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On the Negative Binomial Convergence
in a Class of m-Dimensional Simple Epidemics

by
H. Lacayo and Naftali A. Langberg

ABSTRACT

We consider a population which is exposed to m infections, and
consist initially of N susceptibles. At each point in time at most one

susceptible becomes infective, and only from one cause. This m-dimensional

simple epidemic is a stochastic process, (XN 1(t), Suthe X1 m(t)), wit® components
» SN

counting the number of infectives from the respective causes at time t.

We show that if the transition rates of cause 1 through m 2* tine t are
n
1

given by a; XN’i(t)[l - ﬁ.izl'xN’i(t) - x”,i(c)): i=1, ..o,moa, o, 0 >0

and if Lim X | (3) = b, ell, 2, ...}, then (X, (1), ..., X (t)) converges as
N~ » b =W

N + = to a random vector with independent negative binomial components.

Key Words: Exponential distributions, convergence in law, stochastic
processes, m-dimensional simple epidemics, negative binomial

distributions.
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1. Introduction and Summary

Introduction.

We consider a population which is exposed to m infections and
consists initially of N susceptibles and bN,i infectives from cause
i, i=1, ..., m. At each point in time at most one susceptible becomes
an infective, and only from one cause. Once an individual enters the
infective state he remains there and cannot be a carrier of any other
infection. This m-dimensional simple epidemic is a stochastic process,
(xN,l(t)’ e d XN’m(t)), with components counting the number of infectives
from the respective causes at time t. We show that if the transition

rates of cause 1 through m at time t are given by:

m
e Tk 5 3 L
aXy 1 (8301 - iZI(JN,i(t) by, )1 i=1, cooum o0y, o, @y >0,

and if

;22 bN,i = bi L2 ik s o
then for every positive real numbers t and g, and m nonnegative integers

kl’ vevp km’

m
n P{Xi(t) 2 ki + bi}

;i: p(xN’i(t) 2 ki + bi, is]l, ..., m) = FuA

and
Lin E(X, (t)? - a(xict))“, BT R
N+ as

where xl(t), sy X.(t) are negative binomial random variables with

(1.1)

(1.2)

(1.3)

(1.4)
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-a.t

respective parameters bi and e 1 »i=1, ..., m. The only previous work

in the area of m-dimensional simple epidemics is the one by Billard, Lacayo
and Langberg (1978), who proved (1.3) and (1.4) with the additional

assumption that @) = 83 ... = a, . In that case the interinfection

random times are independent of the infection causes. Generally, as

will be pointed out in Section 2 this property does not hold. The proof of
(1.3) in the cited reference depends on the special structure of the
interinfection times. To obtain (1.3) and (1.4) we have approached the

problem from an alternate viewpoint.

Summary .

In Section 2 we present a rigorous definition of an m-dimensional
simple epidemic, and describe the ones that are the subject of our
analysis. Statements (1.3) and (1.4) are proven in Section 3. 1In this
section we present an m-dimensional simple epidemic in a population con-
sisting initially of infinitely many susceptibles. This theoretical

simple epidemic is instrumental in the proofs of (1.3) and (1.4).




2. The m-dimensional Simple Epidemic
An m-dimensional simple epidemic in a population consisting initially
of N susceptibles and bN,i infectives from cause i, i = 1, ..., m can be
described by N bivariate random vectors (TN.I’ eN,l)’ AT (TN,N' EN,N)'
TN,I’ Saleiy TN,N’ are the random interinfection times, and EN,I' At EN,N
are discrete random variables with values in {1, ..., m} designating the

I
respective infection causes. Let S, . be equal to J T kel i N

e je1 No3’
The finite dimensional joint distributions of (XN 1(t), TRTe XN m(t)) are
’ ’

determined by (TN,I’ EN,I)’ Sty (TN,N’ EN,N)' through the following set

equalities:
: N r
: =b. . +k)= U(S SUEh<ES ; I =1) = k >0 (2.1
gt e N, T+l qgl (g =D =k ¢ Ge-1d
k=0, ..., Nyandi=1, ..., m. (SN,O =0, SN,N+1 = ®),

We assume throughout that (TN,I’ EN,I)’ S (TN,N’ EN,N),are determined
by (2.2) and (2.3).

