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ABSTRACT

A method for numerically generating boundary—
fitted coordinate systems for three—dimensional
regions containing ship—like bodies is the subject
of this report. This procedure involves a trans-
formation which maps the region of interest in
physical space onto a region in computational
space where a uniform grid is defined . The result
is a curvilinear coordinate system in the physical
region having coordinate lines coincident with all
boundary contours. The finite—difference solution
of a sys tem of par tial dif f e r e ntial equations
corresponding to a phy sical problem can be obtained
on the regular mesh in the computational range space.
Alternatively, the boundary—fitted mesh in the
physical domain space may be used as the basis of a
finite—elemen t scheme for this solution . The
mapping , which is a generalization of conformal
mapping, is found as the solution of a system of
elliptic partial differential equations with appro-
priate boundary conditions . A general description
of the technique is presented along with the
mathematical formulation of the underlying boundary—
value problem . Also included are methods of
transformation control which are needed for developing
grid systems suitable for numerical solutions of
problems in fields such as fluid dynamics. Examples
of several transformations are discussed in terms of
their associated physical and computational regions
and the ell ipt ic systems used for their generation .

INTRODUCTION

The increasing usage of boundary—fitted (surface—oriented)

coord inates in the field of fluid dynamics is indicative of this tech-

nique ’s value as a numerical problem—solving tool. Typically , the

investigator wishes to stud y the flow of a fluid in a particular region

by analyzing a partial differential equation subject to certain boundary
conditions. The proper choice of coordinate system is often crucial to

the successful solution of the problem. As a result , much use has been
made of “natural ’t coordinate systems such as cylindrical and spher ical
coordina tes, although the practical usefulness of such systems is
restricted to a few specialized cases. For any specific geometry , the

method of boundary—fitted coordinates creates a system in which the

1
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surfaces themselves are coordinate lines.

The procedure involves a numerically genera ted transforma tion which
maps the physical region under consideration onto a simpler computational
region where a uniform mesh has been defined . In effect two grid systems

are produced by this transformation: the boundary—fitted mesh in the

domain space and the regular mesh in the range space . Either of the

meshes may be used to compute the numerical solution to a partial

differential equation corresponding to a physical problem.
In obtaining this solution , a finite—difference approach must take

into account variations in the mesh upon which the computations are to be

done . The numer ical scheme is often comp licated by these variations

which normally occur in zones where increased accuracy is desired or

where irregularly—shaped boundaries are resolved, If , however , the

calculations are performed on the regular mesh in the computational space ,

these complications disappear since the mesh spacing is uniform there .

This usually leads to a simpler numerical treatment even though the

equation of ultimate interest may be somewhat altered by the transfor—
1*

mation .

Calculations may also be carried out in the physical region with

the grid points there being taken as the nodes of a finite—element mesh .

The important aspect here is not the transfor’i~ t ion itself , but the fact

that the network of mesh points in the physical space conforms to the

boundary contours. Used in this manner , the numerically generated

coordinate technique provides an efficient , automatic means of produc ing
a boundary—fitted grid system suitable for finite—element calculations .

2

This numerical mapping technique was extended to three—dimensional
3 4

domains in earlier work by Ghia and Mastin . The purpose of the present

research is to present some examples of new types of transformations that

are proving useful in the study of fluid flow about ship—like bodies.

As expec ted , the generalization from two to three dimensions consti-

tutes a considerable increase in the comp lexity of the entire process.

The increased computer time and memory requirements have been overcome

to some extent through the use of the Texas instruments Advanced

*A comp lete listing of references is given on page 
17.2
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Scientific Computer (TIASC) at the Naval Research Laboratory . Since the

number of possible mapping conf igura tions also rises w ith the number of

dimensions , the experienced user of this approach should be able to

produce a coordinate system suitable for practically any flow geometry of

interest.

