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ABSTRACT

A general method is presented for obtaining the dynamic equations

of an elastic structure to which elastic and/or nonlinear substructural

elements are attached .
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I INTRODUCTION

Component mode methods had been successfully exploited to solve

vibration problems long before the computer age made it feasible to

analyze complex structural systems by discretization , e.g., the finite

element method.

While analytical solutions abound in the literature, the structures

considered, out of necessity, are comparatively simple , and are

analyzed on an ad hoc basis . The extensive use of finite element methods

has made it feasible to consider the most complex structural systems,

and thereby made it necessary to develop comprehensive procedures for

obtaining the dynamic equations for the system.

Various methods for component mode analysis have been suggested [1, 2, 3].

They differ from one another in their choice of component modes , but all

express the equations of motion in terms of system modal stiffness and

mass matrices and component mode coordinates. Their concern is essentially

directed toward solving the elgenvalue problem and determining the system

modes.

In a previous report [4] a general method was presented for obtaining

the dynamic equations of an elastic structure to which arbitrary elastic

substructural elements are attached . The methodology used was to express the

kinetic and potential energies of the system as the sum of the contri-

butions from the main structure and substructur~~, separately . It was

shown that the equations of motion of the main structure were affected by

the presence of the attached structure by means of the forces exerted

at points of attachment.

a-—
- ~t’_~~~ -. - -
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It is the purpose of this report to formalize and fully automate

the procedure, a~id to extend it so that it can be applied to the 
most

complex structural elastic systems having nonlinear attachments and/or

small substructural regions that respond nonlinearly . A treatment of

some special cases involving nonlinear attachments may be found in [5].
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II GENERAL METHOD

Consider an elastic structure S to which an elastic substructure 0 is

attached. We denote the in vacuo modal and diagonal generalized mass matrices of

S by 4~~
, p

5
, respectively , and the corresponding diagonal frequency matrix

by w~ , and express the displacement of the structure as

d5 
= ~~q5 

(1)

where is the generalized coordinate vector.

The kinetic and potential energies of the system, expressed as

sums of contributions from S and 0 separately , are

T(
~s , &~) = ci~ iiS4S + 

~ ~~
M~ci0 

(2)

V(q~ , d0) = -~ q~ j.i
5
w~q5 

+ -~ d~K0d0 (3)

where M0 and K0 are the mass and stiffness matrices of the substructure ,

and d0 is the a—displacement vector.

Let the constrained base modes T~ be defined as the static elastic

and rigid body displacements of 0 due to successive unit displacements

of the constrained degrees—of—freedom (dof) (i.e., those interface

coordinates of ~ which are constrained to move with S). Define the fixed—

base modes 4f~ 
as the modes of a obtained when the constrained dof are

held fixed.

The displacement of the substructure is expressed as a superposition

of its static response due to movement of its constrained degrees of

freedom and its motion relative to them :

— d
~0 

+ df0 
(4) 

- - -  . - .  - . - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,
~

- - - .
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This can be expressed in a most convenient compact form [3] as

r~i r~ r ~~iI —— —— = I I I (5)

L20..j L~~s ~fo ~~~fa J
where ( )  and ( )  refer, respectively , to the constrained and unconstrained

dof; T
L 

is the constrained base mode matrix whose successive columns

are the constrained base mode vectors ; q
f0 represents the fixed—base

generalized coordinate vector.

For convenience we express the displacement of Eq. (5) as:

d0 = T~*q~ q5 + c~f0qf0 (6)

where

* Ii
T
c 

— (7)
T

C
J

and

~fo = (8)

Lagrange ’s equations for S are

+ 
~s (9)

where are the generalized forces due to external forces. Substituting

Eqs. (2) and (3) into (9) then yields

adT

+ + .~~2 M0a0 + ~~~ K0d0 
- (10)

But from Eqs. (6) T •T3d0 3d
0 —T c*T (11)

~“s 
u
~
t S

- ~ , -.——— ——-—~~—— -.-.

- . . - . -
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and thus Eq. (10) can be written as

2 —T c*T
+ ~i~ w

5 
q~ + T (M

0d0 + Kada) 
= Qs ( 12)

Similarly by applying Lagrange ’s equations to the substructure we obtain

M0d0 + K0d0 
= F (13)

If we make the assumption that no external forces are applied to the

substructure , the force vector F vanishes everywhere except at the

constrained dof. Thus

F
F =  —— (14)

0

where F are the interaction forces exerted on a at the constraints.

