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1. INTRODUCTION

Let {Xi, i=21} be a sequence of independent and identically distri-
buted random variables (i.i.d.r.v.) with a distribution function (df) F,
defined on (- »,»). It is assumed that F has a finite (unknown) lower

end-point 6, that is
(1.1) - o< 0 = sup{x: F(x) =0} < »

and that F(x) is continuous and monotonic in x e (6, 6 +§), for some

§>0. A natural estimator of © is the sample minimum i.e.,
(1.2) Bn = mm{xl,.'..,xn} = X“’1 (n21) ,

where Xn’1 S sxn’n stand for the ordered variables corresponding to
xl,...,xn; n21. 6:\ is a (strongly) consistent estimator of 6, but it

is not an unbiased one; the nature of its bias depends on the order of ter-
minal contact of F (at 6). It may therefore be appealing to use the
jackknife estimator corresponding to Gn.

Under quite general regularity conditions (viz., [1,2,4]), jackknifing
meets three objectives: (a) | Bias reduction. 1f B;; be the jackknife esti-
mator then ns(e; -0) 0 as n+o . (b) Asymptotic normality. If
n!’(’e\ A -0) is asymptotically normal, then the same limit law holds for

n”(e; -0). (c) The Tukey estimator v:

[defined by (2.5)] is a (strongly)
consistent estimator of the variance of n”(e; -0).
Since the asymptotic distributions of sample extrema are non-normal

and, depending on the order of terminal contact, the bias of 8 , s o™
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for some 0<asl, the effectiveness of jackknifing in regard to (a) and
(b) remains to be examined carefully. Further, in this case, vtzl does
not converge (stochastically). Along with the preliminary notions, expres-
sions for 9; and vtzl are considered in jection 2. The main results are
studied in Section 3. Section 4 deals with a modification of jackknifing
appropriate for the case of the bias of O(n-a) for some a<1l. Some

general remarks are made in the concluding section,

2. PRELIMINARY NOTIONS

We assume that for some non-negative integer m, F(x) has continuous
jth derivative F)(x)[= €9V (x)] for all xe (8, 6+5), §>0, 1sj<
m+1. We denote the (right hand) derivatives at 68 by FU)(e) = £0 g,
1sjsm+1 and Ffo) (8) = o0, ffo) 0 = f*(e). Then, a terminal contact

of order m is defined by
2.1) F3 @) =0, 0sjsm and 0<£™(p) <= .
Also, for the study of the bias, we assume that
(2.2) Vo = r|x|adF(x) <o for some a >0 .
0
To define 9;, we let for each i: 1<i<n,
(2.3) 8% _ =min{x . X}, 8 .=nb -(n-1)8
i n-1 ) Bl 1 ot U0 ALl LT ) n n-l °

ai
Then, en-l is equal to xﬂ,1 or xn,z according as xi is =2 or = xn.l.

1sisn. Also,
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The Tukey estimator VIZ‘, defined by

2 1 n 2 *, 2 n ai *y 2
§2-5) Yn T D) Zi=1('en,i i en) o (n-1)21=1 (Gn-l ¥ en) ’
reduces in our case to
2.6) V2 = ("n,z"‘n,1)2(“'1) (%+n-1)/n (~ {n(xn’z-xn,l)}z) :
For a terminal contact of order m(= 0), we define
2.7) b = ne™ (0)/(meny 1}/ D) a = 1/@e1) .

t]

Then, the limiting distribution of bn m(sn -0) 1is known to be
’

0, x<0,

+1

(2.8) A (x) =
- l-exp(,-x"l ), X0 .

Also, by Theorem 3.1 of Sen (1961), as n -+ o,

(2.9) bn,ms(xn’r-e) = [‘r'+'a"m/|?+o(1) , for every (fixed) r(21) .

3. BASIC PROPERTIES OF JACKKNIFING

It follows from (2.4) that

(3.1) n(e; -6) = n(X, 1 =0) = (1) (X 5 =X )

= (Zn-l)(xﬂ':l -0) - (n-~l)(Xn’2 -9) .




Hence, from (2,9) and (3.1), we obtain that for a terminal contact of

order m,

(3.2) bn,mE(B; -0) = (1-3)) |_1+"'a“I + o(1)

= (1-a,){b l“la(ﬁn -0)} + 0(1) .

