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INVARIANCE PRINCIPLES FOR JACKKNIFING
U-STATISTICS FOR FINITE POPULATION SAMPLING AND SOME APPLICATIONS

Hiranmay Majumdar and Pranab Kumar Sen

University of North Carolina, Chapel Hill

ABSTRACT

For simple random sampling (without replacement) from a
finite population, suitable stochastic processes are constructed
from the entire sequence of jackknife estimators based on func-
tions of U-statistics and these are approximated in distribution
by some Brownian bridge processes. Strong convergence of the
Tukey estimator of the variance of jackknife U-statistics has
also been established. Some applications of these results in
sequential analysis relating to finite population sampling are

also considered.

1. INTRODUCTION

Let QN be a finite population of size N, represented by

the vector AN = (aNl""’aNN) of real numbers. Let lN =
(le""'XNN) be a random vector wvhich takes on each permutation
of the elements of A~ with equal probability (N!)'l. Then a

random sample of size n(< N) drawn without replacement from QN

may be represented by 5Nn = (xnl""’XNn)’ so that éNn takes
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R s A s R 2T SN,
aNil’ ’aNln) g 'n 5

on all possible n-tuples (
with the common probability N'["]{(= N...(N—n+l)]—l), for
B =Y. 0N

For a symmetric kermel f(le) of degree m(> 1), the U-

statistic, defined by

= _ . =[m]
U = UXyy) =0 {p £y 2o-sXyg s m2B,  (1.1)
n,m 1 m
(where Pn,m = {(11,...,1m): 1 sij#...2i <n}), is an unbiased
estimator of
# i1 el
g =U(%y) =UR) =N Ep flay, »---s8y; ) - (1.2)
N,m 1 m

Various properties of UNn have been studied by Nandi and Sen
(1963), Sen (1970, 1972) and others.

Let us consider a real-valued function

Oy = 8luy) (1.3)
where g 1is a smooth function. Though UNn is an unbiased
estimator of UN’ eNn =g(UNn) is not generally unbiased for SN.
For this reason, we consider the following jackknife estimator.
Let

0 I ~[m]
Upnzy = @-D750 4 co Toldade TR e

n-1,m
i ; 2 ; . . - s
= . <
where Pn-l,m {(11,...,1 )k 511 Z...21 <n with lj z1i,

l1<j<m}, for i=1,...,n. Also, let

ali) (i) . .
eNn_l = g(UNn_l) g kSESH 4 (1.5)
~ v, . & ,\(1) . g
eNn,i = neNn (n l)eNn-l I (1.6)
. 1% a2
By, = M izleN“’i . (1.7)

Then e;n is the jackknife estimator of eN.

For random sampling from an infinite population, jackknifing
of U-statistics has been studied by Arvesen (1969). Recently,
Sen (1977) has carried the investigation further by establishing

invariance principles for jackknife statistics and incorporating
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them to some problems in sequential analysis. The object of the
present investigation is to extend the results of Sen (1977) to

sampling from finite population and to emply them in some prob-

lems of survey sampling.

The basic assumptions and preliminary notions are outlined
in Section 2. Section 3 deals with the main theorems and their
derivations. In Section 4, some applications and clarification
of certain results, which have so far been tacitly assumed by the

workers in this field, are discussed.

2. PRELIMINARY NOTIONS

As in Sen (1972), we define for h: 0<h <m,

= (N-p) " [m]
fh(xil,...,xih) = (N-h) {(h)f(xil,...,xi o (2.1)

m
where E(h) extends over all 1<i zi“lSN with i, .=

h+j
and f =f.
m

h+1=‘...

ig tor j=1,...,m-h and s=1,...,h. Then fO =

< N
Also, let

h N

Var{fh(gNh)}

-[h] 2
=N ) 2 1 MO OUIINN T, M (2.2)
PN,h h N1l Nlh

for 0<h<m, where Zb N =0 and it follows from Nandi and Sen

N ’

(1963) that

i

For the study of asymptotic properties, we conceive of a

< (h/g)ig V1<hsgsm. (2.3)

N ’

sequence {QN} of populations and allow N =+ « . We assume that

(A) inf CI,N >0 and sup cm N < (2.4)
N N ’
X 4
(B) s:p |.|f(5Nm)| < (2.5)

and (C) g, in (1.3), has a bounded second derivative in some

neighborhood of “N' Note that the second condition in (2.4)

