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DYNAMIC PRODUCTION FUNCTIONS

by

Ronald W. Shephard

1. INTRODUCTION

The typical production function relates constant input rates of
certain factors of production to a maxrimal constant output rate of a
single good or service thereby obtainable, serving primarily to define
factor substitution for steady state operation of a technology. As a
model of production such structures often fail to be useful because in
many circumstances the elements of the phenomena modeled are inherently
dynamic. Take the case of shipbuilding, for example, which is carried
out by the interaction in time of a number of activities, the outputs
of which are phased inputs (intermediate products) for other activities.
There the process of production is decidedly evolutionary, and a steady
state relationship between constant input and output rates fails to display
the choices which canAbe made by shifting in time the allocation of variable
input rates, i.e., by Time Substitution as opposed to factor substitution.

Not in shipbuilding alone, are dynamic elements significant for econo-
mic analysis of production. All construction activity has the same
character. In automated manufacturing of a variety of parts, similar
dynamic interactions arise, and to some degree all production exhibits
dynamic aspects. Once Time Substitution is admitted as part of production
phenomena, econometric studies of productivity and technical progress are
thereby complicated. Thus, one is prompted to make an effort to develop

a dynamic theory of production functions (correspondences).




2. BRIEF SKETCH OF STEADY STATE PRODUCTION FUNCTIONS

Let u be a nonnegative constant output rate for a single (net)
product, and x = (xl,xz, et 3 xn) denote a vector of nonnegative
constant input rates for n factors of production (inputs).

The traditional production function is a mapping of x 1into ¢(x)
where ¢(x) denotes the maximal output rate for a single product obtain-

able from x . By considering the level set

L(u) : = {x € R: : (%) 2 u}

one may exhibit factor substitution by the boundary of L(u) , i.e.,

by the
ISOQUANT L(u) : = {x € L(u) : (Ax) ¢ L(u) for O £ x<1},

as illustrated in Figure 1.

ISOQUANT

FIGURE 1
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This production function may be regarded as a smooth idealization of k
independent, parallel alternative processes, say the correspondence

u + L(u) expressed by

X n
i : L(u)-{xeR::Zsi:u,x;aA},

i=1

where § = (51’52’ cony Ek) is a vector of k nonnegative output rates
for the processes and A = llaijll e S m F o2 s BY % 152, ., B)
is a matrix of nonnegative input coefficients in which aij is the input

t of the jth factor per unit output of the 1th (activity) process.

Typically, one or other, or variants, of the following two functions are

used:
£ noa, n
. $(x) = ¢° 2 X, ey >0, E a, = T ¢° > 0 Cobb-Douglas

v
o

- =
¢(x) = ¢°[2 aixi-p] P -1 ,p#0, a CES
1

g =

to represent the production function. In the case of the activity

3 analysis expression,

= K
¢(x) = Max Z Ei :EA<x, E¢ R+ 5
1

and in the case of a single process (k =1) ,

T -

X
: o(x) =Mind[—L); 5 ¢ (1,2, ..., o} LEONTIEF.
E . T A\e®

P —
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All of these models emphasize factor substitution arising from in-
dependent technical alternatives, and they suffer from the restriction
to a single net output.

Let us consider next, then, an activity analysis model of production
with m (net) outputs at nonnegative constant rates u = (ul,uz, ey um) €
m

R+ . Further, the activities need not be independent alternatives for

final output. Indeed, if we are to display the potential for dynamic

phenomena some of the activities must serve to produce intermediate
products for others, as in shipbuilding. As nonnegative technical
coefficients, retain A and add B = Ilbijll T O LR SR T :
=l iies B} ; B @ ||313|| sl =38 ), (=12, ..., 8 , 3
where bij is the output of the jth product per unit of Ei and ;ij |
is the input of the jth product required per unit of Ei , and
E = (El, cles Ek) is interpreted as a vector of intensities of operation.
i
Then the production function is expressed by two inversely related
correspondences
u->L(u) : = {x € R: : E(B - A) 2u, x> EA}

x * P(x) : = {u € R: :BA<x, §(B - A) E85 0 e L 0ne - K)} . ’

