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Chapter I

INTRODUCTION

For extended real numbers 1 < p = =, let | - ”p de-
note the norm of some classical Banach space LD of real
(complex) functions. Let Pn be any subspace of Lp of
dimension n + 1. The starting point of this thesis is the

)29, Tk e P

apparently new observation that (Hnnnzp o X

=1, 2, 3, ..., 1s algebraically identical to a con-

strained quadratic (hermitian) form in the coefficients of
L Specifically, if x ¢ Rn+l (Cn+l) is the vector of co-
efficients of L then there exists a symmetric (hermitian)
matrix M of dimension N x N, N = (n+l)p, such that we have

the identity

2p - G e
(Uﬂnﬂzp) = (x ® 2 x; Mx ® ® x), m, € P,

~

p factors p factors
p= 1y 25 35 wes (1s1)

where (+,+) on the right hand side of (l1.1) denotes the

usual Euclidean inner product on RN (CN), and Xx ® *+* ® X

€ RY (CN) denotes the Kronecker product (see Chapter II,
or Marcus and Minc (24, Section 1.9]) of the vector x
with itself p times. The identity (l.1l) represents a
constrained quadratic (hermitian) form because, in gen-

2 (CN) can be expressed in the

eral, not every vector in R
form x @ *++ ® x (p factors of x). Thus, (l1.1) is the

quadratic (hermitian) form of M evaluated only for vectors

S &« (Y Q

a v wE , wL’ - :4’ .




B (Ch) of the special form x ® -+ ® x. Furthermore,

in R
the matrix M can always be exhibited explicitly. The
explicit form for M and the identity (l1.1), together, are
developed in severai different directions in this thesis.
Chapter II is devoted exclusively to the study of

the space Pn of complex polynomials of degree at most n,

defined on the unit circle, and equipped with the norms

F LfeT 16 \l
[’2'?? f L el e
fim Il = 4 (3.2)
n'p ;
i9 1
max |m_(e )| p = o
n ’
0<6=2m ’
"

The integral in (1.2), like every integral in this thesis, ;
is the Lebesgue integral. (Hence, the norms (1.2) are the
norms of the Hardy Hp spaces.) In this space, the matrix

M of the identity (l1.1) happens to have an especially nice
structure which allows us to determine explicitly all its ;
eigenvalues and eigenvectors (see Lemma 2.3). We exploit

this fact to show that the ratio

r
BAR

max \—N——R ’ = 1, 2, 3, . o (1.3)
Ofm _€P_ | 1™ ni 2

)
"

n,2p

is, in effect, a constrained Rayleigh quotient which is
therefore bounded above by the spectral radius of M. Thus,

from Theorem 2.1, we have

2P . (n+1)% 2P (1.4)

where the integer An is the spectral radius of M and is

P




also precisely the largest coefficient in the power series
expansion of

(% % % 2% % drsop iyl (1.5)
into ascending powers of z. More generally, this technigue

is applied to the problem

% I R
R 5, = max ; i o i Y G e (1.6)
2P ogn_ep | IMall2

where nék), k=20,1, 2, ..., denotes the k-th derivative

of T, An extension to ratios of the form (1.6) is possible

ék)ﬂzp)zp is a constrained hermitian form of the

type (1.1). As before, the matrix, denoted now by M(k), of

because (|im

this hermitian form is such that its eigenstructure can be

written down explicitly. Thus, we get from Theorem 2.7

1
(B o wify Kizdp = :
Ry 2p < k.{An,p} > k%@, 1; 2sa; 0 (1.7)
where the integer (k!)zPAékL is the spectral radius of M(k),

s

3 (k) is precisely the largest coefficient in the power

and A
n,p

series expansion of

n 2 P

% »
o b k& oL B Ly e (1.8)
L=k J

into ascending powers of z.

In Chapter III, we develop some general consequences
of identities of the kind (1.1). In this chapter, Pn is
an n+l dimensional subspace of LzJa,b], the space of
measurable real (complex) functions defined on the interval

(a,b), =» = a < b = 4, and equipped with the norms




gl 1
[J inn(x)fpw(x)dep, 1 2p <
a
lr 1Y =
LTan (1.9)
ess sup |7 _(x)]|, p = o
a<x<b "
\

where the real measurable function w(x) > 0 almost every-

where on (a,b), and satisfies

b
g < [ w(x)dx < +@ (1.10)
a
Let {ho, hl, ...} be an orthonormal basis for L?[a,b] with
{ho, hl, S hn} an orthonormal basis of Pn' Then it is

shown that if

b
J hj(x)hk(x)hllxiw(x)dx = (o) gk a =0 R
a

(L)
then
[N e
max _-GE = max ”hkSn“D, RS 23,
0F™ quL"“n”z 5 0sk=n :
Y (1.12)
where
Sn(x) = ho(x) + hl(x) + e 4 hn(X) (1.13)

It might seem that (l.11) is a very restrictive condition
on the basis; however, roughly half the Jacobi polynomials,
all the generalized Laguerre polynomials (properly normal-
ized), and the Hermite polynomials satisfy the condition
(1.11). Furthermore, if ¢(x) is defined on (c,d) in a
manner analogous to the definiticn of w(x) on (a,b), and

if

-
o SIS S . TR R Y A y -
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d Pt S
J hj (X)hk(x)hz(X)d’(X)dx =208 j,k,»Q =0, 1, 2,
C
(1.14)
then
i ) ®
max (—D2BY < max Vins 1%, p =1, 2, 3,
ofr €P |lm_| 0sk=n P
n n n'?2
(3.15)

where Sn(X) is given by (1.13). Still further, if D is
any linear operator on Pn (e.g., a derivative of some

order) such that

d
J Dhj(x)th(x)thzx5¢(x)dx >0, Slpldost e i L

c
(1.16)
then
jom_|j? ;
max __*EGEE <  max \/Hth . DSnH¢
o#m_€P_|lm i 0<k=n P
B I 2

pe i 2, % L0 Ban

where Sn(x) is given by (1.13). Theorem 3.5 establishes
the bound (1.17) under a weaker hypothesis than (1.16)
which we have called the Nonnegativity Condition. See
(3.20). It is not hard to see that (1.16) implies that
the Nonnegativity Conditior holds for the functions {Dhor

Dh Dhn}. The effect of the Nonnegativity Condition

ARy
on the appropriate guadratic (hermitian) form of the kind
(1.1) is that it forces the matrix of this form to have
only nonnegative entries.

Chapter IV develops some of the consequences of the

general results of Chapter III for the space of real (or

complex) polynomials Pn of degree at most n defined on

o

2




various real intervals. We are most successful, however,

on the interval (-1,+1l). For example, adopting the

notation
1 1
';nn|;°"8’ = (J[_l(l—x)a(l-#x)slnn(x)]pdep, p>1 (1.18)
and defining
AL R ——lf—) p>1 (1.19)
P OFm P Im | °"~f

we show that, for ¢ = 8 > ~1 and ¢ = O,

1
(1+a) (1==)
CERTASIES ot SRRPAN
(1..20)
and
: l+qg
Ti.ﬂ;g) < A, (n 3 a+§+3] (1.21)

where the constant Ao is independent of both n and p. It
is clear that the choice of weight function in (1.19) af-
fects the exponent of n in (1.20) and (1.21). Therefore,
it is reasonable to expect the use of different weight

functions 'in numerator and denominator to have an effect

on the exponent of n. For example, for a 2 0 define

ool ya+l)
(a) max (””n'p 1

9 B
and
[un's'(“'“)l
vio) = max ﬁ—“P—*‘ : 1 p2zd (1.23)




where the prime denotes differentiation. The weight func-
tion in the numerator of (1.22) differs from the weight
function in the numerator of (1.23) by a factor of (l-xz).

Since 0 < l--x2 <=1 on (-1,+1), we must have

U(a) < v(a) ; P
n,p n,p

v
[

More to the point, however, we show that

3. i

(a) 2+ (1+a) (1-3)-= 5

Uy, g © By inkanid) P, p=2,3,4,... (1.24)
1

(o 2+ (1+a) (1-=

vn';p < A, (n+2a+2) EERRY et E Ao ()

where the constants Al and A2 are indevendent of both n and
p. Note that as p » », both (1.24) and (1.25) give the same
exponent for n, which is to be expected considering the def-
initions (1.22) and (1.23). We emphasize that all these re-
sults are, in essence, corollaries of (1.17), that is,
Theorem J3.5.

Chapter V studies the operator M defined via the iden-
tity (1.1) and leads to a new representation theorem for a
special class of homogeneous polynomials. Following Hardy,
Liptlewood, and Polya (18, Appendix I], any homogeneous
polynomial with real coefficients is called a "form." A
form F(ao, ayr eces an) is said to be strictly positive
if and only if F(ao, Ayr e an) > 0 unless ag =a; = ...
-8, = 0. It can be shown [18] that every strictly posi-

tive form F can be written

M2
1

-t~

o}
1]
u-t\/;l

(1.26)
N

B — —— -
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where Mi and Nj are suitably chosen forms, and each sum in

(1.26) has a finite number of terms. Now, for integer

p > 1, define Gp:Rn+1 + ‘B by

= (! CRCS nw Zp
| Gp(ao,al,...,an) (Ja0-+a1x+- +a x ”2p) (1.27)
where | - U;p is given by (1.9) for some fixed w(x).

Clearly, Gp is a strictly positive homogeneous polynomial
of degree 2p in the variables agr Ays cees @y and so has

the representation (1.26). We prove that Gp also has the

representation
[Z(Q )P if p odd
£ t
G ={ (1.28)

Z(Qr)p o Z(Qs)p if p even
Lr s

where Qr’ Q , and Qt are suitably chosen quadratic forms,

s
and each summation in (1.28) being finite. We also show
that every quadratic form in (1.28) can be taken to have
full rank n+l. Theorem 5.8 proves these assertions. (Its
proof is easily modified to give a natural extension to
complex variables agr @ys eeey an.) We remark that
Hilbert's 17-th problem (see [28]) concerns arbitrary,
i.e., not necessarily homogeneous, polynomials F satisfy-
ing only F(ao,al,...,an) > 0 for all real Agr @yr ceer @
Finally, in Chapter VI, we present an algorithm for

the computation of n; € Pn such that

Inxi, [ENP
—=P = max (—=E}, p=1,2,3, ... (L.29)
il 0FT_€P "”n'izf

n'2 n ' n




(Note that n; depends on p.) The space Pn in (1.29) can
be any finite dimensional space of functions defined on

a measure space, provided every element in Pn has a finite
sz norm. The algorithm, called the Quadratic Relaxation
Algorithm (QRA), 1is attractive because it is as easy to
apply to the general problem (1.29) as it is to apply to
ratios like (1.3), or (1.12), or (1.17). '‘Unfortunately,
convergence of the QRA is at present unproved. Although
the QRA is shown to have a convergent subsequence, the
limit of this convergent subsequence is not proved to be
a solution of (1.29). The QRA is easy to

program on a computer, appears to be numerically stable,
and has (so far) always converged rapidly to what appears
to be the solution of (1.29).

Most of the topics discussed in this thesis appear to
be little studied in the literature. The pivotal identity
(1.1), after a literature search and personal correspondence
with both algekraists and analysts, does seem to be original
to this thesis. 1Its subsequent application to bounding
ratios of norms and to representations of norms is, there-
fore, original as well. Although the particular applica-
tions can be studied by other methods, this does not appear
to have been done in the literature, except possibly in
special cases.

All of Chapters II, III, V, and VI seem to be original,
except of course where otherwise noted. Certain special

cases of topics studied in Chapter IV have been studied,
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however, and we now proceed to summarize them. Since all
these papers restrict themselves to algebraic polynomials,
we let Pn denote the space of real polynomials of degree

! at most n throughout the following discussion of the
literature.

Amir and Ziegler [2] study the problem

max 77l g =1 (1.30)
O#m_¢€P | n'g
n
where the norms are defined as in (1.9) with w(x) = 1 on
(a,b) = (0,1). They give a characterization theorem for

extremal polynomials, ﬂ;, of (1.39). (They also give a

characterization theorem when the maximum in (1.30) is

taken over various subclasses of Pn.) This characteriza-
tion result is used to show that for q = 1 or g = 2, the

zeros of the extremal n; and the zeros of the extremal

*

inte ‘
n+l rlace

m

Gilbert and Slepian [15] study the problem

é
J Inn(x)lzdx

Ao = max (1.31)
O € Py J n_ (0 | 2ax
a

with emphasis on asymptotic results for n large. They
employ asymptotic methods for an equivalent differential
equation eigenvalue problem to obtain results for two
cases of (1.31). Specifically, they obtain for the case
(¢,B) = (-1,+1) and (v,8) = (d,a) with 1 < & < a, the

asymptotic expansion

e — e e r————— g - - T T e —

3
]
t
A




s

/2 2n+2
Aén) ofa sk va =1) [i % O(%)], n -+ o {1.32)

8mnra2-1

In the other case, (a,B) = (-1,+1) and (v,8) = (-a,a) with

0 < a <1, they obtain

4vman n
o s kmy 1= 1 o b2
i }\0 = l_—-b—a—[—_l +a) [l £ O(H}]' n (1.33)

In both (1.32) and (1.33), the notation 0(3), n + =, is
used in place of some function, say f(n), which has the
property that there exists a constant B, independent of n,
such that for all n we have f£(n) = B/n. See [7, Section
1x2Ys

Turan [32) and Schmidt [35] study problems similar to
(1.31), but for infinite intervals with weight functions
e * and e_xz, respectively. See Chapter IV, equations
(4.82) and (4.91), for details.

Handelsman and Lew [17], as well as Bleistein and
Handelsman [7], study the rate at which.”g”p converges to
igl, as p + =, where the norms are defined by (1.9) with
w(x) = 1 and (a,b) arbitrary. In [7, Problem 5.9], it is
shown that if g has 2k+1l continuous derivatives on (a,b],

and if g attains a unique maximum at the point y € (a,b),

and if g3 (y) =0, 3 =1, 2, ..., 2k-1, ana if g% (y)
< 0, then
lgll.. = I'gll [1 - log p . O[EQE_E]], p +» ® (1.34)
N g kp LB i

where the notation O(p-l log p), p + », is used in place of

- ——— ——~ —— - - e A
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some function, say f(p), which has the property that for
any € > 0, there exists N such that for all p = N we have
f(p) = ep_l log p. Dividing (1.34) by llgli, and replacing
g by L # 0 gives

”nn'lp h

NP NP

o W,

[1 - 19352-+ o{ng-RJ},p +> o (1.35)

provided only that LI attains a unique maximum interior

to [a,b]. Now take [a,b] = [-1],+1], and let n; be an

(0,0)

extremal polynomial for Tn defined in (1.19). If n;

’
attains a unique maximum at y ¢ (-1,+1) with the property

that (n;)(J)(Y) B, b B o O e

(0,0) (6,0)f, _ log p (log p e
Tn,p > Tn,w [i s + o[ < + P (1.36)

Jackson [36] contains many interesting inequalities,
only two of which seem related to this thesis. Jackson

proves that if

1

b - -=
J (b - x) 2lnn(x)lp ax)P = 1, p>0 (1.37)
a
then
1
In_(x)] < cn® a<xsh (1.38)
n b al)N/Z

where C is a constant independent of n and x, and N is the

e S s s . =~ <P e T ——— PR e - ;,—w
-

. : prET— N SN SRS S |
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smallest integer greater than or equal to 1l/p. (A similar
result is derived by replacing x, a, b by -x, -b, -a.)
Another inequality gives an upper bound in n for the ratio

of the sup norm to the weighted L., norm of m,- Let w(x)

2
be a nonnegative integrable function on (a,b) such that

b . ~fErl} /2
J (b-x) —— ax < = (1.39)
a [w(x)]

for some r > 0. Then Jackson [36, Theorem 12] proves that

N

1
|7 (x) ] + 5|

—£— = O[n e n > w (1.40)
TN

throughout any interval a+é = x = b, § > 0.

Cernyh [9] studies the problem

[qw(k)nxlw
max -—JL——fLJ, 1 sp = = (1.41)
0#"n€pn1 It WXZ f

a2

where nék) denotes the k-th derivative of ., k=0, 1, ...,
and X1 and y, are characteristic functions of the intervals
(2,8) and (-1,+1), respectively, and (a,8) is not a subset
of (~-1,+1). 5ernyh proves [9, Corollary 3 of Theorem 1]

that if o # -2, then, for 1 < p =< o,

(k) , *19 1 k
SN TP S P |
max __n_x_L\=n pg (n)LHp2+O(1)‘|' (1.42)
OfﬂnePn unnu22 J 5 S5

where n = max {|al,3}, g(n) = n + vnz-l, and
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2
2
gk o g (n)

p,2
2/7 pl/pvgz(n) A

Cernyh's results are not directly comparable to any derived

5
|

{n” = 1) (1.43)

F.

in this thesis.

Certain analogous problems for the trigonometric poly-

nomials have also been studied. See, for example, Jackson
[36], Bari [37], and Videnskii [38].
For fut.re reference, we record the following bound

which, although apparently new, is easily derived. For

even integer p, the bound (1.45) will be shown to be iden-
tically the 2p-th root of the trace of a matrix E of an
identity analogous to (l1.1). (See Lemma 3.9, Theorem 3.4,

and Corollary 3.11.)

Theorem 1.1 Let p 2 1 be a real number. Let

- = 3@ <b = +o2 and -» = ¢c < d = +=», Let Pn be a subspace :

of Ljla,b] N Lgp[c,d] with a basis {hy, hy, ..., h } which

ll
is orthonormal with respect to the inner product

b
(f,g)w = J f(x) g(x) w(x)dx (1.44)
) a

where the real measurable functions w(x) > 0 and ¢(x) = 0

almost everywhere on (a,b) and (c,d), respectively, and

b
0 < J w(x)dx < +w

d
0 < J d(X)dx < 4+




15

Let D:Pn > Lgp[c,d] be a linear transformation.

Then,
1
¢ |
lom || d 7p
max n j < (J [KéD)(x)Jp¢(x)dx (1.45)
O#ﬁnePn ”"n”z I c
where
kD) () = 2 5 2
R kZOID k(x)l (1.46)

Proof Without loss of generality, we restrict our

attention to those T such that Hnnﬂg = 1. Let

nn(x) akhk(x)

fo~—s

k=0

Then, by the orthonormality of {h,},
n
z Iaklz =l
k=0

Thus, by the Cauchy-Schwarz inequality,

2 5 - S 2
[pr_(x) | = § |a, | ) |ph, (x) |
n ksG © ked *
o KéD)(x) (1.47)

Raising both sides to the p-th power, multiplying by ¢, and

integrating completes the proof.

Finally, we remark that every maximum taken of ratios

similar to (1.6), or (1.19), or (1.45),is attained. Since

w

S = {wn € Pn 3 Hnnuz = 1} is a closed and bounded subset of

the finite dimensional normed linear space Pn’ S is compact.
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Since f : Pn + R defined by f(ﬂn) = HDwnH

on S, £ attains its maximum on S.

e s ———— B

Ak b & e

¢

is continuous

2p




Chapter II

COMPLEX POLYNOMIALS DEFINED ON THE UNIT CIRCLE

A. Preliminaries

In this chapter attention is confined to Pn, the col-
lection of all polynomials with complex coefficients of

degree at most n, equipped with the norms

1 “n i6, g ‘é
Il = {5? Jo m_(e*®) ] dq}*, g = ¥ (2.1)
. if
il = max ln_(e™7) | (2.2)
0<6=2m
where L € Pn' The norms (2.1) and (2.2) are the norms of

Hardy Hp spaces. If g = 2p = 2, then (2.1) can be written,
by setting z = ele and letting C be the unit circle, as

1

o 1 P dz %p 2
Hnnuzp = {E?T Jc[nn(z)nn(ZSJ =l g P2l (2.3)

An inner product is defined for all f and g in Pn by

(£,9) = E%I Jc £(z)g(2) 9; (2.4)

Theorem 1.1 is easily extended to complex polynomials

defined on the unit circle. Such an extension gives

Il
_n2p _ TR T > 1 245
where
? | 2
K _(z) = ) |hy, (2)
n k=0 k

L

e p——— . atg—— -
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and {ho(z), hl(z), ey hn(z)} form an orthonormal basis
for Pn with respect to the inner product (2.4). Since

2 :
1 P T SR :n} form an orthonormal basis here,

Kn(z) = n+ 1 and (2.5) gives

i

< v/n + 1,

el
v
—

(2.6)
Tn'l2

Note that (2.6) is valid for all real p 2 1.

The bound (2.6) can be improved upon considerably in
the case of even integer norms. Throughout the rest of
this chapter we restrict attention to the norms (2.2) and
(2.3) with p =1, 2, 3, ... . Before getting to the gen-
eral result (Theorem 2.1), we first examine the special
case n = 2 and p = 2. Let nz(z) = a + bz + czz. From

(2.3) we have

. i - i 12 dz
("“29‘4\4-275 C["n‘z”n‘z’J T
g a2
T 2lf= o b C dz
o [ flarrer e S]] B
Pyieee 1 j —L[aE + (ab + bc)z
211 c ZS
+ (Ja]? + [B]% + |e]|?)2?

+ (&b + Be)z® + 5cz4]2 dz

since z = 1/z for z ¢ C. By the residue theorem of ele-
mentary complex analysis, the value of the last given
integral is clearly the coefficient of 24 after the square

in the integrand has been taken, so that

-
— . e " . -

]
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2 2,2
I lc|

tlal® + o )

4
”TT2||4 +

+ 2(3b + bBc) (ab + b)) + 2|ac|?

