
- cOMPUTER SYSTEM MANUAL --
~CSMIm UM15-78 - ,

VOLUME I
1 SEPTEMBER 1978

COMMAND
& CONTROL D D C

-TECHNICAL s2

C. VNMCS INFORMATION
PROCESSING SYSTEM
360 FORMATTED FILE

SYSTEM
(NIPS 360 FFS)

DEFENSE VOLUME I
MCWO UNICATIONS INTRODUCTION TO FLE CONCEPTS

AGENCY 7808.2.....__. "/8 08 S5 o 5
#44 POCUMEN'T HASBSERN
AFFIYED FOR PUBLICUSR
.*L,,, AND SALE; IT USERS MANUAL

4SlI,,1UTION 15 UNLIMITED.

- ---.. .. - -..... . ..
--

COMMAND AND CONTROL TEC)--

:omputer_ i4stem Msnual NU u SM- M-1 5-78-/O - -

1 Sep*416w 1078%

IQr -Manual

/'
," VoluaeIZ Introduction to File Con cepts \

-D D C-

B

SUBIITTED BY: APPROVED BY:

'-C-_]-tI-- S-- Captain, U.S. Navy

CCrC Project Officer Deputy Director,
NMCS ADP

Copies of this document may be obtained from thp Defpnse
Do-umentation station, Cameron Station, &lexandria, Virglnii
22314.

This d)cument has begn approved for public release and sale;
its distribution is unlimited.

C- "-" t. /

ACKR OWL EDGM ENT

7h is manual was prpparfo un d r the direction of the
Chis-t for Proqramminy with g-e ral technical support
provided by the Internationi1 siness machines COrporation
unl~r z-rtracts IDCA 100-67-C- -62, DCA 100-69-C-00 29 , DZA
100- 70-C- 0031 , D: 100-70-Z- 080, DCA 1 00-71-c- 0047, and DCA
100- 77-C- 0 0 65.

ACESION for 0

INIS white Section

DO0C Bitl Sertion

UWANOUNCED i
jUSIIFICAION

..................................

Dist

CONTENTS

Sect ion Page

ACKNOWLEDG MENT *..... ii

A BSTRACT #................. vii

1 I NT PODUCT .N 1
1 1 s yste m Components 1
1.2 Interrelation of Components

2 SYSTEMCONFPTS.......................... 6
2.1 General 'ile Organization................ 6
2.2 Data Record ,rganizatior 7
2. 2. 1 Data Record Elements 7
2.2.2 Data Record Elamant Hierarchy............. 8
2.2. .1 Fixed Set 8
2.2.2.2 Per iod ic Se8t....................... 8
2 2. 2. 3 Vaciable Set 9
2.2.2.4 Data Rmcord Ilentification 9
2.2.2.5 Data Record Organization ummary 9
2.3 Data Value 13des 13
2.3.1 Numer ic Moie 0 13
2.3.2 Alphameric Mode 14
2.3.? Geographic Coorinate mode 14

2.4 Data Value Conversion 16
2.5 Data Value Editing 17
2.6 General Language Specifications 18
2.6.1 Definitions 18
2.6.2 Language Format. 1 9
2.6. 3 NIPS 360 FFS Language Contents 21
2.5.a uNIPS 360 FFS Peserved Words 26

3 SYS7 9 USE 28
3.1 Cataloged Proceudrus......r........ 28
3.2 Development of Conversion Tables... 29
3.3 Development of Conversion Subroutines 30
3.3.1 Assewbly l.nguage Routines 32
3.3.2 COBOL User Subroutines 34
3.3.3 PLi User Subroutin os 37
3.3.4 User Scan subroutine.....................0
3.4 Pefinition of Edit Masks v......... 42
3.5 Maintenance of Source Language Programs.. 4

3.6 Secondary Indexing Capability *... 45
3.7 Keyword indexing Capability 47
3.8 Inter file Out put (170) 54
3.9 File Analysi3 and Pun Optimization"latistics 56

3.3.1 FiLe Analysis Statistics 56
3.9.2 Pun optimization Statistics 58

iii

CD NT EN TS

section Pagp

3.10 Improved NIPS File Processing 62
3.1).1 Qualified Data Set Names.................. 62
3.10.1.1 Specifying a User Library................... 63
3.10.1.2 Specifying an Index Data Set 63
3.1).1.3 Data Gpneration Group.................... 63
3.10.2 Cataloged Prozeiurs ani File Black

Size Consider at ions 64
3.10. 3 Com-pression x n6 Compaction of Data Becords 65
3.11 Subfile Capability 66
3.12 Non-NIPS Query Ci pmbili ty................ 68

4 SAMPLF NIPS 360 FFS DATA FILE 70
4.1 Geie~al File Organization........... 70
4.2 PFecgrd Element Description 71
4.3 Subroutine,/Tib le Dscription.....tio 80
4.3.2 Table - CMD 80

4.3.3 Table - CTPYS.......
4. 3. 4 Table - ACTV5 82
4.3.5 Table- UNLVS...... to.82
4.3.6 Subroutine - DTGIS. 83
4.3.7 Subroutine - DTGOS. 83

.*3.k- Table - KEYSIOP......... 84

4.3.9 Table- ACCEPT 84
. G O A-Y- o . . • e.•

5GLOSSARY.. 85

AP? EN DIX
A Physical Description of the NIPS 360 FFS

Data File and Filp Format Table.......... 94
AlDat a set or ganizat ion. .0. . 0 &* .a..*. 94

A.2 Data File Pe:ords.&. . . 96
A.3 File Format Table Records.........to.to. 107
A. 3. 1 Classificat i:n Record.. t . . t . . 6 0 a. 107
A.3.2 Data File Control Record........... . . 108
A.3.3 Iniex Descriptor Record............,.. 113
A.3. 4 Element Format Pecordso 116
A.. 5 File Statistics Re=ord 128
A.3.6 'ilo rgment Pecor 1 0
A.3.7 Continuation Record Techniques 132
A.3. 7. 1 Continuation Records for the FFT Control

Record *...........................o. 1 32
A.3.7.2 Continuation Records for Group Format

Records 133
A.3.9 No.-NIPS Format/ID Record................ 134

iv

CONTENTS

Sa=:tio Pi ge

B Description and Use of The Transaction
Records Output By the File Analysis
Statistics Capability 137

B.1 Sample Transaction from File Analysis
Statistics 137

b.2 File StructureDe:k. 138

B.3 FM LogicStatements...................... 139

b.3. 1 C rransaction Pecord - Component
Execution.........*....... 139

R.3.2 'S' Transaction Pecord - UTFLDSCN
U titity *. 140

0.4 RASP Query 141

B.5 OP RIT....... 141

DISTRIBUTION.. 143

DD Form 1473 147

78 08 25 043
V

ILLUJSTRATION S

P'igure Page

1 NIPS 360 FFS Data Fpcord Organization 10

vi

A BS ACT

This volume presents System Concepts and System Usp; it
sh~w. a sample NIPS 360 FFS Data File, the Glossary of
Terms, and a description of th? NIPS 350 FFS Data File and
Fil? Format Table.

Th3 NIPS 360 is the to:al system coaposed of the s/360
hardware and S/360 Operiting System (OS used to supp t
NIPS 360 FFS software.

This document supersedes CSM UM 15-74, Volume I.

CSM uM 15-78, Volume I is part of the following
additional NIPS 360 FFS documentation:

CS1 UR 15-78 Vol IT - Fila Stru:turing (FS)
Vol III - File Maintenance (FM)
Vol IV - Petrieval and Sort Processor (RASPI
Vol V - Output Processor (OP)
Vol VI - Terminal Processing (TP)
Vol VII - Utility Support (UT)
Vol VIII - Job Preparation Manual
Vol IX - Frror Codes

T% 54-78 - Installation of NIPS 360 FFS
CS4 GD 15-78 - General Description

vii

INTR)DU:TDN TO ?ILE ZONCEPTS

SECTION I

INTRO DUCT tON

This volume is divided into five sections. Section 1
prs;nts a general ittroduzt ion of thie concepts and
ipplicitions of the NIPS 360 Formatted File System.

Section 2 discusses the concepts of data storage in a
formatted file, the me thods used for data
vali i ati om /con vetsi on, and the general language
specifications employed.

Section 3 disciissaq the method by which the system
op-ratBs and pr:cedur es used in developing the dati
validation/conversion routines which are defined, by the
usar far specific file applications.

Fe:ti~n 4 dqfines a sample data file which will be used
in examples throughout the system documentation.

Se:tion 5 contains i glossary of terms used in the
do. umentation.

Appendix A contains a detailed explanation of the
physical layout of NIPS 160 FFS 3ata set which is the user's
lita fila.

Appendix B contains a le scription ani use of the
trinsaztion records output by the file analysis statistics
capability.

1.1 System C~mponents

Tha NIPS 360 FF3 is made up of several relatively
independent components, ea:h of which performs a function in
ralatioa to data files of the system. The total complex of
components, working together, provides the user with the

INTRODUCrION TO FILE CONCEPTS

4

abili ty to perform the complex file processing job requirel
in modern information mi ngqe ment systems. Although
omprehn sive descriptions of each of the components are

presented in the appropriate volumes of tho NIPS 160 FFS
Usa rs M2aual, a brief introduction to each is included in
this section, since reference is made to the components in
establishing the file processing and language rules coversd
in this document.

a. FileS!tutcturin_FS__Component - Th is compo,,,nt
establishes the necessary communications media
required by the balance of the system :n data file
processing. This communications media is called
the File Format Table. Simply stated, a tabuir
array of the essential attributes ot each of the
ti-er-descuibed dat a elemerts is created by the
component. This array is stored as part ot the
Jata file Lind is accessed by the other components
when processing user ldnquaqe stataments.

b. File Mainten ance tIFMLCo n~ntj - This component
generates and/or updates the user's data files.
Several user languages are provided which permit
the analyst to spezify data validation procedures,
logical data '_xamination and/or manipulation, and
summarization. Although tha normal output of the
process is a data file in updated. form, the analyst
may request additional "auxili ar y" output files
which are created as a by-product of the
maintenance function.

c. B ~trv.!_andSot -Prcessor- The Retrieval
component is an analytical tool used to extract
information from one or more data files. This
compone, t has the capability to sequence the
extracted information in a variet y of ways
ietermined by the requirements of the final output
report to b- produce'.

d. 2!: a ;_ esr__o nen - This component is
used for formal report production and provides a
convenient method of listing, summarizing,
formatting and counting data elements. Control

2

IN'rPODUCTION TO FILL CONCEPTS

mechanisms are provilel which permit prep&rat ion of
reports of extromely complex structure. The data
source used in this report production may be either
a data file, or the answer set produced by the RASP
co pon ei t.

. Te-i-nar-ocessin _ L - This component is
actually composel of three major subsets in the
current version of the system. The first is the
programs requiced to interface with the graphic
display devices. As such, the system user is
relatively unaware of its existence. The second is
the Quick Inquiry Processor (QUIP) , which provides
the user with the capability to interrogate dat3
basies. Functions performed are similar to those
performed by RASP and OP. This capability may be
utilized from the bitched job stream as well as
from terminals. The third aajor subset of this
component is Sourze Data Automation (SODA) which
provides the capability of maintaining data files
from terminals. Input data may be edited,
:orrected, and processed with prestored FM logic
statements.

f. UtiLi!tYS-urpL U Posuaus - This is a
collection of general-purpose, utility programs
which iay be utilized by the analyst in the
performance of his job. Significant among the
varied capabilities provided, is the dati
conversion function accomplished by a set of
programs of this component. This capability
provides the simpla and almost automatic method by
which the user analyst may directly convert a 1410
NIPS data base to NIPS 360 format,

Each component mentioned above is liscussal in detail in a
separate volume 3f this manual (see listing in the
Abstract).

3

TNTR)DU:TION TO FILE CONCEPTS

1.2 Interrelation of :omponents

be:use of the flexibility of the system, it is
ifiEicult to establish specific relationships between the

various components. Thp following logical flow t
infDrm tion through the system should be considered 3

"1typical or normal exa mpl? ; howe ve r, it must be clearly
unharst:) that the axample is in no way restrictive. most
ot the system components may bp use 1 in combination wit h
other :omponents to build complex system functions. -he
vrious logical relations will become more apparent to the
user aialyst as he follows through the detailqd descriptions
of the various conponients.

FS a:cepts thf- user's les:iiption of the data element;
mikL.g up the data file in punched card form. Output from
the componpnt is th- Fil F ornat table (FF | which defines
th? :;truzture of the file to he tormed. Since the FFT is an
dctual physical part of the data base, file initiation is
il-rtorv-i by this step.

FM i:zepts the FFT as a part of its inpit ; toget her with
transaction data the user lesires to place in his tile.
tUsin4 t.ie user's instruct ions (logic statements), it
performs the actual updlte function which results in the
upia tei (or new) data file. Paralleling this process,
various forms of "auxiliary" output may be produced under
user coitrol.

The retriever may then be utilized to extract
information from the data file. The result of this step iz
t h cra tion of two data sets: one containing the records
extracted from the data file, and thp other consisting of
th? sort or sequence control fields the user specified as
desired for answer sequencing. A standard sort is applied
to the sort fields, and the resaltant file is retained along
with the data file created by the re'LL-val operation.
Sine the sort field file includes "p3inters" back to the
data file, a direct access technique of recovering the
retrieved data is applicable.

This :omposite of two fil., is then passed to the Output
P13:0ss:, which oy applyinj user-supplied instructions

4

INTR3DUCTION TO FILE CONCEPTS

provides the desired final report. Note that the output
pr:):essor may accept a data file directly, rather than first
apply inq the retrieval process. This technique is useful
wh.n tie sequence opf the oei put in the final r' port is not
crit ;cal or when it is the same as the original sequence :f
tha iati file.

System formatted output may be obtained with the Quick
Inquiry Processor (QUIP) which can also perform a retrieval
.n:tion. Using eitheL a data file or the results of a
retrieval run as a data source, output reports are quickly
ani simply prepared.

The TP component utilizes local 2250, 2260 and 3270
devices and remote 2260, 3270 or 1050 terminals as
input/Dutput unit3. Data files 2ay be queried and reports
formatted or the files may he updated. Output data may be
rviewei in a conversational mode at the terminals or may be
directed to printers. This processing will generally
pirillbl the processing by other system components.

With this brief introduction, the rest of this vo'ume
addresses the general conze pts a pplk cable to the total
syst-3a, and generally provides those common guides required
for use of any component.

INTRODUCTION TO Fl LE CONCEPrS

section 2

SYST? M CONCEPTS

N~IPS 360 FPS is a ge nera lized file-handling s ys tem.
Jlsi n 4 Laiguages which hav e been specifically designed to
support the requireroents of th e users o f the v ar io01us

:onpon-3n t s, t he analyst can d efin e t he capabilities to
process a specific data file. This section presprnts a brief
outlin3 :)f the co)ncepts of a NIPS 360 FFS dat a f ile, t le
met hod of handling da ta elements, and the general system
li nguage specifications.

2. 1 General File Organization

A data file created by a user with NIPS 360 FF5 is a
col 1 cti on of informat ion pertaining to a common area. The
t il 1 onsists of L ecor d3, each Of which conta in da ti
de:scribing the attributes of a single subject. For example,
the simple file presented in section 4 is a data file
containing information describing the status and disposition
of ill military waitti in the armed foLces. Each record in
t he file contains da ta which compleptely defines d single
unit. Thus the file is a collection of records with ?t r
orcder determined by d unit idenitification code.

Fa c:m record i n a da: a tile has a ;ommon fo)teat. This
toradt is defined by the use-r and communicated to the system
through the use of the- FS :-omponent. Thq! format of a file
v -.Ea r s t o the fo)rmat of data records in a specified f ile.
?ach loc,%tion in a record, where a data value is stored, is
.allei an element of the r-trd. When the file is beinq
desiqned, the user assigns a m....uortic name to each element
in the record. The colle~t ion of element names, along with
their functional relationship, constitute the format of I
record and hence the f ilp itsolf.

6

!.47PODUCrION TO FILE CONCEPTS

The compleIt desc ription of a file's format is
mainfained in the FFT which is generated by the F5
:oaponLht. Duriig file. procAssing, the user states his
problem using the mnemonic element names to reference data
lo:=ations in a record. The system translates these names
through the FFT into internal code allowing access to actual
r-.:3ii l ata.

Examples of usage of the various concepts covered in the
following subsections arq provided by Section 4, Sample NIPS
36) FFS Data File.

2.2 Data Record Organization

2.2.1 Data Rec)cd Elements

The locations in a record, where data values are stored,
have been defined as elements of the record. An iudividual
2limnt Ls called a field. This is the term used to
identify a portion of thu data record where a single data
item, su:h as an individual's name, may be stored. During
the file definition process, this field is given a mnemonic
1i*Aa which is st)red as an entry in the FFT. When the file
is ptocpssed, the usc of the field name in a language
stt a arit permits *ho user to operate on the data contained
in a specific location of all records in the file. All the
indivilual elements in the data record are defined by the
user as fields and given unique names. This provides the
system with a complete map of the data organization in 3
record.

Dcuisionally, several adjacent fields in a data record
hiv? I logical relationship, and it would be desirable to
operate on them as a single item with one name. in such a
case, ona or more adjacent fields may be defined together as
a group with a new name supplied. An example of this would
be the -ase where two fields have been defined to contain an
indivi alls last and first name, respectively.

7

INTRODUCrION TO FILE CONCEPTS

These two fields could be iefin~d together as a group for
one-step data manipulation.

2.2.2 Data Record Element Hierarchy

In conventional informstion systems, the record is the
basi . unit of iriformati:r containing a fixed number of
element values. The IPS 360 FF. permits the user to define

ia ta r :ord with a hierarchical relationship amony the
elements of the record. At the lower level, the record may
:ontain i variable zumber :f data values for each element.
The term, set, is introduced to define a collection of data
razord elements at thte same level.

2.2. 2.1 Fixed Set

The fixed set corresponds to the first level in data
record hierarchy. The fixed set is a collection of elements
(fialls) which need only one data value to satisfy
requirements. An example of a fixed set element would he
th? field (element) of the sample file in section 4, COMDR,
which contains the Commanding Officer's name. Since each
razord of this file contains the information on a single
military unit, there will be only one Commanding Officer.

2.2.2.2 Periodic Set

In a data record there may be a collection of data
elements which may assume more than one set of data values
witmin the record itself. The collection of data elements
is called a periodic sift. A periodic set is a collection of
lats elements which are loqically related and may contain
multiple data entries, all with the same format.

A collection of data vi lues whose format is defined for
the periodic set is called a subset. The number of subsets
for a periodic set in a dita record is under the control of
the user. A point of importance is that each subset is 3
colloction of data with the same format as all other subsets
of the same periodic set.

8

INTR3DOTION TO FILE CONCEPTS

The NIPS 360 FS allows tha user to define a record
toLmdt which consists of 3ne fixed set (from 1 to 100
fieldsl and up to 255 aifferant periodic sets (each of which
may have from 1 t3 100 fields defined). (See figure 1.)

2.2.2.3 Variable Set

The NIPS 360 FFS permits the user to define one or more
variable sets for a data record format. The variable set is
at t. same level in the record an a periodic set. Its
purpose is to allow the storage of variable length data,
whi-h cannot be formatted, in the record. Only one element
is defined for the variable set and that element has the
chiracteristics 3f a field with unlimited length. Data may
be added to or deleted from the variable set of a data
re:ord.

2.2.2.4 Data Rec)cd Identification

Since data records identify a unique subject, a unique
record identification must be provided. The user must
lafinp on? or mnre elements of the fixed set to be used for
record control. The data value(s) found in this record
elament(s) must be unique throughout the file. Very often
t he data, and the elements used for such a purpose, are
known as the Reocd Control 3roup, Record ID, or Record Key.

2.2.2.5 Data Record Organization Summary

This subsection uses figure 1 as a graphic example for
the points covered. Shown at the top of the figure is a
block diagram representing a data file which may consist of
a variable number :f records. For purposes of illustration,
one of the records in the file is "broken out" to show its
possible configuration. The data format in this record is
the same as that used by ill records in the file. However,
th? data contents 3f the record, as well as the number of
iata entries, may differ from record to record.

9

INTRODUCTION TO FILE CONCEPTS

10.

INTRODUCTION TO FILE CONCFPTS

This file has four Plemeints defined as a fixed set.
khesf elements were definel as fields luring FS with names
ass:ciatel with each field. For example, the names Fl, F2,
'3, and F4 are used. When the record is created by the FM

componen t, the user can cause Iata from incoming transaction
razords to be placed in the fixed set of the record by using
the field name as referenc_ .

Tb file recoord shown in figure 1 has formats defined
for three periodic sets. The format and data used in
Periodic Set 1 will be useJ for illustration. When the user
Jfines the file format (data record), three logically
relat=d elements could contain multi ple groups of data
values within a single record. Therefore, during the
dofinition of the fields P1, P12, and P13, the user define,'
thit tkp fields be treated functionally as Period*' Set
This. then established the common format which grou s- o4 -

values would follow as they are entered into the re.
Ei:h group of data values, conforming to the format Lor
Periodic Set I, is referred to as a subset. The number of
subsets zontainel in a record's periodic set is never
defined by format. For Periodic Set 1, as shown in figure
1, there exists five subsets of data. When NIPS 360 FFS is
Processing file records, a single subset in a periodic set
is rpferenced at one time. Therefore, the use of the field
name, P12, in a retrieval statement has sequential access to
five different data valuAs in one record.

In the variable set illustrated, no format is
-2stablished for any data vilues. However, if a data file is
to hav _ records containing variable sets, this must be
defined in the FS run to establish internal pointers in the
re:rd. Any data that is placed in the variable set for a
record is maintained by internal pointers describing to the
systam, the actual location, and volume of information.

The sizes of data records in a NIPS 360 FFS data file
may vary. If a file consists only of a fixed set, then all
re:oLds in the file are of constant length. However, a data
file defined with on,- or more periodic sets for its records
will most likely ha-v- record lengths that vary considerably.
This occurs since the periodic sets of some records will
:ontain more subsets of data than others.

11

INTRODUCTION TO FILE CONCEPTS

The maximum 3ize 3f a data record is also a variable.
?or th Output Processor, File Maintenance, and Quick
Inquiry Processor components, the systpm allocates space
:aLled a "processing block" to contain the part of the data
record processed during thp run. The core allocation size
for the processing block is variable; the size allocatpd is
determined by the specifi7 component. The default size
Aliocatei by FM is 16,000 bytes, and the default size
allocated by QUIP is 10,100 bytes. The analyst is thus
assurel the capability of processing completp records of a
size up to 10,000 bytes in Q(IIP, and up to 16,000 bytes in
FM'. rnis constraint is a "worst case" condition, since the
system only loads that portion of the file _ecord that is
being processed during the job, causing the record to be
lolijd. Loading is performpd on a set basis, so that a job
requiring examination of Jat3 from Periodic Sets 1 and 2 of
i file reguires the system to load the fixed set, Periodic
S'et 1 , and Periodic Set 2.

Effectively then, the inilyst meay choose to constrd.
is file record sizo to 10,000 bytes and avoid any furtheL
considerations of processing regdu -ements related to core
size. When using FM, the analyst can ietermine the size of
the processing block by putting

PARM='PBSIZE=nK'

(wre n can range from 1 to 99) on the FM EXEC card.
similarly, when using QUIP in the batch mode, the analyst
can enter PARM =PBSIZE=nK' on the QUIP FXEC card; (however,
be:zausa of design constraints, the -UIP processing block
cannot exceed 99K). For source 3.re- QUJIP runs against
TSAF files (this includes an-line QUIP), the system will
compute the size of the processing block required (up to
31K| and allocate that size. It a file design logically
requiras larger record sizes, the an4lyst may still process
that file just as long as the combination of sets he desires
to pro-ess in a single job can be contained within the
processing block allocation of the system.

12

INTRo DICr1ON TO FII, F CONCFPTS

2. 3 Data Value Modes

Tha user of NIPS 360 has the option of selecting
different modes by which data will be stored in the record
eleme-nts of the data file. During FS, each element in tho
record's format is definel to holl its data value in a
sp-:ific mode. rhis mode selection specifies the internal
method by which data is stored. It is necessary for
amploying and limiting certain types of operations against
data during file processing.

2.3.1 Nfumeric Mode

Rec3rd elements (fields and groups) containing numeric
vilues, which will be processed using mathematical operators
(. ta##suimations) , should be defined as numeric mode.
Field elements defined as numeric are limited to a maximum
of 10 integers within the range of +2,147,483,647. Although
:orr.ct processing can be performed, numeric ficids should
generally not be definei within a group since system
efficiency will he impaired. Normally, all fields defined
is num3ric, regardless of size, are stored in the data
record as binary words. This mode permits fixed point
binary arithmetic to be used by the system and allows full
use of the more efficient binary set of machine
instructions. When a numeri: field is dafinel in a group,
the valu- contained in the field is represented as zoned
EBCDIC bytes. Required data conversions are made by the
system without user intervention. Note that a numeric field
defined within a group is initialized to EBCDIC blanks. It
is the user/analyst responsibility to initialize these
fields to EBCDIC zeros during FM processing. Failure to
initialize these fields will result in data exception errors
whan using these fields with arithmetic operators and data
value editing during output processing.

