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The benefits of feedback achievable in nonminimuin-phase (nmp)

systems are severa ly limited . However , if there are two parallel nmp
uJ
.....J bran ches whose outputs can be measured , then it may be possible to

eliminate or reduce the nmp property with respect to some parts of the

c-~~~~~~ system , even if each of the two branches has uncertain parameters . It

• is always possible to do so for a finite , nonzero range of uncertainties

for any complexity of pole—zero patterns of the branches. A design

philosophy and methodology is presented for the general problem, permitt-

ing one to approach an optimum solution under various constraints.
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SYMBOLS AND ABBREVIATIONS

B(w) boundary of T (w) (2.1)

number of encirciementa of origin by * 12 .)

mp minimum-phase ( 1. )

mps mp and stable (2. 1)

• boundary of quadrant 1 (2.) , map of F on

NL Nyquist locus — map of a function on ?2... (2.)

nap nonminimtzn-phase ( 1.)

rhp ri ght half plane (I . )

T (w ) {P(jw ) } (2.1)

Arg P(jw)
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BLEND ING OF UNCERTAIN NONMINIMUM-PHASE

PLANTS FOR ELIMINATION OR REDUCTION OF

NONMINIMUM- PHASE PROPERTY

1. INTRODUCTION

Consider a feedback loop containing a constrained part (denoted as the

Plant ) with transfer function P (s) , and compensation C(s) to be chosen

by the designer . Let S (s) ~ be the sensitivity of any system input-

output function T (s) to the plant P (s)  . It is known (Horowitz 1963) that

T i
= l+L~ 

(1 - j-) , where T0 — (T)~ _,0 is the ‘leakage transmission ’. Hence

(s) which is the ‘!Loop transmission for reference P “ (Hor owitz 1963) is

of great importance in feedback design , especially in the larg e class where

the plant output is the system output , for which T0 0 , giving - l+L~

If P has no zeros in the right half-plan. (rhp) , i .e., is miniai i-

phas e (mp) , then theoretical ly, at least, I L ~ ( ) .w ) t  can be made as large as

desired over any finite bandwidth (Horowitz 1975) . However, if P is nonminimuin-

phase (nnç) then is severely constrained (Horowitz and Sidi 1978) . For

example , supp ose P — Pm (s
~

a) , a > 0 , 
~m sip and L.1, ( )ø) is designed in

the usual manner with I”~(iw) > 1 for w c 1 and monotonically

decreasing for w > Then 
~~c~max ~ O.Sa , i.e., the available feedback

loop bandwidt h and with it the benefits of feedback are severely curtailed .

It is therefore very important to eliminate , if possible , or at least alleviate the

nmp property in a plant . It is shown in thi s paper that to ease. extent and

for a certain class , this can be done. Note that rhp pole. of a plant do not,

• by themeelves, limit the feedback bandwidth achievable (Horowitz 1963).

-
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1.1 A Class of Plants for which n~~ Alleviation is possible.

In Figure 1, the constrained part (darker lines) has a single input x

and two outputs y1 • y2 independently measurable and cosipensatable by

Ga ~ 
. The transfer functions Y1/X , y2/X have P1 in conmion (us ually

the poles) . The transfer funct ion— — P~~( P G  + 
~b%~ 

(1)

Suppose • P~ are temp and with uncer tain para meters . Is it possible to

f ind Ga , such that 
~~a

0a + PbG.Ø) is sip over~ the entire range of these

uncertain parameters? If so, then the loop tran smission for reference P 1 has

no rhp zeros due to 
~a • ~b If P1 is also ep, then the system may be

designed to have arbitrarily small sensit ivity ~O P~ . In any case, the

limitations on S due to the temp • P~ are at least eliminated . However ,

it is important to note that La the ‘loop transmission for referenc e ‘

is obtained by cutting the loop at aa ’ and so does have the rhp zeros of

• and similarly L~ must have those of • The incre menta l linear

model of the longitudinal axis of an air craft ii an example of Figure ‘1 , with

x the elevator control surface , y1 pitch rate and y2 normal acceleratio n

at pilot station . Under certain conditions , P~ and are both nap and

with highly uncertain parameters (Edwards , Rediess and Tay lor 1970) . Other

examples are cc~~~ n in process control , with time delays often constituting

the imp paths . These may be well modelled by all-pass networks over any

desi red frequency rang..

There is no single or set of form ulae availabl e for this probl em.

Rather, this paper presents a design philosopley and methodology usable for any

specific case. It is developed here by proc..ding step by step from simple

to mor. complex problem classes .

