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Feedback systems with right half-plane poles and zeros may have inherently
very poor sensitivity properties. In the design procedure presented, the
closed-loop polgs are resgr[cted to two possible regions in the complex plane.
One region is R";SS -0, 0>0 . A second is the interior and boundary of
acircle in the\;eft half-plane. The design is optimum in the sense of maxi-
mizing the gain factor uncertainty, for which the restriction is satisfied.

The design procedure is very simple to execute and results in loop transmission
poles and zeros which are symmetrical with respect to the boundary of the
forbidden region. The closed-loop poles lie entirely on the boundary, over

the range of gain uncertainty.
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1. INTRODUCTION

Consider the constrained part (plant) of a linear time-invariant feed-
back system, which because of parameter uncertainty, has a transfer function
known only to be a member of a set ﬂp = {P(s)} . For a large class of
minimum-phase (no zeros in the interior of the right half complex plane)

é? sets, any narrow but nonzero frequency-domain performance tolerances
can be theoretically achieved in a two-degree-of-freedom feedback structure
(Horowitz 1963) even for very large but bounded parameter uncertainty.
f? may contain elements with uncertain right half-plane (denoted by rhp)
poles. A synthesis procedure exists, permitting optimum design to specific-
ations (Horowitz and Sidi 1972). However if f? includes nonminimum-phase
elements (i.e. with rhp zeros), then a given set of performance tolerances
may not be theoretically achievable Y re 6?. It has been shown how to
check if a given specification set is achievable. Also, for a given non-
minimum-phase but stable 67 set, the problem may be made solvable if it is
permitted to decrease sufficiently the system bandwidth (Horowitz and Sidi
1978). Of course, the latter solution may be extremely undesirable, but is
unavoidable in the linear time invariant framework. For example, if 3
aPe é) with a zero at 0.1, the closed-loop bandwidth may have to be a
small fraction of 0.1 rps if ‘6> is a 'large' set, in order to aéhieve
reasonable tolerances in the resulting very small system bandwidth. |If 69
includes both nonminimum-phase (denoted by nmp) and unstable elements, then

even the latter is in general unachievable. The sensitivity reduction T —

biliti f . h White Section
capabilities of the feedback loop are severely restricted, no matter how Buff Section [J
small the bandwidth. ? o

This paper considers the nmp unstable .6) problem from a somewhat
different viewpoint. What is the maximum tolerable plant gain (k) AVAILABILTY CODES

._and/or_SPECIAL
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uncertainty o = k __/k

o’ atn * such that the closed-loop poles are restricted

to a certain region in the complex plane? One such region considered is
éze s<-0 , 0>0 . Another is the interior and boundary of a circle
centered at -b with radius a , b>a>0 . What are the trade-offs between

G s b, a and » % ? A very simple synthesis procedure is presented for

ma
implementing the above. All transfer functions are assumed finite rational
functions. Note that pure time-delays can be so approximated as accurately
as desired, over any finite frequency range. Since pole-zero uncertainty is

not considered, it is assumed that there are no hidden cancellations of rhp

poles and zeros in any P € é? 5

1.1 One and two-degree-of-freedom structures

A typical tdf (two-degree-of-freedom) structure is shown in Fig. 1. The
system transfer function T(s) = F TT%ET , L=PG and the sensitivity function

oF w AL

p™3P/F = TaL » e independently realizable to a large extent (Horowitz and
Sidi 1972), because two independent functions F , G in L=GP are avail-
able to the designer. In the odf (one degree of freedom) system, F=1 , so
T = (1-S) . In the minimum-phase (denoted by mp) system, |S| can at least
be designed as small as desired over any finite w range, making TE1 in
this range, i.e. forcing T to have a large bandwidth. !n fact, it has been

shown that in any practical design |S|>1 in an important frequency range

of T(jw) (Horowitz 1963).

It will be seen that in nmp unstable systems, |S| cannot in general be
made small over any desired w range. In fact, |S| tends to be embarrasingly
large in the range of the system bandwidth. In the tdf structure, one can at
least use F to achieve reasonable nominal lT(jw)] over any desired frequency

range, i.e. at a specific nominal set of plant parameter values. However, in

- m———- - o e - -
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the odf system where T = (1-S) , not only does one have large |S| , but also
large |T| Vv PE A;’. The design challenge is to do the best possible for S .
In the odf structure the design is then complete, while in the tdf there is
available F to achieve the desired nomimal T(s) . Obviously, the tdf
structure is preferable and only requires that any two independent functions

of command input r and output ¢ in Fig. 1 be measurable (Horowitz 1963).