Note that no difficultes arise when external forces applied to the sub-

structure are included (see Appendix A).

Upon substituf ing Eqs. (7), (13) and (14) into (12), we can write

the equations of motion for the main structure as

+ 
~~ 

q5 
+ F = 

(15)

The equations for the substructure (13) can, by substituting Eqs. (6— 8,

14),  be recast as

G~S~S 
+ + .~C

) ~~~~~ + k~J4f0qf0 
= (16)

m0
I~f0qf~+ k04~f0qf0 + ui~T

C 

~~~~ 
+ + k0T54,8q~ 

= 0 (17)

where m , k are the elements of the partitioned mass (assuming a lumped mass

approximation) and stiffness matrices :  

,---~~~.-~~~~~~~~~~~ -~~~~-~~~- .  - - -
-
--— , - —
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01 r~M = _ .2_ .,~___ f ; K0 I (18)
0 o ui0] t k

0]

By the very definition of the constrained base modes [3 1 it follows tha t

(i~ + k
0
T
c
) ~~~~ E 0 (19)

Consequently, upon pre—multiply ing Eq. (17) by , we have

2 “T ~
‘

~J f0qf0
-+- )~J f w~ 0

q~~0 
+ 

~~~~ 
(m

0
T ~~~~~~ = 0 (20)

where Uf0 
and 

~f a 
represent , respectively , the generalized mass and

frequency matrices of a.

in summary, the dynamics of the system is expressed by Eqs. (15)

and (20),where F, the interaction force vector is given by Eq. (16).

Note that the first terni of Eq. (16) is that due to the inertia of the

mass of a located at the constrained dof ,while the remainder of the

expression is due to the stiffness forces exerted by a (see figure below).

I N T E R A C T I O N  F O R C E

There are a number of advantages in considering the main structure

separately, and accounting for the substructure by means of the constraint

forces. First, the computer core (central memory) required to solve a

given problem is reduced , since no total system modal stiffness matrix is

needed. Second, once the constraint modes have been determined , only

those rows of K0 (the unconstrained stiffness matrix of a) that correspond

— - . - . - -—— - — -.- .---—-—- — —— ~~ -—- -.--
- ~~ . - -~~~~~~~~~~~~~~~ ~- - - -  —4



—— 7 ——

to the constrained physical degrees of freedom of a are required in the

solution. This also reduces memory requirements. Third , the amount of

computer time (central processor t ime) required to set up the matrices

in the equation of motion is reduced , as compared to that required by

a method employing a system modal stiffness matrix. Referring to the method

of Ref. [3], for example, the system modal stiffness matrix is determined

by the second of Eqs. (A—2). The computer time needed to evaluate this

matrix may be excessive, especially if the problem under consideration

requires many modes and/or physical degrees of freedom , and if is not

well banded. In fact , the rearrangement of physical degrees of freedom

of a to partition 
~~ 

usually results in a poorly banded matrix. Similar

difficulties with the first of Eqs. (A—2) may be avoided by using a

lumped mass approximation for a.

In view of the above, the method developed here allows one to more

readily handle complex systems with many substructures within the re-

strictions imposed by a given size of central memory .

FREE—FREE MODES OF SUBSTRUCTURE

The displacement of the substructure , expressed in terms of its

free—free modes

r~0i r~5 : ° 1 r~ iI I = I~~~t:~~I (21)

L d
0J  L 0~~~b

0] 
q
0

since

and a0 = = (22)

Proceeding as before, we obtain the following set of equations in lieu

of Eqs. (16) and (17).

..-
~~--- - - 

----.— -— - - - - ~,_ ~~~~_ _  ~~~~
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+ + k0~~~q P (23)

+ + k
0~ 0q0 

= 0 (24)

The generalized mass (ii
0

) and f r e q u e n c y  (w
0
) matr ices  for  the f r e e — f r e e

modes of the subs t ruc ture  are

T — T— — ‘~T” ”U =~~ M~~ =~~~~m~~a a a a  a o a  a a a

= = (k~~ 0 + + ~~~(k0q 0 + k~ 4 0) (25)