_ _ _ _ _ _ _ _  ~~~~ -
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2 • THE SINGLE POLE-ZE~~ PAIR

In Figure 1, the zeros of concer n of (PaGa + Pb% ) are those of

{~~~~ +~~~~~~ F + P ~~~* , F — ~~~ , ~_ }  (2)

F is to be chosen so that * has no rhp zeros over the range of uncertainty

of P . Considerable insight is obta ined by studying the simple class

K k ( s—z)
— 

(s—Az) ~~ IC1kP1(s) , K1k z  > 0 , A > 1 , with k £ (1, k2 3 ,  k2 > 1

denoting the uncertainty only in k in the meantime. Hereafter K1 — 1 is

used, so that in practice the F that emerges must be divided by the actual

K
1 
. Note front (2 ) that if F is a solution for an uncertain set {~ } , then

1/F is a solution for the set {1/P} . Also, F need not have an excess of

poles over zeros . Let ~7., be the boundary of hal f the forbidden region — the

upper rhp (first quadrant ) . By the Nyquist locus (ML) of H(s ) denoted by

N
t , is meant the mapping of H( s) as s moves clockwise on 71. from o

to j R andthen s — R e ~
0 

, 0 from w/2 to zero , R + = . P~, is

sketched in Figure 2a at k — i  and k — k 2 < A .  It is easy to see that if
k2-F isaconstant E (-~- , l) , then V k E  (l,k 2 3 , *~ of (2) executes

half a negative encirclement of the origin (denoted by — -0.5) • Invoking

the Nyquist criteria : N,1, — No. of encirclements of origin — 2e , —

where N — n o ,  of rhp zeros of * , N~~— no. of rhp poles of * — 1  here.

giving N — O .

However, a dynamic F(s) is needed if k2 ‘ A (Figure 2b) . The

restriction in F regular in rhp is made in the meantime, for which the Bode

integral s (Bode 1945 , Horowitz 1963) are very helpful in deriving sup

optimue F • denoted by ~~~~ 
— since a strictl y optimue F does not exist

_ _ _  - - • i~~~~~~
_—

~~~~~1_ ~~~~~~~
--- -— 
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but Fsup can be approached as closely as desired . It is next shown that

— (s+Az)/(s+z ) • giving sup k2 — 12 
, with the root loci of

1+ kPi/F,~~ , P — kP1 , shown in Figure ~~

2.1 Derivation of

Let T(w) (template of P (jw) ) — {P (j w) } over the range of uncertainty

of P • and B (w) — Boundary T(w) • If the uncertainty is only in k then

T( w) B(w) , same of which are shown in Figur.s 2b, 3a , b the numbers and

lette rs in order of increasing w values. The ML of a satisfac tory -F is

shown in Figure 2b and in Figure 3b on the Nichols chart. (Henceforth the

subscript 37~, is omitted in the figures.) F (s) +P (a) is the complex number

(or vector) , originating at -F(s) and terminating at P (s) . By considerin g

the motion of P relative to P • i.e., taking -F(s) as the origin of

(PIP) at each s € • it is seen that P encircles -F one half times

counterclockwise , 
~
,,l, — — .5 • V k € (1 ,k2 3 - Mote that Ar g(-F) > Arg P

in Figure 2b , except at w — 0 , and tha t a -P similar to above , but

with Arg(-F) < Arg P would give — .5 , which is not acceptable It

is seen that the following are necessary and sufficient conditi ons for F+P

to be mp V k E  (l,k 21

A. (a) — F ( O ) ‘ k3P(O) . (b) —P ( ) < P (.)

B. —F ( s) pI T (s) V s € (3)

C. — - .5 , with the following geometric interpre tation:

In Figure 3b the B (..) are vertical lines of equal length . Each point on

B (i.) corresponds to a specific k value • Bk (w) . At any fixed k

let n be the ne~~ er of se values at which I P (iw) I — I 8k (w) I .

— —f;- 
- ~~— • .  

-• 
- -d
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Arg -F (jw) < Arg B.~
(w) . Then n must be even in order that - - .5

as in Figures 3a, b. In other words, -P (j w) in moving from above 8(0)

to below B ( )  , as per ( 3Aa ,b) ,  may temporarily be on the left of 8(w)

(Arg —F < Arg P) in Figures (3a b) • but in the net, must execute the passage

on the right of 8(w) where Arg —F > Arg P

F(0) P( 0) k2
From (3Aa,b) , it is necessary that F(~ ) k2 ~~

-
~~~~~

- — 
~~~

- , with k2

the maximum tolerable k (recall kmi~ 
— 1). Hence it is desirable to

maximize IF(O)/F(~)I , subject to (38 C). However, for mp and stable

(denoted by mps) F (s) (Horowitz 1963)

— 0 (w)dw
in 

