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BLENDING OF UNCERTAIN NONMINIMUM-PHASE
PLANTS FOR ELIMINATION OR REDUCTION OF
NONMINIMUM-PHASE PROPERTY

1. INTRODUCTION
Consider a feedback loop containing a constrained part (denoted as the

Plant) with transfer function P(s) , and compensation G(s) to be chosen

p 3T/T
= ?p/P

output function T(s) to the plant P(s) . It is known (Horowitz 1963) that

T 1 To
p = 1—+—£; (1-?) , where To = ('1')P_0 is the ‘leakage transmission’. Hence

by the designer. Let S:(s) be the sensitivity of any system input-

S

Lp(s) which is the "oop transmission for reference P " (Horowitz 1963) is

of great importance in feedback design, especially in the large class where
1
1+:.P ::

If P has no zeros in the right half-plane (rhp), i.e., is minimum-

the plant output is the system output, for which 'ro = 0, giving S: =

phase (mp), then theoretically, at least, ILP(jw)| can be made as large as
desired over any finite bandwidth (Horowitz 1975). However, if P is nonminimum-
phase (nmp) then Ly, is severely constrained (Horowitz and Sidi 1978). For
example, suppose P = Pm(s-a) » a>0, P mp and LP(ju) is designed in

the usual manner with II.P(ju)| >1 for w<w,, <1 and monotonically
decreasing for w > W Then (wc)mx ~ 0.5a , i.e., the available feedback
loop bandwidth and with it the benefits of feedback are severely curtailed.

It is therefore very important to eliminate, if possible, or at least alleviate the
nmp property in a plant. It is shown in this paper that to some extent and

for a certain class, this can be done. Note that rhp poles of a plant do not,

by themselves, limit the feedback bandwidth achievable (Horowitz 1963).

)
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1.1 A Class of Plants for which nmp Alleviation is possible.

In Figure 1, the constrained part (darker lines) has a single input x
and two outputs Yy 0 ¥y independently measurable and compensatable by
Ga ’ Gb . The transfer functions vl/x ' Yz/x have l"'1 in common (usually

the poles). The transfer function

Z(s)
eq " Xs) " Pl(PaGa 2 pb(;b) (1)

P

Suppose Pa v Pb are nmp and with uncertain parameters. Is it possible to
find G, . G, such that (Paca + Pbi) is mp over the entire range of these
uncertain parameters? If so, then the loop transmission for reference P, has
no rhp zeros due to P. ’ Pb .. Xf Pl is also mp, then the system mav be
designed to have arbitrarily small sensitivity to P
T

P, due to the nmp Pa'Pb
it is important to note that I.. » the 'loop transmission for reference Pa S

1 In any case, the

limitations on S are at least eliminated. However,
is obtained by cutting the loop at aa' and so does have the rhp zeros of
P, ¢ and similarly Lb must have those of P, . The incremental linear
model of the longitudinal axis of an aircraft is an example of Figure 1, with
x the elevator control surface, Yy pitch rate and Yy normal acceleration
at pilot station. Under certain conditions, P. and Pb are both nmp and
with highly uncertain parameters (Edwards, Rediess and Taylor 1970). Other
examples are common in process control, with time delays often constituting
the nmp paths. These may be well modelled by all-pass networks over any
desired frequency range.

There is no single or set of formulae available for this problem.
Rather, this paper presents a design philosophy and methodology usable for any

specific case. It is developed here by proceeding step by step from simple

to more complex problem classes.




2. THE SINGLE POLE-ZERO PAIR

In Figure 1, the zeros of concern of (Paca+Pbi) are those of
G P G P
{i+bér+p£w, p--G-:-, p-—b-} (2)

F is to be chosen so that Yy has no rhp zeros over the range of uncertainty
of P . Considerable insight is obtained by studying the simple class

l(lk (s-2)

P=—oo =

xlkpl(s) , Kk,z>0, A>1, with kE(l,kzl, k2>1

1
denoting the uncertainty only in k in the meantime. Hereafter xl =1 |is
used, so that in practice the F that emerges must be divided by the act'ual

K Note from (2) that if F is a solution for an uncertain set {P! , then

1 °
1/F is a solution for the set {1/P} . Also, F need not have an excess of
poles over zeros. Let 7L be the boundary of half the forbidden region — the
upper rhp (first quadrant). By the Nyquist locus (NL) of H(s) denoted by