If we now pre—multiply ~q. (24) by , and make use of the expressions

in Eq. (25), then the following is obtained

+ ~0
w~ q0 

- ~~~~~~~~ + ~~~~~~ 
+ k~~~q0

)]= 0 (26)

The motion of the main structure is determined by Eq. (15), which

when comb ined wi th  Eq. (23) becomes

U S~~S + + [ Q~ Q~~~+ (i~0~5q~ + k
0~~~q0

)] Q5 (27)

Thus , when f r e e — f r e e  modes of the su b s t r u c t u r e  a re  used , Eqs .  ( 2 6 )

and ( 2 7 )  express  the  mot ion  of the system . Note t h a t  the  b racke ted

t e rms  in (26)  and ( 2 7 )  r ep resen t  the  c o n st r a i n t  i n t e r a c t i o n  fo rces ,

and t ha t  the  mot ion  of the s u b s t r u c t u r e, Eq .  ( 2 6 ) , is coup led to tha t  of

the  main s t r u c t u r e  th rough  the enforcement  of the cons t r a ined  dof r e l a t i o n s h i p ,

Eq.  ( 2 2 ) .

NONL INEAR ATTACHMENTS

Consider a composite structural system in which each of the coniponents

is assumed to exhibit a linear elastic response, and in which the components

are attached by nonlinear mountings . We denote the force—displacement

relationships of the mountings by F(6, 6) ,  where 6 is the relative inter-

face displacement vector

— - - — - --- - —--——- — . . ____________________
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(28)

When component mode analysis is to be applied , it is necessary to

isolate these attachments from ill of the components , so that only the

forces transmitted by theni enter into the analysis.

FIXED—BASE MODES. The displacements of a are expressed as

{~~~} = L~~:1 ~1~It - (29)

[T~~s I ~faj )~~1~faJ

When determining the fixed—base modes of a, it should be noted that the

constrained dof must include those which are constrained by the nonlinear

attachments.

Upon combining Eqs. (13), (14) and (29), we obtain the following

equations for the substructure :

F rn0(~5q5 
- ~) + (k

0 + k0T ) (~5q5 
- 6) + k~~~f0~ f0 (30)

and

P f0~i f0~ PfaWfcy qf0~ ~fa rn0T
c(~5~j5 

— 6)  = 0 (31)

The- nonlinear constraint forces are

F = F(6 , cS) (32)

Thus the system dynamics is expressed by Eqs. (30), (31), (32) and (15).

FREE—FREE MODES. When free—free component modes are used, we

express -the displacements as

= 

[
~
.s_
~:~1 ~~~~~~ - 1--i (33)

LdaJ 0 aJ L~J L°J

_____________ — - - -- w .—.--- — - - - 5 — - - -__________________________ —
- - —.~ — — --U -.. -
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Utilizing Eq. (33) and proceeding as before , we. obtain

P = - 
~~ + ~~~~~~~~ 

- 6) + ~030q0 (34)

ji
0

•
cj
0 
+ 

~0~~~q0 
= — 6) + k

0(~ 5
q
5 

— 6) + ~0c~0
q0] 

(35)

The substitution of Eq. (34) into (35) results in

+ p
0
w~q0 

= F ~6 , 6) (36)

where

6 = — 
~0q0 

( 37)

Equations (15), (32), (34) and (36) characterize the dynamics of the

system when free—free modes are used .

One might, upon juxtaposing Eqs. (15), (30) and (31) and Eqs. (15),

(34) and (36), arrive at the conclusion that, where nonlinear attachments

are to be considered , it is more convenient to use the free—free modes

of the substructure . Certainly , their use eliminates the need to store

any of the mass and stiffness elements of component a, as would be the

case when fixed—base modes are used. Also, only two coupled systems of

equations result when they are used . However, these advantages can

readily be offset by the need to use a far greater number of free—free

modes than would be required when fixed—base modes are used. For example ,

for rather stiff mountings, fewer fixed—base modes would be required.

_______________________ _______ - - . .. - . — — . --—.———~~~~
.--
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III ILLUSTRATIVE PROBLEMS

A. Two—Degree—of—Freedom System — Linear Springs

(i) Fixed—Base Modes

= [-: :]~ 
M
~ [: :21

and thus $ 
4 _____

i~0
= k

2
; k 0 = k 0

= — k 2 ; k 0 = k
2

m = 0; m = ina a 2 
A:

c ‘- 2 
__t~ !fo :qfr

T = 1; 
~ca 

= 1; Uf0 
= m2; Wf0 

= k2
/m 2

1c2 
~~~~~ 

I
Upon substituting into Eq. (20), we obtain the

7,,,,,, ,
equa tion of motion for 0. 

