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SECTION I
INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

The increasing performance of advanced aircraf t eng ines , such
as the existing F-lS/F-16 Fl00 turbofan and the projected variable
geometry engines for future Navy V/STOL aircraft , places complex
requirements on engine fault diagnosis and performance monitoring .
Such requirements can best be met by the efficient utilization
of engine sensors and on-board or off-board computer processing.

There are three principal categories of fault detection and
isolation which are useful for discussing the computational archi-
tecture of the required algorithms to achieve this diagnostic
objective. These are :

(1) Dynamic fli~ht-critical fault detection/isolationfor monitoring oFsudden failures of sensors or
engine components (e.g. FTIT , Ni , N2 sensors).

(2) On-line isolation of non-flight-critical faults for
monitoring of status of a single aircraft~ s enginecomponent performance over a single fli ght or
intermaintenance period .

(3) Off-board trending of data for monitoring status
of an aircraft engine over extended periods to
determ ine necessary logistical maintenance require-
ments.

This document summarizes the various aspects of engine perform-

ance monitoring and how advanced system identification technology

can be applied , to provide a true state-of-the-art engine diag-

nostic system which is readily transferred to developmental and

operationa l phases.

1



Engine performance monitoring techniques have long been

applied to aircraft turbine engines. The procedures were ini-

tially restricted to manual ground trims of the hydromechanical

governor to account for engine deterioration and aging effects.

The imprecision of this manual technique , due to the complexity

of engine performance measurement (even on the ground) lead to

reduced engine life and shor t ov erhaul per iods for certi fic ati on .

Two other problems arise when the technique is applied to
real engines . Sensor charac ter ist ics are typic ally wors e

in the ins talled env ironment over the engine lifetime scale
than specif ied by manufac turers . Mos t of these ef fe ct s ar e
due to two-dimensional flow characteristics of the gas stream

and to unmodeled disturbances on the mea surements.  Sensor error s
ar e also typically not whi te and are correlated with engine
performance degrada tion. W ith the advent of modern tw in-spoo l

turbofan eng ines and their high performance requiremen ts , the

eng ine  tr im , fault de tec t ion , and maintenance scheduling problem s
have quickly sa tur ated the cap abilit ies of ground-based evalua t ion
pro cedures and are currently the largest contributor to engine

l i fecycle cos ts .

Briefly stated , the performance monitoring problem attemp ts
to measure small variations in many parameters with p o o r l y  r epea t-
able sensors in a time-varying environment . Numerical techniques

are available to utilize the measurements to produce accurate

engine s tatus informa t ion for bo th faul t de tec t ion and perfor-
mance moni toring . By utilizing di gital process ing of engine
data , engine overhauls can be limi ted to appropriately degraded
engines and to sufficiently de teriora ted componen ts yielding
significan tly improved in-service performance and higher

maintenance eff iciency .

2
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1.2 SUMMARY

The repor t discusses the initial development of a compre-

hensive faul t diagnostic - performance monitoring system method-

ology based on a generalized system identification formulation

[1]. An approach to the problem of on-board and off-board pro-

cessing of fl ight-acquired data is specifically addressed for an

advanced mul ticomponent engine - the P100 turbofan engine . The

algori thm developmen t and validat ion techniques are described
wh ich are compatible with data protocols r~f the U.S. Air Fo r e

Engine Diagnos tic System (EDS) development program currently in

pro gress for the F-15/F-16 aircraft propulsion system .

This repor t is organized as follows :

• Section II - Engine Monitoring Techni ques

This section represents an extensive review of fault
diagnosis and performance moni toring literature over
the pas t 30 years . An att emp t is made to organize
the approaches to the problem wi thin a general frame-
work of statistical data analysis. Several current
sys tems are discussed in de tail .

• Section III - Method s in Performance Monitoring , Tr ending ,
and Transien t Fault Detection

This sec t ion describes an approach to the problem of
mon itoring critical engine parameters utilizing im-
perfec t sensed parameters in the engine . The develop-
ment and evaluation of gener ic engifle models are
described . Algori thms are di~cussed for processing
measuremen ts and estimating parameter values .

• Section IV - Performance Monitoring for the Fl00
Turbofan Engine

Preliminary results are presented in this section.
Model development for a generic FlOO sys tem of equa-
tions is described wh ich can be applied to acquired
data.

• Section V - Summary and Conclusion

This section presents the important initial conclusions
of the study. A brief description of the specific ap-
plica tion to the FlOO is included.

3
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SECTION II
ENGINE MONITORING TECHNI QUES

2. 1 INTRODUCTION

The modern aircraf t engine probably represents the most

complex interaction of mechanical , aerodynamic , thermodynamic ,

and elec tronic phenomena in any vehicular subsystem. It is

cri tical to aircraft missions to maintain a high level of dur-

ability and reliability . Near future pro pulsion sy s tem conf igur-
at ion requirements , however , are specifying signi ficant dev iat ions
from the engines flown over the past decade , including mult i-
component interconnections and variable geometry [2]. For

presen t and future aircraf t , elec tronic data ac quisit ion and
con trol sys tems will be re quir ed to integra te prev ious ly isolated
func tions including diagnos tic and monitoring procedures currently

practiced on modern propulsion plants [3]. Techniques for

utilization of this advanced capability are currently untested

in an operational environment. Also , no sing le diagnos t ic or
moni toring procedure has been accepted for any engine application .

In this sec t ion , a his torical summary of engine monitoring, and a
synopsis of modern eng ine analysis procedures are presen ted .

2.2 HISTORICAL PERSPECTIVE

Aircraf t engine moni toring began in early commercial pis ton
service in the 193 0 ’ s over long hau l routes. Temperature and

torque were monitored by the flight crew periodically and consistent

changes were flagged for investigation [4]. The examination

of the temporal relationships between eng ine parameters was called

trending and , in one form or another , is s till a prac t iced procedure

- — 5 ——— -
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today . Systematic engine monitoring requirements were relaxed

as pis ton eng ines bec ame more reliable and p o w e r f u l  an d rou te t imes
became shorter. A strong resurgence occurred when the first tur-

bine eng ines entered into commercial service [4]. Unlike piston

eng ines , aircraft turbines utilize direct aerodynamic to mechanical

energy conversion which can be significantly affected by small

chan ges in component configuration [5]

In the early 1960’s , elec tronic  d ata acquis it ion te chniques ,

mos t ly analog , wer e combined in to the f ir st of many on-board
engine monitoring systems in Project EASY [6j . Many of the

problems inherent in a pr ac ti c al e lec t ronic sys tem were uncovered
during this project and no implemented system resulted.

Data processing and sensor technology has radically changed

since tha t time . Most major aircraft systems have developed , at

leas t ini tially , an au toma ted data acqu i s i t ion sys tem f o r  eng in e
moni toring [7 ,8,9]. Many new approaches have been proposed and

many revised. Experience has shown that successful systems must

be ta i lo red  to the a i r c r a f t m i s s i o n , and main tenance environment

[9]

2 . 3 CURRENT SYSTEMS

Three m i l i ta ry mon i tor in g sys tems re p resen t the pr act ical ,

state-of-the-art approach to engine fault detection within a

main tenance environment . The approaches of these systems are

briefly reviewed in Sections 2.3.1 through 2.3.3. A commercial

sys tem is d i scus sed in Sec t ion 2 .3 .4 .

2 .3.1 In-Flight Engine Condition Monitoring System (IECMS)
[10 ,11]

IECMS is an in-fli gh t condi t ion moni tor ing  sys tem ins ta l l ed
on the TF41 engines in the VSD A7-E aircraft. The system utilizes

eng ine and a i r f r a m e  sensors  and a dig it al p r o c e s s i n g  uni t to

6
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determine engine component failures. Data of abnormal events

is stored on a tape cassette for further , ground-based processing.

The system measures both engine and control parameters and mon-

itors discrete inputs from the various subcomponents.

The organization of the system is functionally separated into

ei ght modes of operation . Depending on the mode , even ts are
mon it or ed whi ch can indic ate abnorm a l cond it ions . Fau l t accom-
mod at ion fo r  severa l  common con tr ol  f ai lure  modes ( p r i m a r i l y
sensor f a i l u r e s )  is provided us ing  analy t ical  redunda ncy . Per-
formance is moni tored by checking values of fuel flow against

rotor speed and ambient conditions . No historical data is used~
This type of calculation is often referred to as “snapsho t . ”
Measuremen ts utiliz e tempera ture , pressur e , f l o w , vibration and
stroke for input to modularized algorithms.

In i ti a l l y ,  the IECMS was flight tested for validation.

Verifica tion of each ietected event by on-sight engineering

personne l  was re qu i r e d  b y a high  f a l se  alarm ra te ( ini tia l ly
over 100 % ) . An 85% accuracy f igure was achieved  on the manua l l y
verif ied alarms in this test. A carrier deployment was under-

taken to test the impact on the system in an operational environ-

men t. The f a l s e  a la rm ra te decrea sed dur ing the tes t phase ( to
under 3%); however , near ly  as much main ten ance e f f o r t was re qui red
to suppor t the elec tronic sys tem as was re quir ed to mai n tain the
engine s. The maintenance man hour per flight hour (MMH/FH) was

below flee t average for both the IECMS support aircraft and the

standard control group [U]. Thus , no conclusion can be presently

drawn concern ing the impact of IECMS on maintenance costs.

2 .3 . 2  Au toma ted Inspec tion Diagnos t ic and Prognos ti c System
(AIDAPS) [12 ,13]

AIDAPS is a U.S . Army program to develop a diagnostic system

for Army aircraft. The UH-lH helicopter was utilized a-s the
ini tial test bed for the system. Unlike IECMS , a si gni f ican t

_ _ _ _ _ _  - 
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amoun t of development and testing was per~ -~ rmed prior to dep~ ov-
men t of a sys tem . Th e AI DAPS sy stem moni tors  a v i o n i c s , ~ropul-

sion , and transmission systems on the helicopter. During the

te s t developmen t , degraded and f ailed components were ins erted
in the system and the system responses were evaluated. After

the system was developed , a zero false alarm rate was initia lly

validated over a two-month test period . Table 2.1 shows the

over all AIDAPS test scores for implanted faults. After the

test bed development , a 1128-hour flight test program was

accomplished. The engine fault detection portion of the system ,
us ing  bo th v ibra ti on and gas p a th anal ysis , resulted in fewer

detections than the gear box monitoring system [ 1-1 ] - One strong

conclusion throughout the test was that consistency of resI~i t- ~
b etween laboratory models , test cell data , and aircraft i~ a

func tion of the monitoring technique .

2.3 .3 Advanced Diagnostic Engine Monitoring System (ADEMS) [15]

The ADEMS is a subsystem of the C-5A Malfunction Detection

Analysis Recording Subsystem (MADARS) which monitors over 800

Table 2.1

AIDAPS Test Results [12]

FAULTS NOT FALSE TOTAL
PR0CE~ J RE COMPONENT DETECTABLE UNDETECTABLE SCORED ALARM SCO RED PERCENTAGE

Vibrat ion Engine 24 7 6 3 31 7 7 . 4
Mon itoring Transmiss ion  34 4 16 2 38 89 .5

HGB 4 13 0 3 3 13 100 .0

42° 08 33 0 14 2 33 100.0

_____________ 
90° GB 18 14 4 1 32 5 6 . 3

Subtota l 122 25 43 11 147 83 .0

Gaspath Compressor 7 2 5 0 9 77 . 8
Monitoring Turbi ne 6 6 8 0 12 50.0

Coin bu stor 1 0 0 0 1 100.0

Subtotal 14 9 13 0 22 63 .7

TOTAL 136 33 56 11 169 80.5

8
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a i r f r a m e / e n gine (TF39) parameters. Approximately 23 eng ine para-
me ters (per engine) are monitored in flight. Magnetic tape

recordin gs are produced when selected thresholds are exceeded or

when the system is given a record command . The tape recorded

data is processed at the Maintenance Analysis and Structural

In tegr i ty Info rmation System (MASIIS) facility at the Oklahoma

City Logistics Center. At the present time , a significant portion

of the data is not used due to the large volume and absence of

maintenance concep ts geared to the ou tputs .

2 .3.4 Commerc ia l  Program s

I n - f l i g h t eng ine moni tor in g in the commerc ial f l e et has been
used since the ear ly 1960 ’ s . The emphas i s  of such sy s tems is on
da ta acquis i t ion and pos t-flight processing of trend data

to schedule activities [16]. The Airborne Integrated Data

System (AIDS) is a nearly standardized log ic for acquisi tion of

eng ine and aircraf t data [7] . Various airlines in the U.S. and

Europe have used this system for eng ine pe r fo rmance  moni tor ing .

KSSU , the European aircraft consortium , utilization of AIDS

is a recent example of the approach used by commercial airlines.

Addi tional monitoring transducers specifically for DC-b or 747

engine application were discouraged. A strong emphasis on sen.sor
repeatability was placed in the instrumentation specifications .

Domestic airline engine monitoring has been directed toward

long- term trending . In general , the ph i losophy has been to -

trend-corrected engine variables in stabilized cruise. Then ,

when exceedances are encountered (e.g. in fuel flow or ECT),

an eng ine removal and turbine overhau l is scheduled . Experience ,

however , has shown tha t s i g n i f i c a n t amoun ts of compressor and fan
degrad ation occur [5,17] which is unaffected by turbine renovation.

Test programs are currently underway to evaluate instrumentation

required for in-fligh t and test cell determination of engine per-

fo rmance on a module bas i s .

1 9
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2.4 ENGINE MONITORING TECHNIQUES

Many techn iques for inferrin g engine status or change in

engine sta tus have been proposed and/or applied to various engine

configurations with varying success. The major types are reviewed

below .

2.4.1 Vibration Monitoring [14 ,18 ,19]

A cri t ical  ar ea of concern in tu r b i n e en g i n e  opera t ion is

th e status of the ro tor sup p or t b e a r i n g s  and aux i l iary po we r / f r e e
turbine transmission sys tems . Wear in this type of rotating part

is apt to occur steadily after the appearance of an initial pit or
den t . Each t ime this  fau lt con tac ts ano ther su r f ace  (e .g . be ar ing
race or gear too th ) ,  an impulse is transmitted to the structure

wh ich can be detected by various force-sens ing tranducers such as

pi ezoelec tric acce l erome ters .