H" , is meant the mapping of H(s) as s moves clockwise on n from O

to jR and then s-l?.ejo , 6 from ®w/2 tozero , R~+> > , P" is

sketched in Figure 2a at k=1 and k = kz < A . It is easy to see that if

X
-F is a constant € (—},1) , then VX € [LK,) , ¥, Of (2) executes

half a negative encirclement of the origin (denoted by t v = -0.5) . Invoking

the Nyquist criteria: N, = No. of encirclements of origin = 28 v = ll. -N

¥ P

where Nz = no. of rhp zeros of ¢ , Np = no. of rhp poles of ¥ =1 here,

giving Nz =0 .

However, a dynamic F(s) is needed if k, > A (PFigure 2b). The

2
restriction f&n F reqular in rhp is made in the meantime, for which the Bode

integrals (Bode 1945, Horowitz 1963) are very helpful in deriving sup

optimum F , denoted by P since a strictly optimum F does not exist

up




but Ps can be approached as closely as desired. It is next shown that

up

Fsup = (s+Az2)/(s+z) , giving sup k2 = Xz ¢« with the root loci of

1 +kPl/!'

sup ' P = kP, , shown in Figure 4.

1
2.1 Derivation of F up—
Let T(w) (template of P(jw)) = {P(jw)} over the range of uncertainty

of P, and B(w) = Boundary T(w) . If the uncertainty is only in k then

T(w) B(w) , some of which are shown in Figures 2b, 3a, b the numbers and
letters in order of increasing w values. The NL of a satisfactory -F is
shown in Figure 2b and in Figure 3b on the N:I.chc;ll chart. (Henceforth the
subscript 7, is omitted in the figures.) F(s)+P(s) is the complex number
(or vector), originating at -F(s) and terminating at P(s) . By considering
the motion of P relative to F , i.e., taking -F(s) as the origin of
(F+P) at each s € % + it is seen that P encircles -F one half times
counterclockwise, 6* =-.5, VkE€I(l,k)] . Note that Arg(-F) > Arg P
in Figure 2b, except at w = 0, and that a -F similar to above, but

with Arg(-F) < Arg P would give 8’ = .5 , which is not acceptable. It

is seen that the following are necessary and sufficient conditions for F+P

tobemp VKkE€E [1.):2] .
A. (a) -F(0) > kP(0) . (D) -F(®) < P(=)

B. -P(as) ¥ T(s) Vsé€ (3)

c. 6 v = - ,5, with the following geometric interpretation:
In Figure 3b the B(w) are vertical lines of equal length. Each point on
B (w) corresponds to a specific k value , By(w) . At any fixed k ,

let n be the number of w values at which |[F(juw)| = | B ()] ,




Arg -F(jw) < Arg Bk("’) . Then n must be even in order that E* -~ .5,
as in Figures 3a, b. In other words, -F(jw) in moving from above B(0)
to below B(w) , as per (3Aa,b), may temporarily be on the left of B(w)
(Arg ~F < Arg P) in Figures (3a,b), but in the net, must execute the passage

on the right of B(w) where Arg -F > Arg P .

PO |, , RO _k

F(=) with k

From (3Aa,b), it is necessary that l 2 B(=) e 2
the maximum tolerable k (recall k., = 1). Hence it is desirable to
maximize |F(0)/F(°°)| , subject to (3B,C). However, for mp and stable

(denoted by mps) F(s) (Horowitz 1963)

® 6_p(w)dw

¢n |— ==L ——— ., 0w 4 Arg (-P(W)) (4)

so it is desirable to minimize 6_.(w) at each o .

If the above defined n =0 for all s € JL, then from (38)
0_p(w) < Arg B(w) = Arg P(juw) A 8,(w) , Yw € [0,®) , giving
inf e_l,(w) = ep(m) . Since F is mps, it is determined ’(up to an arbitrary

constant factor) by 0p ¢ giving the supremum PF(s) , denoted by

=(s+\z)

Poup = “1/P(~8) = Fo+z)

sup

K is obtained from: Numerator (Fsupﬂ’) = (32-1222)-1«(82-:2) =

= -z(l-kx)ﬂ:z (xx-x") . The coefficients must have the same sign, giving

2
klx =K=1, kzx =) = k2 . The root loci of 1+k?1/l"“P are sketched in
Pigure 4. ’sup is obviously unique.