4 4 4

la|

]

+ [Bl* + je|? + 4lab|® + 4|be|? + 4lac|?

+ 20356° 4 ach? (2.7)

The last expression can be written as the hermitian
form of a certain matrix evaluated at a certain vector.

Explicitly,

]
1
J
1
3

vnzuj - [z=|T[1 0000000 0][aa
ab|] {01 010000 0f]|ab
ac| |001010100]{|ac
ba|] {01 010000 0||ba
bb| [0 01 010100]|bb
bc| |00 000101 0{|bc
cal| |[001010100{|ca
cb| (00000101 0}jch
lcc] {00 000000 1jjcc
= UTMu (2.8)

with the vector u and matrix M having the obvious
definitions.
What is the eigenstructure of M? A tedious computa-

tion would show that
det(M - \I) = -A4(A - 1)2(X - 2)2(A - 3) £2:9)

However, this computation can be avoided because all the
eigenvalues and a complete set of eigenvectors can be

found for M by means of a very simple observation: the
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rows of M are orthogonal eigenvectors of M and have cor-
responding eigenvalues equal to the row sums. We now

verify that the eigenvalues must be 0, 1, 2, and 3 with

multiplicities given by (2.9), where 0 is included because

M clearly does not have full row rank. The eigenvalue
A = 3 has at least one eigenvector, namely,

T

Vsl el Rl R e [ S e (210,

0

The eigenvalue X 2 has at least two eigenvectors,

v, =<0 1 @& . 1 6 0 G .0 0>7T (2.10.2)

vy=<0 0 ¢ 0 6 1 0 1 0>7T (2.19.3)
and the eigenvalue A = 1 has at least two also

vy=<1 0 0 0 0 0 0 0 o> " (2.10.4)

v, =<0 00 08 ‘0 0 it (2.10.5)
Finally, the eigenvalue A = 0 has four easily found linearly
independent eigenvectors,

Vg =<0 0 1 0-2 0 1 0 0>7T (2.10.6)

Ve =<0 0 1 0 1 0-2 0 0>T (2.10.7)
and

v,=<0 1 0-1 0 0 0 0 o* (2.10.8)

vg=<0 0 0 0 0 1 0-1 057 (2.10.9)

Since nine linearly independent eigenvectors have been
found, we have them all.
How does knowledge of the eigenstructure of M help

to improve the bound (2.6)? Since

PN W oy




21

4 2 2 3.2
Imally = (lal® + [b]% + [e]%)
= falt e i1t e fel® « 2an]® + 2lae]? v 2 bl
'__1' 7—
« BEI% g0 000 600l tas
ab| [0 1 000000 O0|[ab
ac/| |[001 0000O0O0/||ac
bal |00 010000 0||ba
bl |0 0 001000 0]|bb
bc| |00 000100 0]]|be
ca 00000O010GO0||ca
cb| |0000O0OGCOT1O0||cb
lcc] [0000000O0 0 1]|cc]
= Gy, (2.11)
we can write from (2.8) and (2.11),
1
4
|
Hn2H4 ~ HwnJ4 T
ol ]
2"2 I, ls
L
5 uTMu T
T \=T
uu
1
_T =
< max Y_MV b (2.12)
v#O| v'v
1 1
={A }4=34 (2.13)
max

where v is an arbitrary nonzero vector in C9 and Amax 1s
the largest eigenvalue of M. The key equality (2.13) fol-
lows from the well-known fact (see, e.g., Gantmacher [13])
that the ratio of hermitian forms in (2.12) is bounded
above by the largest eigenvalue of M and that this bound

is attained if and only if v is an eijenvector of M

corresponding to the largest eigenvalue. Hence
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-T. ,=T . _ . : £ 2 .
(v Mv/v'v) = Amax if and only if v = Sy where vy is given

in (2.10.1) and c # 0 is an arbitrary constant. However,
Vo # <aa ab ac ba bb bc ca cb cc>T

for any choice of a, b, and ¢, so that inequality (2.12) is
a strict inequality. Therefore,

I !
2"4 & 4

17515

| m
(2.14)

This estimate is considerably better than (2.6), which
gives 31/2.

It will be shown that the hermitian forms (2.8) and
(2.11) can be generalized, that the eigenstructure of
these hermitian forms can be written down explicitly, and
that the inequality (2.14) can be extended to even integer
norms of polynomials in ™o Before doing this, however,
some definitions are in order. These definitions are
simply notational devices. At this point, nothing deeper
than notational formalism is intended because only the
notation is required for the proofs in this chapter.

Let p 2 1 and n 2 0 be integers. Let the p indices
Upr ey @ each run independently over the common index

P
set {0, 1, ..., n}. Define

I = rn,p = {a|a = (ays cuuy ap)} (2.185)

so that I has (n+1)P elements and each element is a p-tuple
of nonnegative integers. We will always assume that T is

lexicographically ordered; that is, if a = (al, v eiey ap)

€T and g = (Bl, 5 o) 20) € ', then a < 8 if and only

'-—N
e ————————— - I ——




23

if there exists an integer t, 1 = t = p, such that

al = 81, 5 e als

(2.16)
It is easy to see that (2.16) defines a linear ordering on
' with (0, 0, ..., 0) and (n, n, ..., n) as the first and
last elements, respectively. (Lexicographic ordering is

not novel. See, e.g., Marcus and Minc (24, p 10].)
T n+1l

Let x = <x_. X, =@y >0€ € . Now, for each
() | n
a = (al, cdon ap) ¢ T', we can compute the product
p wee X € C (2.17)
oq p

and this number is uniquely defined for each a € I'. The
collection of all (n + 1)P products of the form (2.17),
linearly ordered by the linear ordering in I', defines the
Kronecker product (see, e.g., Marcus and Minc [24, Section
1.9)) x ® *+* ® x of the vector x with itself p times.
Explicitly, the Kronecker product x ® -+ ® x (p factors

of x) is defined by

P
XD et @ x = <xy eee X5 € o L (2.18)
———— e ————
p factors S ey
where a = (al, it ap) @ For exanple, if
5 T 3
X = <x0 x1 x2> € €, then
r i
Xo¥0 |
X0%y
X0%2
X.X
xex= |19 ¢c (2.19)
b Sl 5
o
xsz'
xle.
hfzxzj
PO — e — - - Y T egr——
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For a € I, we may speak of the a-th component of the

Kronecker product x ® .-+ ® x (p factors of x). For exam-
ple, the (1,2) component of (2.19) is X%, while the (0,1)
component is XgXq. Also, if

9

= T
u = <ul u, ug> € c’,
we can regard, for example, u. as the (1,2) component of u
and u, as the (0,1) component of u using the lexicographi-~

cal ordering on I'. Thus, any vector u of dimension

(n + 1)P can be written in the general form
u=<u>, a €T (2.20)

Similarly, any complex matrix M of dimension (n + 1)P

x (n + 1)P can be expressed in the general form
M = [ma,B]' a B8 € T (2.21)

where m, 8 is the entry in the row corresponding to a € T
’

and the column corresponding to B € I', and where the rows

and columns of M are ordered lexicographically. For n =1

and p = 2, the general form is

Booy, 00y Mooy, 01) Mw00), 10y o0y, (11)
B0l (00) Tpony, to1) - Mon), a0 - Hod) 431
Be10y,(00) Praoy, wiy ooy, oy Moy, (11

[™¢1ny, (00) ™), 01y “an .ty il
(2.22)

Finally, the Kronecker product of an r x s matrix A
with the p x g matrix B is denoted by A ® B and is defined

(in partitioned form) to be the sp x rg matrix
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- -
b LT o
a,.B a,,B a, B
A®B 21 ?2 2r
_éslB aszB = B :
(see, e.g., (24, Section 1.9].) Proceeding inductively

by defining A ® B ® C = A ® (B ® C), one can define the
Kronecker product of any number of matrices each of
arbitrary dimension. Note that the earlier definition
(2.18) of the Kronecker product x ® .-+ ® x (p factors of
X) is merely a special case and, in fact, is now extended
in a meaningful manner to Xronecker products of the form
X®y® - ® 2z, where x, y, **+, z all lie in Cn+l. Many

elementary algebraic properties of Kronecker products are

known, but will not be given here. See [24], for example.

B. The Underlying Matrix and Its Eigenstructure

With this notation, we now generalize the hermitian

form (2.8).
n
Lemma 2.1 Let nn(z) = a, + alz + e+ a 2z € Pn,
and let x = <éo a; - an>T € Cn+l. Then for positive

integer p,

1
(GTM_ _u} 2P (2.23)

"
[
=

ﬂnnﬂzp E

(n+1)P |

where u = x ® +++ ® x € C , the matrix Mn = [m

P a,B
of dimension (n + 1)P x (n + 1)P is given by

= 2.24
ma’e 6al+,..+ap’81+,,.+8 ( )
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where o = (al, S ap) e T, B = (Bl, stely Bp) € ', and

. s - A
: K 1, if ot +ap 61+ BP
al+---+ap,81+"'+sp 0, if otherwise

(2.25)

Proof Since
(o {200 TR (5]
["n(z)]p g z b s 1 P (2.26)
o €Tl 1 P

we have from (2.3) and the fact that z = % on C,

2p o 1 pdz - 1 P P dz
Imall2p = Zv1 Jcl”n‘z’"nzz“ = I JC My lelTplel o
Byt «+p
= E%I J [ Z aB aB z 1 ?J
ClBeT 1 p
) = X 2 ) zdl+ -+ap}g£
a a z
(16. l p =
o a_ a -a
aer Ber %1 .. B Bg Ry
. { 1 [ z(Bl+ +Bp) -(al+"°+&p)§3j
2m1 c z

a€l' Berl 1 o) p
* S ke e ba B b kB
1 i
=™ u
n,

This concludes the proof.

The matrix Mn b reduces to the identity matrix for
’

p = 1. Note, too, that the matrix in (2.8) is just M2 2°
’
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Since Mn o is a real symmetric matrix, its eigenvalues

L9~

must be real. Also, Mn P is both nonnegative and positive
’

semidefinite. The positive semidefiniteness of M will
’

follow from Lemma 2.3 in which it is established that all

the eigenvalues are nonnegative. (An easier and much more

general proof of positive semidefiniteness is given in

Chapter III and applies to Mn b also.)

’

Lemma 2.2 Let a = (al, Rt ap) ¢ I'. Then the
integer

n
N(a) = Y 1 (2.27)
jl,...,jp=0
where the sum is taken subject to the constraint
i it S R R P

a .
is the coefficient of z X P in the expansion of

(h + %% 25 % »nv i g0 P (2.28)

into ascending powers of z. Conversely, every coefficient
in the expansion of (2.28) has the form (2.27) for some

(> S 1

Proof Let x =<1 z 2% e 21 ¢™*l. fThen from

(2.18), we have for a = (al, Sy ap) A i
o o
X® ... ® X = <§ vy z -
p factors
O, 440 P
2 1 p (n+1)
% <% :zer § %

For each a € I', how many different components of X ® ... ® X
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are identically equal to the a-th component? Clearly the
answer is N(a). Therefore, summing the components of
X ® -+« ® x and collecting terms gives a power series in
z with coefficients of the form N(a) for some a € T.
Since every integer N(a) must occur as a coefficient, and
since

n A, +--+0

3 g Pl wn v o5 n 2P (2.29)
al,...,ap=0

the proof is complete.

Lemma 2.3 Let Mn p be the matrix (2.24). Then

’

.. The null space of Mn p has dimension (n + l)p

= (np + 1).
ii. The nonzero eigenvalues of Mn p appear with the
[4

correct multiplicity as the coefficients in the

; 2 n ;
expansion of (1 + z + 2° + ++* + 2 )P into

ascending powers of 2z, and every such coeffi-

cient is an eigenvalue of Mo p*
’

iii. The largest eigenvalue of Mn p has multiplicity
’

1 if np is even and multiplicity 2 if np is odd.
All other nonzero eigenvalues have multiplicity
2.

iv. Every column of Mn p is an eigenvector corre-
’

sponding to a nonzero eigenvalue of Mn p°
’

v. Any two columns of Mn D are either orthogonal

’

or identical.

vi. The orthogonal columns of Mn P form a basis for

the range of Mn,p‘

e ———— .
.~ : PP PR e ————————t
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vii. The eigenspace of the largest eigenvalue of M
’

does not contain a vector of the form x @ --- ® X,

¥ #£.0, % ¢ Cn+l, unless n = 0 or p = 1.

Proof Throughout this proof, let a = (al, s siis g ap) € 5,
B = (81, cseip Bp) € I', and y = (yl, b oy Yp) € T. Also,

denote the a-th column of Mn b by

4

&= < >
Ra my,a YET

Now, to prove (v), note that the inner product between the

a=-th and B-th column is

= T
R, "R = m m
B a YGF YIB Y, Q

53 Z 6Y1+"’+Y 28

)
€T p l+---+8p yl+ +yp,al+-~ +ap

N(a), if a,+-<++0_ = B.++--+8
. 1 1 ¢ (2.30)
0, if otherwise
so that R i RB O By ¥ tes & o, = By *+ + ep. In the

latter case, the definition of Mn %

L

implies that ROL = RB'
This proves (v).

To prove (iv), we show that

Mn,pRa = N(a)Ra (2+31)

for each a« ¢ . Fix a. Then the matrix equation (2.31)

is equivalent to the system of linear equations

RB R, = N(a)ms,a ' for all B & I {2.32)

since M p is real symmetric and the 5-th row is the trans-
’

pose of the column RB' % o mB,a = 1, then ROl = RB and (2.32)

B ) T - T —

— - - Sl e oy A ——— PP—

a4 4




follows from (2.30). On the other hand, if mB a = 0, then

Ra # RB and (2.32) follows again from (2.30). In either
case, the proof of (iv) is complete. Actually, (2.31) to-
gether with Lemma 2.2 also proves that every coefficient

in the expansion (2.28) is a nonzero eigenvalue of Mn p’
’

This statement is half of (ii). To prove the other half

of (ii), recall that Mn b is symmetric and the column rank

’

of Mn p equals the number of nonzero eigenvalues, counted
’

with correct multiplicity (see [24]). From (v) and Ra = R

B
IEf Gy * x=e & ap = Bl + .0 + Bp, the column rank is
np + 1 (the number of distinct sums of the form thy A #
+ ao) and (2.31) has np + 1 solutions. Therefore, every :
nonzero eigenvalue of M is of the form N(n). From Lemma

B P 4+ o + g

o
2.2, N(a) is the coefficient of z 1 P in the ex-

al+"'+a
pansion of (2.28). Since the mapping Ra > Z P

takes distinct columns of Mn,p into distinct powers of z, ;
N(a) occurs with correct multiplicity in the expansion of
(2.28). This proves (ii). Frdm (ii) follow (i) and (vi),
since Mn,p is symmetric and the range is orthogonal to the
null space (see [24]). Also, (iii) follows directly from
(ii) by examination of the coefficients in the expansion
(2.28). For n =0 or p = 1, the assertion of (vii) is
clear. For n > 0 and p > 1, the proof proceeds by showing
that if x ® *+ ® x (p factors) is in the eigenspace of

the largest eigenvalue, then x = 0 ¢ Cn+l. This will

establish (vii). By (ii), the largest eigenvalue is the
largest coefficient in the expansion of (2.28). First,

let np be even. Then the largest coefficient occurs only

e c— U ———————— SRS - A;"_“"—" —
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once and is the coefficient of zk, where k = np/2. Thus,

the eigenspace consists of constant multiples of the

column
Ra = <6Yl + e 4 Yp' k>Y€I"
where o is fixed and By F R ap = k. Suppose that for
some x =<fxO Ry T xn>¢ ¢ €1 and constant c #0,
CR = x® -« ® X
a

Now the y-th components must be equal, so

Co =x . o o x
+ ces +
Y1 Yo K Yy Yo
For 3 Bt Yp =t, t=0,1, ..., n, we have
= p
SOtk = (%)
or 1
[(c)p, if t = n/2
x =
. Lo, if t # n/2
since k/p = n/2. If n is odd, then Xy = 0 for all t, and
we are done. If n is even, then x has precisely one non-
zero component, so that x ® *** ® x has only one nonzero

component and CRa rnust have only one nonzero component.
But the last statement is false for p > 1 and n > 0.
Therefore, ¢ = 0 and x = 0 ¢ Cn+l, and we are done if np

is even. On the other hand, if np is odd the largest

eigenvalue of M p occurs as the coefficient of both zk
and z**!, where k = (np - 1)/2. Let o and B be fixed so
that aq 4+ e 4 “p = k and Bl R ep =k + 1. Then

the general element of the eigenspace of the largest

- e g—— — -

-
PrT SR i —

2
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eigenvalue can be written, for arbitrary constants <, and

CZ'

c.,R. + c.,R, = c.8 +c.é P
N e B
17a 2°8 1 Yl+ +Yp,k 2 Yl+ +yp,k+1)iYGF
Suppose x = <xo Xy v xn>T € Cn+l is such that
ClRa + CZRB =xXx® .- ® x

for some choice of constants <1 # 0 and <, # 0. Then the

Y-th coordinates are equal, so

c,§ + c,6 = x ces X
PP ailels
i yl+ {p,k 2 Yl+ +yp,k+l Yl Yp
For Yl = cse = Yp =t, t=0,1, ..., n, we have
= P
©1%0t,k T 2%, k41 = ()
and so
1
(cl)p if pt = k
i
X, = (cz)P if pt =k + 1
0 if otherwise

Now x can have only one nonzero component since p cannot
divide both k and k + 1. Hence, X ® *+*+ ® x has only one

nonzero component, and so ¢c,R_ + ¢c,R, has only one nonzero
P 1% 278

component. This can't happen for n > 0 and p > 1, so it

0 ¢ Cn+l. This proves

must be that ¢, = c2 = 0, Then x

(vii) and concludes the proof of Lemma 2.3.

Corollary 2.4 Mn P is positive semidefinite.
’

Proof By a standard result (see [24, Section 4.12]),

a symmetric matrix is positive semidefinite iff all its
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eigenvalues are nonnegative. Lemma 2.3 shows that all the

eigenvalues of M, p are nonnegative.

’

= . o 0 n
Lemma 2.5 Let ﬂn(z) = a, + alz + + anz € Pn’
and let x = <§O i =0 an>T ¢ ¢™1. Then
B D
_[-r_.\2p _[-7 }2p
”nnHZ = {u Iu} *juu
(n+1)P

where u = x ® --- ® x € C and I is the identity

matrix of dimension (n+l)p x (n+l)p.

Proof Certainly

2 2 2
| ol —
he 115 = lagl® + lag|” + + la |
g =
= a, a
k=0 k 'k
so that
2p s - )P
| =[2 ay &)
n'2 k=0 k "k
§ - =
= (a a_ ) (a s o)
@y ,a,=0 s T s “p
n
= 1 (a a )(a a_ )
Gy ’ap=0 aq ap ay ap
= GTIu
since
u=sx9® - ®®x =<a ey 8
<:°1 %p aer
where o = (al, " ap) € T'. This concludes the proof.

S IR~ <~ - —— A R T —

- 'r‘;’————-—
i i M
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C. Bound for Ratio of sz Norm to L2 Norm

For extended real numbers p = 1, define

HnnH i
R = max P

vttt (2.33)
g OFm €P. ”"n“ZJ

It is easy to see that the maximum in (2.33) can be taken

over the closed and bounded set S = {nn € Pn 3 HnnHZ = 1}
without changing R o' Since || - ”p is a continuous func-
tion on the compact set S, || - ”p attains its maximum.

Thus the maximum in (2.33) is attained. Any polynomial

’

for which R p is attained is called an extremal polynomial

of R Any nonzero constant multiple of an extremal poly-

n,p’

nomial of Rn p gives another extremal polynomial of R, -

’ I

Thus, extremal polynomials are not unique. Normalizing
extremal polynomials by the requirement that they have unit
L, norm does not necessarily give uniqueness. For example,

every polynomial is an extremal polynomial of R

N, 2"
Note that Rn,p S Rn,q whenever 1 <= p = gq. By Holder's
inequality, for r 2 1, s =2 1, and % + % = 1, we have

2m ; 2m . =
| 2—%{[ |v_(e2®) |P 146 ~{1 J n_(e1%)|PF de}r

1A

ni-

so that

hw Il !
n'p npr

and this establishes our claim. The last inequality also

I e
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v

shows that Hnn!l2 < Hﬂan whenever p 2, so that ;

X min 1lﬂ o= 1, pz 2
’
nn#O n ZJ
1
since nn(z) = 1 gives Hwnﬂp/nnnﬂz = 1.
In this section, we obtain estimates for R in

n, 2p

terms of the spectral radius of Mn p defined in Lemma 2.1.
’

e

Notation: For n 2 0 and p =2 1, define the integer

An p to be the largest coefficient in the power series ex-
’
2

pansion of (1 + z + 2° + -+ + zMP into ascending powers

of z. Thus, A p is the coefficient zN, N = [Egl, in this

’

expansion.