Here the production functions express steady state transfer of inter-

mediate products. The coefficients A and B are assumed to satisfy

n
] 8,20, G3"3,2 vess B) 5 ) 8,208, U=llish)
g=1 1 jo1 1

m k
21 by >0, W=1,2, 00k, ]
j-

B, 50, ¢ 1,2, very 8§ &
g=1 1




In the case of shipbuilding, we may regard each activity as yielding 1
a single product, with one of them, say the kth, outputing a ship

while all the others provide intermediate products. Then B = |lbii||

(diagonal matrix) and a, =0 for (i =1,2, ..., k) . The Leontief

open model is obtained by stipulating further that k = m and allowing

each product to be both intermediate and final.

In general (abstract) terms one may express all steady state (models)

production functions by two inversely related correspondences:

Rm Rn

X € R: -+ P(x) € 2 oE s u e R: + L(u) e 2 h

ue P(x) &= x ¢ L(u)
having the following properties (see Reference [3]):

P.1  P(0) = {0} , NOTHING FROM NOTHING.

P.2  P(x) bounded, OUTPUT IS FINITE.

P.3  P(Ax) DP(x) , A > 1 , WEAK NONDECREASING OUTPUT.
P.38S P(x') DP(x) , x' > x , STRONG NONDECREASING OUTPUT.

(1)

fA P.4.1 For each i e {1, ..., m} there is some x , such that

u € P(x(i)) with ui > 0 , POSSIBILITY OF PRODUCING ALL OUTPUTS.
P.4.2 If uepP(x),u#0, (Bu) e P(Aex) for some Ae >0,
8 ¢ (0,+=) , SCALED OUTPUTS OBTAINABLE BY SCALED INPUTS.

P.5 x + P(x) 1is closed, THE SET OF ALL FEASIBLE VECTOR PAIRS

|

|

! (x,u) IS CLOSED.

g P.6 If ue P(x), (Bu) e P(x) , 8 ¢ [0,1] , WEAK DISPOSABILITY

OF OUTPUTS.

PR T TR L T e s -
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P.6SS If u e P(x) then v e P(x) for all 0 <v < u, STRONG

DISPOSABILITY OF OUTPUTS.

Eff L(u) is bounded, i.e., BOUNDED EFFICIENT SUBSTITUTION

.
m

. K;wr,‘ﬂry‘ﬂ:,vguuma‘ RSN i
«

OF FACTORS (Eff L(u) : = {x € R: :x e L , y¢ L
for y:x,y#x}).

With this abstract structure one may develop a steady state theory of

production. The properties for the inverse correspondence are implied

by P.1, ..., P.6SS. See Reference [3] for details.

S AR S
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3. GENERAL ABSTRACT STRUCTURE OF DYNAMIC PRODUCTION FUNCTIONS

Here the primitive elements of production are not constant input
and output rates (n,m-tuples of real numbers) but input and output rate
histories for the factors and products (nonnegative functions of time
th

defined on [0,+x)). Let x; denote an input rate history for the i

input, and u, denote an output rate history for the jth product. Two

3
histories for the same factor or product are not distinguishably
different for the purposes of this theory, if they differ only on a
subset of measure zero, since when summed by integration they will yield
the same value. Further we shall restrict the histories to be bounded
and measurable functions of time. In mathematical terms then, each
input and output rate history is an element of a function space (L)
The vectors x and u of such histories are elements of the product
spaces (Lw): 3 (Lm): , respectively. Two histories can be compared,
added and multiplied by a constant, pointwise in time. The norms

||xi|| » Ilujll of an input and output rate history are taken as the
essential suprema of the history, i.e., the supremal value except for

those on a subset of values of time ¢t e [0,+®) of measure zero. The

norms of vectors x and u are taken as
x| = Max {[[x [}, [lu|| = Max {|]u ][},
i J
h)
and the distance between any two vectors X and y in (Lw): , Or
u and v in (Lm)I , is defined by the metric

d(x,y) = |[x = y|| , d(u,v) = [|u - v|] .

i
g
:
2
j
i
b
H
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Thus, with points being vectors of time histories we have metric spaces
for expressing the theory by operations which are analogous to those
used when only constant rates are considered.

