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Variability of the Lower Thermosphere Determined
From Satellite Accelerometer Data

I. INTRODUCTION

Accurate density measurements have been previously made with electrostatic

accelerometers on low altitude satellites. ok

These in situ data permitted detailed
analysis of atmospheric behavior compared to the orbital decay technique which
involves considerable temporal and spatial averaging. Because these satellite life-
times were relatively short, however, only limited amounts of the accelerometer
data were available. This report describes an extensive neutral density data base
generated using data from accelerometers on four low altitude satellites (Atmosphere
Explorer -C, -D, and -E, hereafter AE-C, -D, and E, and Air Force satellite
S3-1). Data obtained from over 4000 orbits (a total of 115, 951 discrete values) at
altitudes from 250 km down to as low as 140 km during the period January 1974 to
November 1976, have been utilized. This represents the most extensive set of

neutral density measurements in existence.

(Received for publication 25 May 1978)

1. Devries, L.L. (1971) Experimental Evidence in Support of Joule Heating
Associated With Geomagnetic Activity, Marshall Space Flight Center,
NASA TM X-64568.

2. Marcos, F.A., Mclnerney, R., Corbin, J., Fioretti, R., and Grossbard, N.
(1972) Atmospheric Density Results Derived From the SPADES Satellite
Accelerometer Data, AFCRL-~72-0608.
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Knowledge of #* mospheric density and its variations is required for satisfactory
low altitude satellite design, operation, and orbit prediction. Existing models of
the lower thermosphere are deficient since they are primarily based on data obtained
at higher altitudes. This report compares the accelerometer density values to two
commonly used models, that of Jacchia3 hereafter J71, and that of Hedin et a1,4' 3
hereafter MSIS. Comparisons are made as a function of altitude, latitude, geomag-
netic activity, and local time. Frequency distributions of these comparisons are
described in terms of their mean value, standard deviation, coefficient of skewness
and kurtosis. Results of this study provide a quantitative estimate of the improve-
ments required in current models of the thermosphere. Correlations of the observed
variations with solar and geophysical parameters will be described in forthcoming

reports.

2. EXPERIMENT AND DATA DESCRIPTION

2.1 Satellite Characteristics

The Atmosphere Explorer program involved three low-altitude satellites de-
signed to permit a coordinated study of the thermosphere. Dalgarno et a16 have
described tre AE mission. AE-C, -D, and -E were launched into low-perigee high-
eccentricity orbits with different inclinations. A propulsion system was used to
maintain an elliptical orbit for approximately 1 year (AE-D data acquisitions were
terminated after 3-1/2 months when the spacecraft power system failed. However,
data were obtained on 81 percent of the orbits). AE-C and AE-E were put into cir-
cular orbits near 250 km following their elliptical orbit phase. Data in this report
are for the elliptical orbit phase only. Data were acquired in both a spinning (4 rpm)
and a despun mode. S3-1 was also launched into a low-perigee high-eccentricity
orbit and was spin-stabilized at 5 rpm. This satellite had a lifetime of nearly seven
months. Table 1 provides orbital characteristics and the dates of elliptical orbit
3. Jacchia, L.G. (1971) Revised Static Models of the Thermosphere and Exosphere

With Empirical Temperature Profiles. Spec. Rept. 332, Smithsonian
Astrophys. Observatory, Cambridge, MA,

4. Hedin, A.E., Salah, J.E., Evans, J.V., Reber, C.A., Newton, G.P.,
Spencer, N.W., Kayser, D.C., Alcayde, D., Bayer, P., Cogger, L., and
McClure, J.P. (1977a) A global thermospheric model based on mass
spectrometer and incoherent scatter data, MSIS |, N, density and temperature.
J. Geophys. Res. %:2]39.

Hedin, A.E., Reber, C.A., Newton, G.P., Spencer, N.W., Brinton, H.C. "
and Mayr, H.G. (1977b) A global thermospheric model based on mass
spectrometerand incoherent scatter data, MSIS 2, Composition, J. Geophys.
Res. 82:2148.

—_— Y
6. Dalgarno, A., Hanson, W.B., Spencer, N.W., and Schmerling, E.R. (1973)
The Atmosphere Explorer mission, Radio Sci. 8:263.
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data

acquisition for each satellite,

The alt ‘udes at which data were obtained are

shown (shaded areas) as a function of time in Figure 1., The AE-C and -E perigees
were occasionally lowered to below 140 km. Perigee of S3-1 was generally between

160 and 180 k
data base, F

time (bottom

Table 1.

m. Data obtained from 250 km down to 140 km are included in the
igures 2a through 2h show the variation in latitude (top curve) and local

curve) for each satellite.