~~~~~ 

— — w • 0~~~(w) A Mg ~—F (jw)J (4)

so it is desirable to minimize 0_~ (w) at each w

If the above defined n — 0 for all a € fl., then from (31)

0 _~~(w) < Arg 8 (w) — Arg P (jw ) A O~~(w) • V w € (0,”) • giving

inf 0_~~(w) — 0~~(w) . Since F is tips , it is deter.in.d (up to an arbitrary

constant factor ) by o~, , giving the supr emum F (s) • denoted by

— (s+Az)F — — l/~ I_5!I —
sup 1 K (s+z)

K is obtained from: Numerator (F5~~
+P) — (s

2
1
2z
2)’kX(s2 s2) —

— s2(l_ ~~)~~
2(~~_A

2) . The coefficients must have the same sign, giving

k1X K . l , k2K — 1 2
” k 2 .  The root loci of 1+kP1/P5up are sketched in

Figure 4. P5up ii obviously unique.

2.1.1 Case n~ 1 0 . Obviously from (4) it appears desirable to let O~~ <

for some intervals, e.g., in (0 ,w
~

) in Figures 3a,b with 0 p — e~, fcr
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w E (wa . )  . The value of (4) would be pres umably thereby increased . The

trouble is that (3C) dictates I F (j w 5) I  > k2 IP 1(jw
~

) I with Fl”) I < I P ( ) l  — 1

as before , giving k2 < P ( ~~,) -p~
-
~~ 

. But I P 1 iw~
) I increases with

• as does IP(”)/F(j w~
) 

‘mm as shown below. Thus (Horowitz 1963)

F( j w )
tn l  p ( )  — I u (w) 0_,(w)dw ii — 

~~

‘ 2 2  ‘

with p (s) > 0 for w c , < 0 for w ) w~ . Hence, to maximize (5) ,

maximize 0_~ in w ( , minimize it in w > ~~ . However , the set

{F (jw ) } is constra ined to have 0 ! c OP for W < 
‘ °—F ‘ 0~) in

w , so let sup e~ — Op V w . Thus (5) decreases vs w~ , and

(w
~

) 0~~ 
- 0 , giving the previous

2.2 P( s)  with General Uncertain Poles and Zeros.

In P — k(s-z)/(s-p) • Ii € (1 ,k2 1 , suppose z and p have independent

uncertainty. Then a typical 1’ (w) is shown in Figur e 3c for z~~~ <

B (w)~ the boundary of ? (ci) 
~ 

has vertical lines due to the independence of

the uncertainties. It should be clear from 2.1, 2.2 that the worst case

determines max k2 to be (
~~~~

)

2 
This is also seen by considering only

the , ~~~~ case, for which k2 max has the above value . The resulting

design also obviously satisfie s all othe r p , £ smaller k2 cosrbinations .

If P5~~ c z~~~ and P~~~~> s~~~ , then nmp elimination is impossible for any

finite k uncertainty, no matter how s 11.

— -
~~~~~~~~~ 

— -T:-- 
~~~~~~~~~~~~~~~~~ 

—
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Consider P as in above, but uncertain z, p. k related to some

extent- , giving more general T (ci) . The previous arg~~~nts leading to

-F5~~ lying on B(ci ) V ci € (0 ,”) still apply . The proof of existence

and un iqueness of such an F5~~, is basically the same as in (Horowitz and

Sidi 1978) . However, it is more difficult now to find F • becausesup

unlike the above Arg F5~~
(w) is not apriori known. It is only known that

there exists a unique mps analytic function which lies on 8(w) at each ci

Finally , consider P — k 
~~~~~~~~~~~ 

P2 (s) , P2 having only thp poles and

(s+a1)zeros with uncertainty , e.g., P3(5) — 
Ts+a2)(s+a3) 

• a~ C (aj1.ai2l . In

order tha t the new T (ci) and 8 (w) be qualitatively similar to the previo us ,

F1(s+a
we could let ~‘ — ( s+b) (s+c ) ~ a(, fixed in fa1,a2 J etc . and then the

probl em is one of zeros of
( s+b ) (s+c

F + k 
(s-z) (s+a) o_ o A F1 (s—p ) ( s+a0) ( s+b) (s+c) 1

Again , the reasoning in 2.1 , 2.2 applies leading to the conclusion tha t

lies on 8 (w) at each w C (0 ,”) , where 8 (w) is that of P ’ over its

range of uncertain para meters. In the balance of the paper , only uncertainty

in k is considered , with generalizations applicable in the same manne r as

the above.

