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A Method for Treating the Sheath Size in the
Langmuir Mott-Smith Equations

1. INTRODUCTION

Recent work in probe theory1 has been largely oriented towards collection of
ions from laboratory plasmas in which the electron temperature greatly exceeds
ion temperatures. In the ionosphere, electron temperatures are at most only ‘-. 2

to 3 times ion temperatures and are often even lower than this. In these circum-
stances the original Langmuir Mott-Smith (LMS) equations 2 are applicable not only
to electrons but also possibly to ions, and if some means of treating a sheath of
unknown size were available, the more recent (and more complex) theories with
the attendant difficulties In use could be dispensed with. This is the problem which
is addressed In the present paper. The treatment developed here will also be
applicable to the charging of vehicles by emission of beams of charged particles
into the ionosphere, since with the interchange of roles of dependent and independent
variables, the current -voltage relationships in this case may be identical with those
governing the behavior of electric probes.

(Received for publication 2 June 1978)
1. Swift , J.D. and Schwar, M.J .R .  (1969) Electrical Probes for Plasma Diagnos-

tics, American Elsevler , pp 69-72.
2. SuIts , C. G. , Ed. (1961) The Collected Works of Irving Langrnuir, Vol. 4,

Pergamon Press.
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Although the LMS formulas have been discussed extensivel y in the literature ,
there still seems to be some question concerning both the limits of their applica-

bility and also their relationship to the Langmuir space charge limited (SC L)

equations 3 for diodes . We are not referring to limitations such as the shape of
potential curves or relative values of positive and negative particle temperatures,
but rather to more obvious scaling effects . In much previous work , the limiting
cases of the LMS equations are discussed solely in terms of the variation in sheath
size. Here, the limiting cases are discussed in terms of combinations of sheath
size and potential , as they actually appear in the LMS equations . As a result of
this treatment, it will appear that the relationship between the LMS and SCL equa-
tions is not necessarily one of mutual exclusion but rather, often , of complemen-
tarity as far as domains of applicability are concerned. From the two equat ions ,
the sheath size can then be eliminated and an expression obtained for the current
collected in terms of voltage and Debye length which is approximately valid for a
large range of values of these two parameters. The arguments leading to these
results are given in the following sections .

2. THE SPHERICAL CASE

We first write down the two equations for a spherical collector in a conven-
iently nondimensionalized form thus :4 (See also previous references.)

= ~,2 - - l / p 2 ) e~~
/
~~

2
1)I (1)

J C2 ~3/2 /[~~ ,)) 2 
(1 +~!~) . (2)

The definitions of the variables appearing in Eqs. (I)  and (2) are:

2 kT 1/2
• I 

[~
41Fr~ e N (~~;j~~) ~

p = r 5/r~

3. Suits , C. G. , Ed. (1961) The Collected Works of Irving Langmuir, Vol. 3,
Pergamon Press.

4. Chen, Francis F. (1965) Plasma Diagnostic Techniques, Huddlestone and
Leonard , Eds , Academic Press.
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2~~~2.Jir 
~3

and

r~ = probe radius

= sheath radius

= Debye length

= probe potential

e = electronic charge

= ambient undisturbed charged particle density

T = (Maxwellian) temperature of ambient charged particles

m r. mass of collected particle

k = Boltzmann constant

I = Probe current

We note that a is a known function of P. so that Eqs. (1) and (2) are two equa-
tions in the four variables C, 

~~, 
p and J. Concerning Eq. (1) , the LMS equation,

there is in its derivation no assumption, aside from an indirect one related to the
shape of the potential , relative to the size of the sheath. There is only an assump-
tion that a sheath edge exists , beyond which the plasma properties assume their
undisturbed values. Thus, in the absence of other restrictions, Eq. (1) is expected
to be valid for any sheath size . Concerning Eq. (2) , the SCL equation, the limiting
assumption is that all particles which leave the sheath edge arrives at the probe.
Now, when th/ (p 2 

- 1) ~ 1 in Eq. (1) , the latter reduces to J = p 2: that is, all the
particles leaving the sheath edge reaches the probe. In fact , when the more
severe condition ~ /p 2 >> I holds, the motion of charged particles to the probe is
approximately radial. The key to the simultaneous validity of Eqs. (1) and (2) is
thus the criterion Ø/ (p 2 