Satellite Orbital Characteristics and Data Acquisition Periods

Launch End Elliptical Initial Initial
Satellite Data Data Acquisition Inclination Perigee Apogee
AE-C Dec 73 Nov 74 68° 156 km 4000 km
S3-1 Oct 74 May 75 i 160 km 4000 km
AE-D Oct 75 Jan 76 90° 156 km 3800 km
AE-E Nov 75 Nov 76 20° 157 km 3000 km
"
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—170
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Figure 1.

Distribution of Density Data in an Altitude-Time Coordinate System
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2.2 Drag Measurement

The accelerometer experiment provides extremely accurate measurements of
orbital accelerations. Three single-axis instruments mounted orthogonally were
flown on each AE satellite. Operating principles of this experiment have been given
by Champion and Marcos. ¥ S3-1 carried a single-axis sensor essentially identical
to the AE instrument. The sensitive axis was aligned to the flight direction. A
one-quarter sec sample-time was used for each instrument. Drag accelerations
were separated from noise accelerations by numerical filtering techniques. g For
spinning orbit data the errors are estimated as follows: area-to-mass uncertainty
is + 1%, attitude error is negligible (only ram point values are used), and filtering
error varies from negligible at perigee to + 2% at 200 km to + 5% at 250 km. For
despun orbit data (AE only) the sensors are at 45° + 2° to the velocity vector and
the attitude uncertainty is + 2%. For both spinning and despun data there may be
a+ 10% error in the assumed free molecular flow drag coefficient value of 2. 2,

The drag coefficient error and area-to-mass uncertainty constitute systematic
errors. Hence the random error in measurement of density variations on a spinning
satellite varies from negligible at perigee to + 5% at 250 km. For the AE despun
mode data, due to the accelerometer alignment with respect to the velocity vector
and the accuracy of the attitude control system there is an additional + 2% error.
This could be alleviated by aligning the accelerometer sensitive axis with the
velocity vector or by a higher accuracy attitude determination system.

7. Champion, K.S.W., and Marcos, F.A. (1973) The triaxial accelerometer
system on Atmosphere Explorer, Radio Sci. §~:263.

8. Noonan, J.P., Fioretti, R. W., and Hass, B. (1975) Digital Filtering Analysis
Applied to the Atmosphere Explorer-C Satellite MES?E Accelerometer Data,
AFCRL-TR-75-0293.
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2.3 Data Base

Density values calculated at 5-km intervals were stored in the data base.
Associated with each point is the corresponding J71 and MSIS model value,
ephemeris data, solar flux, and K _value. A histogram of the data distribution as
a function of geographic latitude for each satellite is given in Figures 3a through 3d.
These figures show the number of data points obtained in each 10° latitude band.
The percentages of the total amount of data (combining the four sets) in the latitude
bands 0+ 20°, |20-50°| and |70-90°| are 47%, 25%, and 11% respectively. The
large amount of near equatorial data is due to the low inclination of AE-E and the
precession of perigee for the other satellites as indicated by Figure 1. The data
above |70°| are provided by AE-D and S3-1, Although relatively small in per-
centage of total data, 12,822 points were obtained at these latitudes. Figures 4a
through 4d show the data distribution as a function of local time, giving the number
of points within each 1-hr interval. The figures show excellent local time
coverage provided by AE-C and -E. The distribution of data with respect to geo-
magnetic activity is shown in Figures 5a through 5d. These plots give the number
of measurements during which the 3-hourly Kp index (with a 6-hr lag) " il
within specific l1~-unit intervals. Approximately 20% of all the data occur during
conditions when the average Kp is greater or equal to 40. The relative frequency
distribution for K_ values is similar to that obtained from a study for the period
1932-1971. ¢ In Figures 6a through 6d distribution of data with solar flux is shown.
These plots give the number of measurements during which the FlO. . value (with
a 1-day lag) fell within specific five solar flux unit intervals. It can be seen that
the data base was obtained mainly during conditions of very low solar flux. Only
about 4% of the data occur on days with FIO. 77 100. An example of the data base
is given by showing results obtained at the altitude of 180 km for each satellite,
Figures 7a through 7d show these density data, the latitude at which each data
point was obtained, the ratio of measured density to the J71 model, and the Kp

index.