Any field 3r group 4efined as numeric mode will allow
output ediiting t: be defined by the user. This function
permits leadinq zero suppression, decimal point insertion,
and so f rth. Subsection 2.5 discusses the use of the Edit
function in NIPS 360 FFS.

13

INTRODUCI'ION TO FILE CONCEPTS

Thp numeric mode specifies that data values are to be
right-justified for a record element. This means that if a
nuairi: value is shorter thai the defined element, the value
will be right-justified with zero paiding on the left ta
fill in the rpst of the allocated space. If the numeric
value is longer than the defined element, truncation will
take place on the left when the data is stored.

2.3.2 Alphameric Mode

Pecord elements (field and groups) which are defined is
alphameric mode, permit all characters of the EBCDIC set to
be stored as bytes. All logical operations can be performed
on data stored in this mode?. However, the data may not be
use is values in mathematical processing (e.g., addition,
subtraction, etc.), nor may the data be edited with a user-
lefinel mask during OP.

Pezorl elements defined as alphameric mode imply that
data stored in them is left-justified. For example, if a
lata value is shorter than the field or group where it is to
be stored, the value will appPar left-justified in the
lo:atioa with trailing blanks. If the data value is longer
than the field or group in the record, it will be stored
with truncation occurring on the right.

The system assumes the alphameric mode for all variable
sets in the data file.

2.3. 3 Geographic Coordinate Mode

A special ites mode Ae3ignitor, aoorlinate, is used fDr
cases where geographic oordinates are to be stored in the
data record for retrievals using the geographic retrieval
operators, CircLe Search, and Polygon Overlap. This mode
may be used for both field and group definitions, depending
upon the manner in which the coordinate values are stored.
Each term in a coordinate pair defines a point which will be
stored as a binary word in thp data rec-rd. A standard
system subroutine will ue used automati iLly to translate
th3 coordinate values to and from E binary word format when

14

INTaODUZTIOIJ TO FILE CONCEPTS

the stindard external f:rmat is f oll owed. The user may
1 ?f in thin coordinalte point cont aining both latitude and
longitude as a single fipld and the system will
automatically generate two binary words to hold the values
after conversion. He may ilsa define the latitude value and
Ion ;Ltul a values as indiv idual f ields and then def ine thema
together as a coordinate group. The stan - -.. :7nal
format is shown below:

kAtitude kaaqjtude

AAMMX (5 bytes) BBBMMT (6 bytes)

AAMMSSX (7 bytes) BBBMMSSY (8 bytes)

w here

A = Lat .tude in degrees

B =Lo igiti dp in degrees

M = Mnut es

S = S !conds

X&Y = Appropriatte hemispheres.

if a user wished ti define a coordinate value in his
rpcord with the latitude and longitudle as individual fields
with precision only to minutes, he would define two
coordinate fields with l-ang th s of f ive and six bytes,
r~i p! ct ive 1y. rheni t he two fields would be defined as a
coordinate group.

if the user wished to Jefine a single field containing
I =ooriirate p:int w it h precision to seconds, he would
define a coordinate mode field with a size of 15 bytes.

Tha coordinate mode may be used for a group containing
savaral fields arkd/otr gr oaps of coordinate da ta . This

15

INTR3DUCTION TO FILE CUNCEPTS

nprmits the use)f a single name defining a line or area to
be usel with the polygon overlap search operator in the NIPS
components. Such groups, howe ver, are not subject to
automatic input :r output conversion by the system. oniy
field/groups whose external length is 5,6 ,7,9,11, Dr 15 will
be automatically c:nverted.

2.4 Data Value Conversion

The user has the capability of defining routinPs which
may be used to perform data value conversion as data is
placed into or taken from a record. Data may also be
validatel either as a transaction item or as it resides in
a record using this technique.

Th. zonversi.)i routines nay be developed in two ways.
In one method, the user actually writes a subroutine using
one of the OS/360 programming languages to perform the
1: siel :onversion process. The subroutine is written to
accept, through a calling sequence, the data item to be
converted. It returns the converted data value to the
calling sequence when finishpd. The other method available
to the user is to develop a table consisting of a collection
of argument-function pairs of data. The argument, being the
data to be converted and th2- f unction being the converted
lati YxLue, is supplied as a group on each source card.
Both methods have an appropriate cataloged procedure which
Is usel to develop the actual executable load modules using
source statements as input. These resulting load modules
ira plaz=_ on a prede3ignated library for use by all
components of the system. When the subroutines/tables ace
developed by the user for an application, they are defined
for use in either input conversion or output conversion. In
illitin, they are defoned to accept data and supply data
with specific lengths and moles. An input conversion
subroutine/table is used to accept data input from either a
system work area, a transact ion record during update
pLocessing, or a query statement and produce a result
zompatible for diLect placement in a data record field or
grou|1. An output conversion subroutine/table is used during
output processing to accept a data value from either a data

16

I

iNTPDDCTION TO FILE LON(7*FPTS

r?-:or eLemeat or 3yitem w3rk rea to supply the converted
result for output.

The use of conversion subroutines/tables may oe either
automatic or under -on'rol f the- us r tarough tho langu9age
stltemetets defining th- particular run. The following
comments describe +he methol s by which tas conversion
routinas are called into a:tion.

Duri n4 FS each field aril gioup in the record may be
flgqe1 with the name of an input and/or output
subroutine/table. This Jefinition, at FS time, will cause
thi- automatic us2 of the convpr~ion routines whenever the
field or group names so f1agged are mentioned in the
laaruaj? statements of the RASP, OP, and QUIP components.
The user may negate t h? ir a utoma tic use in a run by
isso:iating a special term with the field or group name when
mentioned in a statement. Conversely, the user may ovrride
th3 spe .ified conversion subroutine/table and substitute
another one by providing the new subroutine/table name with
the fiell/group name in a statement.

All zomponeats of the system which perform file
processing allow the user the capability to dynamically
state in his language statements the use of a conversion
subroutine/table for a particular field or group. Thus
zonvrsi)rt may be effect'd for special applications with a
data file. This technique also permits subroutines/tables
to be used for data validation or di rect cor. version in a
iatx r.card using t he FM component.

2.5 Data Value Editing

Numeric mode elements in a Jata record may be edited
duri g output processing. This option permits the user to
suppress leading zeros, insert decimal points, and perform
other editing functions. To defin the editing function
pzrformn- on a record element, the user constructs an edit
mask containing control :harzcters. Special characters in
tha mask indicate to the system the nature of the editing
operation.

17

INTRODCrION TO FILE CONCEPTS

The user may define thp eliting function to the system
in two different lays. Th- first method is to define an
eit msk for a record element when the file is structured
using the FS component. The FFT entry for this element will
tni ? a ways carcy the edit mask tor use by the OP
components. If the edit mask is defined in this manner,
QUIP an OP Will autoatically use it whenever the record
-llement is referenced for output display.

Th) second way the iser may define an eJit aperation is
to azctually include an edit mask as a literal associated
with an element in the linguage statement for a particular
i pplicatian. The procedure used to write an edit mask is
defined in subsection 3.4 of this manual.

So far in the discussion of edit masks, it has been
:sssumel that the data value to be edited has come from a
numeric mode record element. However the user say employ a
liffFrant approach to data value editing as follows. Ddtd
from a record element may be processed by an output
:onv~rs)ri subroutine/tablp and the result edited by a user
defined mask. -are must be tnkert to endure that the output
from the conversi:n subroutine is numeric so that it is
dcceptable to the edit procpss.

2.6 General Language Specifications

Eazh system component has its own language which is used
by the analyst to define the file processing functions far
It omputer run. Despite t he number of different languages,
they may be easily learned by the analyst since they are
basically similar and differ only in their application to a
problem. This sect ion of the manual is concerned onlf with
ittroduzirg the t erminology of the lar. uayes. Each volume
of this manual will define the characteristics and use of
th3 associated language for that component.

2.6.1 Definitions

The following list dafines some elementary language
terms.

INTPD)DUCTION TO FILF CONCF'TS

Worl - A contiguous string of characters,
qenerally considered to he composed of
the alphame ric set and explicitly
restricted to exclude the specia I
characters blank, comma, period, single
quote, "at" symbol, and ampersand.

Term - Generally used synonymously with word.

Clause - A string of words separated by commas
and/or blanks. The period is eaplicitly
excludpe from the body of a clause.

Statament - May contain one or more clauses and is
always terminated by a period.

Operator - A system reserved word explicitly
directing in a:tion. For example, LISr,
EQUALS, GREATER, THAN, SUM, etc., are all
considered operators.

Conn iztors - Generally restricted to the Boolean
connect:rs AND and OR.

Conition - A spacial case of the general category of
Statement Statement, this fore implies that the

user is roquesting the system to test for
a specified condition. Implies the
existence of an action directive
statement, either explicitly or
implicitly stated.

Action - A speciil case of the general category of
Statement Statement, this form is a user request

for a specific system action, and may or
may not be preceded by a Condition
St at ement.

2.6.2 Language Format

several formats are commonly used in systems v rk. They
art oftin identified by names such as free-format, comma-

19

INTRDDUCTIOlN TO FILE CONCEPTS

tormat. aad fixed-format. The preferrad form generally used
in this system is known as free-format. This tcreat by
definition offers the following characteristics:

a. words may be separated by either commas or blanks
or both in any combination, and in any number.

b. Statements and/or clauses may run serially from
card t: card, or more generally, from input record
to input record. Worls may not be silit between
records :r cards.

c. 5 tatements may he initiated in any characteL
position of tie input record, and may terminate in
any position.

d. Other than cases in which the sequence of the input
statements are related to the sequence of functions
required by the system, no sequencing requirements
are arbitrarily imposed.

Cirl :oLumns 1-71 generally contain language statements.
Some components ffer the capability of providing a card
sequence check if the user provided a sequence number of all
zurls in qis source deck in locations 73 through 80.

Some of the components require a parameter string with
optional values in the string. Since interrogation of the
string is based on a positional relation and identificatian
af the field information is not feasible without this
relation, omitted fields must be clearly indicated to the
system. Vhen this conditin occurs, the basic punctuation
rule is changed:

Note: words may be separated by one or more blanks,
or not mor than one comma, with or without
multiple blanks. The notation "double comma"
indicates t: the system that a field has been
omitted.

Thq FM component uses a language vhich deviates somewhat
from thu zonventions outlimpd above. Because of the power

20

INTR)DU:TION TO PILE CONCIPTS

sinJ flexibility offered by the component, the lanquaye
zas-mbL.s that of a computer's assembly language.

2.6. 1 NIPS 360 FFS Language Contents

The words or terms use] by the analyst tn describe a
tila processing funct ion must conform to the language
specification for the appropriate system component.
However, all component languages may have an analogy
relating the. to our own spoken language. For example, in
writLn; a statespnt to direct a processing function, the
words used are similar to the subject, verb, object, and
conjunztions in an English sentence. In all of the system
component languages, there are two basic types of words.
?irst are the system reserved words which are recognized as
indicating specific operations. The combination of these
worls in a statement define the logic to be used by the
system component. In an analogy to the English sentence,
thas: words would be considered the verb indicating the
action to be performed and/or the conjunctives indicatirg
ths logical relationship of words.

The second ma jor type of words in the NIPS 360 FFS
languages are those supplied by the use.,. These words could
be zonsidered analogous to the subject and/or object of an
English sentence indictt ing what is involved in the
pro.essing function and the result obtained. The words
supplied by the user are of several classes and are
discuss91 below:

a. Nipes -- Names are used by the analyst to reference
a file, subfile, record element or field conversion
subroutines, conversion tables, and edit masks.
All names are formed under the following rule:

0 A name may be from one to seven characters
with no embedded blanks or special characters.
The DSNAHE parameter of the Pata Definition

(DD) card which corresponds to the 7-character
file name may be a qualified data set name up
to 44 characters in length. The file name
must be the last segment of the qualified
name. The first character must be alphabetic.

21

INTP)DUCTION TO ?ILE :ONCEPTS

All remaining characters may be alphabetic or
nuier ic.

O Names for dats files, libraries and index data
sets must not en] with the characters X, L, or
S. Various NIPS components append these
characters to the end of the data set name far
identificabi~n. Their use as the last user
supplies charactei can produce unpredictable
results.

o Name' for RASP titles, subroutines and tables
must not eni with the character zero. Zeroes
are appended when organizing their object
modules for storage on the file library.
Their use as the last user supplied character
will result in errors and/or unpredictable
Cesults.

b. - - The user quite
often must supply a data value to a systems
component directly through tha language statement.
Two different options are available for this
approach, and such worls are called self-defining
terms aid literals.

o A self-defining tarn is a word made up of a
string of zhiracters with no embedded blanks
which is interpreted by the system as a data
value. The wcrd is recognized as a self-
defining ter due to its syntactical position
with respect to ctheL words in a statement.
The followinq self-defining terms are treated
as data values by the system:

454
Tank

0 A literal is similar in concept to a self-

defining term except that it is enclosed
within delineator characters to define its
width. The dplineator usel is the single
qu3te sign (although some components allow the

22

1NTMDUCTION TO FILE CONCEPTS

alternate usp of an "at" sign). The purposp
of the delineator is to allow the definition
of data values containing blank and/or special
characters. Fxamples of literals are:

'Heavy Tank'
' F- 105'

C. Is tem__rakAreas -- Most components of NIPS 360
FPS have intermediate work areas which are used by
the analyst to st~re data values. These work areas
are defin ed in several ways according to the
component concerned. Although they are reserved
words capable of recognition by the component being
used, they are used like names. This is because
they function as the subject or object of a
sentence; i.e., they do not connote any action to
be taken, but merely are used to represent where
lata may be found or stored.

d. lgr.Aj1 veCgnstaD1s -- Some components of NIPS 360
FFS permit the user of figurative constants to
represent data values. These are reserved
words which stand for specific data values and may
be used in place of literals or self-defining terms
if appropriate. Figurative constant words may
be such as:

Z ERO
BLANK

As an example of a NIPS 360 FPS language, the following
RASP component language statement is illustrated. This is
a condLtional statement causing searzh oF a data file f:)
qualifying records to be retrieved. The retrieval criterion
is indicated by user-suppliei data values in the statement
itsalf°

IE AREA _E.Qg 'SOUTH VIETNAM' AND SERVICE EQUAL ARMY.

Thl umlrlined wrds are reserved words recognized by the
system to cause specific actions to occur. The remaining
wor3s are user supplied and defined words indicating the

23

INTR)DUCTION TO FILE CONCEPTS

specific qualification for action. Due to the syntax of the
languaga, the system will int orpret the words AREA and
SERVICE as data record element names. The word SOur v!
VIENAM is a literal used to introduce a data value to th,
system through the source language. Likewise, the word ARMY
is i s3f-defining term used to supply a data value.

The special characters such as comma, blank, and period
are used by the different :omponent languages for specil
usage and have special significance to tha system. rhe
mathpematical operators, plus, minus, and equal symbols,
portray their normal math function in some uses.
Multiplication will be represented by the asterisk and
division by a slash. Parentheses are used to logically
group clauses. In addition to these direct and straight-
forward rules, the following special characters are used foc
th? indicated purposes.

(pou31 or number symbol) Used to delineate subroutine
(8-3) punch) names in the input source

language (other than ?S). Used
in double form, negates an FFT
spcification for a subroutine.

/ (Slash) Used to separate numeric digits
(V-l punch) when indicating partial field

notation.

$ (Dollar Sign) Used as an "universal" match
(11-3-8 punch) character in coiparison literals.

(Sinai Quote) Used to delineate literals.
(5-8 purcth) Used in double form, negates

an FFT specification for a edit
ma sk.

(Ampersand) Used to identify a field name used
(12 punch) as an operand of a conditional

oxprission in place of a literal
or self-defining term.

24

INTROIDU.-ION TO FILE CONCEPTS

8DS (descending sort flag) Used to identif y a field to be
sorted in a descending manner
in either QUIP or PASP.

optional use of selecteA special characters which permit
compatibility with 1410 FPS sourcp statements is discussed
vh3re itpplicable in each component volume of this manual.

25

INTB3DUCTION TO FILE CONCEPTS

2. .4 NIPS 360 FFS ReserVed Words

This bubsection contains a list of reserved words which
are interpreted by the system. They may not be used as
namzs Li any language statements.

R~s.ERVED wogjs

A CLASS FINAL
ABSENT CLASSIF FIND
ADD COMPUTE -FOR
ATER CONTAINS VPOM
ALL COORD FURTHFR
ALP HA *COUNT(N) GE
AND CREATE GO
ANY D GOTO
APE DECIMAL G EATER
AT DELETE GROIP
AVER AGE DDISK GROUP I D
BEFJRE DISPLAY GT
BE'W EEN DIV GTE
BI4 A PY EARLIER EADER (NJ
BLANK EDIr HTOTAL
BLANKS EJFCT IF
BT EQ IN
CAR D (X1 EQUk L INCLUDES
CH EQU ALS INITIAL
CHAN GFS EXEC U TF IS
CIR EXrRACT *LABEL (X)
CIRCLE FIELD LATER

FIFLDS L,

26

INTRODUCTION TO FILF CONCEPTS

LIMIT OR SUB
*L 14 E (XI OVERLAP SIJBFIT.E
LI ST OVP SU BF T
LOAD PASEND *SUM (N)
LT PARAM SYSDATE
LTE PER TAB
MARK PERCEN1 TABLE
M Ar IMum PRINT *TAB (X)
MINIMUM PSCr TEST
M UL PUNZH TH AN
NE QUERY THAT
NE2 *ReCORD (1) THE
NLE R EC OR DS THEN
NLINES REPLACE TITLE
NLT SELECT TO
NLTE SET TRAILER
NO SIGNOFF VSCTL
N3G) SIGNON WITHIN
NOT SPACE *WORK (M)
N2TE START ZERO
NUMEP STOP ZER3S
'P
OPDATE

*Nut A

1. (Ni stands f-r either i blink or the numbers 2 - through
nine.

2. (M) stands for either a blank or the numbers one through

ni n 9.

3. (1) represents the digits 1-999 and also digits followed
by a letter, e.g., LINE1OA

'. Th, E311owing name prefiKes are not allowed: PSSQ, VSEr,
VSZ.

The name D should not be given to a subroutine or table
bazi us, this is used to specify descending sort in QUIP and
HASP.

27

INTFODUCr'ION TO FILE CONCEPTS

SECT TON 3

SYSTEM USE

3.1 Cataloged Procedures

when the analyst prepares a job using one of the system
o;ponats, two basic types of information are supplied to

the system to define its function. The first s e f
information consists of joD control stateaents written using
th? OS/360 Job Control Language (JCL) . These statements are
interpreted by the S/360 to define the characteristics of
the job such as input/output devices required and the
name(s) of the program(sl to be run. Refer to the IBM SRL
pu)licition, IBM System/360 Operating System-Job Control
Language (Form C28-6539), for a description of JCL. The
second set of information supplied consists of source
statem3mts written in the language of the required NIPS 360
FFS component which define the specific file processing
techniques.

To ease the requirement on the user that he supply all
the ne=essary job control statements whenever a svstem
component is used, cataloged procedures have been prepared.
These procedures are sets of previously written job control
statements which have been stored in a System Library. Each
procedure is given a name which is used by the analyst for
a particular job. The ase of such a name in a JCL Execute
stV tp ?at causes the sy3tem to automatically retrieve the
information necessary to dpfine a job to the computer. In
the simplest case, a Job using the cataloged procedures for
the FS component would appear as follows:

1. //JOBXYZ JCB (Standard Parameters)
2. // EXEC KFS,ISAM=TESTEP,LI8=TESTER
3. //FS.SYSIN DD *
4, (FS language source statements)
5. /*

28

LNTPOD!JCrION TO F:LE CONCEPTS

Card I -- Is required for each job submitted and must be
first in the input deck. It is known as the JOB statement
anl is used to give the job a name such as J3BXYZ.

Card 2 - Defines the cataloged procedure used for the
job. "he name XFS defines & set of job control statements
-,n th-= library necessary to support the execution of the
File Structuring Component. The remaining parameters
iiantify the name and type of file to be structured and the
name of the File Library.

Card 3 -- Defines the location where the source input
lang uaq? statements may be found. In this case, the
asterisk is a parameter which indicates to the system that
tha sourc_ input immediately follows.

Card 4 -- Is the source language statement(s) written by
the user to define the spe:ific functions desired from the
zomponari t.

Card 5 -- Is a special JCL statement indicating the end
of the source statement dezk.

Th- parameters entered on the execute statement (Card 2)
are known as symbolic parameters. Their function is to
dynamically alter the pr. st ored procedures at Pxecution
tie?. Te values enter4d in this manner replace those that
were defined when the cataloged procedure was placed in the
Prozedure Library.

3.2 Development of Conversion Tables

when the user has the cc:msion which warrants the
=onversion of data values from one form to another and the
problem lends itself to tabular conversion, the cataloged
pr5:edur? XTABGEN may be used to easily generate such a
table. The input to the procedure XT&BGEN consists of cards
eazh of which contain an argument-function pair of data
values. The argument is the data value which is to be
converted and the function is the data value resulting from
coavprsion. The procedure will accept these source cards
suppliai by the user and build the table into an executable
load module capab le of linkage with any NIPS 360 FFS

29

INTRODUCTION TO FILE CONCEPTS

:ompon? nt. The laad module table may be stored in a library
alonq with other tables, subroutines, rLtrievals, and RIrs
(Report Instruction Table usel by the OP component to direct
output processing). The name supplied by the user for the
zonverslor table must conf)rm to system standards and be
unique in the library in which it is stored. The table may
oe :allel by name for use with any file when it is
appropriate.

Inf)rlation and eximples on the manner iln which the
prozedure ITABGEN is used may be found in the Utility
Support Programs volume of the NIPS 360 ?FS User's Manual

3.3 Developieat of Conversion Subroutines

when :onversion for record element data is desired, but
does not lend itself to a tabular approach, the user ueiy
wsi t3 write a subroutine to perform tha conversion. rhi
subroutine may be written using any of the 3S/360-supForted
problem processing languagas. The subroutine is compiled,
link edited, and tested by the user before inclusion in the
system. A cataloged procedure XSUBLDR is available to the
usar for loading the subcoutine (in load module form) into
a library with NIPS 360 PFS compatible linkage established.
us of this catalged p:ocedure requires the user to have
the tested subroutine as an independeiit load module on any
library. Its location is defined to the cataloged procedure
XSUBLDR through a JCL statement. Description on the use of
XSUBLDR is found in the Utility Support Programs volume of
th! NIPS 360 FFS Users Manal.

When writing the conversion subroutines, certain
conventions must be followad. The resinder of this secti~n
describes such conventions.

The user-written subroutine sho uld be written as i
single root segment that is reusable, and the calling
sequence for the subroutine from a system component should
follow standard OS/360 linkage conventions. Threp
praIet.rs are pc~vided to the user routine. Parameter one
is the entry point to the system subro utine loader.

30

INTRODuCrION TO FILE CONCEPTS

pirileter two points to the area P2 described below and
Parameter three is a cell for return code storage.

P2 DC H @N' N = number of argument bytes including
trailing blanks or leading zeros

LC CLN '.... ' argument bytes

DS ZLN f = function length

The argument and function may be either alphameric,
biniry full word, coordinate data or EBCDIC decimal (a
particular subroutine is designed for a specific type of
arzument and function combination). No boundary alignment
of argument and function areas can be assumed. The output
function area shou Id be filled with leading zeros f3r
decimal data and trailing blanks for alphameric data.
Decimal data will have IF' and ID sign zone bits.

Th3, function output area immediate ly follows the
argument bytes. The high-order position of this area is P2
+ N + 2. Conversion routines must be written to accept
varimbl_6 length alpha, decimal or coordinate arguments. The
output function size is fixed for a given routine and should
alwiys be completely filled. The combined lengths of the
argument and function may not exceed 256 bytes.

Upon return from the user routine, either register 15
can contain one of the following return characters or the
:?I lisignated by parameter three can be filled
accordinqly:

S = Successful

M c Noi Match, unsuccessfal

The subroutine loader entry point is provided to user
routines so that they may request loading or linking to
otiar r:utines. No input/output functions should be
performed by the user routine.

31

INTR3DUCTION TD FILE CONCPPTS

Wh-2n the subcoutine is plmceJ on a Work Library, the
3-ntry point name and the load module name (PDS member name)
must be the same. The nimps must be ilentical due to the
requiremnts established for use of the SUBLPR utility
program.

3.3.1 Assembly Language Routines

Th? routine should use the following macro as its first
ins truct ion.

SUB4A E ??SBE3 r1N 5ASPR? 3

This macro will generate the proper CFECT and SAVE
linkage. Register 13 will point to a generated SAVE area
and should not be used by the conversion routine. Register
hSEPE3 will have been initialized as the routine bdse

register along with the appropriate USING statement.
Ragistar 1 will point to the parameter address constan+
list. When returning ccntrol, register 15 may contain the
return code as discussed prpviously and the following macro
us l ta return coatrol.

FFSSETN PC=(15)

otherwise, the byte indicated by parameter three must be
tilled with 'S' I r ' .