2.4 Nore Conservative Boundaries.

It is obvious that the above design philo sophy applies to other kinds of

bounds on the zeros of F+P — * . A reasonable alternat ive is that the zeros

of * must h avearea 1 part~~~ - o ,  0 > 0 .  The line R e s — — o  replaces

the imaginary axis, so let s — v—a , P(s) — k k giving

____ 
2 21new — and resulting new k5~ , — A and new

V .. ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ T V . T . - -~~~
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w+(o+Az) s+2o+AzP — . (6)sup w+(a+z) s+2cy+z

Another possibility is that damping factor of the zeros of 4” ~ 
> ~

The boundary is then a straight line in the second quadrant through the

origin , at sin 1 
F
~c, 

with the vertical. This is the new but the

procedure and results are as before, i.e., one finds B(s)  , s € , etc.,

and develops the integrals analogous to (4,5) in order to derive

2 • 5 Reduction of Nonainj eum-Phase Proper ty.

In 2.1, 2.2 if k2 ‘ , then for some k , 4’ of (2) must be nmp.

However, one may design so that the ‘worst’ nmp c that in an uncompensated

design. The concept of less or more of the nmp prop erty is evident by noting

that rhp zeros contribute excess phase lag (Horowitz 1963). The further the

rhp zero from the origin, the less this excess lag vs ci , so if the runp

property cannot be eliminated , it is desirable to at least guarant ee that the

rhp zeros lie as far away as possible from the origin.

In this new problem, — w1W2. . •w 5 , semicircle of radius R in

Figure 5, because the forbidden region for the zeros of 4’ is its interior .

But the reasoning and technique is precisely the same as be fore. Again , the

conclusion is that (not sup because the boundary of is assumed

permitted ) lies on B(s) for each a C , and this corr esponds to each

s C? ) on a root locus of F
~~t 

+ kP 1 for k € (l ,k2J

The derivation of is not difficult for the case of k uncertain ty

only . Arg P
~
/F0~~ 

must have a constant value on 2, (zero or 180° , the

former here) . The inverse image with respect to N1 V2 N3 , of the zero—p ole

pair at z , Ax is a pole-zero pair at R2/Az , R2/z , i.e. , this combina t ion

_ _ _ _ _  - .  

~~~~~~~~~~~~~~~~ _ .V V V  
- -
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of 2 pole-zero pairs has a consta ’ “. angle on V1 V2 V3 . The inverse image

of these two pairs with respect to is their Lhp image , shown in

Figure 5, with the resulting root loci. The new ~~~~~ 
is now

2 2 2 2
A ( R —z ) 

A 2 (7)
(R —A * 

)
new k~~ 64

e.g.,if z — 2 , A — 4 , R a l O , then old k
~~~~~~

i
~~ 

Here F
t ~~~

rhp pole and zero , apparently violating the constraint that F is mp and

stable. This is because the actual constraint used is that in! be regular

in the forbidden region, which is now the in~erior of W1W2. .

Of course, one may define different shapes for t~
, • e .g . ,  in a

specific problem, a highly under damped rhp zero pair may be more tolerable

closer to the origin than a more damped pair further from the origin

(Horowitz 1963) . Ai~ ellipse with horizontal major axis might then be more

suitable for . The conclusion that Topt lies on B(s) for s €

probably still applies, but it may be more difficult to find F0~t
, or a

good approximation to it.

_ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  — 

~
—;

~~m~~~~-~
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3. MORE COMPLEX P (a)

While the results in Section 2 are of interest in themselves , they are

more important in suggesting an approach usable for more complex P . An

important conclusion was that _F~up (ci) € B (w ) • V ci € (0, —) which coincided

with — . The more complex problems next treated show that in most

cases 0_i, — 0~ does not coincide with -F~~~ € B(ci ) V ci . Each case

oonsidered introduces a new property.

3.1. Case 1 — High Frequency Hodification.

Consider ~~ — ~~~~~~~ A k P1(s) , k € (1 ,k2 1 with p,E, H > 0 , and
S -Ea+t(

such that O~ E (— Sir ,0) in (O ,w~ ) , € (O .5w ) in (w e, ”) and

(P ( j w ) I > P (0)  , as in Figure s 6a, b. If k2 < OQJOA in Figure 6a , then

a constant value for -P with k2P.1(0) < —F < OQ — P 1(jw ~ ) is satisfacto ry .

But for larg er k2 a dynamic F(s) is needed , such that -F encircles

{B(w) } once negatively . Given — F (O) > k2P 1(0) . this requires the

existence of an cix at which IF (j 1~x) I < IP 1(iw~
) I 0

~ F~~ x~ 
— O

~~
(w ,~

)

and -P C.) > k2P1(.) — 0 . (It is easily seen that —F(0 ) < P1 (0) is

inconsistent with mps F .)  Also in Figure 6b , -F must in the net execute

the passage from above 8(0) to below B(cix) on the righ t of B(w)

(0 _p > O p) . and the passage from below B(w~
) to above B(”) in the net

on the left of B(w) with 0_F < (cf 2.1 after (3) and Figures 3a , b ) .