The impulse transmitted to the structure will occu r at harmonic

f r e quencies  of the ro tat ional  sp eed of the ro tor . Thu s , typical
v ib ra tion sensor sys tems u til ize t rack ing  bandpass  f i l ters to
moni tor vibration energy at the key harmonic frequencies [19]

The si gnals  are of ten in tegra ted for  a f ixed  t ime and the v ib ra t ion
amplitude value sampled .

G e n e r a l l y , this type of system is useful to detect incipient

faul ts in mechanical systems which have bearing or gear defects

which have progre ssed to the failure point. Earlier flaw s will

no t produce adequa te energy to be de tec ted over the background
bearing or gear mesh noise levels . A new technique has recently

been sugges ted which appears to produce far superior results in

tes t bed exper imen ts [ 14 ] . B r i e f l y ,  when a gear or bea r ing
flaw impac ts the structure , a broad band en ergy pulse is trans-
mit ted. This results in high frequency vibration components

bein g amplitude-modulated by the impulse. The new system high

pass fil ters the accelerometer inputs to eliminate lower frequency

10
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rotor harmonics and then ampli tude-demodula tes the resul ting signal.
This procedure has been shown to be sensi tive to developing flaws.

2.4.2 Usage Measures [20 , 21 , 22 , 23]

Engine aging depends on the running time and is accelerated

at high tempera tures . Cyclic power leve l excursions resu lt in
temperature changes in rotating parts and have a predominant

relationship to the remaining life of the part. These facts

have been incorpora ted into two engine life figures called
low cycle fatigue (LCF) and hot section factors (HSF) [23]

LCF counts measure power excursions from lower power levels
to higher power levels . During this typ e of “cycle ,” the engine

hot section is subjec ted to stress from rotational accelerations
and temperature gradients. These cycle counts are used as an

age measure for the various components of the engine and in modular

engines, the cycle counts are tabula ted for a number of par ts.
When the counts exceed the limit for a part , main tenance action
is required. This procedure is qu ite attractive in its simplicity

and applicabili ty to modular engines. It requires accurate data

recording and accoun ting at many logistical levels. Also , the

limi ting LCF counts for each part are extremely difficult to

determine . Setting lower limi ts is a conserva tive decision which

resul ts in hig her main tenance overhead .

Hot section factor or hot time measures the exposure of the

engine , primarily the turbine , to inle t gas temperatures above
certain levels. This measure is then corre ’ated with turbine

wear us ing Advanced Mission Testing (AMT) i~~sults [21 ] and HSF

limi ts are specified to determine maintenance action. This pro-

cedure is convenien t and compatible with the newer AMT philosophy
being employed on curren t propulsion systems . The trade off

between conservative specification and maintenance overhead re-

mains.

11
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2.4.3 Oil Analysis [24 , 25]

Oil analysis techniques can be categorized as spectrographic

or particle detection . Spectrographic oil analysis determines the
metallurgical composi tion of the engine oil. Changes in oil
con taminant composition indicate predominant areas of wear.

Levels indicate the amount of wear present. These procedures

are accurate for particle sizes less than 2 microns , but require

sophis ticated laboratory equipmen t. Two problems are the delay
in processing the analysis at a central loca tion and detection of
wear particles larger than 2 microns .

Oil chip detectors indicate the amount of metal in the oil

Magne tic detectors , pressure drop swi tches , and light scattering

devices have been used wi th varying degrees of success [25].

Problems occur due to viscosi ty changes in the oil , oil ag ing ,

and component fouling. After there is an abnorma l indication ,

isola tion to the specific faul ty componen t may be difficul t.

These indicators usually provide a discrete indication- of a

problem rather than a continuous status level which could be
used for prognos ti cat ion .

2 .4.4 Charged Par ticle Probes [25 , 26]

Electrostatic probes may be placed in the engine exhaust

to detect charged metal particles caused by component wear.

These devices can detect incipi en t eng ine failure by measuring

increases in charged particle levels which occur prior to failure.

The electronics associated with the system have been proven

compatible with installation in an operational environment.

2.5 THERMODYNAMIC ANALYSIS PROCEDURES [27 , 28 , 29]

The aircraft turbine engine has the advantage over other

types of propulsion systems in that the physical phenomena can

be modeled by equilibrium thermodynamic equations . Using some
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mildly restric tive assumpt ions , the actual perform ance of each
comp onen t in the gas pa th can be analy tica l ly described in steady
state term s.

Analy tical prediction of turbine engine performance was first

attempted in an engine moni toring system around 1963 [6] . A s
compu tational techni ques have improved and da ta ac quisi tio n and
tes ting procedures have become more accurate , the feasibility

of this approach has increased drama ticall y.

Thermodynamic analysis me thods use analytical models to

diagnose changes in componen t performance wh ich may be l inked
to degrada t ion , aging , or inci pient failure. These p rocedures
should be contrasted with engine measurement moni toring which tracks

ro tor speeds , temperatures , etc . to determ ine overall changes
in engine performance .

z .5.l General Framework

The general gas path analysis problem can be formulated as

foll ows:

0 = f(x ,u ,9) (2.1)

y = h(x ,u ,O) + v(t) (2.2)

where x and u are vectors of engine variables and inputs are

chosen for convenience in the model . 0 is the vector of engine

pareme ters . f(x ,u ,0) is the model of the engine , y is the

group of sensor measurements which are related to the states and

controls by h(x ,u,8) and certain random errors , v(t). All gas

path analysis techniques can be written as special cases of

Eq . (2.1) and (2.2) using a group of lumped parameter modeling

assump tions [6].
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In general , Eqs. (2.1) and (2.2) are difficult to accurately

formu late and solve. Usually , a redundant se t of equations is

obtained so that eng ine parameter values and sensor errors can be

calculated . For example , a line arized procedure which us es

corrected variables as the eng ine model and small parameter vari-

ations as linearization variables has been applied to engine

testing in sea level static tests [25].

2.5 .2 Approaches to the Problem

Two approach es to the problem formulation have been proposed

in curr ent systems and two methods of data analysis are possible.

These procedures are reviewed below .

There are two data processing procedures. In the snapshot

me thod, a model and parameters are chosen with which , given a

single set of engine measuremen ts , a set of engine and sensor
parameters can be determined. Data scatter can cause a signif i-

cant degradation in the resul ts. Often , closely averaged measure-

ments are used to reduce the scatter. This will not generally

alleviate the problem as will be discussed in Section III. The

advantage of this procedure is that old data does not have to be

stored . False alarm rates tend to be high if simple thresholds

are used .

Trending is performance analysis utilizing past data. In

trending (or filtering) , past data is compressed into sufficient

statistics which represent information about parameter and sensor

errors contained in all the measurements to date. Prognostication

is possible if rates of change are estimated along with parameter

values.

Two techniques are used to model the eng ine . In the custom

baseline [30,31], a particular engine is run at various power

condi tions to determine the curren t perfo rmance. Measuremen ts

at later times reflec t changes in the custom baseline and a

linearization of the model is possible about the customized

operating point [32 , 33] . Generic baselines are analytic models

14
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representing the closest approximation to the nonlinear eng ine
bu ild . Ra ther than a set of baselin e numbers , the generic
baseline is a set of equat ions which model the thermod ynam ics
of the engine if nominal losses and efficiencies are assumed.

A cus tom baseline represents a historical data record. Thus ,

a snap shot cal cul at ion using a cus tom basel ine is somewha t con-
tradictory . Several systems using generic baselines and snapshot

calculations have been implemented with varying success [29 , 35].

In general , the requ iremen t for sim p lifica tion of the model often
introduces errors exceeding the changes caused by component

deteriorat ion .

The general generic solu tion to Eqs. (2.1) and (2.2) and

the specialization to custom baselining and snapshot calculations

are described in detail in Section III.

2.5 .3 Dynamical Analisis

Eq . (2.1) is a special case of the exact expression describing

engine behavior in an ins talled env ironmen t , namely

x = f(x ,u ,8,t) + w(t) (2.3)

where f(x,u ,0 ,-t) models the time dependence of the machine and

w(t) models the disturbances which invariably act on the system .

Techni ques have been suggested which utilize this dynamic model to

inoni tár critical parameters in the engine [34 , 36, 37) . The
simple example of this type of technique is the trending of time -

to-zero speed after ground shutdown [25] to monitor bearing fric-
tion on the rotor shafts.

More sophis ticated procedures utilize dynamic data analysis

to gain information concerning component characteristics which

influence response to throttle commands or actuator changes (such

as bleed flow) . Introduction of the dynamics into the problem

also increas es the number of fault parameters . Thus , in addi t ion
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to lumped component efficiencies and effective areas , parame ters
such as spool time cons tants and con trol effec tiven ess are add ed
to the overall set [34] . It is possible that these parameters

are far mor e sensi tive to degrad at ion effec ts than steady st ate
efficiencies , and as such represent more efficient fault sensitive
ind ices .

The dynamic parame ter estimat ion prob lem is a mor e cumbersome
modelin g task and data processing effort. However , wi th suffi-
cient simplification , in-f light algori thms may be developed which

can utilize con tinuous , dynam ic data inputs as the basis for

faul t monitoring. These procedures will be discussed in Section

III.

2.6 PRACTICAL ASPECTS OF THE PROBLEM

Experience over the pas t two decades has shown that accur ate
in-fligh t engine monitoring is an extremely difficult problem which

involves eng ine data acquis it ion and transfer , real- time proc essing
al gori thms , off-board processing and redu ct ion and incorpora t ion
within the existing maintenance procedures and logistical frame-

work . Some of the problems of the practical system are summarized

below [9 , 25 , 35 , 38].

(1) Measurement Accuracy . Transducers measure quanti-
~Tes which are not averaged gas path variables.
Inaccuracies arise in the sensor and along the
information path to the computer. Error budgets
mus t be observed to keep this error source from
overwhelming requ ired accuracy. Sensors themselves
fail and outputs shift with sufficient regularity
to cause problems in an installed system .

(2) Modeling Accuracy [25 ,12]. Experience has shown
that modeling techniques are critical. Utilization
of comp uter simulations mus t be closely correlated
with test stand data. Aircraft data should be
expected to differ from test stand results. Models
such as generic baselines must be formulated in a way
to accurately account for these effects.
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(3) Faul t/Parameter Correlation [5,21]. The most difficult
par t of the problem is det erm ining how overall model
parameter changes correlate with maintenanc e acti-
vities such as compressor cleaning or turbine over-
haul.

(4) Compj~exi tv of the Algorithm [30]. Algorithms to
solve all the problems can easily exhaust the most
ex tens ive compu ter capabili ty . Compu tational re-
quiremen ts mus t be balanced with compu ter ava i l-
abili ty at each step in the da ta processin g flow .
Accuracy tradeoffs are important , also.

2.7 SUMMARY

The his tory of engine performance monitoring has been re-

viewed. The early effor ts in turbine engine analysis were

compared wi th curren t programs in this area. Three mili tary
program s , IECMS , ADEMS , and AIDAPS were reviewed for back-
ground and as examples of the curren t philosophy . Various pro-
cedures have been discussed which can be used to measure eng ine
heal th. Thermodynamic cycle monitoring or gas path analysis

has been derived in general and specific approaches of current

sys tems have been reviewed. Problems in the gas path analysis

have been presented which can significantly impact the useful-
ness of any algorithm.

Section rrr describes the equat ions of engine performance
ana lysis from a general viewpoint. The snecialization to various

imp l emen tat ion forms is derived.
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SECTION III

METHODS IN PERFORMANCE MONITORING , TRENDING ,
AND TRANSIENT FAULT DETECTION

3.1 INTRODUCTION

Performance monitoring is the utilization of regularly

acquired , imperfect measurements to infer the present and future

status of the system relative to a previous status or an ideal

norm . Section II presented a historical review of the develop-

ment of performance monitoring systems . These approaches
have naturally sprung from non-parametric techniques
practiced on early spark ignition and turbine eng ine air-
craft. This section discusses the problem from a general view-

point which includes present monitoring techniques as special

cases.

Failure detection for dynamic systems is closely allied

to performance monitoring [1]. In general , these  procedures  mus t
make rapid inferences from flight acquired data , most often in
real time . The computational capabilities of such systems using

on board computers may be restricted by processing time and

storage. Performance monitoring techniques are based on the

same theoretical foundations as real time failure detection;

however , the application and emphasis are shifted from rapid
decision outputs to accurate utilization of the measurements

for diagnostics and prognostication at the ground maintenance

level .

Wi th the advances in modern electronic processing capabil-

ity and reliabili ty, the distinctions between on board/off-board

capabili ty, real time and post flight analysis and thus monitor-

ing and detection have become less pronounced. Many more complex

algori thms from data analysis methodologies can now be applied

in a real time environment . The time scale differences between
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failure detection and performance monitoring are presented in
Figure 3. 1 for typical engine events. The unifi ed problem can
be viewed as a multiple time scale system. For time constants
comparable to transient engine response processes , a fast
decision must be made with a rela tively small amount of infor-
mation. These decisions involve gross changes in eng ine!

instrumentation character istics . This type of p r o c e s s i n g  may
be defined as detection. For time constants muc h longer than
engine dynamic processes , a large amount of data is available.

The changes in the system due to these events are typically

quite small and performance moni torin g techn iques attempt to
reduce the vast amount of operating data to a set of statistical

measures describing the status of the system . This section will
primarily emphasize performance monitoring algorithms which are
adaptable to minicompu ter implementation at the flight line
maintenance level and compatible with fligh t acquired data

inputs.

A general formula tion of the detec tion/moni tor ing pr ob-
lem w i l l  be presen ted in Sec tion 3 .2 . Var iou s as sum pt ions
leading to a static model are presented in Section 3.3. (Section

3.3 .1 sys tematically expands on the me thod of static mode l analysis
via quasi-lineariz ation. The actual development of mathematical

models is presen ted in Section 3.3.2.) Trending applications ar .-

discussed in Section 3.4. Section 3.5 presents a method for

utiliza tion of transien t response data to infer a differ ent class

of performance-indica ting parameters.