With the foregoing conventions, a dynamic production function

(correspondences) is defined by

m (L )n

(L) 0’ 4

xe @S> B e? T ,ue @0 > Ll s 2

ue P(x) = xe L(u) ,

as a mapping relating points in one product function space to a subset
of points in another product function space. The abstraction used has
the same apparent structure in the abstract spaces as that of the steady
state model in real coordinate spaces. Indeed the same axioms

P.1, ..., P.6SS used for the steady state model may be carried over for
the map sets P(x) (L(u)) , except that now one must keep in mind
that a point u of the output set IP(x) is a vector of output rate
histories, and the point x 1is a vector of input rate histories. On

this account one may add two additional possibilities for axioms .3

and P.6. They are:

P.3S TP() S )\nxn) > Plx) for x,31,4¢ {3, ..o 0},

s Sl i
NONDECREASING OUTPUT RATE HISTORIES UNDER UPWARD SCALING
OF INPUT RATE HISTORIES.
P.6S If u e P(x) , (elul,ezuz, Sie emum) e P(x) for ei e [0,1],

é i e {1,2, ...,m}, SCALED DISPOSABILITY OF OUTPUT RATE HISTORIES.

. Also, certain additional axioms (properties) need be applied.




i Let Eu (Eu) denote the latest (earliest) time at which a
history uy is positive, except for time points on [0,+*) of measure

zero. Let Ex (Ex) have similar meaning. Then

P.T.1 E. T E NONINSTANTANEOUS OUTPUT.

P.T.2 t, <t NO OUTPUT WHEN INPUTS CEASE.

L.T.1 If fujduj(t) < 4o , §=1,2, ..., m , the vector u of
0

such output rate histories can be obtained by a vector x of
@

input rate histories such that fxidvi(t) X Em] B L. 0 .
0

BOUNDED TOTAL OUTPUTS CAN BE OBTAINED BY BOUNDED TOTAL INPUTS.
E.T.2 [f Eu <+4+© and x yields u , then y yields u where
v, () = x () , te [O,Eu] y,(e) =0, t > Eu ;
3 INPUTS ARE NOT REQUIRED WHEN ALL OUTPUTS CEASE.
E. EEE L(a) = = {x e @)l ix L ,y ¢ L(w if
: y<ix,y¢# x} is bounded - UNBOUNDED INPUT RATE HISTORIES

. ARE NOT EFFICIENT.

Either of two topologies may be used: the norm topology, or a

weak* topology generated by price vectors from products of spaces for
bounded, measurable and absolute summable functions. Boundedness of IP(x)
and Eff IL(u) does not imply these sets to be compact when closed, unless
| the weak* topology is used. For the norm topology properties P.2
and E can be strengthened to ''totally bounded." Details on these

matters need not concern us here. See Reference [1] for details on the

dynamic structure of production.




4. POSSIBILITY OF A DYNAMIC NEOCLASSICAL PRODUCTION FUNCTION

In the dynamic framework it is clear that an output rate history
can vary in both time pattern and magnitude. For example, consider the
case of (k - 1) distinct single intermediate product producing
activities, with the kth activity yielding a single final output, as
described at the end of Section 2, above, for shipbuilding. The assign-

ment of an available vector x of input rate histories to the m

k
activities, say x A (0 T B e B T z X < x , can be made
oa amy OO =

in a very large number of ways indeed, and for each such assignment there
will be an output pattern of final product. Off hand, one cannot guarantee
that among all such possible patterns there is one output pattern which
dominates all, i.e., it is a maximal output rate history. Thus, in

general a neoclassical dynamic production function
n
xe (L), >~ Fx) e (L), »

relating maximal output rate history to a vector of input rate histories,
does not exist. TIME SUBSTITUTION for output rate histories exists even
when there is no product substitution. This phenomena of time substitution
is inherent in dynamic phenomena of production. Immediately, one is con-
fronted with the fact that pseudo dynamic production functions like
F(x(t),t) entail serious problems of interpretation and may lead to
spurious correlations with time series data. First, this function implies
instantaneous effect of inputs. Second, an apparent variation of relation-
ship between output at time t and x(t) may be merely a result of time

substitution and not imply anything at all about productivity and technical
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progress. The use of time lags to relieve the situation is of no avail,
since actual lags in production are endogenous and merely part of the
changes involved in time substitution.

