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ABSTRACT

A method for numerically generating boundary-
fitted coordinate systems for three-dimensional
regions containing ship~like bodies is the subject
of this report. This procedure involves a trans-
formation which maps the region of interest in
physical space onto a region in computational
space where a uniform grid is defined. The result
is a curvilinear coordinate system in the physical
region having coordinate lines coincident with all
boundary contours. The finite-difference solution
of a system of partial differential equations
corresponding to a physical problem can be obtained
on the regular mesh in the computational range space.
Alternatively, the boundary-fitted mesh in the
physical domain space may be used as the basis of a
finite-element scheme for this solution. The
mapping, which is a generalization of conformal
mapping, is found as the solution of a system of
elliptic partial differential equations with appro-
priate boundary conditions. A general description
of the technique is presented along with the
mathematical formulation of the underlying boundary-
value problem. Also included are methods of
transformation control which are needed for developing
grid systems suitable for numerical solutions of
problems in fields such as fluid dynamics. Examples
of several transformations are discussed in terms of
their associated physical and computational regions
and the elliptic systems used for their generation.

INTRODUCTION

The increasing usage of boundary-fitted (surface-oriented)
coordinates in the field of fluid dynamics is indicative of this tech-
nique's value as a numerical problem-solving tool. Typically, the
investigator wishes to study the flow of a fluid in a particular region
by analyzing a partial differential equation subject to certain boundary
conditions. The proper choice of coordinate system is often crucial to
the successful solution of the problem. As a result, much use has been
made of "natural" coordinate systems such as cylindrical and spherical
coordinates, although the practical usefulness of such systems is
restricted to a few specialized cases. For any specific geometry, the

method of boundary-fitted coordinates creates a system in which the
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surfaces themselves are coordinate lines.

The procedure involves a numerically generated transformation which
maps the physical region under consideration onto a simpler computational
region where a uniform mesh has been defined. In effect two grid systems
are produced by this transformation: the boundary-fitted mesh in the
domain space and the regular mesh in the range space. Either of the
meshes may be used to compute the numerical solution to a partial
differential equation corresponding to a physical problem.

In obtaining this solution, a finite-difference approach must take
into account variations in the mesh upon which the computations are to be
done. The numerical scheme is often complicated by these variations
which normally occur in zones where increased accuracy is desired or
where irregularly-shaped boundaries are resolved. 1f, however, the
calculations are performed on the regular mesh in the computational space,
these complications disappear since the mesh spacing is uniform there.
This usually leads to a simpler numerical treatment even though the
equation of ultimate interest may be somewhat altered by the transfor-
mation.l*

Calculations may also be carried out in the physical region with
the grid points there being taken as the nodes of a finite-element mesh.
The important aspect here is not the transformation itself, but the fact
that the network of mesh points in the physical space conforms to the
boundary contours. Used in this manner, the numerically generated
coordinate technique provides an efficient, automatic means of producing
a boundary-fitted grid system suitable for finite-element calculations.

This numerical mapping technique was extended to three-dimensional
domains in earlier work by Ghia3 and Mastin.a The purpose of the present
research is to present some examples of new types of transformations that
are proving useful in the study of fluid flow about ship-like bodies.

As expected, the generalization from two to three dimensions consti-
tutes a considerable increase in the complexity of the entire process.
The increased computer time and memory requirements have been overcome

to some extent through the use of the Texas Instruments Advanced

*A complete listing of references is given on page 17.




Scientific Computer (TIASC) at the Naval Research Laboratory. Since the
number of possible mapping configurations also rises with the number of
dimensions, the experienced user of this approach should be able to
produce a coordinate system suitable for practically any flow geometry of

interest.

FINITE-DIFFERENCE APPLICATION TO FLOW PROBLEMS

The body-fitted coordinate technique has several features which make
it attractive for use in conjunction with a finite-difference scheme for
fluid flow problems. One of these features is the three-dimensional
mapping capability as opposed to complex variable methods which are
limited to two-dimensional flow problems. Although the numerically
generated transformations are not conformal (the orthogonality of coor-
dinate lines is not preserved), there is no real problem since orthogon-
ality is not required at boundaries to obtain an accurate representation
of the normal derivative.5

Another important property is that all surface contours in the
physical region are coincident with coordinate surfaces. This allows for
the accurate representation of boundary conditions regardless of the shape
and number of bodies present.

All calculations, both to generate the coordinate system and to solve
the equations governing the flow problem, are done on the fixed, uniform
mesh in the transformed region. Since the mesh must be recomputed when-
ever the boundaries change or deform, the coefficients of the difference
operators may also change. However, this updating of the transformation
required a relatively small portion of the total computing time in a
recent study of two-dimensional unsteady free surface flow.1

Also, coordinate lines in the physical region may be concentrated in
areas where more resolution or higher accuracy is desired. This concen-
tration or control of the coordinate lines can be accomplished in several
ways: 1) by changing the mapping configuration itself, 2) by varying the
underlying elliptic generating equations, and 3) by altering the
distribution of grid points on the physical boundaries. A discussion of

coordinate system control is found in a later section.