P{CN’j =1,3=1, ..., N} =

(ol o e )i 1 ( ? (b kflx( 1))1°1 (2.2)
nNa 11 Lo j a. g £ - .
is] 1 jag  MNoi kel du1 1 Nod 57 e ;

N

where r, = X I(l.J =ji),i=1, ..., m.
=1 ;i N

- t

L vt

P{TN,klEN,l’ bl sl EN,k‘l > tk’ k — 1’ coey N} = e j'l (2.3)

where tl' vy tn are positive real numbers, and uj is equal to
- § m j-1
i=] qml

In the particular case discussed in Billard, Lacayo and Langberg (1978),

condition (2.3) reduces to independent exponential interinfection times

e Y e

-
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N-kel,¥%
with rates equal to o—p—( ) byi* k-1, k=1, ..., N, independent
i=1l 7’
of B il b . In addition equation (2.2) simplifies to
m N’} -1 NN N m -1
[D 0 (b, + 3T ( ) by i * k- 1)1, Finally we note that if
i=1 j=0 ’ k=1 i=1 "

(2.2) and (2.3) hold, then the m-dimensional simple epidemic satisfies
(1.1). Conversly, if (1.1) is satisfied, then equations (2.2) and (2.3)
E follow by the inherited iarkovian structure of the m-dimensional simple

epidenic.

PRE———— - R ——
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3. Main Results

Let (Xl(t), Sierers xm(t)) be an m-dimensional simple epidemic in a
population consisting initially of bi infectives from cause i,
i=1,2, ..., m, and infinitely many susceptibles. This epidemic can be
described bty a sequence of bivariate random vectors, (Tl' El), (Tz, Ez).

T2l s o Tl’ TZ’ ..., are the interinfection times, and
El’ €5 «.., are random variables with values in {1, ..., m}, uhich
designate the respective infection causes. Let Sk be equal to 'ZIT.’
k=1, 2, ... . The finite dimensional joint distributions of %;l(t)’

Xm(t)) are determined by (Tk, ak), k=1, 2, ..., through the following

set equalities:

= r
Gl *0p e Bs B, TE sty qglr(eq =4) %)

for every positive real number t, positive integer k, and i = 1, ..., m.
We assume throughout that the sequence (T,, 51), (72, gé), ..., is deter-

mined by (3.2) and (3.3).

'p{ak " Ry ket ool

m ri-l c Ye ? jil 1
[n m° (b, #+3)IL M ()a (b, +.JI(R =1)7
i=l j=o 1 g -

n
where r, = 1Ih, s ), e, oo, ondn=l, 2, ... .
q=1 n

- Z ujt.
= = = J
p{rklel, cees G >t k=1, oo, n) = e jul
m j-1
where t., ..., t_are positive real numbers, y, = J a.(b, + ] I(E = 1))
1 n j i=1 - b | qsl q

j=1, ..., nandn=1, 2, ... .

e o g T G T

(3.1)

(3.2)

(3.3)

e A N e . e A ST I
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We will show that for every two positive real numbers t and B i

(xN,l(t)’ s xN,m(t)) converges in law to (xl(t), e xm(t)) as
N+ =, and that Lim E(X, (t))® = ECX, ()8 for i =1, ..., m. First
e M | i

we introduce two lemmas.

Lemma 3.1. Let Ul’ Uy, ..., be an i.i.d. sequence of exponential random

variables with mean 1. Further let (Tb+r_1,1., AN Tb+r-1,b+¥-1) be the

order statistic of a sample of size b + r - 1 from Ul' Then Z (b+j- 1)'1Uj
j=1

and Tb+r-1,r are identically distributed.

Proof. It suffices to note that the spacings; Tr+b-1,r-j+1 - Tr+j-1,r-j’

FJoum ok, iee; Ty (T = 0) are independent exponential random variables
r+b-1,0

with means equal respectively to (b + j - 1)-1, N e B

m
Lemma 3.2. Let t and B be positive real numbers; let c = Sup Z bN i and |
N i=1"" 1
a= max a,. If (1.2) holds then; (i) P(S, . <t) s (1 - e®°t)T for :
1si<m 1 Nax i
r=1, ..., N, and (ii) sup E(Xy ;)P <=, fori=1, ..., m |
| .
Proof. We note that (ii) is a corollary of (i). To prove (i) let
T
¢ & -1
Uy, Upy «.v, be as in Lemma 3.1. Since P(Sy | s t} < P( 1i’u

: j
j=1 f
(i) follows from Lemma 3.1. ;

< act},

Theorem 3.3. Let B and t be positive real numbers. If (1.2) holds then;

(i) (xN,l(t)’ &0 xN,m(t)) converges in law as N + = to (xl(t), e xh(t)),
and (41) Lin E(XN.i(t))B . B(Xi(t))s foris=1, ..., n.

R 55 A o x e T 5 XN <~ 36 e e e o i e e e o

Nt - "
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Proof. We note that (ii) is a corollary of (i) and Lemma 3.2 (ii).

To prove (i) let kl, sisins km be m nonnegative integers, A be the set

1

m
(¢ S rm)!ri >k,, i=1, ..., m} and let R = .glri. Since for N

sufficiently large, P{XH () 2 k. A8 T SRR

»q
from Lemma (3.2) (i), the dominated convergence theorem, and some simple

ZPfSN R ST < Sy Re1’ qf Iy = 1) =1, i=1, .o, mIR < M)}, (i) follows
calculations.

For reference purposes the following two wzll known results are presented.