Every scheduler of production is acutely aware of this dynamic
phenomena of Time Substitution, and his production plan must allow for
such variations otherwise the work flow would be too rigid and would
entail irregularities in loading.

Only when there is a maximal output rate history I(x) associated
with a vector x of input rate histories can one justifiably associate
a single output rate history to x . Even then a function
F(x(t),t) , t € [0,+®) , cannot evidently be used to represent I(x) ,
since the value of T(x) at time t 1is not likely to be related to

the input rate history x merely by the value x(t) at the time t .
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5. POSSIBILITY OF STEADY STATE PRODUCTION FUNCTIONS

Among all thg output rate functions u € (La)+ consider the
subset of these functions which have constant value consistent with
axiom P.T.1l. Let C denote this subset. For v € C , consider any
vector y of input rate functions belonging to L(v) . Let C'

denote the subset of (L“)n such that each component of a vector of

+

(La): has constant value. Now for v € C , it is not true necessarily
that L(v) NC' is not empty. If IL(v) NC' is not empty, then
a steady state correspondence u <+ L(u) 1is definable in the following

way

u:=|lv|],

L(u) : = {x € R: 1 x = (||y1||, SoE ||yn||) 7y e E@) N C’} g

and inversely for y e C'

x o= Uyl gl oo Ty ID

P(x) : = {u e R, tu= [lvl]| » ve P(y) ncl = [0,6(x)]

where

¢(x) = Max {u e R_:u= l|v]] » v e P(y) ncC}

is the familiar neoclassical production function. This construction
will hold, only if 1IL(v) NC' and P(y) NC are not empty. In the
case of the input correspondence, this is assured if input histories
are strongly disposable, i.e., property I.3SS holds, and under such

circumstances the steady state model in effect replaces each input rate

- ————— e T g e g S vyl
v

AL o i e $oo Sl




history by the largest value in time, which may be what is being
done in many cases to model a production system as a steady state.
One so to speak takes care of the largest requirement in time. The
same applies to production correspondences with more than one output.
Interestingly, the axioms for the dynamic model imply that those for
steady state model hold for the above construction.

There is still another way in which a "steady state" production
function may be defined, namely as a long run quverage of the output

rate history T(x) . It is shown that the function constructed in

this way satisfies the properties implied by the axioms for steady state

models.
See Reference [1] for details on the existence of steady state

production functions.




6. AN EXAMPLE OF A DYNAMIC ACTIVITY ANALYSIS PRODUCTION FUNCTION

Consider again the steady state activity analysis production
function described at the end of Section 2 above, for a single final
product with all activities except the kth yielding a single distinct
intermediate product. Instead of defining the operation of the activities
by a vector £ of constant intensities in time, let z, ¢ za(t) >
t e [0,+) , (@ = 1,2, ..., k) denote nonnegative time variable
intensity functions. Replace A by M = |]a1j(t)|| s+ B by
B = llbii(t)ll , a matrix of only diagonal coefficients, and A by
A= ||§ij(t)|| . The dependence of these coefficients upon time is not
essential for time substitution phenomena. Learning effects are in this
way incorporated.

Given a function u of output history, the correspondence (production
function) u + L(u) may be constructed in the following way (see

Reference [2]).

(1) Order the activities so that'all intermediate product transfers
required by the i':h activity are obtainable from those indexed
1524 voay (& ='1)

(2) By some convenient unit of time, consider the time grid
o= (T -t) for t=7T,T-1,T-2 , etc., counting time backward
from a time T at which the total output is to be available.