2.1.1 Casen ¥ 0 . Obviously from (4) it appears desirable to let 0_, < OP

for some intervals, e.g., in (O""x) in Pigures 3a,b with O_r = °P for

. it -
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w € (w,,®) . The value of (4) would be presumably thereby increased. The
trouble is that (3C) dictates [P(je )| > ky|P (Ju )| with [F(=)] < [P(=)] =1

1 l"(ij)
Pl (ju;) F(w)

as before, giving kz <

. But IPl(jmx)l increases with

w,, as does |F(=)/F(Ju)| . ~as shown below. Thus (Horowitz 1963)

A L S
(w2 -«!2)
X

AN

F(jﬂ:) | ® i

‘n"ﬂ;‘)” '£ ulw) 6_(wdw , u =

with u(w) > C for w < Wy <0 for w > W, - Hence, to maximize (5),
maximize °-r in o < Wy minimize it in o > w, - However, the set
{F(jw)} is constrained to have 6_, <6, for w<w , 6_,> 6, in

w>w , %0 let sup 8_’ = 6y YV w . Thus (5) decreases vs w, » and

(“’x) opt = 0 , giving the previous A P "

2.2 P(s) with General Uncertain Poles and Zeros.

In P = k(s-z)/(s-p) , k € tl,kzl » suppose z and p have independent

uncertainty. Then a typical T(w) is shown in Figure 3c for =z e e

B (u)l the boundary of T(w), has vertical lines due to the independence of

the uncertainties. It should be clear from 2.1, 2.2 that the worst case

P 2
determines max kz to be (;!1—'-'-’ . This is also seen by considering only

the case, for which k has the above value. The resulting

P-in * Zmax

2 max
design also obviously satisfies all other p , £ smaller k2 combinations.
If P m:l.n‘zux and Pm>: min * then nmp elimination is impossible for any

finite k uncertainty, no matter how small.

—
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Consider P as in above, but uncertain z, p, k related to some 1
extent-, giving more general T(w) . The previous arguments leading to
'Fsup lyingon B(w) Vw € [0,») still apply. The proof of existence
and uniqueness of such an Fsup is basically the same as in (HOrowitz and
Sidi 1978). However, it is more difficult now to find ’sup . because .
unlike the above Arg Fsup(w) is not apriori known. It is only known that

there exists a unique mps analytic function which lies on B(w) at each w .

Finally, consider P = k %%E%% Pz(s) ' 92 having only fhp poles and i
(s+a1)

zeros with uncertainty, e.g., P,(s) = . ay € [‘11'a12] . In

(s+a2) (’“3) i

order that the new T(w) and B(w) be qualitatively similar to the previous,

Pl(s+a°)

we could let F = . ay fixed in [al,azl etc. and then the

(S+b°)(s+co)

problem is one of zeros of

(s+b ) (s+c )
P oK (s-2z) (s+a) o ()

1 (s-p) (s+a°) (s+b) (s+c)

1 ]
4 L

Again, the reasoning in 2.1, 2.2 applies leading to the conclusion that 'sup
lies on B(w) at each w € [0,#) , where B(w) is that of P' over its
range of uncertain parameters. In the balance of the paper, only uncertainty

in k 1is considered, with generalizations applicable in the same manner as

the above.

2.4 More Conservative Boundaries.

It is obvious that the above design philosophy applies to other kinds of
bounds on the zeros of F+P = § . A reasonable alternative is that the zeros
of ¢y must have a real part ¢ =0, 0 > 0 . The line Re s = -0 replaces

the imaginary axis, so let s = w0 , P(s) sk ~S=El_a) [M=(0t2)] . . o

(s=12) w=(0o+\z)
A = Casld and resulting new k - Az < Az and new
new o+z 9 sup new

5 I . -~ e T pe— vy i
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l
wt (o+A2) 8+20+\2 |
Pl\lp i wt (0+2) " S+20+z 3 (6)

Another possibility is that "damping factor of the zeros of y" > € > 0 .