F (XEO — BASE MODEL

m
2~~~~ 

+ k,q f5 + m 8q~~ = 0 (i)

But from Eq. (5): = q
5 

+ q f0 , and tnus

—‘ I

m2d0 + k2(d
0 

— ) 0 (1 )

For the main structure

= m
1
; = k

1
/ni1; 

~~ 
= 1

and thus Eqs. (15) and (16) yield :

+ k
1
q
5 

— k2
q~0 (ii)

or m
1~5 

+ kias 
— k

2
(d0 — ~~) = f

5 
(ii )

.—
--—----- ~~ ~- -- 

— _____ _ _ _ _ _  _ _ _
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4’-
(ii) Free—Free Component Modes ‘ dOr r ~1

i~0 = k
2

; k
0

= k 0 -k
2

; k
0~ ’k 2; 

—

— — ~ dcr
m = 0; m = ma a 2

~=[: :];
wal = o ; wa2 =

~~~
; 

s[~~~~
~~~~~~ 

,_,,,,
1m 2 ol

P0 [o 
~
j

= 
~~~~~ 

= [ kj ~~ 
m
1
; = k1/m 1; 

~~ 
= 1

From Eqs. (21) and (22),

= a~ = ~0q0 = =

and thus ,

a q + q  ~~da ol o2’ a al

Consequently, Eqs. (26) and (27) yield :

m2d0 
— k2

(a
0 

— = 0 (iii)

m
1~0 

+ k
1
a0 + k2 (a0 - d0) = f

5 
( iv)

When determining the free—free modes of the U—structure , one might ,
at first glance, conclude that the constrained dof need not be
considered , since no mass is placed there. But the 0—structure has
two degrees of freedom and thus two free—free component modes are
required . The first of these is, of course, the rigid body mode
which has a zero frequency; the second , which is not so apparent ,
is a mode in which the constrained dof oscillates with an infinite
frequency, so that the unconstrained dof remains immobile. Alternately,
one can, by placing a fictitious mass in at the constrained dof ,
determine the free—free modes in the limit as in -

~~ 0. 

—.-—~ — -.- -—-— — —--- —-—- ...—— 3
- ~~~~~~~~~~ -h-. .
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c _ _ _  _ _ _ _

B. Two—Degree—of—Freedom System — Nonlinear Spring 
~~~

- 

~~I m ~j

(i) Fixed—Base Modes 

2 

~®
NONLIP4EAR

= 0;

l I m j Js~ i

~fa = 0; qf0 
= 0; T

c 
= 0; 

~
.. ~cD,,,, 

7,,,

4 = 1
S 

tdfcJ~
df~

:O

From Eq. (29): a0 = ~~q5 
— 6; d = 0

FIXED - BASE MODEL

Substituting into Eqs. (15), (30), (32) and (31) we obtain

mi
d
5 + k 1

d
~~
+ F f

5 
(i)

F = m2
d
0 

(ii)

0 = 0  (iii)

where F = P(6 , 6) and

6 = a
~ 

— a0

— —--—---—- ——-.—~~ ——-- .- - ..— _______________________________-
- - . . — ~~.. t&!.~ .. —~.. - .
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(ii) Free—Free Component Modes f~0.
2

K0 
= 0; rn0 

= p
0 

= in
2
; = 0;

= m
1
; = k1/m

1; ~~ 
= 1; = i®_

NoNL IN EA R
S P R I N G

‘fs 
_ _ _ _

Is
E~1

a aEquation (22) yields: d q 

~ [ ~®and from Eqs. (15) and (36), we have

,, ‘fff,,,~~

+ k
1d5 

+ F = f
5 (iv)

m2
d
0 F 0  (v)

where F = F(6 , 6) and 6 = —

C. Simply Supported Beam and Spring Mass System — Linear Springs

(i) Fixed-Base Modes

K 

r k l -k1 o l r0 0 0 ’]

k
1 

(k
1
+k
2
) -k

2 , M0 = ~ m
1 

o= 

[-

~~ -k2 k
2j L° 0 m

2j 

~~~

~ ~
. fJ~

Let: k
1 

= 2k; k
2 

= k; in
1 

— 2m, in
2 

= in

k2J 
BEAM CONSTANTSThen: = 2k; — [_2 Ojk

_ _ _ _  

d 
~~

r 21 r3 
_l] 

“ A = cross—sectional area

~~ 
.jo]k; k = I k m 1 El = bending rigidity0 L~

— 
r2 01 

= mass density

in
0 

= 
~ ; = [o ij 

F I X E D - BASE MODEL

It can readily be shown that the fixed—base modal and frequency matrices

are: 
[i 1~i r112 o’]

