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SECTION 1
INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

The increasing performance of advanced aircraft engines, such
as the existing F-15/F-16 F100 turbofan and the projected variable
geometry engines for future Navy V/STOL aircraft, places complex
requirements on engine fault diagnosis and performance monitoring.
Such requirements can best be met by the efficient utilization
of engine sensors and on-board or off-board computer processing.

There are three principal categories of fault detection and
isolation which are useful for discussing the computational archi-
tecture of the required algorithms to achieve this diagnostic
objective. These are:

(1) Dynamic flight-critical fault detection/isolation

for monitoring of sudden failures of sensors or
engine components (e.g. FTIT, N1, N2 sensors).

(2) On-line isolation of non-flight-critical faults for
monitoring of status of a single aircraft's engine
component performance over a single flight or
intermaintenance period.

(3) Off-board trending of data for monitoring status
of an aircraft engine over extended periods to
determine necessary logistical maintenance require-
ments,

This document summarizes the various aspects of engine perform-
ance monitoring and how advanced system identification technology
can be applied, to provide a true state-of-the-art engine diag-
nostic system which is readily transferred to developmental and
operational phases.




Engine performance monitoring techniques have long been
applied to aircraft turbine engines. The procedures were ini-
tially restricted to manual ground trims of the hydromechanical
governor to account for engine deterioration and aging effects.
The imprecision of this manual technique, due to the complexity
of engine performance measurement (even on the ground) lead to

reduced engine life and short overhaul periods for certification.

Two other problems arise when the technique is applied to
real engines. Sensor characteristics are typically worse
in the installed environment over the engine lifetime scale
than specified by manufacturers. Most of these effects are
due to two-dimensional flow characteristics of the gas stream
and to unmodeled disturbances on the measurements. Sensor errors
are also typically not white and are correlated with engine
performance degradation. With the advent of modern twin-spool
turbofan engines and their high performance requirements, the
engine trim, fault detection, and maintenance scheduling problems
have quickly saturated the capabilities of ground-based evaluation
procedures and are currently the largest contributor to engine
lifecycle costs.

Briefly stated, the performance monitoring problem attempts
to measure small variations in many parameters with poorly repeat-
able sensors in a time-varying environment. Numerical techniques
are available to utilize the measurements to produce accurate
engine status information for both fault detection and perfor-
mance monitoring. By utilizing digital processing of engine
data, engine overhauls can be limited to appropriately degraded
engines and to sufficiently deteriorated components yielding
significantly improved in-service performance and higher

maintenance efficiency.
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1.2 SUMMARY

The report discusses the initial development of a compre-
hensive fault diagnostic - performance monitoring system method-
ology based on a generalized system identification formulation
[1]. An approach to the problem of on-board and off-board pro-
cessing of flight-acquired data is specifically addressed for an
advanced multicomponent engine - the F100 turbofan engine. The
algorithm development and validation techniques are described
which are compatible with data protocols of the U.S. Air Force
Engine Diagnostic System (EDS) development program currently in
progress for the F-15/F-16 aircraft propulsion system.

This report is organized as follows:
e Section II - Engine Monitoring Techniques

This section represents an extensive review of fault
diagnosis and performance monitoring literature over
the past 30 years. An attempt is made to organize
the approaches to the problem within a general frame-
work of statistical data analysis. Several current
systems are discussed in detail.

e Section III - Methods in Performance Monitoring, Trending,

and Transient Fault Detection

This section describes an approach to the problem of
monitoring critical engine parameters utilizing im-
perfect sensed parameters in the engine. The develop-
ment and evaluation of generic engine models are
described. Algorithms are discussed for processing
measurements and estimating parameter values.

e Section IV - Performance Monitoring for the F100
Turbofan Engine

Preliminary results are presented in this section.
Model development for a generic F100 system of equa-
tions is described which can be applied to acquired
data.

e Section V - Summary and Conclusion

This section presents the important initial conclusions

of the study. A brief description of the specific ap-
plication to the F100 is included.

W
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SECTION IT
ENGINE MONITORING TECHNIQUES

2.1 INTRODUCTION

The modern aircraft engine probably represents the most
complex interaction of mechanical, aerodynamic, thermodynamic,
and electronic phenomena in any vehicular subsystem. It is
critical to aircraft missions to maintain a high level of dur-
ability and reliability. Near future propulsion system configur-
ation requirements, however, are specifying significant deviations
from the engines flown over the past decade, including multi-
component interconnections and variable geometry [2]. For
present and future aircraft, electronic data acquisition and
control systems will be required to integrate previously isolated
functions including diagnostic and monitoring procedures currently
practiced on modern propulsion plants [3]. Techniques for
utilization of this advanced capability are currently untested
in an operational environment. Also, no single diagnostic or
monitoring procedure has been accepted for any engine application.
In this section, a historical summary of engine monitoring, and a
synopsis of modern engine analysis procedures are presented.