‘N for

follows from (2.5). White Section
Note that by (3.22) of Nandi and Sen (1963), V N2n3zm, - i et O
" 0

~1 _2J[N-n N-m| |+ -1 N-n (5 N
Pt {( m J/T m ]}CI,N Sv{UNn} e m{N-Zm*l}cm,N b S iy
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so that by (2.4), for m<n <N(l-e), € > 0,

0 < 1Zf nV(UNn) < s:p nV(UNn) N (2.7}
while nV(U ) +0 as n -+ N. Further, by (2.4) and (2.5),
—
max {|f, (ay;) -u LIE. 1) =0(N1/4) , as N»e . (2.8)
N 1,N
1<1<N
Let us also define, as in Sen (1972),
ph) -[h]
Uy =D Ip £,(X;,--00X; ), Oshsm, (2.9)
n,h 1 h
T (m) _
where UNn = “N and UNn UNn’ Y n<m, and let
h
wi oo 3 [ }( Hku (h k) heti,....m. (2.10)
Nn
k=0
Then, as in Sen (1972),
m
h)
e [ ] wh) (2.11)
Nn h=0 hJ] Nn
Given that the collection (aNi see sl ) corresponds to a
n
sample éNn (without specifying the order in which the elements
occur), iNn can assume any one of the n! possible permuta-
tions of (aNi see sl ) with the same conditional probability
- 1 n
(n!) 1. The conditional expectation with respect to this condi-
tional distribution is denoted by E(* CNn)' Then,
n
o B o (i)
BB 4160 = B 1ZeNHI,Vnm, (2.12)
and, as a result, by (1.5)-(1.7) and (2.12);
* - o
o -éNn-+(n-1)E{(eN Nn 1)|C , Yn>m . (2.13)

The Tukey estimator of the variance of nli(t)Nn-uN)[(N-n)/N]'ls is

18 2 * (2
=(m-1)" ) (8 0Ny (2.14)
i=1

Nn,i~
where by similar arguments if follows that

V. = n(n-1) Var((éNn- ) (2.15)

Nn Nn-l)ICNn}
Both (2.13) and (2.15) are in agreement with the parallel results
for infinite populations, treated in Sen (1977). We conclude this

section with the following.




Definition: Let {T_, n<N, N<1} be a double sequence of eta-

Nn
tistics and {aN, N=1} be a sequence of real numbers. Then,
T, -a_ strongly converges (s.c.) to 0, if for every € > 0

Nn N
and every sequence {N*(< N)}, such that N* + © as N > »

(but N*/N may or may not go to 0),

b -aNl > e} =0 . (2.16)

Iim P{ max |T
N*<n<N

We shall find this definition useful in the subsequent sections.

3. INVARIANCE PRINCIPLES FOR {egn}

Let {N*} be a sequence of positive integers such that as
N »®, N*¥ +o but N*/N~> 0 (viz., N* =NA, 0<X<1 of 1logN
etc.). We then consider the stochastic process Z, = {ZN(t),
tel=[0,1]1} by letting t = k/N, k =0,1,...,N and

N,k
0, t <N/,
1
= = e W e =
ZN(t) sz k(Nka) (eNk eN) Tt tN,k " (3.1)
(k+1-t)Z +(t-1)sz+1 5 tN,ki t_itN’k+1 "
for k <N. Then, ZN has a continuous sample path and it belongs
to the space C[0,1] of continuous real-valued functions on I,
ket 20 o {Zo(t) t eI} be a standard Brownian bridge on I. That
is ZO is a Gaussian function with EZO(t) =0 and EZO(s)ZO(t)=

SAt -st = min(s,t) -st, ¥ s,tel. We say [viz., Billingsley
(1968)] that 2, converges in law (or distribution) to 20 kif
for every continuous functional h(-) assuming values in R,
the k(= 1)-dimensional Euclidean space, as N =+ « h(ZN) has
asymptotically the same distribution as of h(Z). For example,
the above weak convergence of Z . to Z0 insures that
sup{ZN(t): 0st <1}, sup{lZN(t)|: 0<t<1} and féz:(t)dt have
the same limiting distributions as of sup{Zo(t): O<t<l},
supt[20(t)[: 0<t <1} and [}[z°(t)]1%dt, respectively. This
mode of convergence is stronger than the asymptotic normality

1L
of n’(eﬁn-e) and it also insures that for finitely many

&
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tpoeenty (all belong to 1), [ZN(tl),...,ZN(tm)] has asymp-
totically a multinormal distribution. Then, we have the follow-
ing.
Theorem 3.1. Under Assumptions (A), (B) and (C) of Section 2,

y 0
ZN converges in law to 1 .