The followinq is an example of an assembly language
subroutine:

//ASMSUB EXE- ASMFCL,PARM.LKED ='MAP,LIST,LE,DC'
//ASM.SYSLIB DD
// DD L)SN=FS.MACLIB,DISPSHR
//ASM.SYSIN D) *
fTG3 S START
*A DATE CONVERSION ROUTINE
, CHANGES PILE DATE FROM YYMNDDTTTT TO OUTPUT AS DDMMMYY/Trrr
'LOAD BASE REGISrER, SAVE CALLING PROGRAM REGISTEPS, LINK ZALLIN3 P'31.
*

DTG)S FFSBEGIN 7
L 8,P'(1) LOAD ADDRESS OF DUMMY SECTION

32

I

INTPFDUCTION TO PILF CONCEPTS

USING PAHMLIST,p INIT PEG 8

SP 6,b ZERO OUT 6
LA 6,12 (6) ADD 12 TO 6 PUT IN REG b

4'MOVF INPUT DATE rC WORK APEA, REFORMAT DD AND YY
0C)NVERr TWO DIGIT MONTH TO SYMBOLIC THREE CHAPACTERS
*PETURN AN 'S' SU CESSFUL OR 'M' UNSUCCESSFUL IN PEG 15

MVC DIGMNTH(2) ,PARMlPOS+2 MOVE MONTH WORK AREA FOR COMPARE
LA 5,tABLE LOAD ADDRESS OF TABLE INTO RES 5

LO)P CLC DIGMNTH(2) ,0(5) COMPARE TWO DIGIT MONTH TO TABLF
BE FOlJND IF EQUAL GO MOVE SYMBOLIC MONTH
LA 5,5() ADD S TO REG 5 and PUr IT TN P :, 5
BCT 6,LOOP FT IT IF R6 GETS TO ZERO
IC 15,=CIMI UNSUCCESSFUL CONVERT
myC MONrH(3),=C'Iz[' TEMPOPARY FIXER *'*'****
B DATEOEXT GO TO EXIT ROUTINE

F DU(ND IC 15, =c' So SUCCESSFUL CCNVERT
NVC MONTH(3),2(5) M3VE SYMB3LIC MONTH TO WOPK AR!A

DATEDEIT MVC DAY(2) oPARMI POS+4
MvC YEAP (2), PARM IPOS REFDRMAT YFAR
MVC TIME () ,PARMIPOS+6 SAVE TIME
MVC PARMLNH+12(12) ,WORK1 MOVE PEFORMATTED DATE TO LIST
FFSRETRN RC=(15)

*CONSTANT SECTION

DS Of
W:RK1 DS 37L12 WORK
DAY DC CL2' AREA
M NTH DC :L3 0 , REFORM AT
YEAP DC CL2 ' 1 DATE

DC CL1'/' AND
TIm E DC -L1' TIME

DIG4NTH DC :L21 ' TWO-DIGIT MONTE WCRK AREA

SAVE 1)S 18F AREA TO STORE REGISTERS
TABLE DC CO01JAN*

DC C102FEB'
DC C'03MAR'
DC CI04APR'
DC :'O05MAY'

33

INTRODUCrION TO FILE CONCEPTS

DC C'06JUN'
DC z'07JULO
DC C'O8AUG'
DC :t09SIP'
DC C°10Ot'r'
DC C@11NOVI
DC C' 12DEC -

tDUMMY SECTION

PAR MLISr DSECT
PARILNR DC H'1O' APGUMENT LENGTH
PARWIPOS DS CLIO' AIRGUM ENT

DS -L12 FUNCTTON MAX SIZE
DC CL1' ' RETURN CODE

END
/*

//LKFD.$YSLMOD D5 N= TESrERL(D TGOS), DISP=OLD

3.3.2 COBOL User Subroutines

The subroutine is called as follows:

CALL 'SUBNAME' using DUMMT P2 P3.

The first linkage parameter is provided for use by asserbly
language routines only but must be accounted for by
COB3L subroutines.

LINKAGE SECTION

21 DUMMY .

912 NOTHING PICTURE X.

Y1 P2.
92 APGLEN PICTURE S(99) usage computational.
92 ARGFNC PICTURE etc.

Q~'~P3.
912 RETURN-CODE PICTURE X.

34

INTpoDwCrION TO FILE CONCEPTS

CODF must he fil14d with 05' or 14. to indicate
succossful or unsuccessful conversion, respectively. ARGLEN
zontains the number of bytes in the ARGFNC area containing
the arqument data. Function iata should be inserted in
AR F.NC immediatel y following the last argument byte
(ARGFNC.N where N=number of bytes in the argument).

Th.? f~llowing statements should be inserted in the

PROC7DUPE DIVISION --

ENTER LINKAGE.

vNT3Y 'SUBNAME' USING DUMMY P2 P3.

ENTER COBOL.

Tha flL.wing i B an example of a COBOL subroutine which
serves the same function as the ALC conversion subroutine in
the previous paragraph.

//C)BSUBSI EXEC ZOBFCLPARPM.COB=' MAP,BUF=2292,NOSEQ, LINECNI=50'
//COB.SYSIN DD 0
000010 IDENTIFICATION DIVISION.
00)320 PROGFAM-ID. 'PGMNAM'.
000030 ENVIRONMENT DIVISION.
000040 CONFIGURATION SECTION.
000050 S3URCE-COMPUTER. IBM-360-50.
OU0360 OB.]PCT-COMPUT ER. IBM-360-50.
000070 DATA DIVISION.
G00080 LINKAGE SECTION.
000090 01 DUMMY.
J00100 02 NOTHING PICT3RE XXX.
000110 01 P2,
000120 02 ARGLEN PICT3RE XI.
000110 02 IN-YEAR PICTURE IX.
)00140 02 IN-MONT4 PICTURE XX.
000150 02 IN-DAY PICTURE XX.
000160 02 IN-TIME PICTURE IXXX.
000170 02 OUT-DAY PICTURE IX.
o1qo 02 wUr-MONTH PICTUPE XXI.
000181 02 OUT-YEAR PI:-TURE YX.
000190 02 SLASH PICTURE X.
000200 02 OUT-TIME PICTURE XKXI.

35

INTRODUCTION TO PILL CONCIPTS

001010 01 P3.
001020 02 RODE PICTUR! X.
001030 PROCFDURE DIVISION.
001040 ENTER LINKAGE.
001050 ENTRY 'COBSUB'USING DUMMY P2 P3.
001060 ENTER COBOL.
001070 INITIALIZE.
3018p0 OVE '5' TO PODE.
001090 MOVE '/' TO SLASH.
001100 MOVE ZEROS TO OUT-DAY.
001110 MOVE 'XXX' TO OUT-MONTH.
001120 MOVE ZERCS TO OUT-YEAP.
001130 MOVE ZEPOS TO OUT-TIMF.
001140 CHECK-YEAF.
001150 IF IN-YEAR IS GREATER THAN °q9l,
101160 OR IN-YEAR IS LESS THAN '00',
001170 MOVE 'M' TO PODE, GO TO CHECK-MONTH.
001180 MOVE TN-YEAR TO OUIT-YEAR.
001190 CHECK-MONTH
001200 IF IN-MONTH IF EQUAL TO '01', MOVE 'JAN' TO OUT-MINTH,
002010 GO TO CHECk-DAY31.
002020 IF IN-MONTH IS EQUAL TO '02', MOVE 'FEB' TO OUT-MONTH,
0020 30 GO TO CHECK-DAY28.
002340 IF IN-MONTH IS PQUAL TO '03', MOVE 'MAP' TO OHT-MONTII,
002050 G) TO CHECK-DAY31.
002060 IF IN-MONtH IS EQUAL TO '04', MOVE 'APR' 10 OUT-MONTI,
002070 GO TO CHECK-DAY30.
002090 IF IN-MONTH IS EQJAL TO '05', MOVE 'MAY' TO OUT-MONTI;,
002090 G3 TO CHECK-DAYI.
002100 IF IN-MONTH IS EQlIAL TO '06', MOVE 'JUN' TO OUT-MONTH,
002110 G3 TO CHECK-DAY30.
002120 IF IN-M.ONTH IS EQU1AL TO '07', MOVE 'JUL' TO OUT-MONTIf,
002130 G) TO CHECK-DAY31.
002140 IF IN-MONTH IS EQUAL TO '08', MOVE 'AUG' TO OUT-MONTH,
002150 GO TO CHECK-DAY31.
002160 IF IN-MONTH IS EQUAL TO '09', MOVE 'SEP' TO OUT-MONTII,
002170 G) TO CHECK-DAY30.
002180 IF IN-MujNTH IS EQUlAL TO '10', MOVE 'OCT' TO OUT-MONTH,
002190 GO TO CHECK-DAY31.
002200 IF IN-MONTH IS FQIIAL TO '11', MOVE 'NOV' TO OUT-MONTH,
003010 G) TO CHECK-DAY10.
003020 IF IN-MONTH IS rQIIAL TO '121 MOVE 'DEC' TO OIT-MONTH,
003030 GO TO CHECK-DAY31.

36

INTRODUCTION TO FILE CONCEPTS

003340 MOVE 'P' TO rODE.
003050 Z HECK-DA Y31.
003360 IF IN-DAY IS GRFATER THAN '00',
003070 AND TN-DAY IS LESS THAN '32', IOVE IN-DAY TO OUT-DAY,
0033t0 GO rC CHECK-TIME.
003090 MOVE 'N' TO RODS, GO TO CHECK-TIME.
003100 CHECK-DAY30.
003110 IF IN-DAY IS GREATER THAN '00',
003120 AND IN-DAY IS LESS THAN 131', M:VE IN-DAY TO OUT-DAY,
003130 G3 TO CHECK-TIME.
003140 MOVE IN' to RODE, GO TO CHECK-TIME.
003150 CHECK-DAY28.
00310 IF IN-DAY IS GREATER THAN '00',
003170 AND IN=DAY IS LESS THAN '29', MOVE IN-DAY TO OUr-DAY,
0031 0 GO TO CHECK-TIME.
003190 MOVE 'N' TO RODE.
003200 CHECK-TIME.
004010 IF IN-TIME IS GPEATER THAN '00',
004020 AND IN-TIME IS LESS THAN '2401',
004030 MOVE IN-TIME TO OUT-TIME, GO TO DEPART.
004340 MOVE 'M TO BODE.
004050 DEPAPT.
0040bO IF RODE IS NOT EQUAL TO '', MOVE 'S' TO RODE.
004070 ENTER LINKAGE.
004 OR0 GOBACK.
004090 ENTER Z3BOL.

//AED.SYSLMOD DD DSN=TESTERL (COBSUB) ,DISP=OLD,UNIT=2314
//LKED. 3YSIN DD *

ENTRY COBSUB

Note: The linkage editor control card, ENTRY COBSUB, is
mecessary for a COBOL subroutine (this name must
correspond with the name of the subroutine as
lefined on the ENTRY statement in the PROCEDURE
DIVISION and on the LKED.SYSLMOD DD statement).

3.3.3 PL1 User Subrout ine

P L1 user :;ubroutinps require an assembly language
interface in order to be called by a NIPS application

37

INTRODUCTION TO FILE CONCEPTS

program. The assembly language routine sets up t he (lope
vectors required to pass piritmeters to the PLI subroutine.
A -omplete discussion of assembly language/PLI interface
conventions can be found in the PLi Programming ('uide.

An example of JCL, assembly lang uage interface, and
.sample PL1 subroutine is shown in the following section of
code.

//STEP1 EXEC ASMFCP,PABi.ASN=f LOAD NODECK,REGION-11LiK
//ASM.SYSL!B DD DSNzFFS.JOBPIACRO,DISP=SHP
//ASM.SYSIN DD * hSEM TYPEIN
//ST EP2 EXEC PLIXCL,REGION=120K,PAPM.PLIZ'MAP4 PAPM.LKEDILE7,
PLI.SYSIN DD * PLISUB TYPEIN
//LKFD.SYSLMOD DD DSN=&TFMP (PEDIX) ,UNIT=SYSDA,SPACF=(TRK, (10,1,1)),

1/ DISP= (NEW, PASS)
/A.[KED.SYSIN DD

NAM E P.REDIX(R)
ENTRY PREDIX

//srEP3 EXEC XSUBLDRVLfR'-IS EP=xxgxxxxL IB=TSTLIB,I;LIB=231 4,
L LIBD ISP=LE ,BL K=61 4 4

//S!SIN DD *
SUBRT PiEDIX 18 100 B A A PREDIX LEWISER

//ST EP 4 EXEC XSU87HK,LIO-TSTLIB, ULIB-231'J
// VLIB= ISZP=XXXXX I
//SUBCHK.YYZ DD SYSOUJT=A,DB=(SECFPI=VBA,LPECL=137,BLKSIZE=1500)
//SUI3CHK.ABC DD SYS CUT=A,DCB (R ECYMzVBA,LRECL137 BLS IZE= 150)
//SUBC.4K.PLIDUMP DD SYSOUT=A
//SUBCHK.SYSIJDUMP DD SYSOUI.:A
//SEJBCHK.SYSIN DOD
DREDIX 018
,wE5q9621 3764666 257

*THIS ASSEMBLY LENGUAGE FOtITINE WAS WRITTEN AS AN INTEFFACE BErWEF%'
*NIPS AND PLI.
*THE NAME OF THE POUTINE TS PREDIX. ANY PEP53M NEEDING A NIPS/PLI
*INTERFACE CAN USF THIS CODE.

38

!NTRODUCTION TO FILE CONCEPTS

a

PREDIX FFSBEGIN 12
* REG3 PONTS TO THE NIPS AREA

L 3,4 (1)
RTC INPUT,2(3)
LA 1,PARMS
L 15,=V (PLICALLB)
BALR 14,15
MVC 20(100,3) ,OUTPUT
SR 15,15
IC 15, RZ
FFSRETRN RC -(15)

PARMS DC A(ADLIST)
DC A (3)
DC A (0)
DC A(M)
DC A(o)
DC X180
DC AL3(0)

ADLIST DC A(INl)
DC A (our 1)
DC 1'RO'
DC AL3 (PC1)

IN1 DC A (INPUT)
DC 2AL2 (L' INPUT)

INPUT DC CL18' I
OUT1 DC A (OUT PUT)

DC 2AL2 (L'OUTPU)
UTP UT DC AL100' I

RC DC A (BC)
DC 2AL2(LIEC)

RC DC C' '
END PPEDIX

PRED PROCEDIRE(INPUT, CUT, RC) OPTI3NS(MAIN) REORDFR;
DCL XYZ FILE PRINT OUTPUT STPEAM;
DCL SYSPRINT FILE PRINT OUTPUT SrPEAM;

DCL INPUT CHAJV(1R);
DCL OUT CHAP(100) ;

DCL RC CHAR(2);

39

INTRODUCTION TO FILE CONCEPTS

DCL IC CHAR(2) INITIAL(IS ');
OPEN FILE (SYSPRINT) TITLE ('ABC')

PUT FILE (XYZ) SKIP EDIT 4' WE HAVE rNTEFFD THE PLI P1LJI- :4')
(A) ;

PUT FILE (XYZ) ?DIT (INPUT) (A) ;
RC = IC ;

PETU PN;
El 0;

3.3.4 User Scan Subroutine

If the System Scan subroutine for use with the Keyword
Indexing capability does not meet a user's needs, he can
write a Scan subroutine of his own. See the Keyword
Indexing section for a de scription of the System Scan
SuoroutLne. The user must specify the name of his routine
in each keyword indexed field entry in the FFT that is to bp
scanned by it (see Volu me II , File Structuring Index
D),(finitLoos for Keyword Fields). When he codes the
subroutine he must conform to gene ral NIPS subroutine
interfa.e requirements and hp must meet the following Scan
Processor interface requiremants:

n. The subroutine must distinguish a call t3 scan a
new field from a cill to resume scanning a current
field. rhe return code byte in the parameter list
may be used for this purFose.

b. The subroutine mu3t accept tha following parameter list
from the Scan Processor (the controlling routine):

F - address of the field to be scanned.

F - scan limit; aidress of the field plus its
length minus 1.

F - address of tha :illax's word hold area.

CLI - hyphen option byte from the FFT for the field
being scanned.

40

1NTRODUCrION TO FILE CONCEPTS

For informa+ion a&out i fining t.his byte in the FFT
and for the system interpretation of it, refer to
the Index Definition for Keyword Fields section of
Volume Ir, File Structuring - Index Definitions for
Keyword Fields, and to the Keyword Indexing section
(3.7) of this volume.

The user's scan may ignore this byte or it may
interpret it any way it pleases. The byte contains
one of the following binary values:

1 - DFOP

2 - PETAIN

3 - SEPARATE

4 TEXT(d.fiult)

:L1 - return code byta; the scan subroutine must place
a return code in this byte before it returns to
the scan processor. The scan processor does
not modify the byte unless it loads a new scan
subroutine, st which time it sets an end-of-
scan indicator.

C, It must return ona worl in the caller's wDrd hold

area in the following format:

CL - length of the word.

CL3 - recovered word, left-justified.

It must set bit 0 of the length byte to 1 if the
recovered word is a literal. This flag bit is used
to bypass dictionary processing of literal words.

d. It must return ona- of the following codes in the
parameter return code byte each time it returns to
the scan processor

0 - a word was rpcovered; there is more data
to scan,

INTRODUCrION TO FILE CONCEPTS

4 - a word was recovered; end-of scan.

8 - no word recovered; end-of-scan.

The scan processor will rezall the scan subroutine to
zontinue processing the same field if the scan subroutine
returns a zero. Otherwise, it will assume that all words
have been recovered from the current field. If there are no
more fields to process, it will not recall the scan
subroutine (i.e., there is an end-of-file).

3.4 Definition of Fdit Masks

The user writes an edit mask in a language statement as
a liteLal. That is, single quote signs are used for
I-tlineation. The edit capability of NIPS 360 ?FS permits
the user the following features when applied to a num-ric
iata value:

a. Zero suppression

b. Sign control left or right

c. Leading and trailing significant characters

d. Character insertion.

Tha uesainder of this section discusses the techniques of
writing an edit mask.

Any character which can be printed may be used in the
.!dit mast except a quote murk. However, certalzt characters,
name ly ampersands, blanks, and zeros, will not appear as
such in the output. Firthe rmore, minus or credit (CR)
symbols have special meanings. One character position in
the output is represented by one character in the edit mask.
Nonspezial characters in the mask will be printed in thp
same relative position in the output field. A mask may be
132 chiracters long; however, certain NIPS components have
shouter limits. As in most case2s, since no move than 10

42

INTRODUCTION TO FILE CONCEPTS

r.placeable characters (blanks or Zeros) can be filled by
source data, edit masks should tend to be less than 70
:hiracters long.

"he actions taken for ?ach special character in the edit
mask are given below.

Bllft -- Each blank in the edit mask will be replaced by
a Jigit from the source field.

Zero -- each zero in the edit mask will be replaced by
a digit from the source fi.ld, ind the l]ftmost zerD will be
the right most limit of zero suppression.

Ampersand -- Each ampersand in the edit mask will be
replaced by a blank in the output field.

Minus sign -- If the minus sign is to the left of the
tirst rpLaceable character or to the right of the last, it
is considered a sign control character. If the sign field
is negitive, the minus sign and any other nonreplaceable
characters occurring with it are printed. If the sign is
positive, neithec the minus sign nor the accompanying
characters are printed.

CR -- If the character C is immediately followed by the
T.hiracter R on the left of the first replaceable character
or on the right of the last replaceable character, they are
considered as sign control characters, and are treated just
like a minus sign.

Th 3 followiig examples should clarify the use of these
spacial characters.

43

INTPODUCTION TO FILE CONCEPTS

dit_M sk Sour ce Resi

b bbBbb' 12345 12345
00001 bbbVl

'XTCR& bbXX[' 123 bbbbbl23YX
-123 XXCPbI23XX
001 bbbbbbOI)X

-001 YXCRbbOl"X
$.bb- 12 $.12b

-12 S.12-
01 S.Olb

-01 S.Ol-
#Ob/bb/bb' 010168 bl/01/68

in output, if the size of the source field is known when the
edit mask is first processed, a test is made to see whether
thit many replaceable characters exist. If the source is
too long, the edit mask is rejected. If the source is too
short, the system will start at the left aad replace the
Dlanks and zeros with ampersands until the desired number of
eplaceable characters remain. This occurs before the test
for CR and -, but after the test for zero. Thus, a mask of
0-bob f)r which a 3-character source field is specified will
cause a 001 field to be printed as bb00l.

If the size of the source field is not known when the
alit mask is first processed, the system will count the
number of replaceable characters and return this number to
the calling program.

!n Pile Structuring(PS), the replaceable characters in
a defined edit mask and the field which is dpfired to use it
must be of equal length.

3.5 Maintenance of Source Language Prscgaams

In a large installation, keeping track of source decks
u a:omes a real problem. Source decks for NIPS components
may be maintained on direct access libraries to facilitate
hous~k3 -pLnq and source program maintenance. Source Can be
stored on a library by the NTPS batch components and thp

"'I

INTR,,DuCrION TO FILE CONCEPTS

UTSOWIPC utility program. From a t erm i, a 1, t he F01T
component of the Terminal Processing System can be usei to
I.intaLn source libraries.

3.6 Secondary Indexing Cipibility
Secondary Indexing provides the user with the capability

to indx any ISAM, SAM or VSAM file by the contents of 3
field or fields other than the Pecord ID. The pLiwary
purpose of the capability is to provide a faster response
time for qualifying data racords d uring retrievals.

Se: indary Indexing encompasses three basic areas: Index
Sp.cifization, which allws the user to specify fields
and/or groups which are to he iddei (or del3ted) as indexes;
Iniax Maintenance, which ensures current and accurate
indexing intozmation; and Index Processin4 which uses this
intormation in the retrieval process.

The fields and groups which are to b" indexed ire
ies inated durin7 File Stru:turing (FS) or Index Specifiec
(ubrNPSPC) runs. From that point on, all Secondary Indexinq
functions occur automatically, transparent to the user, and
cannot be overridden, except in the case of retrieval.

The user's prime concern in the use of Secondary
Indexing is the judicious zhoice of index fields. These
i3l s slould be chosen on the basis of expected frequency

ot use in retrievals. Choosing too few indexes would limit
the offectiveness of the capability while choosing too many
would load down the capability with needless overhead costs.

Since the user interfices diratly with Secondary
inlaxing only during Index specification, the rest of this
section will discuss the techniques involwed in Index

) Sp),ification.

Regardless of whether an index is specified as part of
an FS run or by usiny the stand-alone Index Specifier
(UTNDXSPC) , an ladex Specification statement is required and
includes ths items listod below:

45

1NTRODUCTION TO FILE CONCEPTS

o Statement Identifier - INDEX

o Rame of field/group to be indexed

o Action t: be taken (ADD or DELETE)

o Conversion or analyzer routine, or tablp (optional)

If a conversion or analyzer routine or table is
specified on the Index Spezifi:ation, the rautine or table
must have been previously defined on a SUB/TAB statement.
This statement cortains tha following information.

o Statement Identifier - SUB, SUBROUTIN!, TAB, DL
TABLE

o Name of subrouti. or table

o Functioa (CONVERT or ANALYZE)-for subroutines only

o Input and output lengths of data

o Mode of input and output data - applicable only
(ALPHA, BINARY, COORD, or rECIMAL) tor CONVERT sub-

routines

As mntioned above, once the indexes for a file are
specified, no further user actions are required to use the
S_:ondary Indexing capability. File updating by FIM or SODA
causes routines to generate corresponding transactions to
upiate the indexes. RASP 3r QUIP will use the information
provided, wherever possiole, in order to improve retrieval
aff1.ci~ncy.

More detailed information regarding the Index
Specification and associatel SUB/TAB sta t ements is contained
in V:luu.a II, File Structu:ing. Information regarding usage
of indexes will be founi in Retrieval and Sort Processoc,
Vo)lume IV, and Ternuiral Pracessing, Volume VI.

46

INTR)DUCTION TO F2LE CONCEPT7

1.7 weyword Indxing Capability

r P yword Indexing is a t-?xt-r .tria 3l capability that
provides a method by which thq NIPS user can access and
rotrieve records based upon the contents of variable-length
o *ext data fields. Just as Secondary Indexing enables i
user to query a file and iccvss only those data records
know. t3 contain the fixed-lpngth fields of intArest to him,
Kayword Indexing enables thf uspr to retrieve records based
on the prasence f 'keywords' within a field. To provide i
capabil ity tailored to his needs, the user has options tu
iLCt the selection of lkpyvords* from the inexed field.
This selection is based on the presence or absence of a stop
wort tibls and a dictionary. These tables are user provided
and are designated at the field level, although one table
may be applied against more than one field.