1.1.1 Constraints on S(s) and T(s)

Since rhp poles and zeros should not be cancelled for well-known reasons,
the rhp zeros of P must appear as zeros of T . Most important, the rhp
poles and zeros of P must appear as such in L(s) . Only these constraints
need to be explicitly recognized in our approach. The other constraints (rhp

poles of P as zeros of S , etc.) are automatically included.

1.2 Limitations due to rhp poles and zeros

Qualitatively, the limitations on the feedback capabilities of such
systems can be explained as follows. |If P(s) has a zero at b>0 , then
the crossover frequency w, (defined by lL(ij)I =1 ) in any practical design
must be <ab , a<1 (Horowitz 1963) — assuming that |[L(jw)|>1 for
w<w, . The latter is, of course, essential to achieve the benefits of feed-
back in a range w< we On the other hand, if P has a pole at m>0 , it
is necessary that we > Bfm , B8>1 . How can these two constraints be satisfied
if both exist in P with m>b , and especially if there are several rhp poles
and zeros? It will be seen that a stable design with closed loop poles in the
restricted regions of Sec. 1.1 always exists over a finite range of gain un-
certainty. The system overcomes the problem by having several crossover
frequencies, at least as many as rhp poles. The need for this can be seen also

from the Nyquist criterion, which requires as many negative encirclements of -1




k=

as rhp poles. The locus of L(jw) then tends to be tightly wound around -1,
with resulting very small |1+L(jw)! and very large sensitivity function

$(ju) = [1+L(Jo)]"" | over wide & intervals.

Consider a typical mp stable practical L(s) » ks X with x32 as
s >®  and |L(jw)|>1 in [O,wc) . The Nyquist mapping of L(s) (with s
encircling the rhp) must encircle -m (m>0) positively, i.e. in same sense
as the s encirclement, usually taken as clockwise with ¢ :0 >« . |In fact,
it is impossible for such L(s) to have a negative encirclement, as seen from
the familiar Nyquist formula: Number of encirclements ?1=Nz -Np . Since N
the number of rhp poles of L) is 0, N==Nz the number of rhp zeros of L, which
must be a non-negative number. But when Np >0 , then negative encirclements
are mandatory and are achievable because the rhp poles provide the means, by
their contribution of effective phase lead accompanied by amplitude decrease.
But one must wait, as w goes from 0 to », for the rhp pole corner frequency
before the combination of phase and amplitude is available for a negative
encirclement. That is why in open-loop unstable systems, the crossover
frequency W, must exceed some minimum value (Horowitz 1963). In the absence
of rhp zeros of L , the negative encirclement can be done in any w range
exceeding the minimum, so any desired benefits of feedback are achievable
(Horowitz and Sidi 1972), as with mp stable plants. However, a rhp zero corner
frequency, by its combination of amplitude increase and effective phase lag,
forces the completion of the negative encirclement before the rhp zero effect
is too strong — which is associated with a maximum value for w. Thus, in
a general sense, lhp poles and zeros tend to give positive encirclements while
rhp poles and zeros give negative encirclements. However, lhp poles and zeros
can be effectively cancelled and thus easily shifted, postponing the encircle-

ment (where |L| <1 ) to as high an w range as desired. Such cancellation

P Y

S —— = N = il P ]
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is impossible for rhp poles and zeros. The -1 encirclements and consequent
-1

small |S| = |1+L] must be taken in the range of occurrence of the rhp poles
and zeros. In fact, as will be seen, it may even be necessary to add more of
them.

This discussion is, of course, highly qualitative and it is challenging to

make it quantitative. The technique presented here does so to a certain extent.

It is noted that contributions to this problem have aiso been made by (Chang
1961, Brasch and Pearson 1970, Shaw 1971, Bongiorno and Yonla 1977). All of

these neglect explicit plant uncertainty.

2. SOME RESULTS FROM THE BLENDING PROBLEM

This paper uses some results from the following '"blending' problem
(Horowitz and Gera 1978): There are given two nmp uncertain plants P 6_691 >
P2 € éjz , with the same input but whose outputs can be separately measured and

processed by G1 ; G2 respectively. Can fixed rational function G1(s) -

Gz(s) be found such that the sum P,G, +P,G, is mp over fl sz ?
. P262 a
Equivalently, find H such that 1455~ = 14PH (with P=P, /Py H=GZ/GI)

11

has no rhp zeros for any P €f1 sz :
If there is uncertainty only in the gain factor k of P (none in its

poles and zeros), then the left half-plane (denoted by lhp) poles and zeros of

P can be cancelled out by H . Those in the rhp should not, of course, be so

eliminated. The optimum PH (defined as that which maximizes D'-kmax/kmin )
has the form PH = kKo(s)@(-s) , ©(s) monic, so that the poles and zeros of

PH are symmetrical with respect to the jw axis. Also, PH has an equal

number of poles and zeros, which is acceptable because H = GzlG‘ . For

s -




==

k € [k k) the root loci of 1+PH = 1+ko(s)p(-s) , all lie on the ju

min’ max

axis and cover it completely (see Fig. 2). There is a pair of zeros of

1+PH at the origin either at kmin or at kmax and similarly a pair at

tje . Both at k.. ~and at e the other zeros of (1+PH) are in
2)2

coincident pairs on the jw axis, i.e. have factors (52-+w.