The multinomial coefficients An p will be seen to play-

14

an important role in this chapter. For example, Lemma 2.3

shows that An is identically the spectral radius of Mn

p /P’
Another example is provided by the next lemma.
%_
2 - it = P
Lemma 2.6 ||l1 + z + z° + + z ”Zp {An,Zp} '
p=1, 2, 3,
Proof From (2.3) we have
[ s n 2p _ [_1_ . n,p
(1L +2z + +z ”2p) = {Zni Jc(l +2z + +2)
1
2p
(1l +z 4+ - +E“)pd—z-}
i 1
2p
e I n,2p dz }
" ymee § (LA RorstE ) T
i Tl c znp+
71_
- P
{Xn,Zp}
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We note that, for fixed integer n = 0, the sequence

1

{An'zp}ﬁ, R T - N P

is monotone increasing. This follows from Lemma 2.6, and

the fact that

2 2

L + 24 38° ¢ oo 8, 21 +2 +2° ¢ s0¢ #2%
2p

2p+2
The next theorem generalizes the bound (2.14) of the

earlier example. It is the main theorem of this chapter.

Theorem 2.1 PFor n =01, 2, 3, ... and for p= 1, 2, .es;
1
T |
fh i I = 2%
kB % R me & (4 1% 8 Um e (2.34)
/n+l n,<p n,p

The second inequality in (2.34) is strict if and only if
n =1 and p 2 2, while the third inequality in (2.34) is

strict if and only if n 2 1 and p =2 3. Furthermore,

R =vn + 1 (2.35)
n,«
and an extremal polynomial of Rn » 18 Jjust
’
14 548" » see g 2P

Proof From Lemma 2.6, we have

2 n
L + z + z° + +zn?£_{xn’2p
5 =

L 242 4 e 4 znuz yn + 1

1
}75
Rn,2p e

which proves the first inequality in (2.34). Let 7 (2)

— L n —_ . T
=a, +az+ +az, and let x = <a0 a, an>

€ Cn+l. From Lemma 2.1 and Lemma 2.5,
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1 1
71, fuTMn ulfﬁ (;TMn v12P
L BuH. < max(-—:TLE—} (2.36)
n"2 L uu J vV£0, v'v
1
o
i : . (n+1)P
where v is an arbitrary nonzero vector in C and
u=x® -+ ® x (p factors). Therefore,
1
|l
R = max ) }75 (2.37)
n,2p g TR0, By
n

which is the second inequality of (2.34). Finally, from
the identity
(L+2z+ - +2MP = 1 +24+ .0 42"

¢t oy e et i g

follows immediately the inequality

)‘n,p < (n + l”‘n,p—l’ ok e 1 (2.38)
Since A =1, (2.38) implies
n,l
-1
)\n’pf(n+l)p 7 P2 L

which proves the third inequality in (2.34). Next, note
that inequality (2.36) is an equality if and only if u is

in the eigenspace nf the largest eigenvalue, namely Xn,p'

of the matrix Mn p’ From Lemma 2.3 (vii), there exists
’

an element of the form x ® .-+ ® x, x # 0, in the eigen-

space of )\ if and only if n = 0 or p = 1. Thus, Lemma

n,p
2.1 implies inequality (2.36) is strict if and only if

n =z 1and p 2 2. Thus, the second inequality in (2.34) is

Lol ro " —

e op—— e - L N B
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strict if and only if n 2 1 and p 2 2. Also, the third
inequality of (2.34) is an equality if and only if (2.38)
is an equality, which is the case if and only if n = 0 or
P =1 or 2. Hence, we have left to prove only (2.35).

From the Cauchy-Schwarz inequality,

Il = |nn(zo)|, sore z, € C,

~ n

= ]ao +a;z, + + anzol
r lf 11

Z | n 5 7{ ? s Z

-S z Iak| lzol |
| k=0 ] k=0 J

= lln |l. v + 1

Equality is possible with, for example, 7 _(2z) =1 + z

+ e + zn, so that (2.35) follows. This concludes the

proof.

Corollary 2.7 For n =20, 1, 2, ...,

il
; Bl
lim {An'p} =0 %+ ] (2.39)
E}roo.
Proof Let n;(z) m ]l 42 $ s 4 2" in Theorem 2.1.

Then, using Lemma 2.6,

*
{An,Zp} Y l:“nHZp
oy *
/n + 1 'nnnz

IA

1
(A, JP s AFT

n,op

so that taking the limit as p = = finishes the proof since
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Note that Corollary 2.7 shows that for fixed n, both

the upper and the lower bounds of R in (2.34) go to

/2P
/Yn + 1 as p goes to infinity.

At this point, it is appropriate to point out that the

author communicated the result

1
R = {A }26 (2.40)

n,2p n,p

(without proof) privately to D. J. Newman who discovered

the following short proof of this result: Write

- k
7 (z) = ] az ZO0 (2.41)
n k=0 k
np ;
(L + 2+ **+ + zMP = z A.z7
j=o )
so that
A = max e
Hry 0<j=np J

Now, since the powers of z are orthonormal on the unit cir-

cie C, with z = eie,
- ot Jcllnn(z)]piz do
R [T 1 e )] e
C'j=0la,+°+ +a =] 1 P
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n z 2
= P e soe g (2.42)
j=0 o, ++ s+ =3 1 %2 %
J 1 p J p
4
Schwarz's Inequality gives
2
z T a, = Z ‘IZJ
a + +a_=j 1 P Dgdre » oty med
2
T e
gy e ekg mgie S Rt d
L i
= A a a (2.43)
J A = s s
al+ +ap 7 15 P
so that
02
2p -
|l < AL z a a l
nep j=0 J o+ +a_=j1 %1 ap
n Z 2
= A !a a
n,p[j=0 a)+ +a =31 *1 ®p J
! n 2\p
= A a.
2p
= T |
An,p”1n‘2 (2.44)

The inequality (2.44) immediately implies (2.40).

Newman's proof gains in brevity over the algebraic
approach of Theorem 2.1. It depends heavily on the fact
that the powers of z are orthonormal. In spaces where the
powers of z are not orthonormal, it is not clear how to
modify Newman's proof in order to get useful results.

(The difficulty is caused by the fact that the product of

two orthonormal polynomials is not, generally, orthonormal

OB~ e 4w
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to either of the polynomials in the product.) The algebraic
approach of Theorem 2.1 is, however, generalized without
too much additional difficulty to situations in which the
powers of z are not orthonormal. See Chapter III.

It is interesting to note that the constants Aj of
the Schwarz Inequality (2.43) each turn out to be eigen-

values of the matrix Mn B of Lemma 2.1.

’

D. The Spectral Radius An

’

The integers An p have a geometrical significance in
’

RP. (This result is apparently new.) Consider first the
case (p = 2) of a square lattice with n + 1 points on a
side. What is the largest number of points that can lie

on any line perpendicular to a major diagonal of the square?

We easily see the answer is n + 1 (= A ). Next, consider

n,2
the case (p = 3) of a cubic lattice with n + 1 points on a
side. What is the largest number of points that can lie

on any plane perpendicular to a major diagonal of the cube?
In this case the answer is not so clear, but we will show

that the answer is just An More generally, and more

3-
’
carefully, the set ' can be considered as a finite "hyper-
cube" lattice in RP with n + 1 points on a side. Let T
be the hyperplane in RP consisting of all vectors in RP

orthogonal (with the usual inner product) to the vector

ag = {1, 1, ..oy 1) ¢ R°. Thus, dim T = p - 1. Let

TQ = 8+ T o € ®P. Then, we show that
max [~ A 1 (N (2.45)
GelRp a nlp
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where the small "o" notation in (2.45) denotes the number
of elements in the set. Let a = (al, 5 oo ap) ¢ RP with

ap # rce to, =8, WithB = (B), ..., B) ¢ RP, we have

B € T if and only if (B - a) 4 @y if and only if B; + ---

+ Bp = oy + s + ap = s. Therefore, Ta NT # @ if and

only if s ¢ {0, 1, 2, ..., np}. Hence, by Lemma 2.2,

N(a&), if there exists a € Ta Al
O(Ta flE) =
0, if not

An inspection of the sum (2.27) shows that N(d) = N(B) if
& and B both lie in T I', so that O(Ta N I') is unambigu-
ously defined. This proves (2.45) by definition of An,p'
In certain cases, the integers xnlp possess a gener-

ating function. Polya-Szegd [29, Part III, Chapter 5,

Problems 217-218] derive the expansions

1 o
= Z A2 pwp
- ’

/i - 2w - 3w2 pae

=1+ w + 3w2 + 7w3 + 19w4 + -

l oo
—_—= ) A Wt
A= %u pug %P
2. 3 4
=1+ 2w + 6w "+ 20w + 70w +

P

=
o)
H

I

—
el

|

—_— 0 w
A= | peo 1P

1l + 3w + lsz + 3Sw3 + 126w4 + °°°

Unfortunately, the methods used to derive these expansions

are not easily extended to the general case.

a




43

The integers An p are also related to a certain prob-
’
lem in probability. See, for example, Feller [11, Chapter
11, Problem 11].

Finally, the integers A have a combinatorial sig-

n,p
nificance that is explored by MacMahon [22, Section 1IV].
(This reference was pointed out by George Andrews in a
private communication.) A composition of an integer I is
a partition of I in which the order of occurrence of the
parts is important. For example, there are three parti-
tions of I = 3, namely,

3= 3

3 =2 +1

3=1+1+1

while there are four compositions, namely,

3 =3
3 =2 41
3= 1 + 2

3=1+1+1
MacMahon shows that the number of compositions of I into
exactly s =z 1 parts, with each part restricted not to ex-

ceed t > 1 in magnitude, is precisely the coefficient of

zI in the expansion of
tys
zs(%———i—] =251 +2z 4+ °-° zt l)s
1 -
Hence, the integer ) is the number of compositions of

- o2 ] -

into exactly p parts, each part being restricted not to

- - e B e

L -y o y -

F— P O

proos
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exceed n + 1 in magnitude. For n = 1 and p = 2, we have :
I = 3 and Al,2 = 2 which is precisely the number of com- ]
positions of 3 into n + 1 = 2 parts with each part not
exceeding 2 in magnitude.

The combinatorial interpretation gives a bound for
A . Define the denumerant D(n) of the integer n to be the

number of p-tuples (xl, el xp) of solutions of the

equation
xl+x2+"-+xp=n (2.46)
where Xyr "t xp are required to be nonnegative integers.

By a theorem of Bell [6, 30], D(n) is a polynomial in n

of degree p - 1. Specifically, Bell [6] states that

D(n) 1 bt ke (2.47)
n) = —m————- n r "

(p -1
Since An p is the coefficient of zN, N = [np/2], in the

’
expansion of (1 + z + 22 + e 4+ zn)p into ascending powers !
of z, and since we require 0 = X =10 in (2.46) to compute
An,p [see (2.27)], we have
< < p(BR .
\,p.S DN = D( =) (2.48)

It is not hard to show that

D(F) = B in s F (2.49)
2P 4in = 1)1

Considering (2.49), (2.48), and (2.34), gives

p-1 1 A |
R < [ 2 o wmiy® o€ (2.50)
oy Ep P - 11
Unfortunately, (2.50) does not improve (2.34) since
- - et = i
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~1
pp

P L - 1)1

v

1, p = Ly 85 35 sss (2.51)

as can be seen by showing that the left hand side of (2.51)
is strictly increasing in p.

It is possible to give explicit expressions for An =
’

Define, for integer p = 1 and for all real x, the polynomial

(X + L)X + 2}.2:-(x 4+ p = 1)

(p - 1)! P =

a (x) = (2.52)
P 5 P

"
.—J

The polynomial ap(x) has degree p - 1 in x which, on the

nonnegative integers, is just

p+k -1
a. (k) = < v kK = 0, L 2, ol (2.53)
P k

(For a connection between Stirling numbers of the first
kind and the polynomials ap(x), see [29, Part I, Chapter 4,
Problem 199].) The next theorem shows that, for fixed p,

)n p is "almost" a polynomial of degree p - 1 in n.
’

Theorem 2.2 For integer p = 1,

p-1 )
= -1y (%P ot iR D’
*n,2p ~ jzo( = (j)azp((p jIn - 3), (2.54)
n=20,11, 2, 3, ..
p-1
j (2p~-1 b i, "
J{'jzo( i ( J)aZp-l((p j=3n j)/n=0,2,4,
‘n,2p-1 "] (2.55)
: -1
o ”J<%>9a ((p-3-3n-3-3),0=1,3,5,
§=0 J 2p-1 2 2
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Proof For p = 1, the theorem is easily verified.
Let p =2 2. From the binomial theorem and the binomial

series (see, e.g., [l1, Equation (3.6.8)1])

G+ 24 2° % 222 4 2P

T iy

+
2D 1

(1 = 1Pel - 23 P

g

320

o]

3 /py .3 (n+1) k (2.56)
(-1) (j)z ][kgo a (k) z

where ap(k) is defined by (2.52). Let N = [np/2]. Since
N

xn p is the coefficient of z ', (2.56) implies
A = ) (—1)j Pla_(x)
TP 5 (n+l)+k=N (3) g
j=0, k=0
[N
n+l

-1)3(® L
jzo( DI(®)a, (v - 5@+1)

It is easy to see that

N -1
[m] < [&—2‘—], n=>20 (2.57)

If (2.57) is a strict inequality for some n = n', then for

each integer j such that

] <9 = B

Ln
we have

-(p - 1) = -[?—%—l}:;u - §n* +1) <9

so that by (2.52)

M
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ap(N - j(n'" + 1)) =0

Therefore, whether or not (2.57) is a strict inequality,

BA
‘p = jzo(-l)3<§)ap(N -jm+ 1)), n=01, 2
(2.58)

Specializing (2.58) proves the various cases of the Theorem.

Table II.l1 lists a few of the multinomial coeffi-
cients An,p‘ Table II.2 gives values for the bound (2.34).
The entries in Table II.2 have been rounded, so to con-
struct a bound in (2.34) from this table the last digit
might need to be increased by 1. Both tables were con-
structed by means of a simple synthetic multiplication
scheme. A scaling trick and double precision arithmetic

were both required to compute

) 510
100,256 = 1-09169 x 10

on the UNIVAC 1108 in just under 39 minutes. Utilization
of the symmetry of the expansion coefficients of (2.28)
would have reduced the computation time by nearly half.
Alternatively, Theorem 2.2 could have been used directly.
This approach requires more care because of the cancella-

tion inherent in (2.54) and (2.55).

Corollary 2.8 The following equations hold:

X« FOr &ll n = 0, A = 1.
n,1l
11. For &ali n = 0, A = n + l.
n, 2
2 k2 3 pu
1ii. Forn= 1, 3, 5, «oey An,3 = Z(n + 2n + 1),
o it 4
and for n = 0, 2, 4, ..., An,3 = Z(n + 2n + 3).
- - — I—
PR ot St
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iv.

vi.

i

viii.

1%

For all

For all

An,6

For all

An, 8

For all

> 0,
2( 3 2 s 3)
§{n + 3n 5 n + 7}
3ISI ’
115( 4 142 2 100 27
mn + 4n +_3n +——§-n+ﬁ]
= Oy 2, 4, i
115( 4 148 2 112 192
Iﬁf(n IR S >3 +S3 0t IiE
>0,
11 f.8 4 515 3 125 2
75(“ + 5n  + a1 n- =+ a7 n
74 20
+1—i-n+ﬁ
>0,
151( 7 3241 5 5635 4
3 S[n + Tn + 151 n- + 151 n
6034 3 4018 _2 1599 315
Nl 5 WORET P T TR AR e
>0,
15619 ( 9 8 569634 _7
36288(“ Bl B
, 1363446 6 _ 2127531 5 2251178
15619 “15619 15619
, 1625216 3 780804 2 234288
15610 15619 15619
i 36288)
15619

The coefficient of n6

all n =

0.

; : } 5887
in An'—? 18 m—z—', for

259723

Sy & L ;
The coefficient of n- in An,9 is 53440 oL

all n =

g.
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Proof Use finite differences in Table II.1l, in light
of Theorem 2.2.

For integer p = 1, let Cp be the coefficient of np-1
in the polynomial expression for An,p‘ (The next theorem

will show that cp is well defined.) The preceding corol-

lary gives the following table.

TABLE II.3. The Coefficient ¢

P
1 3.

c (c )26 {EL i

P p b
P cp rounded rounded rounded
1 1 1.00000 1.00000 1.00000
2 1 1.00000 1.00000 1.00000
3 3/4 .75000 .95318 1.15470
4 2/3 .66667 .95058 1.14471
5 115/1.92 .59896 .95004 1.43671
6 11/20 .55000 .95140 1.1270L
7 5887/11520 .51102 .95318 1.11839
8 150/315 .47937 .95508 L. 11076
9 259723/573440 .45292 .95695 1.10407
10 15619/36238 .43042 .95873 1.09819

The extra columns are included for later reference. Also,
3ince (2.49) holds for all n no matter how large, we see
that

P

p-1
< P PR L
P T gPel, o np[z

P = 1)1

where the second inequality follows from Stirling's in-
equality [see equation (4.21)]. An explicit form for cp

is given in the next theorem.

et e o AR T m——
Ll ) &
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Theorem 2.3 The numbers cp, p 2 1, are well defined

and are given explicitly by

=5
e &
€y L ) (-l)k[E)(p S BRYPTE gt 2% s
P 2P™(p - 1)1 k=0
(2.60)
oo ' p
iy % f {512 x] dx > 0, p=1, 2, 3, ... (2.61)

Therefore, the polynomials (2.54) and (2.55) for An p are

’

of degree precisely p - 1 in n.

Proof By Theorem 2.2 and (2.52), it is clear that cp
is well defined if p is even. If p is odd, then the two
expansions of (2.55) corresponding to n even and n odd,
respectively, show that cp is the same in both. Therefore,
cp is well defined. Then (2.60) follows by using (2.52) in
Theorem 2.2 and examining the leading coefficient. Also,
the integral (2.61) is given explicitly by Jolley [19]

(see also Bromwich [8, page 518) where it is attributed
without reference to Wolstenholme) and is seen to be iden-
tical to (2.60). Finally, from the integral expression
(2.61), it is easy to see that cp must be positive. This

completes the proof.

We remark that the sum (2.60) seems to be related to
Stirling numbers of the second kind. See [29, Part I,
Chapter 4, Problem 189].

We remark also that Nuttall (27) states that the in-
tegral (2.61) is important in an electrical engineering

application (where it appears in certain "nonlinear
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systems subject to input processes with rectangular
spectra"). From the integral (2.61), Nuttall derives the

asymptotic expansion

4, 6 PR S TRE 1 -
- /ﬁ{l 20 m. o FLAD ;2' £ O[p—i]}’ =g
(2.62)

and shows how to compute cp rapidly to high accuracy (i.e.,
18 significant decimal digits) for any positive integer p.
Finally, based on the preceding theorems and Corollary
2.8, we make the following Conjectures:
A. The polynomials (2.54) and (2.55) for Xn,p have
positive coefficients.
B. For each fixed integer p > 1, the polynomial
expressions (2.54) and (2.55) for An p each have

’

an asymptotic expansion of the form

¥ p-1 1 - -
An,o = cp(n + 1) {1 + o{;j)}, n

&

Conjecture B is really a conjecture about the coeffi-

cient of np“2 since from Theorem 2.3 we clearly have the

asymptotic expansion

= p=l 1) > ®
g cp(n + 1) {1 + o(nj}, n (2.63)

’

We now discuss Rn 2p for p fixed as n goes to infinity.

From Theorem 2.1 and (2.63), for each fixed p =z 1, we have
1 1 1

- 2p Z " 2pf 1 "y~
hozp * (e in + 0T F(1 s olb) s

and also
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o)

1
R > (Czp)iﬁ(n + 1) 29{1 + 0(%l}, n -+ @ )

n,2p

Therefore, it is very tempting to make Conjecture C:

L
¥ 2 % 1 } &
Y Ap(n + 1) {1 + o(H) , n +
for each p = 1, 2, ., where Ap is a constant satisfying ‘
A -
p P
(o = A =
( 2p) o (cp)
If Conjecture B is true, then we would replace o(l/n) in i

Conjecture C by o(l/nz). However, at this time we prove

only the following theorem. i

Theorem 2.4 For p = 2, 3, 4, and 5, and for all n = 0,

1 1 1 1 —LI e :
(c )75(n + 1)7—55 <R = e )75 n + _£~p- }2 :
2p ne2p < TP c '
P J
(2.64)
Furthermore, for p = 2 and 3, ‘
1
1 1
c 2p
(_EE (. }%P <R g 19~ 35 ais B (2.65)
cp n,p n,2p n,p
where
1 1
1 1
4§ [
c 7 c [
T R i) SR [11)
[CZ = [3) P .90360, {E;J = \Tg .94962

Proof Direct computations in Corollary 2.8 show that

for p =2, 3, 4, and S, we have

2p-1
An,2p > czp(n k) (2.66)
S —— - N ——_ .
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1
o e
(2.67)

S

i3
An - = cp n + [E_
[~ p

Applying (2.66) and (2.67) in (2.34) proves (2.64). The

lower bound in (2.65) is proved similarly, since

1 i
3 s
{An’4} . [%(n3 + 3n2 + % n + %)14
AT T l (n + 1)° J
i
1 = 1
2 T A
(ot (9,
and
5 5
{kn,ﬁ} " { An,6 1
AFI |+ D3
g
> l—]l% (n2+2n+%)}
20
3
o féf }6
c3 n,;3

This completes the proof.

Computation has shown that the first ineguality in
(2.65) is not valid for p = 4, so it cannot be general-
ized for larger p in a direct manner. The inequality
(2.64) follows directly from (2.34). Therefore, the
difficulty in generalizing (2.64) lies in extending (2.66)
and (2.67) for all p = 1.