Before we present the proof of the theorem, we consider

several results, First, the following theorem (whose proof is

postponed to Section 5) is of basic importance in this context.

Theorem 3.2. Under (2.5), |n(n-1)E{ (U

$.C., @8 N * @,

2 27—
Nn-1"Ynn) 1Cxn? =@ Ty Nl 20

Note that n(n-DE{(Uy Uy )%[Cy } = (n-1) ) wld) v y?
i=1
() (n- 1){ max (U(l)1 -UN )2}), so that by (2.5) and Theorem 3.2,
1<i<n N

max  max (n- 1[u(1)1-u 12=0(1), in probability . (3.2)
N*<n<N 1<i<n

Further, by Theorem 1 of Sen (1970), U —uN-*O s.c., and hence,

Nn

by (3.2), (i)

max |U -U | +) S§.C., 85 N #.0 , (3.3)
x Nn-1 "N :
1€i<n
Let us now define
2 A 2 2—

Yy = gyl mg, oy N21 . (3.4)

Then, by virtue of Theorem 3.2, and (3.2) and (3.3), we may vir-
tually repeat the steps in the proof of Theorem 3.1 of Sen (1977)
and obtain that under Assumptions (B) and (C),

VNn - yi +0 8.¢C., a8 N>

A -1
o & L ;
eNn eNn O(n ') in the strong sense in (2.16) . (3.6)

Let us now return to the proof of Theorem 3.1. Suppose that
in (3.1), we replace V by Y: and denote the resulting

Nk, (t)
0 N

process by Zy = {Zo(t) t € I}. Then, by definition,

p(Zy, 2 N * SuplZ (t) -2 (c)|

tel
= sup {IYN/Vﬁk (t)-1||zg(t)l} [1~ = E?: ,{]} . (3.7)
tel* n
ey —— <

0 P X' = S e S




()

0

Hence, 1t 2, converges weakly to Z° ( whi

i

i) |
supt i, (t)ls £ £ I “P

J
BoasnN- o, [eénce, it

2z

heorem 3.3.Under the ml[";ﬁh-".‘:f.’: aof

).
aw O & =

Proof.We note that

5 - 6 g(U. )

Nn N Nn
gl )l

+ LIy
[ NI

where by Assumption (C),

of y,.. Also, by Theorem
i3 |
and hence,
3 P
(&, = 9.
l Nn .‘.)

Suppose now that in (3.1
gt (p (U, - u,,
> Wy Uk P
proeess by Z.

(1972), Z., converges in
N

{1) ), then, by

suffices to prove

ch implies that
(

-

3.5) and (3.7), p(Z,,2,)
o o

the tollowing

’ : 0 -
Theorem 3.1,72,, converges in
Al
e 'J(' )
5 J‘\)
R §
Nn T.J
2
- 18" (U + (L-hjp ), O<hel, (3.8)

g"(.) 1s bounded

1 of Sen (1970},

- gty Y. ~ 1
81 () Uy~ Wiy
*
)}, We replace ’;\_1_
o

LU '
law to 27, while

along with the weak convergence of Z,, ,

plZ

0
and hence, Z\ converges

N

Q = )
\;"‘-\ ) L [);

0
weakly to Z . Q.E

in some neighborhood

n“cu —,,_)z O S0,

Nn

{il=idiSe e, (5.9)

- G and V.

