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ABSTRACT

An overview is presented of a dynamic theory of production correspondences
‘ with an example of the construction of a dynamic activity analysis produc-

tion correspondence.
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n ~p.
DYNAMIC PRODUCTION FUNCTIONS

Ronald W. Shephard

1. INTRODUCTION

The typical produc tion f unction rela tes cons tan t input ra tes of

cer tain f a c tors of produc tion to a mazzn~ l cons tan t outpu t ra te of a

single good or service thereby obtainable , serving pr imarily to def ine

factor substitution for steady state operation of a technology. As a

model of production such structures often fail to be useful because in

many circ umstanc es the elements of  the phenomena modeled are inheren tly

dynamic. Take the case of shipbuilding, for example, which is carr ied

out by the interaction in time of a number of activities, the outputs

of which are phased inputs (intermediate products) for other activities.

There the process of production is decidedly evolutionary , and a steady

state relationship between constant input and output rates fails to display

the choices which can be made by shifting in time the allocation of variable

input rates, i.e., by Time Substitution as opposed to factor substitution.

Not in shipbuilding alone, are dynamic elements significant for econo-

mic analysis of production. All construction activity h~s the same

character. In automated manufacturing of a variety of parts, similar

dynamic interactions arise, and to some degree all production exhibits

dynamic aspects. Once Time Substitution is admitted as part of production

phenomena , econometric studies of productivity and technical progress are

thereby cclnplicated . Thus, one is prompted to make an effort to develop

a dynamic theory of production functions (correspondences).

________________ 
______ A . _ -~~k’
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2. BRIEF SKETCH OF STEADY STATE PRODUCTION FUNCTIONS

Let u be a nonnegative constant output rate for a single (net)

produc t, and x — (x1,x2, • . ,  Xn
) denote a vector of nonnegative

constant input rates for n factors of production (inputs).

The traditional production function is a mapping of x into $(x)

where $(x) denotes the maximal output rate for a single product obtain-

able f rom x . By consider ing the level set

L ( u)  ..{~ ~ R : + (x) > u}

one may exhibit f a c tor substitution by the boundary of  L (u)  , i.e.,

by the

ISOQUANT L(u) : — {x c L(u) : (Ax) ~ L(u) for 0 < A < 11

as illustrated in Figure 1.

x~

ISOQUANT

0 ~ X
1

FIGURE 1

I

-- -.-
~~~~~~~~-
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This production function may be regarded as a smooth idealization of k

independent, parallel al terna tive processes , say the correspondence

u ~ L ( u )  expressed by

L (u)  — s R~ : > U , x > FA}

where ~ — 
~~1’~ 2 ’ ‘ 

is a vector of k nonnega tive outpu t ra tes

f o r  the processes and A — t I a~ I I , (i — 1,2, ... , k)  , (j 1,2, ... , n)

is a matrix of nonnegative input coefficients in which ajj is the input

of the factor per unit output of the 1
th 

(activity) process.

Typically, one or other, or variants, of  the f o l lowing two f unctions are

used :

•(x) $~ IT x~~ , a .~ > 0 , — 1 , > 0 Cobb—Douglas

1

$(x)  — .[~ aixi_of , p > —l , p 
~ 0 , a~ ~ 0 CES

to represent the production function. In the case of the activity

analys is express ion ,

•(x) - Max{Z 
~~ 

~A < x , e R~~~ ,

and in the case of  a single proc ess (k — 1)

4(x) — Mm U-~
—’

~ ~ j  c (1,2 , ..., n}~ LEONTIEF .

~ 
~~~~~~
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All of these models emphasize factor substitution arising from in—

dependent technical alternatives, and they suffer from the restriction

to a single net output.