MATHEMATICAL FORMULATION

The technique of numerical coordinate system generation for two-
dimensional regions and a finite difference scheme for its implementation
were presented in a previous publication.6 Here we develop the three-
dimensional counterpart in a slightly different manner using tensor
notation.

A three-dimensional region of arbitrary shape, R, is to be trans-
formed into the rectangular region, R', as shown in Figure 1. For
convenience, let xi be the usual Cartesial coordinates and ul be the
transformed coordinates. The ul are obtained as solutions of the system

i

92u" = P, &=1.2,3 (1)

where V2 is the Laplacian operator in Cartesian coordinates, so that

32 32 32

72 = - +
axtax!  3x%3x?  axdaxd

and
% 1 .0 .3
P, Pi(u S U< Ut} (2)
The Dirichlet boundary conditions are
u! = const. = ¢ ul = const. = 4
2= 1 2 3 & 1 2 3
u ul(x 2= %) on Sl u u7(x s X=.%X°) on 84
uld = uz(xl,xz,x3) ud = u8(x1,x2,x3)
ul = ua(xl,xz,x3) ul = ug(xl,xz,x3)
2= - 2: =
u const. - <, on 82 u const. cg on S5 (3)
ud = ua(xl,x‘.x3) ud = ulo(xl,xz,x3)
ul = us(xl,xz,x3) ul = ull(xl,xz,x3)
u? = u6(x1,x2,x3) on S, ul = ulz(xl,xz,x3) on S
ud = const., = c3 ud = const, = C6
where Sl’ 52’ Fiy S6 are the surfaces indicated in Figure 1.




Figure 1 - Basic Transformation




There are several aspects of this general boundary-value problem
which are somewhat arbitrary and must be specified by the user. These
are the shape of the computat’ aal region, the Pi in Equation (2) and
the uy in Equations (3). This specification can be made in a manner that
will greatly influence the properties of the resulting coordinate system.
The ability to control the coordinate system which is generated is an
important topic and is the subject of the next section.

Since all computations are to be done in the transformed region R',

we must interchange the roles of the dependent and independent variables

in Equation (1). The inverted system is

Au azxi X
SEXS;U + Pv g;; =0, = 1,2,3 (4)

A : ; :
where g ¥ are the components of the contravariant tensor associated with
the Euclidean metric tensor gAl. The transformed boundary conditions are

simply the physical coordinates of the mesh points on S S

1’ Sz,...,
Equation (4) is approximated using second-order, central

6°

differences for all derivatives involved, and the resulting difference
equations solved on the uniform mesh in the computational region. The
difference equations and iteration scheme are discussed in detail for the
two-dimensional system in earlier publications%’6Accelerated Gauss-Seidel
iteration was used to produce the examples in this report, although this
may not be the most efficient method for computers with vector processing
capability. A vectorizable iteration method which sweeps the grid points
in an alternating manner, the so-called 'red-black' method, was used by

Haussling7 for a two-dimensional problem.

COOPDINATE SYSTEM CONTROL

As mentioned earlier, there are several methods of coordinate
system control. These methods can be used by the researcher to tailor
the coordinate system to his particular problem. Although there is a
great deal of flexibility inherent in this method, care must be exercised

in order to obtain a proper mapping.




The first way of influencing the coordinate system is by changing
the mapping configuration itself. For siiplicity, the physical domain in
Figure 1 was taken as a deformed cube. If R had been less regular in
shape, a computational region made up of more than one cube might have
been necessary to generate a desirable coordinate system.

The second area of flexibility lies in the elliptic equations that
are taken as the basis of the generating system. Although any equation
exhibiting an extremum principle may be used, the Poisson equation seems
to suffice in most cases since we have the Pi in Equation (2) at our
discretion. The ability to vary these non-homogeneous terms provides us
with an effective means of controling the distribution of the coordinate
lines in the physical region R.

In several earlier works,l’7’8

the inhomogeneous terms were chosen
such that the coordinate lines were attracted to or repelled from certain
specified points in the physical region. This approach, while eifective,
proved to be both tedious and time-consuming. Often, the procedure
consisted of making an initial estimate of the parameters in the Pi
terms, generating a mesh with these parameters, and displaying it
graphically. This process was repeated, with slight changes in the
control parameters, until a suitable transformation was produced.
Thompson9 presented a method of choosing the inhomogeneous terms so
that the spacing of the coordinate lines on the boundary is maintained
throughout the entire region. This choice of source terms was effective
in creating meshes for problems involving free surfaces with small
elevations. Large amplitude waves, however, are not resolved satisfac-

torily by this Poisson system. A modification of Thompson's derivation

leads to the following definition of the Pi of Equation (2):

i O t. 1
-3€ \
P = X /3u du (5)

3 3
1 1 i
(3x1/3ut) ui S

where u' = c, are the boundaries on which the xi spacing is to be

preserved. These source terms have produced improved coordinate systems

for flow regions with both large and small free surface elevations.
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The third means of coordinate system control is the specification of

the two non-constant coordinates, u, in Equations (3), on the boundaries.