Nk 2Y

,) % -
) and vy, , respectively, and denote the resulting
N

‘I;’;(,\‘(t),t € I }. Then, by Theorem 2.1 of Sen

by (3.6) and (3.9),

(3.10)

s

S0 far, we have assumed that the a,,. are all rcal numbers.
N
I'here is no harm in letting them be real p-vectors, for some
p - 1 . The same permutation argument holds in this case, and
hence, the proofs remain unaltered. Also, in practical problems,

! (U (for some ¢ - 1) may be a g-vector,

I Vo yh
J.\n Nn(l)? i ]Nn(qj) —

where the UNn(J’) are defined by (1.1) for kerncls f'(” of degree
5 g : s enns Frans ’ . A = 8 = ¢
mJ (- 1) and in the same framework, we have My !‘.,.\'N' )N i’(lf.\‘)

and 6, = g(U where we assume that g has bounded second

Nn ; ,.Nn) ’
order partial derivatives in some neighborhood of y, . Then,

: ~N
swlacihe: 3 5 (1) (1) Elnad ks 3 ;
replacing in (1.5), ”Nn-l by !‘,Nn-l |defined as in (1.4) with

-

SV —— B < .




f (f A0S e J}, we define the jackknife estimator ©F as

(1)’ g Nn
in (L.6)-(1.7). 1If we d(‘ij)L' the 1?() Jh a5 in (2.1) for €= f(j)
and replace, in (2.2), f; by (J)h(“}){ 1) (X ) the result-
ing gquantity i1s denoted by {‘h(j‘/) o for i »p and hz0.

+

lhen, assuming that (2.4)-(2.5) hold for each j(=1,...,q), it
follows by arguments very similar to the ones in the proof of

theorem 3.2 (see Appendix) that for the jackknife variance V_ |

Nn
2
A\ B » ( >
P JNn Yn o emme o dq)
: T
Y- ) L 8! ﬂ J,I(J m. my £ N {5.12)
N =t ) J “LE 3T 5D

With this modification, Theorems 3.1 and 3.2 hold under no extra
regularity condition. Actually, (3.2) and (3.3) hold coordinate-
wise for each j(=1,...,q), 1in (3.8) we have a multivariate
wecond order Taylor series expansion, so that in (3.9) (and in

the definition of Z.), g'(py) (U, - ) has to be replaced by

9 e

y ot fp R M., ,..) which, being a linear combination of
Ly TN Nn(j) "N(3)
h‘, b, 1is itself a U-statistic, and hence, Theorem 2.1 of Sen
~INEE LY

(1972) holds directly.

It is also possible to consider a vector 6 = (U ) and
i Z‘H\“" where E(*) = (u(l)(-),...,g(r)('JJ for some

é { = s » > suc
rel amd Do T Ampayrei el SOE SORe gL, - ln e
a4 case, we assume that for each g, . and U_. ..., the

(s) Nn(jj
Assumptions (A), (B) and (C) of Section 2 are met. Defining the
(1) - . 5 a(i) (1)

4 : = > ue and 6 = U ’
~Nn -] L Gl (f(l)' ’f(q)) = ~Nn-1 ~(~Nn l)
I ©i<n, the jackknife estimator 6% 1s again defined by

Nn
(l.h)-(l.7). The Tukey estimator of the dispersion matrix of

0* -¢ is give
(i\l 1N) 15 given by
V = (n- -1

~Nn b v
1

L o =

4
1

Let us consider the matrix EV = ((YV sx'JJ where, for every

-0* ' (6 Y- i
Nn, 1 iNn) (an,i an) 1 k=13

5:57 (el cnsbly

(’ ({
TN,ss' © J)l Kzlm_mfg(s))(UNJﬂ(S )l(u )T 1L N (3.14)




and is the partial derivative of g 5) with respect to

g
(s))

the j-th argument, for j s o nf and by =1,...:: Then, by 2
direct coordinatewise extension of (3.11)-(3.12) we have

V

Sy g L AR (3.15)

Consider then a vector-valued stocastic process Z_ ‘;’N,H . e g}
N Ty

where  Z (t) is defined [as in (3.1)] by linear interpolation of

Z.., 0sksN and
"Nl’i
_L ._)2 =
1EE 0" -0 Tl is positive definite
KN Yk i 2 “Nk e
y and N*<k<N ,
NI
!H ,  otherwise . (3.16)
{
—t) L0 : X " .
Finally, let Z {g,‘ (t), tel}l be a vector-Gaussian function

: L0 P9, L0
o I with ‘EZ (t) = 0 andt “ELMERVEEATSY] = {(s f»t)-s‘t}lr,
¥ s, tel, where lr is the unit matrix of order r. Thus, the
SRR > g s
components of Z° are all independent Brownian bridges on [I.