Let us consider next, then, an activity analysis model of production

with m (net)outputs at nonnegative constant rates u — (u1,u2, • , •
~~ 
u )  C

• Further, the activities need not be independent alternatives for

final output. Indeed, if we are to display the potential for dynamic

phenomena some of the activities must serve to produce intermediate

products for others, as in shipbuilding. As nonnegative technical

coefficients, retain A and add B — IIb~~ I I , (i — 1, .. ., k)

(j 1, ... , m) , A — , (i — 1,2, ..., k) , (j — 1,2, ..., m)

where ~~ is the output of the ~th product per unit of and

is the input of the ~th product required per unit of , and

— •
~~~~~~~

‘ ~ ) is interpreted as a vector of intensities of operation -

Then the production function is expressed by two inversely related

correspondences

u+L(u) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x -” P(x) : _ { U C R  : ~A < x  , ~(B-A ) > 0 , O~~~u~~~~(B
_
A)}

Here the production functions express steady state transfer of inter-

mediate products. The coefficients A and B are assumed to satisfy

k n
~ a~ > 0 , (j — 1,2, ..., n) , ~ a~~ > 0 , (i — 1,2, ..., k)
i—l j—1

m k
• ~ 

bij > 0 , (i — 1,2, ... , k) , 
~ 

bij > 0 ,  (j  — 1,2, • . . ,  m) .

j — l  i—l

~ 

. . .~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~ -~--~~ LL._ .~ ~~~~~~~~~~~~~~~~~ ~~~~~~ . . -
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In the case of shipbuilding, we may regard each ac tivity as yield ing

a single produc t, with one of them, say the ~~~ outpu ting a ship

while all the others provide intermediate products. Then B — 1b 11 1 I
(d iagonal matrix )  and — 0 f o r  ( i — 1,2, .. ., k)  . The Leontief

open model is obtained by stipula ting f u r ther tha t k — m and allowing

each product to be both intermediate and final.

In general (abs trac t) terms one may express all stead y state (models)

produc tion f unctions by two inversely rela ted correspondences :

R
m 

R’~
x t R ~~-~~P (x)  C 2 +

; u C R~~-~~L( u ) C 2 +

U C P (x)  ~~ x C L( u)

having the following properties (see Ref erence [ 3 ] ) :

P.1 P(0) — {O} , NOTHING FROM NOTHING.

P.2 P(x) bounded , OUTPUT IS FINITE .

p.3 P(Ax) D P(x) , A > 1 , WEAK NONDECREASINC OUTPUT.

P.3SS P(x’)  D P (x)  , x’ > x , STRONG NONDECREASING OUTPUT.

P.4.1 For each I c (1, ... , m} there is some , such tha t

U C P(XW ) with u~ > 0 , POSSIBILITY OF PRODUCING ALL OUTPUTS.

P.4.2 If u c P(x) , u # 0 , (O u) C P (A
ex) for some X e > ~

e ~~ (0 ,+co) , SCALED OUTPUT S OBTAINABLE BY SCALED INPUTS .

P.S x -“ P(x) is closed , THE SET OF ALL FEASIBLE VECTOR PAIRS

(x ,u) IS CLOSED.

P.6 If u t P(x) , (Ott ) c P (x) , 9 c [0 ,1) , WEAK DISPOSABILITY

OF OUTPUTS.

_ _ _ _ _ _ _ _ _ _ _  

-

~~~~~~~~~
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P.6SS If u C P(x) then v C P(x) for all 0 < v < u , STRONG

• DISPOSABILITY OF OUTPUTS.

• B. Eff L(u) is bounded , i.e., BOUNDED EFFICIENT SUBSTITUTION

OF FACTORS (Eff L(u) : C R~ : x c L ( u)  , y 4 L( u)

~or y < x , y #

With this abs trac t s truc ture one m a y  develop a stead y state theory of

production. The properties for the inverse correspondence are implied

by P.1, ... , P.6SS. See Reference (3) for details.