The boundary is then a straight line in the second quadrant through the

origin, at sin—l ;’o with the vertical. This is the new % but the
procedure and results are as before, i.e., one finds B(s) , s € ?L , etc.,

and develops the integrals analogous to (4,5) in order to derive Fsup

2.5 Reduction of Nonminimum-Phase Property.

In 2.1, 2.2 if k, > A2, then for some k , ¥ of (2) must be nmp. ’

However, one may design so that the 'worst’ nmp < that in an uncompensated
design. The concept of less or more of the nmp property is evident by noting |

that rhp zeros contribute excess phase lag (Horowitz 1963). The further the

rhp zero from the origin, the less this excess lag vs w , so if the nmp
property cannot be eliminated, it is desirable to at least guarantee that the
rhp zeros lie as far away as possible from the origin.

In this new problem, 7L = W,¥W,...W, , semicircle of radius R in
Figure 5, because the forbidden region for the zeros of ¢ is its interior.
But the reasoning and technique is precisely the same as before. Again, the
conclusion is that l"o pt (not sup because the boundary of n is assumed
permitted) lies on B(s) for each s € ?Z » and this corresponds to each

s G’}I_on a root locus of popt + kPl for k € [1,k2] v

The derivation of Fo ot is not difficult for the case of k uncertainty
&

only. Arg Pl/ropt must have a constant value on )L (zero or 180°, the

former here). The inverse image with respect to "1 Wz W3 + of the zero-pole

pair at z , Az is a pole-zero pair at Rz/xz ¢ Rz/z ¢ i.e., this combination




of 2 pole-zero pairs has a consta”! angle on "1 "2 W3 . The inverse image
of these two pairs with respect to HS is their fhp image, shown in

Figure 5, with the resulting root loci. The new k2nax is now

2
xz(Rz-zz)

(R2-2222)2

> 22 (7)

new k
6g., IR 306 A, e e ™ mere T has
°1dk2nax 9 opt

rhp pole and zero, apparently violating the constraint that F is mp and
stable. This is because the actual constraint used is that £nF be regular

in the forbidden region, which is now the incerior of "1“2"'"5 .

Of course, one may define different shapes for n . ©€.9., in a
specific problem, a highly underdamped rhp zero pair may be more tolerable
closer to the origin than a more damped pair further from the origin
(Horowitz 1963). An ellipse with horizontal major axis might then be more

suitable for ?L - The conclusion that F_ lies on B(s) for s € ?L

pt
probably still applies, but it may be more difficult to find Fopt , Or a

good approximation to it.

» i L ke " s s calie b




-10-

3. MORE COMPLEX P(s)

While the results in Section 2 are of interest in themselves, they are
more important in suggesting an approach usable for more complex P . An
important conclusion was that -Fsup(m) € B(w) ,V w€ [0,) which coincided
with @_p = 6, . The more complex problems next treated show that in most
cases @_p = 6, does not coincide with -Fsup € B(w) Vw . Each case

considered introduces a new property.

3.1 . Case 1 - High PFrequency Modification.

Consider P = 35Bl Ak p (s) , k€ [1,k,] with p,EH >0, and
s2-Es+

such that Op €(-.5‘Wo°) in (orw.) [} €(00-5”) in (w.'ﬂ) and

[P(jw)| > P(0) , as in Pigures 6a, b. If k, < 0Q/0A in Figure 6a, then
a constant value for ~F with k2P,1(0) < =-F<0Q = pl(j"’*) is satisfactory.

But for larger k., a dynamic F(s) is needed, such that -F encircles

2
{B(w)} once negatively. Given -F(0) > kzpl(O) . this requires the

existence of an w, at which [F(Ju)| < [P (GGu| , 6_ () =6 () .

and =~F(w) > kzPl(-) = 0 . (It is easily seen that -F(0) < PI(O) is
inconsistent with mps F .) Also in Figure 6b, -F must in the net execute
the passage from above B(0) to below B(ux) on the right of B(w)

(6_1, > OP) . and the passage from below B(ux) to above B(®) in the net

on the left of B(w) with 8_p < 0p (cf 2.1 after (3) and Figures 3a, b).

P
An acceptable ~-F is shown in Figure 6b with OKl , OK2 two among many

possibilities for w > wy .