I'hen, we have the following.

Theorem 3.4. lnder the conditions mentioned above, ZLN converqges
¥ By " ! :
in law to 1, whenever T is p.d.
2 " . . - 0
Outline of the proof. Let us define Z\ B ’.ZN(I Yot ek, by
replacing in (3.16) y‘NkN(t) by !“N Then, by arguments similar
to those in (3.7},
0 -1 0 | :
AR E < sup iy < Z.. T S 5.17
0(Zyoky) < PLosup LN o) Ll HZg 1] (3.17)
tel N
B | 2 2 >
where ||£|| = (aa') and I;AI‘ = trace of A . Hence, by ¥ir-
; ; o 0 ) o ;
tue of (3.15), it suffices to show that Z. -+ Z( fowards this,

N
we consider a direct (coordinatewise) extension of (3.8)-(3.9)

[with modifications as in after (3.12)], and the rest of the
proof follows by using a direct (vector-) extension of Theorem
2.1 of Sen (1972).

4. APPLICATIONS

We conceive of a random sample (xN ) of size n drawn with-
~Nn

out replacement from HN where the Ay (and hence, XNi} are
g - e L - ';:—m._»,

ey




all p-vectors, for some p=1. We consider the following

applications.
1.1. Estimation and Testing of Multiple Regression Coefficients

et us denote the population dispersion matrix by

A \ l "“ - J ‘ - { \
.‘1 \ [‘ ("“\J— ‘A”\) s ('j'.‘\) rl‘ ios “'v ‘- { :‘"-J: ] '. 1 J)
i=1 1=1
We write A, = ((/grsj)r,ﬁfl,...,p and denote the mi?ur of ;:Tg
by A r,s=1,...,p. Also, we denote X_.. by (X:i’,...,x{P)y,
o ? N1 Vi Ni
i=1,...,N. Then the population regression coefficients of
) (p- :
1‘2’ on (XI:),,_,,XV? 1))(= 5:1, say) are given by
. P U , :
B, = A / Y A ‘ M) e o (4.2
~N wxppixp Wnore ~Np (’Npl /Npp~l} !
fhe usual sample cstimator of £, (based on Xan! is
b =i : " where £ =iek £ e (4.3)
~Nn  ~Nnpp~Nnp ~Nnp Mnpl’ * "’ Nmpp-1- °’
Lo = (e -)), 5. ds the minor of 4 and
~Nn Nnrs ~Nnrs Nnrs
= [2]" f
i i b o 4.3
i Bxn =70 lyciejen A0 %yy) )
£ 0K .. e S Rl b R (e (4.4
& XN]’XNJJ 5 (le XNJ) ( Ni XNJ} 4.4)
is a matrix of order pxp. Though L, is unbiased for Lacs
Q,“ is not necessarily so. But LNn is a matrix of U-statistics,

and we arc natrually tempted to use jackknifing to reduce the bias
of QNn; the jackknife estimator as defined in (1.7) |and before
(3.13)] is denoted by Eﬁn' Using the results of MacRae (1974),

we have

ob
il e = o1 ettt VA
e {Lanp 2 LP_I}L(p Lp-1) Ly 2 Ip_l,gan (4.5)
where @ denotes the direct product,
g - ((F 112 gy
L(p-1,p-1) = ({Lij))i,j=l,...,p~l (of order (p-1)° = (p-1)7),

(4.6)
and Lij is a (p-1)~#(p-1) matrix with the element 1 in

its (i,j) and (j,i)-th positions and 0 elsewhere, for

Lod = hsoey p=2e Algo,

o

~ad



b

~Nn I .
- = L " o
ol* "P"n;;[:'l'p I ot

~Nnp

Thus, if we assume that (i) the characteristic roots of A, are

“IN

all bounded away from 0 and <, then condition (C) of Section

holds, while (2.5) holds, if in addition, we assume that

. ° ' i),8
lim N : J Iu(,‘.“~:n”,)| <o SR L T SRR o T (4.4)
¢ 5 Ni N
11
Let V be the jackknife dispersion matrix of n"(h“, -8},
~Nn > ~Nn ~N
defined by (%3.13). Then from Theorem 3.4, we claim that whenever