~fa 
2 I /m— ; w — I  k

[~ ~ 
fa [o 2] 

~~
.-. ~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~ 

—

~~~~~~~~~ -



— —  15 — —

and that the constrained base mode matrix is:

Consequently, 
~fa 

= 

~ fG ~~~~~~~~~~~ 
[6 

~1 m
For the main s t ruc tu re:

— pM. 2 -rr4n
4 El . flrTx

— = —i-— . = L 
~ 5n ~~~~

Substitution into Eq. (20) yields:

1k 2~~~.. . nit
+ -

~
- — q f01 + -

~~ /.. ‘l
~~fl 

51fl = 0 (i. )

k l x’ .. . n1
+ 2—  q

f02 
+ -

~~ L q ~~~ = 0 (ii)

Now from Eq. (16): F = —2k(qf01 + q
f02
)

and f rom Eq. (15):

+ . + [2k~~fOl + ~ f~ 2 )1 = 

~~~ 
( i i i )

The following identities are established from Eq. (5 ) :

a01 - d
0

_
~~f01 + 

~fa2 
d02 

- = 2
~ fol 

- 

~fa2

Thus (i) + (ii) and 2(i) — (ii) yield

2md
01 

+ 2k(d
1 

- 

~,
) + k(d

01 
- da2) = 0 (i ’

OK!
02 

+ k(d
02 

— d
01
) 0 (ii ’)

- k—~i~ - --- - =— 

-
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while (iii) can be written as

- — 

~~ 
El 

q5 
+ sjn ~~ 

[
2k(~~l 

— 

~a~j 

= 

~~ 
(iii ’)

where d0 
= d

s ~ q5 sin

(ii) Free—Free Component Modes

The free—free component modal and frequency

matrices are 
-

~ ______

I l l  i j  2 1 0  0 0 1  F~~1= ji l O j  ; w =  j03/2 0 j k/m ;
0 

~l -2 0] L° ° ooj  

______[ 3 0 0 1  2 ro 0 0 1
~ = 1 0 6 0 1 ; p w = I O  9 o f k  S
° 1 0 0 0 1 00 I~~ 0 2 d~ -ugL J L J .,J~~~

From Eq. (26)

— 

2 sin — 

~~0l 
+ 
~~~~ ° (iv)

+ 2 
~ 
q02 

- 
3 m~~ ~Sn 

sin - 

~~0l 
+ °‘o2~ 

1= 0 (v)

Equation (27) yields:

4 4ITU El 2 . nit
q~~ + . ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~sin -j--~~ 

(q01 
+ q~ 2)J 

= (~~~~~~)

But from Eq. (21)

= 

~~l 
+ 

~~2 
~a2 = 

~~l 
-

and thus (iv) + (v) and (iv) — 2( v )  y ield

2ni + k(a
01 

— d02) 
_2k
[~~s~

sin j~ 
— 

~0l] 
= (iv ’

— k(a 01 
— a02 ) — 0 (v ’) 

— - — -  ~~-— .. -——- , .- -- --. 3 _ .-~~~~~~ —

- t -.- — -
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while (vi) becomes

4 4
___  

ElII~~~+ 4 ~~~~~~~~~ pAR. ~~~[~~q5~~sin~~~~
_ 2

01] = Q s (vi)

D. Simply Supported Beam and Spring Mass System — Nonlinear Springs

(1) Fixed—Base Modes 
1~O2r m

For substructure a
- -

k = k  =k = k ;  k = k = — k
2
=— ka a 

2 L i m i  I
m — i n  in= in

1 
= 2m a 2 NONLINEAR

SPRING

2 k2 k S
; p = in m; ~~ = — = — 

..
~~ ~~~~~~~

= ~ ~ ~fa = ~ fo 2 fa in
2 

in

Equation (29) yields: ~ = d = — 6 ; d = d ± cj
a al S 02 a f

Thus Eqs. (15), (30), (32) and (31) become : fd fo~

El
A 

q5 + sin ~ = 

~k2 

~~~~~~~r~HF = 2md1~ — k(d02 
— 2~i) (ii) 

______

F I X E D -  BASE MODEL
m 202 + k(d02 - d01) 