3.2 GENERAL FORMULATION

It is fundamental to this development that fault detect~~ n and
perfo rmanc e monitoring procedures are subsets of the parameter identi-

fication problem . if l  general , the turbine eng ine , or any sys tem ,

can be ma thematically described by a set of nonlinear equations (to

mos t any degree of accuracy) as follows :
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0 = f ( z , x , u , 0 , w) ( 3 . 1 )

w h e r e  the  d i s t r i b u t e d  a e r o t h e r m o d y n a m i c , mechan ica l  and e l ec t r i -
c a l  process es are lumped into a fin ite state, x , rep resen ta-
t ion us ing l umped parame te r forms of the physic al laws for these
phenomena. States may be distinguished from controls in that time

d e r i v a t i v e s  of the  f o r m e r  e l e m e n t s  o c c u r .  A l s o , f o r  n s t at e
v a r i a b l e s , n sets of Eq. (3.1) must be written. Controls ,

u, dis turbances , w , and parameters , 0 , are quantit ies
which can be distinguished by measuremen t or manipula tion . The
controls are quantities which are manipu lated and perhaps
measured . Disturbances and parame ters are u s u a l l y  desirable to
know but not easily measured .

Measuremen ts are taken on various quantities in the engine .

These sensed parameters are related to the states , inpu ts and
parame ters according to the general algebraic expression :

y = h (x, u , 0) + v(t) (3.2)

where random errors are introduced by random unmeasurable pro-

cesses.

Equations (3.1) and (3.2) are general enough to provide

a start ing point to define the fault det~ ction problem relative

to control design , state estimation , or other related tech-

nologies.

The engine model can be arranged in Eq . (3.1) to describe

the dynamics of the system by a unique set of equations as

follows :

k = f(x, u , 0, w) (3.3)

Deterioration of engine components affects the operational

characteristics of various subsystems and the entire eng ine .
It is fundamen tal to the fault diagnosis objective that this

de teriora tion , affecting the parame ters , 0 , of Eq. (3.3)
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can be detected and isolated. This objective indicates that the

fault detection/isolation can be treated as a parameter estima-
tion p roblem . Usually , the pressures and temperatures are measured

at many eng ine stations . Othe r measurements include rotor speeds ,

vibra tion leve l , fuel fl ow , etc. Isol ation of faulty components

using these measuremen ts is complica ted by two major considera-
tions: (a) systematic errors in instruments (bias , scale
factor errors) may appear to be degradations in engine per-
formance , and (b) a fault or a set of faults may produce a
similar effect on measurements as another fault or set of
faults.

The problem of fault detection and performance monitoring
can be formalized on the basis of the following assumptions :

Assumption I: Component and sensor deteriorations and
failures to be observed affect the operation of the
engine , control system , inlet , etc., in such a way
that changes in observed quantities can be used to
discriminate between the failed,’unfailed sensor or
the deteriorated ,/undeteriorated state.

Assumption II: The operation of the engine and subsys-
tems in its healthy and unhealthy state can be
modeled by equations of type (3.2) and (3.3).

Assump tion III : The transformation between values of
engine fault parameters , 0 , and aging effects ,
control failure modes, mechanical defects, sensor
errors and miscalibration can be established from
theoretical inferences and verified by operating
records or specifically designed tests.

Given assumptions I-Ill , the problem can be stated as
follows :

For the system of equations :

= f (x , u , 0, w) (3.4)

y(k) h[x(k),u(k),0] + v(k) k=l ,2 ,... (3.5)

determine the statistics of the unknown parameters , 0 ,
including the mean , variance and distribution at each
time given some subset of the historical data.
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Suppose that an operating record is g iven represen ting
the operation of a healthy or nominal engine at arbitrary time

poin ts as follows :

(~~~(k)} k = 1 N (3.6)

Suppose another opera ting record is supplied for another engine
which has the same values of inpu t variables represen ting an
off-nomina l engine with degradation , componen t ag ing , sensor
inaccuracies and failures presen t. These may be written as

follows :

{y(k)} k = 1 , . . .  , N ( 3 . 7 )

The difference between the two outputs can be written as fo l-

lows :

~y(k) = y(k) 
~
yn (k) (3.8)

= h[x(k),u(k),0] _ h[x n (k),u(k)i Bn l+v (k) (3.9)

The difference can be expanded in term s of small values of the

parame ter differences . This linearization step [33 , 38] is

performed even if a nonlinear mode l is assumed and numerica l

minimiza tion is used. The resulting form is given below :

Ay (k) = 
(a ~~~~k) 

~x(k) ~~ ~~ + v(k) (3.10)

d 9x — ~f ~~X 
+ .?~S (3 11)

a~~ 
— 

~0

The parameter estimation problem is to find the A0 vector

which accomplishes the following optimization

e max J ( O I Z )  (3.12)
8c®
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where the objective function , J , is formulated to max imize
the likelihood of the estimate , minimize the cost of an error ,
etc., depending on the preferences of the analys t.

Two approaches to the problem become evident at this point.

The generic or nominal baseline approach uses a form of measure-
ment sequence , Eq. (3.6), which is the output of a detailed
simulation or model of the engine at nominal values of the
build parameters. The custom baseline approach uses an output
record actually measured or created from averaged measurements
of the particular engine being observed. The differences in
the two approache s are more practical than theoretical sinc e
linearized behavior is assumed in both cases. In the following

discussions , the differences in the resulting algorithms will
be identified.

3.3 FAULT MONITORING ASSUMING STATIC MODELS

Most engine performance monitoring techniques which util-
ize thermodynamic principles assume the engine and aircraft are
operating in a steady state condition (e.g., static) . This
approach is often called gas path analysis. The thermodynamic
laws governing engine behavior can be written in simpler term s
than the equations modeling unsteady aerodynamics , heat trans-
fer or torque balance phenomena . However , since the engine ,

particularly in flight , is never completely static , errors

will occur due to these temporal effects .

Under the assumptions of static behavior , Eq. (3.3) may

be written as follows :

0 = f(x, u, w , 0) (3. 13)

The measurement equation containing all systematic uncer-

tainties is repeated below :

y h(x, u, ~
) + v (3.14)
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There have been many approaches to the performance monitoring

problem as discussed in Section II. Certainly, the complexity
of the propulsion system and availability of data acquisition
and processing capability have a strong impact on the sophisti-
cation of the procedure [39]. The mathematical approaches to

performance monitoring previously developed for jet engines
are reviewed below and put in the context and symbology of
parame ter identification.

There are two types of engine monitoring and fault detection.
They may be called direct trending and inferential methods .
Direct trending is the orig inal procedure for tracking important
engine measurements and noting changes . Inferential methods at-
tempt to use changes to infer the cause of the change. These two
approaches will be discussed below.

Direct trending [10,15] methods are performed by many auto-
mated data recording systems . Engine measurements such as rotor

speeds , fuel flow , EGT , and EPR are recorded and corrected to
standard conditions . These measuremen ts are taken at a constant
power condition and flight point so that , if the engine remains
healthy, the measurements should be constant. If the measurements
change over time , it is an indication of a change in engine opera-
tion or sensor effects. Fault isolation is performed by associ-
ating a “direction matrix” with the measurements. The sign of the
parame ter changes for each measurement change is noted. A table
is created which relates typical engine failures to the directions
of measurement changes and this is used as the isolation technique.

This approach requires repeatable operating conditions for

the aircraft. It ’s applica tion has been predominena tly in the
commercial environmen t where a stabilized cruise is common. Un-
fortunately, there are more engine and sensor faults than can be
uniquely associated with measurement changes so that the “direc tion

ma trix” often has several possibili ties for each entry.
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Inferential techniques use quantitative measurement changes

and a mode l of eng ine performance to analytically infer the cause
and magnitude of the set of deterioration parameters.

Direct analytical modeling [29 ,41,42] uses a simplified work
and energy relationship to establish nonlinear , algebraic rela-
tionships between gas path quantities. In this case , fault
parameters , e.g., lumped efficiencies , area changes , pressure
drops , are analytically derived as a function of measured quan-
tities , e.g.,

p Y l/Y 
- 1

K rc (3.19)

where the compression pressure and temperature ratios , 
~~~Trc~ 

are measured. The fault parameters are monitored and
trended. When large deviations occur , failures are expected.
When smaller consistent trends are detected , deterioration
may be involved. Practical problems arise in this situation ,
e.g., multiple faults , sensor calibration drift , modeling
errors , sensor flow errors which are influenced by age , vari-
able geometry effects , etc. However , with reasonably simple
gas paths , these techniques have been experimentally demon-
strated.

The second category of inferential methods includes linear

L or quasi-linear approaches. These procedures have shown promise
in actual development programs and in several prototyp e eng ine
analyzers [28 ,30,32].

One procedure [27,28] utilizes a numerical approach for
direct calculation of fault parameters:

= y - f(x) (3.23)

A 0 = Q ~~~~ (3.24)
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Here , dev iations from the custom baselines , f(x), are measured.

This baseline is calc ulated as a function of a single corrected

variable , x , from inst alled or test stand data. The fault

coeff icient matrix , Q, is analytically [47] derived for a par-

ticular flig ht point. The number of measurements and parameters

are assumed equal , the custom baseline is assumed to be a function

of a single variable and the relationship

~~~= P~~~S (3.25)

is assumed calculable and invertible. This procedure is more

applicable to land-based turbine operations because of the
assumptions concern ing univariate baselines , constant fault
coef f ic ient ma trices , etc. Procedures [30 ,39] for choosing

fault parame ters and measuremen ts to give the mos t accuracy
have not been sys temat ically developed . A more sophis ti ca ted
technique is shown below:

= - f~~(y~ ) i=l ,. . . ,p (3.26)

= P(~~) ~0 (..27)

= Q (y~ ) ~~~~~ .

Q = (p Twp) l pTw (3.29)

This procedure [30] is an extension of the first approach using
a more accurate data processing approach. A set of measurements ,

~~~ , includes data with some random uncertainty. A deviation is
calculated from a custom baseline measured by a single abscissa
value , y

~ 
(e.g., corrected speed). These baselines can be

shifted or biased by additional ambient variables (e.g., Mach no.)
to accoun t for some altitude effects which are not easily modeled
by standard nondimensionalizatio n. Similarly, the fault coeffi-
cient matrix is developed at a number of operating points and the
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elements are mapped by a scheduling variable , y
3

. ~-1ore measure-
ments than parameters are taken and a weighted , least squares
solut ion i s ob ta ined . The choice of mea suremen ts and parame ters
can be accomplished with a specialization of the techni que dis-
cussed in Sec tion 3 .4.

The lineariza tion procedures have had the most practical

success because the devia t ions of parame ters between new and
de teriorated engines (especially for high performance sys tems)
is small. While this fact justifies the linearization , it

complicates the modeling and measurement problem significantly.
In par ticular , while it is far more economical to use simulations

of engine deterioration to calculate baselines and fault
deriva t ive s , accuracy limi tat ions be tween ac tual engine and
simula ted behavior can produce anomalous results unless compen-

sated for in the processing of the data.

There are three important considerations in the application

of this method. Since cus tom baselines are measured , prac t ical
engine tes t limi tat ions specif y a univariate baseline function
(e.g., determined by power lever angle , corrected speed , etc.).
Since variable geometry engines have more degrees of freedom ,
these must be reduced to a single degree of freedom problem using :
(1) corrections of variables to standard day conditions , (2) utili-
zation of control schedules to resolve geometry position ambiguity,
and (3) neglecting unmeasurable random disturbances such as
bleed rates and seal leakages. This scheme is often complicated
by modern control logic which “uptrims ” engine response to
compensate for component deterioration. Also , errors in meas-
uring baseline performance , set point variables (abscissae)
and ambient conditions degrade the starting point for perform-
ance monitoring . The second importan t consideration is altitude
and nonstandard day effects. For small pressure ranges and
large temperature variations , scaling laws (for fixed geome try)
can be applied to the turbine to correct changes due to operat-
ing conditions scaled by temperature and pressure. At altitude
and nonzero fli ght speed , Reynold’s number , Mach number and
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radial flaw effects such as distortion and burner effects tend

to significantly reduce the applicability of the scaling rela-

t ionship . Thi s res tricts the opera ting envelope of the d iagnos-
tic program to take-off/landing conditions or the models used

in Eqs. (3.26)-(3.29) become extremely complex.

The third consideration is instrument errors which change

slowly, change af ter maintenance and are rela ted to the power
or flight condition [44 ,45]. All of these effects tend to cause

devia t ions in derived parame ters , i~0, which can mask the
small effects expected due to deterioration and ag ing. Effec t s
of instrument deterioration on parameter estimation accuracy

are presented in Ref. 1.

These three potential effects tend to limit the accuracy
of mul tiple fault diagnostic approaches. A general formulation

is presented which utilizes more sophisticated filtering tech-

niques to extract the maximum information (in a statistical

sense) from the measurements.

3.3.1 Quasi-Linearization Method

Returning to the general set of equilibrium conditions of
the engine written in Eq. (3.13):

0 = f(x, u , 0 , w) , (3 .30)

it is possible to assume that the performance parameter s , 0,
and unknown disturbances are small when compared to effects of
prima ry variables such as fuel flow or rotor speeds . In this
case , the equations can be linearized as follows:

0 = f0 (x ,u) + f0 (x,u)50 + f
~

(x ,u)6w (3.31)

where
f0 f(x ,u,00,w0) (3.32)
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3 f ( x ,u ,0 ,w )
= 

0 = e~ 
(3.33)

~f(x ,u ,8 ,w)
= 

~w 
(3.34)

w = w0

The nominal values of deterioration parameters and disturbances
are determined from examination of many engine builds . The
deviations 60 and 6w specify the amount each parameter and
disturbance differ from the nominal.

The modeling requirements for states , contro l variables ,
parameters and disturbances can be made more exact at this
point. Equation (3.31) represents n algebraic equations
describing the equilibrium state. The engine has m independ-
ent degrees of freedom in steady state corresponding to the
number of free or independent input and control variables .
The excess number of equations; n-rn , represents equality
constraints on the state variables . The state variables
themselves do not necessarily maintain any dynamic identifica-
tion since the problem has been reduced to an algebraic solution.
Thus, “state” variables may be chosen for convenience , in this
case , to represent measured quantities. Equation (3.31) can
be represented as a quasi-linear regression model which relates

measured variables to control inputs , other measured variables ,
and parameters , as follows :

x = g0(x ,u) + g0 (x ,u)60 + g~ (x ,u)ôw (3.35)

The selection of the form of Eq. (3.35) is permitted only when

static behavior is assumed. The “model” shows that the quan -

tities , x, are related to a nominal or generic engine base-

line , g0(x ,w), which is a function conveniently represented

by a group of other state and control variables. The exact

value attained by x is also influenced linearly by engine
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performance parameters , 60 , and unknown and random disturb-
ances , 6w. The state is defined as the ideal value ~ih ich
would be measured in the perfect , nonlinear eng ine model which
included all effec ts accura tely simulated . Of course , the ‘true ”

state canno t be me asured on any real eng ine . The rela tionsh ip
be tween generic engine behavior and measured engine performance
is the inferential problem posed by performance monitoring.

It is assumed that measurements of x are taken with
transducers whose outputs can be modeled as follows:

y x + g~ (x,u)6~ + v (3 .36)

where v(t) is a zero mean , random process modeling temporally
varying errors in the static measurement which include channel
noise , high frequency processes , and engine disequilibrium .

The measuremen t function, g~~(x ,u), represents sy stema tic
errors in the measurements which could include bias offsets ,
scale fac tor effec ts , radial flow effects (e.g., pressure
gradients) ,  and cross couplings (e .g. , tempera ture effec ts on
scale factor). The modeling requi rements and restrictions on

g~~(x ,u) will be discussed in Section 3.5.

The mod els in Eqs. (3.35) and (3.36) can be reduced to a

more convenient form appropri~’te for parameter estimation .

Substituting Eqs. (3.35) and (3.36) yields the following

y - g0 (x ,u) = g0 (x ,u)68 +g~~(x ,u)6~ + g (x,u)ôw+v

(3.37)

which is a standard form for quasi-linear estimation using
least squares or maximum likelihood methods . However , in the
case of Eq. (3.37), the n equations are written in terms of
redundant sets of independent variables (x,u) which are only
approximately measured. The models are constructed in this
manne r (see Section IV) to take advantage of simple relation-
ships among measured variables in the engine.
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To accoun t for the uncer tainty in x and u, a two-step

procedure can be used to es t imate the parame ters.  The al go-
rithm is discussed below .

An initial estimate of the parameter values is made using
results of previous data or ad hoc assumptions . A group of

measuremen ts is processed toge ther and reduced to an updated
se t of parameter values which reflect the best estimate of
engine status and instrumentation errors . For a group of N in-

puts , (u(i),i=l ,N), the implici t equa t ions , Eq. (3.35), are
numerically solved for x , yielding the following result

x(i)  = g
0(x(i),u(i)) +g 0

(x(i),u(i))~~(O ) (3 .38)

The poin ts , x( i ) , represen t the best estimate of the eng ine
state without incorporating the new data but at the operating

condi tions where the new data is taken. The measurement

equat ion is written:

9(i) = x(i) + h~~~~(i) ,u(i))~~(0) (3.40)

where 9(i) would be the best estimate of the outputs. This

set of values is used as the basepoint to calculate the new

parameter estimates from Eq. (3.37).

The operation can be linearized to solve for the relation-

ships be tween (
~ , ~, ~

) near (x , 0 , ~
) as follows :

= - x (3 .4 la)

= - 0 (3.41b)

6$ = - (3.41c)

I
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The following expression results from expanding Eq. (3.38):

C [ g 0 (~~,u)6~ 
- g~~(~~,u)w] (3.42a)

C = [I  
- g0~ (~ ,u) - 

ge~~(~~,u)~~] (3 .4 2b )

In this form , the difference term on the lef t hand side of
Eq. (3.42) is correlated with the term s used to calculate the

righ t-hand side through errors in inputs , u. Defining

= 9 ( i )  
- y(i)  (3 .43)

Eq. (3.42) can be rewritten in a more convenient form as follows :

69 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

B = I + h
~~~