ni< N} s Iarpe -l = nN(N-n) l(}_}* W R lfb* VTN) has asymp-

Nn ‘Nn ~N’ ~Nn ~Nn *
totically the chi-square distribution with p-1 degrees of free

dom (DF) and this can be incorporated in testing a null hypothesis

H”: '{-:“'k'_ '{’:” (specified) against H*: «{I:N ’ E” or to provide a
(simultancous) confidence region for (’N Let /;‘?,'1 be the
upper  1000% point of the chi-square distribution with t DF
and let 'l;j” be defined by replacing (‘N by {3“ in the d(:i'i»ni-
tion of ']‘Nn' 7'l'hcn, we accept or reject H() according as 'IV;\jN
15 5 o /'l;"]-’i where ao(0 < a < 1) is the desired level
ol sipnificance of the test. Further, if we consider the
(ellipsoidal) region %
an : {»(2]\1: ’ll\'n /';;‘l,u.’ ik

the for large n, INn provides a confidence region for {ﬁN with
confidence coefticient 1 -,

In actual practice, neither y'Nn nor its population counter-
part T defined by (3.14), is usually kpnown in advance, and

~N’
hence, an improper choice of n  may result either in excessive
costing (due to over-sampling) or in a larger diameter of an

. g, .
Jor small power of the test based on 1 (due to under-sampling).

|
Nn
For this reason, a sequential procedures may be adapted which
through regular updating of information through sampling results
in (nearly) optimal solutions. These sequential procedures, in
turn, rests on the invariance principles considered in Section 3,

~

Lot ch](‘lﬂ be the largest characteristi. root of B and let

P— g B——— —




na =minf{k: k-)no
where d(> 0)

n()(> p)

and ch1

W) < d2KN[ (N-K) x>

-1
p—l,a] }, (4.10)

is a preassigned (small) positive number and

is an initial sample size with which sampling commences.

: oy 3 : 0
Thus n* 1is a positive integer valued random variable and n

d

< na < N. Then, starting with the sample size
drawn (one by one) without replacement so long as k Sn; i.e.,
ch (VNk) > d Nk/(N l)y When k =na, sampling is terminated
Jnd INn*’ defined by (4 9) for n-—nd, is taken as a (simultane-
d
ous) confidence region for EN' Note that if A be any p-d.
matrix, then by the Schwarz inequality
—
sup{|£'x|: £'£=1} = sup{|L" A R x]: £l =1}
S 1
< [sup{g'AL: £'4=1}(x'a" 91"
= [eh, () (x'A710)]” (4.11)
Hence, choosing A =V and x = (hﬁn* - QN), we obtain from

e *
Nnd

0 -
n , units are

d

(4.9), (4.10) and (4.11) that the maximum diameter of I} is

* 2 * I/
Z{Chl(!Nn*)[(N—nd)xp—l,a/Nnd)}2 <

Nnd

(4.12)

so that the w1dth of the confidence interval for any £' éN

bounded by (£' £)2 2d, - i

dence region of BN.

P{gNe I

insuring that the confidence coefficient of I

l-oo when d

ng = min{k: kzn0

is chosen small.

s INna is

We intend to show that a d
-a , (4.13)

NnﬁléN} sl

Towards

and ch, (T < &°kN/ (n-k)g ) )

a bounded-diameter confi-

Nn* approaches
d

this, we define

(4.1i%)

Then, by (3.15), (4.10) and (4.14), we have

0
n;/nd + 1

$.Ciy 8%

d+ 0,

(4.15)

and as a result, using the continuity (or, rather, the tightness)

is chosen small,

T s



A

property of %N [implied by the convergence in law of ZN to

gO], we obtain that gN(N‘ln;) - gN(N—lng) E 0, while by
Theorem 3.4, ZN(N'lng) has asymptotically a multivariate nor-
mal distribution. Combining this with (3.15), we conclude that

TNn* - T S.C., 88 d ¥ 0 , (4.16)

"

i g
and using (4.16) along with the fact that TNnO
the chi-square distribution with p-1 DF, wg conclude that

2
PUBy e INn:llgN} i p{TNna > X5-1, 0l By

has asymptotically

2
- P{TNnSSXp_l,QIEN} +1-0 as d+0 . (4.17)

Thus, (4.13) holds. The theory developed here is an extension of
the Chow-Robbins (1965) theory of fixed-width confidence inter-
vals to finite population sampling and to a more general class of
statistics.