~ g ———— e — ———
¥ SR A W e e
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The conditionon F at *« is easy to achieve, so kz maximization
involves maximization of

2
2wx o . 1
v, [F© /P30 | = —,,—(f) MO _dw ¢ u(w) =

(8)
2
w(w -wx)

>0 for w>w Hence, it is desirable to minimize

< < .
0 for w Wo v x

8_p in w < w, and maximize it in ® > w . However, it was noted above

that in the net O_F > ep in (O,wx) .

One might suggest use of e_F < ep for some intervals, i.e. n#¥ 0

as in 2.1.1, but a technique similar to that of Equation (5) can be used to

prove it worse here also. Thus it would require existence of an w, <w at

x

which G_F =6_ and |F| > k2|P1| . Maximization of

P
2.0
« wd _(w -w )dw
2 ha -F'"'x o
i [P )/rie| =S [ —t—a—s (9
0 (0 =) (w =-w")
b 4 o
F(jw ) F(ju,)
derivable from (8) by considering 2n T(o—’)‘—l and tn T@——l leads,
as in 2,1.1, to wo =0 .
s2+psen

TS v rompeies Saying 0, m 0 0 Ly BB e or®)

qualitatively shown in Figure 6a. It is interesting to relate this to the

root loci of 1+P/r1 shown qualitatively in Figure 6c. The numbers E = 5,

F=6,p=1 are taken for illustration. The double root at

jux = j3.9 corresponds to M (on Pnin ) — note that -rl

lies on B(w) on both sides of M in Figure 6a and to the lowest k for

which the root loci are all on the 3jw axis in Pigure 6c. The double root

R —_—

Py
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at the origin corresponds to V in Figure 6a — with a similar property of
-F when the locus for w < 0 is included. The single root at 3j4.8 = jmy
(at kz) corresponds to point Y in Figure 6a — at which =-F lies on

B(w) only for w < wy X

Since =F) lies on B(w) for w < w, . NO improvement (decrease of .-}

F

is possible there. But it is possible to improve matters by increasing o_p

for w > w, because -F, does not lie on the B(w) for w > wy - Any such

increase will however decrease |F/F(0)| V 0 <w < Aw ~for some A > 1

(Horowitz 1963), creating new e o "'y and larger kz . A simple way to

(52+Es+H) (szﬁn:)

increase 6_, for w > w, > w, is to let -F, = X(s+p) » which

leaves e_F unaltered in (O.uz) . It is relatively simple to find

w, ( = 10.9) from Num. (1"2+P) by requiring that at k, =1 , it has a factor

1
(sz*ui)z Pow - 2.1 replaces w, in Figures 6b,c. At kz it should have

a factor sz(szmg) giving w, = 7.24 replacing w y (Compare Figures 6a,c

at w = 3.9, 7.24, 9.8, 10.9). “Fom, is shown in Figure 6a and permits a

slightly larger k, = 1.797 in place of the 1.731 for F Note that -F, lies

2 2

on B(w) for w € (0,9.8) > (0,4.8) for which -l"1 lay on B(w) .

One may increase kz by repeating the above with the factors
szﬂ lzﬂ nzﬂ
1 2 m 2
(2 Xz )(2 )(-M-u)
8 +Bl s +52 s +B.

Ai < B < A1+1 . Such increases'are always possible if 3 any interval in

which =-F does not lie on B(w) . However, the increase obtained is found

to be exceedingly small and does not justify the design effort.




e

3.2 Case Two - Low Frequency Modification.

lLet P = k(sz-hs+B)/(sz-Cs+D) &xp,, k€ {l,kz} with parameters such

1

that P is as shown in Figure 7a, i.e., .57 > OP >0 in (O.wl) .

= .5m <0, <0 in (w.® ; |P(jw1)| < |P(»)| < P(0) . Again, a constant
: -1

-F can handle uncertainty k, < |21(jm1)| « i k2|P1(jml)| <~F<l.