FINITE-DIFFERENCE APPLICATION TO FLOW PROBLEMS

The body—fi tted coordinate technique has several features which make

it attractive, for use in conjunction with a finite—difference scheme for

fluid flow problems . One of these features is the three—dimensional

mapping capability as opposed to complex variable methods which are

limited to two—dimensional flow problems . Although the numerically

generated transformations are not conformal (the orthogonalitv of coor-

dinate lines is not preserved) , there is no rea l problem since orthogon—

ality is not required at boundaries to obtain an accurate represent~ition
S

of the normal derivative .

Another importan t property is that all surface contours in the

physical region are coincident with coordinate surfaces. This allows for

the accurate representation of boundary conditions regardless of the shape

and number of bodies present.

All calculations, both to generate the coordinate system and to solve

the equations governing the flow problem , are done on the fixed , uniform

mesh in the transforme d region . Since the mesh must be recomputed when-

ever the boundaries change or deform , the coefficients of the difference

operators may also change . However , this updating of the transformation

required a relatively small portion of the total computing time in a

recen t study of two—d imensional unsteady free surface f low .’

Also , coordinate lines in the physical region may be concentrated in

areas where more resolution or higher accuracy is desired . This concen-

tration or control of the coordinate lines can be accomplished in several

ways: 1) by changing the mapp ing configuration itself , 2) by vary ing the

underlying elliptic generating equations , and 3) by altering the
distribution of grid points on the physical boundaries. A discussion of

coordinate system control is found in a later section

.3
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MATHE MAT ICAL FORMULATION

The technique of numerical coordinate system generation for  two—

dimensional regions and a f i n i t e  d i f fe rence  scheme fo r  i ts implementat ion

were presented in a previous publ ica t ion .6 Here we develop the three—

dimensional count~~rpart  in a s l ight ly d i f f e r e n t  manner using tensor

nota t ion .

A three—dimensional region of a rb i t r a ry  shape , R , is to be trans-

formed into the rectangular region , R’, as shown in Figure 1. For

convenience , let x
1 be the usual Cartesial coordinates and u1 be the

transformed coordinates . The u~ are obtained as solutions of the system

v 2 u i 
= P

~~
, i 1, 2 ,3 (1)

where V2 is the Laplac ian operator in Cartesian coord ina tes , so that

- 
3 2 32 32

— 

3x ’3x 1 + 
~x

2
~ x

2 +

and

= P.(u 1 ,u2 ,u3) (2)

The Dir lchle t boundary condi tions are

= const. c
1 

u 1 = const. = c
4

u2 = u1
(x 1 ,x’ ,x3) on S~ u u

7
(x 1 ,x2,x3) on S

4
u 3 = u

2
(x 1 ,x2,x3) u 3 u

8
(x 1 ,x2 ,x3)

u
3

(x 1 ,x 2 ,x 3) u1 = u
9

(x 1 ,x2 ,x 3)

u’~ = cons t .  = c
2 

on S
2 

u2 = const. = c
5 

on S
5 

(3)

u 3 = u
4

(x 1 ,x 2 x 3) u3 = u10(x 1 ,x2 ,x 3)

u5
(x 1 ,x2 ,x 3 ) u 1 = u11(x 1 ,x2 ,x3)