In medical trials, often, repeated significance tests (RST)
are made on an increasing sequence of sample sizes with a view to
stopping earlier if a significant result is obtained at that time
(prior to reaching the target sample size). Here, we shall deve-
lop such RST procedures for sampling from a finite population.
The theory rests on the invariance principles studied in Section

3 Let
g o 2 * '1 *
TNk = (k /N)(BNk'éN)'VNk(Eﬁk'gN) for N <k<N , (4.18)

Iy* 0 as N+ w, while we let T, = 0,

where N* + © but N~ K

Y k <N*. Let then

NS |
KNn = ::: TNk and MNn = N 2k<nTNk " (4.19)

where n/N + ve (0,1]. Then, we have

-1
9 P2 (p-1)
K, =+ sup { Z W, (t)} = K s Say , (4.20)
Nn o pcesvlyj=y 30 %

-] Vv
pP 2 (p-1
Myn jzl f Wjo(t)dt = va ) , say ,
e

where [Wjo(t), te I} are independent copies of a standard




Brownian bridge on 1. Let K(p 1) and MEPal) be the upper
100a% point of the dlstrlbutxons of K(p e and M(p l), respec-
tively. [For p = 2, K(l) and MS ) are functlonals of a single
Brownian bridge and the1r distributions are known; see Koziol and
Byar (1975) and Pettitt and Stephens (1976). For p=3, analy-
tical solutions appear to be intractable; however, the prospect

of simulation is quite bright. We may refer to Majumdar (1976)

for some related work, ]

Suppose now that we desire to test HO: QN = §0
against §N z §0. Let OTgk be def1ned by (4.18) when B is
replaced by QO and Mnn (and K ) be defined by (4.19) when
T is replaced by T k=1, Then, we have the following RST

Nk Nk’
procedure:

(specified)

0
. s Nk Mk
- Kvp& (or Mvp& ). If, for the first time, for k=D (< n),

Continue sampling as long as k<n and T (or is

e o pip-1) 0 (p-1) :
IDO 2 Kv,a (or MND'<Mv i ), stop sampling when XND is

observed, along with the rejection of H If, no such D(< n)

0
exists, stop sampling at the preplanned n-th stage (i.e., when
an is observed), along with the acceptance of HO.

By (4.9) through (4.13), we conclude that the asymptotic
level of significance of this test is equal to o. Also, E(D) <n,
indicating a saving in the average amount of sampling over the
fixed-sample size procedure. In fact, we may even test for a more
general hypothesis:

: Eﬁ QO vs. H: SEN z QO ¥ (4.22)

where C is a qx (p-1) matrix of rank q(l<q<p-1) and B
is a specified q -vector. For this case, in (4.18), we need to
z * _ *
take TNk N~ k (kaC' go)(CV C') (gka go), k2N (and equal
to 0 for k<N*), and in (4.20)-(4.21), we need to change p-1

to q. Rest of the sequential procedure remains the same.




4.2. Estimation and ‘esting of Ratio of Means.
In the same set up of Section 4.1, we consider the parameters

_ =(1) ,=(3)
Pheigy = N /%W

and our interest centers around one or morc of these ratios. The

for l<i<j<p, (4.23)

usual estimator of pN(ij) is

n
A <Ry etl) v
Pngijy) = X5 Xan’ 0 X T D iZIXNi
= (x(1) v (p)
- (XNn ,...,XNn o (4.24)
for 1<i<j<p. Though X is a U-statistics (vector) and is

Nn

unbiased for is not generally an unbiased estimator

A P

of pN(ij)' Hence, jackknifing may be employed to reduce the
bias. Here, we note that
i-1 i-1, -1 2
(B/Bbi)(bl/bz) = (-1) (hl/bz) b2 for i=1,2 . (4.25)

llence, we may proceed as in (4.9) through (4.22) and consider
point as well as confidence interval estimators of pN(ij)’

l <i<j<p and also (sequential or nonsequential) tests for any
subset of these parameters. In passing, we may remark that the
Grizzle-Starmer-Koch (1969) linear models with categorical data
extend to the situation when proportions are ratios and samples
are drawn without replacement from finite populations, and where
jackknifing is employed for bias reduction. This is actually a
special case of (4.23) when each of the p arguments of ani is
either 0 or 1, so that 5{;) is the proportion of 1's in

the N responses on the i-th characteristic, for i =1,...,p.