- 1) >> 1. When ~ /(p 2 
- 1) ~~ 1 on the other hand, Eq. (1)

reduces to J = 1 + 4~ which is independent of p. We thus arrive at a situation in
which solving the two equations simultaneously for J as a function of 4~ and C yields

results which are valid both for ~ /(p 2 
- 1) >> 1 and for ~ /(p 2 

- 1) ~~ 1. Since
- 1) = i t s  not a singular point for either equation and further since Eq. (2)

is not too bad an approximation at ~ /(p 2 
- 1) = 1, it is not unreasonable to assume

that values of J obtained for ~ /(p 2 
- 1) ~~1 are also approximately correct. As far

9
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as values of p are concerned, however, this is clearly not the case; the values of
p obtained are only accurate for ~ /(p 2 

- 1) >~ 1. We recognize the heuristic
nature of these arguments and e~p1ore the consequences of their assumed validity.

To solve Eqs. (1) and (2) we form :

P(p) = p 2 
[1 - ( 1  - 1/p 2 ) ~~~~~~~~~~ Ia(p) 1 2 

- c2 ~3/2 

(

~ +!!~) = 0 . (3)

Using the Newton-Raphson method Eq. (3) is solved for p, and J is then obtained
from either Eq. ( 1) or (2). Details of this solution are given in the appendix.

The results of these calculations are shown in Figures 1 and 2. In Figure 2,
values of p 1 above and to the left of the curve labeled p =~~T i ~~ are available,
but as noted the calculation does not yield valid results for p in this region. As
the curve p = .TT j  is approached, the accuracy of the values for p is reduced,
while values away from this curve will have increasingly better accuracy. The
dashed line in Figure 1 is for J = 1 + ~(l - l/e) and is hence the equivalent of the
curve p = in Figure 2.

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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FIgure 1. Nondimenslonalized Current J vs Nondimension-
alized Potential ~ for Various Values of the Parameter C for
a Spherical Collector
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Figure 2. Nondimensionalized Sheath Size p vs Nondimen-
sionalized Potential ~ 

for Various Values of the Parameter
C for a Spherical Collector

3. ASYMPTOTIC PROPERTIES

We investigate the dependence of J and p on ~ and C as ~ -_ so, and as 4 - 0.
Note the difference between this asymptotic limit and the limits commonly dis-
cussed in probe theory. In the latter , ~ is held fixed while p -. oo or 0; here,

-= so or 0 while p varies as an implicit function of 4,. The procedure followed
here is the more useful , since the variables under direct experimental control
are 4, and C, not p.

As 4, - so , we may assume that p -. so so that a2 
- (1. 11) 3/2 p 3/2 (See

Appendix , Eq. (12)) . Thus , Eq. (2) may b~ replaced in this limit by

C2 3/2
— 

(1. 11) 3/2 3/2

There are now three possibilities.
( 1) As 4,, p — so , 4 ,/ (p 2 

- 1) —
(2) As 4,, p -= so , 4 ,/ (p 2 

- I) — 0
(3) As qS, p -= so , 4 , / (p 2 

— I) ~. k � 0 , so .

11 
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We examine each of these in turn to see if ti- can represent self-consistent

solutions of Eqs. (1) and (4).
( 1) In this case 4, >> p 2 

— 1, so that J = p 2 ( Eq. (1)) , p
7~/2 

= C2 03/2 / ( l  11) 3/2

( Eq. (4)) , 4, = 1.11 p 7/3 /C~ ’3, 4 ,/ (p 2 
- 1) 1.11 p 1

~
’3 /C

4
~
’3 

— so and this is

self-consistent.
We have for this case

= c417 
~~

l
~/ ( l . ll)~’~ 

(5)

= C817 4,6/ 7 /(~ 11) 6/ 7 
. (6)

(2) P
2 

— 1 >> 4, . Then~ J = 1 + 4, 4, (Eq. (1)) , p~ ’2 = C2 4, h 12 /(~ 11) 3/2

( Eq. (4)) , 4, = (1 . l l)~ p 3
/ C

4, 4 ,/ (p 2 
— 1) (1. 11)~ p / C 4 —. so and this is not

selr consistent. 
. 2 —

(3) 4, = ~~(p
2 

- 1). Then , 4,~~~
’
so ~~~~~ 

1 = e~~~ a B a constant ,

J = p 2 (l - B) + B (Eq. (1)) . p 2 (1 — B) + B = C2 / ( l .  11) 3/ 2  4,
S
~”2 / p St 12

, and for p
large this is , outside of the factor (1 - B) identical with case (1) , which leads to

