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ABSTRACT

A general method is presented for obtaining the dynamic equations
of an elastic structure to which elastic and/or nonlinear substructural

elements are attached.
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3 INTRGDUCTION

Component mode methods had been successfully exploited to solve
vibration problems long before the computer age made it feasible to
analyze complex structural systems by discretization, e.g., the finite

element method.

While analytical solutions abound in the literature, the structures
considered, out of necessity, are comparatively simple, and are
analyzed on an ad hoc basis. The extensive use of finite element methods
has made it feasible to consider the most complex structural systems,
and thereby made it necessary to develop comprehensive procedures for

obtaining the dynamic equations for the system.

Various methods for component mode analysis have been suggested [1, 2, 3].
They differ from one another in their choice of component modes, but all
express the equations of motion in terms of system modal stiffness and
mass matrices and component mode coordinates. Their concern is essentially
directed toward solving the eigenvalue problem and determining the system

modes.

In a previous report [4] a general method was presented for obtaining
the dynamic equations of an elastic structure to which arbitrary elastic
substructural elements are attached. The methodology used was to express the
kinetic and potential energies of the system as the sum of the contri~
butions from the main structure and substructures, separately. It was
shown that the equations of motion of the main structure were affected by
the presence of the attached structure by means of the forces exerted

at points of attachment.
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It is the purpose of this report to formalize and fully automate
the procedure, aad to extend it so that it can be applied to the most
complex structural elastic systems having nonlinear attachments and/or

small substructural regions that respond nonlinearly. A treatment of

some special cases involving nonlinear attachments may be found in [5].
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II GENERAL METHOD

Consider an elastic structure S to which an elastic substructure O is

attached. We denote the in vacuo modal and diagonal generalized mass matrices of

S by ¢S’ U.» respectively, and the corresponding diagonal frequency matrix

S’

2
by Wes and express the displacement of the structure as

dg = ¢g9g (1)
where dq is the generalized coordinate vector.
The kinetic and potential energies of the system, expressed as
sums of contributions from S and 0 separately, are
. o o R ’ R
T(ags dy) = 5 dg Ugdg + 5 dMd, k<)
et DY
Viag, dy) =5 ag Ughgdg + 5 dKyd, (3
where M0 and K0 are the mass and stiffness matrices of the substructure,
and d0 is the O-displacement vector.
Let the constrained base modes Ti be defined as the static elastic
and rigid body displacements of 0 due to successive unit displacements
of the constrained degrees-of-freedom (dof) (i.e., those interface
coordinates of 0 which are constrained to move with S). Define the fixed-
base modes ¢fo as the modes of 0 obtained when the constrained dof are
held fixed.
The displacement of the substructure is expressed as a superposition
of its static response due to movement of. its constrained degrees of
freedom and its motion relative to them;
do X dco i dfo (%)
IS N - e ——
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This can be expressed in a most convenient compact form [3] as

Sl e ag
- o e S e (5)
d5 | T0s | %50 Ufq

where ( ) and ( ) refer, respectively, to the constrained and unconstrained
Sl 1] :
dof; T is the constrained base mode matrix whose successive columns

are the constrained base mode vectors; represents the fixed-base

g

generalized coordinate vector.

For convenience we express the displacement of Eq. (5) as:

ck=
4y = T 0595 * P44 (6)
where
* B
Tc = -—C- (7)
T
and
0
¢ I 7o (8)
fo $f0

Lagrange's equations for S are

oT oV
dt(aqs e~ Qg (9

where Qq are the generalized forces due to external forces. Substituting

Eqs. (2) and (3) into (9) then yields

5 a&§ R de
Hglg T Ngliiglg + 3;; Mol 3q Kodo = Qg 10)
But from Eqs. (6) -
T
. o el $T TC*T (11)
aqs qu S

——— e —————— e G % g N R— ————
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and thus Eq. (10) can be written as

= bRt 2" i +Edy =B (12)
Hglg T Hgllg g T Pg 0% T %% S

Similarly by applying Lagrange's equations to the substructure we obtain
Modo + Kodo =F (13)

If we make the assumption that no external forces are applied to the
substructure, the force vector F vanishes everywhere except at the
constrained dof. Thus
F
F= {7 (14)
0

where F are the interaction forces exerted on 0 at the constraints.
Note that no difficultes arise when external forces applied to the sub-

structure are included (see Appendix A).