The next result is essentially a corollary of Corol-
lary 2.8. We state it as a theorem because of its inter-

esting form, as well as the fact that we conjecture it to

SA— - w I . - e g =
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hold for all p = 2 and not merely the cases cited.

Theorem 2.5 For all integer n = 0, and for p = 2, 3,
4, 5, 6, 8, and 10,
e
7y S <cp>754Ln s [51;) [ (2.68)

for all L € Pn with equality if and only if Ty = 0.

Proof For p = 2, 3, 4, and 5, this is merely a re-

statement of Theorem 2.4. For p 6, 8, and 10, (2.63)
follows as in the proof of Theorem 2.4 by noting that
(2.67) is valid for p = 6, 8, and 10 as well. This com-

pletes the proof.

A particularly nice result is (2.68) with p = 2;
that is,
i
Ea s = fin il < (n + l)I”n I (2.69)
wie - L Seeiliuds 1o o g

The left hand inequality follows, as mentioned earlier,
from HOlder's inequality. 1In particular, if L is

restricted to have unit modulus coefficients, then

(i1 ": = vyn + l, and
ntd
& 5)
(n + l)7 oo i AR SO A (0 5L l)E (2.70)
- | n|4 @

The lower bound in Theorem 2.4 can be used to estimate
*
how well the extremal polyncmial of Rn o' hamely, nn(z)
!
=1 %84 v %8, approximates an extremal polynomial of

R . For example, since c > (.91915)10 and

n,2p 10
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e. (.95004)10, we have for p = 5

5

*
|
a0

1
TTn’.’Z

«21915(n + 1)2/5

A

< .95004(n + l.l3672)2/5
In particular, for n = 100, we have

*
| I
5,82057 < —220 20 . < 6.02152

100,10
Imy00Mt2 :

This result is, of course, not as sharp as could be had

from (2.34) using Corollary 2.8 (or Table II.2); that is,

1
% ates M 00,10"7 _ 1m100lh0
= il *
vV | |
101 ,lﬂloohz
1
10

= RlOO,lO < (AlOO,S) < 6.01825

with the first and last inequalities due merely to rocund-

ing the lower bound down and the upper bound up.

E. Extension to Derivatives

So far, bounds of the ratios of norms cf LI have been
investigated. We now show that bounds similar in spirit

to that of Theorem 2.1 can be given for ratios
ffm' )

n 2
T—_T_E (2.71)
i nnxlz

where the prime denotes differentiation. An algebraic

proof of such a bound requires new theorems very similar
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in content and proof to Lemmas 2.1-2.3. The matrix iden-

tity (2.23) of Lemma 2.1 becomes

s
)
mri, = {GTM(l)u'\E (2,223
n 2p n,pJ
CL): o (1) .
where Mn,p = [ma,B] with
(1) E
m = T a8 |6 ot i (2.73)
a,B [k=1 k k} al+ +ap,81+ +..p
The integers (2.27) in Lemma 2.2 become
n P 2
8 () = y [ T jk) (2.74)
jl' .o -,jD=0 k=1

with the sum taken subject to the constraint jl Kol Aedy jp

C LSRR ap, and the polynomial (2.28) becomes

P g 2 n~l)p

(1 # 2% 3 3%3% § =os's 55 (2.75)

As in Lemma 2.3, the coefficients of the expansion of

(2.75) can be shown to constitute all the nonzero eigen-

values of M(l). Defining X(l) to be the largest coeffi-
n,p nlp

cient in the expansion of (2.75), it is then easy to show

that (2.71) is bounded above by xélé.
[ §
This procedure cave the original proof of the next
theorem. Fortunately, however, Donald J. Newman's short

proof of part of Theorem 2.1 can be adapted to prove the

same theorem with less work.

Notation: As mentioned above, let kél; be the

’

largest coefficient in the expansion of (2.75) into

ascending powers of z.

o ————— e - o — SAg— - o -2, - . - - . —
-~ - A —
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Theorem 2.6 For all 0 # wn € Pn’ and for p = 1, 2,
3' .o oy
Bt |l 2}_ 1 %-_1_
T_E_EE < {A(l)} P e nfaa? 4 2% 5 3% 4 * 0% 2
e n,p
n'a
(2.76)
Furthermore,
”‘}T':' l
== s /g n+ D2+ 1) (2.77)
L
and equality is attained in (2.77) for
2 T
nn(z) = (L & 2 + 2+ + z)
Proof With n_(z) = a, + az + et # 0,
(s K
zn (z) = ) ka.z" {2.78)
k=0 -
Now, let
! n :
P11 b % a e e e 0202 2 T3 (5 g9
j=o0 )
so that
(
)(l) = max Xfl)
n,p 0=3=np ]
With z = ela,
" |..2p - 1 i e ,Zp 2p -
Hhaidn = ET"J Img (20 |72 ™ a8
= e
f
= & | ltzrp@Pi? ao
27 n
G
ir- B Y Py 2
- = | [(Z Jazj]‘ ae
<% ict\4=0 )
e A et g T ————
R P A z -y

dhabnfies e

Shnsesesteedhesade

P
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3?, 7 2
; = (a,a_ ) (a_a_ ) (2.80)
} j=0‘a1+ +ao =] 1 Oll L“p
|
! |
| with the sum over a = (al, ; ap) €T By Schwarz's
Inequality,
; 2
(a a ) (a a_ )
=3 1 p o o
a + +ap—3 1 P
< ) oy =7 e e
al+- ey =25 P
[ Iowe 12]
+- =
®q D 3 P
B e
Q-l+ +ap=] 3 P
Hence, we have
' np
T L ([, (1) ) |a w12
n'2p N j it a J
. 3=y Gyt e oda =]y d P
n P
< *r(;l){ ) ;a.y?-]
' P 3=0 J
o (l)q |2p
= Ay p LD (2.81)
o
This proves the first inequality in (2.76). From the
identity
(12 & 22z 4+ 4 n22"HP
= (12 + 222  wsw & nzzn-l)
. (l2 - 222 + e+ nZZn—l)p-l’ = <
we have the inequality
L - - AR T TR g e < — ]
et — e p— R——
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61y S 2 2 o T 0
Xn,p = (T @ 2% F + n )An'p_l

X(l) 2

Since = n , this implies
n,1

A(l) < n2(12 &= 22 4+ e e + nz)p-l (2.82)

n,p

Extracting the 2p-th roots yields the second inequality in
(2.76) .

Finally, the Schwarz Inequality implies

Ity = 1"$(Zo)|' some z, € C
n
. v k
= !kio kakzo l
' 117 11
P B psls B re
s {1 Ikzg"1%(%) ¥ la ] |
| k=0 k=0
1
n
" [ ) k2)7 ENA (2.83)
k=0

with equality possible in(2.83) for n = 0, e.g., with

n)'

in(z) z(L + 2 + - + 2 Using the identity

2 5 nin + 1) (2n + 1)

k 3

0

(2.84)

He~13

k

in (2.83)completes the proof.

Corollary 2.9 For all 0 # Th € Pn' and for p = 1, 2,

3, 0oy
I 2 - 3 =t
—22R (%)7 Pin+ 11° P, ne0,1,2 . (2.88)
"Tnh2

Proof Follows from (2.76) and (2.84).

T U — .

E—
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14

Corollary 2.10 For all 0 # L € Pn

with equality possible in (2.86) for all n 2

Proof Use (2.76) since Aéli = nz. Let

to prove equality in (2.86).

(2.86)

0.

[}
N

ﬂn(z)

The inequality (2.86) can be obtained directly. For

rn(z) = a, + az + o + anzn,
n
" k~-1|
fim2ll, = ” } ka.z l
n'2 ek, TR I2
1
n 2
= 1 et
k=0
< |
< nfim I,

This method shows easily that the maximum in
attained only for nonzero constant multiples
These results are easily generalized to

derivatives. Define Aéké Ffor ik =n0n il o,
’

largest coefficient in the expansion of

r -jp

n 2 |
J 2y _2-k|
|2£k<k) : J

«

into ascending powers of z. Denote the k-~th

(k)

m_ by L

n

Theorem 2.7 Let 0 = k < n. For all 0 # =

and for p =1, 2; 9 veey

(2.86) is
of nn(z) = 2",
higher order

n, to be the

(2.87)

derivative of

n € Pn,



o

¥, . 0\
< k(A :
T, ki An i (2.88)
L 3oa
< k!G:)p gt <P (2.89)
< k! /O (2.90)
where
n
K 9\ 2
Q = zzk(k) (2.91)
Furthermore,
R
; ‘ < k! Y (2.92)
HEI .
n"2

< ki /;—:?f:i'<§)

with equality attained in (2.92) by

2

mz) =tz 42t e e s )R

65

The proof of this theorem so closely follows the proof

of Theorem 2.6 that it is not given here. Alternatively,
the proof could proceed algebraically.by proving results

anélogous to Lemmas 2.1-2.3. We emphasize that (2.88) is

the spectral radius of an operator Mék; which can be de-
’

fined in a manner analogous to Wow in (2.23) and Mél; in

(278}

A more natural bound than (2.88) is given later in
Theorem 3.7. The result given there is not, however, as

good as (2.88).
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Corollary 2.11
(k) 1
[ I -y
n 2p - o
| ”"nnz

k +
R
Proof

Under the conditions of Theorem 2.7,
1 ) i
1 2
2k 1

From (2.91),

3]

«11.

ZP (2.93)
1 2 n 2k 1 2 (n+l 2k (n +l)2k+l
O < kT Z J < kT J t dt = 5
) j=k 3 k (2k +1) (k!)
so that in (2.89),
: Al
1 3 1 Itk 1% =
= - 1-=2 = 2k+1 |2 2p
ki(fP o® P < (xy)’ PRl tntl)
|
L
which proves (2.93).
Better estimates than

(2k + 1) (k!)zj

(2.93) can,
by using better estimates of Q in the proof of Corollary

of course,
Corollary 2.12

1
‘ (k)P
llm{kn D}p
pre®

&

be found
= Q

Under the conditions of Theorem 2.7,
Proof Define

(2.94)
n 3
wi2) =} §i§ = 1) (3 - k + 1)2zJ
3=0
Then
Hn(k)H .,
—T%_T—ER < k!{)ék)}ZP = k! /Q
a2 P
Since
i ———— i - o g 1 T “". "y r 4 " %




-

TR

—_ = k! /6
Iﬂ‘nHz

(2.94) follows immediately.
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Chapter III

COMPLEX FINITE DIMENSIONAL FUNCTION SPACES

A. General Spaces

The method of the preceding chapter can be generalized
considerably. One direction is to replace the unit circle
by a rectifiable Jordan curve as in SzegS (31, Chap. XVI].
Another direction is to replace the unit circle by a real
interval and change the integral to some Lebesgue-Stieltjes
integral as in Szegd [31, Chap. I]J. A modified version of
this latter direction is taken here because of the nature
of the examples in Chapter IV; however, the last part of
this chapter deals again with complex polynomials on the
unit circle.

Let w(t) and ¢(t) be nonnegative Lebesgue measurable
functions on the real intervals (a,b) and (c,d), respec-
tively, such that -» < a < b € 4o , =» = ¢c < d = +», and

(b d
0 < J w(t)dt < +m, 0 < f p(t)dt < 4w (3.1)
a c
We further assume that w(t) > 0 almost everywhere on (a,b).
For extended real numbers p = 1, let Lg[a,b] be the class of

measurable complex valued functions £ on (a,b) such that

b 1
[U [£(t) |P w(t)dt}p <», 1
a

| inf smépb lg )|, p = (3.3)
; g a<t«

1A

p < +w (3.2)

i
¢
i
{
b4
’I
|
l
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where the inf in (3.3) is taken over all bounded measurable
functions g on (a,b) which equal f almost everywhere. Note
that HfH: is not necessarily egual to Uf”i because these
norms depend on the interval of definition of w and ¢, re-
spectively. Note also, that w(t) > 0 almost everywhere on
(a,b) implies that Ufug = 0 if and only if f(t) = 0 almost
everywhere on (a,b). From this point on, we will consider

two measurable functions equivalent on (a,b) if they are

equal almost everywhere on (a,b). As is customary, we re-
gard L;[a,b] and Lg[c,d] as eqguivalence classes of functions.
Therefore,
b
(f,9), = J E(e)glE] (t)rat (3.4)
a

. . w
defines an inner product on Lz[a,b].

Lemma 3.1 Let p = 2 be an integer. Let Iy € Lg[c,d],

K= 4, dee Pl Zhen

=g

dl o < ! [|¢ (‘) 5)
I gk(t) $p(t)dt = ng"D S
c'k=1 &

k

1

k5 9y #0, k=1, ..., p, almost everywhere on (c,d), and

if $(t) > 0 almost everywhere on (c,d), then (3.5) is an

equality if and only if there exist nonzero constants Cy
o5 such that cllgl! » Gylgn) & +o =g |gp| almost

P
everywhere on (c,d).

Proof For p = 2, the Cauchy-Schwarz Inequality cives

2

NS

d
f lg, (B)g, (&) [4(t)at = [gyl3lg 03

~
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1f 9; # 0, g, # 0, and ¢(t) > 0 almost everywhere on (c,d),

then we have equality iff there exist nonzero constants cq

and c, such that cllgll = czlgzl almost everywhere on (c,d).
Now, suppose the result holds for some p = 2. With
P -}» y c% - ki
4 p+l a P
Jc e gki¢ i Jclgp+ll i gk}¢
L :
< (| igp+llp+l¢}p+ [fjlgl gplq¢]q (3.6)
1
< !!gpﬂa;gﬂl El!i (1g,1)q'|¢}q 8.7
p+l b
= kzl “gkhp+l < 4+ (3.8)

where (3.6) is HOlder's inequality, (3.7) is the induction
hypothesis, and (3.8) follows from pg = p + 1. If Iy # 0,
k=1, ..., p, and ¢(t) > 0 almost everywhere on (c,d),
then (3.6) is an equality iff there exist nonzero constants
a and B such that

|9 a.e. (3.9)

= Blgl-..gp

By the induction hypothesis, equality holds in (3.7) iff

there exist nonzero constants Cl' Ve cp such that

- — e e — o

——— 3 P s 3 — }4-;'.;”:

Rt PRE RS & G oy ot s ) s Sl ——————" | " gt pg— S s —————
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= s = |
cllgll cplqp., a.e. (3.10)
Therefore,
Jdlp+l p+l o)
T g6 = 1 gl
clk=1 K k=1 & Pl

if and only if (3.9) and (3.10) both hold. Now (3.9) and
(3.10) imply

Ay [P = sﬁzﬁrg IHEP.]g []...[|g ,”q, a.e.

S l p 2 p p J
= C]gp!pq, a.e
+1
= 6|gp|p ; a.e

where § is the obvious nonzero constant. With

1
ac +1
& m
p+1l 5 )
we see that
| i - e A 2
cyigyl = = cplgpl = cp+l|gp+l|, a.e. (3.11)

Since (3.11l) also implies (3.9) and (3.10), this completes

the proof.

Lemma 3.2 Let p > 1 be an integer. Let Pn be a sub-

space of Lgla,b] N Lgp[c,d] with a basis {h h i hn}

Ol l’
which is orthonormal with respect to the inner product

(f,g)w. Let

Trn(t) = aoho(t) + alhl(t) 4 Y @ anhn(t) € Pn

e —————————— L g i - . IS ——— —— - PR

-~
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- =yl T n+1l
and let x = <a0 a, an> € C . Then
IL
1¢ = =T ¢ P
Hnndzp 24w Ln,p u} (3.12)
and
ZL 1
I iy = B2 1 u]°F = {&¥ 4] (3.13)
- (n+1)P :
where u = x ® -+ ® x (p factors of x) € C , I is the
identity matrix of order (n+1)®, and Lg 5" [”a 8] is the

hermitian matrix of dimension (n+l)p X (n+l)p given by

u = (h h. ; R seeh ) < doo (3.14)

o, B Bl Bp ay ap ¢
for all a = (al, i ap) € Iy B = (Bl, cee, Bp) € .

Proof Since

P )
[n_(E)]® = a =<sa h (t)-«+h: (t) (3.15)
“ 0r e ra,=0 L | G %3 %p
we have
2 d
(hm,18p) °F = f [n, () 1P TET1P0(t) at

, ( E { 1
a s e h e e
| Jc[al,...,ap=o By By B o

r n
. L Z aa ..-aa ha ...hatl;)
al,--.,ap=0 i o P
= ) Z a a a a,
0.11 I’lp Bll' Iep al 0’F) Bl Bp a'B
= 3 L?
u Ln,p u

Y =S e s o p——el
— PO P S =
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This proves (3.12). That L: p is hermitian follows from
’

Yo = . The finiteness of (3.14) is an immediate
a,B B,a
consequence of Lemma 3.1. Finally, since the basis is

orthonormal,

2 2
(Im_13)% = lagl? + lay 1% + + la_|?
n —
3 kZO k %k
so that
2p L e
(I 11%) ={z % a.)
n'2 k=0 K wie
E ) (aa P ) a, 8 )
Uy o =0 1 o) 1 P

This concludes the proof.

Lemma 3.3 Under the hypotheses of Lemma 3.2, the

matrix Lg p is positive semidefinite.
’

Proof Let v = <vy>, a = (al,...,ap) € T, be an arbi-

(n+1)P

trary vector in C Then, with 8 = (Bl,...,Sp) € U,

85 ¥ =<1 g8 Y8luer

= ) fhy “*shy oh, B, Y.%
<Bl,...,8p B TR ok e R

<(Vo’hal°"hap)¢>a€F

where

E——t
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v, = v h, ¢++h
0 Bl' .,B =0 Bl, pr Bl Bp
Therefore,
n
_T ¢ -
v'L v = Z v (v,,h «eh )
o oy .,ap=0 b I ’ap 0* Qs Olp ¢

= (VO'VO)¢ =0

Since a hermitian matrix is positive semidefinite if and
only if its hermitian form is nonnegative, the proof is

complete.

The next result uses the term "reproducing kernel."
This terminology is not universally accepted. For example,
Szego [31, equation (3.19)] uses simély "kernel polynomial"
when discussing algebraic polynomials. In any event, all

that is needed here is the definition embodied in (3.17).

Theorem 3.1 Under the hypotheses of Lemma 3.2, the

) . s
trace of Ln,p is given by
¢ i ¢}P
T L = (| , el .16
race ( n,p) tJKn(t t) p (3.16)
where
n
K (t,8) 2 )} h (t)h T8} (3.1
n ) k k

is the "reproducing kernel" of Pn in Lg[a,b].

¢ -
Proof Trace (Ln,p) agr ua,u
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d
X z ! [c a, haph—ﬁ——al... .
1 P
n
n 2|
= L ]ha ...ha i '¢
al,...,ap=0 1 P j
d( n 2P
=J ) Ihkt ¢
c[k=0
P
- {uxn(t,t)ﬂg}
This completes the proof.
Corollary 3.4 Under the conditions of Theorem 3.1,
for all 0 # ™ € Pn'
B e
—82% . /ig (t, )1 (3.18)
(L b /%, >

Proof Put nn(t) = aoho(t) + alhl(t) 4+ e + anhn(t).

By Lemma 3.2,

1
g gd (ST L ulZp

n'"2p _ n,p
w1 al u
1'n"2

< BT .
9 ‘msx Y )
i
B {A}zp (3.19)
where v is an arbitrary vector in C(n+l)p and )\ is the
largest eigenvalue of L¢’p Since the trace is the sum

¢

n,p is positive semidefinite and
’

of the eigenvalues and L
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so has only nonnegative eigenvalues (see, e.qg., [24, Sec-
tien 4.12)}),
A = Trace (L )
i n,p

and this proves the corollary.

Note that Corollary 3.4 is merely a special case of

Theorem 1.1. See also Theorem 3.4 and Corollary 3.11l.

B. Spaces Satisfying a Nonnegativity Condition

We now restrict our attention to those spaces for which
P
n,p
entries.

L is a nonnegative matrix, i.e., has only nonnegative

Definition The functions {fo, fl' fentr fn} ¢ L%[a,b}

N Lgp[c,d] satisfy the Nonnegativity Condition in Lgplc,d]

if and only if

U= (£, =~+f, ;€ <of ) o 4 (3.20)

for every choice of a = (al, % o ap) ¢ I and 8 = (Bl, &5y

8
Bp)

Note that the finiteness of the inner products in

(3.20) is implied by the requirement that each fk be in

Lgp[c,d] and Lemma 3.1.

It is clear that the matrix Lg p defined in (3.12) is

nonnegative if and only if the orthonormal basis
{hO' hl' . hn} of Pn in L2[a,b] satisfies the Nonnega-
tivity Condition in the space Lgp[c,d]. This condition may

seem to be very restrictive, but an inspection of the
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examples in Chapter IV shows that a great many of the
classical orthonormal polynomials in L?[-l,+l] satisfy the
Nonnegativity Condition in Lgp[-l,+l] for many different

weight functions ¢.

Theorem 3.2 Let p =2 1 be an integer. Let Pn be a
W ¢ - ;
subspace of Lz[a,b] 0 sz[c,d] with a basis {ho, hl,..., h&
which is orthonormal with respect to the inner product
(f,g)uj and satisfies the Nonnegativity Condition in

9
sz[c,d]. Then, for all 0 # L% € Pn'

0]
|l
~ P 2P . max /uh s ¢ (3.21)
i p k'n'p
Im i,  Osksn
where
Sn(t) = ho(t) + hi(t) F U hn(t) (3.22)
Proof Let nnft) = aoho(t) + e+ anhn(t) # 0.