- 1) -. so and is hence not self-consistent .
Thus , only case (1) is self-consistent and Eqs. (5) and (6) must be the

asymptotic limits for 4, — so.
The two conditions necessary fo r Eqs. (5) and (6) to be valid, namely

1.lip >> 1.64 and ~~~~~ - 1) >> 1 are asymptotically equivalent to
(1. 1l)~ ’~ C4t7 ~3~’7 >> 1.64 and (1. 11) 6/7 4,~~

7
/C 8”7 >> 1 respectively. The

accuracy of the asymptotic approximation thus increases with increasing 4,, but
may either increase or decrease with increasing C. This behavior is confirmed
by a comparison of numerical and asymptotic values. The agreement is best at
C ~ 1 in which case the asymptotic value is accurate to within 2 percent at
4, = and to within 0.4 percent at 4, 106 for both J and p.

The opposite limit , 4, .-. 0 can also be investigated using Eq. (2) since the
latter is derived for charged particles leaving the emitter surface with nonzero
initial velocity, and is hence valid for small values of 4,. Although this case is
not of great interest practically, a consist’~ncy analysis similar to that performed
for the 4, — so limit is easily carried out and shows that the only consistent results
fo r4 , - . . 0 are

2 ~ 1/2
4j / ( p  -1 ) -. ~~ 0

2 ~~~~ C

limand hence that 4, — 0 ~ = 1 + 4,.

- 
12
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For fixed 4,, the approximation becomes better with increasing values of C. Thus ,
for example, for 4, = 0. 01, the asymptotic value of J is 1. 01 and the numerical
values are as follows:

C 0.01 0. 03 0.1 0.3 1. 0 3 10 30 100

L~ 
1. 003 1. 006 1. 009 1. 010 1.010 1.010 1.010 1.010 1.010

In this limit (4, - 0) since 4,/ ( p
2 

- 1) << 1, t here is no valid approximat ion for

p.

4. THE CYLINDRICA L CASE

The argument for the cylindrical case is not as clearcut as is that for the
sphere. The LMS equation for the cylinder contains 4, in three combinations with
p and an addition assumption is needed to complete the argument , namely 4, � 1.
Nevertheless, values of 4, for which this holds are the ones of greatest practical
Interest.

The two applicable equations for the cylindrical case are (previo~~ references):

J = p erf 
~~~~~~il 

+ - erf ‘

~ ] 

(7)

2 4,3/2  / 2 6 6J = C  1 1+ - (8)
t~3(p) I  \

where

I i 1-i
J = I I 2 I r L r  eN tI kT

p so V 2 T m

L = probe length and all other quantities are as previously defined for the sphere.

Now , let 4, > 1, and to start with, 4,/ (p 2 
- 1) cz < 1. Then, p 24 ,/ (p 2 

- 1) 4, and
- 

. Eq. (7) becomes

~ p_ L~j7 + e4, (1 - erf ~r4,)

13
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which is independent of p.  In the opposite case, namely 4 , / (p 2 
- 1) >> 1, we must

also have p 2
4 ’/ ( p

2 
- 1) >> 1 and hence J p. Thus , with the restriction 4, > 1, the

same reasoning as applied t o t he spherical case applies here, and the two Eqs. (7)

and (8) may be solved simultaneously to obtain J and p as functions of 4, and C.
Again , the solutions for p are only valid when 4 ,/ (p 2 

- I) >> 1.
To solve Eqs. (7) and (8) we form

F p erf ~[~~~~ + e 4, 
(1 ~~erf ~~f~~~~~

) 
~~~~~~~~ ( l ÷

2. 6 6 ) = o  (9)

solve th is for p, and then obtain J from either Eq. (7) or (8) . The details of the
numerical solution are again given in the appendix.

The results of these calculations are shown in Figures 3 and 4. It is seen
t ha t for t he cylindrical collec t or , the solutions for p have a domain of validity which
diffe rs markedly from the domain of validity of the sphere.

Th e asymptotic properties of the solution for the cylinder may be obtained by
considerations of self-consistency in the same manner as was done for the sphere.
The results of such considerations are again that there is only one self-consistent
solution for the two equations and for 4, -= so, t his is t hat 4 ,/ (p 2 

- 1) -= 0, and

1 im J = -
~~

—- ~~~~ + = -~~-— .i~ . (10)
4 , — s o  

,~~~~ ~~~~~

The asymptotic expression for p may also be formally written down but is
mean ingless since solut ions for p are only valid when 4,/(p

2 
- 1) >> 1, while the

asym pt ot ic for ms are only valid for 4 ,/ (p 2 
- 1) << 1. The asymptotic expression

for p is thus valid nowhere.
Note the radical difference in behavior between the spherical and cylindrical

cas es~ for the sphere,

4, 4 , / ( p
2 

- 1) -_ so

but for the cy linder ,

4,
li

~:fl so 4 , / (p 2 
- 1) — 0

The high voltage limit of the current for the sphere is thus space charge limited,

while for the cylinder the high voltage limit is orbit limited.