]

For m=0 i.e., a = 1, the right hand side (rhs) of (3,2) converges to
0, as n + «, while for m21 (i.e., amsls), jackknifing leads to
effectively 100(1-am)% reduction in bias. Thus, the basic role of jack-

knifing is partially impaired for a terminal contact of order m(2 1).
Theorem 1. For a terminal contact of order m(2 0),

* 1i *
A (x) = n»:?{bn,m(en -0) < x}

a
FOXP{-(ZY m-X)m”}dY y =®<xs50,
0

(3.3) = 4
1-exp(-x""") + E.,,lexp{-my “‘-x)“‘*‘}dy y X0,

where a and bn,m are defined by (2.7).

Proof. Let Z =b _(6*-6) and let
—_— n n,m n

(3.4) Y

(1) = nF(xn,l) and Yn(Z) = n[F(xn’z) 'F(xn.l)] 5

Then, by (2.1), (2.2), (2.7), (3.1) and (3.4) and proceeding as in the proof
of Theorem 3.1 of Sen (1961), we obtain that

a a
(3.5) BIZ, - 20,00 * Oaaay * Yoy 2,0 as n+ o,




6=

and hence, by the Chebychev inequality, we have

RO lim{ 2n
(3.6) A(x) = Tp{2Y

am
me 12n) ~ Caq) *Ya@)? SX} , Vew<x<o,

We may recall that Yn( and Yn(Z) ar asymptotically independently

1)

distributed according to a common simple exponential law and they are non-

a a
negative rv's. For x<0, EYnn('l) - (Yn(l) +Yn(2)) ms{[ <=> En(Z) 2

e m+1

m : i ’
(2Yn(1) - X) 'Yn(l)___[ and the first equation in (3.3) follows directly by

finding the conditional probability given Yn(l) and then itegrating it out
a

a
: m+1 m n

ozer Yn(l)' For x>0, if Ynfl) < x 7, then 2Yn(1) 5 (Yn(l)a;yn(Z)) 15
m : il ol

Yn(l) <x, while for Yn(l) >x  ~, as before we need Yn(Z) 2 (ZYn(l) -X) =

Yn(l)’ and hence, the last equation in (3.3) follows on parallel lines. Q.E.D.

For m=0 (i.e., am=1), A, in (2.8) is the simple exponential while

0

AB in (3.3) is the double exponential df. For m20, Am and A; are not

the same df.

Theorem 2. For a terminal contact of order m(2 0),

" 2a_(1-a ) : "
(3.7) :ﬂ{aEi‘_(e;-e)z]} . {1 -_%'IEL}B{:{EE:J(e n-e)zj}:[

= (2a,[2a {1-2a (1-a)/(1+a)}) .

Proof. Since 6n-xn by an appeal to Theorem 3.1 of Sen (1961), we get
»

1’
that

(3.8) bﬁ._z(én -0+ T2 =2a [72 >0 .

Hence, to prove (3.7), by (3.5), it suffices to show that as n + »,

A e Sy

k.
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a

a2
m m
(3.9) E[ZYn(l) = (Yn(l) +Yn(2)) ] > 2am|2am{1 —2am(1-am)/(1+am)} "

Towards this, we may note that E[: (I;I |1+2a = 2a rfi—. E(Yn(l) (2))

- %n
+ [2+2a_ = 2am(1+2am)|ﬁ; while E{ (1)(Yn(1)+Yn(2)) } {E—:(v (1)' ac) *
a 2am+1
Yn(Z)i](Yn(l)'+Yn(2)) } ~ E{(Yn(l) *Yn(Z)) /(am+1)} -+ [|2+2am /(1+am) =
[Zam(1+23m)f§§;}/(am+l), and hence, (3.9) follows by some standard steps. Q.E.D.

For m=0 (i.e., a = 1), the second factor on the rhs of (3.7) is
equal to 1, so that both 6n and e; have the same asymptotic variance,
though their df's are not the same. For m21 (i.e., a < %), 2am(1-am)/
(1+am) >0 and is bounded from above by 1/3. Thus, from (3.2) and (3.7)
we have that jackknifing reduces both the asymptotic bias and the asymptotic
mean square to a fractional extent. This characteristic is different from
the regular case where there is a complete reduction of asymptotic bias but
no reduction of the asymptotic mean square.