Upon substituting Eqs. (7), (13) and (14) into (12), we can write

the equations of motion for the main structure as

7 2 = (15)
Hgdg + HgWg ag + &g F = Qg

The equations for the substructure (13) can, by substituting Eqs. (6- 8,

14), be recast as

B Cogiey T 2 A

adsds * (kg * kgT ) 0595 * kdq9gy = F e
- 2Y. G~ T 2 A C.=
W bedeot KoPeolgs * MgT Pgdg + (kg + kT dgqg = 0 (17)

where m, k are the elements of the partitioned mass (assuming a lumped mass

approximation) and stiffness matrices:

i‘ 'I 2 iv'-"‘-'-y- v -‘



g =
= 1 0 e, | k&
g o
B —:L4——~ £, e e (18)
= o ! @ g o0 %
by g | “g
By the very definition of the constrained base modes [3] it follows that
= ooy 5
= 19
(kO * kT ) ¢qu 0 (19)
- 2 o
Consequently, upon pre-multiplying Eq. (17) by ¢f0 , we have
. 2 AR e e
= 20
Ufaqfo+ ufowfcrqfo+¢fo (ch ¢qu) ¢ Lol

where Heg and We s represent, respectively, the generalized mass and

frequency matrices of O.

In summary, the dynamics of the system is expressed by Eqs. (195)
and (20),where F, the interaction force vector is given by Eq. (16).
Note that the first term of Eq. (16) is that due to the inertia of the
mass of O located at the constraineddof, while the remainder of the

expression is due to the stiffness forces exerted by 0 (see figure below)-

Q
..f—LA.__Jl':J

e
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INTERACTION FORCE

There are a number of advantages in considering the main structure
separately, and accounting for the substructure by means of the constraint
forces. First, the computer core (central memory) required to solve a
given problem is reduced, since no total system modal stiffness matrix is
needed. Second, once the constraint modes have been determined, only

those rows of K0 (the unconstrained stiffness matrix of 0) that correspond

g —— S—— A r— T T — ——

» ; . 2 e ——"
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to the constrained physical degrees of freedom of 0 are required in the
solution. This also reduces memory requirements. Third, the amount of
computer time (central processor time) required to set up the matrices
in the equation of motion is reduced, as compared to that required by

a method employing a system modal stiffness matrix. Referring to the method
of Ref. [3], for example, the system modal stiffness matrix is determined
by the second of Eqs. (A-2). The computer time needed to evaluate this
matrix may be excessive, especially if the problem under consideration
requires many modes and/or physical degrees of freedom, and if K0 is not
well banded. In fact, the rearrangement of physical degrees of freedom
of 0 to partition KO usually results in a poorly banded matrix. Similar
difficulties with the first of Eqs. (A-2) may be avoided by using a

lumped mass approximation for o.

In view of the above, the method developed here allows one to more
readily handle complex systems with many substructures within the re-

strictions imposed by a given size of central memory.

FREE-FREE MODES OF SUBSTRUCTURE

The displacement of the substructure, expressed in terms of its

free-free modes ¢c,is:

2 - =
ds ¢si0 %G
PO L8 ghee i’ B0l G (21)
do 0 ; ®O _'qO |
since 5
¢0= é; and EO = ¢0 9 = ¢§qs (22)

Proceeding as before, we obtain the following set of equations in lieu

of Eqs. (16) and (17).