(x ,u)
~ 

(3 .44 b)

or , for N measurem ents indexed on i,

= + ~~~~. V i=l ,...,N (3. 45a)

where

t~y. = 9 (i )  
- y(i) (3.45b)

= [60
T 1 6

”T
1 (3.45c)

V = [V T : w
T] (3.45d)

H1 = [B~C~
1g0(~1~u1) h~

(
~~

,u
~
)] (3.45e)

= [I -B~~C~~
1
g~~J (3.4Sf)
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The N measurements in Eq. (3.45) can be used to update the
parameter estimates using the sequential least squares procedure
as follows :

~~(n+l) = ~~(n) +M 1H~~~~~[~ v - H ~~~~(n)] (3 .46 )

n=l ,. . .N

= M~
1 

+ HT~~
lN (3.47)

where
= F c o v ( V)  F”

and M0 measures the uncer tainty in the parame ter values at the
beginning of the process .

The procedure assumes that the measurement errors and error

statistics are known and that the parameters are constant. In an

engine environment , these assump t ions may not be sa t isf ied caus-
• ing inaccurate parameter estimates. Also , the parameter estimates
* may be significantly biased because of correlations between the

dependen t and independent variables in Eq. (3.45).

The sequential algorithm presented in Eqs. (3.46) and (3.47)

is appropriate for situat ions in which data is cont inuously
• received and not available after processing. This scenario is

typical of on-line , real time processing systems . The off-line

performance data processing scenario is different . Group s of
data points (5-10 measurements) are received for an engine . This
data is available for processing as long as necessary . It is
discarded after processing. Figure 3.2 illustrates the informa-
tion flow .

An algorithm for using data in this format is presented
below [46]. The likelihood function for estimating the engine
state and degradation parameters for N measurements is

I 

*

1
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Figur e 3.2 Parameter Estimation Process

N
J(x(n),n=l ,N;$) = ~ -~~ R~~~y + ~~~~~~ (3.48)

n=l n n

= y~ - 9n (3.49)

= g0(~~~u~) +g 0(~~ ,u~)8 +h~
(
~n~

Un)$ (3.50)

where M is an initial parameter covariance estimate.

The functional , J , is iteratively minimized. An initial

estimate of the parameters , ~, $ from previous runs is assumed

for the N data points. These values are used to estimate the

eng ine states , 
~n ’ at each point from Eq. (3.42). Then ,
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Eq . ( 3.46) is used to es t ima te the upda ted parame ter estimates ,
e , ~, from the state estimates. This procedure is iteratively

execu ted un t il the es t ima tes ~, ~, ~ converge to a constant

value .

Af ter a group of da ta has been used to es t ima te ~~~, ,
the residu als can be used to update the noise estimates and the

estimate uncertainty . The sensor noise covariance is estimated

f rom the res idua l s ,

R = cov~~(~y) (3.51)

where  cov N (.) is the N sample covariance of the final residu-

als of the estimator. Using R , the uncer tain ty in the para-
me ter estimates for the current record can be written :

r N  1 1

cov (~) = E H R H I (3.52)

L n l  J

This can be combined with the original covariance es tima tes
using an exponentially f ad ing  memory f i l ter ,

MN~ l 
= M

0
1 

+ p [cov (~ ) - M~~ ] (3.53)

The value of p is chosen so that the filter “ignores ” meas-

urements taken at Nf time points prior to N where Nf is

given approx ima te ly  as fo l lows :

Nf 
= 3/%n(p) . (3.54)

This algorithm will provide estimates of the parameters

for data taken in an e ssen t ia l ly  f i n i t e  wi n dow co v e r i n g  a

por t ion  of the engine operat ing per iod.  The system can also
be reinitialized after engine maintenance or trim .
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An algorithm is briefly described above which uses parameter
estimation to establish values of eng ine parameters from st atic

data. In section 3.3 .1, a procedure for dev eloping the mod e ls
used in thi s algorithm is described. In Section IV , considera-
tions important in applying this algorithm to the F100 gas path

are presen ted.

3.3.2 Mode l Development Techn iques

The parameter estimation algorithm described in Section 3.3

uses a mathematical model of engine performance and derivatives

which is developed from a detailed simulation of the engine . The

calcula tion of the best form of the model is described be low .

Parame ter es t imation resul ts are clo sely t ied to the model used .

A method of model selection is presented which allows a system

approach to formulating fault parameters which can be accurately

identified and which reflect the actual status of the engine.

3.3.2.1 Developmen t of the Baseline Model

The engine baseline mode l describes the set of measured

variables as a function of othe r variables and a set of more

accurately measured independent quantities. This relationship

is written as follows :

x = g0(x,u) (3.55)

A data base of generic engine operating points is formed. For

the aircraf t turbine , this requires genera t ion of typical
operating data at various points in the flight envelope where
measurements are to be taken. Data should be generated in

approximate proportion to the density of measurements which

will be processed during actual- flight operation . The windows

of data acquisition can be written as follows (as an example):
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T . < T  < T2mm 2 2max

P . < P  < P2m m 2 2max

0 < M < M -max

(W f / / ~ ó ) i  < < (W~/~~ 6)

‘
~
‘imin < 

~
‘i < 

~ imax ( g eo m e t r y  p o s i t i o ns )

The pressure , temperature and Mach number constraints bound the
flight envelope. The fuel flow and geometry settings will be
indep endently specified and chosen from typical values. The

values of inputs are set independently of control schedules ,

feedback , etc. The number of points in a particular region should

correspond to the expected data frequency. The models are

developed using a least squares regression analysis to determine

the mode l for each x.

= mm [x. - g0(x. * ,u)]
2 (3.57)

3 3

where the baseline function , g0 (x~ *,u) has the form :

q
g0(x~ *,u) = 

.~~~~ ~m tm (x~*,u) 
(3 . 5 8)

m= l

and the regression coefficients , 
~~ 

are chosen so that the

terms in the equation , ti (x j*,u), match the data. The vari-

ables in the model do not contain the dependent variable , x
3
.

The Vector of independent variables for the ~- th equation can

be written as follows :

1



X . l

x .~ = 0 (3.63)
3

x .~~1

x
n

The terms , t~ (x~*,u)~ consist of polynomials in dependent

and independent var iables . The independent variables , u ,

are chosen as a se t of accura tely measured quantiti es which
determine the engine state uniquely . The choice of these

variables may be altered and the effect on the model accuracy
de termined.

The regression in Eq. (3. 5 7) is performed on many poss ible
combinations of mode l terms t~ (x~ *~ u) and the bes t regressions
at various levels of parameteri zation are determined.

The regressions are designed to parameterize the dependent

variables with the minimum error and the minimum number of

te rms . The number of regression terms is reduced because the
equations are allowed to contain variables which are independent

in other equations . This procedure can lead to poorly invertible

models. The selection of appropriate model terms must be

accomplished using the criterion of equation accuracy and over-

all invertibility .
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Consider the vec tor mode l ,

x = g0(x,u) 
+ ~ (3.60)

where c is the fit error for each regression . A group of

operating points is selected and the model is inverted in these

regions as follows.

Given (x~0,u~0) is an equilibrium point , then

6x 1 
+ x

~0 
= g0(x10,u~0) 

+ g0~ (x10~u~0)6x

+ g0~~(x~0,u~0)6u 
(3.61)

or 
6x = [I - ~~~~~~~~~~~~~~ g0~ (x10,u~0)6u 

(3.62)

The overall modeling error due to fit errors and in knowledge

of u can be evaluated using the following criterion function

(p is the number of measurements and r is the number of test

fligh t conditions)

~FIT 
= 

~ i= l
1 

+ 

~ i~ l 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3.63)