9. Cage, A.L., and Zawalick, E.J. (1972) A Discussion of the Geomagnetic Indices

Kp and Ap» 1932 to 1971, AFCRIL.-72-0693.
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3. RESULTS

3.1 Statistical Properties

The measured density values have been statistically analyzed in relation to the
J71 and MSIS models., The normal distribution is completely determined by two
constants: the mean locates the center of the distribution, and the standard devia-
tion measures the spread or variation of the individual measurements. Extreme
deviations from models are of particular interest to potential Air Force users,
hence departures of frequency distributions of the data from a normal distribution
have also been calculated, The following moments of x, which represent the per-

cent departure of the data from the model values have been determined:lo

Mean value (%)
s
%= 2
i=

1
- (1)

1

where X, is the percent deviation of the ith density measurement from the model and

N is the total number of data points,

Standard deviation (S)

[N o
g b’

: izjl TI_, v (2)

For a normal distribution about 68.3% of the data fall in the interval x + S, 95.5%
are within x + 2S, and 99,73% are within x + 3S,

Skewness or. third moment about the mean, ( )
3
(x, ~X)
‘/ 1" =¥ Z) 5 - (3)
g%

i=1

The skewness, a measure of non-symmetry, will be positive if the lower values
of x are closer to the mean than the higher values, that is, if the distribution has
a large tail to the right (positive side) of the mean, In this case, large positive
contributions (x-x)”, when x exceeds %, will dominate the smaller negative con-
tributions obtained when x is less than Xx. Negatlve skewness indicates that the
lower tail is the extended one, The factor —3— renders this measure independent

10, Snedecor, G.W., and Cochran, W. G, (1967) Statistical Methods, lowa State

University Press, lowa.
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of scale. If ﬁ)—i is zero, the distribution is symmetric with respect to the mean.
The criterion for 95% confidence that the non-zero skewness observed is not due

to sampling error is !‘/-;J > (1. 96)‘/ NE , where N is the number of sampling points.

Kurtosis or fourth moment about the mean, (b2)

Xt
b 1 i (4)
T8 g N

For a normal distribution b2 has a value of 3. Values of b2 greater than 3
indicate an excess of values near the mean and far from the mean with a corres-
ponding depletion of intermediate values of the distribution curve. For values of
b, < 3 the distribution curve has a flatter top than normal. The criterion for 95%
confidence that the kurtosis observed is in fact different from 3 and not due to

sampling error is that

b, - 3I><3.92>‘/% .

3.2 Frequency and Probability Distribution

Graphical representations of frequency distributions of percent differences
from models have been developed, These histograms are shown for each set of
satellite data. This separation by satellite permits some intercomparison as a
function of the different geophysical conditions appropriate to each set of data,
Planned studies of atmospheric variability related to geomagnetic activity, latitude,
longitude, season, and the semi-annual variation will use the data base in a unified
format.

Histograms are shown in Figures 8a through 8d for each set of satellite data
(at all altitudes) compared to the J71 model. The plots show the percentage of the
total number of data points falling within each 1% model deviation interval,
The total number of points 18 given at the bottom of the box in the upper right hand
corner of each figure. A normal distribution curve is superimposed as a solid curve
on each histogram. Deviations from the normal curve are observed with each set
of satellite data, Values for the coefficients in Eqs. (1) to (4) are provided in the
right hand corner of each figure. The mean values fall within the range 6.9 £+ 2. 5%.
The standard deviations are within the range 16.1 + 0.6%. The skewness coefficient
is positive for all cases indicating an excess of large positive deviations relative to
a normal distribution. The kurtosis has a value greater than 3 for each case. These
properties of the third and fourth moments are statistically confirmed since

1. 86 N and 3, 92 VN are less than ‘/hl and lh2-3' respectively for each case.
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Figures 9a through 9d show the same data as in Figures 8a through 8d, but
compared to the MSIS model. This model gives better agreement to the average
measured absolute density values than J71. The mean falls within 2.9 £ 3.6% for
ecach set of data, Standard deviations are also slightly lower, falling within the
range 14.1 + 1.7%. As with the data in Figures 8a through 8d, the -kewness coef-
ficient is always positive and the kurtosis is always preater than 3. No trend was
found for these coefficients in comparing the data in Figures 8a through 8d and 9a
through 9d.

The MSIS model predicts density values which are on the average 4% lower than
those of the J71 models. Since the drag coefficient may differ systematically from
its assumed value of 2.2 by about 10%, it cannot be determined which model more
accurately predicts the absolute density.