2.2 HISTORICAL PERSPECTIVE

Aircraft engine monitoring began in early commercial piston
service in the 1930's over long haul routes. Temperature and
torque were monitored by the flight crew periodically and consistent
changes were flagged for investigation [4]. The examination
of the temporal relationships between engine parameters was called
trending and, in one form or another, is still a practiced procedure
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today. Systematic engine monitoring requirements were relaxed

as piston engines became more reliable and powerful and route times
became shorter. A strong resurgence occurred when the first tur-
bine engines entered into commercial service [4]. Unlike piston
engines, aircraft turbines utilize direct aerodynamic to mechanical
energy conversion which can be significantly affected by small
changes in component configuration [5].

In the early 1960's, electronic data acquisition techniques,
mostly analog, were combined into the first of many on-board
engine monitoring systems in Project EASY [6]. Many of the
problems inherent in a practical electronic system were uncovered

during this project and no implemented system resulted.

Data processing and sensor technology has radically changed
since that time. Most major aircraft systems have developed, at
least initially, an automated data acquisition system for engine
monitoring [7,8,9]. Many new approaches have been proposed and
many revised. Experience has shown that successful systems must
be tailored to the aircraft mission, and maintenance environment

[9].
2.3 CURRENT SYSTEMS

Three military monitoring systems represent the practical,
state-of-the-art approach to engine fault detection within a
maintenance environment. The approaches of these systems are
briefly reviewed in Sections 2.3.1 through 2.3.3. A commercial
system is discussed in Section 2.3.4.

2.3.1 In-Flight Engine Condition Monitoring System (IECMS)
(10,11

IECMS is an in-flight condition monitoring system installed
on the TF41 engines in the VSD A7-E aircraft. The system utilizes
engine and airframe sensors and a digital processing unit to




determine engine component failures. Data of abnormal events
is stored on a tape cassette for further, ground-based processing.
The system measures both engine and control parameters and mon-

itors discrete inputs from the various subcomponents.

The organization of the system is functionally separated 1into
eight modes of operation. Depending on the mode, events are
monitored which can indicate abnormal conditions. Fault accom-
modation for several common control failure modes (primarily
sensor failures) is provided using analytical redundancy. Per-
formance is monitored by checking values of fuel flow against
rotor speed and ambient conditions. No historical data is used,
This type of calculation is often referred to as '"snapshot."
Measurements utilize temperature, pressure, flow, vibration and

stroke for input to modularized algorithms.

Initially, the IECMS was flight tested for validation.
Verification of each detected event by on-sight engineering
personnel was required by a high false alarm rate (initially
over 100%). An 85% accuracy figure was achieved on the manually
verified alarms in this test. A carrier deployment was under-
taken to test the impact on the system in an operational environ-
ment. The false alarm rate decreased during the test phase (to
under 3%); however, nearly as much maintenance effort was required
to support the electronic system as was required to maintain the
engines. The maintenance man hour per flight hour (MMH/FH) was
below fleet average for both the IECMS support aircraft and the
standard control group [14]. Thus, no conclusion can be presently
drawn concerning the impact of IECMS on maintenance costs.

2.3.2 Automated Inspection Diagnostic and Prognostic System
(AIDAPS) [12,13]

b 5

AIDAPS is a U.S. Army program to develop a diagnostic system
for Army aircraft. The UH-1H helicopter was utilized as the
initial test bed for the system. Unlike IECMS, a significant
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amount of development and testing was perfcrmed prior to deploy-
ment of a system. The AIDAPS system monitors avionics, propul-
sion, and transmission systems on the helicopter. During the
test development, degraded and failed components were inserted
in the system and the system responses were evaluated. After
the system was developed, a zero false alarm rate was initially
validated over a two-month test period. Table 2.1 shows the
overall AIDAPS test scores for implanted faults. After the

test bed development, a 1128-hour flight test program was
accomplished. The engine fault detection portion of the system,
using both vibration and gas path analysis, resulted in fewer
detections than the gear box monitoring system [ 14 ]. One strong
conclusion throughout the test was that consistency of result:
between laboratory models, test cell data, and aircraft is a

function of the monitoring technique.

2.3.3 Advanced Diagnostic Engine Monitoring System (ADEMS) [15]

The ADEMS is a subsystem of the C-5A Malfunction Detection
Analysis Recording Subsystem (MADARS) which monitors over 800

Table Z.1
AIDAPS Test Results [12]
FAULTS NOT FALSE | TOTAL
PROCEDURE COMPONENT DETECTABLE | UNDETECTABLE | SCORED | ALARM | SCORED | PERCENTAGE
Vibration Engine 24 7 6 3 31 77.4
Honttoring Transmission 34 4 16 2 38 89.5
HG8 4 13 0 3 3 13 100.0
42° GB 33 0 14 2 33 100.0
90° GB 18 14 4 | 32 56.3
Subtotal 122 25 43 1 147 83.0
Gaspath Compressor 7 2 0 9 77.8
Honitoring Turbine 6 6 8 0 12 50.0
Combustor 1 0 0 0 1 100.0
Subtotal 14 8 13 0 22 63.7
TOTAL 136 33 56 N 169 80.5
8
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airframe/engine (TF39) parameters. Approximately 28 engine para-
meters (per engine) are monitored in flight. Magnetic tape
recordings are produced when selected thresholds are exceeded or
when the system is given a record command. The tape recorded

data is processed at the Maintenance Analysis and Structural
Integrity Information System (MASIIS) facility at the Oklahoma
City Logistics Center. At the present time, a significant portion
of the data is not used due to the large volume and absence of
maintenance concepts geared to the outputs.