where Q is the expected covariance of the errors in the inde-

pendent variable , u, or

Q = diag [a1~11, ~~~U 2 ’  
~~~~ 

(3.64)

The performance index , 
~FIT 

can be evaluated for several
parameterizations of the mode l and the most accurate expression
chosen .
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3.3 .2.2 Development of Performance Parameters

Af ter an accurate model is developed for the generic base-

l i n e s , the data base must be increased to include data representing

the  d e t e r i o r a t e d  e ng i n e .  These  e f f e c t s  w i l l  inc lude ef f ic ienc y
c h a n g e s , a rea  changes , p ressu r e dro ps , flow changes as well as

disturbances due to bleed effects and control actuator hyste-

resis.

There are a large number of poin ts represen ted by comple te

combi-’ations of these effects. The linear charac teris tics of

the model can be used to reduce the computat ion overhead .

Values of fault parame ters can be varied , one a t a t ime , at a

selected group of opera t ing po in ts which  span the envelope .

The computer resources for this type of data base are not over-

whelming.

The model for the faul t pa rame ters , instrumentation effects

and random e r r o r s  is wri tten be low

= H00 + H~~ + (3.65)

where the ma trices H0,  H~ , and F are functions of the

flight condition and are defined in Section 3.3. The covari-

ance of the estimation error for the maximum likelihood (mini-

mum variance) estimate must satisfy the following relationship

M = 32J/~~ 2 (3.66a)

where J is the log likelihood function of the estimation

problem. It can be shown that the following inequality is

valid [47]

M
00 I O I ~~

coy (- - i  
~ 

- - - -i - - - -  (3.66b)

M ‘I
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where (~
T tT)T is assumed to include all poss ible variable

eng ine and instrumentat ion par ameters . The matrix M is
calcula ted as foll ows:

M = z (H H )(rRr T)~~ ~~
° 

. 5 (3.6Th)

~~i= l T 1

N
E 

~i 
= 1 (3.67b)

i=l

where the sum is taken over N flight points at which data is

taken with fractional frequency .i~~ • In the algori thm develop-

men t, a representative group of flight points and frequencies

is chosen. This rela tion may be exp anded as fol lows :

M = u
1M1 

+ ~‘2M2 
+ • + 5- N’1N (3.68)

In general , if p measurements are taken at each point , only
p or less parameters can be estimated. However , since the
sensitivities vary with flight condition , it is possible to
estimate far more parameters than the number of measurement
variables using this procedure. The precise number and their accur-

acy is calculated using the following technique , developed in Ref. 1.

Consider the parameter vector (0T~~T) and reorder this

vector into elements (8~ : 0
T)T where 8r parameters will be

estimated and ee parameters will be ignored.

The covariance of the estimates of 9r using the full set

of equations from Eq. (3.66) is

COV(O
r ) = M 1 

+ M 1M (Mee M M 1
M Y 1M M ’ (3.69)

1
1

- 

- 

- 
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where
Mj rr ,

M = ( - - - -
~

- - - -  (3. 70)
Mee

Since the estimates are unbiased

cov (0r) 
= MSE (0 )

where MSE(-) is the mean square error. In the case when

fewer parameters are actually estimated , i.e. , ~ p a r a m e t e r s  are
ignored , it can be shown that the estimates are biased and the
mean square error is as follows :

MSE (0r) = M;~ + M
~4MreD(~ e

)MerMr~ 
(3.71)

where D(O e) is the approximate uncertainty level in the ex-

traneous parameters ,

D(O e) 
= diag(d0~) (3. 72)

Comparing Eqs. (3.70) and (3.71) , the accuracy of the estimate
of 0r improves if 0e parame ters are not estimated and

D(0e) < (M - MerMr~~
1reY

1 (3. 73)

i.e. , D(Oe) - (Mee 
- M M 1M ) 1 is pos itive definite.

In order to evaluate the accuracy of an estimator for all
subsets of the parameters using Eq. (3.71), all possible
combinations of the parameter sets must be evaluated. This is
an extremely tedious procedure if Eq. (3.71) is used directly.
However , there is an algorithm available to efficiently and
economically evaluate the optimal subset of estimated parameters.

This procedure is based on complete enumeration of all possible

subset combinations in a systematic order. The covariance
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estimates are available for each subse t from the preced ing sub-
set using a simple calcula tion on a por tion of the information
matrix. A detailed description of this technique and exarnp l~ s
of its application to the modeling problem are included in the
next interim report for this effort.

An alternative procedure aids in qualitative analysis for

the important parameter effects. The information matrix for the
full system , e.g., Eq. (3.69), is diagonalized and the eigen—
value spectrum is examined. Large eigenvalues indicate that the

linear combinations of parameters determined by the corresponding
eigenvectors are accurately identified with flight data. Small
eigenvalues imply that the estimated covariance of the linear
combination of parameters corresponding to that moda l direction
is large. The information matrix can be partitioned into group s
of certain parameters by associating the large eigenvalues
wi th these parameters. Equation (3.71) can be used to calculate

the estimation accuracy for the reduced parameter vector using
an estimate of the magnitude of the ignored parameters.

This procedure allows flexibility in the choice of re-
tam ed parameters and a quantitative measure of parameter
identifiability and accuracy tradeoffs . The resulting set of
estimated variables along with the associated generic baseline
and sensitivity system can be directly incorporated into the
sequential estimation algorithms discussed in Section 3.3.

3.4 TREND ANALYSIS

In the static analysis described in Section 3.3 , the para-
meter values were assumed constant over the data. Provision
for a “fading memory ” construction was discussed in the devel-
opment of the algorithm . In this section , the augmentation

of the static model identification equations with simple trend

models will be discussed as well as the association of an

appropriate t ime variable with the - trends .
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3 .4.1 Trending Equations

The trending process assumes a linear relationshi p exis ts
be tween a function mapping the data acquis it ion times to chang es
in the parameter values . The simplest mapping is the associa-

tion of the sampled point with the time of the samp le . This
time point may be calendar time , flight time , engine operating
hours , or some other function of the usage period of the tur-

bine. This functional mapping , for ex ample ,. specifies the separ-
ation of the data points on a sequential plot. In this section

the time of the kth sample , tk~ 
will be associated with the

kth variable. In the next section , some proper ties of a
function , f(tk), will be discussed and techniques for devel-
oping appropriate forms from flight data will be described.

The data may be written in the ordered sequence given
below :

~
‘k’ U~~~ tk} k = l ,N tk l  ~ 

t k

A dynamic represen tation of parame ter varia tions may be formu-
lated as linear motion , or

60 (k+l) = 60(k) + r(k) [t k 
- tk l ] (3.74)

r(k+l) = r(k) + w (k) (3. 75)

Ay = H
0

60 + H~ 64  + v (3.76)

where r(k) is assumed to be a constant or slowly vary ing
deterioration rate and is a nominal noise sample which

reflects the uncertainty in this variable.

Two approaches may be used to estimate 0 (k) and r(k).

Equations (3.74)-(3.76) can be used as the basis of a Kalman

filter for the state (60 : r) and an algorithm can be desi gned
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to estimate these quantities. The dynamics of the system are

wri tten as follows :

60(k+l) 1 ~tt 0 6e(k) 0

r(k÷l) 0 1 0 r(k) + 1 Wr (k) (3. 7’a)

6~~(k÷l) 0 0 1 34 (k) 0

where

= t
k+l 

tk (3. 7Th)

This may be wri tten as follows :

z ( k + l )  = 
~~~~~~ 

+ ? w ( k )  (3 .  78)

~y(k) = Hk:(k) + v ( k )

where
z(k)T = [6O (k)

T r(k)T~ 6~~(k)
T] (3. 9)

The estimate of z(k) is ~(k) given as follows :

~(k+l) = ~ (k) (3.80)

~(k) = ~~(k) + Kk [Ay (k) -U kz(kfl (3.81)

Kk = PkH~~R
’ (3.82)

= Pk~k
+ P k k HkPK~

T (R+HP kH
T)’ H

~
Pk~

4Q (3. 83)

In these equations , the matrix , 
~k’ 

represents the

uncertainty in the parameter estimates after processing data up

to t = tk. The initial condition , P0, represents the a priori
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uncertainty on the parameter values , i.e., b e f o r e  any measure-
men ts are taken. The dis turbance process , wk, is assumed to

be kn Own , white , zero mean wi th con stant cov ariance , Q . In

p r a c ti ce , this can be estimated from the amount of variabilit y

in the rate or from the perf ormance of the fil ter after a
group of data have been processed [19].

A steady state representation of the gain Eqs. (3~ 82) and

(3.83) can be more efficiently used. There are problems in filter
convergence for this model due to the lack of “disturbability ”
of some of the bias states , c5-~. The mos t straightforward me thod
to avoid this problem is to use pole placement for these neu-

trally stable modes to assure convergence of the filter.

An al ternate formula tion is the static , extended Kalman
f i l t e r  a l g o r i t h m  for  both the parameters and the state [46].

This algori thm is presented for completeness below. The state

mode l is given as follows :

x (k+l) = x(k) + w
~~
(k)

ä0 (k+l) 60(k) + r(k) (tk+l~
tk
) + w

0(k) (3.84)

r(k+l) = r(k) + wr(k)

The measuremen ts are defined by the equation:

y = g0
(x,u) + g0(x,u)t$e 

+ g~ (x,u)6~ + v (3.85)

In this case , wx(k) is assumed N(O
~Qx

) where is chosen
large enough to ensure the engine state at the (k+l)st point
is not correlated (to a practical degree) with the state at
k, as woul d be the case in sparsely sampled data. The covari-
ance of w0, N (0,Q0) represents a priori information on the
parameters. The uncertainty in the rate is W r~ 

N(0,Q
~
) and

in the measuremen t is v , N(0,R) and
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z ( k ) T 
= [~~(k) T 6~~(k) T 

~ (K) T 5~~( k ) T ] ( 3 . 8 6 )

is g iven  f r o m  the  f o l l o w i n g  r e c u r s i o n ,

E ( k + l )  = 2 ( k ) + P~ H~ R~~~[~ y ( k )  - H k z ( k ) ]  ( 3 . 8~~)

wher e

~y ( k )  = Hk z ( k )  ( 3 . 8 8 )

and

El
k 

= g0 0 
~~ 

~~ 
= 

-
~ (3.89)

60 =

=

The optimal gain can be calculated for the data and the algo-

rithm can be applied in the manner described in Ref. 46 .

Alternate methods of parameter estimation can also be used

to trend the parameter data. The maximum likelihood method is

perhap s the most accurate. This procedure requires a list of

the data points and iterat ively processes the entire data

recor d to achieve its estimate. Accurate estimates of the small

deterioration rates within the noise level of the measurements

will probably require this typ e of processing. For a more complete

discussion of these procedures , see Ref . 47.

3.4.2 Time Variable Correla tions

The trending procedures for aircraft turbines can be formu-

lated as standard parameter estimation problems as discussed in

Section 3.4.1. An important aspect is the definition of a time

var iable to model deteriora tion as a constant rate , r(k). As-

suming that deterioration is continuous , i.e., step changes due

to foreign object damage , structural failure , maintenance action ,
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etc., do not occur , it would be expec ted that a cons tan t
deterioration rate ,

r = (3.90)

exists for a function t*(t).

The time variable t~ should be influenced by the phen-
omenological processes wi thin the engine that cause deteriora-

tion . Maintenance procedures , e.g., -turbine module replacement ,

should  in f luence  the p e r f o r m a n c e  p a r a m e t e r  levels , 6e , but
not the deterioration rates. Thus , the trending procedure has
the potential to be extremely useful in maintenance assessmen t

and prognos tication if the appropriate correlation function ,

t~~, can be identified .

Previous trending systems have used many choices for
the variable t~ . Early mon itoring schemes trended the engine

variables versus engine time . In turbine engines , the powe r
level , temperature and hence stress levels vary significantly
from flight to flight. An approach to developing this correl a-
tion is embodied in the advanced mission test (A~vtT) [22] concept
currently being employed during development of military air-
craft powerp lants . It is assumed that deterioration occurs

mainly durin g power modula tion . Characteristic power trans ients

are formulated for each aircraft ~nission profile. Engines are
then tested with these transients and equivalent engine hours

are tabulated. Periodically performance tests and rebuilds as-
sess the levels of deterioration and performance shifts which

have occurred. This procedure can be related to the development

of the time-like variable , t~~, which , in the case of the ANT ,

is experimentally related to engine hours using a standard mis-

sion profile and the assump tion tha t deteriora tion rates in

steady state are negli gible.
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There are several approaches to the determination of the

t r e n d i n g  v a r i a b l e .  An e x a m p l e  of t h e  concep t  is p r e s e n t e d  to
i l l u s t r a t e  the  p r o b l e m . F i g u r e  3 . 3  shows p l o t s  of measu red  and
d e r i v e d  d a t a .  The m e a s u r e m e n t s  a re  t a k e n  at  r i any  flight point s and

power condi tions . The parameter estimates should have only

MAINTE NANCE

Fi gure 3.3 Utilization of a Time Like Variable , t~~,to Measure Rates of Engine Deterioration
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low frequency components associated with t h e  deterioration

p rocess . The func ti on t~ (t , 
~l’~~2’~ 

,~~~
_ )  is sou gh t wh i c h

w i l l  map t to t~ giv en values of intermediate variab les

a3. Parameter estimates plotted against t~ form a

nearly straight line. This functional form can be used for all

engines to assess: (a) the status of t h e  e n g i n e , (h) the value

of t~ when a maintenance limit is reached , (c) the t ime (in

e n g i n e  hou r s )  u n t i l  the d e t e r i o r a t i o n  l i m i t  is r e a c h e d  g i v e n
nominal values of ct~ , .  . . , a~. which are associated with the
mission .

The p e r f o r m a n c e  a s s o c i a t e d  v a r i a b l e s , a , r e p r e s e n t
measurements in the gas path that are monitored in real time
or sampled in the data. Examples of these variables mi ght be:
(a) engine time , (b) time above 85% power , (c) time above a
specified turbine inl et tempera ture , (d) tempera ture prof il e
(spread) characteristics at the turbine inlet , (e) number of
accelerations and decelerations greater than a specified magni-
tude , and (f) integrals of speed and turbine inlet temperature

which are measured in real time.

3.5 MONITORING TRANSIEN T PARAMETERS

In the previous sections , the engine has been treated as a
quasi-static system. Degradation has been determined by changes
in operating line values of the measurements. One drawback of
this approach is that one cannot always differentiate between
eng ine and sensor failures.

To achieve failure isolation , utilization of transient data
from continuous or discrete control inputs is attractive. Ini-
tial attempts at this process have been made in Europe [34,36].
The utility of transient data can be qualitatively justified
by examining the expansion of the general system model as follows:
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= f(x0,u0,~~0) ~ ~~~ 
+ 