First, suppose that there does not exist hk with Hhkngp s 0.

Then Hhkﬂgp = 0 for all k, and Minkowski's inequality gives
n
I LR
|m H2p = kzolakluhkuzp =

Hence the left hand side of (3.21) is identically zero and

Then, via (3.20),

21) necessarily true. On the other hand, suppose there
xist k such that 4hkP¢ >
J(d

0.
= PR, Pe L
&k "C J

|

‘(9 yP (3 )p¢=
J

éﬂp

ol

(3.23)
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Therefore,

a
0 < J ISn(t)|p¢(t)dt < 4w (3.24)
(o)

Now, from (3.12) and (3.13),

1
) AT o W
I3 [87 nd o WP
w | = J
1 L u
0, SR 1
v L vi2p 75
< max{——:TELE—— s, {x et
v & v v
, . ; ) (n+1)P i
where v is an arbitrary nonzero vector in C , and A is

the largest eigenvalue of the hermitian positive semidefinite

¢ Furthermore, L¢

matrix L s
n,p n,p

is nonnegative because of the
Nonnegativity Condition in Lgp[c,d]. Now Gershgorin's theo-
rem (see, e.g., Marcus and Minc [24, Section 2.2]) applied

to any nonnegative matrix implies that the largest row sum

is an upper bound for all the eigenvalues. Thus, from

(3.14),

IA

n |
= max J ) (h ot gt )
= & 8 a a_ o
01: ,apLBl,o-o'Bp 0 l p 1 p ,J
= max  ( ! h Do ol e ieR. Y
alr /QD Bll rgp 31 BP dl aD ¢
= max ((€)°,h_ +e'h_ ) (3.25)
53 3 3 1 el oq o ¢ '
I B
d
< max J ih  (g)+ss+h (t)]]sn(t)|p¢(t)dt (3.26)
Gpreeesaplc *1 o
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Now let W(t) = ¢(t)|Sn(t)|p. Then (3.24) implies that

Lemma 3.1 can be applied in (3.26) to get

¢}

A< max [ |lh  At)---h_ (t)|w(t)dt
,ap (o 1 P

a
max J h, (t) [Pw(t)dt
O=k=n ‘¢

a
max f In, (£)s_(t) [Po(t)at
0<k=n ‘c #

Since (3.21) follows immediately, this concludes the proof.

Corollary 3.5 Under the conditions of Theorem 3.2,

I'rrll

0 e 1D -
< inf B HS il < 4@ (3.27)
‘I‘" ”UJ / n Sp
where
(0 ®
B = max |h Il (3.28)
P g<k<n K TP

and the infimum in (3.27) is taken over all extended real

numbers r =2 1 and s = 1 satisfying % + % = 1.
Proof From HOlder's inequality,
filhksn|p¢ - fjlhiufs§|¢
1 1
= rf}r{Jd|S§|s¢ :
e J
5 (nhkwipusguip)pr k= Oy Ly sver 8

which proves the first inequality (3.27). The finiteness

——————— S e fh andsiad it
| e —
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of the bound follows from the case r = s = 2 and the fact

that Pn € Lgp[c,d]. This completes the proof.

Corollary 3.6 Under the conditions of Theorem 3.2,

for all Mo € Pn,

O < s y® um ¥

Imallag = ISpllag" Tyl (3.29)
and

Im g, = vAFT 8 I IS (3.30)

Proof From Minkowski's Inequality,

! ¢ < t ¢ < 0
Isyllp = kzo!qhkuzp = (n + 1)By,

On the other hand, (3.23) proves that

A
B2p = max ||h

0=k<sn

[¢ <l |¢)
kJZp i |'Snl'2p

Also, for r s = 2 in Corollary 3.5, we have

/n? ¢ w
BZp“SnHZp ”“n”z {3.31}

IA

Ima 13,

The last three inequalities prove (3.29) and (3.30)

immediately.

Corollary 3.7 Under the conditions of Theorem 3.2,

. IPRIE
Il , 2'ls l3|P
—“—%E < (13“’:|snu“’\| (‘__LE T (3.32)
1 L = w.a i
”“n!iz Splle
provided the norms | kﬁi, k=20, 1, «.., n, are finite.
PO —— - ot — e e -m....‘ - R T e — o—
-~ B R B e e
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Proof For each k =0, 1, ..., n,

d
(ins 18)F jclhksnlp ¢

IA

d
9y p-2 2
(hys_1I2) fclhksnl ¢

> d
(im0 20s 18)P72 (1n, 12) 2 Jclsnl2 ¢

IA

1 -2, d) 2
(I 12)P (ns _12)P~% (1s_1d)
Extracting 2p-th roots proves (3.32).

The examples studied in Chapter IV will show that
(3.32) gives (in some spaces) the same order of magnitude
bounds for all 2p norms that the next theorem gives for
all 2P norms. For example, when (a,b) = (c,d) = (-1,+1)
and ¢(t) = w(t) = 1, Lemma 4.5 will show that the Non-
negativity Condition required in Theorem 3.3 is satisfied.
Therefore, from (3.36), for all polynomials T of degree

at most n with real or complex coefficients, we have

1_1
””n”zp 2 [(n +1)(n + %o]z 2Py 1%
1- 1
= (n+1) 27 il p=1,2,3,... {3, 33)
since
f 1 1
L/k iy 3 Pk(t)_"
v *;H n— £ L T e —————
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form the orthonormal basis {hk}, where Pk(t) is the k-th

degree Legendre polynomial, and Bi = /n + %. On the other
4 hand, Corollary 3.7 will lead to Theorem 4.2, which in this

space implies that
1
p”"n”g" p=1, 2, 3,

3
< A(n + EJ

fim

w
n”2p

where the constant A can be taken equal to vV3/2 exp(l/12).

Theorem 3.3 Let p = 2 be an integer. Let Pn be a

l, .-c,hn}

which is orthonormal with respect to the inner product

subspace of L¥[a,b] N L¢ [c,d] with a basis {h., h
2 2P 0

(f.g)w and satisfies the Nonnegativity Condition in the

spaces sz[c,d], K= e sl orey s HINE Bi < o, then for all

L[ € Pn’
l'_"pl—llus 195t
Il = (/T 8t} 2 oot 2027 Tl (3.34)
L Vn+l j
and
ML | 1
( | p-1 p-1
Inal g = {Usy12) % {3} Tumyly (3.35)

Proof (By induction on p) Let p = 2. For r = @

and s = 1 in (3.27) gives, for all o € Pn’

? < [ o) w
i 1% < /8BS 19 1m 1l

which proves (3.34) for p = 2. Now, suppose (3.24) holds

for some p =z 2. Then, put By Sn in (3.34) to get
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1
) 1
Low 1®1,P=1
p=-iifis_lfti2
Is 1® < {/n+l Bﬁ} * [ n_2 i
» 2p L¢n+1
From (3.27), with r = » and s = 1,
¢ ¢ ) w
| | <
Il e < v/ansnu2p L
1 > -
1~ —=i1(ys 81251
p=-I| lis_1Hi5 12 ;
< {%2{/HIT R L /HIT] LN
vn+l =
1
1 (1=
3 1- —|f|s_I P
= {vaFT Bi} 29{;_2_3'2 1
E /yn+1l i

[

and this completes the proof of (3.34). The proof of (3.35)

is similar. Let r = 1 and s = » in (3.27), so that for all

T € P
n

n ’

. /p¢ ¢ w
Im g = vBylis I w iy

which proves (3.35) for p = 2. Now, suppose that (3.35)

holds for some p = 2.

Then put Moy = hk in (3.35) to get

1- oil —S%T
uhknzp = (isghgl el
so that
S pil p{l
BY = {Isyhd) i b

Therefore, by (3.27) with r = 1 and s = «,

e e
“"n|2p+l

IA

¢ ¢ W
V/sznsnuw R

i e - - T —

S——
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84 oo i 1 L
X gy gtk ¢] R w
< {[s,18) [88)27 us 8 im0
1

¢ 55 w
(8] im0

|
e
)
5_
8 ©
Aces ey,

which completes the proof of (3.35).

Corollary 3.8 Under the conditions of Theorem 3.3, if

$(t) = w(t) almost everywhere on (a,b), then

1L
ey, T
p-1
”"nngp = [/EII Bg] e 2 (3.36)
and
k
1w ==
p-1
Il = (1502) 2 wmi3 (3.37)

Proof Follows from Theorem 3.3, since Bg = 1 and

llsnll‘:,_’ = /n+1.

We remark that (3.36) and (3.37) give the same bound
as (3.30) and (3.29), respectively, as p + «» for the case

= w.

C. Extension to Linear Transformations on the Space

The preceding development can be extended easily to

finding upper bounds for ratios of the form

D i:¢
—

(3.38)

Hwn!!

NEIN

where D is some suitable linear transformation on Pn.
Typically, D will be a derivative of some order. The next

lemma ¢eneralizes Lemma 3.2 and does not require the

i a———— e e et g S e e - ] ;‘,W

Uy e—

O S e ——
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Nonnegativity Condition.

Lemma 3.9 Let p 2 1 be an integer. Let Pn be a sub-
w ¢ - :
space of L2[a,b] n sz[c,d] with a basis {ho, hl’ ey hn}
which is orthonormal with respect to the inner product

(f,g)w. Let D:Pn > Lgp[c,d] be any linear transformation

on Pn. Let

nn(t) = aoho(t) 1F alhl(t) + eune + anhn(t) € Pn

oot Y T n+l
and let x = <ao a1 an> € C . Then
zl
lae M0 - S =B e
ﬂDnnﬁzp = {u By u} (3.39)
P
where u = x ® -+« ® x (p factors of x) ¢ C(n+l) , and
E¢ = [v ] is the hermitian matrix of dimension (n+l)p
n,p &, B

x (n+1)P given by

VQ,B = (Dh « P, & Dha ez Dha )¢< + (3.40)

for all a (al, e cree e e MEEIR =R (R

Proof Since D is linear,

n
- e pn
[Dr (£)]° = ) a, a, Dk (t)-:-Dh  (t)
Ug/eeera =0 il P 1 P

(3.41)
The rest of the proof is too similar to the proof of (3.12)

to repeat here.

Lemma 3.10 Under the hypotheses of Lemma 3.9, the

¢

matrix E
n,p

is positive semidefinite.

A
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Proof Follow the proof of Lemma 3.3 using (3.40)

instead of (3.14).

Theorem 3.4 Under the hypotheses of Lemma 3.9, the

trace of Eﬁ is given by
’

P
Trace (E? ) = {nx(D) (t,t)||¢}p (3.42)
n,p n p
where
kP (¢,s) = | Dbh(t) DA (T (3.43)
B ;8] = o B K (S :

Proof Follow the proof of Theorem 3.1.

Corollary 3.11 Under the conditions of Theorem 3.4,

for all X, ¢ Pn’ T # 0,

Bt e
—2 2B . /HKn (£, 6212 (3.44)

R L
Proof Follow the proof of Corollary 3.4.

As an aside, we note that Erdelyi ([10, Section 10.6]
states that Hahn [16] and Krall [20] proved that if
G = {go, g;, o950 gn} is an orthogonal system of poly-
nomials, then G is a "classical" system if and only if the
derivatives {96, gi, .8y gé} form an orthogonal system.
The "classical"” systems are defined here to comprise only
the Jacobi, generalized Laguerre, and Hermite polynomials.
Thus, if D is the derivative and G is a classical system,

then (3.43) is related to a reproducing kernel of DPn.
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The next theorem generalizes Theorem 3.2 and does
require a Nonnegativity Condition. This result is the main

theorem of this chapter.

Theorem 3.5 Let p =2 1 be an integer. Let Pn be a

w q .
subspace of Lz[a,b] n Lgp[c,d] with a basis {ho, h A hn}

ll
which is orthonormal with respect to the inner product

(f,g)w. Let D:Pn o Lgp[c,d] be a linear transformation
such that {Dho, Dhy, «ves Dhn} satisfy the Nonnegativity

Condition in Lgp[c,d]. Then, for all 0 # T € Pn'

HDwnhg 3
PN /HDh « Ds_|| (3.45)
e 1% 0<k<n L i

where Sn(t) is given by (3.22),.

Proof The proof of (3.45) is, in its essential details,
analogous to the proof of Theorem 3.2 and will not be given

here. We note only that (3.24) is replaced by
d s
0 < J Ips_(t) |Po(trdt < += (3.46)
c
The next three corollaries are given without proof

since their proofs so closely parallel the proofs of

Corollaries 3.5 through 3.7.

Corollary 3.12 Under the conditions of Theorem 3.5

Iom 115 —_——
—DB <P < jnf /M IDS_II? < 4o (3.47)
In ”w rp n 'sp
""n'2
where
o e T do i — s
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¢ d
M = IIDh 3.48
P O?i:n ' k”rp ( )

and the infimum is taken over all extended real numbers

! r 21 and s = 1 satisfying % + é = 1.

Corollary 3.13 Under the conditions of Theorem 3.5,

for all “n € Pn,

$ = ¢ W
Ipow 2 = DS 5 il (3.49)
and
HDnnﬁgp < /n+ M KL e (3.50)

Corollary 3.14 Under the conditions of Theorem 3.5,

Ipn 19 z [lips_ N¢
SR 1M¢||DS ||¢’1 O (3.51)
unnug DS Hi

provided the norms HDhoﬂi, HDhlﬂz, cee, HDhnni are finite.

Theorem 3.6 Let p : 2 be an integer. Let Pn be a sub-

0, hl, LRI ] hn}

which is orthonormal with respect to the inner product (f,g)w

space of Lg[a,b] n sz[c,d] with a basis {h

Let D:Pn - Lgp[c,d] be a linear transformation such that
{Dho, Dhl’ s Dhn} satisfy the Nonnegativity Condition in

Lgk[c,d], K= 25 veny P IE MZ < 4o, then for all T € Pn'

$e wde o
[ p~1||DS ” p-1
o 1% < { /AT Mj} n -—-——3 £ XL (3.52)
i /AFL
and
§o 1
p p=1ly p-1 ,
!IDwnI!zp = {lIps, 1!2} : @42}2 Implia (3.53)
: S . S EATRE AT
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Proof Follow the proof of Theorem 3.3 replacing all

references to Theorem 3.2 by references to Theorem 3.5 .

We point out that the algebraic methods developed in

this chapter can also be applied to the more general problem

il ¢
I (Dym ) (Dym ) (Dpwn) ||2

max
! W, P
Oéﬂngpn (r'nnllz)
where Dl' g Dp are different linear operators on Pn. Thus, if
Pn are the algebraic polynomials of degree at most n, and
Rer 1) 5 : : s =
Dknn "n is the k-th derivative of L and w = = 06

then we could obtain a bound for

Il 17 n(l)ﬂ(2)...n(p)uw‘
nn n n 2

max 0
om €P_ (Hwnﬁz)p

by following the proof of Theorem 3.2. [To see that the

appropriate Nonnegativity Condition is satisfied for this

ratio, refer to equations (4.38)-(4.41) and (4.53).]

D. Complex Polynomials Defined on the Unit Circle, Revisited

As mentioned earlier, all these results are easily
translated into results for complex polynomials defined on
the unit circle. The reason for this is simply that every
integral appearing in this chapter can be replaced by con-
tour integrals on the unit circle. Thus, using the notation

of (2.1) and following the proof of Theorem 3.2 gives

i _{f
2ol < max J/IRB T (3.54)
ifm_| k n’p

1Tl 2 0<k<n
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But hk(z) = zk is the appropriate orthonormal basis satis-

fying the Nonnegativity Condition, so (3.54) is merely

[ |

l
-—EWEB AL ¢ 2 % 2° & 05 200 (2.55)
[ENNP p

Since

[
N
-
>
-
N
~
~

1
" P
usnup = (A, 1Ty AE P
1
P

|
—
~
w
-
(9]
~
.
-

| | i
Isnllp > (>l ) ’ lf p

we see that (3.55) is almost the central result of Theorem
2.1. The cause of this deficiency is due entirely to the
necessity of taking absolute values inside the integral in
(3.26) in the proof of Theorem 3.2. Thus, an examination of
(3.25) yields the essential inequality of Theorem 2.1, while
(3.26) does not. The same phenomenon occurs in the proof of

Theorem 3.5, which is easily modified to yield

Theorem 3.7 Let Pn be the collection of all complex
polynomials of degree at most n with norms given by equation

(2.3). For all m_ ¢ P_, let nék)(z) denote the k-th deriva=

of m., k=1, 2, 3, «vv « Then, for all o £ Pn’ Th £ 10,
?ﬂ(k)w §£
“: - - < /n(n—l)°-°(n—k+l){A(k)} P, o= 1, 25 3

n'2 i

(3.56)
(k)

’

where A is the largest coefficient in the power series

expansion of

p
(S ez +22 400 s z“)} (3.57)
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Proof Follow the proof of Theorem 3.5 and consider

the remarks immediately following (3.55).

Note that Theorem 3.7 is a more natural result than
Theorem 2.5. The bound is, however, not as good, as the

next corollary shows.

k

Corollary 3.15 With k; ; defined via (2.87), and
/

under the conditions of Theorem 3.7,

(k) = (nn-1) -« (n~-k+1)1Ps k) (3.58)

2p
! A
tet) n,p n,p

Proof We only indicate the proof. As stated follow-

ing Theorem 2.7, (k!)szék; is precisely the spectral radius
14
(k)

n,p Since the bound (3.56) is an estimate
’

of the spectral radius of Mék)

of the operator M

, we must have (3.58).

By example, it is seen that (3.58) can be strict. Let

n=4, p=2, and k = 1. Then

2 (1) = 2gg
n,p
while
all) = 25
so that
2. 80 _ =l
(1) “a,h) = 288 < 400 = 4%,

enl v Sy
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Chapter 1V

APPLICATIONS TO CLASSICAL ORTHOGONAL POLYNOMIALS

A. Jacobi Polynomials

The Nonnegativity Condition (3.20) is satisfied by
nearly half the Jacobi polynomials, all the generalized
Laguerre polynomials (properly normalized), and the Hermite
polynomials. The Jacobi polynomials turn out to be signi-
ficantly easier to handle by the methods of Chapter III
because they are essentially bounded on (-1,+1). At the
end of this chapter, some general results are quoted from
Askey (3,4] which give some sufficient conditions for a
given set of orthogonal polynomials to satisfy a Nonnega-
tivity Condition.

Throughout this chapter, we will denote by Pn the
collection of all polynomials of degree at most n, n =z 0.
We stress that these polynomials are allowed to have com-
plex coefficients. The Gamma function I'(z) is defined as
in Abramowitz and Stegun [1, Chapter 6] for all complex

z # {0, -1, -2, ...}. We have the well known identity
(1 + z) = zl'(z). Tor integers n = 0, T'(l + n) = n!

Finally, the Pochhammer symbol is defined by

z(z+l)***(z+n-1), n = 1
(2)n= )
’ n

]
o

for all complex z # 0, and the binomial coefficient

9

-«
4
\

g E——

N

) 5 L e
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(z) B I'(z+1)
u F'(u+l)T (z=u+l)

for all complex z and u such that z, u, and z - u are not
negative integers.

Let Péa’s)(x) be the n-th degree Jacobi polynomial of
order (a,B), a > -1, B > -1, as defined by Szegé [31, Chap-

ter IV]. The Jacobi polynomials satisfy the orthogonality

relation
Il (1=x) * (1+x) Pp 90 B iy p (e Bl oy d = 1T e (4.1)
-1 n m {hr(‘arB)}z
where
i
[ T (a+B+2) ]7 el
s 20¥B+ L )T (B+1)
B 1 (4.2),
(2n+o+B+1)T (n+a+B+1)T (n+l1) % 8= 1
2%t BH L L a+1) T (n+B+1)
Define
(a,B) _ T (a,B) _(a,8)
S, (x) = kzo h, B (x) (4.3)
Define g(k,m,n;a,B) via the expansion
n+m
pi0B) ey plinbl e e T gOimnin BIB P ) 1)

k=0

The expansion (4.4) certainly exists and uniquely defines
g(k,m,n;a,B). The question is, for which (a,B) is it true
that

g(k,m,n;a,B) = 0 for &ll Rym,h =0, 1,085 wvei?
(4.5)

e e i AREATR P e I ":w
. madram L
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Miller [26] gives g(k,m,n;a,B) explicitly, but in a form
that is not useful here. Gasper [14] found necessary and
sufficient conditions for (a,B) to be such that (4.5) holds,
but without exhibiting the coefficients explicitly. Part
of his result proves that (4.5) holds for all a =2 B > -1
satisfying a +8+ 1 = 0.

In another direction, Askey [4], following Szego [31,

Equation 9.4.1], gives

(v,B)

(arB) o~ .
Pn (x) = t(klarBlY)Pk (x) (4.6)

[aeete)

k=0

where vy =2 0 and

t(k;(l, BIY)

i [ (n+k+o+B+1) I (n-k+a-y) I (k+y+B8+1)T (n+B+1)
= (2k+y+B+1) Frrka T8+ ) T (=Kt D) T (k+B+ D) T (a=Y) T (n+B+a+1)

(4.7)

An examination shows that for 8 > -1 and a > y = 0, the

coefficients in the expansion (4.6) are all positive.