2.3.4 Commercial Programs

In-flight engine monitoring in the commercial fleet has been
used since the early 1960's. The emphasis of such systems is on
data acquisition and post-flight processing of trend data
to schedule activities [16]. The Airborne Integrated Data
System (AIDS) is a nearly standardized logic for acquisition of
engine and aircraft data [7]. Various airlines in the U.S. and
Europe have used this system for engine performance monitoring.

KSSU, the European aircraft consortium, utilization of AIDS
is a recent example of the approach used by commercial airlines.
Additional monitoring transducers specifically for DC-10 or 747
engine application were discouraged. A strong emphasis on sensor
repeatability was placed in the instrumentation specifications.

Domestic airline engine monitoring has been directed toward
long-term trending. In general, the philosophy has been to
trend-corrected engine variables in stabilized cruise. Then,
when exceedances are encountered (e.g. in fuel flow or EGT),
an engine removal and turbine overhaul is scheduled. Experience,
however, has shown that significant amounts of compressor and fan
degradation occur [5,17] which is unaffected by turbine renovation.
Test programs are currently underway to evaluate instrumentation
required for in-flight and test cell determination of engine per-
formance on a module basis.
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2.4 ENGINE MONITORING TECHNIQUES

Many techniques for inferring engine status or change in
engine status have been proposed and/or applied to various engine
configurations with varying success. The major types are reviewed

below.

2.4.1 Vibration Monitoring ([14,18,19]

A critical area of concern in turbine engine operation is
the status of the rotor support bearings and auxiliary power/free
turbine transmission systems. Wear in this type of rotating part
is apt to occur steadily after the appearance of an initial pit or
dent. Each time this fault contacts another surface (e.g. bearing
race or gear tooth), an impulse is transmitted to the structure
which can be detected by various force-sensing tranducers such as
plezoelectric accelerometers.

The impulse transmitted to the structure will occur at harmonic
frequencies of the rotational speed of the rotor. Thus, typical
vibration sensor systems utilize tracking bandpass filters to
monitor vibration energy at the key harmonic frequencies [19].

The signals are often integrated for a fixed time and the vibration
amplitude value sampled.

Generally, this type of system is useful to detect incipient
faults in mechanical systems which have bearing or gear defects
which have progressed to the failure point. Earlier flaws will
not produce adequate energy to be detected over the background
bearing or gear mesh noise levels. A new technique has recently
been suggested which appears to produce far superior results in
test bed experiments [ 14 ]. Briefly, when a gear or bearing
flaw impacts the structure, a broad band energy pulse is trans-
mitted. This results in high frequency vibration components
being amplitude-modulated by the impulse. The new system high
pass filters the accelerometer inputs to eliminate lower frequency

10
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rotor harmonics and then amplitude-demodulates the resulting signal.
This procedure has been shown to be sensitive to developing flaws.

2.4.2 Usage Measures [20, 21, 22, 23]

Engine aging depends on the running time and is accelerated
at high temperatures. Cyclic power level excursions result in
temperature changes in rotating parts and have a predominant
relationship to the remaining life of the part. These facts
have been incorporated into two engine life figures called
low cycle fatigue (LCF) and hot section factors (HSF) [23].

LCF counts measure power excursions from lower power levels
to higher power levels. During this type of ''cycle,'" the engine
hot section is subjected to stress from rotational accelerations
and temperature gradients. These cycle counts are used as an
age measure for the various components of the engine and in modular
engines, the cycle counts are tabulated for a number of parts.
When the counts exceed the 1limit for a part, maintenance action
is required. This procedure is quite attractive in its simplicity
and applicability to modular engines. It requires accurate data
recording and accounting at many logistical levels. Also, the
limiting LCF counts for each part are extremely difficult to
determine. Setting lower limits is a conservative decision which

results in higher maintenance overhead.

Hot section factor or hot time measures the exposure of the
engine, primarily the turbine, to inlet gas temperatures above
certain levels. This measure is then correlated with turbine
wear using Advanced Mission Testing (AMT) vasults [ 21 ] and HSF
limits are specified to determine maintenance action. This pro-
cedure is convenient and compatible with the newer AMT philosophy
being employed on current propulsion systems. The trade off
between conservative specification and maintenance overhead re-

mains.

11




24,5 011 Analysis [24, 25]

0il analysis techniques can be categorized as spectrographic
or particle detection. Spectrographic oil analysis determines the
metallurgical composition of the engine oil. Changes in oil
contaminant composition indicate predominant areas of wear.
Levels indicate the amount of wear present. These procedures
are accurate for particle sizes 1ess‘than 2 microns, but require
sophisticated laboratory equipment. Two problems are the delay
in processing the analysis at a central location and detection of
wear particles larger than 2 microns.