A stop word table consists of a list of irrelevant
(noisel words. Any words found in this table are eliminated
tro% further consideration as keywords. The primary
ddvantage of the stop word tAble is the reduction of thp
number of words which must be sorted (and matched against i
dictionary if one is specifiel) . A system stop word table
nased ICKSTOP is available to the user. It contains the
following words:

A BY IS OR USE
AFTFP CAN IT P? USED
ALL)W COULD MODE SINC? WAS
AM EV FN mn RE so WE
AN F VFR NO TH AT W HEN
AND EVERY NOT T1HF WHER E
ANY FOR NOW THEN WHEREAS
B E HAS OF THIS WHICH
BEE ' IF ON TO VILL
BUT IN ONLf UNDER WITH

A dictionary consists of words which are potential index
iiti sat entries or synonyms for potential entries. For
'-xam-le, the following vilues aro to qualify as keywords -
Air:rft, Bomber, Plane and Fighter. For retrieval purposes
these values are synonomous and are entered into the
di-tioaary as such. The indox data set will carry the ID of

47

INTPDDUCTION TO FILE CONCEPTS

el:3 r::) rd where any :f these values occurred in the
iesignated field. Then, when a retrieval is made against
this field with a keyword argument of either Aircraft,

uboer, Fighter)r Flane, all records containing any of
these values in the indexed field will qualify. The maximum
value lngth of a keyword is 30 characters.

When a data word is matched against a stop word table it
must exactly match the table word to be eliminated from
further processing. When a data word is matched against a
dictionary, however, the entire data word need not exactly

it-h 3L dictionary word because of two functions - suffix
processing and suffix specification.

_jjssq - Suffix Processirg is an automatic
prraaming functiun that is conditionally applied to
all argument words matched to a dictionary. Suffix
specification is a control sta tement notation which
permits a user to indicate keyword ending changes when
a keyword is suffixed. If a keyword exactly matches the
most significant (left -Aobt) characters of a longeL
argument word, the unmatched argument characters are
analyzed to determine if they are a suffix to the
matched keyword. The unmatched characters are looked up
in a table of acceptable suffixes. If they exactly
mat:zk a table entry, the ending characters of the
keyword are examined to determine if the matched suffix
can be validly attached to them. It they pass the test,
the keyword is substituted for the argument word. Note
that a double substitution could be required; the
keyword could be a convert keyword (synonym) , in which
casa the synonym base keyword is substituted for the
argument.

u42c1coIn - If a user spacifies to the
Dictionary Maintenance utility that a keyword's ending
=hanges wheth the word is suffixed, the changed form of
the word is stored in the dictionary as an independent
keyword with the restriction that if an argument word
exactly matches thp changed form of the word, that
argument is !)t a keyw3rd. In other words, the changed
form of the keyword must match the significant
characters of a 1ong3r argument, and the unmatched

46

INTR3DUCTION TO FILE CONCEPTS

argument characters must be a valid suffix (see Suffix
Pr3=assing). If these conditions are met, the unchanged
form of the word (or its associated base keyword if the
worl is a convert keyword) is substituted for the
argument.

Table of All Vilid Suffixes

ABLE ERS ITION
ABLES EST ITIONS
AGE FUL ITY
AGED FULLY IV E
AGES IBLI IV33
AL IBLES LIES
ALLY IC LT
ANCE ICAT ION AENT
ANCES ICATIONS NESS
ATIO' ILIES NWSSES,
ATDNS I LITIE S OR
ATIVF ILITY R (when preceded by E)
ATIVES ILY RS(when preceded by E)
D(vwin preceded INAL S

by E)
DS(when preceded ING, SION

by E)
ED INGS SIONS
,DS 108 TIES
ENCE YONAL TIOW
ER IVIES TY

Yjwhen preceded by L
or T)

Literals in the data file are never matched against i
stop word table or a dictionary. Each literal automatically
be:omos , index data set entry. A literaL is defined as all
characters, including b links, which appear between two
sin1 e qu3tation marks in the same subset record. The user
should analyze the content of his file so that he may select
thas? kcywords which are best suited for retrieval Ijic.

For a detailed description of how to generate and
maintain these tables, see Volume VII, Utility Support,

49

INTRODUCrION TO FILE CONCEPTS

Dictionary Maintenance section. Tables are .eleted by using
the 3S Utility IEHPROGM

Usa and content of tables should be based on the nature
of the lata. If no tables are specified, each value foun-
within the indexed field bezomes an entry in the index data
s1 t. The user should analyze the data content of his file
so that he may select those keywords which are best suited
tor retriaval logic. For efficient operation, extraneous
words not used as a basis for retrieval should not be
=irriel as keyword entries in the index data set. If in
indexed field holds a large amount of text data, it would
most likely be beneficial to have both a stop word table and
a liztionary. If a field contains 'keywords' interspersed
with noise words, a stop word table would he applied against
it. But if a field consists mainly of retrieval based words
with synonym or suffix (e.g., plural ending) functions, only
3 iz:tionary need be applied.

Keyword indexing adheres to the same basic rules,
considerations and functions as does secondary indexing and
applies to the three areas of index specification,
maintenance and retrieval.

Indexed fields are definei through File Structure, File
Revisign or the Index Specification utility (tITNDISPC). Any
variable field, variable set or fixed-length alpha field
iefinei for the file may be designated as a keyword indexed
field. There is no limit to the number of indexed field3.
A fixei-length field may n~t be defined as both a secondary
and keyw ord index. An Inde x Specification statement
consisting of the following items is required for each
indexed field:

Statement Identifier - INDEX

Name of field/set to be indexed

Acti~n (ADD or DELETE)

Text Fetrieval - KEYWORD

50

INTRODUCTION TO FILE CONCEPTS

Stop Work Table (Optional)

Dictionary (Optional)

User-Scan Rotine (Optional)

Hyphen Option (Optional)

'or each stop wor ta ble, dictionary or user-scan
routine specified, a SUB/TAB statement must have been
in:ludgi to define the named function. This statement
consists of the following information:

Statement Identifier - SOB, SUBROUTINE. TAB
or rAbLE

Use Function - SrOP, DICT, DICTIONARY or SCAN

This action creates Ildex Descriptor Records in the ?FT.
Tha presence of these records causes Index Maintenance to be
invoked either through File Maintenance or the Index
Specification utility.

That jeneralized system scan routine in Index Maintenance
proiesses the keyword indexed field(s) of the transaction
records looking for textual words and li terals. It
istarminzs the limits of words by identifying literals and
text words.

For literals, the system scan subroutine recognizes a
sinjle quote as a literal word delimiter. All characters
between the single quotes except double quotes are recovered
to form one literal word. Any number of double quotes may
appear between the single quotes; all are deleted during
ra:overy. If an 3dd number of single quote characters
appear in a field, no word (literal or textual) will be
recovered between the last single quoDte and the end of the
f ild.

For nonliterals (text words) , the syste scan subroutine
recognizes three categories of characters: textual,
superfluous, and ward separator.

51

INTRODUCTION TO FILE CONCEPTS

Textual Those data word hx ract.?r s that are
recovered to form the work passed to the
subroutine caller.

Suprfluous - Those data word characters which are
deleted from the word passed to the
system scan subroutine caller. They are
imbedded in one word. they separate
segments of one wori.

Worl Those characters in the data field
Separator - that are not part of a word. They are

word delimiters.

Letters and numbers are always textual. The period and
hyphen may be textual, superfluous, or word separators. The
comma may be superfluous or a word separator. A single
quate is a word separator as well as a literal word
deliliter. A double quote is ignored; it is a word
s pirator if another word separator precedes or follows it;
otherwise it is superfluous. All other characters are word
sepa rators.

pqi _I1es - A period is recovered as a textual
character when it appears in a word composed entirely of
numters. One or more periols are superfluous if they
are used to punctuate a symbol (i.e., U.S.A.). The word
in which they appear may be composed of letters or
letters mixed with numbers. For all other occurrences,
the period is a word searator.

Co11-R4L1es - One or more commas are superfluous if they
are used to punctuate a number; that is, when they
appear in a w~rd composed entirely of numbers or of
numbers and a perio. For all other occurrences, the
comma is a word separator.

i- Single quote is always a word
separator as well as a literal word delimiter.

D2_b!e ..Qugte _1ules - All occurrences of a double quote
ar. ignored. If it is imbedded in a word, it is
superfluous, othrwise it is a word separator.

52

INTRIDU.TION TO PILE CONCEPTS

Hyh_[_ Bkles - Treatment of hyphens is dependent upon
the hyphen option specified by the user in the FFr.
Pefar to the Index Definition for Keyword Fields section
of Volume II, File Structuring, for these options.

If the nature of the data is such that it does not lend
itself to the system's scan routine, the user may write and
designated his own. For a detailed description on the
r.quir aints for a user's scan routine, see the User Scan
Subroutine (section 3.3 .4).

If a Stop word Table had been specified, each word is
passed against it searching for a match. When a match is
found, the word is eliminated from any further processing.
Th3 remaining words (or all words from the field when no
Stop Word Table is specified) become keyword candidates.

After all transaction records have been processed, the
inlax iata set is updated. When a dictionary is not
specified for an indexq1 field, all keyword candidates
become entries in the index data set. When a dictionary is
specified, each non-literal word is passed against it to
detarmine if the value qualifies as a keyword. An entry is
made in the index data set for each qualifying value; the
reaainl r are dropped from any further processing. Literl1
words always qualify without being matched to the
d ic t i ona r y.

To perform record qualification based on keywords, the
user must include a K? YWORD sta tamnt in his query.
Structually and functionally, the statemei.t is similar to an
IF statement. The same rules of logic apply. The statement
is on tie same level of hierarchy as the LIMIT statement in
QUIP and the secondary LIMIT statement in PASP. Only one
KEYWORD statement per query is allowed. The format is as
follows:

KEYWDRD fieldname INCLUDES keyword argument(s) AND... clau-e.

clause OR

Each field name must have been defined as a keyword
indexed field or the retrieval will be terminated. rhe

53

INTRODUCTION TO FILE CONCEPTS

keyword argument is passei against the dictionary (if one
wPre specified) and against the keyword entries for that
tield in the index data set to determine which records
qualify.

This list of record Is is passed to the retrieval
routinu- to indicate what recoris should be accessed. The
keyword fields will not be scanned again as they have
flraady qualified. Retrieval is on the record level only.
When any of the queriei fialds have been defined as
s2:ondiry indexed fields, such that a second qualifying list
is present, the two lists will be merged into one final list
containing only those records that qualify for both the
Keyword and secondary indexed fields.

Keyword indexing is de3igned to provide retrieval based
on the occurrence of 'keywords' within a field. To achieve
optimum utilization, the user responsible for defining the
inl? xel fields must have a good knowledge of the text data
in the file and the terms that will be used as a basis for
retrieval. This is necessary in order to define the best
meithod of selecting keywords from a designated field (via
stop word table, dictionary) and to avoid overloading the
iniax lata set with fields and entries that arc unlikely
candidates for retrieval.

The Keyword Analysis Utility (see Volume VII, Utility
Support) is provided to assist the user in making this
selection for a file already in existance. The contents of
any fiel1 it, t,p f'l may be listed to determine the
likely candidates for indexing and what values are likely to
be keywords or entries in a stop word table and dictionary.
This will also assist in determining whether a stop word
table and/or a dictionary should be applied against the
field.

3.9 Interfile Output (IO)

Intilrfile Output (IFO) is the capability to combine data
from several related files during the output processing. It
is avaiLable in the batch environment in the OP and QUIP
components and in the online environment in QUIP.

54

INTPODUCTION TO FILE CONCEPTS

A master or primary file -ontains data elements which
are maintained by the user and which identify records in
other referenced or secondary files. These data elements
are :ali-d pointers and consist of the record key (or
minimally, the high-order portion thereof) for the secondary
tiles and may also include a secondary file identifier. In
some cases, the record key of the secondary file may be
ilantical to the record key of the primary file so as to
allow use of the primary file key as the pointer element
that can be used as a pointer to a secondary file. Should
the interfile relationships be complex, the pointer may
aiditionally rejuire an indicator to identify the secondary
file to be referenced. This is accomplished by structuring
thi pointer as a group. The first field contains the name
of the secondary file or a code which is converted to the
secondary file name by i subroutine or table specified in
the ?FT; and the second field contains the record keys, or
high-order portion, of the referenced records. To allow the
zoaponants to recognize this group as the special type of
pointer zontaining the file identifier and record key, it
has a standard system name consisting of the six characters
IF03PP with a suffix which is a unique (for the file) letter
or diqit. Thus, a maximum of 36 such pointers is possible
for any file. Finally, defined literals and sortkey values
(when the primary file is a RASP answer set or retrieval-
typ? IF/SORT statements are used in QUIP query) may also be
used as pointers to secondary files.

IF) causes processing of th? primary file record to be
interrupted and a retrieval made from a secondary file of
one or more data records. Those racoris are then processed
aqiinst the logical specifications coded for the secondary
file. After processing has been completed for those
retrieved secondary file records, primary file processing is
resumed.

The selecti:) of any secondary file records depends on
the pointer and its contents at the time the primary file
processing is interrupted. If the length of the field used
a s the pointer is equal to the length of the record key of
the secondary file, at most one record is retrieved from the
secondary file with its record key matching the pointer. If
the field used as the pointer has length greater than the

55

!NTBODUCTION T.C FILE CONCEPTS

length of the record key of the secodary file, the field is
truncated before r etr iev 1 and at most one record is
retrievei with its record key matching the truncated field.
If the length of the pointer field is less than the length
of the secondary file record key, the retrieval of secondary
file records consists of all thcse records where the high-
orier portion of the record key matches the pointer, the
length of the high-order portion being determined by the
length of the p:inter. When more than one record is
retrieved in this manner, processing of the secondary file
sp:cifications is repeated for each record.

3.9 File Analysis dnd Run Optimization Statistics

The File Analysis and Run Optimization Statistics
capability provides th. user with statistical data
:onzcrning the activity of fieids in the data file and
statistical data concerning the allocation of core resources
for NIPS 360 FFS production runs.

3.3.1 File AnalYsis Statistics

The File Analysis Statistics involve both a stand-alone
utility to count data file field references of all of a
users component source statements and component execution
statistics showing the number of times a source statement
was executed. Using this statistical data a user may more
3fficiantly determine the activity of the data file fields.

Statistics f)r file analysis are gathered by the user
from two sources:

o h NIPS utility, UTFLDSCN, which determines which
file fields are reterenced in each source RIT,
retrieval, and logic statement

0 use c3unt of each PIT, retrieval, and logic
statemetl provided by each NIPS component.

These two types of statistics may be combined in a NIPS file
for analysis.

56

INTROflUCTION TO FILE CONCEPTS

Th: stand-aI ne utility, JTFLDSCN, will accept as input
all of the component source stitements for a single data
file. The format of the input may be cards and/or a or
maambr 3f a partit izned dat a set in card image record
format. Primary input, which zonsists of control cards will
be a zard. Each set of source statements must be preceded
by a control card to identify the component, module name,
anl meaber name. rhe format of the card will be as follows:

./ SOURCE COMP=XIr ,N RAESHME, MEMBER=MNAME

w her e:

./ must be ii columns I a nd 2 followed by one or more
blanks.

SOURCE must appear as shown.

C3!P=XXXX where XXXX iuy be FM, QUIP, RASP or OP.

NAME=SNAME where SNAME is the name of the source module.

.1E4BER=MNAME where MNAME indicates that the source is a
member of a partitioned data set and that this is the
member name. This operand must be omitted if the source
is Ln card f:)mat. Mited formats will be allowed.

The output from the utility will consist 3f a listing of
the source statement, followel by a listing of the file
fialds with a count of references. After all source
statements have been processed, a summary listing will be
providai showing the count of data file field references by
component. A sequential dita set will also be provided
suitable for transaction input to an FM run.

The utility will process fields in the source statement
from a single file in one e xec ution. Multi-file RASP
quaries and multi-file PITs will be accepted as input.
However, only the fields from the input data file will be
prozessed. To process all fields from all files referenced
by multi-file queries and multi-file RITs, it would be
nazi sslry to include the source statement in a utility run
for each file.

57

INTRODUCTION TO PILE CONCEPTS

Tha batch component file analysis statistics will be
initiated dynamically by the presence of an entry in the
catilog for a traniaction data set. The data set name must
be the file name concatenated with a 'T' suffix and must le
cataloged to the same volume as the data file or a DD
statement named TR&NST included as an additional DD
stitemant° If the statist ics are initiated through the
catalog entry and the data set does not exist, the space fzr
the data set will be allocated on the same volume as the
data file. If the additional DD is included, it must fully
igs:rib? the data set according to JCL requirements. The'
d isposition for the transaction data set will be MOD so that
new trinsactions will be added and will not destroy any
transactions gathered previously.

A parameter PAPM=HOSTAT, may be entered on +he EYEC card
to override the gathering of the statistics.

Samples of the transactions output by the file analysis
statistics, with a sample FFT, logic statements, query, and
RIT utilizing the transaction are included in appendix B.

3.9. 2 Run Optimization Statistics

This capability produces, on user's request, statistical
data reflecting the core allocation during maximum core
utLlization for the execua tion of the component. The
breakdown of the statistics letail the amount of core used
for user subroutines and tables, the source module (PIT,
query, logic statement), processing blocK or stash area, I/O
buffers, and OS access method subroutines. The information
allows the user on subsequent runs to specify options to
make more efficient use of his core allocation by specifying
through the PARM field on the EXEC card the core required
for elements such as process block, stash area, and the BLDL
list. The amount of core allocated to subrcutines and
tables i. indirectly specified by adjusting the region size.
Thi core allocatin for I/ access method routines remains
constant for a given run and may not be overridden.

This capability is Apsigned primarily for use with
prol ucti-n runs Vhere the job setup remains constant.

58

INTR3DUZTION TO FILE CONCEPTS

The batch components FM, RASP, OP, and Q1IP recognizP
tha Run Optimization parameters in the PAR field o: the
execute card. The presence or absence of parameters are
intrpr-ted by the initialization routines to determine
processing required by thq execution phases of each
component. At completion of the execution of the componnt,
the reporting phase outputs ill gathered statistical data as
a print-d listing.

Each component prints a statistics page showing core
allocation and dyna mic resource loading. The core
illozation porti:n indicates the processing block or stash
area allocated and used, the amount of core used for the
source modules and user subroutines and tables, and the
amount of core used for I/O buffers and access methods. The
J)nimi resource portion of the statistics includes the
number of times each subroutine, table, or logic statement
was executed and how many times it was rolled out of core.
The reason for rolling the module, either iusufficient core
or insuEficien* BLDL list dill ilso be indicated.

The user may alter the scheme of core allocation through
use of the PARM field on the EXEC card. For example, if all
of tha stash area in RASP is not used but subroutines or
tables referenced on the SOPT statement are rolled due to
insuffizient core, the stash area may be decreased. The
excess will automatically be assigned to the dynamic
subroutine area. The BLDL list is a list maintained by
SUBSUP, the NIPS Subroutin Supervisor, containing the name,
size, ind disk address of each subioutine, table, or logic
statement used. Each entry in the list requires about 70
bytas af core. Ideally, there should be an entry in the
list for each subroutine, table, table page, and logic
stitemant executed in the run, and there should be
sufficient core so that no modules have to be rolled out.
ThLs is rarely p)ssible in batch production jobs. The user
can alter the length of the list to use core most
3 fficientl y.

The Run Optimization capability will be initiated
through the use of parameters in the PARM field on the EXEC
cird far each component. The parameters and their
associated functions are as follows:

59

._. . - .- - . . . ,. - - . .. ,r -' l l m m ,.-- -
-

INTRODUCTION TO FILE CONCEPTS

POS - This parameter specifies that run optimization
information is to be gathered and output.

NOROS - ThLs parameter omits optimization ptocessing.
If nt other parameters are used, this parameter
need not be codpd, as it is the default.

The parameters to be used to supply parameters to tailor
zor? allocation ace as follows:

TCP=NK - Indicatps the number of bytes requpsted
for processing block ar stash area in
1000 (K bytes.

TCB= I - This parameter indirates the number 3t
entries "o be used in the BLDL list for
SUBSUP.

TCS - This parameter indicates that the
statistics -ecord on the rSAM data file
is to bp used to determine the process
block size. This parampter should not be
used with the TCP parameter.

When core allocation parameters are coded, FOS will be
p3rfornal unless the NORfS is coded in the PARM field on the
execute card.

The definitions for the statistics output by the Bun
optimizatioLn are as follows:

£e__A §ae

Pejiza size - The size in decip'l of the area request-
ed on the JOB or E-XEC card.

Fr-e core - The amount of core not used. This
figure will not include fragments of
core of less than one K.

Ac:3ss methods - Includes the area allocated to the access
methods.

6C

- __ __ _

TNTPDDUCTION TO FILE CONCEPTS

nuffers - Amount of :ore used for buffers on open
data sets.

Component - Amount of core taken up by the batch
component and any programs Loaded by
the cimponent, excluding logic state-
ments, PASP queries, and PITS.

Nots: Core sizes are given in bytes (1O2 bytes = 1K).

Prcess blocK
size - This is thq amount of zore allo.:ated t:

the process block or st-." rea.

PM - Amount for process block

P AP - Amount allocated to stash area.

OP - Minimum amount to contain on- data rezord
and associated sets.

QUIP - Amount allocated to process block.

Amount used - Amount of process block or stash area
used for storage of data records.

The number nf entries for BLDL lists allocated Ls output
with the number of entries actually used. If subroutines
were rolled because of insufficient BLDL entries, the number
na.issiry to prevent rolling will also be output. The user
may then on the next run specify the number required to
prevnt rolling for this reason.

The amount of core used for subroutines and tables will
be listed whether or not they were added. If subroutines or
tibles were rolled for lack c f core, the amount of core
liqted is that amount required to pre went rolling. The
umr say then reduce processing block or stash area jize to
provide more core for subroutines and tables, if fetsible,

61

INTRODOCTION TO FILE CONCEPTS

or increase his region size to prevent r~lling for this
reason.

Poll informati:n will detail the modules that were
rolled by SUBSUP, the number of times rolled, and the
reasons for rolling.

If the run i3 an FM component execution, the subroutime
nd table statistics will also include logic statements.

3.13 Improved NIPS File Processing

As RIPS is used in an e ve r-widening range Df
applicBions, data filp usage is becoming more varied and
data file size is becoming larger. The following three
:xpkbilittes provide enhanced file processing techniques.

3.10.1 Qualified Data Set Names

ualified data set names are allowed for NIPS data
files, libraries and index data sets. The basic tiame must
zonform to the NIPS naming conventions (section 2.6.3). To
this basic name, additional qualifiers may be prefixed up to
A totil of 44 characters. Symbolic parameters and dati
definition (DD) statement overrides must specify the fully
qualified data set name. In the batch 2ode, only the basic
name (last segment of th. qualified data set nlame) is
specified in the NIPS component controL cards. When
:omparisos is reguirea, the component addresses only the
last segment of the qualified data set name on the
appropriate DD statement. In online applications (QUIP, FM,
SODA, EDIT, VIEW and FODRATTER), NIPS components utilize the
catalogue to locate data sets, and the fully qualified data
set name must be specified.

3.10.1.1 Specifying a Uaer Library

A NIPS user can specify a library by use of selected
data definition statements in the NIPS cataloged procedures

62

--- .. :=:::" F - ---- _- - - -

INTRODUCTION TO FILE CONCEPIS

which include the SLIB, TLIB and DLIB DDNIMES. The library
name may be a qualified or an unqualified data set name.

In those cases where the DSNAME of the library is
letrmin.d by suffixing the data file name with an "L", the
fully qualified name will be used. If this name cannot be
lo:Atei in the catalog, the last segment of the qualified
data set name will be used with an "L" suffix. If a
quilifi.l name is not used, then the file name will be the
only segment.

3.10.1.2 Specifying an Index Data Set

A NIPS user can specify an Index Data Set by use of the
K INDEY DD card. The DSNAME of the Index Data Set, less the
suffix "X", must be the same as the fully qualified data
tile name. In those cises where the DSNAME of the Index
Data Set is determined by suffixing the ISAM or SAM data
base name with an "X", the file nam uz:d will be the fully
qualified data set name. If a qualified name is not used,
then the file name will be the only segment.

3.10.1.3 Data Gemecation Gcoup

The DSNAME parameter of the DD cards in the ICL stream
for the user and system libaries (SLIB), sequential data
fil-s (SAIFILB), arid Indea Data Set (IINDEK) may be a
generation data set. A generation data set is one uf a
collection of successive, historically related, cataloged
lat a sets knowa as a generation data group. To create or
retrieve a generation data set, you identify the generation
dati group name in the DSNAME parameter and follow the group
name with a relative or absolute generation number.

A :jnerati3, data group can :onsist of cataloged
sequential, partitioned, indexed sequential (if the data set
is defined on one DD statement) , and direct data sets
residia4 on tape volumes or direct access volumes. A NIPS
ISA. data file would normally not be part of a generation
data group since the data set is defined using three DD
statements.

63

- ---- ~- --X

INTRODUCTION TO FILE CONCEPTS

3.10. 2 ata loged Procedures and File Block Size
Considerations

All NIPS 360/FFS cataloged procedures, components and
utility programs are designed to process files with a block
size of 1,004 bytes or greater. The standard file block
size is 1,004, but the block size of any file can be set by
the user to a size of 1,004 or greater as long as the
sp3cifi.a1 size does not conflict with S/360/OS Data
nanagement rules or storage device limitations.

If a user elects to change the block size of a file, he
can do so with aay cataloged procedure that generates a file
or produces a new copy. These procedures are easily
re:ognized becatise they include the symbolic parameter
BSZNEWF, which allows the user to specify the block size of
th? new file.

once a file's block size is changed, the file will
retain that block size until changed again by the user.