An acceptable -P is shown in Figure 6b with OKl , 0K2 two among many

possibilities for ci >

--
—_-—_ • V  

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V - -
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The condition on F at • is easy to achieve , so k2 maximization

involves maximization of

i IP’(0)/F1j1
~ ) I — ~ ‘if p (w)8_~,& , ~i(w)  — 2 2 (8)

0 ci(w

‘C 0 for ci ‘C ~~~~ , > 0 for ci > ~~~~ • Hence, it is desirable to minimize

in ci ‘C cix and maximize it in ci > • However , it was noted above

that in the net 0_i. > OP in (O ,ci,~
)

One might suggest use of c for acme intervals, i.e. n ~ 0

as in 2.1. 1, but a technique similar to that of Equation (5) can be used to

prove it worse here also. Thus it would require existence of an ‘C at

which 0-F — 0P and 
~~ 

> k2 I P 1I . Maximization of

2 2“ w O  (ci -ci )dci
in IF(icio)/F(ici

~
) I 2

~~ 
P x  

2 20 (w - c i ) ( w -ci )x o

F (j ci ) F(j ci0)
derivable from (8) by considering in r(o) and in P ( O ) I lead s.

as in 2.1.1, to — 0

V 

The above suggests trying 8~~ - e~, , i.e., -p — —
qualitatively shown in Figure 6a. It is interesting to relate this to the

root loci of l+P/P’1 shown qualitatively in Figure Gc. The nuit,ers B — 5 ,

F — 6 , p - 1 are taken for illustrat ion . The double root at

jci,~ — j 3.9 corresponds to M (on 1’min ~ — note that -F1
lies on B(ci) on both sides of M in Figure Ga and to the lowest k for

whic~h the root loci are all on the j ci axis in Figure Go. The double root

_ _ _—_

,—- 

- V 
V
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at the origin corresponds to V in Figure 6a — with a similar prop erty of

—P when the Locus for ci < 0 is included. The single root at j4 .8 — j ci

(at k2) corresponds to point Y in Figur e 6a — at which -F lies on

8(w) only for ci <

Since —F1 lies on 8(w) for ci ‘C ci
,~ , no improvement (decrease of

is possible there. But it is possible to improve matters by increasing o~~
for w ) w~, because -F1 does not lie on the B (ci) for ci > wy,, • Any such

increase will however decr ease F/F (O) V 0 c w ‘C Aw for some A > 1

(Horowitz 1963) , creating new cix ‘ w~, and larger k 2 . A simple way to

(s2+Es+H ) (s2~I~(&) 2 )
increase e_~ for ci > > w~, is to let 

~
‘2 — 1C( s+p) • which

leaves O~~ unaltered in ( 0 w
~

) . It is relatively simple to find

C — 10.9) from Num. (F2+P) by requiring that at 1 , it has a facto r

(52+i4) 2 
; — 2.1 replaces ci in Figures 6b ,c. At k2 it should have

a factor 52 (52+w~ ) giving w2 — 7.24 replaci ng w~ . (Compare Figures 6a ,c

at ci — 3.9 , 7.24 , 9.8 , 10.9) . is thown in Figure Ga and permits a

slightly larger k2 — 1.797 in place of the 1.731 for F1 . Note that -F2 lies

on B(ci) for ci C (0,9.8) > (0 ,4.8) for which —P1 lay on B(w)

One may increase k2 by repeating the above with the factors

(52+ k )

~ B~ Ai+1 • Such increases are always possible if 3 any interval in

which -F dose not lie on B(ci) • Howeve r , the increase obtained is found

to be e~~sedingly small and does not justify the design effort .

- - ~~~~~~~~~~~~~ 
V 

V T ~~~~~~~~~~~~~~~~~~~~~
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3.2 Case Two - Low Frequency_ Hodification.

Let P — k (a 2-As+B)/(s2-Cs+D) A k P1 , k € {l,k 2
) with parameters such

that P is as shown in Figur e 7a, i .e . ,  .5w O~, ‘ 0 in (O ,w 1) .