From (2.6), (2.7) and (3.4), it follows that for a terminal contact of

order m(2 0),

-1 o P
(3.10) |n bn’- - {(Yn(l) n(2)) n(l)}l +0, as n+> >,
a a a a
Since (Yn(l) ‘Yn(Z)) Yn(l) »> {(Yl +Y2) - Y1 }, where Yl and Yz

are i.i.d.r.v. having the simple exponential df on [0,» ) , n'lbn - either
converges to a positive constant (when m = 0) or goes to 0 (when m 2 1),

it follows that either (for m = 0) v

. has a non-degenerate asymptotic df
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or (for m 2 1) it goes to + @, in probability as n + «, This charac-
teristic is also different from the regular case where Vo 5 a constant,
as n + <. Nevertheless, for the studentized form, we have for a termi-

nal contact of order m(2 0),

= *_ = -
Ta ™ a0 e)/vn bn,m(xn,l e)/bn,m

(X, 2~%, ) - (-1)/n
a a a
(3.11) + 0,(1) ? \{1“‘/{(Y1 +Y,) wi Yl“‘} i 2

so that noting that Y* = YZIY1 has the Fisher's variance-ratio distribu-

tion with degrees of freedom (2,2), we have from (3.11) that
-1.m+l 2 *
(3.12) 1+ @Q+T) 7] < AEY s YUY
n 2 1
For m = 0, we have a simplified form
By pn By
(3.13) Tn +1 Y1/Y2 w Y

Both (3.12) and (3.13) have important statistical applicationms.

4. A MODIFICATION OF o

We have observed in (3.2) that for m 2 1, bn mE(G; ~-08) does not con-
’
verge to 0 as n -+, Let Cn be the sigma-field generated by xn 1200
’
xn,n and by xn’j,
the regular case, [cf. (2.11) of Sen (1977)], we have

j 21 (so that Cn is non-increasing in n). Then, in

(4.1) o - 8 = (m-1)E{(, -6 ,)IC} .

BRI 7 T — R




A a
In our case, for m 2 1, nbn,mE(en -en_l) = .am|1+am + 0o(1), where as
bn ma(én -0) = |1+am + 0(1), and thereby, we get the resulting bias in

(3.2). To eliminate the, we may consider the modified estimator

*k a 1 A
(4.2) el T . E{(Sn -8 _ple}

-1
Xn,l - (m+1)n (n—~1)()(n’2 -xn,l) -

In that case, we have

¥* %
(4.3) bn,mE(en,m -0) >0 as n*> >,

Also, following the same line as in the proof of Theorem 1, we obtain that

*k _ lim *k
AL () s P (O] ) sx)

a m+1
rexP{'E(m"’z))' m-x}/(m+1):[ }dy, - ©w<x<0 ,
0

e a m+1
l-exp{-x "} + o exp{-[:{(m+2)y -x}/ (m+1):[ }dy, 0<x<o ,
X

(4.4)

Also, following the line of proof of Theorem 2, we have

i 2a
rlrl,:E{b: ’m(e;‘:m-e)z} = (2a ln[_":zam){1 . ;:‘n (m+1) [(m+1)am-1]} =2a_[Za_
Mnef2 2 a2V e fi2 a2
(4.5) = n_,:ﬁ{bn’m(en-e) }zn_:s{bn’m(en-e) } :

Thus, whereas 6;'m eliminates bias to the desired extent, it fails to
,
reduce the mean square. In this sense, it is similar to the case of 6;

in the regular case. [Though A;* and A are not the same.]

re
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Finally, for the studentized case, in (3,11)-(3,13), the only changes we

need to made is to replace Tn by Tn-#m; the rest remains the same,

5. SOME REMARKS

We have so far considered the case of the lower end-point, The case
of the upper end-point (if finite) follows on parallel lines. Secondly,
in practical applications, when the form of F is not specified but the
order of terminal contact is assumed to be known [viz., m = 0 when F
is U-shaped or inverted J-shaped, etc.], the studentized form in (3.11)-
(3.13) may most conveniently be used to provide a jackknife test for a

null hypothesis Ho: 0=0 (specified) or a confidence interval for the

0
unknown 6. For a symmetric df with both end-points finite, jackknifing

of the extreme mid-range (for estimating or testing for the location of
the df) can be made — the jackknife estimator corresponding to the
smallest and the largest order statistic are also asymptotically indepen-

dent.
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