~u 5” +

+ 
1 

~~ + f ~x + f f u  + f ~u~ xxx uu xu

+ 2f ~5x 60 + 

~~~~~~~~~ 
(3.~?1)

where
f = 3f/ x 1 , etc. (3.92)

x = x0
u =u

0

A ssuming that an equilibrium point is chosen for the expansion ,
Eq. (3.911 can be rewritten as follows :

= 
~~x 

+ f6 6~ )6x + (f + f u0 6 0 ) 6 U  + + f
~ 50)6e

+ 
~~ ~xx~~

2 
+ 

~~ ~uu~~’
2 

+ fxu6uóx (3. 93)

In the static problem , the choice of linearization point forced

6~~~ = 0
and (3.94)

6 u = 0

The remaining terms represented the steady offset in -~x due
to 6 0 .  In the t r a n s i e n t  case , 6x , 6u are assumed t ime
varying . The time varying response is not greatly influenced
by instrument biases and other steady state effects. For
this case , the equations reduce to the following:

+ fex ôO)6x + (f + f 060)6u 
+ 0 ( 6 2 ) ( 3 . 9 5 )

If the higher order terms in Eq. (3.95) are neglected except
for the dependence of the transient terms on the fault para-
meters , the linear system resulting is as follows:
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x = F ( ~~)~~x + G (9)~~u (3.96)

Terms of the  fo rm £ ~~e may be c o m p a r a b l e  to the  t e rms  f
Xt:~ 

- X
for smal l  v a l u e s  of fO. If this is the case and these para-

meters can be estimated from the measurements , then an alternate

class of fault coefficients may be derived.

As an i n i t i a l  e x p e r i m e n t , two l i n e a r  mode l s  w e r e  gen er ate d
for  the  F l O O  t u r b o f a n  eng ine  a t  id le  power .  One model  used
nomina l  va lues  of the  e n g i n e  b u i l d  p a r a m e t e r s .  The o t h e r  used
va lues  which  r e p r e s e n t e d  a f u l l y  d e t e r i o r a t e d  e n g i n e . L i n e a r i z e d
dynamical parameters are compared in Table 3.1. These results

indica te that the second orde r fault parameters may be si g n i f i -
cant in these transien t equations . Eng ines in many pract ica l
si tuations (e.g . mil itary miss ions) oper ate wit h a con ti nuous
ser ies  of smal l  throttle motions . This type of input environment

is su i ted  fo r  r e a l - t i m e  p a r a m e t e r  e s t i m a t i o n .  Data  can be
acqui red  n e a r l y  c o n t i n u o u s l y  in f l i g h t  and s t o r a g e  or r e c o r d i n g

T a b l e  3.1
E f f e c t  of Deterioration , Power Extraction , and

Bleed on Sys tem Equati ons
(Sea Level  S t a t i c/ I d l e )

TIME CONSTANTS NOMINAL INSTALLATION UNITS

Fan Stream 5.6 , • .91 5.1 . .92 sec~~
Core Stream 1/r~~+O.75 l/t ~ 0.72 sec~~

DYNAMIC INSTALLATION NITELEMENTS NOMINAL EFFECTS

-‘~O.58 -0.84 sec~~

~~2/dN 2 -5.04 .4 .40 SeC
_ i

~~6/dP 6 -0.23 -2. 45 sec~~

-6250 -3620 (RPM /PSIA) sec~~

-0.0017 -0.00041 (PS IA/RPM ) sec~~
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is not required. At the end of the mission , the upda ted faul t

coefficient can be retrieved and parame ter trendin g procedures
performed agains t previous engine opera tion .

Maximum likelihood parame ter estimation proc edures for
sequential processing are reviewed in detail in Refs. 1 and 4 .
A significant fallout of this on-line algorithm is an accurate

failure detection method for system parameter jumps. These

sharp parameter changes can be caused by sensor failure , foreign
object damage , structural failure of gas path components , fuel
leaks, manifold clogs , or control malfunctions of certain types.
The applica tion of this procedure is illustrated in Figure 3 .4

for a simple model of a turbojet driven by small deterministic
inputs and random disturbances.

The simple turboj et speed model can be written as follows :

- u - w

where u is modeled as small commanded speed inputs of random
width and w is a white , Gaussian disturbance process , N(0,Q).
The rotor speed is measured and the engine time constant , T ,

is estimated. At time t = t~~, r abruptly changes value from
1 sec to 2 sec. The estimate of the parameter r and the pre-
dicted disturbance covariance are shown . The system equations

for this example are as follows :

Estimator: = (l/ ~~) (~ 
- u) + ~~(y - 

~
) (3.98)

Observation: 
~k 

= xk 
+ Vk

N -~ 2= mm E - xk) (3.99)
i=l

I
I
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Figure 3.3 Example of Parameter Estimation with a Jump in an
Engine Parameter Showing Large Increase in Disturbance

Covariance During Data Window Containing Jump

The results indicate that for the finite data length , the jump

in the parameter value causes a significant increase in the esti-

.-nated disturbance level. This occurs because behavior not

modeled by the linear dynamics is attributed to the disturbance

process. Failure detection techniques can utilize this sharp
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rise in estima ted Q to quickl y and accura tely de termine sharp
plant varia tions . It should be noted that no a priori knowledge
of the expected value of the time constant is required to imple-
ment the suggested procedure. The monitoring of the shift in the
parameter estimate would produce a far less robust detection
technique . In this case , the 2 :1 change in the time cons tant
yields a 20:1 change in the estimated disturbance. The approach
also functions in the presence of actual disturbances , inputs ,
and measurement errors including biases.

3.6 SUMMARY

This chapter has deve loped a unified framework wit hin which
the requirements of performance monitoring , trending , and transi-
ent fault detection/isolation may be achieved. This framework

is based on maximum likelihood methods for state and parame ter
estimation. Formulating the problem from the more general view-
point , algorithms for the particular engine monitoring objectives
are synthesized.

IS
_ 
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SECTION IV

PERFORMANCE MONITORING FOR THE FlOO TURBOFAN ENGINE

4.1 INTRODUCTION

The feasibility of the performance monitoring approach is

inves tigated for the FlOO turbofan eng ine . The objective of this
study is to utilize a detailed nonlinear digital simulation of

the Fl00 engine to create a preliminary engine data base . Models
of the gener ic  data are c rea ted  and the p red i c t ed  accurac ies
calculated. A more detailed set of models and a more extensive
set of engine da ta will be utilized for full system developmen t

at a l a t e r  da te .

In this section , the FlOO Engine Diagnosti c System (EDS )
data acquisition is discussed. Simulation programs are util ized
in the development of an initial set of quasi-linear regression
models for the envelope of data acquisition. These models are

discussed and proposed modifications to the generation procedure
are presented to improve the overall accuracy . Finally, in-flight
acquisition algorithms are reviewed with the aim of improving
data quality .

4.2 FlOO ENGINE DIAGNOSTIC SYSTEM

The FlOO engine diagnostic system (EDS) program is an on-

going development effort sponsored by the Air Force involving
the engine and airframe manufacturer of the F-l5/F-16 flight
systems . The EDS program is chartered to develop and flight
test practical avionics hardware and software to acquire and
process logistically meaningful fault and deterioration data for

the engine.

~~~ 
~~~~~~~~~~~ 
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The EDS system uses a series of engine transducers moun ted
in c o n v e n i e n t l y  loca ted  pos i t ions  in the gas p a th .  Engine , as
wel l  as l u b r i c a t i o n  and fue l  d i s t r i b u t i o n  sys tems , are mon i to red
to detect  o u t - o f - l i m i t  behav io r .  Subsys t em v a r i ab l e s  are  sampled
continuously by an engine-mounted , fuel-cooled microprocessor

system , the engine multiplex (EMUX). This processor is connected

via a data bus to an airframe -mounted avionics computer dedicated

to the EDS , the data processing unit (DPU). The DPU stores data
consisting of time histories of key engine variables before ,

dur ing , and after an event is de tected . This data is la ter
recoverab le for general analysis to isola te faulty behav ior .

In addi tion to fault information , steady state data is

acquir ed in fligh t for performance and trend checks . These
da ta “poin ts - ’ are recorded when aircraft and throttle states

have not changed significantly for a predetermined settling

period . The limi ts of alt itude and thro tt le are shown in
Tab le 4.1. Analysis by the engine manufacturer has indicated

t ha t  these  p r e l i m i n a r y  s e t t l i n g  t i m e s  a re  necessa ry  to ach ieve
eng ine operation with the slower heat sink and temperature lag

processes sufficien tly equilibria ted for accur ate steady state
measuremen t.

Data acquired by the DPU for performance and trend consis ts
of severa l  s amples which are processed  to  remove no i se  and a re
stored in the DPU . Af ter a fli ght , the data generated in flight

is passed to one of two portabl e uni ts, the data collection unit

(DCU) or the data display unit (DDU) for remote processing.

The DDU is used for eng ine troubleshoo ting and trim. It is

connec ted when trouble flags appear in the DPU panel. The DCU
is used under normal condi tions to retrieve stored da ta for

trending and analysis. This data is made available for on-sight

processing or off-base macroprocessing via telephone MODEM link .

The EDS prov ides state-of-the - art avionics engine diagnostic

capab ility to the F-lS/F-16 fleet. Automated troubleshooting
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Table 4.1

Data Collec tion Windows for
EDS Fligh t Test Program

-V 2c WINDOW CONDITIONS 
S

:~ -~ L:GHT ~LA ‘ 33° FOR 140 SEC
PERFORMANCE 33° < 7L.~ < 390 FOR 10 SEC— —

3000 < H < 25,000 ~T .
ANTI-ICE OFF

TREND DATA 40° < PLA < 89° PLA • CONSTANT +10° FOR 175 SEC .— — 
PLA - CONSTANT #1’ FOR - LAST 5 SEC .

Ni • CONSTANT +60 RPM FOR cEC.

• CONSTANT #60 RP~ FOR _ C -

Pb CONSTANT #0 .5% OF POINT FOR S SEC .
O < MO < .7
O < ALT < 10K FT
ANTI- ICE OFF

and trim procedures can be performed utilizin g the sophis ticated
DDU minicomputer. In addition , the on-board data acquisition

capability provides an excellent source of well -controlled in-
flight engine data. This information can be directly processed

by perfo rmance analysis and trending algorithms to accurately

determine engine status and identify engine deterioration pro-

cesses .

The eng ine transducers which will be used for EDS perform-
ance and trend measuremen ts are lis ted in Table 4.2 . These
transducers can be installed wi thout major modification to the

exis ting engine structure. In most cases these sensors will

replace existing FlOO sensors providing improved accuracy .
Sensors are provided with electronic interfaces. Critical

instrument accuracy specifications involve long-term repeat-

ab ility. Noise levels are assumed small and channel errors

assoc iated with discre te samplin g and transmission wi l l be re-

duced with hardware/software processing of the signal.
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Table 4.2
EDS Instrumentation Characteris tics

PARAMETER OPERATING RANGE SYSTEM ACCURACY

Airframe -10° - +35° +0.10°

PAMB DDU 10 - 15 PSIA +5% of F .S ./1O - 15 PSIA
TAt’S ODU -65 - +120°F 1-2°F/- 65 - +120°F

P12 (DERIVED) Airframe 1 - 38 PSIA +0.5% of F .S /8.5 - 18.8 PSIA

112 Engine -65 - +415°F #2°F/—65 — +1 50° F
NI Engine 3,000 - 13,000 RPM +.2% of P1 /3 ,000 - 12,000 RPM
N2 Engine 6.000 - 15,000 RPM +2% of P1.16 ,000 - 15,000 RPM
P16 Engine 0 - 100 PSIA +0.5% of F .5./16 - 65 PSIA

FlIT AVE Engine 0 - 1100°C +7°C/0 - 1100°C
AJ Engine 2.75 - 6.50 Sq. Ft. +3% of F.S./2 .75 - 6.50 Sq. Ft.

RCVV Engine -40 - +4° +0.5°/-40 . +4°
T12.5 Engine -20 - +315°C +4°C/-20 - +191°C
113.0 Eng ine 335 - 685°C ÷2°C/200 - 600° C
P12.5 Engine 0 - 100 PSIA #0.5% of F S./17 - 60 PSIA

PB Engine 0 - 600 PSIA +0.25% of F S./100 - 470 PSIA

WF GG Eng ine 600 - 14,000 PPH +2.0% of F .S /~ ,400 - 13 ,400 PPM
MO (DERIVED) Airframe 0 - 2.6 +0.5/0 - 2.6

H Airframe 0 - 80K ft +0.2% of F .5 ./0 - 80 K ft

P14 Eng ine 0 - 130° +0.5°/O - 130°

Several de tailed di gital simula tions of the engine are
available to develop analytic or generic engine models. The

transient simulation program (transient deck) models dynamic

engine and control behavior for various conditions of deterior-

ation specified by perturbed values of lumped efficiencies and
areas. A detailed steady state performance deck (status deck)
is used to match engine performance with an extremely detailed

steady state model of the component performance and control laws .

This steady state status program is considered an accurate point

performance mode l but does not include nonlinear dynamic effects.

The dynamic simulation program has the capability to generate

this type of data but the computational overhead can be severe.
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4.3 PRELIMINARY MODEL DEVELOPMENT

4.3.1 Generic Baseline Models

A generic baseline mode l of the Fl 00 was developed in this
phase of the program to demonstrate the analytical and numerical

procedures involved and to develop the necessary software capa-

bili ty. The EDS sensor set and accuracies were used as the basis
for analysis. A data base was developed using the transient

deck modeling generic engine performance. A set of measurement
equation models was determined. The overall accuracy matching
generated engine data was evaluated for a slightly larger flight
window than specified for EDS . The conclusion is reached that a
generic model can be developed to match the baseline data.
Coefficients depend on altitude and speed.

4.3 .2 Fault Parameter Selection

Faul t parame ters were chosen to reflec t a “complete ” set of
componen t performance parameters. For the rotating machines

(e.g. compressors and turbines) the functional rela tionships are
shown by the simplified thermodynamic descriptions of the energy

conversion and flow modification processes which occur . For a
compressor , these are as follows:

T r = 
~~~~~ ~ r 

- 1) + 1 (4.1)

mI ~ =A f( , P , R ) (4.2)
c 

,,~
— r N

where the isentropic efficiency , 
~c ’ represents the effective-

ness of the compressor in raising the gas pressure . The second
equation shows the functional relationship between gas flow and
rotational speed and pressure. In high power regions , the oper-
ating line characteristics will be such that . the following is

nearly true :
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0 (4.3)

In this case , Eqs. (4.1) and (4.2) represent two independent
re l at ionsh ips between the four independent variables , rn~

and N . The two quantities , A and n can be used toc
model the changes in component operation resulting in decreased
energy conversion efficiency or compression characteristics.
Flow continuity and mechanical torque balance are used to determine
the unique operating point . Non-ideal flow effects are mod eled
as pressure loss coefficients (e.g. in a duct) of the form :

= r K (

• c~
)

2 
(4.4)

where K~ models flow-dependent duct losses and can be used

to determine changes in this value caused by duct o b s t r u c t i o n s
and radial veloc it y distribu tion changes . The to rque balance
equations do not contain los s effec ts since small mechani ca l
conversion losses due to bear ing f r i c ti on , etc. can be lumped into

the compressor characteristics. Gross changes in these values

due to mechanical failures are usually detected by alternate

me ans such as vibr at ion accelerome ters..

Compon ent performance can be modeled by effective areas

and isen tropic (lumped) efficiencies. Flow through the duct ,

burne r , and augmentor volume is modeled by pressure loss coef-
ficien ts. These equations certainly do not reflect the necessary

complexi ty to accurately model the microscop ic processes occur-

ring in the turbofan gas path. For example , mixing and flow

in the augmentor volume can be modeled by up to six variable

pressure loss terms . However , the performance monitoring pro-

cedures assum e small variations in overall behavior. Thus ,

lumped parameter models can be assumed for small enough effects.

This assumption must certainly be verified by a detailed analysis
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of actual  e n g i n e  pe r fo rmance  d e t e r i o r a t i o n .  The p e r f o r m a n c e
moni toring requirement is not necessary to model microscopic

e f f e c t s , but rather to approximate the behavior of the sensed

variables close en.oug h to infer performan ce changes in one or more

components  of the  s y s t e m .

The p r e l i m i n a r y  f a u l t  p a r a m e t e r s  are sho wn in T a b l e  4 . 3 .
They consti tute areas and efficiencies in the fan , compre ssor ,

hig h pressure turbine , and low pressure turbine . Flow loss es are
associa ted with the duct , burner , and augmen tor. These 11 para-

me ters form the initial set of eng ine descri pt ors wh ich wil l be
evaluated for possible inclusion in the final algorithm .