4.3. Optimal Allocation in Stratified Random Sampling

Suppose that the population of N units is subdivided into
r(z 2) sub-populations of sizes Nl""'Nr (so that N = Nl +
Nh and ANh be defi=ed as in (4.1) for the

h-th sub-population, h=1,...,r. Suppose that a sample of size

2 N). ke &
r ~

n is to be drawn and let n denote the sub-sample sizes

n
CERRELN
for the r strata. Optimal allocation of Npseee,ny [viz.,




Chapter 5 of Cochran (1963)] depends on QNI""’ANr’ which are

all unknown. We may start with an initial sample of size n,

= rH”) with n_ observations from cach stratum, estimate the

0
A l1<h<r and using these estimates get an estimated optimal

~Nh’

allocation for n; this usual practice entails some loss of effi-
ciency, As in Williams and Sen (1973), we may consider a multi-
stage (or sequential procedure) where we keep on updating the

estimators of A l1<h<r, so that the procedure will be asymp-

~Nh’
totically optimal. In this context, jackknifing can also be used—
the theorems studied in Section 3 insure that for jackknifing, the

sequential procedure leads to an asymptotically optimal allocation.

5. PROOF OF THEOREM 3.2

We consider here the proof of Theorem 3.2. Note that by (2.11),

m
. = (1) o i my .. (h)
Vi = My = W wNn 2 wNn i hzz(h “on 1)
for every Nznz=m. Hence, for every n>m,
& 2 (1) (1) * *
Usn-1 = Ypn = m(wNn-l “ M ) * (wNn-l i wNn) ; 2]

By virtue of (2.5), (2.9), (2.10) and the results of Nandi and
Sen (1963), it follows by some routine steps that

: * B -2
L([n(n-l)(wNn_l oL i }sen©, Ym<nsN, (5.3)

where ¢ does not depend on N. Hence, for every N*(< N):
N*—)oo

’ * * 2
P{NltﬁéN E[n(n-l)(WNn_1 “ M) lCNn] >s}

IA

v iy ¥ .2
LPEMM-D) W | -we )¢ 1>l

)

n=N
< § e 2Efn(m-1) (" . -w* )2
it nin-1) (M1 < %) )
n=N
2%z -2 3
s ) AT s IN=1)" » 0, Y20, (5.4)
n=N*

Hence, to prove the theorem, it suffices to replace n(n-1)

2 by m’n(n-1) W) -wﬁi))z

(Unn-1"Yn) Nn~1 Toward this, not that

et - =
B! Bt v e eGP § P2 e



™

b B R

n-1_ Nn ) ' Nn}

n(n- 1)1{(w(1

= n(n-1) r{[w(l) =g (an) -uN}]zlan}
= n(n-1)"} ) o -n) - WUy . 5.5
F=1 ;
(1)

Note that {w
U-statistic sequcnce) and E{W(l)} = C ((N n)/Nn). Hence, by

Theorem 1 of Sen (1970), V € >0

; CN , n>m} 1is a reverse martingale (being a

P{ max [w“)]2 >e} < e'lii N((N-N*)/NN*}

N*<nsN D
+>0 as N¥>® (5.6)
~ n 2
On the other hand, 2 f (X N} (n=1) is also
a U-statistic with EU E’ and by (2.5) and by (3.14) of

Nn = ,N
Nandi and Sen (1963), v{U } O(n-I(N-n)/N), ¥ n<N. Hence,

by Theorem 1 of Sen (1970), we have for every €>0,
P{Nzﬁ:éN]UNn -Cl,N’ >c} <€ ZV(UNN*)

>0 ‘as N* + o, (5.7)
From (5.5), (5.6), and (5.7), it follows that In(n- 1)F{(w(1) :
(l) 2[C Z, NI + 0 s.c., and the proof of the theorem is
Lomplete.
Remark. For infinite populations, a similar result has been
proved by Bhattacharyya and Sen (1977). In view of the rela-
tively stringent assumption (2.5), for finite population sampling,

the present proof is considerably simpler in nature.
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