; , as in

Fig. 2. A method was given for finding the optimum PH (which maximizes
kmax/kmin = p ), but a much better method is now presented. The directions

are first given together with a numerical example, followed by its derivation.

2.1 Directions for finding optimum PH

Step 1. Only the rhp poles ( 6p in number) and zeros ( 62 in number)
of P are explicitly displayed here. |If the system is to be type m, let P
have m poles at the origin included in the above. The optimum W has
26p-+62 -2 zeros and 6p-+262 -2 poles, (not counting those which cancel the
lhp poles and zeros of P ). Hence, PH has a total 2(6p'*6Z =1) of poles and
of zeros, symmetrical with respect to the jw axis, viz PH = kKop(s)o(-s) .
Accordingly, choose @(s) with only lhp poles and zeros of the required
generality, i.e. with Gp- 1 free (unspecified as yet) zeros, §, -1 free
poles and the constrained mirror image of the Gp rhp poles and the §

Z

zeros of P .

k(s-1) (s-4)
Example. P = h S om@ oy 6 =l let
X € (5-2) (5-3) (SZ_S+“) as 2 P SO le
3 2
‘D(S) - zg:j) & (S"")(S"'l’) (S +As +BS+C) (‘)

(s+2) (s+3) (s2+s+4) (s+a)

Step 2. Expand n(s) and d(s) of (1) as follows, with ei(s) ! oi(s)

even and odd monic polynomials, respectively.

— - S
T ————— = il
e Yo . S
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n(s) = on(S) + cnen(s) = [sS + 53(B-+5A-+h) + s(5C +4B)]

(2a)
+ (A+5)[sb -5 (C'+235’bA) - ;f;]
d(s) = o4(s) + cyey(s) = [s® + s3(6a+15) + s(26a+24)]
(2b)

+ (a+6)[sh + sz»il%ﬁi%%él + %é%J

| f 62*-6p- 1 is even, the expressions each have the form ei(s)-+cioi(s)

with degree of e = (degree of oi) +1 .

Step 3. Make on(s) = od(s) , en(s) = ed(s) by equating coefficients,

giving precisely 62-+6p -2 equations in as many unknowns. Thus, set

B+5A+L4 =6a+15 , SC+A4B = 26a+24 ,

C-+£E§+AA o 15:;226 ’ ;f; = %%% » Wwith solutions

a= .66006 , C = 4.14477 , A =1.97019 , B = 5.10942 ,

s3+AsZ+Bs+C = (s+1.00133) (s + .96886s + 4.13928)
k 2 c \2
_ _max _ A+5 " i o
Step 4. p = k- = (a+ ) (c ) of (2a,b) 1.0953

(=N

Step 5. From (2a,b), Step 4 gave 2 in PH = kK n(s)n(-s) Since P

d d(s)d(-s
is known, H can be found. The lhp poles and zeros of P , if any, must be
added as zeros and poles of H , respectively. The root loci of 1+PH are

shown in Fig. 2.

Step 6. The zeros of 1+PH at kmin
from o, , e, of Step 2. Thus, o(s) = s(sh + 18.96036s2 + 41.16155)
= s(s2 + 2.50076)(52 + 16.45960) , so at kmin 1+PH has zeros at

+j/2.50076 , +j/16.5596 . Since e(s) = (s2+4.90561) (s + .48487) , at

and kmax are available, if desired,
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kmax 14+PH has zeros at +j/k.90561 , +j/.LBLBT .

Derivation
The derivation of the above procedure starts with the results from

(Horowitz and Gera 1978) stated in second paragraph of Sec. 2, giving

PH = kK 5-5837(-_'—3- and Num. (1+PH) = d(s)d(-s) + kKn(s)n(-s) = (1 +Kk)ﬂ(sz+w§)
with m? 20 for k€ [kmin’kmax] . However, at kmin , say

d(s)s(-s) + k . Kn(s)n(-s) = KsZn(s?+u?)? (3a)
while at kmax s say

d(s)d(-s) + kmaxKn(s)n(-s) = Kzﬂ(sz'+9?)2 (3b)