-
m0¢oqo 4 k0¢cqo 4 kochqO = F (23)
.y ® q = (24
o¥ola * Ky cqo 0 (24)
4
The generalized mass (uo) and frequency (wo) matrices for the free-free
modes of the substructure are
T s ATA =
= = +
L‘lO ¢ MOq)C ¢0m0¢)0 ¢)O'm0¢0'
2 5 =T = = ~ AT ™ A A&
= e 25
U0(‘00 (DO'KO(I)O (DO'(kO(bO kO(I)O) ¥ ¢0(k0¢0' * kO'(DO) ( )

If we now pre-multiply Zq. (24) by ¢£ , and make use of the expressions

in Eq. (25), then the following is obtained

q + U w_q

Z
o a

- by, + (Rdsag + k bal= 0 (26)

The motion of the main structure is determined by Eq. (15), which

when combined with Eq. (23) becomes

. 2 =T = ~oa -
. uglg + Hgwgag + dglm 8 d+ (k oPsdg + ko a)]= Qg

(27)
Thus, when free-free modes of the substructure are used, Eqs. (26)

and (27) express the motion of the system. Note that the bracketed

terms in (26) and (27) represent the constraint interaction forces,

and that the motion of the substructure, Eq. (26), is coupled to that of

the main structure through the enforcement of the constrained dof relationship,
Eq. €22} .
NONLINEAR ATTACHMENTS

Consider a composite structural system in which each of the components
is assumed to exhibit a linear elastic response, and in which the components
are attached by nonlinear mountings. We denote the force-displacement
relationships of the mountings by F(G, é), where § is the relative inter-

face displacement vector

e ———— — e - s e e G i




§=4d,.-4d (28)

When component mode analysis is to be applied, it is necessary to
isolate these attachments from all of the components, so that only the

forces transmitted by them enter into the analysis.

FIXED-BASE MODES. The displacements of 0 are expressed as

d $ {0 q §
o = T B SN (29)
4 T05 1 %% o TS
When determining the fixed-base modes of 0, it should be noted that the
constrained dof must include those which are constrained by the nonlinear
attachments.
Upon combining Eqs. (13), (14) and (29), we obtain the following
equations for the substructure?
i Bl s v 4 o el e
F =m(95a5 - 6) + (k; + K T ) (dgag - §) + k bei9eq (30)
and
e Gt M, W - q. + $ Ta @ 4. - 5) =0 (31)
fo'fo fo fo “fo fo o S’S
The: nonlinear constraint forces are
F = F(S, 6) (32)
Thus the system dynamics is expressed by Eqs. (30), (31), (32) and (15).
FREE-FREE MODES. When free-free component modes are used, we
express 'the displacements as
3 = |
d e | )
o]
=24 - —QHT:— L. £ W B (33)
d0 0, ¢0 9 0
s PR e it . D —
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Utilizing Eq. (33) and proceeding as before, we.obtain

F=m@gag - 6) + k (ha5 - 6) + kb q, (34)

45 B R e b B Sk gk el =
Moy ¥ Hg¥lg = bglm (.G - 6) + ky(bgag = 8) + kb q.] (35)
The substitution of Eq. (34) into (35) results in

- 2.l .
Hyldg ¥ HWslg = 95 F 6, &) (36)

where

§ = bgdg ~ ¢ (37)

O'qO

Equations (15), (32), (34) and (36) characterize the dynamics of the

system when free-free modes are used.

One might, upon juxtaposing Egs. (15), (30) and (31) and Eqs. (15),
(34) and (36), arrive at the conclusion that, where nonlinear attachments
are to be considered, it is more convenient to use the free-free modes
of the substructure. Certainly, their use eliminates the need to store
any of the mass and stiffness elements of component 0, as would be the
case when fixed-base modes are used. Also, only two coupled systems of
equations result when they are used. However, these advantages can
readily be offset by the need to use a far greater number of free-free
modes than would be required when fixed-base modes are used. For example,

for rather stiff mountings, fewer fixed-base modes would be required.
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ITTI ILLUSTRATIVE PROBLEMS

