
LDAC ARG 2 PMQA
TACP *42 LDAC ARG2 TACP *+2
CHSA TACP *42 CHSA
ALS PAR 2 CHSA ALS PAR2
STAC $V9 9 ALS PAR 2 STAC $V9 9
LDAC ARG2 STAC $V99 PMQA
LDMQ ARG1 LDAC ARG2 LDMQ ARC].
EMQA EMQA EMQA
ARS 23 ARS 23 ARS 23
SRAC *46 Sp~ C *+6 *46
TMQP *+2 TMQP **2 TMQP **2
CHSQ CHSQ C}ISQ
QLS PAR]. QLS PAR]. QLS PAR].
MPY $V99 MPY $V9 9 MPY $V9 9
PACQ PACQ PACQ
PADA ** PADA ** PADA **
TACZ *42 TACZ *42 TACZ *+2
CHSQ CHSQ CHSQ
PMQA PMQA PMQA

i
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MX].X (1L—2L)

MF1O MF11 MF12
LDAC ARG2 PMQA
TACP *42 LDAC ARG2 TACP *+2
CHSA TACP *+2 CHSA
ALS PAR2 CUSA ALS PAR2
STAC $V9 9 ALS PAR 2 STAC $V9 9
LDAC ARG2 STAC $V99 PMQA
LDMQ ARG]. LDAC ARG2 LDMQ ARC].
EMQA EMQA EMQA
ARS 23 ARS 23 ARS 23
SRAC *46 SRAC *+6 SRAC *+6
TMQP *42 TMQP *+2 TMQP *42
CHSQ CHSQ CHSQ
QLS PAR]. QLS PAR]. QLS PAR].
MPY $V99 MPY $V99 MPY $V99
PACQ PACQ PACQ
PADA ** PADA ** PADA **
TAC Z *42 TACZ *+2 TACZ *+2
CHSQ CHSQ CHSQ

I 
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t DVSM

DX1X (1L—2L)

DD1O DD11 DD12
LDAC ARG2 PMQA
TACP *42 LDAC ARG2 TACP *+2
CHSA TACP *+2 CHSA
ALS PAR2 CHSA ALS PAR2
STAC $V99 ALS PAR2 STAC $V99
LDAC ARG 2 STAC $V9 9 PMQA
LDMQ ARG1 LDAC ARG2 LDMQ ARC].
EMQA EMQA EMQA
ARS 23 ARS 23 ARS 23
SRAC *+6 SRAC *+6 SRAC *+6
TMQP *+2 TMQP **2 TMQP *+2
CHSQ CHSQ CHSQ
ZAC ZAC ZAC
LLS PAR1 LLS PAR]. LLS PAR].
DPDV $V99 DPDV $V99 DPDV $V99
PADA ** PADA ** PADA **
TACZ *+2 TACZ *42 TACZ *42
CHSQ CHSQ CHSQ
STMQ ARC3 STMQ ARG 3 STMQ ARG3

I
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Dxix (1L—2L)

DE1O DEll DE].2
LDAC ARG2 PMQA
TACP *+2 LDAC ARC2 TACP *+2
CHSA TACP *+2 CHSA
ALS PAR2 CHSA ALS PAR 2
STAC $V99 ALS PAR2 STAC $V99
LDAC ARG2 STAC $V99 PMQA
LDMQ ARC]. LDAC ARG2 LDMQ ARC].
EMQA EMQA EMQA
ABS 23 ARS 23 ABS 23
SRAC *+6 SRAC *+6 SRAC *+6
TMQP *+2 TMQP *42 TMQP *42
CHSQ CHSQ CHSQ
ZAC ZAC ZAC
LLS PAR]. LLS PAR]. LLS PAR].
DPDV $V99 DPDV $V99 DPDV $V9 9
PADA ** PADA ** PADA **
TACZ *+2 TACZ *+2 TACZ *+2
CHSQ CHSQ CHSQ
PMQA PMQA PMQA

(
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Dxix (1L—2L)

DF1O DF11 DF].2
LDAC ARC 2 PMQA
TACP *42 LDAC ARG 2 TACP

• CHSA PACP *+2 CHSA
ALS PAR2 CHSA ALS PAR2
STAC $V9 9 ALS PAR 2 STAC $V9 9
LDAC ARG2 STAC $V9 9 PMQA
LDMQ ARG1 LDAC ARG 2 LDMQ ARG1
EMQA EMQA EMQA
ABS 23 ABS 23 ABS 23
SRAC *+6 SRAC *+6 SRAC *+6
TMQP *+2 TMQP *+2 TMQP *+2
CHSQ CHSQ CHSQ
ZAC ZAC ZAC
LLS PAR]. LI~S PAR]. LLS PAR].
DPDV $V99 DPDV $V99 DPDV $V9 9
PADA * * PADA * * PADA * *
TACZ *+2 TACZ *+2 TACZ *+2
CHSQ CHSQ CHSQ
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CALM

Cx].x (2L-3R)

CD1O
LDMQ ARG2
QLS PAR2
CALL ARG1
AQRS PAR3
STMQ ARG3

CE].0
LDMQ ARC2
QLS PAR2
CALL ARG1
AQRS PAR3
PMQA

CF].0
LDMQ ARG2
QLS PAR2
CALL ARG1
AQRS PAR 3
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CX2X (2R—3R)

CD2O CD22
LDMQ ARG2
AQRS PAR2 AQRS PAR2
CALL ARC]. CALL ARG1
AQRS PAR3 AQRS PAR 3
SPMQ ARG3 STMQ ARG3

CE2O CE22
LDMQ ARG2
AQRS PAR2 AQRS PAR 2
CALL ARGI. CALL ARGi.
AQRS PAR3 AQRS PAR3
PMQA PMQA

CF2O CF2 2
LDMQ ARG 2
AQRS PAR2 AQRS PAR2
CALL ARG]. CALL ARC].
AQRS PAR3 AQRS PAR3

• 1
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CX3X (2N—3R)

CD3O CD32
LDMQ ARG2
CALL ARG]. CALL ARG1
AQRS PAR 3 AQRS PAR3
STMQ ARG3 STMQ ARG3

CE3O CE32
LDMQ ARG 2
CALL ARG]. CALL ARC].
AQRS PAR 3 AQRS PAR3
PMQA PMQA

CF3O CF32
LDMQ ARG2
CALL ARC]. CALL ARC1
AQRS PAR 3 AQRS PAR3
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EQUM

QX1X (1L)

QD].0 QD11
LDMQ ARC].
QLS PAR]. QLS PAR1
STMQ ARG2 STMQ ARC2

QX2X (].R)

QD2O QD2].
LDMQ ARG1 AQRS PAR].
AQRS PAR]. STMQ ARG2
STMQ ARG2

QX3X (].N)

QD3O
LDMQ ARC].
STMQ ARG2

S
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