Lemma 4.1 Let o 2 8 > -1 and ¢ + 8 + 1 = 0. The

polynomials

{Péar‘B) (x), Pl(d-rB) (X), LG Pr(lfer) (X)} (4.8)

satisfy the Nonnegativity Condition (3.20) in the space

Lgp[-l,+1], where
wix) = (1 - x)%1 + x)P (4.9)

If in addition o > 0, then the polynomials (4.8) satisfy

the Nonnegativity Condition in every space Lgp[-l,+1], where

$ix) = (1 =Yt + %, 0=y <a (4.10)
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Proof Gasper [14] proves that with these conditions
on ¢ and B, (4.5) always holds. Let (il,...,ip) € T and

(jl,...,jp) € T'. Then (4.5) implies that the expansions

. il+---+ip
= pla, c..pla,B) " (o, B)
F(x) = Pil (x) Pip (x) = i£0 a;P; (x)
jl+...+'p
G(x) = p{%B) (x)...plasB) () I b,pl%B) (g
5 5 T

have a; = 0 and bj 2 0 for all i and j. Thus, using the

orthogonality conditions
: a B
I (1 - x) (1 + x) "F(x)G(x)dx
-1

1 :
o e a B (QIB) (0113)
= 7 aibj f—l(l x) (1 +x) P, (x)Pj (x)dx

5 [a.b.a. ./h.‘“'s)h.(“'e)) >0

i3 13]J1,) 1 J

which proves that the polynomials (4.8) satisfy the Non-

negativity Condition in Lgp[-l,+l]. For « > v 2 0, the

expansion (4.6) holds, so that

1
J (L - x)7(1 + x)BF(x)G(x)dx
-1

1
- Y B, (a,B) (a,B)
- Zjaibjf_l(l - 0¥+ 0% ey (x) dx

i,
1 i
= 5 a,b, ( (l-x)Y(1+x)B[ t(k:a,B,Y)P(Y'e)(x)]
e J-1 kZO B J

| ! trrans el ® (x) )ax
r=0

I TP AR,

R e s e R e




96

' < (v,B)
1 ab, ] [t(k,a,B,Y)t(r.a,B.Y)6k'r/hk h

(y,e)]
i,5 * 3 k,x

r

>0

This concludes the proof.

For all L= € Pn' we adopt the notation
1 1
I g (@B f (1-x) % (14x) B 7_(x) |Pax}P, 1 < p < =
np | n
(4.11)

where a > =1, B > -1.

Theorem 4.1 Let p 2 1 be an integer. Let o =2 B > -1

and o« + 8 + 1 =2 0. Then, for all 0 # nn € Pn'

(Ql B)
ENE

(o, B) (0, B) g (0, B) (@, B)
| m Hé“'s) i /%k 1Py Sn e (4.12)
n

Alternatively, if a 2 B8 > -1 and o > 0, then

(y,B)
Imnll o AT P TP
< max /hl%8)pla,B)gla,B) (y, (4.13)

provided only 0 <= y < a.

Proof The polynomials {héa’B)Péa’B)(x)} form an
orthonormal basis on (-1,+l1) with respect to the weight
function (l-x)a(1+x)6. Lemma 4.1 shows that they satisfy
the Nonnegativity Conditions needed in order to apply

Theorem 3.2 directly. This compietes the proof.

e a————n. * I T R Mt e e

T e —
s i3 " e ; - SR
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Lemma 4.2 Let a 2 8 > -1 and a = 0. For all y > -1

and § > -1,

max "hlia'B)P]ia,B)”cE,Ylé) = héa,B)(n;a)' e 0, 1, 2, +0a
O<k<n
(4.14)

Furthermore,

1
o+
hr(IChB) (n;a> < M[n + LB*._J;) .2-’ ne=s0L N 20 L. ((4015)

2
where

( cc+':L .

s _{ 1 max(r(a+3+2) 2e [(1+a) (l+a+8)] 2}2
29 B L 1) T (1+8) 'T(I+a) 1+8
(4.16)
i 1 1

€ I5[1+a+8 " l+a]

Proof From Szegé [31, Equation 7.32.2], since o > B,

(as B) < 560 B) - [k*a o
-lTitl P K (x)| = Pk (1) = ( % J7 k O

(4.17)
Now, (4.2) and the fact that the supremum norm of a poly-

nomial is independent of (y,d) in this case, implies

”h}icx'B)P}:a:B)” (0;{16) 5 héa,B)P]ia,S) (l), k >0
L
= 1 [2k+a+B+)l T (K+a+B+1l) I (k+a+l) < % 51 (4.1
I(l1+a) | ,a+B+l Fixegel) Tix+l} J ° o 5

Since for all x >y > 0

o X Iix) I (x)
T+ ~y Ty > T() oo

e — ey — - - ~‘-,--W
i V.-

e s -

S N

——a—

et sty P
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(4.18) implies

(a,B)P(a,B)

STl el L DI e RS R

(a,B8),(c,B)
hk Pk (1) <h

(4.20)

By inspection, (4.20) is seen to hold for k = 0 as well,
and this proves (4.14). Now, one form of Stirling's
approximation [l1, equation 6.1.38] is

X+

Pileg) = % % ° exp(-x + %égl], 0 <B8(x) <1, x>0
(4.21)

lence, for x 2y > -1, x = 0,

n+x+%
I'(n+x+1) (n+x) i
I'(n+y+1) 3 . exp[y a +l2(n+x)}' e
(n+y) "TYT2
n+x+=
= X-y X=y 1
(n+y) [l + n+yJ exp(y X +12(n+x))’ =1
1
X=-yY+=
1+x 2 X-y 1
Il_;y?} (n+Y) exp[m], n = 1 (4.22)
Therefore, from (4.18), for n = 1,
(a 5)(?+a ec 2n+a+8+1 a_a|(l+a) (1+a+B) a+§1%
h = < (n+R) n [ ] '
n n ) r2 (1+a) ,a+B+] 1+8 J

which proves (4.15) for n = 1 since (a+f+1)/2 = max{0,8}.
The proof of 4.15 is completed by examination of the case

n = O,

Corollary 4.3 Let p =2 1 be an integer. Let a 28 > -1

and @ 2 0. Then for all T € Pn' L # 0,

| | (YIB)

'I‘" | /

: n 2E < '70l,3rn+'1 (al BT (YIB)

i|m siz(“'ﬁ) = /By ( n ) "$n 'p Vo
n'
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for all Y satisfying 0 = Yy = a.

Proof Follows from (4.14) and Corollary 3.5 with

r = and s = 1.

Corollary 4.4 Let p 2 1 be an integer. Let o =2 8 > -1

and @ =2 0. Then for all LR Pn, i # 0,

il (@, 8) (a%

sy = //A*1 h %P (P1e) (4.24)
(LN P

n"2

Proof Use Corollary 4.3 with Yy = a and the fact that

Theorem 4.2 Let ¢ =2 8 > -1 and o« = 0. Then, for all

Tfn € pnr Wn# 0,

m (GrB)
n''2p

B
< A[n + Si%ii) unnuéa's), p ol 2,.004,25)

[l

where

w
]

1
(1 + a)fl 5)

and M is given by (4.16). Furthermore, for all n = 0,

l+a
i &8 e [H oy 22803) Ty (0 8) (4.26)
vzarz) |

and the exponent 1+oa in (4.26) cannot be replaced by a

smaller number.

Sl Sl ea
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Proof The case p = 1 is trivial. For p = 2, use 1

Corollary 3.7. In view of Lemma 4.2,

(a,B8), (a,B) _ § . (a,B)/k+a
el e R Sl

k=0
n a+§
<M ) (k + a)
k=0 4
n+1l a+%
< M J (k + a) dk
Q
M “*% i
< 3(n + a + 1)
a + ? 1
b
where a = (a +8+ 1)/2. Therefore, from (3.32),
(a,B) ) g 311 1 1
EN a+s 13 a3 32 =
__E_%E_ET < {M(n+a) 2}2{ 3(n+a+l) 2}2 p{vn+l}p
Imalls ; oty
1 |
1-5 ,
M DR R e |
(a0 + %)5-5
where
e 1 . 1 3 L

it
(.CL L 9B 5)

which proves (4.25). To prove (4.26), let

n
nn(x) = z akhéa'B)Péa'B)(x) (4.27)
k=0
Then
|
”"n”ia,e) - aohéa,B)péa,B)(z) 4+ e 4+ anhéalB)PédlB)(z)i,

some z ¢ [-1,1]

|

A

B Ll
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1 - 2 1
|2 2 ) lhia’B)P;a'B)(z)l Vi
k=0 &

IA
o~
o

=

i

2
[h}ia,B)(k; )J i)

)2d+1 1

IA
— |

(C!rB) 5
n-2 '£

> , using (4.15)

IA
3
2
)
®
r—-’:‘/—\ =

? [k , G+Bl
=0

1
]2a+2 2

atB+3 (26 + 2]

2

IA

(o, B)
Mllnn]l2 {n +

Simplifying the last inequality proves (4.26). Finally,
the claim that 1 + o cannot be replaced by any smaller ex-

ponent follows from examining the polynomial (4.27) with

- (Cf-lB) (O.IB) ~
a, = hk Pk {1 el =00 A, e

k

Then proceeding as before, we see that

1

) 2
gy foe8) o ”,,nnz(a,s) kzo[h}ia’s)(k;a)] 2 (4.28)

Now, the proof of (4.22) can be altered to give a lower
bound, which when applied to the gquantity in brackets in

(4.28) gives

1
a+§

(0.,8) k+a Y -
nS B ERERY L Gk - 1) % kel 3,

k

for some constant M independent of k. Then

W 1
2 — v
n 2 n &
2 Fgéa,e)(k§§>J w Z - l)2cx+l
k=0L k=2
3
n
> M j k2a+l dkl
k=1 J
- 2 T —

o

~ad
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L
o 20+2 }7

> M{n ) L T L e

This completes the proof.

We remark that Theorem 3.3 can be applied in the above
situation for sz norms. If this is done, the same result
as (4.25) is obtained. Therefore, Corollary 3.7 is actually
more general than Theorem 3.3. Similarly, it will be seen

(Theorem 4.4) that Corollary 3.14 is more general than

Theorem 3.€ in some situations.

Theorem 4.3 Let p 2z 1 be an integer. Let a = 8 > -1,

For each integer m = 1, define the operator D™ on Pn by

m
2 e, £ e P

m
D f(x) =
dxm e

Then, for all w. € P, m. # 0
n n n

ﬂDmn ”(a+m,8+m)
n'2p
1 ||(0-,8)
|'nnr‘2
- (a,B) j~m_(a,R)m, (a,B), (a+m, 3+m)
< o?i:n/hk o™, p™s Ip (4.29)

Proof Szegd [31, Equation 4.21.7] shows that

m_ (a,R) R (a+m, g+m)
D Pn (x) = 2m(n + g + £ + l)mPn_m (x) (4.30)
so that the functions {DmPO, DmPl, ¥ DmPn} satisfy the

Nonnegativity Condition in Lgp[—l,+l], where ¢ (x)
= (l—x)a+m(1+x)8+m, by Lemma 4.1, since g+m > g+m > =1 and

(a+m) + (B+m) + 1 = 0, for m 1, 2, 3y ewvey A0Q LOF Add

@« =2 B8 > -1, Apply Theorem 3.5 directly.

— e —— e = o -

-
L T . a V-

e 8

e e e
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Theorem 4.4 Let ¢ 2 B > -1 and o« =2 0. Then, for all

. € Pn' m™ #0,

n
I $etLe B ) < anrarge2)Bn 148, paz, 3. (403D)
where
! -1

. 2(a + 1) (a + %)

1 1

= ' 1 -2y 42 =2

B (1 a) ( p) 5

and M is given by (4.16). Furthermore,

(a, B)
nn”Z (4.32)

R
4 gl ole K (n+a+8+2)

u+3”
2V2 (a+l) Va+3

[l

and the exponent 3+a in (4.32) cannot be replaced by a

smaller number.

Proof We will use Corollary 3.14. From (4.17) and

(4.30), for k = 1;

(cs B) v (o B); (a+l, B+1) 3 K+a+3+1 (GIB) (a+118+1)
”hk Pk j]ao e . hk Pk-l (1)

_ k(k+a+p+1) h(a,B)(k+§>

¥, ot

- 2(a+1) k k
(4.33)
so that
O<k<n
M a*%
< 7TEITT(n+a+B+1) (4.34)
U —— g - -4 . }."’;W . oyt
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from Lemma 4.2. Now, (4.33) implies also

5
"SQ(QIB)” (G+1IB+1) +7
n " oo

M a &
LT b, el

a+7
< M 7—(n+a+8+2) 2
2(a+l)(a+ )

Next,

(a)B), (a+1,B+1)

s} I,

+8)

n
=7 h P

. (o, 8)“(a+l ,B+1)
k=0

(o
k k

B ksotBel (a,8)p (a+l B+1) || (a+1,B+1)
) Erexedl e

k=1 <
o ; n{c/B8)
<& z k+a+B8+1 k h(a+1 B+1)
k=1 2 (a+1 B+1) k-1
N heaa

(a+1 B+1)“ (a+1,B+1)

1

[k+a+s+l k }
2 (a+1,B+1) f
1 L

{

Lk

e~

[}

5 2B+l n ) L0H1) T (k4B8+1)

1
Z

4 ? [k+a+8+1] [(2k+a+8+l)F(k+a+6+l)F(k+l)
k=1

—~—3

C2%*BH3p (krat1) T (keB4L) }
TZA+&+B+1)F(E‘Q+B+Z)F(k)

J

1
o [ ? k+a+8+1 g 4k 2
0 1k=l 2 k+a+B+1
1 1
n
£{ ) (k+0+B+1) 2 l?
k=1 )

(4.35)
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3

< X tnsossizyt (4.36)

V3

Applying (4.34)-(4.36) in (3.51) proves (4.31). To prove

(4.32),

UL (P

let ™ be as in (4.27). Then

IA

1A

=0

n
2 akhliars)P;((alB) (2)

, some z € [-1,+1]

1 11
n n 2

-

1
|(a,8)[ ? 1 (0 B) k(k+a+B+1) k+a‘1217
k 2 (a+1) k )- J

(a,8)] § 2a+51%
e J (n+o+B+l)
k=0

J

(a,B) (n-i-ot+B+2)°‘+3

M
< s 1l
e g 088, /7576

which proves (4.32). That the exponent 3+0 is best possible

can be proved in the same manner as the analogous result in

Theorem 4.2, by consideration of the polynomial T given by

ay

in (4.27).

= hk Py (1), k=20, 1, ...

This completes the proof.

B. Gegenbauer (Ultraspherical) Polynomials

Even more can be said for the Cegenbauer, or Ultra-

spherical, polynomials. These polynomials are defined (see

Szego [31, p. 80]) for v > —%, v # 0, by

P(v)
n

1 b 1
Ao W 5T e APRA (A ¢

T (29) ” (x) (4.37)

F(n+v+ %)
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L A ————

Vilenkin gives [33, p. 491] the expansion

(v)
m

(v)

(x) = Z s(k,m,n;\))Pk

k€K

Pév)(x)P (%) (4.38)

where K = {|n-m|, |n-m| + 2, ..., n+m-2, n+m}, 2r = n+m+k,
and

k+v T'(r-n+v)T'(r-m+v) Tl (r~k+Vv) T (k+1)T (r+2v)

s(klmln;v)=
BV P o nt 1) T Eremdd) T testtd Y P2 (03 Fllct2v)

(4.39)
Also, Szegd [31, Equations 4.10.27-8] states that Gegenbauer

proved that

[n/2]
Pév)(x) = kzo a(k'n;“'v)PAB;k

(x) (4.40)

where v > uy> 0 and

(n=-2k+u) T (u) T (k+v~p) T (n=k+v)

a(krn;U’v) = k! F(v)F(v—u)F(n—k+u+l) (4.41)
Therefore,
alk,n;u,v) > 0, v>u>0 (4.42)

Lerma 4.5 Let v > 0. The Gegenbauer polynomials

v e Bl L I ] (4.43)

satisfy the Nonnegativity Condition in every space Lgp[-1,+1],
where p =1, 2, ..., and
-1
a 2, " % ;

Pix) = (L = x) ’ 0 < p=wv (4.44)

Proof The nonnegativity of the coefficients in (4.38)
shows that (4.43) satisfies the Nonnegativity Condition in

1

Lgp[-l,l], where w(x) = (1 = x2)v 2 for v > 0. The nonnega-

tivity of the coefficients in the expansion (4.40) completes

 — T — S
T T m—

LEL 2es L
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the proof.

Note that the expansions (4.40) and (4.6) are quite
different in nature, so Lemma 4.5 gives new information,
except in the case yu = v.

Define, for v > 0,

1

L n+v) T (n+l) 12

s (4.45)

A
() = rw?

Then the functions {h(v) (V)(x)} k=0, 1, so:, n form an
orthonormal set on (-1,+1) with respect to (1 - xz)v_f

(see [31, Section 4.7]). Define

<v) SR )
(x) = ké‘ b P ) (4.46)

For all L Pn, we adopt the notation
1

o V) = Ik (1-x2) Z|n_(x) |P d E, 128 %% tb.40
allp l " X h (% X < p ;

where v > 0. Note that (4.47) is a special case of (4.11).

Theorem 4.5 Let v > 0. Then, for all 0 # ", 8 Pn'

it $W) -
: nuz\) S max /h())”P(\)) nV ”PSU)' p =1, 2,..(4.48)
TR 2

for all 0 < u = v,
Proof Use Theorem 3.5 in light of Lemma 4.5.

Corollary 4.6 For all 0 # T, € Pn' and for 0 < u = v,

(u)
‘l '
(\)) < /h(\)) (TH'ZV ])”s(\’).l(ll) (4.49)
[
2

Hn

e R B - B
G —

L L S
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Proof With r = ©® and s = 1 in Corollary 3.12, we have

| v
ﬁ-ﬂﬁ%gy = mex ,/Hhéijév)Hi“)HS£v)ngﬁ7 (4.50)
m s <ks=n

Szegé [31, Equation 7.33.1] gives, for v > 0,

(v) (v) k+2v-1
max |P (x)| = P (1) = sk =4 (4.51)
-l=sx=+1 k 5 ( k )

Therefore, considering (4.19),

1 (V) o (V) () _ L (V) (k+2v-1 3
AL A Rl b ( i RS T

29=1 (4 1v) T (ke2v) 12

T(v){Z
m™ [(k+1) J

T (2v)

1
T (v) {?2“‘1 K+v r<k+2v+1)}7
T T(2v) m k+2v T (k+1)

”h(\))P(V) i (m)

k+l k+1l"w * k=20,1 2, ... (4.52)

This completes the proof.

We remark that Corollary 4.6 is not a special case of
Corollary 4.3.

From Szegdé (31, Equation 4.7.14]),

m (v) o afls (v+m)
D Pn (x) = 2 (J)mPn_m (x) (4.53)

so that from Lemma 4.5, the polynomials

{DmPév)(x), DmP{v)(x), si) DmPév)(x)}

satisfy the Nonnegativity Condition in all spaces Lgp[-l,+l],
where ¢(t) = (1 - XZ)U' 0 < y = vim. Therefore, we have a

result which is much stronger than Theorem 4.3.

i e—— e i e ———— e ———————— g 0 - -

o~ . Sl T P A S bl




U E—————— ¢ e A A g S p—————yn T ———
N k' \

109

Theorem 4.6 Let p =2 1 be an integer. Let v > 0.

Define the operators D™ on Pg as in Theorem 4.3. Then, for

all ™ € Pn' W # 0,

m (u)
™ 15 ) I ) R ) I T
— 22 < max //hk o™, V)« s V| (4.54)
B 0<k=n P
n 2
for all 0 < u £ v+m.