Several other variables will also enter the problem as

uniden ti fied dis turbances whose effect on the accura cy of the
es tima ted parame ters is determined , but who se values are assumed
random . These variables are distinct from measurement uncertain-

ties in that they caus e changes in more than one measured quantity.

Thus , in the static algorithm , they p roduce cor r e la ted e r r o r s .

Table 4.3
Candidate Fault Parameters

PARAMETER OEFINITION RANGE (
~~)

~~n area change

Fan efficiency change 2 .0

Compressor area change 2 .0

Compressor eff ic iency change 2.0

SA HT High turbine ar ea change 2.0

Hi gh turbin e efficiency change 2. 5

SA LT Low turb i ne area change 2.0

Low turbine ef f ic iency cnange 2.0

Sn PC Com bustor eff ic iency change 3 .3
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Three  p a r a m e t e r s  of t h i s  ty p e  are i n i t i a l ly  c o n s i d e r e d  i m p o r t a n t .
The se are RCVV angle uncertainty , customer bleed and steady state

dis tor ti on . The RCVV angl e is measur ed in the EDS system . It
is scheduled  in the  c o n t r o l  to be a f u n c t i o n  of c o r r e c t e d  r o t o r
speed. However , there can be an uncertainty in this pcsition due

to posi tioning errors. In the monitoring algori thm , con trol
vari ables are checked against their schedules to determine

healthy control perfo rmance . For the RCVV ac tua tor , the con trol
inpu t is assumed “on schedule ” for the basel ine model developmen t

and a disturbance term due to off-schedule position added. This

te rm is ini ti a l l y  assumed unbi ased , but it could be correlated

with the past values of RCVV to determine its value more accur-
ately. The customer bleed flow is taken at the compressor dis-

charge to supply to the F-lS environmental control system (ECS).

Other bleed air is also taken for turbine cooling and noz:le
actuation . There is no accurate measuremen t of compressor bleed .
Bleed is modeled as a random variable with a non-zero mean . The
estimated mean is assumed to be the specified nomin al flow rate.
Using manufac turer data, un cer tain ty abou t the mean can be
approxima ted.

4.3. 3 Sensor Model Developmen t

Table 4.2 shows the measured variables. It is assumed that
thermodynamic properties are determined by two ambient v-iriables
(i.e., there is only a small Mach number dependence at subsonic
conditions). It is also assumed that the RCVV and CIVV ’ s are on
their hardware control schedules and that the customer bleed is
at its mean value. In this case , engine behavior can be unique ly
specified by four independent quantities . For the preliminary
analysis , the set of independent variables specifying eng ine
operation were chosen as TT2, 

~T2’ 
N 1 and N2. These variables

represent accurately measured quantities excep t for 
~T2~ 

The
engine face pressure , 

~T2’ 
is derived from airframe measurement

of Mach number and ambient conditions using a detailed inlet
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performance model . This “me asurement ” techni que shouL~ produce

repeatable results which would c o r r e l a t e  w i t h  an av e r a g e d  t o t a l
pressure at the engine face. Uncertainties in this quantity -ire

modeled  by dis tor tio n v a l u e s s p e c i f i e d  as d i s t u r b a n c e s . The EDS
mea suremen t se t can be d i v i d e d  in to ei gh t dependent and four

independen t  v a r i a b l e s .  There  a r e  11 f a u l t  c o e f f i c i e n t  v a r i a b l e s ,
three disturbance variables and eight measurement noise variables.

Each of the eight transduced variables is assumed to be

sampled from an imperfec t instrument with associated instrument

faul t modeling coefficients. T-~pica lly, transducers will exhibit

complex systema tic error effec ts. Models are avail able for

typical measurement errors which occur in the static environment.

These models are reviewed below for comple teness; however , they

were not used in the initial evaluation.

Temperature sensors are generally low bandwidth devices
tha t  f i l t e r  h igh  f requency  loca l  t e m p e r a t u r e  v a r i a t i o n s .  Ou tpu t s
wh ich are “averaged” over several circumferential positions from

total rakes are typically qui te repeatable. Low signal levels
can be suscep tible to high frequency interference from electro-

magne t ic componen ts loca ted nearb y. This EMI may be dependent

on engine power condi tion. Generally, ana log  f i l te r i n g  can remov e
mos t of this error. Aliasing into the bandpass of the ins trument

should produce a d.c. error smaller than the transducer rep eat-
ability . Some care is necessary in averaging and detrertding
the inputs to remove these effects. The model for the sensor data
can be represented for algorithm development as follows :

T T + v + b (4.5)

v = N (o,r) (4.6)

The bias term , b , is treated as a long-term calibration drift .

Pressure sensors can exhibit a far more complex behavior

due to resonance effects , flow radial distribution shifts , wake
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effects , tempera tur e chan ges , etc. Most probes ~iust be t emper-
a t u r e c o r r e c t e d  e i t h e r  i n t e r n a l l y  or e x t e r n a l ly . v i b r a t i o n
sensitivity can be a p r o b l e m .  Hi g h f r e q u e n cy  a l i a s i n g  is a l s o
poss ible without prefiltering . One possible model is -as follows:

P ( l  + KT) + v + b (L 7)

Liquid f l o w  m e a s u r e m e n t s  a re  s u b j e c t  to t e m p e r a t u r e  depen-
dnet inaccuracies , density and velocity profile effects. Most
dev ices mus t be carefully cal ibra ted . Inputs mus t be fi ltered
and may con t a in  low f r e q u e n c y  components  due to i nt e r a c t i o n s
w i t h  fue l  m e t e r i n g  d y n a m i c s .  Model s  may be assumed  to have the
following form :

(W
f) 

= f(W
f~

ci.) + b + v ( 4 . 8 )

where a is a manufacturer-spec ified set of correl at ions and

~ 1 (4 .9)

Area and RCVV measurements contain bias and hysteresis ef-

fects. Hysteresis can be important in this type of signal. In
this case , the error is not due to the sensor , but to backlash
in linkages. The apparent measurement differs from the actual
value by a function which is dependen t on previous position.
These may be written in sampled data form as follows:

A(n) - h A (n+l) > A ( n )  + h

A(n+l) = A(n) A(n)+h > Ac (fl+l) >A(n)-h

A (n) + h Ac ( n+ l )  > A (n) - h

(4. 10)

where A(n) and A
~
(n) are the actual position and the position

with hysteresis. This mode l is illustrated in Figure 4.1.
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Figure 4.1 Hysteresi s Model

In the preliminary model development , each of the ei ght
measurements was assumed to have a random , constant bias. The
assumption of eight biases increases the uncertainty in the para-
meter estimates.

4.4 DATA BASE GENERATION AND DATA REDUCTION PROCEDURES

Generic engine data was generated using a detailed engine
simulation deck. A large number of operating points were chosen
with engine fault parameters set at their undeteriorated values.
Fault coefficients and disturbance parameters were perturbed and
performance variation calculated at a reduced number of points.

Baseline operating points were chosen to span the envelope
of data acquisition in an evenly distributed grid. This data
can then be wei ghted to bias the models toward a more accurate
match where large amounts of data will be recorded.

The operating points are chosen in the fli ght envelope to
represent nonstandard conditions . A standard atmosphere profile
(Table 4.4) is used as the starting point . Altitude limits
determine standard ambient pressures and temperatures . Pressures
are assumed constant . Typical hot and cold day temper2.tures are
assumed to vary ÷20°F of the standard conditions . Isentropic

inlet recovery (for subsonic data) is used to construct PT2/TT2
curves shown in Figure 4.2. Lines of constant Reynolds index are
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superimposed on these curves. The operating points were chosen
equally spaced along lines of constant REI p a s s i n g  through
standard day , altitude-Mach number points which were jud ged to
be operating points in the aircraft flight profile. At each
operating point specified by TT2, ~T2’ 

a nomina l operating Mach
number was assumed. Table 4.5 shows the flight points chosen for
baseline data generation.

Fuel flow and nozzle area specify the operating point.
Nozzle area perturbations of 0.1 sq ft were run at each flight
point to assess measurement uncertainty effects.

Five values of fuel flow were chosen at each operating point
to match points in the EDS flight envelope (see Table 4.6).
The total number of baseline points for this preliminary set of
calculations was :
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Table 4 . 5
PT2~

TT2 P o i n t s  at C o n s t a n t  R E I
Chosen for Baseline Data Generation

P
12 ‘12

1.0 13 .5 ~83
4 .7 513 0

15 . 4 538 3 . 5
16.2 560 3.
16.9 580 1.2

R EI 0.77 10.14 474 0
10.77 498 0.6

1. 4 520 3 .9
12.03 544 1.2
12.66 567 1.2

~ 0.56 7.0 454 0
7.2 465 0.6
7. 4 478 0.9
7.3 496 1.0

8.2 516 1.2

REI 0.37 3.8 388 0
4.07 410 0.3
4 .34 432 0.6
4.62 453 0.9
5.00 484 1.2

Table 4.6
Fuel Flow Points

Corrected Fue l Flow (W
f

/I 5
2

9/~~~~~~~ )

[% Intermediate Power]

100
95
80
65
50
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(4 REI) x (5 PT,/TT2) x (5 Fuel F1ow~ x (3 A~) = 300

A subse t of these baseline points was chosen to create per-

turbational data. Perturbational inputs include positive and

negative varia tions of a specified amount (see Table 4.3) to

each of the  11 f a u l t  v a r i a b l e s  and v a r i a t i o n s  of b l e e d  and RCVV
pos it ion corr esponding to two nominal amounts (see Table 4.7)
at a par ticular fligh t condi tion . Fli ght poin ts were chosen in

“high probability ” acquisition windows (Table 4.7). Values of

nozzle area and fuel flow were chosen to be representative of

the fligh t condi tion . There were 72 point s run with these

inpu ts .

Stepwise regression was used to fit the simulation data.

Ini tially, regression terms were chosen as transgenerated poly-
nomi al functions of desired variab les and nondim ens ional func-
tional combinations. Table 4.8 lists the functional form s for

the baseline mode l fits. Accuracy and worst case errors are also
shown. -

The fits indicate models with very few terms (< 30) can be

used to fit the engine data closely. The windows chosen for the

Table 4.7

Nonlinear Simulation Points for Perturbed Model Generation

112 (°R) W f/~2
/~~ DELIA OFF SCHED-

COND ITION — (P SIA) 
MACH (% INTER- AJ UIE RCVV

HOT STD COLD MEDIATE ) (FT

01(10/83 538 518 498 14.7 0 105 -0.1 0

101(/0.6/80 536 516 496 13.9 0.6 102 0.0 ±1 .0

15K/0.5/1O 510 490 470 10.2 0.5 80 0.0 ±1.0
1OK/0 .5/50 514 504 484 11.7 0.5 50 0.0 ±1.0

201(10.9/83 540 520 500 11.4 0.9 108 - .05 0
121(10.8/70 545 525 505 13.8 0.8 80 0.0 ±1.0

81(10.3/50 524 504 484 12.0 0.3 50 0.0 ±1 .0

181(/0. 8/83 548 528 508 12.4 0.8 110 40.5 0
01(10/70 538 518 498 14 .7 0.0 105 0.0 1.0

51(/0 .2/60 526 506 486 12.7 0.2 63 0.0 1.0
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data base are larger than expected for EDS performance and trend
acquisi tion. Alternate algorithms utilizing globally optima l

re gression models were available as well as more sophis t ica ted
transgenera t ion procedures . However , since the trans ient deck
represents a slightly different definit ion of the performance
than the status deck , further investigation of improvement of
the mo del s tructure will be pursued in the nex t con trac t phase .

The b a s e l i n e  models  shown in Table  1.8 were  s u b t r a c t e d  f r o m
the per turbed opera ting data points. These residuals were then
regressed for models of the following form:

= ~g1
(x ,u) (4.11)

where g1
(x ,u) represen ts polynomial functions of the corrected

and uncorrec ted s tates and cont rols. A subse t regression tech-
nique is used to choose only those variables which affect the

perturbations according to the model equation . Table 4.9 shows

an example of the variable fault coefficient regression for the

compressor efficiency effects on the fan corestreain measurements.

This procedure is repea ted for each fault parameter to determine

the full ma trix of valuable fault coef f ic ients , g~~ .

Table 4.9

Example of Generation of Variable Fault
Coefficients for Compressor Efficiency

Using Core Stream Variables

N2 - N
2

0 

+ a 12 ~2. 5  + a 13 ~~

‘rr3 - 1T3~ ~ D~~[a 2, 
+ a22 N~ ~ a23 ~~~~~~~~

?T4 - P14 i
~

[a 3i ~32 ~ 2 .s  + a33 N~ a34 /~~~~~~]

‘r’T45 - 1145 ~ s
~

[a i M~~

1
- -  ‘ 
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Full development of an estimation model will be undertaken
in the second phase of the program . The status deck will be
u t i l i z e d  to g en e r a t e  d a t a  fo r  r e g r e s s i o n  w i t h i n  the  EDS f l i g h t
envelope.

4 . 5  ALGOPJTHN OUTPUTS - ENGINE HEALTH ASSESSMENT

Once a mode l has been es tablished , parameter estimates must

be related to maintenance and trend decisions . Specific causative
phenomena , v i z ,  f o r e i g n  obj ect damage , seal l eakage , f o u l i n g ,
etc. , will affect these parameter values. A correlation bet~ een
parameter changes and specific deterioration mechanisms will

be aided by AMT type testing as well as the EDS fli ght test
program itself .

The user-directed output of the identification procedure

mus t cons i s t of informa t ion with which main tenance personnel
and logi s t ic suppor t can confident ly make repai r and overhau l

deci sions. It is specifically in this area that advanced

moni toring procedures w ill have their mos t subs tan t ial payoff .

Pre~-ious faul t isolation systems have relied on threshold

d e t e c t i o n  of p a r a m e t e r  va lues .  When a f a i l u r e  occur red , the
threshold exceedances were compared to patterns for typical fault

si tuations. Most easily replaced items , e .g. sensors , are ini-
tially changed in an attempt to correct the problem. In a sense ,
the threshold values were utilized to filter out uncertainties
in parame ter es t imates due to noisy data input .