_ _ _ _ _  _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. GENERAL ABSTRACT STRUCTURE OF DYNAMIC PRODUCTION FUNCTIONS

Here the primitive elements of production are not constant input —

and output rates (n ,m—tuples of real numbers) but Input and output rate

S histories for the factors and products (nonnegative functions of time

def ined on [O ,+a)). Let x1 denote an input rate history for the ~
th

input, and U
j 

denote an output rate history for the ~th product. Two

histories for the same factor or product are not distinguishably

different for the purposes of this theory, if they dif f e r  only on a

subset of measure zero, since when summed by integration they will yield

the same value. Further we shall restrict the histories to be bounded

and measurable functions of time. In mathematical terms then, each

S 
input and output rate history is an element of  a f unction spac e (L0,)

• The vectors x and u of such histories are elements of the product

spaces (L,,)  , (L ,,)~ , respe ctively Two histories can be compared , S

add ed and mul tiplied by a constant, pointvise in time. The norms

I lx i ii Ilu j il of  an inpu t and outpu t ra te his tory ar e taken as the

essential supre ma of the history, i.e., the supremal value excep t f o r

those on a subset of values of time t e (O ,+~o) of measure zero. The

norms of  vectors x and u are taken as

l Ix i l  = Max { I Ix ~I I} ~ H u l l  Max { I I u I l } ,
i j j

and the distance between any two vectors x and y in (L,)~ , or

u and v in (L1)~ , is def ined by the metric

d (x ,y) — I lx - I , d (u ,v) — I lu — vj 1 .

S ~~~~ ~~~~~~~~~~ ‘-~~~~~~~~~ .S - — ~~~~~~~~~~~ ~ - - - -
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Thus , with points being vectors of time histories we have metric spaces

for expru~ssing the theory by operations which are analogous to those

used when only constant rates are considered .

With the foregoing conventions, a dynamic production function

(correspondences) is defined by

(L,,) (L0,)
X C ( L ) ~ -

~~ P (x)  c 2 , U C ( L )  -
~ ]L(u) C 2

U C ]P(x) ~~~~ X C 1(u)

as a mapping relating points in one product function space to a subset

of points in another product function space. The abstraction used has

the same apparent structure in the abstract spaces as that of the steady

state model in real coordinate spaces. Indeed the same axioms

P.1, - ..,  P.6SS used for the steady state model may be carried over for

the map sets ]P(x) (1(u)) , except that now one must keep in mind

that a point u of the output set ]P(x) is a vector of output rate

histories, and the point x is a vector of input rate histories. On

this account one may add two additional possibilities for axioms P.3

and P.6. They are:

P.3S P(A1
x1, ..., A x )  

~ P (x)  f o r  A
1 

> 1 , i c (1 , .. ., n}

NONDECREASING OUTPUT RATE HISTORIES UNDER UPWARD SCALING

OF INPUT RATE HISTORIES.

P.6S If u e ]P(x) , (8
1
u1, 02u2 , ..., O t t )  C IP(x) for 9

~ 
~ (0 ,1)

i C (1,2, . . . , m} , SCALED DISPOSABILITY OF OUTPUT RATE HISTORIES.

Also, certain additional axioms (properties) need be applied .

I
___ 

~~~~~~~~~~~~~
_. _ . .~~ __________ _________ .
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Let 
~ 

( t )  deno te the la test (earlies t) time at which a

history u~ is positive , except for time points on [O ,+co) of measure

zero . Let ( t )  have similar meaning . Then

]P.T.l t > t NONINSTANTAI’IEOUS OUTPUT.—u —x

P T.2 t < E NO OUTPUT WHEN INPUTS CEASE .U —  X

]L.T.l If f  u~d~~(t) < +~ , j — 1,2, . ..,  m , the vector u of

such output rate histories can be obtained by a vector x of

input rate histories such that fx1dv1
(t) <+~~~, I = 1,2, ... , n

0

BOUNDED TOTAL OUTPUTS CAN BE OBTAINED BY BOUNDED TOTAL INPUTS.

IL.T .2 If  < +~~ and x yields u , then y yields u where

S y1
( t) x

1
(t) , t C io~ç y1

(t) — 0  , t >

S 

INPUTS ARE NOT REQUIRED WHEN ALL OUTPUTS CEASE

• TE . Eff 1(u) : — {x C (L,,)~ : x € 1(u)  , y ~ 1(u)  if

y < x , y # x} is bounded — UNBOUNDED INPUT RATE HISTORIES

ARE NOT EFFICIENT.

Either of two topologies may be used : the norm topology, or a
*weak topology generated by price vectors from products of spaces for

bounded , measurable and absolute swimmable functions. Boundedness of P(x)

S and Eff 1(u) does not imply these sets to be compact when closed , unless

the weak* topology is used . For the norm topology properties P .2

and ]E can be strengthened to “totally bounded .” Details on these

matters need not concern us here. See Reference (1] for aetails on the

dynamic structure of production .

I
-

. ~~~~~~~~ ~~~~~~~~~~~~~~ — S~~~ ~ 
-
~~~~ 