— .S1T c ‘C 0 in (w1, )  ; ~P (j ci1
) ~ I P (° ) I < P (0) . Again , a constant

-F can handle uncertainty k2 ‘C ~P1(jw 1) 
~~~ , 

if k2 IP 1(jw 1
) I ‘C -F < 1

For larger k2 a dynamic F (s) is needed satisfying the following conditions

—F ( 0) ‘C P 1 (O ) ; F(co) ‘C

3 ci ~ Op — 0-F but _F (j CII x) > k~ P(jw~
) } ( 10)

F ( s) ~ k P1(s) , s € and — — l

From (10) it is desirable to maximize I F (jto~) i / IF ( 0 ) I , lF (j c i~~)/F
(co )

The effect of on the former is given by (8) . Its effect on the latter

is (Horowitz 1963)

F( w )
in F(.) — 

1T
W

3C I e..F(w)A cw)dw A (w) — 2 2  
( 11)

Thus , from the signs of the weighting functions i& (ci) • A (w) in (8.11). it

is desirable to minimize 0_i, C (O , w,~) and maximize it in (wi. )  subject

of course to (10) . However , from previous experience one might guess , and

• it is in fact so, that in these intervals inf and sup are equal to

• so it is reasonabl e to try (s2+Cs+D)/(s2+Aa+B) A —P~ — Figure 7a ,

giving k2 — • It is seen that of (10) — to1 and tnat indeed

constrains 9_i, but only in (%~.‘) because -P 1 lies on B(ci) only in

(%~.) . Note that n—0 is assumed. Proo f that npIO is inferior , is

similar to that previously given in 2.1.1, 3.1.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Accordingly , 0_~ may be increased in (0 ,ci~ ) (because the change

changes ci b) but in such a manner that 0 F 
— in (ci~~.~~~) . A simple

________way to do this is to let 
~2 — 

~ 1 2 2 • giving ~~~ — for ci >
(s + w 2

)

but B_~ — B~ for to c . The value of to
2 

is found by considering the

numerator of

1 + — 1 — 
k(s2—As+B) (s2+As+B) (s2+w)~~

a2 (s2—Cs+D) (~
2+Cs+D)

whose (qualitative) root loci are shown in Figure 7b , for the case

— 
~~~~~ 

. One chooses w2 so that at Ii — 1 , the numerator has two

zeros at • and a factor (s2+W2 ) 2 
. Note that -F1 lies on 8(w) only for

ci — .64 in this .x ple, while lies on 8(w) for ci > w~ — .3

Note the relations between ~~ • , w~ and the k values in Figures 7a ,b —

af similar comparison of Figures Ga. 6c. The difference in is however ,

not large — 1.41 — OB ’/OA instead of 1.39 — OB/OA in Figure 7a. Increased

improVement is, of course, possible because -F2 does not lie on B (w) € (0 , .3) ,

but it is already seen that the ‘tmprovement will be very slight — for example

use of (s2+ci~) 2/s4 gives ~~~. 1.412 with —F 3 on 8(w) € (O ..138) , (.287 ,.) > 
V

(.3,.) for

3.3 Case Three - Hi~~~ Frequency Modification.

In this case P has a pair each of rhp poles and zeros 3 0 ‘C O~, < .Sii

in (0,to0) , — .5w c c 0 in ~ I P (j w~) I  ‘C P(O) ‘C P(~ ) , e.g.,

2 2
P — k 5

2
5
~
2) 

, k C (1,k2 3 in Figure Ba. Using 
~~l 

— 2 gives
(s —3s+4 ) (5 +s+2)

— 4 •.  V k2 — 2.88 and —F on 8(w) for ci € (0,2.08) . It is therefore

—~~~
-- _ _  

-
~~ 

—
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possible to improve O~~ in the high-frequency range. Here, the constraints

on a realistic —F are : F (0) ‘C P(0) and at some to1 • e_F — with

> k2 ) P (j w1) j  , so maximization of IP(1w1)/F(0)I is desirable.

From (8) this is achieved by maximizing O~~ in (0 ,w1) and minimizing it in

(w 1, —) . But such a —F will be on B(w) in (0 ,w 1
) , so the improvement

can be made only in (to1,—) . This is conveniently done by means of poles at

± ito1 , which leaves o~~ — in (0,w 1
) . The resulting root loci of

1 + P/F2 are then shown qualitatively in Figure 8b, for the abo ve num erical

example . To optimize, ci
1 

is chosen so that — k12 — k1 — 1 . The result

is k 2 — 3.23 > previous 2.88 with to1 — 3.987 • and -F2 lies on 8(w) for

ci € (0 ,3 .76 )  , cf prev ious (0, 2.08) . In this case use of two coincident

complex pole pairs in place of the single pair leads to small increas e of

k2 (3 .27 in place of 3 .23  with —F 3 on B(ci) € (0 ,4 .42) ,  (5.84 , 6. 4 3 ) .