Lemma 3.4. Let Ul’ U2' ..., be as in Lemma 3.1, and let Bis Hgs eees be

a sequence of posxtive real numbers. Further we denote by fk the density

-1
funct1on of Z 3} =1 2 s« Then, (1) ur+1r r+;(t) =
pe] wilu, < 2 u }, and (ii) £,(t) = ( TN P e ar
J g i LD it j
fl j=1 s MR i3

provided Wis «ee, W, are distinct. 1%

We are ready to state and prove the main result of the paper.

Theorem 3.5. Let t and B be positive real numbers, and kl’ siviely km be

nonnegative integers. Further let A be the set {rl, T rmlri 2 ki’

i=1, ..., m.}. If conditions (1.1) and (1.2) are satisfied, then the

following hold.

- - 3
(i) Lim P{xﬂ,i(t) 2k, + bi' i=1, ..., m}= E I [ i 11 ]e Qib1&1 -l a1t) i.

Aima\ Y -

(ii) Lim E(XN i(t))8 is the Bth moment of a negative binomial random variable
Noeo 5

-ait

with parameters bi and e yi=1, .oo, m.

. aEERE % Bk LT,
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Proof. By Theorem 3.3 it suffices to show that Xl(t), alaly Xm(t) are inde-

penident, and have the respective negative binomial marginal distributions.

Let kl, e ey km be nonnegative integers, with sum equal to k. Further, let

B denote the set {1

Ly, ..o, zk)lzl, cees &€ {1, .., m}, Z I(z EA) =i, 1Y, ..., 0,
q_

n

We note that P{Xi(t) = ki + bi, i=1, ..., m} equals

g P(S, st < skﬂlsq =f%pa=1, ...,k P{gq = zq, g1y ey Kb

From Lemma 3.4 and equation (3.2) it follows that P{Xi(t) = ki + bi, i=l, ..., m}

equals
m bi + ki -1 -aibit ki k+1 -ejt k+1 1
] o -
Le b, -1 (€ a kst ) _Z e T (8, j) , where
131 1 B J=1 1-1 |
i=j |

Z 2 a. I(z

q=1 i=1

1}y ) ® Y, v, B ¥ L,

By reusing Lenma 3.4 we obtain that P{X.(t) = ki + bi’ i=1, ..., k} equals

m b, + k. - 1} -a.b.t k, k+1 k+1
RS S St Fisy Tty ga werl,
¢ b, -1 125 j j
i=1 i B i=1 j=2

To complete the proof it suffices to show that

m ki k+1 k+1 M -a.t k,
ma k! ] P(J o] uj £t} o anfl-e )L, (3.4)
i=1 ! B j=2 j=2 i=1

Let F denote the left side of equatior. (3.4). Further let
B, = [{i, £,, ..., 2 }lzz, cees &y € {1, L., m}, qurcz =)=

ke» T=1, oou, m, 1 =i, qur(z = i) =k -1],




L TR
4

mn ki m k+1 -1 k+l -1
We observe that F(t) equals I a; ki! z X P{ Z 6.°U. st} nme. .
i=1 i=l B, j=2 3 ) j=2 I

By a simple calculation and Lemma 3.4, it follows that

dF n ki m -ait k+1 -1 k+1 -1
" Do k! Ye “JTP]oe; jUj StY Mo, where 9. ., =
i=1 * i=1 B, j=artet j=3 901 KL
m j=1
Lo, JI(t, =1),i=1, ...,m j=3, ..., k+ 1. Consequently Equation
r=1 ° q=2 p
=i
(3.4) is established by an induction argument on k applied to each of the
k+2 k+1
-1 4

sums  P{ JO. .U st} me: .,i=1,...,m

B, 3=377+ j=3 001 '

Corollary 3.6. Let XN(t) the total number of infectives at time t. If

(1.1) and (1.2) are satisfied, then the following hold.

(1) XN(t) converges in law as N + » to a sum of m independent negative

-a.t
binomial random variables with respective parameters bi’ s " ,i=1, ..., m, and

(ii) Lim E(X“(t))B equals to the Bth moment of the limiting random variable
Noo

given in (i).

In the particular case discussed in Billard, Lacayo and Langberg (1978),

XN(t) converges in law to a negative binomial random variable with parameters

n
2 b1 and e %%, This fact played a major role in the proof of (1.3) for
i=1

the symmetric case as presented in the cited reference. Finally we note

that it is of interest to investigate the asymptotic behavior of m-dimensional

simple epidemics, that do not have the Markovian structure.
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ABSTRACT
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with components counting the number of infectives from the respective causes at time t.
We show that if the transition rates of cause 1 through m at time t are given by

m
agXy 3 ()1 -%izl(xN.i(:) - X gONAL o1, w8y,
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independent negative binomial components.

(t)) converges as N + » to a random vector with

a, > 0 and if ;i: XN’i(O) -