S~~~5
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4. POSSIBILITY OF A DYNAMIC NEOCLASSICAL PRODUCTION FUNCTION

In the dynamic framework it is clear that an output rate history

can vary in both t ime pattern and magnitude . For example , consider the

case of (k — 1) distinct single intermediate product producing

activities, with the k
th activity yielding a single final output, as

described at the end of Section 2, above, for shipbuilding. The assign-

ment of an available vector x of input rate histories to the m

k
activities, say xoa , (a 1,2, ... , k) , ~ 

x~~ < x , can be made
a—i

S 

in a very large number of ways indeed , and for each such assignment there

will be an output pattern of f inal product. Of f hand, one cannot guarantee

that among all such possible patterns there is one output pattern which

dominates all, i.e., it is a maximal output rate history. Thus, in

general a neoclassical dynamic production function

x C (L,,)~ + ~~(x) € (L0,)+

relating maximal output rate history to a vector of input rate histories,

does not ea~ist.  TIME SUBSTITUTION for output rate histories exists even

when there is no product substitution. This phenomena of time substitution

is inherent in dynamic phenomena of production. Immediately,  one is con-

fronted with the fact that pseudo dynamic production functions like

F(x(t),t) entail serious problems of interpretation and may lead to

spurious correlations with t ime series data. First , this function implies

instantaneous effect of inputs. Second, an apparent variation of relation—

ship between output at time t and x(t) may be merely a result of time

substitution and not imply anything at all about productivity and technical

—- - -. - 
- -  ‘~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a_S”. . ._... - .4~tt~~...__ .~ .. - -
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progress The use of time lags to relieve the situation is of no avail,

since actual lags in production are endogenous and merely part of the

changes involved in time substitution .

Every scheduler of production is acutely aware of this dynamic

phenomena of Time Substitution, and his production plan must allow for 
S

such variations otherwise the work flow would be too rigid and would

entail irregularities in loading.

Only when there is a maximal output rate history IF(x) associated

with a vector x of input rate histories can one justifiably associate

a single output rate history to x - Even then a function

F(x( t),t) , t e (O ,+~) , cannot evidently be used to represent IF(x)

since the value of ]F(x) at time t is not likely to be related to

the input rate history x merely by the value x(t) at the time t -

~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ -
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5. POSSIBILITY OF STEADY STATE PRODUCTION FUNCTIONS

~~ong all the output rate functions u C (L,,)
+ consider the

subset of these functions which have constant value consistent with

axiom ]P.T.l. Let C denote this subset. For v C C , consider any

vector y of input rate functions belonging to 1(v) - Let C’

denote the subset of (L
~
)
~ 

such that each component of a vector of

(L,,)~ has constant value. Nov for v e C , it is not true necessarily

that 1(v) (~ C’ is not empty. If 1(v) ri C’ is not empty , then

a steady state correspondence u ~ L(u) is definable in the following

way

u : — I lv i l

L(u) : — ~x € R~ : x = (I 1y11 I, ... , I~’~I I) , y C 1(v) fl c’}

• and inversely for y C C ’