0il chip detectors indicate the amount of metal in the oil

Magnetic detectors, pressure drop switches, and light scattering
devices have been used with varying degrees of success [25].
Problems occur due to viscosity changes in the oil, oil aging,
and component fouling. After there is an abnormal indication,
isolation to the specific faulty component may be difficult.
These indicators usually provide a discrete indication of a
problem rather than a continuous status level which could be

used for prognostication.

2.4.4 Charged Particle Probes [25, 26]

Electrostatic probes may be placed in the engine exhaust
to detect charged metal particles caused by component wear.
These devices can detect incipient engine failure by measuring
increases in charged particle levels which occur prior to failure.
The electronics associated with the system have been proven
compatible with installation in an operational environment.

2.5 THERMODYNAMIC ANALYSIS PROCEDURES [27, 28, 29]
The aircraft turbine engine has the advantage over other

types of propulsion systems in that the physical phenomena can
be modeled by equilibrium thermodynamic equations. Using some

| 3
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mildly restrictive assumptions, the actual performance of each

component in the gas path can be analytically described in steady
state terms,

Analytical prediction of turbine engine performance was first
attempted in an engine monitoring system around 1963 [6]. As
computational techniques have improved and data acquisition and
testing procedures have become more accurate, the feasibility
of this approach has increased dramatically.

Thermodynamic analysis methods use analytical models to
diagnose changes in component performance which may be linked
to degradation, aging, or incipient failure. These procedures
should be contrasted with engine measurement monitoring which tracks
rotor speeds, temperatures, etc. to determine overall changes
in engine performance.

2.5.1 General Framework

The general gas path analysis problem can be formulated as
follows:

o
[}

f(x,u,6) {2.1)

RS U g vt (2.2)

<
1

where x and u are vectors of engine variables and inputs are
chosen for convenience in the model. 6 1is the vector of engine
paremeters. f(x,u,9) 1is the model of the engine, y 1is the
group of sensor measurements which are related to the states and
controls by h(x,u,®) and certain random errors, v(t). All gas
path analysis techniques can be written as special cases of

Eq. (2.1) and (2.2) using a group of lumped parameter modeling
assumptions [6].
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In general, Eqs. (2.1) and (2.2) are difficult to accurately
formulate and solve. Usually, a redundant set of equations 1is
obtained so that engine parameter values and sensor errors can be
calculated. For example, a linearized procedure which uses
corrected variables as the engine model and small parameter vari-
ations as linearization variables has been applied to engine

testing in sea level static tests [25].

2.5.2 Approaches to the Problem

Two approaches to the problem formulation have been proposed
in current systems and two methods of data analysis are possible.
These procedures are reviewed below.

There are two data processing procedures. In the snapshot
method, a model and parameters are chosen with which, given a
single set of engine measurements, a set of engine and sensor
parameters can be determined. Data scatter can cause a signifi-
cant degradation in the results. Often, closely averaged measure-
ments are used to reduce the scatter. This will not generally
alleviate the problem as will be discussed in Section III. The
advantage of this procedure is that old data does not have to be
stored. False alarm rates tend to be high if simple thresholds

are used.

Trending is performance analysis utilizing past data. In
trending (or filtering), past data is compressed into sufficient
statistics which represent information about parameter and sensor
errors contained in all the measurements to date. Prognostication
is possible if rates of change are estimated along with parameter

values.

Two techniques are used to model the engine. In the custom
baseline [30,31], a particular engine is run at various power
conditions to determine the current performance. Measurements
at later times reflect changes in the custom baseline and a
linearization of the model is possible about the customized
operating point [32, 33]. Generic baselines are analytic models

14
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representing the closest approximation to the nonlinear engine
build. Rather than a set of baseline numbers, the generic
baseline is a set of equations which model the thermodynamics
of the engine if nominal losses and efficiencies are assumed.

A custom baseline represents a historical data record. Thus,
a snapshot calculation using a custom baseline is somewhat con-
tradictory. Several systems using generic baselines and snapshot
calculations have been implemented with varying success [29, 35].
In general, the requirement for simplification of the model often
introduces errors exceeding the changes caused by component
deterioration.

The general generic solution to Eqs. (2.1) and (2.2) and
the specialization to custom baselining and snapshot calculations
are described in detail in Section III.

2.5.3 Dynamical Analysis

Eq. (2.1) is a special case of the exact expression describing
engine behavior in an installed environment, namely

X = f(x,u,8,t) + w(t) (2.3)

where f(x,u,8,t) models the time dependence of the machine and
w(t) models the disturbances which invariably act on the system.
Techniques have been suggested which utilize this dynamic model to
monitor critical parameters in the engine [34, 36, 37]. The
simple example of this type of technique is the trending of time-
to-zero speed after ground shutdown [25] to monitor bearing fric-
tion on the rotor shafts.

More sophisticated procedures utilize dynamic data analysis
to gain information concerning component characteristics which
influence response to throttle commands or actuator changes (such
as bleed flow). Introduction of the dynamics into the problem
also increases the number of fault parameters. Thus, in addition

15
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to lumped component efficiencies and effective areas, parameters
such as spool time constants and control effectiveness are added
to the overall set [34]. It is possible that these parameters

are far more sensitive to degradation effects than steady state
efficiencies, and as such represent more efficient fault sensitive

indices.