(3) Let Ga(t) denote the cumulative output required from the ath

activity. Gk(t) is the cumulative end product required by t ,

determined from the given output history u .

s : z ARy
RN ; iRt 0cel e b S i " s St i Ot e et il




(4) The constraints of the system are:

: (@) 0gz.(0) g2,(0), (@=1,2, ..., k), (0 =1,2, ...)
. by (D2, (1) < ¥, (0) - ¥, (1)
(oz1) 2 2
b (92, (0) + Tzl b (DZ () 2V, (0) - ¥, (0) (0=2,3, ...
(b) k %
baa (D)2, (1) < i-§a+1) a, Mz, (1) (a=1,2, ..., (k-1))
" (0=1) &
1 byq ()2, (0) + tzl byo (M2, (1) < Tzl 1-§a+1) a, (1)z, (1)
b (@=1,2, ..., (k=1)) , (0 = 2,3, ...) .
. - (0-1) =
(e) vi(@) 2 v;Q) - 121 s l0d () (=12, ..., @-1) .
(d) (xw(a))j 2 aaj(a)zu(o) G=12 ..., n) .
Here Eu(c) denotes an upper bound to the intensity of the ath

node at time o . The quantity G:(c) is the cumulative

transfer required at time o of the output of the 1t

activity to the uth activity.
the constraints (c) and (d) drive intermediate produc

contraints is obtained by choosing for each time o

value of za(o) £0r a % 1,2, sses k

. (6) Formulas for the GCreedy Solution are:

h

(5) The intensity functions za(a) are driven by (b) while

t transfers

and exogenous inputs respectively. A GREEDY solution to these

the maximal




Kk k -
z, (1) = Min s 2, (1)
k bkk(l) k
A 2 (0-1)
Zk(a) = Min Vk(O) _Vk(O) 3 Tzl bkk(T)Zk(T) - (0) ( -2 3 )
bkk(o) v 2 o 8 e
ot e
Z am(l)zi(l)
z,(1) = Min 1'(““1bL T V3| a=1,2, ..., (k-1))
ac
-
[ o lf e (oil)
a, (1)z (1) - b _(t)z_(1)
PRI | T | haoiiith. T ey e : i
Za g n L baa(o) ’ za o

(o= 1,2, vesy =3}y , 0= .us) »

] » (7) Steps for constructing the solution are:

: B (1) From the given cumulative final output schedule 6k(o) ;

calculate zk(o) for o=1,2,3, ... until no further
positive intensities are needed.

(11) With the results of (i) calculate successively
zk_l(l),zk_1(2), s

(i11) With the results for zk(o) s zk_l(o) s =T 20 vus
calculate successively zk_z(l),zk_z(Z), e

(iv) Continue in the same fashion until zl(l),zl(Z), S

is determined.

(v) Use (c) and (d) to find intermediate product transfers

! and exogenous inputs required.

» (vi) THE EVOLUTIONARY CHARACTER OF THIS DYNAMIC SOLUTION

IS EVIDENT.

:
i
:
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The upper bounds Ea(c) » 0 =1,2, ... reflect physical limitations
in production. For the production model discussed there are not any
alternative processes and all services of equipment and facilities have
been preallocated, in time, to the various activities, and reflected by
the upper bounds Eu(o) , 0=1,2,3, ... . Even so, to obtain the given
output schedule ék(o) , 0=1,2, ... there is substitution permitted.

Let z:(c) »,0=1,2, ... ,aa=1,2, ..., k denote the intensity
functions obtained for the greedy solution. Not all of the activities
at each point of time need be critical. An activity is critical if the
total production time for Gk(O) is increased if its intensity upper
bound is decreased. In fact many values of Ea(c) i 1ed L B 5
6 =1,2, ... can be reduced without increasing the total production time
for ék(O) . Any combination of such reductions leads to different
exogenous input histories, i.e., TIME SUBSTITUTIONS.

It is this property of time substitution which is the overriding
aspect of the dynamics of production. Operationally one would like to

use exogenous input histories (x° ). which are as smooth (constant)

a’j
k
as possible, or at least have z (xoa)j constant in time. This problem
a=1

of smooth loading is the production scheduler's burden, and will not be
discussed in detail here. The foregoing phenomena of time substitution
arises even though the given output function is constant in time.

In so far as the upper bounds Za(c) , =12, ... result from
shared allocation of fixed resources of real capital available to the
production system, there will arise a factor-time substitution possible

by altering the shared allocations to the activities.

S e
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