Additional improvement is, of course , still possible because -F does not lie

in 8(w) , for all ci

3.4 Case Four - Medium and High Frequency Modification.

In this case, P has three rhp poles and two rhp zero s with coefficients

such that P~~ is as shown in Figure 9a, i .e . ,  in the first quadrant for some

(0 ,w1) , in the fourth for (ci
1

,ci
2

) and back in the first for (w2 , )  , with

IP(1ci2) I > I P ( 0 ) I > IP( 1ci1) I  and P ( )  — 0 , e.g. ,

2
P — k P

1 — (s - .2)(;6)(s lO) • Ii C (l,k~J . Since a constant —F is capable

of handling some range of k , it is reasonable to try —F 1 — 
K(s + .2) (s+6) (s+10),

Cs + .8)

choosing K to maximize k
2 ; giving k2 — 4.36, K — 351.6 . The root loci of

_ _ _ _ _  _ _ __ _ _  _ _ _ _ _ _ _ _ _ _ _  
-____
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(l+P/P) are shown in Figure 9b (qualitative ) . Note that -F
~ 

does not lie

on B(w) in (4.0,14.1) and (37.4 , )  and the relations between these points

in Figu res 9a,b. Hence . O _~ cart be changed in these intervals , to permit

larger

How should 0 F be modified in these two intervals? In this case

-1.5 is required, so there must exist ~~~~~ > ~~ , 3 F(0) < P1(0)

IF ( ici~ ) I  > k2IPi(ici~
)
~ 

, tF(iw~,)1 < IP 1(iw~ ) I  • P 1’) ‘ 0 with

— at w ,ci . (For F1 , ~~ — .75 , wy,, — 4 • There is another

pair at (14.1, 37.4 ) because F ( )  - but they need not be

considered.) In Figure 9a , it is seen that I F ( i c i~ )/F (0) t is the constraining

factor , so the freedom in ° F in the two intervals should be used to maximize

this factor . From the sign of u (ci) in (8), this means decreasing O~~ in

these two intervals, because ~ ‘C 4 . In the first interval, this can be done

by letting P2 — X
2F1

(s2+8)/(s2+A) , A ‘C B and choosing K2 , B , A to

maximize Ic2 . When th is is done an improvement is indeed foun d , but it is

very small (4.375) and the region with -F on 8(w) increases to (0,8.9)

and (27.8 ,58.1) . In the second interval the modification to P would logically

consist of a factor (s2+B) in the denominator. This leads to -F3 on 8(w)

in (0 ,10.6) and Ic
2 

— 4.379 , with the root ioci in Figure 9c , for this

modification only. One could use both modification s but in view of the very

small Ic2 increases for F
2 , F~ the effort is not worthwhile .

-_ _ _- 
—_ _ _ _  

- 
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4. CPISE CONSTANT F NOT SATISFACTORY

In all previous problem classes there existed a finite Ic range for

which -F a constant was satisfactory . This was due to ‘P curving

sufficiently such that it encircled negatively some point on the real axis

N12 t imes, with N the number of rhp poles of P . Our technique was based

on this assumption, as one could then start with B_i, — O~ giving -F1 the
1

jci axis image of P . The resulting F1 could be improved if there existed

any ci interval in which -F1 did not lie on the B (w) . This is not always

the case, e.g., p — has ~ 0 V. ci E I 0,00) • giving

— - .5 at most for -F a constant. Use of 6 ,~ . — no longer gives a

satisfacto ry design for any f inite Ic range , no matter how small. It is shown

below how any such P can be modified to a new P which does have the

desired — - N/2 for -F a constant. One can then find F for this new
sup

P as before. Furthermore, optimization of the new P is also possible, as

illustrated later. The modification of P involves insertion of additional

rhp ze os and/or pole..

Let 
~~~~~~~~~~~~~~~~~~~~ 

b e t h e modified P and

n

D

no 
where the nj , d~ are polynomials with real coefficients. The desired

N/2 encirclement condition for P is equivalent to D having no rhp zeros.

If 0 has only interior Lhp zeros then continuity of the zeros of 0 with

respect to its parameters, guarantees the existence of a finite range of each

for which 0 has only thp zeros. At each rhp zero of d0 (deno ted by s~
a

i — 0,... ,m) , T — I. arid n (s) — } A
1 
s~ is chosen to achieve this as follows.

0

- .  VV V V~ — ~~~~~~~~~~~ ~~~~~~~~ V _I-_
_ __ _ -
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Let 0(5) be a real Hurwitz polynomial of degree ~ , larger of

(degree of d0(s) , or of n n0(s)I , none of whose zeros are those of

n(s) but is otherwise arbitrary . Setting n (z j )n0 (z i) — 
~~~~ 

gives m+l

linear equations in the m+1 A~ coefficients. As the resulting matrix in

the Vandermondian, there is a solution , giving n(s) . Then d(s) is obtained

from d d0 D - n no • in which 0 , no , d0 , n are known. In the above

the rhp zeros of d0 were assumed distinct. One can extend the proof to the

general case but it is simpler to suggest that one can always perturb the

multiple root case to distinct roots with negligible effect on the probl em.