The dynamic parameter estimation problem is a more cumbersome
modeling task and data processing effort. However, with suffi-
cient simplification, in-flight algorithms may be developed which
can utilize continuous, dynamic data inputs as the basis for
fault monitoring. These procedures will be discussed in Section
I1X.

2.6 PRACTICAL ASPECTS OF THE PROBLEM

Experience over the past two decades has shown that accurate
in-flight engine monitoring is an extremely difficult problem which
involves engine data acquisition and transfer, real-time processing
algorithms, off-board processing and reduction and incorporation
within the existing maintenance procedures and logistical frame-
work. Some of the problems of the practical system are summarized
Belew |9, 25, 35, 38].

(1) Measurement Accuracy. Transducers measure quanti-
tles which are not averaged gas path variables.
Inaccuracies arise in the sensor and along the
information path to the computer. Error budgets
must be observed to keep this error source from
overwhelming required accuracy. Sensors themselves
fail and outputs shift with sufficient regularity
to cause problems in an installed system.

(2) Modeling Accuracy [25,12]. Experience has shown
that modeling techniques are critical. Utilization
of computer simulations must be closely correlated
with test stand data. Aircraft data should be
expected to differ from test stand results. Models
such as generic baselines must be formulated in a way
to accurately account for these effects.

16




(3) Fault/Parameter Correlation [5,21]. The most difficult
part of the problem is determining how overall model
parameter changes correlate with maintenance acti-
vities such as compressor cleaning or turbine over-
haul.

(4) Complexity of the Algorithm [30]. Algorithms to
solve all the problems can easily exhaust the most
extensive computer capability. Computational re-
quirements must be balanced with computer avail-
ability at each step in the data processing flow.
Accuracy tradeoffs are important, also.

2.7 SUMMARY

The history of engine performance monitoring has been re-
viewed. The early efforts in turbine engine analysis were
compared with current programs in this area. Three military
programs, IECMS, ADEMS, and AIDAPS were reviewed for back-
ground and as examples of the current philosophy. Various pro-
cedures have been discussed which can be used to measure engine
health. Thermodynamic cycle monitoring or gas path analysis
has been derived in general and specific approaches of current
systems have been reviewed. Problems in the gas path analysis
have been presented which can significantly impact the useful-
ness of any algorithm.

Section III describes the equations of engine performance
analysis from a general viewpoint. The specialization to various
implementation forms is derived.
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SECTION III

METHODS IN PERFORMANCE MONITORING, TRENDING,
AND TRANSIENT FAULT DETECTION

3.1 INTRODUCTION

Performance monitoring is the utilization of regularly
acquired, imperfect measurements to infer the present and future
status of the system relative to a previous status or an ideal
norm. Section II presented a historical review of the develop-
ment of performance monitoring systems. These approaches
have naturally sprung from non-parametric techniques
practiced on early spark ignition and turbine engine air-
craft. This section discusses the problem from a general view-
point which includes present monitoring techniques as special

cases.

Failure detection for dynamic systems is closely allied
to performance monitoring [1]. In general, these procedures must
make rapid inferences from flight acquired data, most often in
real time. The computational capabilities of such systems using
on board computers may be restricted by processing time and
storage. Performance monitoring techniques are based on the
same theoretical foundations as real time failure detection;
however, the application and emphasis are shifted from rapid
decision outputs to accurate utilization of the measurements
for diagnostics and prognostication at the ground maintenance
level.

With the advances in modern electronic processing capabil-
ity and reliability, the distinctions between on board/off-board
capability, real time and post flight analysis and thus monitor-
ing and detection have become less pronounced. Many more complex
algorithms from data analysis methodologies can now be applied
in a real time environment. The time scale differences between
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failure detection and performance monitoring are presented in
Figure 3.1 for typical engine events. The unified problem can
be viewed as a multiple time scale system. For time constants
comparable to transient engine response processes, a fast
decision must be made with a relatively small amount of infor-
mation. These decisions involve gross changes in engine/
instrumentation characteristics. This type of processing may

be defined as detection. For time constants much longer than
engine dynamic processes, a large amount of data is available.
The changes in the system due to these events are typically
quite small and performance monitoring techniques attempt to
reduce the vast amount of operating data to a set of statistical
measures describing the status of the system. This section will
primarily emphasize performance monitoring algorithms which are
adaptable to minicomputer implementation at the flight line
maintenance level and compatible with flight acquired data
inputs.

A general formulation of the detection/monitoring prob-
lem will be presented in Section 3.2. Various assumptions
leading to a static model are presented in Section 3.3. (Section
3.3.1 systematically expands on the method of static model analysis
via quasi-linearization. The actual development of mathematical
models is presented in Section 3.3.2.) Trending applications are
discussed in Section 3.4. Section 3.5 presents a method for
utilization of transient response data to infer a different class
of performance-indicating parameters.