Actually 52 may appear as a factor in (3b) rather than in (3a) but it is not

K, 14k __ K

important which. K, , K, are used in (3a,b) instead of 1+k i

min
because one of the latter must be zero, at which point a pair of zeros of

14PH is at *j» . Eliminating in turn d(s)d(-s) and n(s)n(-s) from (3a,b)

give the pair of equations (with Q? L w% >0 ).
5 e R NS WY
(kmax kmin)Kn(s)n(-s) = Kzn(s +Qi) Kys n(s -*wi) (L4a)
a 2..0.3 3,2 3
(km;n-kmax)Kd(s)d(-s) = kminKzﬂ(s mi) Knax1S (s +wi) (4b)
Let n(s) = n(s+z.) , d(s) = n(s+p.)
! ' (5a,b)
with ﬁe(zi) ,Re(pi) >0 .
Replace s2 by w so that (ba,b) become
Y‘w(w- z?) = v(w+9?)2 - p%ww(w+w%)2
yzw(w-o?) = ‘n(w+§2?)2 - p%ww(w#-w?)z (6a-d)
y, (kmax"kmin)K Y, (kmin"kmax)K
! Ky o kninK2

- k . S
. 4 A




2
- 2 _ _max i
5) g gy = (6e-g)

i
L KZ min 2 16}

Each of (6a,b) has precisely the form of the optimum solution for active

RC synthesis by means of ''negative impedance conversion (NIC)" (Horowitz 1959).

There the problem is to write any given real coefficient polynomial y(w) , as
the difference of two polynomials A(w) , B(w) where zeros are all negative
real; Yp(w) = A(w) - aB(w) . The minus o can be implemented by means of a
""negative impedance converter''. Of the infinitude of A(w) , B(w) available
for the task, it is desired to choose that which minimized the sensitivity of
v(jw) to variations in o , SZ(jw) = %%é% . It was shown that the unique
optimum A(w) , B(w) have precisely the form on the right of (6a,b). Thus
n(s)n(-s) and d(s)d(-s) with w==s2 have identical '"optimum NIC

decomposition'' polynomials, differing only in the gain factors.

(Calahan 1960) found a very elegant technique for deriving the optimum
NIC decomposition polynomials A(w) , B(w) from a given ¢(w) . Start with
viw) = n(w-r?) = A(w) - aB(w) and write N(u) = n(u-fri) with -r. the

left half-plane root of r? . Expand N(u) into even and odd polynomials.

N(u) = ey(u) + ON(u) = n(u2+ai) + puw(u2+bi) » a;,b; >0, (7a)

because N(u) is Hurwitz (Weinberg 1962). Finally, recover y(u) by

writing

n
b(w) = [eh(u) - oAW1, = TT(wa)?2 = pPw(wsb,)? (70)
uT=w 1

with the right side the desired optimum NIC decomposition.

It follows from the above that if w1(w) = ﬂ(W"Z%) of (5a), wz(w) =
m(w-= p?) of (5b), have the identical optimum NIC decomposition monic poly-

nomials, their corresponding N1(u) i Nz(u) in the Calahan technique also

e B
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have identical even and odd monic decomposition polynomials. The n(s) , d(s)
of (5a,b) and Steps 1,2 of the '"Directions' (Egs. 1,2) are precisely the Ni
in the above of n(s)n{(-s) , df{s)d(-s) . Hence, their respective monic even
and odd decompositions must be identical. In the Calahan technique, the o

cf N of (7a) is squared to recover ¢ in (7b). Hence from (6g),

p =k __/k

. . 1 b+ "
g Pt 1S obtained by means of Step 4 of the ''Directions''. Note also

that the even-odd polynomial decomposition of n(s) (or of d(s) ), gives the

roots of 14PH at k k . The even polynomial gives one and the odd

min * “max

gives the other, as illustrated in Step 6 above.

3. IMPLEMENTATION OF OPTIMUM BLENDING SOLUTION

In the blending problem, the boundary of the undesirable region is the
jw axis. In the control problem, it is realistic to use as boundary the
vertical line s=-g , o0>0 , especially as this permits exploitation of
the optimum blending results. Clearly, it is only necessary to shift the ju
axis o to the left and shift it back at the end. This is illustrated by

Example 2.

3.1 Example 2

P = : :—l) and the system is to be Type 1, so the pole at the origin is
counted as a constrained right half plane pole. Replace s by wv+o giving

- dv=(1+0)]
P(v) v=sTTv=(3+5)] 2nd then follow the steps of Sec. 2.1. Thus,

Step 1: n(v) = (v#14g) (v+z) , d(v) = (v+o) (v+2+0)

Step 2: n(v) = [vz + z2(140)]1 + (1+g+2)v

d(v) = [v2 + g(2+9)] + (2420)v
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Steps 3,4: 2z(1+0) = o(2+0)

x

Kmax 2 f 2+20 )2_ 2(1+O)2

min 1+o+z 202+100+1
[v® = (14032} (v% - 2°)

and PH(v) = kK
(v2 -02)[v2 -(2+0)2]