The above procedure is certainly practical but one may decrea se the degrees

of n (s) , d(s) by a suitable rather than arbitrary choice of D(s)  , as

shown in a later example.

The above constitutes proof of the following theorem. Its generalization

to non—real P , G and to an arbitrary half plane is obvious . It is equally

obvious that it may be extended to apply to nonzero independent variations in

the poles and zeros of P , as well as to its gain factor (cf 2. ) .

n (5)
Theorem: Given P(s) — Ic 

d:
(8) • with no , d0 real polynomials with

arbitrary zeros. It is always possible to find a real rational function G(s)

such that l+P(s)G(s) has all its zeros in the interior of the &hp for a

nonzero range of k

— k(:~i)
(::2) 

, for which constant F is no solution as P (j w )

is in the fourth quadrant V ci € (0, ) . Using the previous notation, try

first T — 
k(s—l) (s— 2) 

and see if A,8 > 0 can be chosen 3 T(3) — T(4)
s +As+B

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 

V V
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This is not possible. It is also found th..~ ~~ T — 
_~(s-1) (s—2L

(s +As+8) (sIC)

it is impossible to find A,B,C > 0 3 T(3) — T(4) — 1 • However, it can

be done with T — 
k(s—l)(s—2)(s+p) 

; e.g., A — 8 —  1 , p — -31/6 , K — —3
(s +As+B)

31k ( s—l )  ( s—2 ) (s ..j -)
Thus for P — P~ — there exists a constant P , 3 F+P*new 

~ 
5)( 3)( 4)

is Hurwitz for a finite range of k

Optimization is achieved by first letting e~~ — ~~ giving

K1
(s +) ~~~ (s+3) (s+4)

F — 31 50 that the root loci of 1 - P*/F are as shown in

Figure 10 with Ic
1 — kain — the larger of Ic11, Ic12 and Ic2 the smaller

of (l,k21) . An optimum design would be achieved if k11 — Ic12 and k
21 — 1

(giving roots at ± j00) , for then -F(jw) lies on 8(w) V ci € 10,”) .

k (s—l) (s—2) (s—z) (sip) (s+3) (s+4)We therefore write P~ — , P — and(s—p) (s—3) (s—4) (s+l) (s+2) (s+z)

seek z , p to achieve the two conditions Ic11 — Ic12 , Ic21 — 1 • The

result is z — 5.275 , p — .832 , giving k
2/k1 — 1.117 (in place of

1.068 for z — 31/6 , p — 5/6 ) and -F on 8(w) V ci € (0 .)

— 

— - 
— 

- - j - - - -—— - ~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~ ~~~~~~~~~ - 
V 

-
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5. CCIICLUS IONS

A design philosophy and methodology has been presented which is

useful for eliminating or reducing the nsç property for structures of the

form of Figure 1. One first deals with a P function, such that F a

constant guarantees the Hurwitz character of the numerator of 1+P/F , over

some nonzero range of the gain factor Ic of P • It was shown in 4. that

the original P can always be modified to have this property. Then

— O~, gives a first attempt F1 , which give, a larger tolerable range
1

of Ic than F a constant. If the resulting -F
1 does not lie on 8(w) V w

then F can be improved . The means of improvement lies in deciding whether

additional phase lag or lead of F is desirable in those intervals where

-F1 does not lie on 8(w) . The Rode integrals are used in making this

decision and the implementation is by means of poles and zeros on the j w

axis, such that is unchanged in the other intervals.

However, the optimization of P was always over the wps class, and

it is conceivable that non—mps F may be superior. One way to handle this

possibility in the context of this paper , is to imbed P in a larger nap

unstable class with more rhp poles or/and zeros than the original and apply the

approach of this paper. These additional rhp critical points are of course

supplied by F . Thum , direct optimization on the most general class of P

is not present ed in this paper.

V •

~~~~~~~~ V - -
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Uncertainty in the poles and zeros of P is easiest to handle when these

uncertainties are independent. For then, there exist extreme pole—zero com-

binations which limit the maximum range of Ic and give the resulting F . The

latter is then satisfactory for all the other pole—zero possibilities. These

extreme pole-zero combinations may be such that no F is at all available.

The problem of finding F can be much more difficult if the uncertaintiessup
are related .
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FIGURE TITLES

1. Plant for which nmp alleviation is possible .

2. Case 1. Nyquist locus of P — , Ic C tl ,k23

(a) 1< k
2 ’A , constant F useable,

(b) k2
> A >  1 , dynamic F needed.

3. Examples of acceptable —F: n—0,2 .

(a) in complex plane, (b) in Nichols chart,

(c) Template of P for uncertain Ic , pole and zero.
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