x :  (II Y l l I ~i I Y 2II ’ ~~~~~~~ iI y ~ I I )

-
~~~ P(x) : — {u C R~ : u — I lv i i  , v c P(y) (~ C} — [O ,4(x)]

where

+(x) — Max {u C R
+ 

: u = I lv i i  , v c P(y) n c}

t
is the familiar neoclassical production function. This construction

will hold, only if 1(v) fl C ’ and P(y) (‘I C are not empty . In the

case of the input correspondence , this is assured if input histories

are strongly disposable , i .e., property L.3SS holds , and under such

circumstances the steady state model In effec t replaces each input rate

~~~~~____S ~~~~~~~~~~~~~~~~~~~ ~~~S S _ S S 5 ~~ _ _ _  _ _ _ _ _
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J history by the largest value in time , which may be what is being

— 
.

_ .  
. done in many cases to model a production system as a steady state.

5

- One so to speak takes care of the largest requirement in t ime . The

same applies to production correspondences with more than one output .

Interestingly, the axioms for the dynamic model imply that those for

steady state model hold for the above construction.

There is still another way in which a “steady state” production

function may be defined, namely as a long run cwerage of the output
S 

rate history ]F(x) . It is shown that the function constructed in

this way satisf ies the properties implied by the axioms for steady state

models -

See Reference [1] for details on the existence of steady state

S 

- 

production functions. 

— 1~~~~~~~~~~~~i 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6. AN EXAMPLE OF A DYNAMIC ACTIVITY ANALYSIS PRODUCTION FUNCTION

Consider again the steady state activity analysis production

function descr ibed at the end of Sec tion 2 above, for a single final

product with all activities except the kth yielding a single distinct

intermediate product. Instead of defining the operation of the activities

by a vector ~ of constant intensities in time, let : z
a
(t)

t C [O ,+co) , (a — 1,2, ... , k) denote nonnegative time variable

intensity functions. Replace A by 1~ — il a ij (t)Ii , B by

— l lb 1~(t ) iI , a matrix of only diagonal coefficients, and A by

= Ii~1~(t) II . The dependence of these coefficients upon time is not

essential for time substitution phenomena. Learning effects are in this

way incorporated .

Given a function u of output history , the correspondence (production

function) u + 1(u) may be constructed in the following way (see

Reference [2]).

(1) Order the activities so that all intermediate product transfers

required by the j
th activity are obtainable from those indexed

1,2, .. .,  (I — 1)

(2) By some convenient unit of time, consider the time grid

a — (T — t) for t — T,T— l ,T — 2  , etc., counting time backward

from a time T at which the total output is to be available.

(3) Let 
~a

(t) denote the cumulative output required from the

activity. V
k
(t) is the cumulative end product required by t

determined from the given output history u

- 5 ~~~~~~~~~~~~~~~~~~~~~~~~~ 5 S ~~~~~ ~~~~~~~ S
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(4) The constraints of the system are:

S (a) 0 < z (a) 
~ ~~~~ 

, (cm — 1,2, .. ., k) , (a — 1,2, . .. )

bkk(l)z
k
(l) 

~ 
V~ (O) — V

k
(l)

(a— i)
b
~~

(a)z
k

(a) + 
~ 

b
~~
(t)z

k
(r) < V~(O) — V

k
(a) (a. 2,3, . . .)

i— I.

(b) k
baa(l)Z (l) < 

i~
(l)z j(l) (a — 1,2, . . . ,  (k — 1))

i— (a+l)

(a—i) a k 
—b (a)z (a) + ~ b (r ) z (r )  < a~~(r)z~(r)r—i r—l i—(a+ 1)

(a — 1, 2 , ..., (k— i)) , (a — 2,3, . . . )

(a—l)
(c) ;~ (a) ~ v~ (l) — 

~ 
Za (t)a

i
(t) (i — 1,2 , .. . ,  (a — 1)) -

r 1

(d) (x (a)) j > a
3

(a)z (a) (j — 1,2, ... , it)

Here ~~(a) denotes an upper bound to the intensity of the

node at time a . The quantity ‘~~(a) is the cumulative

transfer required at time a of the output of the jth

activity to the ath activity.