_ kK(s=1) (s+20+1) (s+0-2) (s+o+2)
i s(s+20) (s-2) (s+2+20)

with root loci of 14PH qualitatively shown in Fig. 3 for the case o=1 ,

Next replace v by s+5 , giving PH(s)

k
max

for which z2=1.5 |, ” =p = 1.3061 . A€t (kK)min= -1 there is a pair of
min

roots at -1 and another at =1# jo . At (kK)max= -1.3061 , there is a double
pair at -1+ij/3 (i.e. at v = +j/g(2+0) or s = -1+ j/a(2+3) ). Note that

for kelk . Kk ] , the system poles lie on the lire o=-1 , but the system
min’ max

is stable for the larger k range of 1.453.

3.2 Far-off poles

In the optimum blending solution, as noted PH is finite as s + = ,
which is acceptable. But it is not acceptable in the control problem where
one should ensure H >0 as s - o ., In the above example it is therefore
necessary to add at least two poles to H . |If these are far-off, they will
have little effect on the previous ''optimum'' results. For example, if they
are inserted quite close in at 29, -31 the symmetry is preserved but p de-
creases to 1.164 for the loci to lie on the line s=-1 . |If the far-off
poles are inserted at 99, -101 p=13.06/10.35=1.26 for the poles ecn s=-1 ,
and 1.41 for stability. The root loci are sketched in Fig. 4a. The further
off the far-off poles the closer p is to the supremum of 1.306. For some
range of k the complex pole damping factors are quite small. This can be
remedied by using larger o at the expense of smaller p . Another method

is presented in Sec. 4.
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The root loci for the '"optimum'' design for the same problem by (Bongiorno
and Youla 1977) is shown in Fig. 4b. Here p(stability) is only 1.18 and
p=1.10 for the poles to be left of the line s=-.4 . |In addition their
compensation =218 as s »> «» , which is of course impractical, with a far-off
pole at -203. The mandatory addition of at least one more pole would
significantly reduce p wunless it is extremely far-off. Note that this
design technique has no provision for controlling the system poles over some

uncertainty range, and the design procedure is much more complicated.

3.2 The far-off pole problem

In Example 2 of Sec. 3.1, the far-off pole problem was easily solved, but

the same approach may completely spoil the design in other cases, as in

Example 3, where P(s) = Eé%%EL . Following Sec. 3.1, n(v) = v+2+¢ ,

2+0

2
1;;;) . Note how p decreases with ¢ , which

d(v) = v+1+0 , so D™ (
is the unsurprising result in general,whereby pole damping and |S| peaking

G(v) = 51!12:21 = K(:: for o=1 and

is traded against o

v+i+g 2
G(s) =I<(§$%) . Suppose far-off poles are added as in Sec. 3.1, say at

=Py s “Py s then it is easily found that the closed-loop system is unstable
v P A Py >0 for K positive or negative and of any magnitude. But it
is easy to insert lhp far-off poles and have a stable system over a significant
k range, e,g,.one of 1.85 for a pair of poles at -30 and larger range if they
are further off. On the other hand, the latter approach may spoil the design
as in

Example 4, where P(s) = E%%E%% . Following Sec. 3.1, G(s) = E%SE%% if o=1

But the addition of even one lhp pole, no matter how far-off, gives an unstable

system. However a pair of far-off poles at Py s~ may be inserted as in

P2

Example 2, giving a stable design.
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The above examples reveal the importance of understanding the phenomenon

and of finding a simple technique to determine how to proceed with the
additional poles needed to ensure a practical! design. To understand it, simply
make an approximate qualitative Nyquist sketch of the 'optimum' but impractical
GP(jw) as is done in Figs. 5a-c for Examples 2-4. It is known, of course,
that the 'optimum' design is stable so the number of counterclockwise -1
encirclements must equal the number of rhp poles of GP . This makes it very
easy to make the qualitative Nyquist sketches, as one only needs to know
whether to begin (at GP(0) ) to the left or the right of -1. (In Fig. 5a

the pole at the origin is counted in the right half-plane and the rhp boundary
is indented to its left as shown in the insert in Fig. 5a, for the sake of
consistency.) In Figs. 5a,c the Nyquist locus terminates at the left of -1,

so lhp poles, which cause GP + 0 as w -+ » and which contribute phase lag,
must modify the locus as shown by the dashed lines=upsetting the encirclement
count, no matter how far-off the poles. In Fig. 5b the dashed modification is
all right providing the lhp poles are sufficiently far-off. However, in

Figs. S5a,c an additional rhp pole properly placed gives one more negative half
encirclement, as shown by the dotted lines, so that the point GP(x) is at the

right of -1, permitting thereafter more far-off lhp poles, if desired.