An earlier stud,y” comparing OV1-15 satellite accelerometer data to J71 found
an average departure of about -1% from the model. These data were obtained for
an average solar flux of 145 units. However, it cannot be determined whether the
J71 model has a systematic error with respect to solar flux because of drag coef-
ficient uncertainties. OV1-15 had an [,/D=2 compared to AE which had an 1./D=1.

12

For the higher L/D the theoretical value of C)is higher by about 10%.

Cumulative frequency distribution curves :n)r-c another useful means of displaying
the deviations of the measured data from a normal distribution. Figures 10a through
10d show the results of Figures 8a through 8d plotted in this alternate format., The
ordinate of a point on the curve gives the percent of the total aata which deviates
from the model by a percent less than or equal to the value of the abscissa. The
ordinate scale at the right gives the cumulative percent in terms of standard
deviations. These curves can be used to estimate the amount of expected large
deviations from a model., For example, approximately 2. 3% of all the AE-C data
differ from the J71 model by between -80% and -20% and approximately 2. 3% of this
same data differ from the model by more than 45%. The normal distribution shows

a linear dependence in this type plot and is shown as a solid line.

11. Marcos, F.A., and Champion, K.S.W. (1972) Variations of the neutral atmos-
pheric density at low satellite altitudes, Proc, International Conf. on Aero-
space and Aeronautical Meteorology, Washington, D.C.

12. Karr, G.A., and Smith, R.E. (1972) Influence of satellite acrodynamics on
atmospheric density determination, Proc. International Conf. on Aerospace
and Aeronautical Meteorology, Washington, D.C.
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3.3 Data as a Function of Geomagnetic Activity and Latitude

Frequency distributions were made for data obtained ut different levels of geo-
magnetic activity and at different geographic latitudes. The S3-1 data were used
since it has the best distribution with respect to Kp and latitude. The data are first
displayed as a function of geomagnetic activity only. Three groups of data were
formed sccording to the K | index (with a 6-hr lag). Group A included measurements
obtained with the condition Kp < 3_. Groups B and C were for data with Kp = 40
and Kp =5 3 respectively. The range 4_ = Kp = 3- was omitted to provide a larger
difference between Groups B and C. Next the data were separated into 30° latitude
bins. The mean and moments about the mean were calculated for Group A and B.

Results obtained when the data are separated by Kp only are shown in Figures
11a through 1lc and 12a through 12c. These figures show the frequency distributions
for data compared to J71 and MSIS respectively. The results are summarized as
follows:

(1) Mean value: The actual average measured increase in density for Group B
relative to Group A is 18%. For Group C relative to Group A it is 24%. The J71
Group B and C ratios are about 1.5% less than those of Group A. The MSIS Group
B and C ratios are about 5% greater than those of Group A. Hence the J71 model
provides a more accurate representation of the geomagnetic activity effect. The

MSIS model underestimates it by about 5% probably because this model uses a
daily average Kp value to estimate the density enhancement related to geomagnetic
activity.

(2) Standard deviation: For all six cases S is within 15.3 £ 1%. The largest
values of S occur with the Group C data for hoth models.

(3) Skewness: An increase in bl with increasing K _is observed in Figures
11a through 11c¢ and 12a through 12c. This is indicative of a relative increase in
the number of positive deviations from the mean with increasing Kp.

(4) Kurtosis: The value of b2 decreases as Kp increases. For both Group A
sets bz = 5.3, For Groups Band C 3.4 < b2 < 3. 9. With increasing Kp the pezak of
the distribution flattens out while the number of intermediate values increases.

The Group A and Group B data were next separated into 30° latitude bins. Group
C data were not included in this study because a relatively small number of points
were obtained at high southern latitudes. Calculated values of the mean and mom-
ents about the mean have been tabulated for this study and are shown in Table 2.
Table 2 shows data for Groups A and B (low and high Kp conditions, respectively)
relative to both the J71 and MSIS models. For low K _ conditions (Group A) the MSIS
model appears to provide a more accurate depiction of the latitudinal structure; x
is within -4.3 ¢+ 2.6% for MSIS and 8.3 + 5. 9% for J71. In general, J71 overesti-
mates the average genmagnetic activity effect by about 4% from -60° to -30° and ac-

curately depicts it from +30° to -90°., MSIS values are about 6% low from -30° to -60° and
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about 3% low in the latitude intervals -60° to +30° and +60° to +90°. The largest
standard deviation occurs at -30° to ~-60° for both models. However, relatively low
values occur at +30° to +60°. As was found in Figures 11a through I1c and 12a

through 12¢, skewness increases with increasing I\’p and kurtosis decreases.