= 0 (iii)

where ~ = F(6 , 6) and

6 = a 5 — a 0 =~~ q sin -~~~— 2S~ 2 al

(ii) Free-Free Component Modes ____ ____

Lc~~n

r0 ~~~ 
~® SPRING

NONLIN EARI ;  =
[3 

0

[1 _2j 0 6] 

= [
~ 3/2] 

k/rn

____
_ -

~

__ tj s(1 if

- - - . --- .
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Thus from Eqs. (15) and (36):

~Sn 
+ - 

~ 
+ sin F = Q5 (iv)

3m~j01
— F = O  (v)

6m q
02 

+ (6m)-~ ~ ~
lU2 

— F = 0 (vi)

From Eq. (33): = 
~Ol 

+ q
02 

d
02 

= - 2q02

Thus (v) — (vi) and 2(v) + (vi) yield

m~02 
- k(2

1 
- d

2
) = 0 (v)

2md01 + k(d 1 
— d02) - P 0 (vi)

where F = F(6 , 6) and 6 — = ~q5 
sin -

~~~~ 
— a 1

.i — .- _;_~~~~~~~~~~~~~~~~~
___ -- — . - - -.- — ——-—-—--- ¶ 

I
- ~~~~~~~~~~~ - - C -
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APPENDIX A — ALTERNATE DERIVATION OF DYNAMIC EQUATIONS

In this section we consider the equations of motion for the system as

given by Benfield and Hruda [3j ,except for the addition of ,~enera1jzed fert es:

()

M
c{~.J  

+ K
c[~~~

J 

= (A-I)

When using fixed—base modes for component b and free—free modes for

component ;i, the system modal mass and stiffness matri ces are

r~ ol rk o l
M
C 

= T~
T 

a 
T~ ; K~ = T~~ 

a 
( T (A—2)

L° m
bJ [o kb J

and the sys tem coordinate transformation matrix is

0
T~ = 

0 (A—3)

T
b~ ~nb

The generalized forces are

= 
~a~a 

+ 
~a

1b ~ ~a
T

b 
tb (A—4)

~~~~~~~~~~~

where 1a = known forces acting on main s t r uctu r e  (S)

= = known forces acting on substructure (a)

For convenience to those who migh t wish to refer to the formulation

given in Ref. [31, we use the nomenclature that is to be found there .

The relationship of the nomenclature used in the body of this report

to that used in this section is shown in Table A - I .

*) For s i m p l i c i t y ,  the superscri pt c which refers to  the  f ixed—base  modes
in [3 ]  has been replaced by the subscri pt ‘~~‘ ‘~~~~~~~~‘ 

~nb

—a-— —-— . .- - . .  
~~~~ .

- - C _~~~~~~~~~~
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TABLE A-I NOMENCLATURE

*)
________________________________ — WA BH~~ ef. 131
Constrained Base Mode Matrix T

C Tcb

Displacements ds, d0

Freq uencies WS,wfa,~~i 
W
a~

(
~
J
rIb~

Ci
b

Generalized Coordinates 
~~~~~~~~

Generalized Forces Q5~ Q f0~ Q0 ~a ’~~nb ”~b

Main Structure S a

Mass and Stiffness Matrices M0,K0 m
b~
k.b

Modal Mass Matr ices  P5~ P f0~ P0 
M ,M

b ,M
b

Modal Matrices 
~5’~~f0’~~o ~a’~ I1b’~ b

Substructure a b

The equations of the system as given by Eq.  (A—i)  have , wi th  vanishing r i gh t —

hand side, been successfully used to obtain the system modes and frequencies , in

Ref. [3]. It should be noted , however, that, for complex systems having many dof ,

the system modal mass and stiffness matrices would req uire the use of an

extensive part of the core of a digital computer. For transient or shock

problems this would result in long running times , so that a direct use

of Eqs. (A—l) is inadvisable. However, in what follows we will show that

these equations can be simplified so that they do indeed yiel expressions

which are identical to those given in the body of this report.

Defining the following matrices

*T b 
= 

~nb ‘~ 
“ (A—5)

1
T
bj [~ nbJ

allows us to express Eq. (A—i) in the following form

*) Symbols not appearing in [3] are chosen to be consistent with the
notation found there .

— I— - — — -~
. - - -~ .--—-—— -- —

~~~
-—-,-  . - 

~~~~~~~~~~~~~~~~~ -
-~~~ . - 

. ,
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M ~ + M + ~
T(T *T * - -. - T

a a  a a a  a cb%
T 