Proof Use Theorem 3.5 together with (4.53)

Nof =

Theorem 4.7 Let v = Then for all L € Pn’ ™™ # 0,

(v)

It < A(n+zv+1)Bunnu§V’, p =2, 3 & .. 14,58

2p
where
1-5(8 /2 :
Q Pid /21|P
A= /U??[VI?J [3/ 5)
o $. o
B = (V“"i) (1 S) + 2
and
“% v-3 1
1 4
2 (v + %) exp ( )
Q = 2 - P IZ7I32V) (4.56)
I‘(\)+2—)
Furthermore,
o
V=
i Aﬂiv) = 2 (n+2v+1) 2nnnu§v) (4.57)
(2v+1) VZ2v+5

where the constant M is given by setting a = B8 av—% in (4.16),

and the exponent v+§ in (4.57) cannot be replaced by a

smaller number.
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Proof We will use Corollary 3.14. We have

(v) (V) , (V) (V)
M, = max |h p;! i
0=<k=n k k
Ll (v) - (v+1)
= max 2vh “'p, " 7 (1)

1=<k=n

I 1
l 2v-1 5
= max iZ\)I‘(\))[2 (k+V)T(k+l)] <k+2v }

1<ksn| m I (k+2V) k-1
ot [2ur vy [22V1 k(k+v)(k+2v)F(k+2v+l)]2l
T T (5 T ] ]
1
it 2 2
. 2 F(v+l)[§ (n+v)(n+2v)F(n+2v+l)] (4.58)
/T T (2v+2) TANL)
From (4.22), we get
[ (n+2v+1) 2v+% 2v 1
Tine < (142v) n exp(m), n=1 (4.59)
and so
M) < g(n+2av) V*2 - (4.60)

where, in simplifying Q, we have used the duplication formula

for the Gamma function [1, Equation 6.1.18]

1 1
cRLAEy 1
rz) = @2m) 22 (z)r(z + 3)

Now, (4.58) and (4.59) show that

(v+1) | (v)

V) ‘
k=1 o

155 18V = 2v) P

Q v+3
< 33 (n+2v+l) (4.61)




n
(v) (v) (v)
= 2' i h X (k=2t+v-1)P ’
C0 e k-2t-1
? (v) ()()
=2'{{ ] (k=2t+v-1)h, }"2"
s=1tk-2t=s
= 1
n [ 2
= (VT2
gl T 42 T i ] (4.62)
_s=ll hi_i k-2t=s * |_
What is needed is an estimate for the inner sum of (4.62)
over k-2t = s, for each fixed s = 1. Let N = [E%E].
N
z (\))<2 (\))
k-2t=s "k tmb gt
"% R 1
o e ) y [(s+2t+V)T (s+2t+1) 17
TR t=0{ T(s+2t+2 )
1
o 2ryy N 2t 1 (s} 2
ez \ s+ dere St S
G — t=ots+2t+§v—I S+2v F(s%?v)(s+2t+v§
o 1 1
<2 °rv)f rs+1)1? ? (s+2t+v) 2
I Lr(s+2v)f .2,
. -
_ 2 2rfrs+n 3
- LF(s+2v)J (s+n+v+1l) (4.63)
Since
s+v=1)% _ 7 (s+v-1)T (s+2v-1)
piv 22V"1r2(y)r ()
P m F(S+2V) (4.64)
22V=1r2 ) r(s)
— e AR e —————— R B S — }r;ﬂi‘iia-LiwI-I e ———

Final
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ly, recalling the expansion (4.40), we have

”Sé(v)”éV) = ZV” z h(V) (V+l)”(V)

B

AT g oo

O
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(4.63) and (4.64) in (4.62) imply

{Ils'(") 'l(")}z £ ’2‘{ T T (s+2v) ‘\{zzv'lrz(v)r(su)
n 2 san 22V—1F2(v)F(s)J 9 7 T (s+2V)

. (s+n+v+l)3}

(s+n+v+1)4
1

A
|
Il o~

S

4 5
< E§(2n+v+2)

so that

5

Finally, using (4.60), (4.61), and (4.65) in (3.51) con-
cludes the proof of (4.55). A proof of (4.57) is unneces-
sary since the supremum norm is independent of v and (4.32)

holds for a = B = v-%. This completes the proof.

Theorem 4.7 and Theorem 4.4 give an interesting com-

parison. We have

(v+1) _ (v) Aos it

H"AHP 5 lITTr'lllp P VR R P2 (4.66)
3, vil=s 2, vae 2, y=it

since 0 < (1-x°) 2 = (1-x°) "2 = (1-x°) " 2 provided

v = %. Now, defining for v = %,

"”.n.l II (v+1)
Ué“; = max )—Jlllﬁn—l, pzi (4.67)
®ogmperp | imi,”
and
r (v)
(LSUAS
viv) = max {—n 1, Pzl (4.68)
St ATTN IR

pro s
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we see that (4.66) implies that

U(v) < yV)

> 1 >
n,p n,p’ VZzay P2z 1 (4.69)

But much more than (4.69) can be said. Theorem 4.4 gives

ly-1,_1
(v) 2+(\)+§)(l p) D

Un,2p

while Theorem 4.7 gives

1y .1
V(V) 2+(v+§)(1 p)

. 20 < A2(n+2v+l)

where the constants Al and A2 can be taken independent of

both n and p.

C. Laguerre Polynomials

Let Léa)(x) be the n-th degree generalized Laguerre
polynomial, a > -1, as defined by Szegd (31, Chapter V].

These polynomials satisfy the orthogonality relation

© 8
(%) (@) a_-X - _nm
Jo L{ o™ ox%e™ ax T (4.70)
9n
where i
- 2
gr(l") = {r(1+a)(n:,09} (4.71)
Let
o) o £ onek {a), f8)
BT Z(l) 9 Ly (%) (§.72)
k=0
Define the norms, for Ty € Pn'
<3
ur.nué“’ = \[ | (x)| Px*e™ ax} , p 2 1 (4.73)
L 0
Note that qﬂnﬂia) = » for all nonconstant T ‘ Pn‘ Also,

< A (n+2v+1) ,vz%,nz G, D BBk

N z%, n=0, p=2,3,4,.:.

S S iy Vel

A

E —
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the notation (4.72) and (4.73) should not be confused with

earlier (identical) notation for the Gegenbauer polynomials.

Szego (31, Problem 94] states that

(x)L(“’(x)L(“’(x)x e Xax >0 (4.74)

(1) K+m+n J (a)
0

for all k,m;n = @, 1, ... . Since the expansion
n+m
™ML )L () = T ckomnza) (-1) R
o k=0

(4.75)

certainly exists, it is easy to see that (4.74) implies

C(klmln;a) =0 (4076)

for all k,myn =0, 1, ... . Watson [34] gives an explicit
expression involving a hypergeometric function, but a sim-
ple form seems unavailable. Even for o = 0, the formula for
the coefficients seems rather complicated (see Gillis and
Weiss [39]).

Szegé (31, Equation 5.1.14] gives

[( -1) L(a)(x)] = (=1j01 é“;l) (4.77)

and Bailey [5] attributes to Erdelyi the relation

(x) = T (l+a+m+n) ? (m)k(n+k)1
et = i xio KIT (T+a+n+k)

% ( -1) L(a+m)

n+k (o)

(=137 gy, ) (4.78)

It is a simple matter to see that the appropriate Non-
negativity Conditions are satisfied in order to prove the

next result.

——— e e —— R ———— B -

- S a F.

Py
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Theorem 4.8 Let p =2 1 be an integer. Let a > -1,

Then the equations (4.70)-(4.78) imply that for all % € P
T # 0,

nl

HnnH(G) // 159 (a) L(a) (a) (@) (4.79)
————TET N “ n ”P |
Imanza*t (@ oy (o) (@)
1 (G) oy (O o

" SR

(a)
Il 'H
Xm / S g(a)“L.(a)Sn(a)”(C“'zP) (4.81)
”1[ 0<k=n

Proof Use Theorem 3.5.

Further information seems difficult to extract from
Theorem 4.8 primarily because the polynomials are not essen-
tially bounded with respect to xae_x, so that Corollaries
3.7 and 3.14, as well as Theorems 3.3 and 3.6, are not

applicable. Since estimates for the higher norms of L(u)

(x)
do not seem to be available, the utility of Theorem 4.8
seems limited.

Turan [32] proves that for n > 1

”." ” (0)

max
ofn €P |im, u‘c)

1

(4.82)
: ™
2 51n(1317)

where the norms in (4.82) are, of course, given by (4.73)
and the maximum in (4.82) is attained only for nonzero con-

stant multiples of

_ad
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n
3 ¢ km +_(0)
Tl’n(x) = Z. Sln(m}Lk (x)

We know of no other results related to (4.79) through (4.81).

C. Hermite Polynomials

Let Hn(x) be the n-th degree Hermite polynomial, as

defined by Szego [31, Chapter V]. The Hermite polynomials

satisfy the orthogonality relation

o 2
-X n,m
e H (x)H (x)dx = ——~ (4.83)
f—w O th_}?
n
where
-1
h = (/7 2" nt} 2 (4.84)
Let
)
S_(x) = h, H, (x) (4.85)
n k=0 KKk
Lebedev [21, p. 96] gives the expansion
min(n,m)
£ i k m\ /n
H (X)H_(x) = k£0 2% 0 ) (3 e e ) (4.86)
and from Szegdé [31, Equation 5.5.10],
d 4 (x) = 2nH__, (x) (4.87)
dx “n n-1
Define for all L 3 Pn'
1
| = 5
Hnnlp {J-me Inn(x)| dg} ¢ PEE (4.88)

Theorem 4.9 Let p 2 1 be an integer.

TTn € pnl Tfn# 0!

- s s e . - g e —

Then, for all
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—EEE TS T
R L (4.89)
g llap - '
s i
.l o s eMll®esBally (4.90)

where the norms are defined by (4.88).

Proof The appropriate Nonnegativity Conditions are
satisfied because of (4.86) and (4.87). Use Theorems 3.2

and 3.5.

The remarks concerning the limited utility of Theorem
4.8 apply here as well.

The only bound in the literature related to (4.89)
or (4.90) seems to be one mentioned by Turan [32], who states

that E. Schmidt [35] proves that

LSNPy
e M e v2n (4.91)
o¢nnepn,J"n”2

-

where the norms are, of course, given by (4.88). The max-
imum (4.91) is attained only for nonzero constant multiples

of Hn(x).

E. Remarks

In conclusion, there are two results of a general
nature which can be useful in guaranteeing that the Non-
negativity Condition is satisfied. Let po(x), pl(x), o ey
be any sequence of orthogonal polynomials normalized so

"G WORPON: Askey [3] proves that if

that pn(x)

.
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pl(x)pn(x) = pn+l(x) + anpn(x) + bnpn-l(x) (4.92)
holds for n = 1, 2, +.., and if a, >0, bn > 0, and a1
z a.., bn+l > bn, then
n+m
P, (x)p (x) = k_{ Ap(x), A 20 (4.93)
=L
holds for all n,m = 0, 1, ... . Askey applies this result

successfully to Laguerre, Hermite, Charlier, and Meixuer
polynomials.

In another direction, let w(x) be a positive function
on (0,») such that Ig x"w(x)dx exists for n = 0, 1,
Let {pn(x)} be the orthonormal polynomials with respect to
w(x) standardized by pn(O) > 0. This can be done since all
the zeros of p,(x) are interior to [0,»). Let {péa)(x)} be
the polynomials orthonormal with respect to x%w(x) and
standardized by péa)(O) > 0, where a 2 1 is a fixed integer.
Then Askey (4] shows that

(@) (%) =

Py ¢ akpk(x), o, > 0 (4.94)

I~

0

for all n = 0, 1, ... . Askey conjectures that (4.94) holds

for any o > 0.




Chapter V

REPRESENTATION THEOREM

A. Permutable Operators on PV

In previous chapters, we have defined the operators

: (1) . : ) .
Mn,p in Lemma 2.1, Mn,p in equation (2.73), Ln,p in Lemma

3.2, and Eg p in Lemma 3.9. In this chapter, algebraic
’

properties common to all these operators are studied and

a Representation Theorem is proved (Theorem 5.8).

Let F be either R or €. Let V be the vector space

QF = P equipped with the inner product

(x,y)V = ;Tx, X,y €V (Sad)
The earlier definition of T = Fn,p in (2.15) is slightly
altered in that the common index set {0, 1, 2, ..., n} is,
in this chapter, replaced by {1, 2, ..., n}. Therefore, T
has nf elements. Lexicographic ordering is still defined
here by (2.16). Let {el, TR en} be the usual basis for V;

that is, e, h7s all zero components except the k-th component

k
which is 1. Define the Kronecker product

P
gD 2 gD

x'o

? _
e, =%, © ® e, €
1 p

to be that vector with all zero components except the

a = (al, " ap) ¢ I component which is 1. Let Xy
= <x§, K6y xig'e vV, k=1, ..., p. Define their Kronecker
product
119
T e T e
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nP
x1 @ s @y € F
P
by
xl QD s ® xp = z (x(]; °°'X§ )eg (5.2)
a=(al,. .,ap)GF 1 P
Define
p ®
® V = Spanfe” : o €T } (5.3)
o n,p

Any element of &PV of the form (5.2) is said to be decom-
posable. Any element of &’V which cannot be written in the
17 e xp in V is indecomposa-
ble. If u € &V and v ¢ &V, define the inner product by

form (5.2) for some vectors x

(u,v) = V% u (5.4)
It is not hard to see that if u = x; ® -+ @ X and
Bk ) ® - @ yp, then

(u,v) = (xl,yl)V rr (xp,yp)v

p
=T
= I V2 (5.5)
x=1 Kk

Let Sp be the group of permutations on the integers
& L U p}. For each o ¢ Sp, define the permutation

operator P(0) on &PV via

P(O)x1 ® *** ®Xx_ =X R OB (5.6)

X
oL (p)

for all decomposable elements X 8 " ® Xp in @°V. Since
the basis elements {eg ! & ¢ I} of ®pV are decomposable,
P(g) can be linearly extended to all @PV. That this exten-

sion of (5.6) yields a unique and well defined linear operator

R e o
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on @V is proved by Marcus [23, Chapter 1]. Thus, for all
o € Sp' P(o) € f(@pV), the space of all linear operators on
&Fv.

Let T € £(V), the space of linear operators on V.

Then define ®°T ¢ f (&PV) via

PT X) ® "*r @ x = (Tx)) ® ** @ (Tx) € v (5.7)

for all decomposable elements in @PV. Since {eg : @ €TY
are decomposable, ®PT can be linearly extended to all 2Pv.
That this extension yields an unambiguous operator on all
®V is shown by Marcus [23, Chapter 2]. Let the matrix of

T with respect to {el, A en} be [ai,j] and let the matrix
of &7 with respect to {e?, a € T'} be [Aa,B]’ Then Marcus
shows that

p
A = I a

(5.8)
o8 ey By

for all a (al, e ap) G R = (Bl, sl lekaing Bp) € T. Note
that (5.8) merely states that the matrix of the Kronecker
product operator &PT is just the Kronecker product of the
matrix of T with itself p times. (For a definition of
Kronecker product of matrices, see Chapter II.)

‘Marcus (23, p. 245] defines B ¢ I (&PV) to be a bisym-

metric operator if and only if
BP(o) = P(0)B, VYo ¢ sp (5.9)

Let Bp denote the totality of all bisymmetric operators on

QPV. The matrix of B ¢ Bp is denoted

s Sl 7 T —
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b= [b a,B8 € T (5.10)

O.,B]'
Marcus [23, Theorem 2.6] proves that B ¢ Bp if and only if,

for every o ¢ Sp,

b =b

%, B oag,Ba’ ol € I (5.11)

where ao and Bo are defined by

oo €T

(al’o"'ap)c = (ao(l)l"'lao(p))

(5.12)
Bo

(61’...,39)0 = (Bd(l)’...’BO(p)) el

A much deeper result is

Theorem 5.1 A linear operator B on 2PV is bisymmetric

if and only if B is a linear combination of Kronecker product

operators &r, T € (V). 1In other words,

B span{@PT : T € 2(V)} (5.13)

Furthermore, in (5.13), T can be taken to be nonsingular.

Proof See Marcus [23, Theorem 2.7] and the remarks on

page 249].

Up to now, we have presented only known results. We
will now define and study an apparently new subspace of the
bisymmetric operators Bp. We define an operator L ¢ L(ePv)

to be a permutable operator if and only if

LP(c) = P(o)L = L, Yo € Sp (5.14)

Let Ep be the space of all pernutable operators on 8Pv.
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Theorem 5.2 The symmetrizer S on &V is an element

of E .
P

Proof The symmetrizer S € I(gPV) is defined by (see

Marcus [23, Theorem 2.6])

G p—l! 5 P(Y) (5.15)
YES

p

Let o ¢ Sp' Then

]
oy

L

SP(0) B!

y P(v)]P(c)
yesp

= 7 . ®lye) (5.16)
o Yesp

where the last equation follows from Marcus [23, p. 72].
Since, for fixed o € Sp, {yo =y € Sp} = Sp, we see from

(5.16) that
SP(o) = S

Similarly, P(0)S = S and this concludes the proof.
The next theorem is the analog of eguation (5.11).

Theorem 5.3 A linear operator L on @V is permutable

if and only if, for every o,y ¢ Sp,

a a,B €T (5.17)

a,B % aac,By’

where [aa B] is the matrix of L with respect to the basis
’

{ef, a ¢ Ty,

e T Y -




s — e ——— e e 1 — e T
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Proof We have

® _ ®
Leg aéF 3y 8% (5.18)
so that
® _ ®
P(o)LeB QEF aa'B[P(o)ea]
&R et
a€r g oo 1

QEF 8.0 8 % (5.19)

Similarly, (5.18) gives

Lp(y)e§ L oa”

-1

= ) a e

®
@€l a,By * ©

(5.20)
Since LP(Y) = L = P(0)L, equating (5.19) and (5.20) gives,
for all o, y ¢ Sp,

a =e

a0, B a,B €T (5.21)

a, Byt

In (5.21) replace R by By to get

qa0,8y = %a,8

and this completes the proof.

Marcus (23, p. 132] defines the completely symmetric

(p)

space V to be the range of the symmetrizer S defined by

(5.15) and shows that

dim v® = (“*g‘f) (5.22)

P ——y




125

Furthermore, S is idempotent; that is, S2 = S. Therefore,

u € Range(S) = V(p)

if and only if Su = u, if and only if
P(o)Ju = u for all o ¢ Sp. This last statement follows from
the fact that P(0)S = S for all o ¢ Sp‘ The next result
was pointed out to the author by Herbert Robinson in a pri-

vate conversation.

Theorem 5.4 L ¢ L£(&PV) is a permutable operator if

and only if

L(Null(s)) = {0} (5.23)
and

L(Range(s)) c v P! (5.24)

Proof First, Let L be permutable. Let u ¢ @V. Then

Su) = 57 ] (P(a)L)u
" 0€S
p
1
-#(3, 3
255
= Lu
and so Lu ¢ Range(S) = V(p) which proves (5.24). Let
u € Null(S). Then Lu = (LS)u = L(Su) = 0 which proves

(5.23). Conversely, suppose (5.22) and (5.24) hold. Let
w ¢ &V. Since § is hermitian, there exists u ¢ Range(S)
= V(p) and v € Null(S) such that w = u + v. Then for all
€ S, P(oJu=u and P(o)v ¢ Null(S), since SP(o)v

P
P(o) (Sv) = 0. Now

Q

L}

LP(0)w L(P(c)u) + L(P(og)V)

Lu + 0

L(u + v)

Lw
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Similarly, since Lu ¢ y (P by (5.2%), :

P(0)Lw = P(0) (Lu) + P(0) (Lv) 1
= Lu + P(0) (0)
= Lu

= L(u + v)

= Lw

Hence L = P(0)L = LP(0) and so L is permutable.

Corollary 5.1 L ¢ Ep implies that the rank of L is b

less than or equal to
(h+p-1> i

P
Proof Range (L) < VvP) ana dim vP) is (_”+§-l).

Corollary 5.2 If T e L(v) is nonsingular, p =2 2 and

n > 2, then &PT ¢ ED.

Proof Marcus [23, p. 54-63] shows that

rank[@PT] = (rank T)p = nP :

Since
n® > (“+g_¥), for p =2 2 and n = 2

the rank of ®PT is too large to allow PT ¢ Ep.

Corollary 5.3 For p =z 1,

E, = (us|y ¢ Py, (5.25)
Proof Let M e‘I(v(p)). Since MS(Mull(S)) = {0} and
MS (Range(S)) = M(V(p)) -~ V(p), we have, by Theorem 5.4,

2. = P —— n—— T — — — T —— e ————
. = i === -
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E, > Ms|M € 2vP)y,

Now, to prove the reverse inclusion, let L € Ep. Then
SL = LS = L, so that Lw = LSw for all w € &V. Since S is

the projection of @°V onto V(p), we can always write

Lw = MSw ¢ v'P)

where M is the restriction of L to V(p). Thus, M,E.f(V(p)).

This concludes the proof.

The significance of this last corollary is twofold.
First, it shows that the permutable operators are essen-
tially general linear operators on V(p). Second, because
of this general nature, not much can be said about the
eigenstructure of permutable operators. Despite this,

however, we do have the following theorem.

Theorem 5.5 If L is a hermitian permutable operator

on @V, then L has at most n (= dim V) decomposable orthog-

onal eigenvectors in &PV with nonzero eigenvalues.

Proof Let u=x® *°°° @ xp # 0 be such that Lu = \u,
A # 0. We claim that U = X ® *+° ® Xy sacisfies
Luk = Xuk, k=™ L, vier. B (5.26)
Since Range (L) c v(p)’ Xy ® “** ® xp € V(p), so that for
all o ¢ Sp’
Xy ® v¢v (X _= P(c—l)x ® *** @ X
;| P 7 P
5 P DR AR BT Y

e - ——— - y N

PRSI S |

P I A

A a
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Marcus [23, Theorem 2.3] implies that

je = 1, " oie, B (5.27)
with

P
2 Cx #0

k=1

Clearly (5.27) implies
U =X @t @X =Cp X ® 't e xp,

oo B s (5.28)

for some ék # 0. From (5.28) follows (5.26). Now, let
VE Y8t e yp # 0 be such that Lv = Av, A # 0. As

before, we have

=yk®---®yk=ckyl®---®yp, Ck#O

and
KNS 70D

Since L is hermitian, u and v may be taken orthogonal;

. ; ol
that is, with C = (clcl) ’

0 = (W) = C(X, & **“ @ X%

1 ll yl ® By iy ®y1)

P
C Il (x % )
ey 1 Y)Y

so that X l Yq in V. Therefore, any set of decomposable
eigenvectors of L are such that the "first" vectors in any

Kronecker product representation of these eigenvectors are

pairwise orthogonal. Since dim V = n, there can be at most

i . SR, o o R— v
~

a_a

_ad
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n such eigenvectors which do not map to 0 under L. This

completes the proof.

There exist "natural" candidates for the decomposable
eigenvectors for a hermitian permutable operator L on @°v.