3.2 GENERAL FORMULATION

It is fundamental to this development that fault detection and
performance monitoring procedures are subsets of the parameter identi-
fication problem. In general, the turbine engine, or any system,
can be mathematically described by a set of nonlinear equations (to
most any degree of accuracy) as follows:
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0 = f(x, x, u, 6, w) (3.1)

where the distributed aerothermodynamic, mechanical and electri-
cal processes are lumped into a finite state, x, representa-
tiocn using lumped parameter forms of the physical laws for these
phenomena. States may be distinguished from controls in that time
derivatives of the former elements occur. Also, for n state
variables, n sets of Eq. (3.1) must be written. Controls,

u, disturbances, w, and parameters, 8, are quantities

which can be distinguished by measurement or manipulation. The
controls are quantities which are manipulated and perhaps ‘
measured. Disturbances and parameters are usually desirable to
know but not easily measured.

Measurements are taken on various quantities in the engine.
These sensed parameters are related to the states, inputs and
parameters according to the general algebraic expression:

y = h(x, u, 8) + v(t) (3.2)

where random errors are introduced by random unmeasurable pro-
cesses,

Equations (3.1) and (3.2) are general enough to provide
a starting point to define the fault detaction problem relative
to control design, state estimation, or other related tech-
nologies.

The engine model can be arranged in Eq. (3.1) to describe
the dynamics of the system by a unique set of equations as
follows:

x = £(x, u, 6, w) (3.3)

Deterioration of engine components affects the operational
characteristics of various subsystems and the entire engine.
It is fundamental to the fault diagnosis objective that this
deterioration, affecting the parameters, 9, of Eq. (3.3)
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can be detected and isolated. This objective indicates that the
fault detection/isolation can be treated as a parameter estima-
tion problem. Usually, the pressures and temperatures are measured
at many engine stations. Other measurements include rotor speeds,
vibration level, fuel flow, etc. Isolation of faulty components
using these measurements is complicated by two major considera-
tions: (a) systematic errors in instruments (bias, scale

factor errors) may appear to be degradations in engine per-
formance, and (b) a fault or a set of faults may produce a

similar effect on measurements as another fault or set of

faults.

The problem of fault detection and performance monitoring
can be formalized on the basis of the following assumptions:

Assumption I: Component and sensor deteriorations and
tailures to be observed affect the operation of the
engine, control system, inlet, etc., in such a way
that changes in observed quantities can be used to
discriminate between the failed/unfailed sensor or
the deteriorated/undeteriorated state.

Assumption II: The operation of the engine and subsys-
tems in its healthy and unhealthy state can be
modeled by equations of type (3.2) and (3.3).

Assumption III: The transformation between values of
engine fault parameters, 8, and aging effects,
control failure modes, mechanical defects, sensor
errors and miscalibration can be established from
theoretical inferences and verified by operating
records or specifically designed tests.

Given assumptions I-III, the problem can be stated as
follows:

For the system of equations:

x = f(x, u, 8, w) (3.4)
y(k) = h[{x(k),u(k),8] + v(k) k=l;25+ s LS9
determine the statistics of the unknown parameters, 3§,

including the mean, variance and distribution at each
time given some subset of the historical data.




Suppose that an operating record is given representing
the operation of a healthy or nominal engine at arbitrary time
points as follows:

{y ()} RS PR (3.6)

Suppose another operating record is supplied for another engine
which has the same values of input variables representing an
off-nominal engine with degradation, component aging, sensor
inaccuracies and failures present. These may be written as
follows:

{y(k)} 1) LM {3.7)

The difference between the two outputs can be written as fol-
lows:

Ay (k) = y(k) -y, (k) (3.8)

hx(k),u(k),8] - h[x (k),u(k),8 ] +v(k) (3.9)

The difference can be expanded in terms of small values of the
parameter differences. This linearization step [33, 38] is
performed even if a nonlinear model is assumed and numerical
minimization is used. The resulting form is given below:

o f[9b  3x{k) . ah
AY(k) - (ax(k) 38 ’ ae) A + v(k) (3.10)
d 3x _ 3f 3x ., 3f
dt 36 - 3x 36 & 30 (3.11)

The parameter estimation problem is to find the A8 vector
which accomplishes the following optimization

8 = max J(8]2) (3.12)
Be®
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where the objective function, J, 1is formulated to maximize
the likelihood of the estimate, minimize the cost of an error,
etc., depending on the preferences of the analyst.

Two approaches to the problem become evident at this point.
The generic or nominal baseline approach uses a form of measure-
ment sequence, Eq. (3.6), which is the output of a detailed
simulation or model of the engine at nominal values of the
build parameters. The custom baseline approach uses an output
record actually measured or created from averaged measurements
of the particular engine being observed. The differences in
the two approaches are more practical than theoretical since
linearized behavior is assumed in both cases. In the following
discussions, the differences in the resulting algorithms will
be identified.

3.3 FAULT MONITORING ASSUMING STATIC MODELS

Most engine performance monitoring techniques which util-
ize thermodynamic principles assume the engine and aircraft are
operating in a steady state condition (e.g., static). This
approach is often called gas path analysis. The thermodynamic
laws governing engine behavior can be written in simpler terms
than the equations modeling unsteady aerodynamics, heat trans-
fer or torque balance phenomena. However, since the engine,
particularly in flight, is never completely static, errors
will occur due to these temporal effects.