Thus, the simple rule is that the number of rhp poles must be such that
GP(») is at the right of =1. Only then can far-off lhp poles be properly
added. They can then be added in a manner very similar to open-loop stable
designs — so as to have little effect on the gain and phase margins in the
crossover regions. The plural is necessary here because there are as many

crossovers as rhp poles.

If our 'optimum' design places GP(») to the left of -1 there is no

choice but to insert an odd number of additional rhp poles (or remove an odd
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number if possible), before any lhp far-off poles can be added. Such additional
rhp poles can always be inserted sufficiently far-off to have as-small-as-

desired effect on the p =k _ /k

- igi h ical imum'
woxt Frin of the original 'impractical opti

design. |f one wishes, they can be put closer in, considered as part of P(s)
and an 'impractical optimum design' found for this new P(s) , whose PG(=) s
now on the right of -1, permitting any finite number of additional lhp poles,
if properly placed. However, such added rhp poles always decrease the p of
the previous optimum design, the amount of decrease being smaller the further
off it is. Note that in Example 2 of Sec. 2.1, a symmetrical pole pair was
satisfactory. Additional lhp far-off poles may be then added, which is not

possible without such or other preliminary change in the rhp.

3.3 The problem of highly underaamped closed-loop poles

In the design philosophy of this section, the optimum design maximizes

o=k __/k for which all the closed-loop poles lie in f&; s<-0 . Inthis

max’ “min
optimum design, there is a permissible k value for a system pole at each
point on the line s=-g from jO0 to j» , so that for some k range one or
more closed loop complex pole pairs will be very highly underdamped — at the
higher natural frequencies, of course. This may be intolerable. One remedy
is to decrease the permissible k range. One might consider insertion of a
complex pole or zero pair suitably on the linéﬁ?: =-g , in order to focibly

curtail the root loci of 1+GP . Thus in Example 3 of Sec. 3.2 with p=1,

-kk(v? - 9)
(v? - ) (v* + 50)
to some extent. It is easily found that for kK € [22.2,29.65] with

consider use of PG(v) = , thereby sacrificing '""optimality"

p=1.336 , the roots are on s=-1 from =-1+j0 to =-14j4.88 with a
minimum damping factor 5 =.2 . However, if the 'optimum' design is used,

Cmin’ .48 for the same value of p . Of course in the ''sub-optimum'' design
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two relatively close-in additional poles have been obtained, relieving consider-

ably or completely the far-off pole problem.

Highly underdamped complex poles in the p range can also be avoided by
using circles, as in Sec. 4, instead of vertical lines as the boundary of the
forbidden region. However, no matter how one squirms, the sensitivity function
S;(jw) = (H-L)-1 tedds to be large in the control bandwidth range, because of
the need, noted in Sec. 1.2, of L(jw) to negatively encircle -1 a sufficient

number of times.

3.4 Elements in the Feedback Return Path

In Fig. 1, the return path transmission from C to U is -1, implying
the sensor has infinite bandwidth with value 1. Its actual transfer function
M(s) is easily accommodated in the design procedure which emerges with F(s) ,
G(s) in order to realize a T(s) , S(s) pair. Suppose M(s) is mp and

stable. Then the same T , S are achieved by using F* , G* with

FGP_ _ _FG#p
T+GP ~ T+ G#PN

F* = FG/G* = FM . |If M(s) has any rhp poles and/or zeros, they must be

T = 3 5-1 = (14GP) = (1 +G*PM) , Hence, set G*=G/M ,
considered in the design procedure by including them explicitly in the loop
transmission, exactly as those of P(s) . It must also be recognized that the
rhp poles of M must appear as zeros of T(s) . Hence, if T(s) is explicitly
formulated, these rhp poles must be included, as well as the rhp zeros of

P(s) . In our design procedure there is no explicit formulation of S(s) .

The constraints on S(s) due to the rhp poles and zeros of P , M are
automatically handled by the design procedure, so long as they are explicitly

included in L(s) .

T
- ) e,
caeboliu
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L, CIRCLES AS LOCI OF CLOSED-LOOP POLES

The interior of a circle in the lhp instead of the region ézg s<-o ,
may be used as the acceptable region for the closed-loop poles, over some
finite plant gain factor range. This gives an optimum design in which all the
poles lie on the circle boundary. The design technique is just as simple as

in Sec. 3. The transformation

o Sth-r _ b-r-w(b+r)
s+b+r * S w-1 (8a,b)

maps the w-rhp plane into the interior of the circle of radius r , centered
at -b in the s plane. Hence to design, one first maps the rhp poles and
zeros of P(s) into the w plane, designs in the w plane in the manner of
the blending problem of Sec. 3, and then maps back into the s plane. This

is illustrated by several examples.