(3) The intensity functions za(a) are driven by (b) while

the constraints (c) and (d) drive intermediate product transfers

and exogenous inputs respectively. A GREEDY solution to these

contraints is obtained by choosing for each time a the maximal

value of z (a) for a — 1,2, ... , k

(6) Formulas for the Greedy Solution are:

I

— - ..
_~~~ S

_
_ _ _ .~ .~~~~~~ S

- S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~ 1.~~~~~~~~~- •~~~~~~~~~~- ~~~~~~~~~~~~~~ —S_S- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 -  ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
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Vk
(O) — V

k(])zk(l) — Mm 
bkk (l) Z~(l)

(a—i )
Vk

(O)_v
k(a) ~ 

b
~~
(t)zk(t)Zk(O) — Mm 

b (a) , Z~~(O ) (o—2 ,3, . . . )
kk

k

~~ 
(l)z~(l)

zcm(l) — Mm 
~~~~~~~ ~~(l) (a — 1,2, .. ., (k — i))

za(a) — Mm r~l i— (~+l) 
~ia

(T
~~j~

T) — 

~ 

b (r)z (r) 

‘ 

~a
(0)]

(a — 1,2 , ..., (k — 1)) , (a — 2,3, . . . )

(7) Steps for constructing the solution are:

(i) From the given cumulative final output schedule

calculate zk(a) for a 1,2,3, ... until no further

positive intensities are needed .

(ii) With the results of (i) calculate successively

zk_l (l) ,zk_l (2) 

(iii) With the results for Z
k

(O) , zk....l
(a) , a — 1,2,

calculate successively zk 2 (l),zk 2 (2) 

(iv) Continue in the same fashion until z
1

(l) , z1(2) ,

is determined.

S (v) Use (c) and (d) to find intermediate product transfers

and exogenous inputs required.

(vi) THE EVOLUTIONARY CHARACTER OF THIS DYNAMIC SOLUTION

IS EVIDENT .

T~~~1
h..5 ~~~~~~~~~~ -5~ --~~~ -—~~~ ~~~~~~~~~~~~ —~~~‘—- — - -  ~~~~~~~
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The upper bounds 
~a

(a) , a — 1,2 , ... reflect physical limitations

in production . For the production model discussed there are not any

alternative processes and all services of equipment and facilities have

been preallocated , in time, to the various activities, and reflected by

the upper bounds ia
(a) , a — 1,2,3 Even so , to obtain the given 

S

output schedule 
~k
(a) , a — 1,2, ... there is substitution permitted.

Let z*(a) , a — 1,2 , ... , a — 1,2, ..., k denote the intensity

functions obtained for the greedy solution. Not all of the activities

at each point of time need be critical. An activity is critical if the

total production time for V
k
(O) is increased if its intensity upper

bound is decreased. In fact many values of a(o) , a — 1,2, ... , ,

o — 1,2, ... can be reduced without increasing the total production time

for 
~k
(O) . Any combination of such reductions leads to different

exogenous input histories , i.e., TIME SUBSTITUTIONS.

It is this property of time substitution which is the overriding

aspect of the dynamics of production. Operationally one would like to

use exogenous input histories 
~ oa~j 

which are as smooth (constant)

as possible, or at least have 
~ 

(x0~
)4 constant in time. This problem

a 1

S of smooth loading is the production scheduler’s burden, and will not be

discussed in detail here. The foregoing phenomena of time substitution

arises even though the given output function is constant in time.

In so far as the upper bounds 
~a

(a) , a — 1,2, ... result from

shared allocation of fixed resources of real capital available to the

• production system, there will arise a factor—time substitution possible

by altering the shared allocations to the activities.

L _ _ _ _ _ _ _ _ _ _  
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