Bloct size sp ecificat ions or the use of symbolic
parametars, BSZFILE or BSZN.WF are always required for the
following conditions:

1. BSZNEWF must be used to zhange a file's block
size.

2. BSZNEWF must be used to generate a file with
a block size greater than 1 ,004.

3. BSZFILE must be used when processing a non-
standard block size file residing or unlakb eJd
tape.

The effects of increasing a file's block size are:

1. Less storage spza re'quireJ because of fewer
inter-record gaps

2. Less I/O time required during processing

3. More core requirel during processing.

64

!NTRODUCTION TO FILE CONCEPTS

The B3ZNEWF parameter =annot be used to mzdify the block
size of an output VSAM file. The block size of the VSAM
fil a must be set when the file is defined by the VSAM
service routine IDCAMS as set forth in Volume TIII - J:b
Preparation. When going from VSAN to SAM the block size of
the SAM file will be 1004 unless overridden using the
BSZNEWF parameter.

3.10.3 :oapression and Compxztion of Data Records

compression and compac tion provide a means for the
raduction of intermediate storage requirements for data
without altering the integrity of the data. rthis data
reluction scheme is particularly suited to data files that
contain strings of identicil characters or a large quantity
of alphabetic data.

A string of identical characters is conFressed by
translating it to two bytes. The first byte is a control
byte which indicates that compression has been applied and
gives a count of the number of identical consecutive bytes
that were in the original string. The second byte is
identical to those in the original string.

A string of alphabet ic characters is compacted by
translating it to a control byte followed by a string of
coded characters. The control byte indicates that
:oapacti:a has been applied and gives a count of the coded
characters. Each coded character represents a combination
of two adjacent alphabetic characters.

compression or compaction can be applied to data tiles
by specifying COMPRESS or ZOMPACT respectively for the PAPM
on the EXEC card of the SAM to ISAM/VSAM and ISAM/VSAM to
SA4 utilities. A combination of both can be specified by
i.n:ludLn; both keywords in the PARM list. If both are
specified, compression is applied to a record first and data
within the record that cannot be compressed is operated upon
by the compaction routine.

The compressisn and/or compaction process can he
reversel by specifying EXPAND for the PARM on the EXEC card

65

INTR)DU-TION TO FILE CONCEPTS

for either utility. All components process compressed
ani/or ompacted files transparently to the user.

3.11 Subfile Capability

The subfile capability allows the user to define
in: rasia;l y discrete qtieries so that each new query
processes a decreasing number of data records of the file.
Th3 capability is available in the QUIP component in the
online environment.

The subfile capability is a:comFlished by allowing the
user to create a subfile consisting of selected entries from
the file, the entries being selected based on the
zonlitional expressions in the query. Subsequent queries
are automatically directed against the subfile until the
user creates a lower level subfile or explicity specifies a
different source of input.

Subfile processing is initiated by the user when he
includs the SUBFILE operator in a QUIP query in thp online
environment. The first use of the operator causes the
naming ani allocation of a partitioned data set on a direct
access system work volume. Each subfile request results in
creation of a new member of the partitioned data set.

The name of the subfile partitioned data set is
internally generated by forming a qualified data set name of
two levels: the first is the terminal identification as
defined at NIPS TP Monitor system generation and the second
is tha Lnternal computer time of the query at the time the
data set is allocated. This name is displayed at the
terminal when it is allocated and may be used later for
identification to access the subfiles should a system
failura occur which causes a checkpoint restart of NIPS TP
to occur.

The subfile partitionel data set is deleted when the
user sigas off from QUIP. However, the existing subfiles
for a partition file are iude unavailable when a query is
direct- against another NIPS FFS data file.

66

INTRDUCTION TO pILE CONCEPTS

A subfile consists of the record keys of the qualifyinq
ra:otds for the query, rather than the entire record,
thereby reducing I/O time and space requirements for
prozessing subfiles. When a query is directed against a
subfile, the record keys in that subfile are examined to
iatarmL-e which cecoc ds in the master file are to be
accessed. If a query directed against a subfile contains a
retrieval which operates in the candidate-access mode, the
canlidite list built by Index Processing is used to further
restrict the access of master file records to those subfile
entries which are also candidates from Index Processing.

The subfile capability allows the user to create a
subfile and an output display simulataneously so that the
ilt1 for entries in the subfile may be examined while the
subfile is being created.

There are no r estr ictions on the number of subfile
levals the user is able to create. Any existing subfile for
the current master file may be referenced as an input source
so that interrogations may be performed from that level.

Subfiles generated at one terminal are available for
interrogation at other terminals in the system. The user is
raquired to refer to the 3ubfile name in his query for
access to the subfile.

The s'bfile capacility inzludes a trace function which
pe.rmits a user to display part or all of the contents of the
subfile partitioned data set. This function allows the user
to review all subfiles created from the same (current) data
file.

3.12 Non-NIPS Query Capability

NIPS can also be used to retrieve and output data from
data files that were created either by other data management
systems ,r by s~ecial purpose programs. This capability is
available through QUIP in both the batch and online
envi conments.

67

INTPODUCTION TO FILE CONCEPTS

To perform non-NIPS processing, the user must first
create a pseudo-P!T which lescribes th? iata file. Creatira
of the pseudo-FFT is by FS through the standard FS language
plus one non-NIPS control statement and several non-NIPS
op.ranus. After the pseudo-FFT has been structured and
stored as an ISAM data set, QUIP can be used to query the
non-NIPS data file. All of the standard QUIP processing
t-:hniques can be applied to a non-NIPS file with the
exception of index processing. Care must also be taken when
attampting to process numeric or coordinate data fields as
there is no NIPS check for valid contents of these fields.

Files which are to be processed via the non-NIPS query
capability must conform to the following general
restr ictions:

1. The file can be either a SAM or an ISAM data set.
Records in the file can be either fixed length (up
to 996 bytes) or Ya riable length (up to 1000
bytes) , and eithec blocked or unblocked.

2. Each record must contain record identification data
which is containel in one or more user designated
fields. These fields need not be contiguous; but
must be present in each record. The location of
these fields may differ for differing record
formats but the size of the fields and their
relative position within the total record ID must
remain constant. The total length of the ID must
not exceed 256 bytes.

3. All records with a common recri ID must be
physically together in the file and the file must
be in ascending sort sequence as specified by the
record ID.

4. Each rec:rd must contain a single data element 3f
up to 10 bytes in length which can serve as a
record type field to uniquely identify each record
format. The locat ion and length of the re'ord type
field must remain the same for all records. A
maximum of 256 different record types may be
identi fied.

68

INTRODUCTION TO FILE CONCEPTS

5. 3ne record type must be identified as a non-
repeating format to serve as a fixed set. This
format must occur once (a.nd only once) for each
group of records having a common record ID. All
other record types are considered to be repeating,
and their presence is optional.

6. Numeric data for which arithmetic computations are
to be performed must be defined in either binary or
zoned decimal (EBCDIC) format. All other numeric
data fields (non-fullword binary, packed decimal,
and fl~ating point) must be treated as alphabetic
data and a user-written subroutine must be supplied
for output conversion. Binary format requires that
the data be contained in a fullword on a fullvord
boundary.

7. Coordinate data must be stored in a fullword for
aach longitude and latitude and must conform to the
standard NIPS biniry representation.

8. Variable length dati fields are permitted provided
only ome variable field is dqfined for a record
type and it is th? last field in the format. Also,
the format must contain a fullword binary field
which will contain the length of the variable
fial d.

69

INTR,)DUCTION TO FILE CONCEPTS

SECTION 4

SAMPLE NTPS 360 PFS LATA FILE

This section introduces a sample data file which :s
typical for the files handled by the system. It is
presentel here since the Users Manuals for all components
will use examples pprtaining to this file.

4.1 General File Organization

Tba name of the sample file is TEST360. Its structure
is defined to contain information concerning the status,
organization, location, and equipment of combat units of the
ir.d forces. Each data record in the file defines a single
unit in the armed forces. Henze, the key to each record
will be the unit's identification code. Data in each record
has been formatted into a fixed set, six periodic sets, and
a variabL3 set. Data conversion subroutines and tables have
been defined to process some of the record's data.

The logical breakdown of data in a record is discussed
below.

FIXED SET - The fixed set contains data defining the
attributes of the unit which need only
one data value for satisfaction. Examples
of this are the unit's location, status,
activity, and commander's name.

Periodic Sets - The six periodic sets are used to contain
information defining the unit whose
record elements may have more than one
data value. For a periodic set, each
collection of data having the same format
is called i subset of the periodic set.

70

INTRODUCTION TO FILE CONCEPTS

PERIODIC SET 1 - Each subset contains data describing i
piece of major equipment or a weapon
type possessed by the unit.

PERIODIC SET 2 - Each subset contains data describing
a pie:e of secondary equipment or non-
essential material not required for
the unit's operation.

PERIODIC SET 3 - Each sabset contains data describing
an operation plan which th. unit must
follow.

PERIODIC SET 4 - Each subset contains the name of a treaty
to which the unit is responsible.

PEIODIC SET 5 - Each subset contains information on a
senior or staff officer of the unit.

PERIODIC SET 6 - Each subset lists a subordinate unit
reporting to the unit.

VARIABLE SET - The variable set in each record contains
commentary information about the unit.

4.2 Record Element Description

This section describes each element in the file's recori
format. The source language statements used to define the
format of this file appear in the File Structuring volume of
the NIPS 360 FPS Users Manual.

71

INTRfDU:TION TO tILE CONCEPTS

Element Element Set Input Output
. _ V _ !engSt h lode C Cony. Pesars ----

SERV Record Fixed 1 ALPHA RCMDS OCMDS Service Branch
Control Code
Fi el d

UUI% Record Fixed 5 ALPHA Unit Ident if ie:
Control (Service)
Field

1UIC Record Fixed 6 ALPHA Unit Idetif'cation
Control Code (Fiel d.-
Group SEP V, ". Ii N)

UNTYY Field Fixed 4 ALPHA Military Unit
Type Code

UNTY?7 FLeld Fixed 1 ALPHA Major Unit
Indicat or

UNLVL Field Fixed 3 ALPHA UNLVS Unit Organization
Level

UNTLY Group Fixed 8 ALPHA Unit Type and levR1
(Fields- UNTYY,
UNTYZ, UNLVL)

H31E Field Fixed 1 ALPHA RCMDq OCMDS Current Home
Command

UNFLG Field Fixed 1 ALPHA Unit Flag -
Reserved tor
Special Use

IF)P Field Fixed I ALPHA Major Force
Indicator

PREV Field Fixed I ALPHA RCHDS OCMD3 Previous Home
Command

72

INTR3DUTION TO FILE ZONCEPTS

Elemet Element Set Input output

ATACH Field Fixed 1 ALP1iA BCMDS OCMDS Attached Command
Report.ing 11nits Statu.

FUrU Fk eld Fixed I ALPHA R1CNDS OCMDS Future Home Commi nJ

TRDT13 'ield Fixed 10 ALPHA DTGIS DTGO S Transfer Date to
New Command

(INRDY Fi. l d Fixed 2 ALPHA eadiness Stitus

FEASN Piald Fixed 1 ALPHA Readiness Down-
grade Season

fATTN Field Fixed 2 ALPHA Readiness Fxpe:,t?1
to Attain

P ECO F Group Fixed 5 ALPHA Unit Feadinpss
Status (Fields-
UNRDYR 1A3N, .AT-'N)

PADI; Field Fixed 10 ALPHA DTGIS DTGOS Attainable Readi-
ness Status D1*
and Time

UNI'l Fiold Fixed 12 ALPHA Short Unit Name

UNAK.E Field Fixed 27 ALPHA Full Unit Nine

P7C) N ield Fixed 6 ALPHA UIC of Higher
Unit Having
Operation& 1 Control

C9TP Field Fixed 20 ALPHA C.O. Name and Rank

LgC Field Fixed 18 ALPHA Location or Hull
Number of Onit

P:IT Field Fixed 11 COORD Geographic Locat ion
(Lat-Long) of Units
Headquarters

73

INTRODUCTION TO FILE CONCEPTS

El zent Element Set Input Output

DAPTI Field Fixed I I COORC Geographic Points
(Lat -Lon q) Def inei
in CQuntercI-. k-

DAPT2 Field Fixed 13 co 30 vise Order Whizh
Defines the Unit' s
Area of Deploymvnt

TAPT I Field Fixed 11 COORD or respofisibilit

DAPT4 Field Fixed 11 COORD

AREA Group Fired 44 COOED Coordinate Arei
(F iels-DAPT I,
DAPT 2, DAPr 3,
DAP T4)

CNTR Y ?ield F ixed 2 ALPH A CTRYS Country Code
Where Unit is
1z cat ed

CNAM Field FiIed 15 ALP HA Country Ndmp Wh'-r-e
Unit is Locited

GEP)L Field Fixed 2 ALPHA CTRYS Geopolitical
Code Where Urtit is
Located

PERS Field Fixed 6 NUMEP Authorized
Personnel Strength

ACTIV FLeld Fixed 2 ALPHA ACTVS Current Activity
C9 de

LAuD Field Fixed 10 ALPHA Date-Time of Last
Record Update

7 1

INTRODUCTION TO FILE CONCEPTS

e1kt Element Set Input Output
UL-. .i12t-_ 11.L-- L.Ltb d df_ QgL 929!L- PelSA_ ---------

LYB Field Fixed 1 A. PHA Location Stitus
Whether Known,

Unknown, or
Embar kod

1 PFE .H, 0 el4 Fixed 1 HUMEB Personnel Peadi-
Ress Code

HEJPT Field Fixed 1 Wl MER Eq uipmet Readi-
neas Code

R'?RNG Field Fixed 1 NUMER Training Reidi-
ness Coie

PMGRP Group Fixed 4 NIlllR Ieadiness Group
(Fi el ds-RPERS,

RSPLY, PEPT,
PT RNG)

IPEADAVG Field Fix vd 3 NPJER Readiness Avorsq?
tD Hund edtho

AITTH1 Field Fixed 3 NUMER f q ot Naximum
D .nce f rom
COmmand Ship - to
Tenth. Hau.. Milen

UNTIY)' Field fixed 5 ALPHA Uniit Typoi Zode

rpmAr V FiLer Fixed 42 ALPIIA Unit Typ,, Name

'INTOF; Field flxvd 17 ALPHA T/O and E
P efer*nce

HIER Filld rix~d 11 ALPI: A it Ili O A L c hy
Coda

I
INTROD[CrIrON TO FILF CCNCEPrS

Element Element Set Input Output
ame ~ ~ ~ ~ ~ ~ ~ ~ ~~A _zeNe_ e .h Me_ on .lt_ Retmarks

C314ENT Field Fixed aritble Variable Length
Field to 4 old
Comments

MECL Field 1 ALPHA Major Equipment

Class

I EQPT Field 1 10 ALPHA Major Equipment ID

MECL Subset 1 13 ALPHA Major Equipment
Control Class and Type
Group (Fields - MECL,

ME2nT)

le.MOn Field 1 10 ALPHA Ma i. * - quipment
Model Nuumhb

.ENAM Field 1 18 ALPIhA Major Equipaent
Name

4 EChP Field 1 1 ALPHA Weapon Delivecy
Capability Code

MrP T) Field 1 3 NiM R Number of Equ.Lp-
ments Pole3sed

MEADA Field 1 3 NUMFR Number of Equip-
asnts on Ahltrt

I nDPC 7ield 1 3 NUMPR Number of uip-
ments Ready for

Conventioni 1
We4pon Delsiviry

MECP N Field 1 3 NMR R Number of Eluip-
mnntt PeAly foi
Nkiciffat k p l

Delivuiy

7 16

INTR3DUTION TO FILE CONC7PTS

Element Element St input Output
V-L-__ _tat_ - Lfagb 11!242 _ gjjX. rnyL - Remairks

MESUP Field 1 3 NUMER Number of Equip-
ments on Special
Alert

IESWP Field 1 3 NUrER Number of E~uip-
ments on Special
Alert with
Nuclear Capability

MESIA Group 1 6 NUMER Special Alert
Group (Fields-
?ES OP, RESA P)

4ESIC Field 1 3 NUMER Number of Equip-
ments Committed
for Special Alerts

MEREC Field 1 10 ALPHA Equipment '
R econna issa nee
Capability

MEDEP Field 1 1 ALPHA Code indicating
if Equipment is
at Home Locition
or TDY

.EDDT risld 1 5 NUkiER Date Equipment

went cn rDY Stati =

(Julian Date)

MEDJP Field 1 1 ALPHA TDY Duration Code

f ELYr Field 1 1 ALPHA TVY DeploymentSta tug

77

INTRODUCTION TO FILE CONCEPTS

5lesent Element 3et Input Output

MELOC Field 18 ALPH A TDY Equipment
Location

4 ET. T Field 1 1 COOED Geographic Location
(Lat-Long) of TDY
Equipment

M ETRY Field 1 2 ALPHR CTRYS Country ',ode where
TOY Equipment i5
Located

MEPML Field 1 2 ALPH W CTRYS Geopolitical Area
Code where rDf
Equipment is
Located

M CNA Field 1 15 ALP?. Country Nume fOr
TOY Location

SECLASS Field 2 3 ALPHA ecntidary Equiplel
Classiflcat ion

qEMODEL Field 2 10 ALPHA Seccndary Vquj,mP.nt
model tumber

3N Rr E field 2 18 ALPHA Qcondary r4ipment
Popular .Name

5EPOSSD Field 2 ' 4U~t~ E? NVube, of rquip,-soosv y~ld 2 4 NU RRmenits pos.;e,.Fe4

SEAUTH Field 2UhER Numbet of Euip-
merits Akth~rized

yieLd 3 4 N U14? ItP lan lientif ication
Numbe r

INTRODUCTION TO FILE CONCEPTS

Elvpnt ELement Set Input Output
dL ._ . I. 19s .iL__ W a.M 024_2- R S0_L _IA_ . .---------

PLEAC Field 3 1 ALPHA Plan Status Cod?
for Unit

PLDTG Field 3 10 ALPHA DPGIS DTGOS Date-Tine Unit
Adhered t Plan

PLFST Field 3 1 ALPHA Expected Pin
Status Code

PLFDG Field 3 10 ALPHA DTGIS DTGOS Expect Date-Time
Unit will be
Committed to Plin

PLRT Field 3 6 ALPHA Plan Response Time

PLTRT Field 3 6 ALPHA Transportation
Staging Time

TPTY Field 4 6 ALPHA Treaty Code of Unit
Affiliation

NA47 Field 5 18 ALPHA Senior Officer/PO
Na me

RANK Fl 1d 5 4 ALPHA Senior Officer/PU
Pank

SERNUMV Field 6 ALPHA Serial Number

SERVICE Field 5 1 ALPHA Service Branch Code

ASq;3 riond 5 20 ALPHA Unit Ashignmeut

SPCODE FieLd 5 5 ALPHA Specialty coce

SBUIC Field b 6 ALP'I A Subo[liiate Unit Ur.

79

INTR3DUCTION TO FILE CONCEPTS

Element Element Set Input Output11,1 a -L~e__ _h2L-_ -l~nth M242- 9o2H& Cony.- Remarks

SBFLG Field 6 6 ALPHA Reason for
Subordinate UIC

REFEP Variable Unit Remarks/
Set Comments in

Unformatted Form

4.3 Subroutine/Table 3escription

This subsection describes the conversion subroutines and
tables used by the sample file.

4.3.l Table - RZ MDS

The table RCMDS is usei for input data conversion. It
will accept tp to a 6-character argument and produce a
single character code as a function. The table is used for
converting names of unified/specified commands to single-
chmracter codes. & sample of the table contents follows:

USCG E
USAG J
US C M
JCS U

NOPAD
SAC 8

4.3.2 Table - :ZMD5

The table 992., t umd for output conversion. Tt
icce pte a single-character code represnting a unified/
opecitied commarid and expands it to a name of ty to six

80

INTRODUCTION TO FILE CONCEPTS

characters. The table is used i th the input conversion
table, RCMDS. A sample of the table contents follows:

M MARINE
N NAVY
R RCAF

AN4AC
2 LANT
4 EUC3M
7 STRIKE

4.3.3 Table - CrRYS

The table QZ _ is used for output can version. Zt
dccepts as an argument a 2-character code and expands to a
country or geopolitical area name which may bn up to 15
.hbractrms in length. A sample of the table contents
follows:

AC ATLANTIC DCFAN
AL ALBANI A
AT AUSTRAL IA
BD BERMUDA ISLANDS
C3 CAM B0 D IA
EG EGYPT
GU GUAN

TH THIL A ND
19 LOUISIANA
37 OLA 10 M&
'47 VI HOIN I A

65 PACIFIC ISLANDS

91

INTR:DUTION TO FILE CONCEPTS

4.3.4 Table - ACTVS

The table A Tj_ is used for output conversion. It
accepts a 2-character code and expands it to state a certain
military activity of up to 15 characters. A sample of the
tible contents fallows:

&U1E.. o

AC ACTIVATING
CD CIVIL DISTURB
CO COM BAT
DE DEACTIVATING
Ex E ER/' AN EIIVEP
MA MAI NTENANCE

S? SHOW OP FORCE
SR SEARCH/RESCUlE
TR TRAINING

4.3.5 Table- UNLYS

The table Nj LV_ is used for output conversiorn It
-.:apts up to a 3-character code and expands it to state a

unit's level using up to 15 characters. A sample of the
table contents follows:

ACD ACADEMY
ANX ANN Ex
CO COMPANY
DAY DIV APTILLERY
FLT NUIMBERED FLFET
HQ HEADQ U ARTER S
HSP HOSPITAL
MER MERCHANT SKIP
PLT PLATOON
OCT ROT C)MBAT TFAM

82

INTR3DUCTION TO FILE CONCEPTS

SYD SHIP YARD
TF TASK FORCE
USS us SHIP

4,3,6 Subroutine - 1TWGIS

The subroutine D?.9S is used for input data conversion.
It accepts a 12-character lata item which is a Date-Time
group and converts it to a 10-character form suitable for
sortin; iates in sequence.

The input format to the subroutine is;

DDTrTTrMMMYY

w here
D~D W Day of Month
TTTT z2400 Hour Time
a z Flag indicating Greenwich Time
HMM r Month (Jan, Feb,9 - D ec)
Y Year (65 , 66 -)

The output f~rffit from thp subroutine is:

YYMM DDTTTT

wh are
Yy a Ypir (65, 66 ---
MM W Month Code (Jan-01, Febn02)
DD a Day of Month
TTTT = Irenwich Time.

4.3.7 Subroutine - M~OO%

The subroutine 1)100 is used for output conversion. it
accepts as input the '0-:hir%.-ter Date-Time (;roup produced
by DTGIS and converts it to the 12-character source formt.

INTR3DUCTION TO FILE CONCEPTS

.3. 8 Table - KEYSTOP

Tha table KEYSTOP is used as a ST)PWORD table in
connection with KEYWORD processing of the index file far
TEST360 file. STOPWORD tables are generated and updated by
th? UTMDXKMD utility and contain a list of words that are to
be eliminated from keyword processing. A sample of the
table :-ontents follows:

A
AND
AS
BUT
FOR
THE
THERE
THIS

4.3.9 Table - ACCEPT

The table ACCEPT is jsed as a DICTIONARY table in
connection with Keyword processing of the index file for
TEST363. DICTIONARY tables are generated and updated by the
UT!EDYK4D utility and contain a list of all allowable
keywords that may appear in the index file. A sample of the
table contents follows:

BATTALION
DIVISION
MANUEVERS
STRATEGIC
TRAIVIN3
T RANS PORt
WEAPONS

0

INT93DU: ION TO FILE CONCEPTS

Sect ion 5

GLOSSARY

This section contains a list of terms commonly used with
the NIPS 360 FFS. A brief description is supplied. Most of
tha tarms the user may come across which are related to

S/360 hardware and standari software are not repeated here
since they are adequately discussed in the IBM SHL
publ ications.

Block 1. A physical record (separated from other
ri'cords by inter-record gaps) which
contains multiple, logical data records.
Refer to blocking of records.

2. A group of computer words considered
as i unit by virtue of their being
stored in successive storage locations.

Block Count A field which is the first four characters
(Field) of each block of file records, containing

the number of characters in the block. Dj
not confuse with record character count.

Blocking of The combining of multiple logical records
Re;orls into one block of information on tape to

decrease the time wasted due to accelera-
tion and deceleration of tape and to
conserve space on tape.

Cirule Search A special geographic retrieval operator
which permits selection of file records
by determinLng if a point carried in the
file record falls within a circle speci-
fied an the search criteria.

(componant A major functional unit within NIPS 360 rFS.

85

INTRODUCTION TO FILE CONCEPTS

Control Field Refer to record control field.

Control Group Refer to record control group or record ID.

Data Base The collection of data files (data sets)
used under the system.

Data File Also called FFS data file or formatted
file or file. A collection of data records,
called file records, which can be logici lly
grouped on the basis of subject matter.
Since the organization of the data is
formatted, the file is called a formatted
file.

Data Set NIPS 360 term essentially implying a data
file. Used to describe a collection
of data records, stored in common, and
accessei is an pntity.

Data Razard As a general term, means a gro~up of relat d
fields :f data treated as a unit. Often
used to mean FFS file recard (refer to
file record).