Example 3 (of Sec. 3.2)

P = k(::f) and say r=1 , b=2 so Pw = k'w%::é6) and obviously
2. 5 b
L, = -k'K, -Q'E—'-l"l which becomes L (s) = SKK(s 2)(5";'75) with p (Ag-)2 -
(w© - .25) (s-l)(s+-§) '

1.44 fot the roots to lie on the circle. Note that in Sec. 3.2 p = (%)2 =
2.25>1.44 . However, here the closed-loop poles are well damped for a larger
range — from kK=10/21 at which both poles are on the negative real axis to
kK=1 at which one root reaches =-» ., It follows from the discussion in

Sec. 3.2 that thp far-off poles may be added, with no rhp modification needed.

Example 2 (Sec. 3.1) with b=2 , r=1

k(s=1 k'(w=-.5)
P = - becomes P =
. (w=3) (- 6)

write n(w) = (w+.5)(whm) = (w2+.5m) + (S+mw , d(w) = (w%)(w.e) -

In the manner of Sec. 3.1

(w2-0.2) 4+ .933w . Hence, .5m=.2 and p = [-933/(.5+m)]2 = 1.075 for the

——— — £
~H- 2 niitle el e el e .
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roots to lie on the circle. The compensation Gw has zeros at +.4 which
map in the s plane (Eq. 8b) as zeros of G(s) at 1/3, -11/7. The far-off
pole situation is unaltered, i.e. it is necessary to add at least one more

rhp pole. To do this, let Pw = ‘k'(w"-S)
(w '3) (w=.6)(w=-A)

Sec. 3.1, n(w) = (w+.5)(w2+Mw+N) , d(w) = (w+-;.-)(w+.6)(w+A) . Expanding

so in the procedure of

each into even and odd polynomials and equating coefficients etc., gives
(for A=100 ) M=104.134 , N=41.466 . Transforming back to the s plane,

gives
-kK(s-1) (s +%) (s +2.9809) (s +3.0195) (s +1.5711) (s - .33167)
L(s) = o T 5 (o-2) (s 7 7.75) (5 +3.0202) (5 + 2.9802)

with the root loci of 1+LS shown in Fig. 6a. The new value of p is almost
exactly the same as the previous, because A was taken so large. It is now

possible to add lhp far-off poles to L(s) . Note the reduction in p but in
return the system poles are very well damped over this range. It is found that

[S(jw)| is 15.9db (for kK=1 ), compared to a peak value of 24.6db in the

max

optimum (Bongiorno and Youla 1977) design. Thus, this approach gives the

designer a flexible means of trade-off between p and |S(jm)|max .

Example 5 with b=7 , r=6

k(s-2

il s(s-1

and a more conservative circle is used (Fig. 6b). Eqs. (8a,b)

become w = :::3 O 1&%%! so the zero and poles of P(s) map into .2,

1/13, 1/7 in the w plane. A rhp pole at A is added to P(s) , to handle

the far-off pole problem. Following the technique of Sec. 3.1,

n(s) = (w+.2) (w? +Mu+B)
=D e w(Ba M) + (24m) (2R
d(s) = (w3) (w+ ) (weh)

w3+ w(.011+ ,2198A) + (.2198+A) (wz*—‘.i?';r—mu)

M_-
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Let B+.2M = .011+.22A %--‘-‘2’—5% , giving (for A=100 ) B=4.7398 ,

M=86.246 , p = (= Zézgg-A) = 1.344 for the loci to remain on the circle.
Mapping back into the s-plane gives a compensation network G(s) with zeros
at -12.8624, -13.1409, -1.6255, -.3017, -3 and poles at -13.1212, -12.8812,
-1.85714, -2.5. Left half-plane far-off poles may now be added. The root loci

of 1+L are sketched in Fig. 6b.

5. INTERLACING PROPERTY OF RHP REAL POLES AND ZEROS

It is noted that in all the examples, the loop transmission L(s) which

ZEroS) phetween any two (poles) on the positive

emerged had an even number of (pol 3 S

real axis. This necessary and sufficient condition for system design was
previously noted by (Youlaetal 1974). 1t isnot explicitly needed inour design
approach as it automatically emerges. Nevertheless, it is worth noting and
presenting herewith a very simple proof of its necessity. |Its sufficiency is

obvious from the constructive nature of the design technique.

_ KN(s)f(s)
Let L —D&W , SO that

Num. (14L) = Dg + KNf = @(s) , (9)
where @(s) and the monic polynomials D , N , have no positive real zeros
and the monic polynomials f , g have only positive real zeros. Consider
any two consecutive zeros of g(s) , say at Py » P >0 . From (9),

o(p;) = KNf(p;) and w(pj) = KNf(pj) . Since N(s) has no positive real
zeros and K is a constant, the difference in signs of w(pi) and w(pj)
is precisely equal to the difference in signs of f(pi) % f(pj) . There is
an alteration in the latter iff f(s) has an odd number of zeros between

Pi » Py But since ¢(s) has no positive real zeros, there can be no
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difference in signs of w(pi) and w(pj) . Hence, f(s) must have an even
number of zeros between p, , Py » A similar condition for the zeros of
g(s) is proven in the same manner.