u 2 = u
6

(x 1 ,x2 ,x 3 ) on S
3 

u2 u12 (x 1 ,x2 1 x 3 ) on S
6

u 3 cons t . c
3 

u 3 = cons t .  =

where S~ , S2 , 
~~~~~~ 

are the surfaces indicated in Figure 1.

4
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There are several aspects of this general boundary—value problem

which are somewhat arbitrary and must be specified by the user. These

are the shape of the computat.’ - 

~ial region , the in Equation (2) and

the u . in Equations (3). This specification can be made in a manner that

will greatly influence the properties of the resulting coordinate system.

The ability to control the coordinate system which is generated is an

important  topic and is the subject of the next section.

Since all computations are to be done in the transformed region R ’,

we must interchange the roles of the dependent and independent variables

in Equation (1). The inverted system is

i i
g~

1J X 
+ P ~~

-
~~

—- 0, i = 1,2 ,3 (4)
V

where g~~
’ are the components of the contravariant tensor associated with

the Euclidean metric tensor g
~~ • The transformed boundary conditions are

siup ly the physical coordinates of the mesh points on S~~, S2. 
. .. , S

6
.

Equation (4) is approximated using second—order , central

differences for all deri’.,atives involved , and the resulting difference

equations solved on the uniform mesh in the computational region . The

difference equations and iteration scheme are discussed in detail for the

two—dimensional system in earlier publications~
’’6Acce1erated Gauss—Seidel

iteration was used to produce the examples in this report , although this

may not be the most efficient method for computers with vector processing

capability. A vectorizable iteration method which sweeps the grid points

in an alternating manner , the so—called “red—black” method , was used by

Haussling
7 

for a two—dimensional problem.

COORDINATE SYSTEM CONTROL

As mentioned earlier , there are several methods of coordinate

system control. These methods can he used by the researcher to tailor

the coordina te  system to h i s  pa r t i cu l a r  p rob lem.  Although t he re  is a

great deal of flexibility inherent in this method , care must be exerc ised

in order to obta in  a proper mapp ing .

6
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The first way of influencing the coordinate system is by changing

the mapping configuration itself. For si:’plicity, the physical domain in

Figure 1 was taken as a deformed cube . If R had been less regular in

shape , a computational region made up of more than one cube might have

been necessary to generate a desirable coordinate system .

The second area of flexibility lies in the elliptic equations that

are taken as the basis of the generating system. Although any equation

exhibiting an extremum principle may be used , the Poisson equation seems

to suffice in most cases since we have the in Equation (2) at our

discretion. The ability to vary these non—homogeneous terms provides us

with an effective means of controling the distribution of the coordinate

lines in the physical region R.
1 7 8

In several earlier works , the inhomogeneous terms were chosen

such that the coordinate lines were attracted to or repelled fro~r certain

specified points in the ph v s i c d i  region . This approach , white ~.tective ,

proved to be both tedious and t ime -consuming. Often , the proLedure

consisted of making an initial estimate of the parameters in the P .

terms , gener~it ing a mesh with these parameters , and d isp laying it

graphically . This process was repeated , with slight changes in the

control parameters , until a suitable transformation was produced.

Thompson
9 

presented a method of choosing the inhotnogeneous terms so

that the spacing of the coordinate lines on the boundary is maintained

throughout the entire region. This choice of source terms was effective

in (‘re~lting meshes for problems involving free surfaces with small

elevations. Large amplitude waves , however , are not resolved satisfac-
torily by this Poisson system. A modification of Thompson ’s der ivation

leads to the following definition of the P . of Equation (2):

I ~ i
0 — ~~~~~~~

(~~x h/ 3ui) u~ = c .

wher e u = c
1 
are the boundaries on which the x

1 
spacing is to be

preserved. These source terms have produced improved coordinate systems

for  f low regions w i t h  both 1. l r  in  small f r e e  su r f ace  elevations .

7

,
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The third means of coordinate system control is the specification of

the two non—constant coordinates , u~ in Equations (3), on the boundaries .

The user does not have complete freedom here since this input characterizes

the boundaries , but in mos t cases there is su f f i c i en t leeway to pr ovide a

coordina te sys tem wi th the desired properties on the boundaries.

It is well to note that often the most satisfactory coordinate system

is obtained when these three methods of control are used in the proper

combination . One might first choose a mapping configuration that has the

desired general properties. Some properties considered might be , for