~~~~~~~~~ 
+ c ~ T

cb a a  a c

(A—6)
-it *T  * - -T

-i- p (it k T  ) (~I F  +~~~ T k~~ ~a cb b cb a ~a a cb b nb nb 
=

~nb
m

b 
~~ T

M ~ + M  + T ~~~ +
~~ 

kb T 
~~~ 

= Q  (A-7)
nh nb nb nb nb eb a a nb cb a a nb

As a consequence of the constraint base mode definition in Ref. [3],

* 
—‘

kb
T b~~~ 

= 

~b + k T )4 ~ 
I = 0 (A—8)

b cb a a

except at the interface coordinates . However, since c~ = 0 at these
nb

coordinates ,

T *

~nbkbTcb~ a~a = o (A—9)

Also , assuming a lumped mass approximation , we have

~nb in
b
Tcb = ~

T
b

In,
D

T b (A-b )

Upon substituting the identities of Eqs. (A—9) and (A—b ) into Eq. (A—7),

we obtain the final form of the equations of motion for the fixed—base

(cons traln t~ modes of component b

M
b
E
~ 

+ M 2 
~ + = (A—li)

nb nb nb iTh nb b cb a a ‘ib

Let us now consider all but the first two terms on the left—hand

side of Eq. (A—6) and designate them by the symbol LHS. Appealing to

the following identities

T
~~

in
b
T

b 
= in.~ + T bI%

T
b

T
b
m
~~ flb 

= T
~~
m
~~ flb

(A-12)
*1 * — T~~T k T k + k

b
it

b 
+ T

b
E
~, 

+ T
C~
k
b
T
Cbcb b cb b

~~~~~~~~ k
b~flb + T bk~,4~nb

. . .—. --—... -- .. — —--— -— ..---. ---.- — . . .  -. V ~-
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and rearrang ing terms , we wri te

LHS = 

~ak~a~a 
+ 

~~b 
+ k

b
T

b
)
~~~

.
~ 

+ TT
b
(~ b 

+ k
b
T

b
)
~~~

L (A—13)

+ k
b~~ b~~ b 

÷ T
cb[~~~nb~ nb + kb~ nb~ flb 

÷ mbTc b a ~a}]

Now the equilibrium equations (A—li) can be written as

or 

b{~~~~~ nb 
+ k

b~ nb~ nb + ~~~~~~~~~~ 
= 

~~~ 
( 4 )

+ kb b~~ib 
+ ~~~~~~~~~ = (A—i5)

The identities of Eqs. (A—8) and (A—l5) allow us to rewrite Eq. (A—13) as:

LHS = 

~E u i~a~a + (i~~~~ + ~~~~~~~~~ + k
b~~ b~~ b 

+ T
l
b
E
b] 

(A-16)

Finally, substituting Eq. (A—16) into Eq. (A—6), we obta in

M

~~ 

+ M
a~~~~a 

+ 
[b ~ a~ a 

+ 
~~b 

+ k
b
T

b
)
~~~ 

+ k
b~~ b~flb]

_ 
~~

= 
~a~ a 

+ 
~a~ b 

(A—17)

Equations (A—il) and (A—17), when combined with appropriate initial

condi tions , are a complete mathematical statement of the problem. They

are identical to Eqs. (15), (16) and (20), except for the fact that in

the body of the report the forces acting on the substructure were

assumed to be zero.

Free—Free Modes of Substructure . It ca~ readily be shown that the

equations of motion for the system which appear in Ref. [3], when

f ree—free  nodes of the substructure are used , can be written as follows:

, 
— —.- ---~~~~~ ,———-— . — — - -— ~~~~~~~~~ - .-. ..-. - —
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(M
a 
+ 

~~~ l~~a~~~a 
+ M w 2E + 

~a b ~a~a 
+ 

b~ b~ 
— (A—l8)

~b b ~ b~b 
+ 

~b
k
b~ a~a 

+ 4
~
k
b~b~b 

= 

~b 
(A—19)

where the generalized forces

Q = 3
T~ +

a a a  a o  
(A—20)

- Wb

have been introduced. Noting that

~b
in
b~b 

= 

~b
in
b~b 

+ 
~b
”b~b 

= Mb

= 
~~~~~~~ 

+ k
b~b
) + 

~b~~b~b 
+ k

b~b
) = M

b
w
~ 

(A—21)

and

~a~a 
= 

~b~b 
(A—22)

we rewrite Eqs. (A—l8) and (A—19) as:

M~~ + M w 2
~ + + k

b~~~ 
+ k

b~b~b] 
= Q (A-23)

+ Yb~b - 

~~[~~~
b~b 

+ k
b~b~ b 

+ k
b+b~~
] 

= 

~b 
(A-24)

_ _ _  _ _ _ _--- —------------ -  -. - . . _ _ _ _ _ _

-- - .. - ~~~
-