Table 2. Mean and Standard Deviation as Percent Deviation from J71 and MSIS
Models for S3~1 Low and High Kp Data Group vs Latitude

Moments for S3-1 All Data (J71 Model)

Latitude K,, Number Standard Skewness

Min Max Min )Max of Pts Avg. Value | Deviation Coeff, Kurtosis

-90 -60 0.0 9.8 988 4,.7935 14,0530 -, 0012 3.8518

-60 -30 0.0 2.5 1717 8.5629 15. 0697 -.3516 6.8126

Group -30 0 0.0 2.5 1529 14. 1795 18. 6116 -.7964 6. 1269
A 0 30 0.0 2.5 1204 10. 6487 16. 6563 -. 9783 7.7262
30 60 0.0 2.5 2177 2, 3865 14, 8664 -. 4084 5.2432

. 60 90 0.0 2.5 3697 3. 3115 13,2219 . 2369 4, 1379
-90 -60 4.0 g1 396 11. 1768 17. 1003 . 2438 3. 6008

-60 =30 4,0 9, 1 1165 4. 5446 18, 6983 -. 1148 4,0389

Group =30 0 4.0 9,1 1180 10, 0331 14, 3865 g 4,7926
B 0 30 4,0 9,1 1424 6.8539 13,9825 2.9412
30 60 4.0 9.1 1945 2. 0985 13,5425 3.6517

60 a0 4,0 9.1 2163 3. 3659 16,3584 14,2089

Total Number of Points 19, 585

Moments for S3-1 All Data (MSIS Model)

l.atitude F.p Number Standard Skewness

Min Max Min Max of Pts Avg. Value { Deviation Coeff, Kurtosis

=90 60 0.0 2.5 988 -6, 5091 12, 8766 -. 0822 3., 6022

-60 -30 0.0 2.5 1718 -3,7835 13.5575 -. 0432 7.0258

Group -30 0 0.0 2.5 1530 -1, 6719 16, 6452 -. 4358 5. 3455
A 0 10 0.0 2.5 1204 -3. 9028 14,7894 -.3016 7.6201
30 60 0.0 2,5 2177 -6, 9575 14, 5492 -. 0310 5. 1573

60 a0 0.0 2.5 3697 2.6872 13,4507 . 1688 3. 66490

-00 60 4.0 9.1 396 1. 3485 16. 5364 L1776 3.0011

60 -30 4.0 9.1 1165 0.0288 17.5674 -.0234 4,3017

Ciroup 30 0 4,0 a1 1180 4.6161 13. 7908 -. 3970 4, 6085
I3 0 30 4.0 9. 1 1424 3. 2444 13.4583 . 115% 2.8717
30 60 4.0 9, % 1945 -0. 04491 13. 7986 .2281 2.9733

60 a0 4,0 9, 1 2165 1.60(2 16,1643 <211 3. 2651

Total Number of Points = 19,589

I ¢ =g B = o
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3.4 Altitude Dependence

Mean and standard deviation values were calculated for the ratio of data-to-
model, and the average percent deviation from the model was plotted as a function
of altitude. Values were computed at 5 km intervals using all data for each satellite,
Figures 13a through 13d and 14a through 14d show results compared to J71 and
MSIS respectively., Mean values are represented by crosses; standard deviations
are shown as solid lines. The mean values with respect to J71 are between + 6%
(AE-D) and +15% (S3-1) at 160 km. Comparison is made at this altitude since
below 160 km the number of data points decreases and varies significantly from
satellite to satellite (see Figure 1). At 240 km X is between -2% (S3-1) and +47%
(AE-E). With respect to MSIS X is between +47% (AE-D) and + 107 (AE-C) at 160 km
and -9% (S3-1) and -2% (AE-E) at 240 km. MSIS provides a particularly accurate
representation of the AE-E data. The J71 scale heights are in general 10% too high
below about 170 km. Above this altitude they are about 10% lower than the measured
data. The MSIS scale heights are also about 10% too low. Standard deviations are
about 157 at 160 km and increase to about 207% at 240 km. The increase is due to
the approximately 5% filtering error in the data reduction at this altitude. The
large standard deviation for S3-1 occurs below 160 km where there are relatively

few data points.
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3.5 Local Time Variations