For larger k2

=F(0) < 91(0) ; F(®) < Pl(w)

3 w, 3 OP = 0

_p but -Flju) > k, Pliu,) } (10)

F(s) # k P, (s) , s E T ard £w--1 g

From (10) it is desirable to maximize |F(jw )|/|F(0)| , |F(jw )/F(=)
The effect of e_F on the former is given by (8). 1Its effect on the latter

is (Horowitz 1963)

F (Nx) 2 2 © £
o F (=) ‘ " 3Y%x I 9_F(w)x(w)dw v AMw) == . (11)
0 Ux-‘ﬂ

Thus, from the signs of the weighting functions u(w) , A(w) in (8.1l1), it
is desirable to minimize O_F € (O.mx) and maximize it in (Nxv.) subject
of course to (10). However, from previous experience one might guess, and

it is in fact so, that in these intervals inf and sup e_F are equal to

OP + 80 it is reasonable to try (32+C3*D)/(32+A9+8) 4 ") — Figure 7a,
giving k2 = % . It is seen that Wy of (10) = w; and tnat indeed %

constrains e_F but only in (mb'.) because -r1 lies on B(w) only in
(wb,w) . Note that n=0 is assumed. Proof that ny¥0 is inferior, is

similar to that previously given in 2.1.1, 3.1.

e S S,

a dynamic F(s) is needed satisfying the following conditions
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Accordingly, e_r may be increased in (O.ult;) (because the change

changes m.b) » but in such a manner that 6_. = 6, in (u\;.w) . A simple
2
s
way to do this is to let P2 = I-‘l ) 3 giving e_F = 6P for w > w,
(s +uw,)
2
but O_F = 62 for w < wy . The value of w, is found by considering the

numerator of

L+ B oy . K(s?-AseB) (s%+ns+B) (s7+u3)
ikt PR b
8 (8 =-Cs+D) (8" +Cs+D)

F

whose (qualitative) root loci are shown in Figure 7b, for the case

P

- Eio=l)(8-2) . chocses
2

(s-.5) (s=3) °
2, 2.2

zZeros at « and a factor (s +m°) . Note that -Fl lies on B(w) only for

w > e - .64 in this example, while -P2 lies on Bf(w) for w > - T

so that at k=1 , the numerator has two

Note the relations between By 0 W, ¢ W and the k values in Figures 7a,b —

cf similar comparison of Figures 6a, 6c. The difference in k2 is however,

not large — 1.41 = OB'/OA instead of 1.39 = OB/OA in Figure 7a. Increased

improvement is, of course, possible because -F, does not lie on B(w) € (0,.3),

2
but it is already seen that the improvement will be very slight — for example
use of (sz*u:)z/l‘ gives l..‘ 1.412 with -P3 on B(w) € (0,.138) , (.287,=) >

(.3,) for -'2 .

3.3 Case Three - High Frequency Modification.

In this case P has a pair each of rhp poles and zeros J 0 < ep < .5m

in (olﬂo) ’ - 5n1 < 9, <0 in (dop.) ¢ ‘P(juo)‘ < P(O) < P(.) ’ €e.g.,

2 2
paxdso82) .y € (1,k,] in Figure 8a. Using -, = IS8 540

(8%-38+4) (s24842)

K=4 ..Akz = 2,88 and -F on B(w) for w € (0,2.08) . It is therefore
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possible to improve e_F in the high-frequency range. Here, the constraints

on a realistic -F are: F(0) < P(0) and at some w O_F = Op with

]F(jwl)[ > kz]P(jwl)l , SO maximization of |F(jm1)/r(0)| is desirable.

From (8) this is achieved by maximizing e_r in (O,w and minimizing it in

1)
(wl,m) . But such a =-F will be on B(w) in (O,wl) , 80 the improvement

can be made only in (ul,m) . This is conveniently done by means of poles at

* jwl , which leaves e_F = ep in (O.wl) . The resulting root loci of

1+P/F2 are then shown qualitatively in Figure 8b, for the above numerical

example. To optimize, w is chosen so that k.. = k = kl = 1 . The result

1 11 12

is k2 = 3.23 > previous 2.88 with w = 3.987 , and -F lies on B(w) for

2
w € (0,3.76) , cf previous (0,2.08) . In this case use of two coincident

complex pole pairs in place of the single pair leads to small increase of

k (3.27 in place of 3.23 with =-F, on B(w) € (0,4.42), (5.84,6.43).

2 3

Additional improvement is, of course, still possible because -F does not lie

in B(w) , for all w .