Under the assumptions of static behavior, Eq. (3.3) may
be written as follows:

0 = £(x, u, w, 8) (3.13)

The measurement equation containing all systematic uncer-
tainties is repeated below:

y = h(x, u, ¢) + v (3.14)




There have been many approaches to the performance monitoring
problem as discussed in Section II. Certainly, the complexity
of the propulsion system and availability of data acquisition
and processing capability have a strong impact on the sophisti-
cation of the procedure [39]. The mathematical approaches to
performance monitoring previously developed for jet engines

are reviewed below and put in the context and symbology of
parameter identification.

There are two types of engine monitoring and fault detection.
They may be called direct trending and inferential methods.
Direct trending is the original procedure for tracking important
engine measurements and noting changes. Inferential methods at-
tempt to use changes to infer the cause of the change. These two
approaches will be discussed below.

Direct trending [10,15] methods are performed by many auto-
mated data recording systems. Engine measurements such as rotor
speeds, fuel flow, EGT, and EPR are recorded and corrected to
standard conditions. These measurements are taken at a constant
power condition and flight point so that, if the engine remains
healthy, the measurements should be constant. If the measurements
change over time, it is an indication of a change in engine opera-
tion or sensor effects. Fault isolation is performed by associ-
ating a ''direction matrix" with the measurements. The sign of the
parameter changes for each measurement change is noted. A table
is created which relates typical engine failures to the directions
of measurement changes and this is used as the isolation technique.

This approach requires repeatable operating conditions for
the aircraft. 1It's application has been predominenatly in the
commercial ¢nvironment where a stabilized cruise is common. Un-
fortunately, there are more engine and sensor faults than can be
uniquely associated with measurement changes so that the '"direction
matrix'" often has several possibilities for each entry.
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Inferential techniques use quantitative measurement changes
and a model of engine performance to analytically infer the cause
and magnitude of the set of deterioration parameters.

Direct analytical modeling [29,41,42] uses a simplified work
and energy relationship to establish nonlinear, algebraic rela-
tionships between gas path quantities. In this case, fault
parameters, e.g., lumped efficiencies, area changes, pressure
drops, are analytically derived as a function of measured quan-
tities, €.2.,

SNy
H* KTT (3.19)

where the compression pressure and temperature ratios, P

Trc’
trended. When large deviations occur, failures are expected.

rc?
are measured. The fault parameters are monitored and

When smaller consistent trends are detected, deterioration
may be involved. Practical problems arise in this situation,
e.g., multiple faults, sensor calibration drift, modeling
errors, sensor flow errors which are influenced by age, vari-
able geometry effects, etc. However, with reasonably simple
gas paths, these techniques have been experimentally demon-
strated.

The second category of inferential methods includes linear
or quasi-linear approaches. These procedures have shown promise

in actual development programs and in several prototype engine
analyzers [28,30,32].

One procedure [27,28] utilizes a numerical approach for
direct calculation of fault parameters:

Ay =y - f(x) (3% 23)

A8 = Q Ay (3.24)
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Here, deviations from the custom baselines, f(x), are measured.
This baseline is calculated as a function of a single corrected
variable, x, from installed or test stand data. The fault
coefficient matrix, Q, 1is analytically [47] derived for a par-
ticular flight point. The number of measurements and parameters
are assumed equal, the custom baseline is assumed to be a function

of a single variable and the relationship

Ay = P A8 {5.25)
is assumed calculable and invertible. This procedure is more
applicable to land-based turbine operations because of the
assumptions concerning univariate baselines, constant fault
coefficient matrices, etc. Procedures [30,39] for choosing

fault parameters and measurements to give the most accuracy

have not been systematically developed. A more sophisticated
technique is shown below:

8% = ¥; - £.005) b PRRRS (3.26)
Ay = P(y;) 48 (3.27)
a8 = Q(Yj) Ay

Q= (PTWR) 7T 2 (3.29)

This procedure [30] is an extension of the first approach using

a more accurate data processing approach. A set of measurements,
Y, includes data with some random uncertainty. A deviation is
calculated from a custom baseline measured by a single abscissa
value, yj (e.g., corrected speed). These baselines can be
shifted or biased by additional ambient variables (e.g., Mach no.)
to account for some altitude effects which are not easily modeled
by standard nondimensionalization. Similarly, the fault coeffi-
cient matrix is developed at a number of operating points and the
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elements are mapped by a scheduling variable, yj. More measure-
ments than parameters are taken and a weighted, least squares
solution is obtained. The choice of measurements and parameters
can be accomplished with a specialization of the technique dis-
cussed in Section 3.4.

The linearization procedures have had the most practical
success because the deviations of parameters between new and
deteriorated engines (especially for high performance systems)
is small. While this fact justifies the linearization, it
complicates the modeling and measurement problem significantly.
In particular, while it is far more economical to use simulations
of engine deterioration to calculate baselines and fault
derivatives, accuracy limitations between actual engine and
simulated behavior can produce anomalous results unless compen-
sated for in the processing of the data.