Dizti3nary A user-defined table that consists of all
words (including any synonymns) that are
to qualify as keywords from the associated
indexed field.

FFS Formatted File System.

FFT File Format Table.

Field The smallest define logical unit of data
in a record handled by the FFS
consisting of one or more adjacent characters.

FLiald Nave The synonyn or mnemonic assigned to
-epresent a discrete area (field or group)
in the data record,

86

INTRODUCTION TO FILE CONCEPTS

File Generally a nonspecific term meaning an
organized collection of information directed
tcvard some purpose. However, in this
documentation, file rmans FFS data file,
unless Ptherwise qualified. (Pefer to
data file.)

File F:riat A colleztion of records which completely
TAble describes the format of the FrS data file.

They are generated by the File Structuring
Component. There is one FFT for each data
file.

File ID Name of the FFS data file.

FiLe mnaaonic Same as file ID.

File Record (Also cilled data record.) A group of
relatpd fields of data. The file record
is formatted - that is, each el4uent of
th1e file record has been defined, identified,
and assigned a relative position. Each
file record has a fixed set which contains the
record ID. The file record may also contain
a number of periodic sets and/or variable
sets.

FIT File Information Table.

Flied Field A field defined in the fixed set of a file
record and which must appear once and only
once in the file record.

Fixed Gr)up Wefer to group.

Fixed Set That portion of a file record consisting
of all the fixed fields/groups of the file
r ecor d.

M1 Syste .- ompon!nt -- File Maintmance.

Format A predeterriried arrangement of characters,
Liolds, oL othpr data. A format does not

F37

INTRODUCTION TO FILE CONCEPTS

describo the data, but describes its
organizat ion.

Formated File Refer to data file.

FR System :omponent-- File Revision.

FS System -:omponent -- File Structuring.

Group A callect ion of one or more adjacent fields
of the same type which are related. A
group is capable of being processed or
otherwise minipulated as a unit. The
system may treat a group the same as a
field. The fields within a group in no
way lose t heir individual ident.ties and
way be treated as if they were not grouped.
If fixed fields are grouped, the group is
a fixed group. A periodic qt.up is a
grouping of periodic fields.

Hilh-Order The leftoFt (rost _Significdr.t)
Position position ot a field.

K) P High-O-0er Position.

Index A file field or g-oup that has been specified
as part of the ?ile Indexing capability.
The file is cross-indexed, by Record
ID, op the contents of an index field.
Fixed fields are defined as secondary
indexes, variable fields, variable sets
and fixed-la ngth alpha fields containing
textual data are defined as Keyword Indexes.

Index Data S@t The repository of all information reguired
to support the File Indexing capability.
It contains all secondary ane keyword
indexed fi-plds, all index fields values
(or ke-ywords) and cheir associated
Pecord I Ds.

-. ,,-.>-~- ~- - - -. -

T NTRODUCTION TO FILE CONCEPTS

Input A deck of cards which describes the
Descriptor external format of input data for the

FM comp3nent.

Input File A card or tape file which contains all
or a portion of the data needed by FM
to update i NIPS data file (also known a3
a transaction file).

Input Group All of those input records containing
information to he extracted for the
purposes of creating or updating a single
(the same) file record.

Tnput Group An artifizial control fieid or an actual
Control Field data field (or fields) by which the input

file is sorted or manually arranged prior
to input to the system. This is done so
that all input records belonging to the
same input group (i.e., pertaining to the
same file record) will be grouped together.

Input Record A singl zcard (or tape record) in an input
file.

Tnput Record The code used to distinguish one i.iput
Type C3ia record type from another.

Input Table A user-supplied data conversion/validation
Subroutine table or subroutine utilized to convert

data frpm its external form to an internal
form required by the user.

Ke~yvnrd A value from a keyword indexed field that
has been defined as a qualifyiiiq value for
a specified field in the Index Data set.

Kqyworl Indexing The capability to provide file-indexing on
values (keywords) included in textual data
fields.

Library A partitioned data set used to store programs,
subroutines, tables, RITs, retrievals, and

89

' •: i :i ii: : Ii : i : . :-- - ' = = i i..i

INTR)DUCTION TO FILE CONCEPTS

queries. The term library may also be used to
describe the partitioned data set which is
allocated for the subfile capability.

Loic Statement An execitable load module generated by FM from
user logic specifications to perform the file
update function for one transaction type.

Lojicil Record A collection of data elementE which is
distirrt and coaplete ;%s inter.pueted by
the system. One physical record (block)
may contain many logical records.

LQ? Low-Order Position.

Low-Order The rightmost (least significant)
Pasi ti on position of a field.

Mnemoni= Generally refers to a symbol or name which
stands for An equivalent machine-oriented
value.

node Refers to the method by which data is
stored in a data record (i.e., alphameric,
numeric, or coordinate). Also may identify
the status of an executing component, e.g.,
signon mode, update mode etc.

M33 ula A term used to refer to any mix of
components, sections, phases, routines, or
subroutines.

MultireAl File A file so large as to require more than one
physical rael of tape for storage.

Multivolume File Same as multiveel file except it may pertain

to either tape reels or disk packs.

NIPS NMCS Information Processing System.

3P System 7omponFnt-- Output Processor.

:)S/360 System/360 Operating System.

90

I m

INTRODUCTION TO FILE CONCEPTS

Output Tible/ A user-3upplied data conversion table/
Subroutine subroutine which is used to convert data

from an internal system form to an
external form required by the user.

P3riodic Field A field defined in a periodic set of a
file record, and which may appear more thin
once in a file record.

P.riodic Group Refer to group. One or more contiguous
fields 3f the same periodic subset,
handled as one logical entity.

Paeriodic Set A collection of periodic subsets having
the same format.

Phase A collection of routines and/or subroutines
which are treated tugether as a module
loaded in core together (also may be
referred to as an overlay).

Polygon overlap A speciul geographic retrieval operator
which permits selection of file records on
such criteria as a point falling within an
area, two areas overlapping, a line
interse:ting another line, etc. See PASP
Users Manual.

PSS Periodi:- subset sequence number.

QDF Qualifying Data File - An output of RASP;
this data set, together with the QRT
performs the function of providing an
Answer" file. See RASP Users Manual.

QUIP System component -- Quick Inquiry Processor.

QR7 Qualifying Record Table - See QDF.

RASP System component -- Retrieval and Sort Procestuz.

91

INTR)DUCTION TO FILE CONCEPTS

Ra:orl Cftaracter A field which is tha first two characters
Count (Field) of every logical record. It contains the

count of characters in the logical record.

R :ori C:ntrol Refer to Record ID.

R-.ori ID (also The initial data field(s) of the fixed set
called Record which make each file record in a file
Control Group or unique, and are used to identify the file
RPeori Kay) record. The file records in a file are

sequenced according to the contents of
their record control group or record ID.

PIT Report Enstruction Table generated by
OP to direct output format.

Routime A logical collection of subroutines and
instructions, and is a logical portion of
a phase.

Sa;:oniary The capability to provide file-indexing
Indexing on values contained in fields other than

Record ID's used to speed up the retrieval
process.

Sa:Ztion A named phase(s) for a component.

Section/Phase When there are no phases within a section,
the section, a single operation, is termed
a section/phase.

sat A collection of fields and groups of the
same type.

SODA System component -- Source Data Automation.

Stop W:cr Table A user-defined table for the Keywcrd Indexing
capability that consists of values that are
to bc eliminated from consideration as keyworls.

92

-NTPODUCTION TO FILE CONCEPTS

Su fil A file dhich is a member 3f the subfile partitione
data set and consists of selected entries
from a data file.

Soroutiae A collertion of machine instructions per-
formi a simple, single logical function,
and is a logical portion of a routine.

Subset A periodic subset. A segment of recurring
information, composed of periodic fields.

Tible A collection of argument-function pairs

organized for efficient searching.

TP System component -- Terminal Processing.

Transxztion An input record to the FM or SODA components
which contains data file update information.

Variable Field Each set in a recorid format may have one
variable fieli defined. When defined it
carries no size specification and may be
used to store unformatted data of variable
lengths.

VSC T L Variable set control field.

VSET Variable sat - I segment :f variable lengLh
recurring information.

93

INTRODUCTION TO FILE CONCEPTS

Appendix A

PHYSICAL D3SCRIPTION OF THE NIPS 360 FF, DATA
FILE AND FILE FORMAT TABLE

The material contained in this appendi x is quit-
tzhviza] and should not generally be needed by the average
user of the NIPS 360 FFS. However, it is presented here for
thosP usrs who are interested in the actual manner in whizh
data is referenced and storel in a file. In addition it
Will Aid users who, having dumped the file in image form,
desire to locate specific items of information.

Th-2 NIPS 360 FFS data fil_ and its associated File
Forzat Table are stored as a DATA SE'.. The term data set is
t!he :S/360 terminology uses to refer to a logical collection
of data which is accessible to the system through a unique
name.

A.1 Data Set Organization

Th3 NIPS 360 FFS data set is built and maintained using
the OS/360 Indexed Segue ntial Access Method or the
sequential Access Method. Logical records in the data set
ar.? variable length and may be up to 1,000 bytes in length.
These logical records are blocked into physical records
whi:h have a standard or default maximum size of 1,004 bytes
or a larger user specified size. when the data set is
in ixed, each logical record has - key field useO to
uniquely identify the record, The generalized format of 3
logical record in the data set is as shown:

-- [-I------

A - Four bytes used for OS control; contains length
of record.

94

INTRODUCrION TO FILE CONCEPTS

B - One byte used as a flag to contain a delete code
when the record is to be removed from the data
kndexed set.

C - This field is the rncord key containing data to
uniquely identify the logical record in the data
set.

D - This portion of the logical record contains the
actual data.

The data set contains several categories of informatior.
in its logical records. The primary purpose of the data set
is to contain the user's dita file which requires the bulk
of the space used. A13o contained in the data set is
supporting information consisting of the FFT and the FM
logic statements used during file maintenance. Discussion
in this appendix is limitel to describing the format and
orgnization of the PFT and data file.

The first character in the record key of each logical
record in the data set is used as a code indicating the type
of inforiation carried. Being first in the key, it is also
used to cause the data set to be sequenced in ascending
orli.r based on record types. The general order of record
types is as follows:

a. File Format Table records

b. FM Logic Statement records

c. The Statistics Record for ISM data files

d. Segment Records ior Segmented ShM data files

e. User's Data Pile Records

The :baracter codes used are as follows:

B - Classification Record FFT

95

__ - -~ - - -~ ~ - 777

INTRODUCTION TO FILE CONCEPTS

Z - Data File Control Record FFT

D - Data File Tndex Descriptor Record FFT

E - Non-NIPS Format/ID Record FFT

F - Element Focmat Records FFT

L&M - FM Logic Statement Records

N - 3tatistics Record

P - Segment Re:ors

F - User's Data File Records

A.2 Data FileL Records

Tha format and organization of records making up the
diti file are discussed in this section.

Each user data record will coiisist of one or more
logical records in the 0S/360 data st. There will be a
lolical record for each fited set and each subset in a
periodic set of the user data record. The major key field
for all logical records related as a single user data record
will be the same and will contain the record control group.
How.?ver, the mino) key fields will differ based on set type
and subset number. Within the data base records, the
storaga af information will be in two types of rotation.
For alphameric fields, the information will be stored as
EBCDIL character3 (i.e., one byte for each character). The
numeric fields will be stored as binary words (i.e., four
bytas used in binaLy notation). During FS, the location of
bini ry fields within thM logical data record wil be
controlled so as to conform to hondar y ali'qnuent
requirements when the data record is brought into internil
memory.

Whya the FS c~mponent is exec'ited, the foLaet for the
logical records is created. All user-defined record
elements for the fixed set will define a format o a

96

NTRoDIicrroN To F I LF C(N C ETP

logical record used to contain the fixed set. All. user-
defined record elements for a periodic set will define a
torma t ta be used with each logical record which contains a
subset of data and so forth. In addition to user-defined
elements of a logical record, some elements are
automatically generated by the FS component and given
sp cial names. They are used for system control. Fach
distinct element in a logicAl record (user and system
Ie-ineli has a corresponding logical record in the FFT which
contains information completely describing the attributes of
the_ element. rhe element name is used in the key of such
recor ds.

The maximum size of the user-defined fields in a set can
be .alculated by knowing the size of the record key and
system overhead fields. An FFS set (logical record)
consists :f a maximum of 1000 characters. These 1000
characters are split among the record key, system overhead
fields, and user-defined fields.

The record key contains a minimum of 15 bytes and

consists of the following:

o One byte for record type field

o 3ne byte for set rP field

o User defined major control field

o User or system defined set control field.

The size of the record control field will be larger if the
major Record ID field is greater than seven bytes or the
periodiz sets have user-defined control fields greater thin
four bytes.

The system overhead field consists of a maximum of 15

bytes:

o Four bytes for record size field

o One byte for deletion code field

97

TNTPODUCTION TO FILE CONCFPTS

o Maximum of three bytes for full w:rd alignment
prior to the binary block and at the eid of the
record

o Four bytes for size of variable field.

The maximum number of user-defined characters in user-
lefined fields can be determined by summing bytes in the
r_: ord 73ntrol field and system overhead field a rid
subtracting this total from 1000. Whenever the sum of the
thrae rategories - record control, system overhead, user-
defined - exceeds 1000, FS wii1 issue an error ressage.

The remainder of this appendix illustrates the typical
format for data file records when they reside in the data
set. All elements which would be generated are shown.

E:a ?n ts which were dirertly defined by the user with
source statements using the FS component are flagged with
the character "S" (see format which follows) to represent
the generalized case. Some of the system generated elements
have names which start with the character ",". This is used
to represent a byte containing all zero bits. When the
format for a user's Jiefined set is translated into the
format fgr a logical record, all numeric fields (binary
words) are blocked together. This is t ease the
requirements for binary field boundary alignment when the
logical record is resident in core. That is, data can he
work d using machine instructions directly. To accomplish
this, whenever the logical recoru is read into core memory,
tha record is started on a fullword boundary address. Then,
if it is necessary, slack bytes are generated by FS between
the key and the block of binary words in the logical record
to force the binary block to begin on a fullword boundary in
core.

When FS detines the format for a logical record, any
nealed slack bytes are accounted for in the record
description.

48

IN!TRODUCTION TO FILE CONCIPTS

p j~O (S s S s ssZ

(134) (5(1)(17)

Record KeyI Feinary Field-Ilck

Block

- Ke~~~] (15) (16) (17)

I-R ecordKe-

99

INTRODUCTION TO FILE CONCEPTS

(11 Record Size Field
Length - Four bytes
Contents - First two bytes are used as a binary

halfuord to indicate logical record
length. The last two bytes are reserved
for OS use.

(2) Deletion Code Field
Length - One byte
Contents - Field is set to all binary Is by the

system if the record is to be deleted
from the data set under the control of
the I/O Supervisor. Otherwise contents
are immaterial. Not accessible by user.

Tht following items (3) through (6) are treated together
as the key to the logical record and contents are unique in
the data sot.

(3) Record rype Pield
Length - One byte
Contents - The character "R" to distinguish data

records within the data set. System
generated name for this field is +FIL.

(4) Record Control Field
Length - Variable
Contents - Contains the data record control group

which logically ties all logical
records together in the data set
which are related to each other (i.e.,
the fixed set with all its associated
periodic subsets). This field size is
specified by the user for a particular
data set. If the contents for a
pirticular data record are shorter
than the field itself, the contents
are left-justified. The system generated
name fcr this field is +RCN.

(5) Set ID Field
Length - One byte

100

INTRODUCTION TO FILE COXCEPTS

Contents - Uses binary no'ation to identify whether
the logical record is fired or
periodic in use. If periodic, it will
identify which set it belongs to. The
scheme used for identification is -

MP P - Fixed Set
0V0V9V1 - 1st Periodic Set

IIIIi1 - 255th Periodic Set

The system generated name for
this field is *PCM.

(6) Sebset =ontrol Field
Leaqt h - Plinimum of four bytes
Contents - When a periodic set does not have a

secondary ID specified, these four
bytes are used as a number (unsigned
zoned EBCDIC) for assigning sequence
numbers to the subsets.

When a periodic set has a tield(s)
specified as a subset control group,
the field(s) will appear in the access
key and the key field length will be
adjusted to accommodate it. When a
periodic set has a control field
defined which is greater than four
bytes, then the length of this key
field is enlarged to accept the
control data, and this new size will
appear for all periodic sets.
Periodic sets which have no contrnl
field will have their sequence
numbers left-justified in the field.
Fixed sets will have binary zeros
in this field. If necessary, any
padding to the right of the decimal
sequence number will be with binary
zeros.

101

INTRODUICTION TO FILE CONCEPTS

1he sy stema-generated names for
this field are PS32 (n) and ,SC (b)
when no subset control group is
defined for the periodic set. If
a subset control group is defined,
the only system-generated name is
*SC(b).

(Nota (b) stands for a byte using
binary notation to express the set
rmu ber.)

(7) Length of Binary Data Block
Lemgth - One byte
Contents - 4uuber of fall vo.ds making up the

binary data block in the data record
(field 9 and 10) expressed in binary.
System-generated rame for this field
is +BSZ.

(8) Logical Record Pa5ding
Leagth - Variable number of bytes.
Contents - Binary zeros for the number of bytes

necessary for field nine to begin on
a fallword boundary in core memory.

(9) Size of Variable Field
Length - Four bytes (binary fullword).
Contents - Size of variable field if 'xisting.

Otherwise all binary zeros. The
systea generated name for this field
is VSZ(n). The system name VSCTL may
also reference this field. It is
the tirst variable set created.

(10) User-Defined Numeric I ds
Length - Each is four bytes (binary fullvord)
Contents- User-supplied numeric data.

(il1 User-Defined Alphameric Fields and Groups
Length -vriable length using EBCDIC characters.
Contents- User-supplied alphameric data.

102

INTRODUCTION TO FILE COYCEPTS

(12) Variable Fields (fixed or periodic set)
Length - Variable length using EBCDIC characters.
Coitents - User-supplied alphameric data.

(13) Variable Field (Defined Variable Sets
Length - Variable as specified on the VSET

source language statement in PS.
Contents - User-supplied alphameric data.

(14) The first byte of the data record will be on fullword
boun dary alignment.

(15) The first byte of the binary word block of a data cecorl
is adjusted by the padding of field (8) so as to be on
fullword boundary alignment.

(16) The low-order byte of the rightmost binary fuallvord is
addressed by entry number (16) in the control record
for a fixed set and by entry number (19) in the control
record for a periodic set.

(171 The first byte of a variable field is referenced by the
appropriate user-assigned name as found in the element
format record.

The following discussion definas in greater detail the
operation of the system-generated fields PSSQ(n) and +SC(b).

The inor sort field of the key for a logical record is
defined as the Subset Control Field. For data files defined
with periodic sets in which no subset control groups were
raguiriS (data dependent), thib subset control field will be
four bytes in length. Two system-generated field names
(+SC b and PSSQn) will reference this field. Its contents
will be decimal numbers used for subset sequencing.

For a data file having mixed periodic sets (i.e.,
periodic sets without control groups and some with control
groups), the foll-ving conventions apply. I PSSQ(n) field
name will be generated only for those sets which have no
zontro group and reference is made to the first four high-
order bytes of the subset control field. A +*C(b) field

103

INTRODUCTION TO FILE COICEPTS

name will be generated for all periodic sets and viii
reference only the significint lata contained ia the subset
control field.

An example fL, discussion above, consider the case when
a data file has three periodic sets defined. r? of these
periodiz sets have subset control goups which differ in
length. In the following format, each character represents
1 b yte.

104

INTRODUCTION TO FILE CONCEPTS

Record Key gib It...=U4 - ---------- -f
FIXED SET -------fP

A - Record ID Value

B - Bight binary zeros indicating fixel sat

C - All. 10 bytes have binary zeros

PERIODIC = ---- -J
SET I A l C C CCC .g

(10-characters
periodic
:oatroL group) A - Record ID value

B - Binary content of byte is 0PPDfifiiAgl
indicating 1st periodic set.

C - Contains periodic control value.
The system generates the field
name +SC(b) for this 10-byte field.
Ob" has the binary value 90VM9P1l.

P:.IoD I . ..

(5-character
periodic A - Record ID value
ontrot group)

B - Binary content of byte is 01D00010
indicating second periodic set.

C - contains periodic control value.
The system generates the field
name +SC(b) for this 5-byte
field. "b" has the value 9799'F10.

D - Remaining five bytes are padded
with binary zeros.

105

INTRODUCTION TO FILE CONCEPTS

Record lay

PER IODIC .
SET 3 LA D J _ D DD----_.--.

(No periodiccont rol group)

A - Record ID value

- - Binary content of byte is 'MVll
indicating third periodic set.

C - Contains the subset sequence number.
The system generates the field name
+SC(b) and PSS23 for this 4-byte
field. 'b' has the value 0P000S11.

D - Remaining six bytes are padded with
binary zeros. Note that the length
of the subset control field in the
access key for the entire data file
is dependent upon the largest
periodic control group defined.
All other sets have their values left
justified. Also the names +RCN and
*SC(b) are generated by the system
even though the user-supplied names
for the sane fields.

The f~llowing conventions concerning group definitions
during FS are used:

- An alphameric group containing all alphameric field6
will have all fields in IBCDIC character notation
(mode code "A").

- An alphameric group containing one or more numeric
fields will have these numeric fields generated in
zoned EBCDIC deimal notation (mode code D").

106

V

INTRODUCTION TO FILE CONCEPTS

- A numeric group containing all numeric fields will
have all fields generated in zoned EBCDIC decimal
notatibn (mode code "D"I.

- k numeric group containing both alphameric and
numeric fields will not be allowed.

- Numeric fields or groups may not be used as recocd
control or subset control groups. Only EBCDIC
characters may be used in the access key.

- A coordinate group contains fields in the binary
block of the logical records. Each field is a
binary vord capable of containing either a latitude
or longitude value.

A.3 rile Format Table Records

ThLs subsection discusses in sequence the types
re:ords found in the FFT portion of the data set.

A.3.1 Classification Record

There is one classificmtion record in the OS/360 data
set. It appears first, and its purpose is to carry the
user-supplied classification label defined when Pile
Structurtng was rur. The format for the classification
record is:

(A) Record size field - contains Z'10 ' (for files
structured under 360 NIPS), or X'1039 (for files
converted from 1410 to 360 NIPS)

(B) Reserved for OS

(Q Delete c~de field - contains Z'V0

107

INTRODUCTION TO FILE CONCEPTS

(D) Record type field - contains C'BI

(E) Classificatioa - contains classification literal
left-justified iii a. 32-byte field. Any padding to
right will be with blanks.

(P Date/Time of last update - contains date/tine of
last F or SODK update of the file.
Format: YYDDDHH8RSS (year, day, hour, minute, second)

(r4 Number -f fields indexed - two bytes b1nary

(14) Number zf SUB/TAB entries in all Index Descriptoi
R ecords

(I Slack bytes to bring record to a size greater than
a maximum key.

A.3.2 Data File Control Record

The data file Control Record (s) ppear sequentially
following the Classification Record. ..s purpose '.s
supply information to the using FFS component on t.
orlavizatkon and forzat of the element format records. In

a setan, it provides the bootstrap information needed for a
component to interpret correctly the elemiavt format records.
In aliition it supplies basic information on the
organization of the resident data file.

The format of the 4ata file control Record and
iaszripti£n of its contents follow:

3roup Repeats for each periodic set

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (.,.4) (15) (16) (,]71..... .. .rL-- E:............II I -H
(I1 Record Size Field

Ligth - Four bytes

Contents - First two bytes are a binary halfword

108

INTRODUCTION TO FILE CONCEPTS

used to specify record length. The
list two are reserved for OS use.

(2) Deletion Code Field
Length - One byte
Contents - All binary is set by system if record

is to deleted from the data set.
Otherwise contents are immaterial.
Not accessible by user.

(3) Record Type Field
Length - One byte EBCDIC
Contents - The character 'CO.

(4) Control Record Key Padding
Length - 254 bytes
Contents - Binary zeros throughout all bytes.

Used to force the fixed information
carried in the control record beyond
the largest access key that may be
defined. Vill contain a 1C' iu high-
order byte in continuation racords,
followed by headecimal blanks
throughout the remainder of the field.

Note: The access h *y for the control record is made up of
field (3) and all or part of field (4) depending on the
lenjtb required for the data file.

(5) High-order Position of Record control Group in the
Record Fey of user data records (logical).

Length - Binary halfvord
Contents - Location is relative to the high-order

byte of the record size field which
is based at vero. Data content
of this f 1 eld in continuation
records is not significant.

(6) Length of Record Control. Group
Length - Binary halfword
Contents - Size of record control group. Data

content of this field in continuation
record is not significant.

109

INTRODUCTION TO FILE CONCEPTS

(7) High-Order Position of Set ID Fiel4 in the Record of User
Data Records (Logical Key

Length - Hinary hal-ford
Contents - Location srecificatlon saxe as (5).

Data content of this field in con-
tinuation record is not significant.

(81 Length of Set ID Field
Length - Binary halfword
Contents- Size of field (I byte).

Data content of this field in con-
tinuation record is not significant.