A. Two-Degree-of-Freedom System - Linear Springs

(i) Fixed-Base Modes

k -k 0 0

Ko o 2 2 : MO o

—k2 k2 0 m2

and thus
kO = k2’ kO = kO = -k2, k0 = k2
m, = 03 m, = m, :
o=
BT S L ¥ ) 2 o =Qfo

T o= ¢f0 =15 bpy =My W = k2/m2

A k2 ¢f0'= I
Upon substituting into Eq. (20), we obtain the _—

’

FiXED -~ BASE MOODEL

equation of motion for O:

my e, * kaqg, + maqg = 0 (1)

~

But from Eq. (5): d0 = qq + Ug g and thus

mZdo + kz(dO = dS) =0 (1)

For the main structure
=m_; w2 =k /m; . =1
T S M e R

and thus Egqs. (15) and (16) yield:

m Qg * kjag - kyag, = £ (11)
L L ~ Ya '
or mldS + kldS - kz(d0 - ds) = fs (ii )

i T ——— N ———————
s .
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*) A
(ii) Free-Free Component Modes do
ky = by Ky =k = ks kg = ks o {C)
1 = 7 |J&
m; = 0; m0 =my; =
r fs |ds
1 lT
¢ = ;0w =0; 0w, =o; S
o] Ll 0 ol 02 @
i g m2 0T
9 Fe o
i £l
7 T e e =12 i 1R
s = $oK% = = L Hg = my5 wg = ky/my5 ¢g = 1

From Eqs. (21) and (22),

dO' Py dS K ¢0q0 : ¢qu; g O'qO
and thus,
ao T 99 * 952° a0 = 901
Consequently, Eqs. (26) and (27) yield:
mZ;O a kz(ao - &0) =0 (iii)
mlﬁo +hkd )+ k@) - d) = £ (iv)

*)

When determining the free-free modes of the O-structure, one might,

at first glance, conclude that the constrained dof need not be
considered, since no mass is placed there. But the g-structure has

two degrees of freedom and thus two free-free component modes are
required. The first of these is, of course, the rigid body mode

which has a zero frequency; the second, which is not so apparent,

is a mode in which the constrained dof oscillates with an infinite
frequency, so that the unconstrained dof remains immobile. Alternately,
one can, by placing a fictitious mass m at the constrained dof,
determine the free~free modes in the limit as m » O.
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B. Two-Degree-of-Freedom System - Nonlinear Spring o [:::]
i i - NONLINEAR
(i) Fixed-Base Modes %C)_ ARG
E =0; m_= =m,; w2 = 0; I‘
o P By ™ Reg 2> “fag g fs ds
m,
~ e -]
= . = . = . S
¢f0 = 0) qfo- 0’ I Oa 1»@
6 = 1

S I_
dfa-:a\fq:o

FIXED - BASE MODEL
Substituting into Egs. (15), (30), (32) and (31) we obtain

md. +kd +F-=f (i)

1S 1S S
F=md (1)
0=20 (iii)
where F = F(S, S) and
a=as-ao
S ————— — ‘”--wvw~"'~‘“fw~' " V,;‘_awﬁ-%» —————




(ii) Free-Free Component Modes |da
7 9 [mz]
K =03 @ =u =m; w = 0;
; g = Ve T Py 2¥ Sy >

bo- i
o e e

[ fs |&§
m,

Equation (22) yields: d_ = q
g ag
S kC)
and from Eqs. (15) and (36), we have 1
‘::::’:::jl
mldS + kldS + F = fs (iv)
m2d0 -F=0 (v)

where F = F(§, §) and § = as = ao

C. Simply Supported Beam and Spring Mass System - Linear Springs

(i) Fixed-Base Modes tg
g2
k -k 0 o ¢ 0 nz
1 1
K = |-k (k,+k,) -k M =0 m O 2@ A
o 1 g % Al - 1 If—idm
O' ml
0 k2 k2 0 0 m,
$1 30
] [ 1da

Let:

=
|
)
=~
tal
]
-
=]
]
N
L
B
]
a8

f=x ¢
: 3'0_2]. .t!/z—l— ‘/2-?'