example , which coordinate will be constant along each boundary , how many

coord ina te lines will intersec t each boundary , and the shape of the

computational region , etc. After the general configuration has been

de termined , the generating equations must be decided upon . A good initial

choice seems to be a system of Poisson equations .~ith source terms that

preserve the boundary spacing throughout the region as described above.

Finally one can adjust the distribution of grid points on the boundaries

until a suitable mapp ing is achieved .

EXAMPLES

As indicated earlier , the flexibility of the body—fi tted coordinate

technique is one of its most important assets. There is no restriction

to simple regions , although multi—connected and other complex geometries

may require a combination of simple mappings . The examples presented in

this section were calculated to demonstrate a few of the many possible

transformations that can be produced.

First , we consider a physical domain which con tains a thin bod y
intersecting one boundary. This example may be thought of as a model of

a ship hull in a free surface. The natural transformation for a body of

this shape is one which maps the object  to a portion of a coordinate plane .

Figure 2 shows the bod y — f i t t e d  coordinate system in physical space

generated with zero source terms , P~~, and the corresponding un if orm mesh
in computational space. Two cross—sectional  views of this curvilinear

coordinate system are shown in Figure 3. (Table 1 gives a summary of the

computer requirements for Figures 2 — 6 . )

8
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In the nex t example we generate a grid system about a circular

cylinder of finite length. This mapping provides us with a coordinate

system in physical space which is quite different from the usual cylindri-

cal coordinates . For illustrative purposes , Figure 4 shows only the

lower half of the physical and transformed regions . Again , the source

terms , P ., are zero.

To demonstrate the multi—body capability, we consider another ship—

like form in conjunction with two smaller objects close by. In generating

this single transformation we must take into account three separate

bod ies. The largest  of the three has a circular cross—section with a

ro unded , slop ing bow and a t lat s t e rn .  This por t ion is handled in a

manner similar to that used in the second example. The two smaller

bodies at the ship ’s stern are thin and are transformed as in the first

examp le. The mesh systems in physical and computational space generated

with zero source terms are shown in Figure 5.

As an example of coordinate line control , consider a physical region

s imula t ing  a f lu id  bounded by s t r a i g h t  walls , a bot tom , and a f ree

su r fj c e .  Figure 6 shows two coordinate  systems generated f o r  such a

phy s ica l  region : one generated wi th  zero source terms and one generated

with source terms as given in  Equation (5). We see that the non-

homogeneous system has produced a mesh with a more desirable configuration

near the curved s u r f a c e .

It is appropriat e at this point to mention the role of computer

aided graphics in numerical mesh generation . Usually , the process of

obtaining a suitable coordinate transformation for a specific problem is

one of tri a l and error. Interactive plotting routines are useful in

shortening the time needed by helping to locate errors in input boundary

da ta and by d isp lay ing the f inal output. The use of these automated

graphing techniques has proven to be practically indispensible in the

analysis of numerically generated coordinate systems . This is especially

true for three—dimensional systems . The f igures  in th is  report were

generated by IMAGE , 10 an i n t e r a c t i v e  data disp lay package available in

the Computation , Mathematics , and Log is t ics  Department  of DTNSRDC . For

de ta i ls on the use o f th is and other similar progra ms, contact Code 1843.

11
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TABLE 1 - COMPUTER REQUIREMENTS FOR FIGURE S

Figures 2
and 3 Figure 4 Figure 5 Figure 6

Total Number 2541 6629 7553 9261of Points

Memory 131 K 204 K 222 K 236 KRequiretuents

Compu ter TIASC CDC CDC CDC
Used 6400 6400 6400

CPU 7.1 sec 20.9 sec 2 2 . 3  sec 34.2 secTime
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FUTURE PLAN S

Three—dimensional versions of the bounda ry—fi t t ed  coordinate

generating programs are operational on the CDC 6000 series computers at

DTNSRVDC and on the TIASC at the Naval Research Laboratory . Work is

con tinuing on ref in ing these programs in prepara tion f or the numer ical

solution of free surface and ship wave problems .

Problems currently under investigation include 1) the non—linear

effects of water waves , 2) large amplitude waves nearing the point of

breaking, and 3) ships undergoing a slamming motion in a free surface.

Mos t likely these and other large fluid flow problems will be solved on

the TIASC because of its large memory and vectorization capability .
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