A description of the daily variations in the lower thermospheric density was
obtained using AE-E data. This satellite was used because of its low inclination
and excellent local time coverage, Data at 160, 200, and 240 km were separated
into 1-hr local time bins and averaged, Similarly an average ratio to .J71 and to
MSIS was calculated for each bin, ‘The results at these three heights are plotted
in Figure 15. Average density values are shown as solid lines, crosses represent
ratios to J71, and circles represent ratios to MSIS. Figure 15 (160 km) shows a
density minimum, rather than maximum, near 1400 hours. ‘T'wo nearly equal
maxima are observed, one near 0700 and one near 2100 hours., Evidence of the
diurnal bulge is seen, increasing with altitude at 200 and 240 km. These results
are characteristic of atmospheric tidal variations. i The J71 model does not
include local time variations due to tides. The density is underestimated from early
evening hours to late morning hours, Ratios vary by about 30% for the data shown
in Figure 15. MSIS does include tidal components. The observed variations are
more closely represented and the agreement is within +9 to -1%, Figures 16a and
16b show an example of the frequency distributions for a specific local time interval.
Data obtained at all altitudes in the 0800-0900 bin are shown. Relative to J71, x is
11,2% and S is 11, 9%. For MSIS these values are 5.39% and 11, 92%, respectively,
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13, Mayr, H, G., Harris, [., and Volland, M. (1973) Theory of the phase anomaly
in the thermosphere, J, Geophys., Res. 78:7480,
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The Al -1 data are further examined in Figure 17 which shows the density
values at 5 km intervals from 145-240 ki as a function of local time, To permit
better analysis of the relative tidal amplitudes the data have been normalized to an
altitude of 180 km., Newton et :nlM have detected tidal variations in the altitude
region 220 - 280 with the San Marco satellite (inclination 3°), Between 220 and 25
km, where comparison can be made, their results agree in general with those of
Iigure 16, However, the semi-diurnal component appears to be less pronounced in
their data, The difference may be attributable to different solar and geophysical
conditions for AE-E and San Marco, 7The AE-E data cover a wider latitudinal and
seasonal range and were obtained during lower solar flux conditions than that of
Newton et al, A report describing the amplitude and phase of the observed AL -

local time variations is in preparation,

NORMALIZED
DENSITY

IFigure 17, Altitude Dependence of Ali-F local Time Variations
(Normalized to 180 km)

1. CONCLUSIONS

An extensive data base has been developed utilizing accelerometer measure -
ments obtained with four low altitude satellites, In addition to density values the
data base incorporates appropriate satellite orbital information, solar and geo-
physical parameters and atmospheric rnodel values, A description of the satellites,
the accelerometer experiment, and the data has been given, [t is anticipated that
this data base will be useful for correlative studies of aeronomical problems re-
quiring knowledge of the neutral atmosphere, The present study has been directed
toward a statistical analysis of atmospheric variability, Several methods of dis -

playing the data were developed, Analyses included determination of mean values

14, Newton, G, P., Kasprzak, W.T., Curtis, S.A., and Pelz, D,T. (1975) Local

time variation of equatorial thermospheric composition determined by the
San Marco 3 Nace, .J, Geophys, Res, 80:2289,
s
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and the second, third, and fourth moments about the mean. Comparison has heen
made with two commonly used atmospheric models, J71 and MSIS. Results have
been presented in Figures 8 through 17 and Table 2, These data give the extent of
unmodeled variations as a function of geomagnetic activity, latitude, altitude, and
local time, Neither model gives a completely adequate description of the observed
atmospheric variability as a function of all these parameters, The J71 model gives
a better representation of the average geomagnetic activity effect. MSIS more
accurately describes the near equatorial, low geomagnetic activity conditions. Be-
cause of systematic errors, due mainly to drag coefficient uncertainties, it cannot
be determined whether the absolute value of density is more accurately represented
by J71 or MSIS, Model deficiencies are observed in the depiction of local time
variations, particularly near 160 km although MSIS provides a better depiction than
J71. An evaluation of other models including the revised J71 modells is planned,
The data base will be utilized to develop an improved model of the lower thermosphere
extending the results of Marcos et 8116 which used only AE-C data, It is anticipated
that this model will describe the density data in this report as a function of latitude,

longitude, altitude, geomagnetic activity, and local time,

15. Jacchia, L. G, (1977) Thermospheric Temperature, Density and Composition:
New Models, Spec, Rept. 375, Smithsonian Astrophys, Observatory,
Cambridge, MA,

16, Marcos, F,A., Garrett, H.B., Champion, K.S.W., and Forbes, J. M. (1977)
Density variations in the lower thermosphere from analysis of the AE-C
accelerometer measurements, Planet, Space Sci., 25:499,
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