Then: &_ = 2k; k_ = [-2 (ﬂk EF—' BEAM CONSTANTS

3 _2 A ;e ¢kg_ié}c| A = cross-sectional area
Eo ={0}k; ky ™ [_1 1] k éb EI = bending rigidity
L = 2 0 #k, p = mass density
M 00 Wyt [; 1]'“ TIITIII 777
FIXED - BASE MODEL

It can readily be shown that the fixed-base modal and frequency matrices

are:

1 1 1/2 0
” 2
b, = } w, = k/m
fo 2 ot fo 0 2
 —————— v -— o e TR e ————y . PR e T — O ———-
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and that the constrained base mode matrix is:

¥ i1
'I‘ =
1
~ T ~ A 6 0
Consequently, “fo = ¢f0 mo¢f0= m
0 3
For the main structure:
o= PAL wZ = Eﬁﬂﬁ BT P g z X
B g 4 ° pa* "' Tap
Substitution into Eq. (20) yields:
q +lkq +£Z'd sin 5t = 0 (1)
Uo1 ~ 2 m Y01 7 3 £ %8n 2
- k B o W i
Ygz * 20 %021 3 ) e gl AL
Now from Eq. (16): F = -Zk(qfol + qch)
and from Eq. (15):
4 4
o mn EI 2 A« R _ 2138
Yn* "a  oa Ysn *pat S1n g | H(aggy * "-foz)] = Qn s
>
The following identities are established from Eq. (5):
dy) = 957 Yo1 * Yoz 3 952 ~ 95 = 290) T Yop
Thus (i) + (ii) and 2(i) - (ii) yield
/: ~ s A ~ .
2md01 + 2k(d01 - do) + k(d01 - doz) =0 (i)
Lo L}
+ -
md02 k(d02 dol) 0 (ii)
- — Y — -—
S e — ST “a—— - ettt




sz P 2
while (iii) can be written as
&iSn + -"—:l‘a—l‘ : E—i o * Uﬁf sin 12“— l}Zk(aol - 30) =0 (iii")
where ao = HS = E ansin 2
(ii) Free-Free Component Modes A
|d02

The free-free component modal and frequency

matrices are: 3@ Ia\
o 4 0 0 0 m,
¢0 EoS 3G ) S (R Wy = 0 3/2 0 k/m ;
1 -20 g @ o (D
E = = Ia&
30 0] 5 g 060 B
B = Q0 6 01 u0 = 0 9 0 k T
R S 0 2 3 1‘35'“"
From Eq. (26)
2 3 k ) \i .
gy~ 2 ull 9g, sin g - Q50 *+ 45))1= 0 o
= 2k _1lk . nm "
Ay * 7 3 Y92 3 m[X Qg sin 5 - (q01 + qoz)]—-O (v)
Equation (27) yields:
4 4
73 T n EI 2 2 BT o e 5
90 ¥ T4 * oA Isn * oAz sin L] agsin 5 - (g + q)] = Qg (v1)
But from Eq. (21)
961 "1 Y b2 3 Y02 * 1 T Mg,
and thus (iv) + (v) and (iv) - 2(v) yield
~ ~ A I)-fl £ ]
2m d01 + k(d01 - doz) -Zk[;qsnsin 5 - dol] =0 (iv))
/: ~ ~ \J
md, - k(d;, - d,) =0 (v'




sEl )
while (vi) becomes
4 4
s T n E_I_ 2 .l om g = i
Gn * 6 " oA Yn + oAz sin 5 [lag, sin 55 - d 1 = Qg ()