3.4 Case Four - Medium and High Frequency Modification.

In this case, P has three rhp poles and two rhp zeros with coefficients
such that P7b is as shown in Figure 9a, i.e., in the first quadrant for some
(o,ul) . in the fourth for (“1'“2) and back in the first for (w,,®) , with

IP(Juy) | > [B(O)] > |P(jwl)| and P(») = 0 , e.g.,

2
= & -k(s - .8)
P=kP) = =) (ac6) (5510

., k€ ll.kzl . Since a constant -F is capable

of handling some range of k , it is reasonable to try -rl 3
(s +.8)

choosing K to maximize k2 ; giving k2 = 4.36, K= 351.6 . The root loci of

o K(s +.2) (s+6) (s+10)
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(1+P/F) are shown in Figure 9b (qualitative). Note that -F, does not lie
on B(w) in (4.0,14.1) and (37.4,») and the relations between these points

in Figures 9a,b. Hence, O-F can be changed in these intervals, to permit

larger kz .
How should O_F be modified in these two intervals? In this case

5"- -1.5 is required, so there must exist ”x'“y > we 3 F(0) < Pl(O) ¢

[FGGu | > kzlpl(ij)! % |F(jmy)l < ‘Pl(jmyﬂ » F(=) > 0 with

8 ., =6_ at wx'wy « (For F

-F p 17 9, = .75 , w_ =4 . There is another

x b4

Wy wy pair at (14.1, 37.4) because F(®) = » but they need not be

considered.) 1In Figure 9a, it is seen that ]F(jux)/F(O)l is the constraining
factor, so the freedom in 6_F in the two intervals should be used to maximize

this factor. From the sign of u(w) in (8), this means decreasing e__F in

these two intervals, because W, <4 . In the first interval, this can be done

by letting Fz = K2r1(32+3)/(sz+h) + A < B and choosing K2

maximize kz . When this is done an improvement is indeed found, but it is

+ B, A to

very small (4.375) and the region with -F on B(w) increases to ~ (0,8.9)

and (27.8,58.1) . 1In the second interval the modification to F would logically
consist of a factor (32+B) in the denominator. This leads to -F, on B(w)

in (0,10.6) and kz = 4.379 , with the root loci in Figure 9c, for this
modification only. One could use both modifications but in view of the very

small kz increases for F F. the effort is not worthwhile.

£ 3




4. CASE CONSTANT F NOT SATISFACTORY

In all previous problem classes there existed a finite k range for
which -F a constant was satisfactory. This was due to ‘P curving
sufficiently such that it encircled negatively some point on the real axis
N/2 times, with N the number of rhp poles of P . Our technique was based

on this assumption, as one could then start with G_F = OP giving —Fl the
1

jw axis image of P . The resulting F. could be improved if there existed

1l

any w interval in which -Fl did not lie on the B(w) . This is not always
k(s-1) (s-2)

(s=3) (s-4)
£*- - .5 at most for -F a constant. Use of 6__ = 6, no longer gives a

the case, e.g., P = has ep € 0Vw€ [0,) , giving

F P
satisfactory design for any finite k range, no matter how small. It is shown
below how any such P can be modified to a new P which does have the
desired éa,- - N/2 for -F a constant. One can then find Fsup for this new
P as before. Furthermore, optimization of the new P is also possible, as
illustrated later. The modification of P involves insertion of additional

rhp 2e.0s and/or poles.

nn nn
n o P o
Let P = a pold ot o W be the modified P and T = 3 dasam
o o o
nong
5 where the n, . di are polynomials with real coefficients. The desired

N/2 encirclement condition for P is equivalent to D having no rhp zeros.

If D has only interior Lhp zeros then continuity of the zeros of D with

respect to its parameters, guarantees the existence of a finite range of each

for which D has only fhp zeros. At each rhp zero of d° (@enoted by z; .
v i

i=0,...m) , T=1 and n(s) =) A s is chosen to achieve this as follows.
0
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Let D(s) be a real Hurwitz polynomial of degree > , larger of
[degree of do(s) o orof n no(l)] + none of whose zeros are those of
n(s) but is otherwise arbitrary. Setting "('1)"0(21) = D(zi) gives m+l
linear equations in the m+l Ai coefficients. As the resulting matrix in
the vVandermondian, there is a solution, giving n(s) . Then d(s) is obtained

from 4d do = D-nn_, in which D, n

o o do , n are known. In the above

the rhp zeros of do were assumed distinct. One can extend the proof to the
general case but it is simpler to suggest that one can always perturb the
multiple root case to distinct roots with negligible effect on the problem.
The above procedure is certainly practical but one may decrease the degrees
of n(s) , d(s) by a suitable rather than arbitrary choice of D(s) , as
shown in a later example.