The user does not have complete freidom here since this input characterizes
the boundaries, but in most cases there is sufficient leeway to provide a
coordinate system with the desired properties on the boundaries.

It is well to note that often the most satisfactory coordinate system
is obtained when these three methods of control are used in the proper
combination. One might first choose a mapping configuration that has the
desired general properties. Some properties considered might be, for
example, which coordinate will be constant along each boundary, how many
coordinate lines will intersect each boundary, and the shape of the
computational region, etc. After the general configuration has been
determined, the generating equations must be decided upon. A good initial
choice seems to be a system of Poisson equations with source terms that
preserve the boundary spacing throughout the region as described above.
Finally one can adjust the distribution of grid points on the boundaries

until a suitable mapping is achieved.

EXAMPLES

As indicated earlier, the flexibility of the body-fitted coordinate
technique is one of its most important assets. There is no restriction
to simple regions, although multi-connected and other complex geometries
may require a combination of simple mappings. The examples presented in
this section were calculated to demonstrate a few of the many possible
transformations that can be produced.

First, we consider a physical domain which contains a thin body
intersecting one boundary. This example may be thought of as a model of
a ship hull in a free surface. The natural transformation for a body of
this shape is one which maps the object to a portion of a coordinate plane.
Figure 2 shows the body-fitted coordinate system in physical space

generated with zero source terms, P,, and the corresponding uniform mesh

i
in computational space. Two cross-sectional views of this curvilinear

coordinate system are shown in Figure 3. (Table 1 gives a summary of the

computer requirements for Figures 2 - 6.)
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In the next example we generate a grid system about a circular
cylinder of finite length. This mapping provides us with a coordinate
system in physical space which is quite different from the usual cylindri-
cal coordinates. For illustrative purposes, Figure 4 shows only the
lower half of the physical and transformed regions. Again, the source
terms, Pi’ are zero.

To demonstrate the multi-body capability, we consider another ship-
like form in conjunction with two smaller objects close by. In generating
this single transformation we must take into account three separate
bodies. The largest of the three has a circular cross-section with a
rounded, sloping bow and a flat stern. This portion is handled in a
manner similar to that used in the second example. The two smaller
bodies at the ship's stern are thin and are transformed as in the first
example. The mesh systems in physical and computational space generated
with zero source terms are shown in Figure 5.

As an example of coordinate line control, consider a physical region
simulating a fluid bounded by straight walls, a bottom, and a free
surface. Figure 6 shows two coordinate systems generated for such a
physical region: one generated with zero source terms and one generated
with source terms as given in Equation (5). We see that the non-
homogeneous system has produced a mesh with a more desirable configuration
near the curved surface.

It is appropriate at this point to mention the role of computer
aided graphics in numerical mesh generation. Usually, the process of
obtaining a suitable coordinate transformation for a specific problem is
one of trial and error. Interactive plotting routines are useful in
shortening the time needed by helping to locate errors in input boundary
data and by displaying the final output. The use of these automated
graphing techniques has proven to be practically indispensible in the
analysis of numerically generated coordinate systems. This is especially
true for three-dimensional systems. The figures in this report were
generated by IMAGE,lO an interactive data display package available in
the Computation, Mathematics, and Logistics Department of DTNSRDC. For

details on the use of this and other similar programs, contact Code 1843.
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TABLE 1 -

COMPUTER REQUIREMENTS FOR FIGURES

Figures 2 :
and 3 Figure 4 | Figure 5 | Figure 6

Fatal Fuaker 2541 6629 7553 9261
of Points

Mamory 131 K 204 K 222 K 236 K
Requirements
Computer CDC CDC CDC

Vaed i 6400 6400 6400

CFD 7.1 sec 20.9 sec 22.3 sec 34.2 sec

Time
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FUTURE PLANS

Three-dimensional versions of the boundary-fitted coordinate
generating programs are operational on the CDC 6000 series computers at
DTNSRDC and on the TIASC at the Naval Research Laboratory. Work is
continuing on refining these programs in preparation for the numerical
solution of free surface and ship wave problems.

Problems currently under investigation include 1) the non-linear
effects of water waves, 2) large amplitude waves nearing the point of
breaking, and 3) ships undergoing a slamming motion in a free surface.
Most likely these and other large fluid flow problems will be solved on
the TIASC because of its large memory and vectorization capability.
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