D. Simply Supported Beam and Spring Mass System - Nonlinear Springs

(i) Fixed-Base Modes ~
doz

For substructure O :
= ~ ~ o g %E == N
K, nk koo k i Bekwck &5 ® |d0'=d0'|
lml I
My =Wy =dog WM, =n < % _ NONLINEAR
SPRING
o k S
& L1 - AN Mt G 7
TERG Be T B R M Ry S S 114
2 wnm
Equation (29) yields: d0 = d01 = ¢sﬂs -8 3 d02 = dO + ¢f09f0
Thus Eqs. (15), (30), (32) and (31) become: a}cz
ma
ﬂ(’n4 EI 2 m
v o Bn, EL e ae DR ]
i o4 " oA 9sn oA ta g PR, gka
} |df0|=dfa|
O 4 o ‘.t m,
F=ing; = kd;y = dyy) (11) %
5&' + K - < s FIXED - BASE MODEL
md_, (d02 - dOl) =0 (iii)

where F = F(§, §) and

o e R T (L
$ dg = d; ) g, sin - dOl

/N
(ii) Free-Free Component Modes [:E] ___1902
m

K = = . 2 = : = = . 0' 1: e ”~N
g "By sk g kekm g sk 1 1“’“’"'
|"‘||

m, = m1 = 2m ; a, - m2 =m ;

1 1 3 0 2 0 0 NONLINEAR
¢O = : u = m ; (A\O = k/m -SPR|NG

bas

=
]




NG (e

Thus from Eqs. (15) and (36):

4 4
- e EE g gl )
Yn ™ "4 - o %a Tt ol 8T T Qg (1w}
3md ) - F=0 (v)
6m ﬁoz + (6m)% 5 T F=0 (vi)

~ ~

From Eq. (395 dy) = 45 * G4y § 45y = g~ 2y

Thus (v) - (vi) and 2(v) + (vi) yield

md ., = k(d01 = doz) =0 (v)

A

* Rl - dgp) -

ol
]
o

2m80 (vi)

1

(=94

where F = F(§, 8) and & = @

i e BN
s~ 95 2ans”‘ 2 ol
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APPENDIX A - ALTERNATE DERIVATION OF DYNAMIC EQUATIONS

In this section we consider the equations of motion for the system as

*
given by Benfield and Hruda {3] 2except for the addition of generalized
0]

‘2

an

When using fixed-base modes for component b and free-free modes for

component as the system modal mass and stiffness matrices are

[ m
e 0
1€ = ?a 0
5 ¢a
cb¢a ¢anJ
The generalized forces are
i 18 = =T P
5" ¢afa + ¢ fb + ¢arcb tb
~p o
an r:’nb fb

where fa = known forces acting on main structure (S)
?b
fb = i = known forces acting on substructure (o)
f
C'b

For convenience to those who might wish to refer to the formulation
given in Ref. [3], we use the nomenclature that is to be found there.
The relationship of the nomenclature used in the body of this report

to that used in this section is shown in Table A-1.

forces:

(A-1)

(A-2)

(A-3)

(A-4)

;77 For simplicity, the superscript ¢ which refers to the fixed-base modes
in [3] has been replaced by the subscript n; e.q., rg o P
- n
S — - s — v Y T — ————
i i /<21 ———————————————————ttb
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TABLE A-1 NOMENCLATURE ]

i ) 4
WA BH,Ref. [3]
Constrained Base Mode Matrix e ch
Displacements dS’ dO 9,09,
1
Frequencies ws,qu,mo W ’mnb'ub {
- 3 e - 1
Generalized Coordinates qs,qfo.qo Ga"nb"b
Generalized Forces QS,QfO,QO Qa’an’Qb
Main Structure S a
Mass and Stiffness Matrices Mo’Ko mb,kb :
Modal Mass Matrices ”S’“fd’“o Ma,Mnb,Mb
Modal Matrices ¢S’®f0’¢0 ¢a’¢nb’¢b 1
Substructure o} b AAJ

The equations of the system as given by Eq. (A-1) have, with vanishing right-
hand side, been successfully used to obtain the system modes and frequencies, in
Ref. [3]. It should be noted, however, that, for complex system® having many dof,
the system modal mass and stiffness matrices would require the use of an
extensive part of the core of a digital computer. For transient or shock
problems this would result in long running times, so that a direct use
of Eqs. (A-1) is inadvisable. However, in what follows we will show that
these equations can be simplified so that they do indeed yiel. expressions
which are identical to those given in the body of this report.