The above constitutes proof of the following theorem. Its generalization
to non-real P , G and to an arbitrary half plane is obvious. It is equally
obvious that it may be extended to apply to nonzero independent variations in
the poles and zeros of P , as well as to its gain factor (cf 2. ).

n_(s)

o

Theorem: Given P(s) = k E;T;T ¢ with n, e do real polynomials with

arbitrary zeros. It is always possible to find a real rational function G(s) ,
such that 1+P(s)G(s) has all its zeros in the interior of the Lhp for a
nonzero range of k .

Example, P = 5%55%%%55%% » for which constant F is no solution as P(jw)

is in the fourth quadrant V w € (0,») . Using the previous notation, try

first T = K(851)(8-2) 14 see if A,B> 0 can be chosen 3 T(3) = T(4) =1 .
s’+ns+n
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K(s=1) (s=2)
(32+As+8)(s+c)
it is impossible to find A,B,C > 0 3 T(3) = T(4) = 1 . However, it can
be done with T = "("1;("2””"’ ; eg., A=B=1, p=-31/6, K=-3.
(s +As+B)

X(s-1) (s-2) (s -%1)

This is not possible. It is also found that in T =

Thus for Pnew = P* = there exists a constant F , 3 F+pP*

(s - %) (s-3) (s-4)

is Hurwitz for a finite range of k .

Optimization is achieved by first letting O_F =0 giving

pP*

Kl(s-+%)(s+3)(s+4) iL

F = 1 so that the root loci of 1-P*/F are as shown in |
(s+l) (s+2) (s +—6—) .

and k the smaller

Figure 10 with kl = kmin = the larger of kll' k12 2 ;

of (1,k,,) . An optimum design would be achieved if kll = k and k.. =1

21 12 21
(giving roots at + j=) , for then -F(jw) lieson B(w) V w € [0,») . . 4

k(s-1) (s=2) (s-2) e (s+p) (s+3) (s+4)

We therefore write P* = (3-p) (3-3) (8=8) ' (s+1) (s+2) (s+z)

seek z , p to achieve the two conditions k.. = k k,, =1 The

11 122 21 :
result is z = 5,275 , p = .832 , giving k2/k1 = 1.117 (in place of

1.068 for z = 31/6 , p=5/6) and -F on B(w) Y w € [0,®) .
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5. CONCLUSIONS

A design philosophy and methodology has been presented which is
useful for eliminating or reducing the nmp property for structures of the
form of Figure 1. One first deals with a P function, such that F a u
constant guarantees the Hurwitz character of the numerator of 1+P/F , over
some nonzero range of the gain factor k of P . It was shown in 4. that
the original P can always be modified to have this property. Then #
B_Fl = ep gives a first attempt F, which gives a larger tolerable range 1
of k than F a constant. If the resulting ~F, does not lie on B(w) Vo, i
then F can be improved. The means of improvement lies in deciding whether
additional phase lag or lead of F is desirable in those intervals where
-F) does not lie on B(w) . The Bode integrals are used in making this
decision and the implementation is by means of poles and zeros on the jw
axis, such that °p is unchanged in the other intervals.

However, the optimization of F was always over the mps class, and

it is conceivable that non-mps F may be superior. One way to handle this

possibility in the context of this paper, is to imbed P in a larger nmp
unstable class with more rhp poles or/and zeros than the original and apply the
approach of this paper. These additional rhp critical points are of course
supplied by F . Thus, direct optimization on the most general class of F

is not presented in this paper.
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A

Uncertainty in the poles and gzeros of P is easiest to handle when these

uncertainties are independent. For then, there exist extreme pole-zero com-

binations which limit the maximum range of k and give the resulting F . The

latter is then satisfactory for all the other pole-zero possibilities. These

extreme pole-zero combinations may be such that no F is at all available.

The problem of finding Psup can be much more difficult if the uncertainties

are related.
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