(9) High-Order Position of Subset Control Group in the
Record Key of User Data Record (Logical)

Length - Bir.-7y haltword
Contents - Location .pecification same as (5)

Dita content of this field in con-
tinuation record is not significant.

(15) Length of subset Control Group
Lemgth - Biniry halfword
Contents - If no periodic set control group for

the data file has been defined, the
size will be four bytes, otherwise
the size of the largest periodic set
control group specified will be used.
Dita content of this field in con-
tinuation record is not significant.

(11) wueber of Periodic Sets
Length - Binary halfword
Coatents - The number of periodic sets defined

for the data file up to 179. If
more than 179 periodic sets were
defined, the number in excess of
179 will appear in this field in
the continuation record. If no
periodic sets were def d, this

field will cont in binri.j zeros.

110

INTR3DUCTION TO FILE CONCEPTS

(12) High-order Position of Significant Data in the Element
Format Records

Length - one byte using binary notation
Contents - Provides the relative high-order

position of data contained in the
element format records. The first
byte of the element format record is
considered at a zero location. This
field is used because there may be
byte padding between the last character
of the access key and the first byte
of data contained in the element
format record. This will allow half
boundary alignment for the binary
entries in those records.

(13) Dummy Entry
Length - Three bytes
Contents - High-order byte contains a 'C' if a

continuation record follows. Dati
content of this field in con-
tinuation record is not siginificant.

(i4 Length of rixed Set Logical Record
Length - One byte using binary notation
Contents - Size in fullwords includes record

size field, deletion code field,
access key, and all defined fixed
length fields. In addition, it may
include some padding (binary zeros)
at end of set so that the entire
logical record will conform to fQll
word boundary alignment. Data content
of this field in continuation record
is not significant.

(15) Number of Binary Words in the Fixed Set Logical Record
Length - Ooe byte using binary notation.
Contents - Number of fullwords in the block of

binary words which are contained in the
fixed set. Data content of this field in
continuation record is not significant.

111

INTRODUCTION TO FILE CONCEPTS

(16) Low-Order Position of Binary Block in Fixed Set (los-order
byte) L.gical Record

Length - Binary halfword
Contents - Location relative to the first byte

of the record size field which is

b~snd it zero. Data content of this field
iL continuation record is not significant.

Note: The following fields in the control record are optional.

(17) Length of First Periodic Set Logical Record
Length - one byte using binary notation
Contents - Size in fullwords as was specified

for field (14) above.

(13) lumber of Binary fords in First Periodic Set Logical
. ecord

Leagth - One byte
Contents - Number of fullwords ia the block 3f

binary words which are contained in
the first periodic set. Binary
notation is used in this field.

(19) Low-Order Position of Binary Block in the First
Periodic Set Logical Record

Leagth - Binary halfword
Contents - Position specified same way as for

field (16) above

Note: rh% fields (17), (18), and (19) will be repeated as i
group to define each periodic set, up to a maximus of 179
sets. A contiauation record will be generated to 255.
Contents of fields (17), (18), and (191 in the continuation
ra :rd is as stated for the control record. See paragraph
A.3.5, Continuation Techniques, in this appendix. While
reading this appendix, it may be best to study the data
record format for logical records contained in paragraph A.2
of this appendix.

112

I
INTR3DU:TIOE TO FILE CONCEPTS

A.3.3 Index Descriptor Record

Ea=a field or group in the user's data file which his
beens specified as an index has a special record in the data
set signifying this fact as 'ell as containing certain field
location and attribute information. These records are known
as Iniatx Descriptor Records. Each is a logical record
containing in its key field the field or group name which
has been indexed. The records are generated along with
other FFT records during an FS run, or they are inserted
into ark existing FFT during an Index Specification run. rn
addition to information supplied by the user on Index
Sps=ifization statements, elements from the corresponding
"F" (Element Format) records for that field or group are
prtsent in the record.

The remainder of this section illustrates the format and
contents of the Indpx Descriptor Record.

I 2 r i r..rL4_r k L0 1TIrja .i__ A 4147 ..8.

(11 Record Size Field
Length - Four bytes
Contents - First two bytk-s make up a binary half-

word providint the size of the logical
record. The last two bytes are reserved
for OS use.

(2) Deletion Code Field
Length - One byte
Contents - All binary I's set by system if the

record is to be deleted from the data
set by the I/O supervisor. Otherwise,
contents are immterial.

(31 Record Type Field
Length - One byte EBCDIC.
:ontents - The chiricte- ODI.

(I) Field or Group Name
Length - Variable number of EBCDIC characters.

113

INTR3DUCTION TO FILE CONCEPTS

Contents - Data record elemt name.

(5)~~ Piing
Length v Variable number of bytes required toensure that fields 4 and 5 fill spaceequal to that of the record key for the

f le.Coatents - Binary zeros throughout -.11 bytes.
(6) Boundary Alignment Byte

Length - One byte, if necessary.Content3 - This i a slack byte which will appearit necessary to force all followinqfields to observe halfword boundary
a lignme nt.

(71 S t rdenti ficat ion
Length - One byte in binary notationContents - 00000000 - Fixed Set

00000001 Periodic Set I
00000010 - Periodic Set 2
Etc.

(8) Type Identification
Length - One byte using binary notation.Contents - The content and format of this byte areidentical to the Element Type Identifi-cation detscribed as element #9 underSection A.3.4, Element Format Records.

(9) High-Order Location of Element in Pecord
Length - Four NBCDIC bytes.Contents - The high-order location of the specifiedelement relative to beginning of record

(based at zero).

(10) Length of Element in Logical Record
Length - Three EBCDIC bytes.Contents - ?he content and format of this element

are identical to the Length of Plemeant inLogical Record described as element Vilunder Se:tion .3.4, Blemevat ?:rmatBecords. The low-order bit (bit 7) will

INTPODUCTION TO FILE CONCEPTS

be set to I for a keyword indexed field.

NOTE: No field longer than 30 bytes
may be specified as an index. There is
no maximum length for a keyword indexed
field, however, there is a maximum length
of 30 for any deignated keyword value
within the field.

(111 Element Mode in the Logic Record
Length - One IBCDIC byte.
Contents - AnAlplaseric, NaNueric, C-Coordinate

or D=Decinal are the acceptable nodes.

(12) Input Subroutine Conversion or Stop vord Table Wane
Length - Eight bytes EBCDIC.
Contents - Subroutine name left justified. Blank

if no converion on input. Asterisk IS)
left justified if element is coordina e
mode and has external length of 5, 6, 7,
8, 11, or 15. This automatically invokes
a standard system conversion subroutine.
This r:utine is specified during File
Structuring not Index Specification.
For a keyword index, this field
contains the nam of the stop
work table, if one were designated,
otherwise, the field is blank.

(131 FLL Form t Index Forn Subroutine Name
Length - Eight bytes EBCDIC
Contents - Subroutine name left justified.

For a secondary index, the name
specifies a c onversion subroutine.
For a keyword index, the name indicates
the diztionary. The field is blank
if a subroutine or table is not
designited. The function is defined.
on a SUB/TAB statement during
Index Specification. Refer to the
RASP canual (Volume IV) for a discLssion
of this function.

115

INTRODUCTION TO FILE CONCEPTS

(141 Analyzer/Scan Subroutine Name
Length - Eight bytes EBCDIC
Contents - Subroutine name left justified. For

a secondary index, it designates the
name of an analysis subroutine. For
a keyword index, it designates the
name of the user scan subroutine. The
field is blank when a subroutine is
not specified.

j151 L-ngth of Element as Carried in the Index Data Set/Hyphen
Opt ion

Length - One byte binary

Content3 - Lenqth minus I (e.g., a true length of 1
becomes 0 unler this concept) of the data
as it is actually carried in the Index
Data Set. The element length has no
meaning for variable length keyword
data in the index data set. Theretore,
for keyweord indexes, this byte will
specify the option indicating how a
hyphen is to be treated when found
within the data field of a transaction
rec ord.

(161 Resarved Byte
Length - One byte binary.
Contents - Zero.

(171 Role of Element in Index Data Set FormAt
Length - One byte EBCDIC.
:ontents - Same as for (11) above, but this entry

refers to the data format of the Index
Data Sat.

A. 3. 1 Element Format Fecords

Every element in a usec's data record has a special
re ord in the data set defining its location and attributes.
These records are known as Element Format Records. Each is
! logiaI record containing in its key field tho name of the
element that it describes. The rocords are geneLated along

116

INTRODUCTION TO FILE CONCEPTS

with the classification and con tro]. records by the FS
component. In addition to user-defined record elements
(from File Structuring source statements) additional
elements appear in the logical record format as illustrated
in section k.2. These elements are generated automatically

during structuring for internal control purposes. They have
spa:ial names and their own corresponding Element Format
Records. The system-generated elements and their purposes
are listed below:

a. +FIL This element contains the first character in
the logical record key which contains OR."
This character is common to all data records
and is used to batch all data records as a
block within the OS/360 data set.

h. *RCN This element contains the total record control

group as found in the logical record key.

c. +PC$ This element contains the set ID field in
the key of the logical record.

d. +SC (b) This element redefines the subset control
group in the key for a specific subset lagical
record. The fourth byte in the name(b) will
use bim ry notation to reference a specific
set; for example:

VVQVVJ?- Fixed S*O:
j79qVql - 1st Periodic Set
0qMl97 - 2nd Periodic Set

e. +BSZ This element will occur immediately after the
key in a logical record (I byte in length) and
will specify, via binary notation, the number

of binary fullwords within the logical record's
binary data block.

f. PSSQ(n) This element definition is generated only for
those periodic sets which have not been definal
by the user to have a subset control field

(based on a data value). It identifies a 4-
byte field in the key of a logical record used

117

INTRODUCTIOP TO FILE COMCETS

for subset sequencing within a periodic set.
The term (n) repressents a one-to-three EBCDIC
character suffix used for periodic set identi-
fication; for example:

PSSQ25 will reference the subset
seluepce field for a logical record
oL Periodic Set 25.

. VSZ(n) This element is the first binary worl in the
binary data block of a logical record (fixed
set or periodic subset) . This binary word
will indicate the number of characters currently
contained in the logical record's variable
field. The characters indicated by (n) will
refer to the periodic set involved and are
stated ,sing EBCDIC numbers. For example:

VSZ - Fixed Set
VSZI5 - 15th Periodic Set

If there is no variable field for a logical
record, this field (four bytes) will contain
binary zeros.

h. ISCTL This element is a redefinition of VSZ(n)
element for the logical record containing
the first defined variable set.

Wot . The system-generated fields (a) through (e)
may only be used internally by the FS component.
No analyst/user say communicate to component using
thesa names. In contrast, the field names PSSQ (n),
VSZ(n) and ISZTL ay be used by the analyst as a
method of controlling this particular run. The
use of the character () in the above names means
a byte consisting of binary zeros. For a complete
unlarstanding of the use of the generated field
names, it may be best to refer to the description
:f the data record found in section 2.

i 118

INTRODUCTION TO FILE CONCEPTS

The remainder of this se!tion illustrates the format and
contents of the Element Format Record.

Repeated Zr'up Possible

(3)

(1) Record size Field
Length - Four bytes
Contents - First two bytes make up a binary

ha lfvorl providing the size of the
logical record. The last two bytes
are reserved for OS use.

(2 Deletion Code Field
Length - One byte
Contents - All binary ls set by system if the

record is to be delated from the data
et by the I/O Supervisor. Otherwise
contents are immaterial.

(3) Record Key
Length - Variable EBCDIC characters. Length

is standard for entire data set and
is Ispendent on the user specifica-
tions concerning the size of the
record -ontrol group and the p~r 4rodic
control group (if defined).

Contents - See (4) and (5).

(4) Record Type Field
Leigth - One-byte EBCDIC
Contents - The character "F." This code defines

the logical record and an Element
Format Record.

(5) Element Name
Length - Variable length EBCDIC character.,

119

IMTRZ'DUCTION TO FILE CONCEPTS

Contents - Dati record element name left
justified within this portion of the
access key. If the element name is
less than seven characters,
it is padded to the right with blanks
until a total size of seven is reaLed.
After that, any remaining key padding
is ione with zero bits. See Continua-
tion Record Techniques at end of
section for modifications on continua-
tion records.

(6) Boundary Alignmut Byte
Length - One byte if necessary
Contents - This is a slack byte which may appear

in the Element Format Record. This
is used as padding to force all follow-
ing fields in the record to observe
halfword boundary alignment. Entry
12 of the control recrd is used to
point to the location immediately
following this byte iadicating the
start of record data. (High-order
address of entry 'i.)

(7t Dummy Parameter
L~agth - Your bytes
Contents - WUll characters normally.

C~ntains 1C in high-order byte in
continuatio records.

(8) Element Set Identification
Length - One byte in binary notation
Contents - AD0000 - Fixed set

0#00117 - Periodic Set 1
fi000l - Periodic Set 2
Et c.
Not used in continuation records.

(9) Element Type Identification
Length - One byte using binary notation
Contents - The element definition is accomplishe4

by the premence of bits in certain

120

ENTRODUCrION TO FILE CONCEPTS

locations of the byte. A bit turned
on will contain a "1." A bit turned
off Mill contain a "0." The forlmt
of the byte is as follows:

Bit
Va 1 2 3 4 5 6 7

oN - Field

1 OH - Field or group is used for record or
subset control.

2 ON - System generated field/group

3 ON - Fielid/group may not be used by the
analyst.

4 ON - Fixed Length Field

5 ON - Variable Length Field

6 ON - Variable wt field

7 Always O.

8 1 2 3 4 5 5 7
01 PP1 Po

The file format record describes the user-
defined record control group. The fielA
is not usel in continuation records.

121

,, " .- . . - -- -z ,"- , -" -,-,' ,- T,." ',. .

INTI)DUCTrON TO FILE CONCEPTS

The hex walaes of this byte for all eletent
types are summarized below.

A. System Generated Elements:

*FIL
+RCE I
* PCN
+SC (B)

VSCTL XIA80

PSSQ(n) - I' f8'

+BSZ - II B88

B. User-Defined Elements:

Noa-control fiel - X6880
Von-control group - 14080
Variable set name - X'82
Varisble field - X484
Control field - X'C8
Control group - 1*48

(10) High-order Location of Element in Logical Record
Length - Four bytes using TBCDIC notation
Contents - Location is relative to the high-order

byte of the record size field which
is based at zero. Data content of this
field in a continuation record is not
significant.

(11) Length of Element in Logical Record
Length - Tbree bytes using EBCDIC notation
Contents - (A) Length is specified for the

number of alphameric characters
represented. For alphameric
mode elements (A), this will be
the actual number of bytes
appearing in the data record.
For numeric mode elements (B), a

122

INTR3DUCTION TO FILE CONCEPTS

binary word (4 bytes) will appear
in the logical record regardless
of the length specified. For
decimal node elements (D), this
value will be the actual number
of bytes in the logical record.
See paragraph (12) below for a
discussion on element modes.

(B) If this is a variable field, the
entry will contain the number of
characters per line to be printed
during output.

(C) If this is a variable set field,
the length is as specified in the
VSET FS statement.

(D) Coordinate mode elements are
hindled in a special manner.
The size appearing in (11) depends
on certain circumstances. The
Element Format Records generated
to define coordinate fields/groups
are similar to other user-defined
fields/groups with the follovinq
exceptions noted:

ALL FIELDS defined for coordinate
use and single coordinate groups
(one latitude field and one long-
itude field) will carry the exteraai
decimal length value (i.e., length
as defined by user in the FS field
statement) in the element format
as parameter (11)). All groups
defining more than one coordinate
point will carry the actual internal
length in bytes of the binary
representation of the coordinates
(internally, latitudes and
longitules are each represented
by a fall binary word). For

123

INTRDDUCTION TO FILE CONCEPTS

example, if POINT is defined as
a field of length of 11, represen,-
ing both latitude and longitude,
the length carried in entry 11
of the Element Format Record will
be 11. If POINT is defined as a
group of two fields of length
5 and 6 characters, the length
of the group will be specified
in the Element Format Record as
11 (representing the sum of the
two fields) . If LINE is defined
as a group of two coordinate
fields, each characters long
externally, the length of the
group will be specified in the
Element Format Record as 16
bytes for the four full binary
words representing the coordi-
nates internally.

Three cases aod their handling during FS:

Case I - A user defines a si ngle coordinate field
intending to store both latitude and longitude
values im it. The field will be either 11 or 15
characters in length depending on the precisian
desired.

rhe FS component will cause a single element format
to be built with the name supplied Ly the user.
However, this record will define two adjacent
binary words in the block portion of the logical
record, and will address the high-order byte of the
leftmost word. The length of the coordinate field
will be specified as either 11 or 15 characters as
defined by the analyst in parameter 11 of the
Element FPr3at Record.

Case 2 - A user defines two fields of lepgth 5(7)
and 6(8) characters intending to identify latitude

124

INTRODUCTION TO FILE CONCEPTS

and longitude sepirately. In addition, a group is
defined as containing these two fields.

The FS component will cause two adjacent binary
fields t be generated, with an Elemeit Format
Record for each. The contents of the Element
Format Record describing each field will be as in
case one, except that the field length entry (11)
will describe only the user-specified length for
that lield. The group format record will contain
the sum if the user-specified length of each field
defined in the group.

Case 3 - A user has defined several sets of
coordinates by the method of case one or case two,
as discussed previously. In addition, hs defines
this collection as a group.

In addition to the Element Format Records generated
as in cases one or two, the FS component will
generate a group format record describing this
collection of fields. Parameter 11 in the group
format record will state in bytes the space needed
for binary words. This field is filled with null
characters in continuation records.

(12) Element Mode Specification
Length - one byte using EBCDIC notation
Contents - Aiphameric mode element (A).

wameric mode element (B).
Coordinate mode element (C)
Decimal mode element (D).
(Decimal mode is implicit in File
Structuring and is assigned to
nsmeric fields included in a GROUP
statement.) The data content of this
field in a continuation record is
not significant.

(131 Input Subroutine Conversion Name
Length - Eight bytes EBCDIC
Contents - Subroutine name left justified.

Zero bits if no conversion on input.

125

INTRODUCTION TO FILE CONCEPTS

Asterisk (0) left-justified if element
is coordinate mode and has externil
length of 5, 6, 7, 9, 11, or 15. rhis
invokes automatically a standard
system conversion subroutine.
Data content of this field in a
cortinuati-n record is not significant.

(1-) Output Suhbroutine Conversion Name
Length - tight bytes IeCDIC
Contents - Subroutine name left justified.

Zero bits if no conversion on output.
Asterisk left justified, same as (13).
Data content of this field in a
continuation record is not significant.

(151 High-Order Location of Element Label in this
Format Record.

Length - Biniry halfword
Coatents - L3cation specification same as (10)

if label present.
All zero bits for no label.
Null characters in continuation
reco rds.

(16) Lenqth of Element Label in this Element Format Record
Length - Binary halfuord
Contents -Size if label exists.

All zero bits if no label.
Data content of this field in a
continuation record is not significant.

(17) High-Order Location of Edit Mask this Element Format
Record

Length - Binary halfword
Contents - Location specification same as (8)

if pattern assigned to element
daring File Structuring.
All zero bits if no pattern.
Data content of this field in a
continuation record is not significant.

126

'- Y.... . "--' " . . -"n e -, _ ". . ." - - '- - - -

INTRODUCTION TO FILE CONCEPTS

(13) Length of Edit Mask in this Element Format Record
Length - Binary halfword
Contents - Size iA pattern assigned to element

during File Structuring.
k1l zero bits if no editing is used.
Data content of this field in a
continuation record is not significant.

Note: Vhen edit masks appear in element Format Records,
they are in FPS edit pttern form.

(191 Size of Element on Output
Length - Binary halfword
contents - This field contains the size (in

bytes) for output.
If output conversion is used, the
size of the subroutine output is
provided.
Data content of this field in a
continuation record is not significant.

(231 High-Ordec Location of the String of Field Names in
the Record Making up the Group

Leagth - Binary halfword
Contents - Location specification same as (1D)

if required.
All zero bits are used if entry is
nst a group.
Data content of this field in a continuation
record is not significant.

(21) Number of Fields Making up the Group
Length - Binary halfword
Coatents - Size if requirement exists.

ll zero bits if not required.

All the following entries are optional and are used if required.

(221 Field Label Used for Output
Length - Variable (EBCDIC Character)
Contents - User-assigned label name.

Nit used in continuation records.

127

- , -i...i. . . °
"

.. .,- - - . -

INTRIDUCTION TO PILE COICEPTS

(231 Edit Mask Fattecn
Length - Variable (EBCDYC characters)
Contents - Elit pattern.

Pit ased in continuation records.

(24) Field Name within Group
Length - Eight byters ZBCDIC
Coitents - Field nate left Justified.

(25) Hiqh-Order Location of Field in Logical Record
Length - Four bytes in EBCDIC notation
Co-tents - Ljcation sm-cification same as (10)

(26) Lenjth of Field in Logical Record
Length - Three bytes in EBCDIC natation
Comtents - Length specification siAmo as (11).

(27) Character Set specification
Lez gth - One byte EACDIC
Coatents - A- alphameric field (EBCDIC)

D - decimal field (EBCDIC).

Note: Fields 24-25-26-27 may appear as multiple entries
spacifying from left t: right the fields making up the
group for which the current record is identifying. All
system-generated fields will use entries (1) through
(10) with the exception of RCN and SC(B. which will
list all user-defined fields making up the control group
with Antries (20) , (21) , and (24) through (27).

A.3.5 File Statistics Rpcord

NIPS files that have been generated in ISAM and VSAM
organization will contain a statistical (N) record. It the
file has been generated in ze- quen ti al organization a
stitistLcal record will not exist, however, a statisticil
record will be generated when the sequential file is copied
to ISLN or VSAM organizaticn using the NIP S UTBLDISM
utility. The statistics record is maintained by a NIPS
utlity wmen the file is generated or updated and certain
information concerning lenqths of N IPS records. The
following information is recorded in the "NO recrrd:

128

INTRODUCTION TO FILE CONCEPTS

a. Number of sets described by the ON' record

b. Number of sets in the file

c. Length of the longest subset for each set

A. Raximus number of sabsets for each set.

The remainder of this section illustrates the format aDd
contents of the File Statistics Record.

REPEATED FOR EACH SET

11l Record size tield

Length - our bytes
Contents - First two bytes maxe up binary half-word

providing the size of the logical
record. the next two byte. are not

us ed.

(2) Deletion Code Field
Length - One byte
Coatents - Al I binary lis set by system if the

record is to be deleted from the data
set by the I/D supervisor. Otherwise,
contents are immaterial.

(31 Record type field

Length - One byte
Contents - The chsractar 'N'

(4) Continuation Number
Length - One byte
Contents- First ON' record h'ank. cntinuatiou

record contains a number indicating
order of sequence starting with 1.

(51 Number of Sets Described by 90' Record
Length - One byte

129

• - i i i l | l I 1

INTB)DUCTION TO FILE CONCEPTS

Contents - Number of sets, including the fixed
set described by the 'N' record.

(6) Bighest 'N' Record
Length - Two bytes
Contents - First byte contains an III in EBCDIC.

Second byte contains highest continuatibn
number for 'N' records in this file.

(71 High Orde Position of Significant Data
Length - One byte
Contents - High order position in the *NO record,

of the description of the first set
(f ixei) in the file, (see field 11).

(91 lumber of sets in the file
Length - One byte
Contents - Number of sets in the file.

(131 Reserved by future use
Length - Three bytes
Contents - Binary zeroes.

(11) Length of Longest Set P in the File
Legth - Four bytes
Contents - Contains the total length of all

sabsets for the longest set P for a
single NIPS record in the file.

(121 Maximum Hudber of Subsets
Length - Two bytes
Contents - Contains the maximum number of subsets

for the longest set IL for a single NIPS
record in the file,

Nota: Fields 11 and 12 will repeat once for each set in the
file.

A.3.6 File Segment Record

Sejuential files tbh-t have been segmented contain
segment records (P) that spezify the range of record control
values permitted for a segment and the volume serial number

130

INTRIDUCTION TO FILE CONCEPTS

of the segment. A tile segment may be composed of more than
on3 raule of records. A segment record will be generated
for each range of records in one data set.

The remaindec of this section illustrates the format and
-oatents f the File Segment Record.

1 2T1 7]
(II Record Size Field

Length - Four bytes
Contents - First two bytes sake up a binary half-

word providing the size of the record.
The last two bytes are reserved for OS
use,

(2) Deletion Code Field
Leegth - One byte
Coatents - All binary I's set by OS if the record

is to be deleted.

(31 Becord Type Field
Length - One byte
Contents - The character 'P'

(41 rile Record Control Value (Low Range)
Len gth - Variable; based on major record ID

la ng th.
Coitents - Record control value that is assigned

as the low range limit for data file
records on this segment.

(5) File Record Control Value (High Range)
Longt h - Variable; based on major record ID

length.
Contents - Record control value that is assigned

as the high limit for data file records
on this segment.

131

INTRODUCrION TO FILE CONCEPTS

(6) Volume 5er ial Nuiaer
Length - Six bytes
Coi tents -Volume serial number for data file

where range of records are indicated
in the IP' record.