Defining the following matrices

" T 0
o H Pl (A-5)

cb ey
ch ¢

allows us to express Eq. (A-1) in the following form

*) Symbols not appearing in [3] are chosen to be consistent with the
notation found there.
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Maga g Mawa{’a 2k ¢a(ch mchb)(baga ¢a chmb¢nb’nb
(A-6)
e =T
T b E + =
+3, (‘cb b cb) s TRTG, kb¢ ponb " Y
M.E. +M Wk & T(IJC S kT BE w0 (A-7)
%ah ¥ M T T envaca * Yun b ients s~ b
As a consequence of the constraint base mode definition in Ref. [3],
¥ e AT IBE =0 (A-8
" cb¢aga i (kb o cb)¢aga i )
except at the interface coordinates. However, since ¢nb = 0 at these
coordinates,
¢ bkbrcb¢a a = 0 A
Also, assuming a lumped mass approximation, we have
*adlm A-10
nbmb cb q)nbmb cb (A-10)
Upon substituting the identities of Eqs. (A-9) and (A-10) into Eq. (A-7),
we obtain the final form of the equations of motion for the fixed-base
(constraint) modes of component b
PR W E +¢TA 6;.—.() (A-11)
nb “nb nb nb ’nh nb b cb'a’a b
Let us now consider all but the first two terms on the left-hand
side of Eq. (A-6) and designate them by the symbol LHS. Appealing to
the following identities
*[‘ * - TA
mebTLb mb i chmchb
*T # T -
Ter™®Pnb = Tcb™®ab
(A-12)
T T E+:T +Tk+T T
cb b ¢b b kb cb (bkb cb
2 s 2 e
Teb*p¥nb = ¥pnp * TepKpnp
S— - i - N T e rr— ——
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and rearranging terms, we write

il = Bt e g 2 4 -
= + o= &
EiS = o ime B Gy P T IO E T 0 T ET ISE
(A-13)
= T A N *¢ A A A e ;.
+ £ £
: kb(bnbgnb ch mb¢nb’nb g kb nb “nb ¥ mchb¢a°a
Now the equilibrium equations (A-11) can be written as
T A A .o A A ~ i
. - £ = -
¢nb mb¢nb€nb kbq)nb"nb i mchb¢aEa} an A=14)
or
A~ "' + A A & ~ = .(" = S -
mtntes TG s T N e ™ T iR
The identities of Egqs. (A-8) and (A-15) allow us to rewrite Eq. (A-13) as:
-f- - - " = 2 = . T A
= + + + .
S ¢a mb¢aga (kb kacb)¢aEa ¥ kb(bnbgnb chfb ol
Finally, substituting Eq. (A-16) into Eq. (A-6), we obtain
M§+szf +$T"$E+(E +ET)$& +1:<¢{, = Q'
a’a a a’a a mb a’a b b cb” "a’a b'nb’nb a
-~ (AT, -T—
bafa + d)afb (A-17)

Equations (A-11) and (A-17), when combined with appropriate initial
conditions, are a complete mathematical statement of the problem. They
are identical to Eqs. (15), (16) and (20), except for the fact that in
the body of the report the forces acting on the substructure were

assumed to be zero.

Free-Free Modes of Substructure. It can readily be shown that the
equations of motion for the system which appear in Ref. [3], when

free-free modes of the substructure are used, can be written as follows:




_T_ s .. 2 :
+ £
(Ma ¢>amb¢>‘,l)€a tMwE + ¢ b a 2t kb

a a

/\

bimB,Ey + Bk 8,5, + bk bE = Q
where the generalized forces :
Qa $£%a 2 52?0
%" $:Eb

have been introduced. Noting that

‘¢ _ 2T= = T
bpm 0y = Bym O + dm b = M
and

we rewrite Eqs. (A-18) and (A-19) as:

=
. 2 _T__.. ~ e T
Maga 5 Mawag’a % ¢a mb¢bgb i kb¢ Syt e

.o 2 T .. : ~
MBp ¥ Mpuyby - Bp|m bl + K E + ke E | = Q

— - —— ma - A ——— e R — s ——

X3
- ; i e ————

—_— = S i, 2
(kpdp + k) + & Gy + k 6) = Mow

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)




NONLINEAR MOUNTINGS

When linear elastic system components are attached to one another
by nonlinear mountings, it is necessary to isolate those mountings from
all of the components of the system. Thus, only the forces transmitted
by them, which are, in general, functions of the relative displacements

and velocities, enter into the analysis.

Fixed-Base (Constraint) Modes. The component displacements are

expressed as

P P! m,r:) dal
(]
p—g
w0
Iy w
a—
1
>
[

(A-25)
where 0
85 =l g (A-26)
chd
and
6 = = (A-27)
As a consequence of Eq. (A-25), the potential energy of components
a and b can be written as
k 0
i1 1 s fa
PE.. = =
ab 2 qa qb
L AR 9
i ga ka S
h o T T c 1 WeT c
= =g £ K + = A A
2 L a nb gnb 2 0 kb
cT ka * c ga
=-A T A-28
0 kb 5 Enb ( )
WP — e , P e




— 26 ——

Similarly, we can express the kinetic energy as

éa ma 0
= K {:F T c Tise® AC
KEab 2 ga Enb H é & 2 & mb A
p
nb
ma 0 2 &
-AcT A (A-29)
0 m| ° &)

For simplicity, let us assume that components a and b are attached by
mountings whose properties are characterized by nonlinear elastic and

linear viscous elements. We express the potential energy of the mountings

as

(PE), = V,(8) (A-30)

and the viscous dissipation function as

DM = DM(G) (A-31)

Using the generalized form of Lagrange's equations, and noting that the

{ generalized coordinates are ga,gnb, and §, we readily obtain the following

system of equations

.o 2 _T o i .. .. - b i : A
Mag‘a g Mawaga-’.cba mb(q)aga B (kb ? kchb)(q)aga e kbq)nbgnb * Qa Nt
i WoE. +H ek + T BE ~B)wn (A-33)
nb’nb © nb b’nb ' 'nb™b cb 'a’a ab
g 7 i = B ’ = BVM 3%1
mbwaga e (kb 5 kchb)(d)aEa i kb¢nb€nb i 7§f'+ ‘ﬁ~.-Q6
a8 (A-34)

where Qa, anare defined in Eq. (A-4)

and

(A-35)
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Vv aD
attachments. For a more general material we replace (?%r + fjfg
3

by F(§, é), the forces exerted by the attachments on component b.

Free-Free Component Modes. When using the free-free component

modes, we express the displacements as

a, 9, 0]
93 ¢a , “a :
o & -A (A-36)
qy ¢ 0 gb_&
q L_.0 ¢b i
where
0
R L (A-37)
§
0
Following the same procedure as was previously described, we readily
obtain the following set of equations
WE + Mo +3 IRBE + G + 1 A (A-38)
aa aaa “a|"bbb b'b bbb Ca
.. 2 —T et Al s Tid : A
£ - = -
ME, * Mol - B (mBE + (B +kBE (= (A-39)
m & +kOE +koE =F(@E, 8 -0 (A-40)
where
ATA _T_
Q gt * [
Q = o ¢ (A-41)
b b'b
k. i
o i g PRI, o oA e Y T i—
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Substituting Eq. (A-40) into Eqs. (A-38, 39) yields:
XS 2 -T e =T ,.Tr
M ¢ = !' = ot
aa ki Mamaﬁa g ¢3F(6’ 6) ¢aQ0 e Qa ¢ufa (A-42)
e ) ~T . _T_ ,-TA
€ = - s
M5y, Mbwa’b ¢bF(6, ) ¢bfb + q;bfb (A-43)
where
§ = ¢a s ¢b&b (A-44)
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