14
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Figure 3. Nondimensionalized Current J vs Nondimensionalized Potential 4,
for Various Values of Parameter C for a Cylindrical Collector
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I 10 100 1000 I0~0O0 00,000

FIgure 4. Nondim erslonalized Sheath Size p vs Nondimenslonallzed Potential
4, for Various Values of Parameter C for a Cylindrical Collector
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Since for the cylinder we must in any event have 4, > 1, there can he no
asymptotic forms for 4, — 0.

The conditions for which Eq. (10) is valid, namely ~ >> 1, o p
2 << 1 indicate

that the accuracy of the asymptotic formula increases with increasing C and also
wi th increasing 4, for higher values of 4, . This behavior is evident in Figure 3, and
is also confi rmed by the numbers below which give percent deviations between
asymptotic and numerical values of J for selected values of C and 4,.

C 3. 3. 3. 3. 1. 1. 1. .3 .3

4, 102 ~~ ~~ l0~ ~~ l0~ l0~ 1O4 l0~
percent 0.89 0. 14 0.00 0.00 4.23 1.34 0.34 36.4 14.2
dev J

16
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Appendix A

Formulas for Numerical Calculations

Listed below for reference purposes are the expressions for a, a’, ~~, f31 and

F’ used in the Newton-Raphson solutions of Eqs . (3) and (9). (Pr imes denote

derivatives wit h respect to p, and y = In p . )
(1) Spherical Case. The values of a(p) needed to solve Eq. (3) are tabulated,

but we used a series 1

a1 y + 0 . 3 7 2 + 0 . 757 3 + 0 . 143182 y 4 + 0 .0021609 y 5 + 0 . 00026791 7
6

(A l)

for values of p < 10. 0 and a formula2

a2 = (l.llp - 1.64)~ t~ (A2)

For values of p > 10. 0. At p = 10, Eq. (Al) yields a~ = 29. 06, Eq. (A2) yields

29. 09, and the tabulated value Is ~
2 29. 19. The value of p is tested at each

• iteration in the Newton-Raphson process and a1 or a2 chosen depending on whether

p ~ 10 or p > 10. The other expressions needed for the spherical case are:

1. SuIts , C. G. , Ed. (1961) The Collected Works of Irving Langmulr, Vol. 4,
Pergamon Press,

2. SuIts , C. G. , Ed. (1961) The Collected Works of Irving Langrnuir, Vol. 3,
Pergamon Press.
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r 2 1
F’ = p 2 1.1 - (1 - l/p 2) ~~~/ (P —l )j  2 a a’

+ 2 a2 p [1 - (4 , / (p 2 
- 1) + 1) ~4,/ (p 2~ 1)]

a~~’~~- E 1 . 0 + 0 . 6 y + 0 . 225 ’y2 + O.057272 8 ’y3 +0 .0 108045~~~~+0 .00 l60746~~~1

= 0. 8725 (1. l i p  - 1. 64) 1/4

(2) Cylindrical Case. For ~3(p) we used2

= + 0.40 7
2 

+ 0. 09l66C7 ~3 
+ 0,0142424 7

4 
+ 0. 0016793 + 0. 0001612

(A3)

for p ~~ 16 and

f3~ = 4. 6712P(1og 10 p - 0. i505)3 i~’2 (A4)

for p > 16. When p = 16, Eq. (A3) gives = 80. 83, Eq. (A4) gives = 80. 83,
and the tabulated value is 81. 203. The remaining expressions for the cylindrical
case are:

F’ = - 2/ .i~r ~
_
~ /(P 2 _ 1) ~~~~~~ - 1 + erf

%
f ~~~~

+ c2 
4,3/2 

(1 + ~~~ 6)~~~ 

- 1

= 1  Li + 0.8 y + 0.275 ~2 + 0. 0569697 73 
+ 0.0083965 ~4 + 0. 0009 672

= 2. 3356 .
~~~

— [0. 65144 (log 10 p - 0.1505)~12 + (log 10 p - 0. 1505) 3/2 )

18
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