Suppose L(s) has an excess e, >0 of poles over zeros, so that as

L
s >» , @(s) > Dg(s) >0 because D , g and in this case ¢ , are monic
polynomials. Consider the largest positive real zero of f(s) say at z ,

so D(z)g(z) = @(z) and the sign of KNf is the same for s real>z .

Let g(s) have m positive zeros in [z,») with the largest at p . Hence,
sgn Dg(s) (for s real>p ) = (-1)™ sgn D(z)g(z) = (-1)™ sgn ©(z) . But

sgn Dg(s) = sign @(s) >0 for s>p because Dg - @ as s + o and o(s)

is monic. Hence m must be even.

6. CONCLUSIONS

A very simple, straightforward design procedure has been presented for
feedback systems with constrained rhp poles and zeros. The inherent
limitations in the sensitivity reduction properties, which are difficult to
cope with in the frequency domain, are handled by a design which restricts
the closed-loop poles to certain specific regions in the complex plane. The
design is optimum in the sense of giving the maximum gain-factor uncertainty
for which such restrictions are satisfied. The most significant shortcoming
of the design technique is that uncertainty in plant poles and zeros is not

considered.

—1.............“
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Symbols
lhp left half-plane
mp minimum-phase
nmp nonminimum=-phase
odf one-degree-of-freedom
rhp right half-plane
tdf two-degree-of-freedom
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Figure Titles

Two-degree-of-freedom structure

L=PG , T(s) = %%%% = F T%t- ( F=1 in one-degree-of-freedom structure)

Example 1 from Blending Problem — Root Loci of 1+4L=0 .

Lo o10%%(s2 - 1) (s2 - 16) (2 - (.0276)2) (s £ 1.8115 +5.902)
(s2-8) (s2-9) (s - (0.239)%) (s £ 5 + 1)

y - kis=1) (s - .5)(s+2.5)(s+3)

Example 2 — Root Loci of 2
s(s€ - 4) (s+4)

Comparisons of designs; root loci of 1+L=0 .

(a) L = —kK(s=-.5)(s=1)(s +2.5)(s+3)
s(s? - 1) (s+h) (s - 99) (s + 101)

(b) L = ~k(s=1) (21853 + 393857 - 22005 - 1000)
s(s-2) (s3 - 18552 - 37595 - 50)

Qualitative Nyquist sketches (a) Example 2 (b) Ex. 3 (c) Ex. 4.
Dashed lines show effect of lhp far-off poles. Dotted lines in

(a,c) show effect of additional rhp pole.

Root loci for designs with roots on circle

(a) P = k(S'l)

S(s-2) # centre at -2, radius 1.

k(s-2
(RY R 552-1;

; centre at -7, radius 6.
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[}
4
4
K. 913
!
.8
Kel
/-l\\
“-/
\-
|
Kel
)
4 Ke.2
Ke.9I3 i 2 3 4 D B e
Fig. 2. Example 1 from Blending Problem — Root Loci of 1+L=0 .

10"k (52 - 1) (s - 16) (s - (.0276)%) (s? + 1.8115 + 5.902)
(s2-4)(s2-9)(s? - (0.239)%) (s? 2 5 + )

L

- o e — oS
g~ e a—— il




1.453

1.306
~

P v o

k(s-1) (s = .5) (s +2.5) (s+3)
s(s2 - 4) (s+b)

-

1

Example 2 — Root Loci of

Fig. 3.

(05 - SESLE - ;5581 - ¢5) (2-5)s

(0001 - scozZ - Nwwmmm + mmwzv (1=-5)%=

(LOL +5) (66~ 5) (4+s) (4 - vam

=1

()

(€+s) (S'Z+s)(1-5) (5" -s)mi- R

* 0=7+! 30 90| 3004 fsubisap ;0 suosisedwo) ‘h ‘bBigJ

? 3
-

ol o
+

AN\

Ln
-

N

&

1.08

1.02
9

qu
95
(o)

ke




(a) c

(b)

Fig. 5. Qualitative Nyquist sketches

Dashed lines show effect of lhp far-off poles. Dotted lines |

(a) Example 2 (b) Ex. 3 (c) Ex. &4
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(a,c) show effect of additional rhp pole.
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Fig. 6. Root loci for designs with roots on circle
(a) P = kis=1) . centre at -2, radius |
s(s-2) ' | j
(b) P = lets=2) ; centre at -7, radius 6.
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