Let

(x ® **°* ® X,Lx ® +++ ® x)

' =
A i (x ® «+++ ® X, X ® -+ ® X)

X€eV

Clearly, Xé is well defined. Let Xy € V be any vector for

which the maximum XA is attained. Let

xa_l =max (x ® **-*+ @ Xx,Lx ® +++ ® X)
X6V (X ® *** @ X, X @ *++ ® X)
XLX

and let X1 €V be any vector for which this maximum is
attained. Continuing in this fashion, one generates the

sequence of real numbers

Ay =X

L} S s o < 1
1 2 = = A

and the sequence x, ® *** @ Xy € 8PV, k=1, ..., u Are

k

the elements Xe © t** O X, the decomposable eigenvectors
of L with corresponding eigenvalues Xi? The answer is no,
since L need not have any decomposable eigenvectors. On
the other hand, we conjecture that if A\ is an eigenvalue of
L with a corresponding decomposable eigenvector, then
X € A3, Aé, T Ag}.

Since a permutable operator L ¢ L(8PV) is also bisym-

metrie, L has the representation of Theorem 5.1. Specifi-

cally, there exists a smallest integer N = 1, and constants

e T
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Cyr wver C in F, and linear operators Al, el AN in(f(V)

N
such that
N
L = Z ckA£®---®Ak (5.29)
k=1 >
p factors
where det Ak =gl ok o= 1 ooy NG

What more can be said of the matrices Al’ St AN in
(5.29)? One question is whether or not the matrices Al'
< u uiy AN in (5.29) are necessarily hermitian if L is hermi-

tian. The example

1 000
01 10 1 1

L = =A. A, + A, 3 A, - 3 A, 3 A
0110 1 1 2D 2 2 3 3
19 0 0 1]

where

b o0 1] r

Al = " 0], A, = s l|, Ay = ke
lo 1] 1 ¢ -10

gives the answer, since A3 is not hermitian, provided only
that N = 3 is the smallest number of matrices possible in
this case. The proof that two matrices do not suffice

is guite easy. However, we do not know that the
representation (5.29) is, in any sense, unique. Therefore,

it is still conceivable that there exist for this example

three matrices which are hermitian and represent L.

A
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Theorem 5.6 Let L be a permutable operator on ®Pv,

where p = n = dim V 2 2. Then any representation of L in
the form (5.29) has the property

N

Y ¢, det = 0
k=1 K "

Proof Let [aig)] be the n x n matrix of Ak' )y
«, N. Throughout this proof, let a = (al, helaty ap) €T

and B = (61, il Bp) € I'. Since the nP x nP matrix of

Ak @ 00 @ Ak is, from (5.8),

T a ()
t=1 %'Pt]a,8 €T

we have the matrix of L given by

N P
i e i a(k)‘3
k=1 tel %e’Pela,p € T

By Theorem 5.3, for all o, y ¢ Sp,

3 Cy g a(k) = ? ) ﬁ a(k) 8
k=1 t=1 %’ B¢ k=1| * t=1 %y (t)’"o(t)
so that
N p P
ck[ i aék)e i aék) : =0 (5.30)
k=1 tml TE'TE t=]l “y(k)"Te(t)
Since p = n, we can put al =1, a, = AT ap = n, and
for v(1) = 1, ..., y(p) = n, (5.30) becomes
N P P
ck[ i aéké - K a(ké ] -0 (5.31)
k=1 (<5 1 S t=1 “"“o(t)
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Let 0 be any odd permutation in Sp. Now, whenever the

p~tuple (Bl,...,Bp) is an even permutation of the first p
integers, (80(1),...,80(p)) is an odd permutation. There-
fore, summing (5.31) over all those coordinates (Bl,...,Bp)
which are even permutations of the first p integers,

N p p

0= J ck( ) e
k=1 78 even(t=1 e - t=1 Halt)
N
= ] ¢ det A, (5,32)

where (5.32) follows by definition of the determinant of Ak
and the fact that as 8 runs over all even permutations, Bo
must run over all odd permutations. This concludes the

proof.
Theorem 5.6 can be extended to the case 1 < p = n.

Theorem 5.7 Let L be a permutable operator on ®pv,

where 1 < p =< n = dim V. Then any representation of L in
the form (5.29) has the property

N
] ¢ det AP} = ¢ (5.33)
k=1 -

where the matrices A{p), A Aép) are any p X o submatrices

cf A A respectively, formed by elimination of the

ll LB BL Y ¢ NI
same n - p rows and n - p columns from each of the matrices

A A

17 e By

IRERY rp and sl, e sp be the row and

column indices, respectively, retained in the construction

Proof Let r




133

of a particular set of A{p), S Aép). Equation (5.30) is

LR ap

= rp and y(1) =1, ..., Y(p) = p, so that (5.30) becomes

still valid. Specialize (5.30) by taking - ekl

a k) %10 (5.34)

’; P (x)
- 1 TerBo(e)

bw] EprPe g

| =1Lse}

Now let 0 be any odd permutation in sp. Whenever the p-tuple
(Bl, Rty Bp) is an even permutation of the first p integers,

B )) must be an odd permutation of the first

(80(1), =eer Boip
p integers. Therefore, summing (5.34) over those coordi-
nates (Bl, s op Bp) which are even permutations yields (5.33)

and completes the proof.

B. The Representation Theorem for L Norms

2p
The algebraic properties of the preceding section yield

a representation theorem for L norms. The representation

2p
is given here in the context of Chapter III, but it is
easily generalized to arbitrary finite dimensional spaces

of measurable functions on which an sz norm can be defined.

Theorem 5.8 (Representation Theorem) Let w(t) be a

Lebesgue measurable function defined on the real interval

(a,b), =» < a < b =< «», such that

b
0 < f w(t)dt < «
a

Let P be a real subspace of sz[a,b], for some integer

p =2 1, and let {ho, h hn} be a basis for Pn. Then

1 v
there exists an integer N = 1, and nonzero real constants

e v s Se—— — e
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Cyr +rer Cyr and (n+l) X (n+l) real matrices Al, Solar AN
satisfying
det Ak = *], o B S (5.35)
such that, for all nn(t) = aoho(t) + alhl(t) + e
+ anhn(t) € Pn'
ZL
p P|{ <P
w — T * o o T
”"n”Zp = cl[x Alx] + + cN{x ANx] (5.36)
where x = <ao a; °--an>T € Rn+l and the norm in (5.36) is

given Ly (3.2). Furthermore, if 1 < p =< n+l, then

Il o~

() =
Sy det Ak =0 (5.37)

k=1

where A{p), s dy Aép) are any p X p submatrices of Al, Sy

AN’ respectively, formed by elimination of the same n-p+l
rows and n-p+l columns from each of the matrices Al, oo
AN.

Proof First, we show that the operator L on PV,

vV = Rn+l, defined via the matrix

(h seeh ,h ce+h )]
[31 Bp %1  Spule. g erT

is a permutable operator. Let o ¢ Sp and y ¢ Sp. Since

l'lh h .l.h )

(h ;
Botp) %y (1) %y (p)

w

81...h3P’ha ...ha )y = (h

1 P Bo(l)

Theorem 5.3 shows that L is permutable. From Theorem 5.1

and the representation (5.29) and eguation (3.12),
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2p T
{unnngp} = (x® - ®@x) (Lx® " * ® x)

|
—
=
3
®
x
N—
oS
Q

kAkg...QAk]

. {(Akx) ® *°° ® (Akx)}

N
T o T
kZl c) (X7Apx) (x"A, x)

]
Il &~

ck(xTAkx)p

k=1

Using Theorem 5.7 completes the proof.

Remark Theorem 5.8 is stated for the real case, but
it could just as easily have been stated for the complex

case instead.

Theorem 5.8 raises an interesting question. Do there
exist representations of the form (5.36) satisfying (5.35)
but not (5.37)? The operator L defined in the proof of
Theorem 5.8 gives rise to a representation (5.36) which
necessarily must satisfy (5.37). So the question may be
recast in the following manner. Does a representation
(5.36) necessarily lead to a representation of the operator

L? The answer is no. Let x = <a b>T € Rz. Then
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1 1 1
J PR TN SRS T SR
0
where
1 1/2 1/2 1/3
1/2 1/3 1/3 1/4
L =

1/2 1/3 1/3 1/4

1/3 1/4 1/4 1/5-J

(We note that L resembles the Hilbert matrix.) Clearly L

is permutable, and a computation shows that

2 T 2
x®" L x® = ] ¢ (Xx'A/X)
k=1
where
1 1 1 31 87
CprreaCe T T g0 T W0 0 T 24
A R AISEe L (0 )RS | 1=l (B
Al,o .'AS L ’ ’ ’ ’
R R T
Since
5
R
kzl ¢ det A, = - == # 0

we know that, by Theorem 5.6,
5
L # kzl cp AL ® AL
It would be interesting to know what the correct (i.e.,
smallest) value of N is here. By direct example, it can be
shown that N = 7, but whether or not 7 matrices are required

is an open question.

-t ————— ¢ —n - . — R o e - reme.
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Do there exist L ¢ JL(&FV) such that

(x1 @ 1T ® xp, L X; ® "7 R xp) > 0 (5.38)

for all X ® " ® xp ¢ &V and yet L is not positive
definite on &™V? The answer is yes for p > 2 and n > 1,

In fact, L can be taken to be a permutable operator as well.
Examples are the operators L defined in the proof of Theorem
5.8, which satisfy (5.38) and cannot be positive definite
because the rank of L must be less than (n+l1)P for p =2

and n > 1, by Corollary 5.1. (Incidentally, L is positive

semidefinite by Theoreém 3.3.)

C. Open Approximation Questions in &V

We end this chapter with two conjectures and some
open questions. Let L be a hermitian permutable operator
on @PV. Then the Rayleigh quotient

(xl R ® xp, L x ® ® xP)

®oo- ®x X ®"'®X) (5-39)
p’ 7l P

max
(x

xl®'° '@xp 1

is certainly bounded above by
conjecture that (5.39) can be
laxation Algorithm of Chapter

equations (6.5) through (6.9)

the spectral radius of L. We
computed by the Quadratic Re-
VI, modified slightly in

to accommodate the more gen-

eral form (5.39). We also conjecture that the Rayleigh
quotient
xl®--~®xp  § p’ 1 p

can also be computed by a Quadratic Relaxation Algorithm

patterned after the one in Chapter VI, where both L and M

T —— e —
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in (5.40) are permutable operators on ®PV with M satisfy-
ing the condition (5.38).
Finally, we ask the following approximation questions.
Let Vo ¢ @PV be any element of ®PV. What can be said about

€p = Mmin ”vo - x

X, ®- 9% _€@PV
1 p

1 R o0 @ xpll (5.41)

where the norm in (5.41) is defined via the inner product
(5.4)? Clearly, if Vo is decomposable, then €9 = 0. In a
somewhat different vein, we can ask, "How dense is the set
of decomposable elements in the unit sphere of Py

Specifically, what can be said about

€ = max min lva =x, ® *°* @ x_| (5.42)
P oP 0 1 P
V0€ \% xl®---®xp€ v
”VOHSl Hxl®---®xpnsl

and is € different from

e' = max {eo} ? (5.43)
vy €0FV
Hvoﬂfl

These questions seem to be difficult.
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Chapter VI

QUADRATIC RELAXATION ALGORITHM

A. The Algorithm

We propose, without proof of convergence, an algorithm

for the computation of ﬂ; € P such that

low 118
R =  max SN ] (6.1)
b R T R T
n°'n "n'2
lon*ii 8
- —n2p T o D S T (6.2)
R

where D is a linear transformation as specified below. The
algorithm is presented in the context of Chapter III, but
without assuming the Nonnegativity Condition. It can be
adapted in an obvious manner to a more general setting in
abstract measure spaces. Alternatively, it can be adapted
easily to more general algebraic settings as mentioned at
the end of Chapter V.

Let P be a subspace of L?[a,b] n Lgp[c,d], for some
integer p > 1, where w(x) > 0 and ¢(x) > 0 a.e. on the in-
tervals (a,b) and (c,d), respectively, and satisfy the con-
ditions (3.1). Let D:Pn -+ Lgp[c,d] be an arbitrary linear
transformation on Phe The norms in (6.1) above are defined
by (3.2). Ve will be keeping n fixed throughout this dis-
cussion, so we modify our notation to allow m, Tye eoes T

P
to be arbitrary functions in Pn.

139
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Lemma 6.1 For n=20,1], 2, ... andp=1, 2, 3, ...,

@ E
: Jok an (x) |26 (x) dx
{2 S c j=1
(Rn,Zp) 0#?a?p = E (6.3)
j n I f IW (X)I w(x)dx
N=EL2, v D j=1 ‘a
Proof We have
d
I IDﬂ(x)|2p¢(x)dx
max cb
OfmeP, [J In(x)lzw(x)d¥]p
a -
d
J il IDﬂ (x)l ¢ (x)dx
< max ; J= (6.4.1)
O’mjepn i J Iﬂ (x)l w(x)dx
G o P o e
: 1,_‘
d P
& U Iva(x)|2p¢(X)dx]
s max b 9b (6.4.2)
i LU J I, (%) |20 (x) dx
Fol ;. oD B a J -
1
a -
A [J |Dnj(x)|29¢(x)dx]9
< 0 max £ (6.4.3)

; b
j=1 O#njEPn j |“j(x)|2w(x)dx
a

d
f [Dm (x) | %P4 (x) dx
= max =

b P
OfneP, [I In(x)lzm(x)dg]
a

where Lemma 3.1 was used in (6.4.2). Hence the inequalities
(6.4.1), (6.4.2), and (6.4.3) are in fact equalities and

this concludes the proof.

_a

——— et TR LR
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The Quadratic Relaxation Algorithm is based on Lemma

Algorithm (Quadratic Relaxation)

(1) Let "(O) néo), ey néo) be any given nonzero

functions in Pn' and define

d
J 1om {9 (x) | %6 (x) ax
(0) 3 J

P

Il

=i (6.5)
(0)

J | (x) | S

Set k = 0and r = 1.
(k) (k) (k)

(2) Given Ty M e, np in Pn, and 1 £ r = p,
define
d
J |D1r(x)l2 W(k)(x)dx
Ll max - 5 ' (6.6)
0FmEP |\ (k) J Iﬂ(x)lzw(x)dx'
a J
where
p
w ) = 1 1or ) (%) 126 (x) (6.7)
j=1 ¢
j#r
P b
uw'®) . j 1% (%) 120 (x) ax (6.8)
j=1 ‘a j
j#r

Let % be any nonzero polynomial for which the ratio in (6.6)

attains its maximum. Define

m, it j=p
2kt o) (6.9)
J L if j #r

- PR
T T m—
- - . it
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(3) 1Increase k by 1. Replace r by .

r
r - |=ip + 1 4
lp]p

where [ ] denotes the greatest integer function.

(4) Go to step (2).

The sequence T(k), k=20,1, 2, ..., generated by the

algorithm certainly has a limit since

T(0) < T(l) < T(2) o T R2P (6.10)
n,2p
which follows directly from (6.6) and (6.3). Also, for i
each j =1, 2, ..., p, the normalized sequence ]
i
n (6)
e k= Bl (6.11) ‘

must have at least one limit point. Let Sj be the set of

limit points of (6.11), and define

Sj = {ef | £ ¢ Sy and le] = 1} ’

Then there exists

T € Sl n 32 fl seo N Sp (o Pn (6.12)

The proof of (6.12) is an immediate consequence of Lemma 3.1
and the definition of # in (6.9). 1In essence, (6.12) states
that each of the p sequences of polynomials defined by (6.11)
has a subsequence which converges to 7. Unfortunately, this

is not enough to assert that 7 is an extremal polynomial for

n,2p

S —— e g A e et ]_.. e w
- wal Ya B it A 3
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Conjecture If 7 € ;0 tx2.p Sp, then

ID#i3 o
R 2 = _—,\——6—2 = 1lim T (6.13)
b R |- kv

If the extremal polynomial m* for R, 2p
4

stant multiples, then we further conjecture that

7 0

lim ——7%7—— s Fen® 4 21, 2. ... (6.14)
k»o I {F8 e g
j

B. Computational Considerations

Before proceeding to an example, some remarks on the

solution of (6.6) are in order. Let

n
m(x) = ] a_h_(x)
r=0 = E
and let a = <a0 al . an>T € Cn+1. Then we have
-7 1
plk+l) _ _1L max ., fTAa (6.15)
M acC a'Ba)

where A and B are hermitian matrices of dimension (n+l)
x (n+l), and B is positive definite. Explicitly, letting

A = [aij] and B = [bij], we have

d
a,. = | bh,(x) Bh, (=) w (x)ax (6.16)
ij e j i
b
bij = Ja hj(x) ﬁi!x) w(x)dx (6.17)
Since w(k)(x) is a known function, by definition of the

algorithm, the matrices A and B can be found explicitly.

is unique up to con-

o ~ ' — = —

s L . i, s s TR o

F—
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It is well known (see, e.g., [13)) that the ratio of hermi-
tian forms (6.15) is maximized by the largest eigenvalue of

the eigenproblem
Aa = ABa (6.18)
and that all the eigenvalues of (6.18) are nonnegative. Let

Amax be the largest eigenvalue of (6.18). Then it is also

well known [13] that

(6.19)

if and only if a # 0 lies in the eigenspace of xmax' Thus
we can find the coefficients of ¥ in (€6.9) by computing any
vector (# 0) in the eigenspace of the largest eigenvalue of
(6.18).

The eigenproblem (6.18) is equivalent to the
eigenproblem

B"laa = 2a (6.20)

Numerically, however, solving (6.20) leads to annoying dif-
ficulties. Although A and B are both hermitian, the product
B-lA is not, in general, hermitian. Therefore, to solve (6.20)
on a computer, one has to use a computer program for solving
the eigenproblem of a general complex matrix. Numerical

lA then yields

roundoff in the computation of the product B~
computed eigenvalues which are not strictly real. To avoid
this difficulty, it is better to solve the eigenproblem by

another method. Martin and Wilkinson ([25] give an efficient

s ——

P

R 3
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method for solving (6.18) when A and B are real symmetric
matrices. It is easy to see how to modify their method
to adapt it to the case A and B hermitian.

Incidentally, it can be shown [13] that if A and B
are real, then the eigenvectors can be taken to be real

as well. Therefore, if the Conjecture is true, then there

(k)

exist extremal polynomials of R
n, 2p

defined by (1.6) having

real coefficients.

C. Example
We apply the Quadratic Relaxation Algorithm to the

maximum problem

1
3/2 (]
rj 2,6 }
L ; ]ao +a;x + ayx | "ax
S a gaxa €R 1 2,2 1/2 e
) L Nk {J lao + a;x + ayx | dx}
-1
: e 3
Define, for a = (ao, aj» az) € R,
k i 2,2
F(x;a) = |a0 + ayx + anx | (6.22)
Recalling Lemma 6.1, we have
3/2 :
I F(x;a)F(x;b)F(x;c)dx
R = max A (6.23)
a,b cER3 1 1 1
el f F(x;a)dx[ F(x;b)dxf F(x;c)dx
-1 -1 -

The Quadratic Relaxation Algorithm is easy to apply. At
each step we compute the matrices in (6.15) via (6.16) and
(6.17). Although these integrals can be computed

explicitly, we prefer to approximate them numerically by

> o
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the trapezoidal rule. Specifically, the integral (6.16) is

replaced by

(k)

22

1
PggiEeidy
N-1

i3 3 Dhj(xr)Dhi(xr)w (xr) (6.24)

'
1

where N = 500 and +1 = x X,, = 3/2 are equispaced in

17 ccer Xy
(1, 3/2]. Similarly, the integral (6.17) is replaced by

2
&

2

: hj(yr)hi(yr)w(xr) (6.25)

r=1

where N = 500 and -1 = Yyr ceer Yy = +1 are equispaced in
[-1,+1]. The prime on the summation signs in (6.24) and
(6.25) means that the first and last terms are taken with
weight 1/2. 1In this example, of course, the operator D in
(6.24) is the identity operator and the basis functions
{ho, hy, hz} are {1, x, x2}.

Starting with the vectors

a'¥ a3, <2, -1
b0 = (-2, -1, 0)
' o (-1, 0, 1)

we get, for the first three steps in the Quadratic Relaxation

Algorithm,
all) = (-.26238420, +.21498490, +.94071037)
5 (27 L pl0)
o1} o o t0)

1) - 5.2856113

S8 L)
p (2)

"

= (-.26378420, +.21190785, +.94106987)
o (1)

—— . —— wEL e | SRR —
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(2)

T = 75.203450
L SEEN )
L e

c3) = (-.26120187, +.21748675, +.94046430)
r(3) = 1601.0732

We used the convergence criterion

< wik¥LY _ k) 6

0 < 10

and found that the algorithm converged in the eighth step

to
al® = (-.26118456, +.21752387, +.94046053)
p(8) _ ,(8)
c(8) W a(g) to within 8 significant digits
7(8) . 1601.3516

If the algorithm has converged tc an extremal polynomial,

then we have

[

R = 3.4204332 = (1601.3516)6

and is attained by the extremal polynomial
TE(xX) = .94046053x2 + .21752387x - .26118456

The algorithm converged to the polynomial n* for every set

(O), b(o) (0) that was tried.

of initial vectors a , and c
All computations were performed on a Univac 1108 in single
precision which gives 8 or 9 significant decimal digits,
although the summations (6.24) and (6.25) to compute the
matrices of the eigenprolilems (6.15) were accumulated in
double precision which gives 18 or 19 significant decimal

digits.

e v gy a— — } G '.v
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