A. 3.7 Continuation Record Technigues

There are occasions when the data contents of the
control record and group format records may exceed the 1,000
byt3 kojical Lec:rd size allowed in the 0S/360 data set.
This section describes the manner in which the File
structurimg component handles such cases.

A.3.7.L Continuation Records for the FPT Control Record

Because of the logical record length limitations, the
control record is only able to supply information on a
maximum tf 179 peLiodic sets. Since the system has been
designed to handle, theoretizally, up to 255 poriodic sets
for each named data set, it becomes necessary to provide a
continuation record when the number of periodic sets defined
by the user exceeds 179. Uhen such a case occurs, a second
control record will be created to continue the information
on periodic sets (entries 17-18-19).

The primary (first) 7ontrclL re:ord specifies the total
number 4f periodic sets that it defines in entry 11. The
high-order byte of entry 13 contains the character "C"
irlizatLa that a continuation record follows. rhe
sazoadary control record will have the same format as the
primary. However, it will have the character "C" in its key
ibmaliately follawing the record type field (entry 3). the
entries 5-10 and 12-16 are not maintained, but theit length
is the same as in the primiry. Entry 11 contains the number
of peri:1Lc sets defined bf the secondary record. Entries
17, 18, and 19 are used and repeated until all periodic sets
have been accounted for.

132

INTR)DUCTION TO PILE CONCEPTS

A.3.7.2 Continuation Records for Group Format petords

Similar to the problem faced by the control record, the
Element Format Record for a group may experience overflow
cases. This overflow of dats results from the neries of
3ntries which lists each field (group) contained witbin the
defined group. The following table illustrates the number
of fiells that a group format record may define using a
single logical record.

OS Field3 five bytes

FFT Record key from 8 to 255 bytes

HEC3RD Fixed entries 40 bytes
ENTRY
LEIGTHS Field/group label from 0 to 132 bytes

Edit pattern from 0 to 132 bytes

Field length specs
in group format record 16 bytes per field

s. Xa§q case assuming max key, label, and edit length will
allow 27 fields (groups) to be defined as a single
group within a 1,000-byte record.

b. B_. case assuming sin key, and no label or edit pattern,
will allow 59 fields (group4.

c. .UCA. case with key length of 15 bytes, label length of
8 bytes, and edit length of 8 bytes will allow 57
fields (groups).

Whtr a contimuation record is generated, entry 21 in the
primary record will state only the number of fields that it
lists. The high-order byte of entry 7 will contain the
:hractor "CW ti indicate that continuation record(s)
follow. The continuation records will have the same format
as the primary. However entries 8 through 20 will not
cont " valid data and entries 22 and 23 will not appear.
Th. se:,ndary record key will contain the group name, as

133

INTRDDUCTION TO FILE CONCEPTS

usual, but will be suffixed by an eighth byte usiag binary

notation to indicate the number of the continuaticn record.

The first continuatioi recorl would costain "I" in binary

tul so f rtb. Butry 21 in the continuation record will

contain a number indicating how many fields are contained in

the list of entries 24, 25, 26, and 21.

L. 3. on-MIPS rormat/ID Record

When a pseudo-FFT is structured, one or more records are

-rnated which contain the Format/ID table. This table

describes the location of each portion of the user

lasigustel record ID within each record format. The table

is ordered as the different formats were defined in FS.

The format of the uon-NIPS Forsat/ID record aid descriptin

of its c~atents fOllows: ,_.___-__

--- ----------------- ------ JL-

(1) Record Size Field
Length - Four bytes.
Coatents - First two bytes make up a binary

b.tfword providng the size of the

logical recocd. The last two bytes

are reserved for OS use.

(21 Deletiom Code Field
Length - One byte.
Contents - All binary I Is set by system if

the record is to be deleted from

the dtta set by the I/0 supervisor.

Otherwise conteats are immaterial.

1311

INTR3OCTIOH TO FILE CONCEPT

(3) aecord Type Field
Legt h - One byte.
contents - The chractar "E". This code

iientifies the record as a non-NIPS
Format/ID record.

(4) Continuation Indicator Field
Length - One byte.
Contents - Binary zeros for the first "E"

record or the character "C" if the
record is a continuation of a
previous "E" record.

(51 Continuation Sequence Field
Length - One byte.
Contents - A binary sequence number starting

with a binary 1 for thp first
continuation record.

(6) Control Record Key Padding
Length - Six bytes.
Contents - Biniry zoros to insure pr-per

s3rting of the FIT.

Fields 7 through 10 are repeated for each record format
defined in the FIT.

(71 Next Segment Offset
Length - Binary halbord.
Contents - The offset to the next segment of

the "E" record. The offset is
rlatlive to the beginning of the
record. When the offset is all
binary 1's, the next segment is
in a continuation "I" record. when
the offset is all binary zeros, this
is the final segment.

(8) Record rype Code
Length - Variable, maximum of 10 bytes.
Comtents - The record type code used to

uniquely identify the current
record format.

135

iU

INTRDUTION TO FILE CONCRPTS

(9) Alignment Byte
Letgth - One byte, when used.
Contents - Imnterial, usel to force halfvord

alignment for field 10.

(1)) Record I Segment Descriptor
Length - Four bytes.
Contents - This field consists of two halfword

binary fields. The first field
contains the relative high-order
position of the record ID aegment.
The second field contains the
length, in binary, af the record ID
segment. These two fields are
repeated as necessary to describe
each segment of the record ID in the
current record format.

136

INT23DUCTION TO FILE CONCEPTS

Appendix B

DESCRIPTION AND USE OF THE TRANSACTION RECORDS OUTPUT
BY THE FILE ANALYSIS STATISTICS CAPABILITY

The material in this appeniii illustrates the use of the
tnrisa=tions that are outpoit by the File Analysis Statistics
capability. A sample of the two transaction formats are

i: 1ud1. Sample FFT, logic statements, queries, and RITs
are shown illustrating a possible use of the transaction
re- 3r s.

B.1 Sample rransactions from File Analysis Statistics

Transaction Record - UTFLDSCN 50 bytes
1 2 3 4 5

STEST36OFMMTE S TOAW)V&fWS RWYVW0W 0 0000 30 31 7 7 1M0

Column 1 - CHARAC'EP *SO
2-8 - FILE NAME
9-12 - COMPONENT NAME

13-25 - SOURCE MODULE NAME
26-33 - FIELD NAME
34-36 - SET NUMBER, DECIMAL
37-42 - COUNT OF REFERENCES, DECIMAL
43-48 - DATE - MMDDTT
49-50 - UNUSED

Trnsaction Record - Component Execution 50 bytes
1 2 3 4 5

CTEST3 60F RJTESTOJJA M00026 M031771 W])'l)$)g

Column 1 - CHARACTER SC,
2-8 - FILE NAME
9-12 - COMPONENT NAME

13-25 - SOURCE MODULE NAME
26-31 - COUNT OF EXECUTIONS, DECIMAL
35-40 - DATE EXECUTED, MMDDYY
41-50 - UNUSED

137

INTRODUCTION TO FILE CONCEPrS

B.2 File Structure De~k

STRUCTUPE TESTERF.

CLASSIFICATION 'UNCLASSIFIED'

NOTE: rhis data file is the statistics data file for the
TEST3b0 file. The file will utilize the transactions
output by the File Anslysis Statistics capability.

NJTE: Ti followia 9 elements ire used for record control.

EDIT DATE 1 0/k .
EDIT COUNT ' D/5 O0 .
FIELD FILEN 7 C ALPHA 'FILE NAME'.
FIELD COMP 4 C ALPHA 'COMP)NEHT'.
FIELD SOURCE 13 C ALPHA 'COMPONENT SOURCE NAME'.
GROUP RECID FILEN,COMP,SOURCE ALPHA ' RECORD CONTROL'.
FIELD CNTEX 6 X NUIER COUNT 'C3UNT 3F EXECUTIONS'.
FIELD ION 2 X WUMER.
FIELD IDAY 2 1 NUMER.
FIELD IYEAR 2 1 NUMEP.
0HOUP IDATE IMN, IDAY, IYEAR DATE 'INITIAL DATE'.
FIELD LMON 2 1 NOMER.
FIELD LDAY 2 X NUMER.
FIELD LYEAR 2 X NUMER.
GROUP LDATE LMON,LDAY,LYEAR DATE 'LATEST DATE'.

NTE: The following field is used for subset control.

FIELD FLDNAN 8 CL ALPHA 'FIELD NAME'.
FIELD SETN 3 1 ALPHA 'SET NUMBER'.
FIELD CNTBEF 6 1 NU MER COUNT 'COUNT OF REFERENCES'.
FIELD OON 2 1 NaMER.
FIELD UDAY 2 1 1J M ER.
FIELD UTEAR 2 1 NUHE R.
GUOUP UDATE UMON, UDAY,UYEAR DATE 'DATE UTILITY EXEZ'
END.

138

INTRODUCTION TO FILE CONC!PTS

B.3 PM Logic Statements

The following logic stitemcn- 3 ay he used to eithec
gemsrate new records or to update eaistlng recoids on the
statisti-s fila.

B.3. I Transa-tion crl - Compi7neut Execution

Tha 'C' transhction Leu-d genferated by the component
sodificatiins Aill be us-Oe by lhta logic statement to buiii
or qpdita the tzed --set uf thi statistics file. The logic
;t~tement name i. in co]uun nne. k report 'STAT' exists in
thae fil:.

,S P,STLt, C, 50

S CflflVe2 6, 3 1
SDATE, 35, 40

POOL
BNR NEWREC
COA IDA? 9, 1)P
B Q RESET
ADD SCOUVT,CNTEXCNTEJ
MAL S UDT E, LDATE
PHT 'LDATE AND COUbT FIELD UPDATED'
HLr

NEWIZE: SAL 'NEW RECORD GENERATED ',Y1123
MAL $RECID,'d24/47
PHT V1/47

UPDATE SAL SDATE, L DATE
MAL SDPTE,IDATE
M N SCOUNT,CNTEX
HLT

RESET P~r ILDATE ANJD IDATE BLLNKUPDATED'
BRA UPDATE
END

I t3e transactian caumes a new record to be qenerited,
the initial d ate (IDATZ) and the sost recent date (LDATE)

will be set to the date in the transaction S)ATE. The coint
rc axe-utions (CNEX) will be set and the message that a now
record has been generated with the record ID will be printed
or, the &uxiliary output printer.

INTRODUZriCo TO FILE CONCEPTS

if a nov record was not generated, the count of
3 x a: atL:)ns field in the file (CYTEX) will be increaented by
the coant iu the transaction record. The latest date will
he set to the date in the transaction and a sessage will be
printed.

m.3.2 ISO Traasact ion Rozori - UTFLDSCO UtLlity

The ISO transaction record geoner at ed by the UTFLDSCN
utiity will be used to build or update periodic set one of
the statistics tile.

SASP 9 STAT, S,50
SRiECID 1 2, 25,C1, A
$FIELD4, 26. 33,C2 ,L
SS ET NO,3L4, 36
SCHTREF, 37 ,'2
s DAr Z, 43, 4 8

PODL
BNR N EvR EC
PCV $FIFLDN,FLDNAPM,NEWSS
C Oh SO ATE, JDAT F

BEQ DUPF
CLI IDA!F CLEAR FIXED SET FIRLDS
CLR LDkTE
A! W,CHT3[
PRT IIFI SET FIELDS CLEARED1
P R? PERUODIC SET ONE UPDATED@
PFT T2/36
BRA "flU'

DUJPE PRT 4DUPIV1CATE THANSACTIOlI,Ko AC? IoN'
PR? T2/'36

P EUR EC PPT ONEV FIXED SET GENERATED BY S TRANS
NEVSS BSS F L D A.0

mcs SFIELDN,FLDNAM
PR? INSW SUBSET GEWNRATRDI
PIET T2/36

M~OVE AIL SS ErNO. SETO
R NU SC NTREF,CTRZF
MAL SDAr E, UDAT F
END

140

tNTROJUCTION TO FILE CONCEPTS

If this logic statement =auses a new record to be
generated, a messaqe will be printed, the subset will be
built kni the field name will be moved to the subset control
field. The fields in the subset will be filled from the
trinsa=tion record.

If it is not a new record, a check is made for the
existence of a subset containing the same field ,ane. If
tha subset does nut exist, a subset will be built. If it
does exist, a comparison is made between the date in the
sU s e t aid in the transact ion. If it is the same, a
duplicate message is printed and no further action is taken.
If the iates are not the same, the fields in the fixed set
are cleared and the fields in the periodic set will be
updated with the fields in the transaction record.

B.4 RASP Query

Th- Eollowing sample q-iery will retrieve recoras from
the statistics file.

TITLE STAT/01.
FILE TEsrEFF.
IF COMP EQ FM AND CNTEX NE 0.
SOFT SOURCE.

This query will retrieve all FM logic statements that
hiv. hai both 'C* and 'S' transactions entered. If no
executions have been set in the record, the record will be
omit ted.

B,5 OP RIT

The following RIT will he used with the previous query
to format the output.

CREATE RITID=STATRIT STORP Pfl=OLD
FILE TESTERF
FORMAT PRINT
HEADER1 92 CLASSIF
SPACE 2
HEADER2 95 'TESTERF STATISTICS FILE - FILE ANALYSIS

STATISTICS CAPABILITT'

141

INTRO DUCT ION ^,V FILE CONCEPTS

H EA0)ER 2 132 QPDATF
S PACE 3
3VER FLOW 1 8 ?ILPH
OT ERFLOW 1 19 COR~P
3 ER FLOW 1 -39 SO!I~C!
OVER FLCW 1 5 1 (CONTINU ED)'
SpXC'p 1
()VFRFLOIW2 54 'FIELD NAME!'
3VEPFLJW2 164 'SFT NO.'
OV YR FLco2 77 'RE. COUNT'
LBELI 9 ILE NAME,
LALELI 21 'COMPON ENT'I
LhBfLl 40 'S09I C2 ST A'EMEHT'
LABELI 54 "ElEC, COUNT@
LABELl 69 'INITIAL DATE'
LABELI F i~ 'LATEST DATEF'
LABELl 1 01 $DhTE RXEC.9
LINFI F IRST 1
LI NEI 8 FILEN
IT4E 1 19 Comp
LINEI 39 SOUR:E
LINE1 52 CNT E
LINE1 b7 IDAI!
LINE1 84 LDATE
LINE1 100 IJD ATE
SPACE 2
LABEL2 54 'FIELD NAME'
LABEL2 b4 'SET HO.'
LABEL2 77 IREF.XHINT'
LINE2 53 F LD NPN
LINE2 62 SETN
LINE 2 75 C NT REF
EJECT BrrvEEii RECDRDS IF SOIJPCZ COMPLET?
TRAILIR1 92 CLASSIF
rRAILERI 126 ' PAGE'
TRAILERi1 132 PAGENO
END
SOURCE RETRIEVIL
PUBLISH RITTD=STATPIT ANSID-0001 CLASSwU N---LASS IFIED

1'42

UIST:11LU'TION

CCTC COuc:; COP IES

C124 (i~c fcrcmcu) 2
C124 (,cord Co--) 1-------------------------------1

C240 (COd% for CSC) 20
C3U'2---1I

l31u -- I
c311 - --- 1
C312 - --- 1
C313 - --- 1
C314 - -- 1
L315 - -- 1
C317 --- 1
C32 ('rainn)------------------------------------ 5
Lt321- ------- ---------------------------------- I
C321 --- 1

C323--1I(323 --- 1
C324 -------------- n--ct--------------------------
C325 1--1
34u --

C341 (C-tint-,r.anco contractor) -- - - - - - - - - 8

C341 (-oc.) ----------------------------------- 50
C700 -- 1
C72 --- 1
703 .. 1---1

C7 --- 1
C710 (c ,u ort)--------------- 2

L_7 30 -- - - -- - - - - - - - - - - -- - - - - -

c l 0 u - 1

C 2 0 3 - -- - -- - - -- - - - - - - - - - - - - -- 1

143

EXTI-IUAL CO[IES

Director of AdminiStrative Services, Office of the Joint
c''iefs of Staff
Attn: Chief, Perisonnel Division, Room 2A944, The Pentagon
Washington, D.C. 20301 - ----------------------------------- 1

Director for Personnel, J-1, Office of the Joint Chiefs of
Staff, Attn: Chief, Data Service Office, Room IB738C,
ilhi P'entago:n, Washinc7ton, D.C. 20301---------------------

Director for Operations, J-3, Office of the Joint Chiefs
Lt- ff, Attn: Chief, Data Processing Division, Room 2C869,
,1,!12 Pentago'n, Washington, D.C. 20301----------------------1

!)LrOcto_ fol Uprtions, J-3, Office of the Joint Chiefs
of Staff, ,,ctn: P & Ab, Room 2-87), '-'he Pentagon,
Washing ton, b.C. 20301- -----------------------------------

Director for Operations, J-3, Office of the Joint Chiefs
ut Staff, Attn: Deputy Director for Operations
(;econnaisance and Electronic Warfare) Room 2D921,
''-" Pontacion, hashington, D.C. 20301- --------------------- 1

oirector for Logistics, J-4, Office (of the Joint Chiefs
of Staff, Room 2E828, The Pentagon, Washington, D.C.
20301- --

Chief, Studies Analysis and Gaming Agency, Attn: Chief,
Force A.nalysis Branch, Room 1D928A, The Pentagon,
Wasiington, D.C. 20301- ---------------------------------- 1

Automatic Data Processing, Liaison Office, National
Military Command Center, Loom 21901A, The Pentagon,
Washington, D.C. 20301- ---------------------------------- 1

Automatic Data Processing Division
Supreme Eeadquarters Allied Powers, Europe
Attn: SA & P Branch, APO New York 09055-----------------1

Defense Civil Preparedness Agency, Computer Systems
Division, RIoom 3D317, The Pentagon, Washington, D.C.
20301- -- 1

Director, Defense Communications Agency, Office of fULECN
System Engineering, Attn: Code 960T, Washington, D.C.
20301- --- 1

Director, Defense Communications Engineering Center,
Hybrid Simulation Facility, 1860 Wiehle Avenue, Reston,
VA 220'70- -- 1

114

- T ,' i ' T IAc, C O l I

Cor,nandcr, Join, TU11ical Sup -Jrt Activity
ALtn: Chit', Sortw.rc Operations Divinion
1860 Wichle Avenue, Rcnton, VA 22070

Director, efenne Intelligence Agency
Attn: DS - 5C2
la.s hincjto n , PC 2 0 30 1-- -.

Co.maner-iri-Chief, i'dcific, Attn: J63i31, -PO San
rrancisco, 96610 -...

ad_-' -Chi (:C, Turop , Attn: Chi,. f, EPCOi TdP Systems
Officc (L(*.DP) AIO .' York O' 2----------------------------- 1

Cuunaucr- in-Chif , LIS Army Eurol-e and Scvonth Ar viy
AtLn: ODCS, OI'S AO .l,2w York 09403----------------------- -

CorrmTidiig General, U.; Army Forc_'.z Comnand, Attn: Data
Support Division, Bulldiny 206, Port MrPherson, GA 30303--. 1

Conm-nmdler, hliwt Intc1liqunce Center, Ekiropr', Box Il,
Nlava Air- Station, JFci.Foivil1e, DL 32212 ------------------ 1

Co,mnaniiiij Officor , Niva Alir -rng i nc-ering Center, Groulld
Sui~<0,t >]Lil~e1 D parme ST , l 31,11, Ilhllding 76-1,

PllldcljhiAa, PA I1] 12 --- I

Commanding Officrer, ,Jnval 5ecurity Group Coinmand,
330 Nebra!,.a Avenue, NW, Attn: GF22, Wauhington, DC
2('390 --------------- -- 1

CoI!u-ndin9 Officer, flavy Ships Parts Control Center
Attn: Code 712, Mcli.!nicLburg, PA 17055 ----------------------

lI-doludrte*rs, US Marine Corps, Attn: System IcSign and
rrogrxiinigiq Suctiou (ilC-JSMD-7) Washington, DC 20300--- .1

Coircnandiwj Offi'cv!r, US Army Forces Comnand Intel1ignce
Center, Attn: AVIC--ID, Fort Bragg, NC 20301 ---------------- 1

Coinmanier, IW; Arrmy Foreign Scien:c and Trchnol ogy Center
Attn: A:;X.:,.-Cc;, 220 Scv,nth Street, Nil:,
Chjtiottsvj lie', VA 22212----------------------------------- -

145

I

E:XT'Er:PAL COP ! 4S

Conunnclinrl Officcr), US Army Security Ageicy, Command
Data SyWLetns Activit.y (CI)ST.) Arlington ldil StaLion
Arlirgjtuii, VA 22212 -

Co7m mnnding Officor, US Army Security AgeLicy Ficld
Station - Augsjburg, Attn: IALADP, APO N4ew Yurk 09458 1

Cor-marider, Flevt hInc]li incc Cer:ter, Atliantic,
Attn: DPr, 1'orfolk, VA 23511 1

Co-mnander, Fleet InCellicjencc Cc;tiLer, Pacific, Pox 1275
FPO San Francisco, 96610 ------------------------------ ---

Air Force Opcratiun,- Ceitter, ALtn: Systems Division
(XOOCSC) Wathinutun, DC 20301--------------------------------

Commander, Arived Forces Air Intel]igcnce Training Centfc,
Attn: TINI-Mr, Lowry AI'B, CO 80230-----------------------

ronmandjar, Air Force Data Services Cettey, Attn: Director
of Systcm Support, Washington, DC 20330--------------------

Commander-in-Chief, US Air Forcc3 in Europt., ATTN: ACDI
APO New Yorl: 09332 ---

Commander, USAF Tactical Air Commandl, Langley AUB,
VA 23665 ---

Commander, Space and Missile Tcst Center, Attn: (ROCA)
Building 7000, Vandenberg, .7B, CA 93437 --------.---------

Naval Air Systems Command, Naval Air Station,
Code 13G00, Jacksonville, FL 32212 -------------------------

Commanding General, US Army Computer Sy!tcms Command,

Attn: Support Operations Directorate, Port Bel'oir,
VA---1

Defunse! Docieiltation Centtu, Cameron Station,
Alexandria, VA 22314 -- 12

TOTAL 171

146

111CURIIN' CLAISIP ICATION or THIS PAGF (WU,- f.. fq. d

REPORT DOCUMENTATION PACE lItFH io~.CUMPLEATINI UOiRM

1. R~EPORT HUMMERN ?. VT A'CE WjIO 110 1 ALCIPIENTS (ZAT A% OG .iumillt

CS'i Y 15- /8
4. TITLE (--d SbiI. 1 I fR P R I tlvc v~t

NMCS Infornation Processing System, 360 Formatted
File System (NIPS 360 FFS) - Users Manual________
Vol I - Introduction to File Concepts fi '~nomm on. EOTNME

7. AU THOfif.) i COWTAACT OR GRAANT NUS4UE_1)

O)CA lflO-77-C-006 ~

I. PIERF0PuIw(OPWANIZATIUMN UAME AND AIjU~flhI IU GfHUAM iLf iMI. "lJEY TA
ARE A & WORK UNIT hUMOCA6l

International Business Machines, Corp.
Rosslyn. Virginia____j__

11 CON (Po~t L1146 O~Ficr HAMr AWfl AOnflrS$I2 fu T OT

Nationsi Military Command System Support Center 1 Serntemb)r 1978
The Peintagon, Washington, D.C. 20301 11 NU"F OF Prti.

II iONTOIINOAGEN.CY NAME II AZ0ORES$II dSIIjp#ni Imm Cmatioti~ng office) Ib Ti'CURITY CL ASt (.I #hn. .~p~r,)

Unclassi fied
K;. OV6i L 7SV I rCAWTI O N-

7
Zi:wOR IcPA'm 6

* . t i TR I j T I 0 N I A T E M C Wi d (. f1 h i . R v . , f)
S I I O L

Copies of this documient inay be obtained from the Diefense DOLumntation Center,
Cameron Station, Alexandria, Virginia 22314.
This document has been approved for public release and sale; -its dist'ibLutionl
is unlimiited.

I?. Og f $1 A n OW 16 ST AT EE N (o(Ph. .h...s I ,e f.,.d In Rto~h 70, l(f di'U.,wU I- , t, po,1)

I0. OUPPI-IE~dN 7ARY NOTES - _ _ _ _ _________ -

It. PCIty 501.-05 (CeilI,... ion Ptrifp. ofdo of nec.0m, and IdonfIf, ty 61-1, n.mb*.)

I ASTUUCT C~fl~n. -. ft.* *II f .. m..y d Id-l'~ ify b ec 610 .Unb6,)

Thsvolume presents Systemn Concepts and System Use-, it shows a sanpiu W.IS
360 FFS Data File, the Glossary of Terws , and a description of the 14)J' 3
FFS Data File and File Format Table. The NIPS 360 is the total sys-.er cc,.,
posed of the S/360 hardware and 5/360 Operating Systemn (OS) used to c,)pjrt
NIPS 360 FFS software. -..

This clocu-nent superseder, CSI u-1 15-74, Volume I.J

~ 143 £i"OwOP wo~A~sOSSOETIUNCLASSI F1 ED
147 a aCu f-,iTY -cl T Ai'- ICAYION OF THIS PAOC Eh 11 ft*i* PUESS)