The performance moni toring algorithm utilized for fault

diagnosis and isola tion with the EDS data will primarily monitor

shif ts in faul t parame ters and ins trument bias es t ima tes to
detect changes in sensor accuracy or performance shifts.

The algori thm output provides a s ta te es t ima te which is
made by “smoo thing” the noisy measurements with the modeled
performance. The measuremen ts of contro l actuator values and

con tro l input values can be used in an “inverse ” con trol model
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to accurately assess the performance of the hvdromechanica l and

el ectronic fuel control on the Fl00. It is possible to diagnose
the control to the component part using this procedure .

A hypo thetical example of this procedure is given below.

A set of data is processed indicating that the RCVVs have shifted
from the hardware schedules and that the engine is running at a

different opera ting cond ition for a spec ific power point. Th is
info rma tion is derived from the accura te analyt ic model which
represen ts the operation of the engine with the most current

de teriora t ion parame ters and a mode l of the hydromech anical fuel
control which has been identified to match previous flight data.

Since the anomalous behavior is common to both the fuel flow

output and RCVV output , the RCVV ac tuat ion sys tem is eliminated
along wi th specif ic internal hydromechanical governor failure.

The remaining two candidates are the hydromechanical speed and
temperature sensors and plumbing of the fuel signal pressures
into the hydromechanical control.

The mos t importan t diagnostic output of the performance

moni toring algorithm is an assessment of engine health relative

to long term aging and normal deterioration . This information

mus t be presented to the maintenanc e personnel as a condensed

figure represen t ing the impac t on rout ine maintenance ac t ivit ies.
Long term analysis and calculation of popula tion s tat is t ics and
trends are perfo rmed a t a remo te si te. This processing may ut ilize
fl ight da ta which has been reduced to parame ter and variance es t i-
mates at the base level. This procedure results in a significant

reduction of data transfer , storage , and manipulation overhead .

Main tenance area decisions can be summarized as the deter-

m ination to remove an aircraft from the flight line , to attempt

engine control trim , and to remove an engine from an aircraft
for further maintenanc€ . It is most economical to maintain
only those engines that require service and to be able to schedule
maintenance to keep work level constant and part movement uniform.
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The decision to remove an aircraft from the flight line

can be made if the perfo rmance of the engines is significantl y

degraded relative to no rmal operating standards. The precise

level of degradation allowed will be a function of the status

of the remain ing engines and the present workload . It is Jesir-

able to formulate a single figure-of-merit which can be used to

evaluate an eng ine ’ s present performance relative to the other

aircr aft engines (rather than to itself when it was new)

One such figure of meri t has , been proposed as the remaining

turbine temperature trim marg in in , the con trol. Assuming that

various engine components have not failed or are not damaged ,

the leve l of eng ine  d e g r a d a t i o n  can he a s ses sed  by t h e  o v e r a l l
thermal efficiency of the system in converting fuel to thrust.

Th is figure does not reflect module-directed phenomena. How-

ever , this number can be used to schedule engine trim activities

and ma in tenance  shop s chedu l ing . F u r t h e r  b reakdown to  m o d u l e
s t a tus  is app rop r i a t e  to the i n t e r m e d i a t e  m a i n t e n a n c e  shop w h i c h
mus t overhaul degrad ed engines .

The engine turbine temperature margin mus t be viewed as a

combina tion of overall performance variables (i .e . as an ov era ll
efficiency) which assesses the engine status relative to the

minimum a c c e p t a b l e  s t a n d a r d .  This  f i gure is not n e c e s s a r i l y
rela ted to a par t icular build of eng ine and con trol which is

trimmed on a par ticular day .

~ “s tandard” FTIT margin , ATT , can be defined as the
difference between the running FTIT and the FTIT limit as
specified for the nominal control schedule at 

~STD ’ TSTD
(1 AT M , 5l8°R) , zero air speed conditions at intermediate power

when the eng ine is turbine-temperature limited. This margin
will represent the mean value of measured temperature margin
for a population of engine s and controls of the same degraded
status which are trimmed at sea level standard conditions .
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Practically, given the engine fault parameters , the ~TT0 for

that engine can be estimated directly from the baseline models
as follows :

PT 7M0 = f
1

(T T 2  = 513°R , PT = 1ATM , ô~~, N1, N2)

TT I5 = f 2(TT2 = SlS °R , PT: = 1ATM , ~S , N 1, N,)

N1 = f (N 2, TT2 = 5l8°R)

i.e., the value of PT7M (EPR) is specified by the trim curves ,

N1 is a specified control function of N2 and TT2, the geome try
is on schedule and the bleeds are closed. These conditions can
be used to solve for the unique standard operating point solution
for TT45 and

ATT = TT4 5
~~ x

(TT2 = 5 l 8°R)  - TT 4S

This value is an es timate of the ac tual marg in for the engine if
trim is performed at these s tandard condit ions . Varianc e inform-
ation is available from the parameter estimates and model sensi-

t ivity calculations.

The standard margin , ~TT0, is utilized to measure the
“closeness ” to maximum overall degradation (~TT0 = 0) and the
relative degradation between two engines [(~TT0)1 ~ (~TT0),].
This information may be monitored and maintenance activities
scheduled according to probable predicted status using this
method.

4.6 REAL-TIME DATA ACQUISITION TECHNIQUES

Several methods for processing sequential measurements are

presented. These reduce uncertainty due to measurement noise ,

slow trends and sudden changes during recording. A typical data
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acquisition procedure is to record only when the system has
assumed a steady state condition for several minutes. When this
occurs , measuremen ts are taken with synchronous or asynchronous

scans of the sensors and the scans are averaged. In this way ,
the standard deviation of the noise can be reduced by a factor of

nearly ~N, where N is the number of scans . This procedure
leads to poor results when the system is undergoing a small
transient as shown in Figure 4.3. Thus , the performance data
windows are restricted to regions of the fligh t envelope where

the steady state requirements can be met without impacting the

mission. It is possible that an ent ire mission will be flown
wi thout any performance data being taken.
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Figure 4.3 Effect of Average Scan in Nonequilibrium
Condition Versus Estimation Procedure
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Several single-channel processing procedures are commonly

available for accurate data acquisition . The first method uses
a variance es t imate as a recording threshold. Basically , da ta
is taken when the previous N scans have been acceptably con-

stant. The average of the N last measurements is calculated

as follows :

—

X. (i) = Z X. (i) j=l ,. . .
i=l ~

where X.(i) is the jth measuremen t at t ime i. The sampl e
variance is calculated as follows :

N
(i) = 

~~~
-r E (X.(i)

i=l

and a weigh ted sum of the variances is used as a threshold:

m 2T(i) = E W. c~- .(i)
j=l ~ 3

The mean of the data is recorded at time i when

T(i) < T mm

where Tmin can be chosen small enough to assure that the sample
mean is close to the real mean to high probability . Figure 4.4
t :1~ strates this concept.

‘ h e above procedure requires N storate locations and mN

~~i!- Lp 1~ c-Itions per step. A more easily implementable procedure

~~ .- [oped as follows . This procedure is commonly referred to
i s  o r  e x p o n e n t i a l  f i l t e r i n g .  At t imç i ,

• 
~~~ 

.) • 
~~
. X(i+l) - X (i+l-N)) 

-

‘nc~.i-~uremen t , X(i~~l-N) , has not been s tored ,

4 ’
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.
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Figure 4.4 Data Acquisition Logic

~ (i) % X(i+l-N)

and the formula reduces to the following

!ji+l) = ~~-.~-~~~.(i) ~~~~~~~~~ 
X . ( i + l )  j=l , ...,m

which requires no more storage locations than averaging . Using

a similar argumen t , the sample variance is
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~.(i+l) = 
~~~~ ~~~(k) + 

~~~ 
(X~~(i÷l) -X ~~(i+l)) j=l ,... ,m

The same threshold detection scheme can be applied with little

loss of p r e c i s i o n .

A furthe r imp lementation tradeoff can be evaluated consider-

ing the error statistics of the above filter. Consider measur-
ing a constant value with white , Gaussian errors additionally
super imposed :

y(n) = x(n) + v(n)

where

v = N(O ,R)

and

x(n+l) = x(n)

The optimal sequential filter for this system can be writ ten as
fol lows :

x (n+l) = x(n) + K(n) [y(n~ 1) 
- x(n)}

K( ) - S(n)
R+S(n)

S(n+l) = [l-K(n)] 2 S(n) + K(n) 2 R

where

S(n) = cov (~ - x)
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If it is assumed that no a priori information exists for x ,

S( 0) =

then

K(n) = —4i:

S(n) =

i .e. the optimal Kalman filter reduces to the averag ing algori thm
described above . The tradeoffs associated between calculating the

s e q u e n t i a l l y  vary ing  gain , K(n), and a cons tant value can be
determined by analyzing the a posteriori error covariance S (n+l)

for these systems . These figures are shown in Figure 4.5. This
plot indicates that the filter stat istics reach s tat ionarity
more quickly at higher gains , but the overall performance is
degraded. Acceptable performance can be realized with constant
gains . As an example , consider the situations presented in
Table 4.10 where actual differences in optima l and suboptima l

filter behavior are shown to be small. This permits a simplified
imp lementation of the data acquisition algorithm .

Time-varyin g data can be assumed to have a cons tant drif t.
In this case , the measurement is assumed to be taken at equal
time increments , ~, and have the following form :

X( t) = X (O)  + Bt

Using the N scan s , the best estimate of the base value can be

wri tten as follows:
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Figure 4 .5 Mean Square Error Reduc t ion using
Time Varying and Steady Gains

Table 4.1 0
Comparison Estimation Errors for Optimal

Varying Gain and Cons tant Gain

N S(N)/R OPTI MAL
(NO . OF SAMPLES) K OPTIMAL F

G
I
A~~

5 0.29 0.20 0.228

10 0.18 0 .10 0.124

30 0.02 0.02 0.03
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N N
X ( O )  = K

1 
z X( i.) + K~ ~ iX(i)

i=1 - i=1

where the precalculated coefficient, K1, is given as follows :

N .2E m
K1 =

(N 
i=l 

~2) 
N2(N÷ 1)2

and K 2 has a s i m i l a r  form . This  scheme e l i m i n at e s  cons t an t
time variation during a scan . The algorithm can be implemented
sequentially and the memory storage and processor overhead are
quite small . Also , a similar cons tant gain assump tion can be
used with a modest performance loss.

An alternative procedure can be used to estimate final
values in the engine when the process has been identified as a
slow exponential decay to equilibrium . The time constants may
be estimated from engine test data and the dynamics can be

written as follows :

= F(x-x f)

or solving for the discrete time solution :

x(n+1) = ~x (n) + (I-~~) X
f

where

= exp(F .~ T)

x(n+l) = x (n~T + ~T)

X
f 

= x (co)
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This equat ion can be solved for x f :

X

f
(fl) = x(n) + (~~ l 

- I) ~x(n)

where

~x(n) = x (n+1) - x (n)

The final value can be sequentially estimated for this solution

as fol lows :

;
f ( f l + l )  = xf

(n) + K(x
f (n) - X

f
( f l ) )

where the gain vector K is most easily chosen as a particular

cons tant Kalman filter gain or an obs erver design .

4 .  7 SUMMARY

A p r e l i m i n a r y  s tudy has been descri bed which asses ses the
feasib ility of developing generic eng ine models for the F lO O
turbofan . The models are designed to opera te on flight -acquired
data from a currently developing avionics system , the EDS . Engine

operating data is generated using a nonlinear digital simulation
for the EDS performance data acquisition window. Models using

polynomial terms are derived from the baseline data. Several
fault coefficients are calculated which are explicit functions
of the operating point . A full se t of generic engine baseline
models and variable fault coefficient equations can be used as
the foundation of the fault parameter estimation algorithms
presen ted in Section III. The results indicate that the engine

opera ting data and off-nominal responses can be matched accurately

with a set of equations requiring only a small amount of para-
meter storage and calculation capability.

I
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SECTION V

SUMMARY AND CONCLUSIONS

The problem of engine faul t monitoring is d ifficul t to
define because of the many ma thema tical modeling, physical hard-
ware and sof tware considera t ions , and tes t and evalua t ion aspec ts ,
which mus t be evoked. Figure 5.1 illustrates some of the more
significant aspects . The overall scope of this program was to
bound the engine fault monitoring problem by selecting a particu-
lar subset of these various requirements , formula ting spe cific
faul t isolat ion criteria from a general diagnos t ic theore tical
framework , and subsequen tly inves tigate the developmen t of a
sof tware sys tem to achieve a prac t ical diagnos t ic tool .

The particular diagnostic application selected for this
program was that of thermodynamic cycle monitoring (TCM).

Vibra t ion and accessory monitoring ar e not included, for example.
Wi thin the TCM scope , however , considera t ions of maintenance and
trim procedures , sensor fault detec t ion, and snapsho t recording
can be integrated to provide an operational diagnostic procedure.

The objective of the overall program is to provide a totally

self-con tained , well-documen ted , and validated gas path diagnostic

system for utilization on advanced installed engine data. Specific

application is to the Air Force F-l5/F100 system , data ob tained
from the Engine Diagnostic System (EDS) program . This EDS program
is the most advanced in-flight monitoring opportunity to integrate
a unique set of typical data into this proposed software program .
The overall program can produce a software code which is compat-

ible wi th the EDS sys tem .

This aspect of fault detection and isolation is particularly

important to the Navy and the Air Force because of the signifi-

cant improvements in aircraft availability , reduction in engine

maintenance costs , and increased safety of fli ght which results

from the ability to accurately diagnose engine operational

—-—
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Figur e 5 .1 Requirements of Engine Fault Moni toring

characteristics before severe failures. Such benefits have

already been demonstrated in the Navy in-flight Engine Condition
Monitoring System (IECMS) now being tested on TF41 engines in
the VSD A-7E aircraft . Future aircraft systems which will
incorporate these concepts are the F404 turbofan eng ines in the

Navy ’s F-l8 fighter , and the Air Force ’ s Fi0O turbofan engine

used on the F-iS and F-l6. Beyond these present aircraft , it is

anticipated that future advanced cycle engines will require even
more sophis ticated diagnosis systems as the complexity required
for higher performance increases.
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