~~~
- —k. C
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NONLINEAR MOUNTINGS

When linear elastic system components are attached to one another

by nonlinear mountings, it is necessary to isolate those mountings from

all of the components of the system. Thus, only the forces transmitted

by them, which are, in general, functions of the relative displacements

and velocities, enter into the analysis.

Fixed—Base (Constraint) Modes. The component displacements are

expressed as

~~ a~~ = T~ 
- (A-25)

where co 1
~c~~~~~ O 

~, (A—26 )

IT 6t
~~cb)

and

(A—27)

As a consequence of Eq. (A—25), the potential energy of components

a and b can be written as

PE
b
=~~~
[
~~ ~j [1

~a 
o] [::~

- 

~ 
[
~ ~nb] 

KC 
+ 1 ~cT 0] ~c

_AcT [ :  
~

] T~ 
[~:b 

~ (A-28)

- -.---
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Similarly, we can express the kinetic energy as

KE
ab 

= 

~~~ 

MC 

{ :b} 

+~~ ~~~~~~~ E a 01 AC

cT a 1 T~ ~~~a (A-29)
[0  

~J
For simplicity, let us assume that componeuts a and b are attached by

mountings whose properties are characterized by nonlinear elastic and

linear viscous elements. We express the potential energy of the mountings

as

(PE) M = VM (IS ) (A— 30)

and the viscous dissipation function as

DM 
= DM

(cS ) (A—3l)

Using the generalized form of Lagrange’s equations, and noting that the

generalized coordinates are 
~a’~nb’ 

and 6 , we readily obtain the following

system of equations

M~~ + M w 2
~~+~~

T 
[i ~~~a~a 

- 
~~ + + k

~
T

b
)(
~~~ 

-6) + kb~~b~~b] 
= 

~a (A-32)

M bI b + M b
w
~~~b 

+ 
~~~

fl1bT b
(
~~~~ 

— = (A-33)

— 
- 

~~~ ar4f
— 6) + 

~~b 
+ kbT b

) (
~~~ 

— 6) + b~ r~b~ nb 
= 

~6 + ~~

(A— 34)
where 

~a’ %b 81
~ de fined in Eq. (A—4)

and

— 1b 
— T b f b (A—35)

Note that Eq. (A—34) is an expression for the forces transmitted by the

- .—-~~ -- - -~~~~~~~~~ -. ----- —-- -~~
,=.- - . ..r.~~ ~~~~ -~~~~~~~~~

- —.— . ~~_Th_ -~~ --- - —~~ ~-
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~V ~D
attachments. For a more general material we replace (—$~ + 36
by F(6, 6) ,  the forces exerted by the attachments on component b.

Free—Free Component Modes. When using the free—free component

modes , we express the displacements as

0~~

0

— — 
—A (A—36)

(~~b _
~~~

where

A = 

{O} 

(A-37)

Following the same procedure as was previously described , we readily

obtain the following set of equations

M~~ + M
a~~~ a 

+ 
~a ~

‘b~b~b 
+ 

~~b~ b 
+ k

b~b~~b 
sQ  (A- 38)

+ Mb~~~ b — 

~~ 
+ + Yb~~ b 

= 

~b (A—39 )

in
b~b~b 

+ k
b~b~b 

+ k
b~b~b 

= F(6 , 6) - Q6 (A-40)

where 
, ..-T~’

~a~a 
+ 

~a~b

— (A-4l)

_ _  _
— . - —~~~ -~~~~~~

.
~~~~~ .-------— .- .. .——,-—.—- - — --.. - ,. —=-, . ~~~~~ - 

~~~~~~~~~~ .~~-.  — - £_ - . .



—— 28 ——

Substituting Eq. (A—40) into Eqs. (A—38, 39) yields:

M
a~
;
a 

+ M w 2
E.~ + ~

TF( 6 , 6) 1~
T
Q + Q~ 

= ~~T
f (A-42)

+ Mb~~~ b 
— q~ F(o, 6) = + ‘

~~~b 
(A—43)

where

6 = — (A—44)

( -~~~~~~~~ -
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