There are three important considerations in the application
of this method. Since custom baselines are measured, practical
engine test limitations specify a univariate baseline function
(e.g., determined by power lever angle, corrected speed, etc.).
Since variable geometry engines have more degrees of freedom,
these must be reduced to a single degree of freedom problem using:
(1) corrections of variables to standard day conditions, (2) utili-
zation of control schedules to resolve geometry position ambiguity,
and (3) neglecting unmeasurable random disturbances such as
bleed rates and seal leakages. This scheme is often complicated
by modern control logic which "uptrims'" engine response to
compensate for component deterioration. Also, errors in meas-
uring baseline performance, set point variables (abscissae)
and ambient conditions degrade the starting point for perform-
ance monitoring. The second important consideration is altitude
and nonstandard day effects. For small pressure ranges and
large temperature variations, scaling laws (for fixed geometry)
can be applied to the turbine to correct changes due to operat-
ing conditions scaled by temperature and pressure. At altitude
and nonzero flight speed, Reynold's number, Mach number and

.
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radial flow effects such as distortion and burner effects tend
to significantly reduce the applicability of the scaling rela-
tionship. This restricts the operating envelope of the diagnos-
tic program to take-off/landing conditions or the models used

in Eqs. (3.26)-(3.29) become extremely complex.

The third consideration is instrument errors which change
slowly, change after maintenance and are related to the power
or flight condition [44,45]. All of these effects tend to cause
deviations in derived parameters, A6, which can mask the
small effects expected due to deterioration and aging. Effects
of instrument deterioration on parameter estimation accuracy

are presented in Ref. 1.

These three potential effects tend to limit the accuracy
of multiple fault diagnostic approaches. A general formulation
is presented which utilizes more sophisticated filtering tech-
niques to extract the maximum information (in a statistical

sense) from the measurements.

3.3.1 Quasi-Linearization Method

Returning to the general set of equilibrium conditions of
the engine written in Eq. (3.13):

0 = £ix, u; 8, wj (3. 30)
it is possible to assume that the performance parameters, 9,
and unknown disturbances are small when compared to effects of

primary variables such as fuel flow or rotor speeds. In this
case, the equations can be linearized as follows:

0 = fo(x,u) + fe(x,u)ée + fw(x,u)éw t3:31)

where

fo = f(x,u,eo,wo) (3.32)
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af(x,u,e,wo)
£y = 55 b (3.33)
8 =9
o)
af(x,u,eo,W) |
£ = — ; (3.34)
W =W

The nominal values of deterioration parameters and disturbances
are determined from examination of many engine builds. The
deviations 66 and d&w specify the amount each parameter and
disturbance differ from the nominal.

The modeling requirements for states, control variables,
parameters and disturbances can be made more exact at this
point. Equation (3.31) represents n algebraic equations
describing the equilibrium state. The engine has m independ-
ent degrees of freedom in steady state corresponding to the
number of free or independent input and control variables.

The excess number of equations, n-m, represents equality
constraints on the state variables. The state variables
themselves do not necessarily maintain any dynamic identifica-

tion since the problem has been reduced to an algebraic solution.

Thus, "state'" variables may be chosen for convenience, in this
case, to represent measured quantities. Equation (3.31) can

be represented as a quasi-linear regression model which relates
measured variables to control inputs, other measured variables,

and parameters, as follows:
X = go(x,u) + ge(x,u)ée + gw(x,u)sw [ 3:35)

The selection of the form of Eq. (3.35) is permitted only when
static behavior is assumed. The '"model'" shows that the quan-
tities, x, are related to a nominal or generic engine base-
line, go(x,w), which is a function conveniently represented
by a group of other state and control variables. The exact
value attained by x is also influenced linearly by engine
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performance parameters, &6, and unknown and random disturb-
ances, J&w. The state is defined as the ideal value which

would be measured in the perfect, nonlinear engine model which
included all effects accurately simulated. Of course, the ""true"
state cannot be measured on any real engine. The relationship
between generic engine behavior and measured engine performance

is the inferential problem posed by performance monitoring.

It is assumed that measurements of x are taken with
transducers whose outputs can be modeled as follows:

VA g¢(x,u)6¢ + Vv (3.36)

where v(t) 1is a zero mean, random process modeling temporally
varying errors in the static measurement which include channel
noise, high frequency processes, and engine disequilibrium.

The measurement function, g, (x,u), represents systematic
errors in the measurements which could include bias offsets,
scale factor effects, radial flow effects (e.g., pressure
gradients), and cross couplings (e.g., temperature effects on
scale factor). The modeling requirements and restrictions on
g¢(x,u) will be discussed in Section 3.5.

The models in Eqs. (3.35) and (3.36) can be reduced to a
more convenient form appropriste for parameter estimation.
Substituting Eqs. (3.35) and (3.36) yields the following

Y - 8o (x,u) = gg(x,u)80 + g, (x,u)60 +g (x,u)éw+V
(3.37)

which is a standard form for quasi-linear estimation using
least squares or maximum likelihood methods. However, in the
case of Eq. (3.37), the n equations are written in terms of
redundant sets of independent variables (x,u) which are only
approximately measured. The models are constructed in this
manner (see Section IV) to take advantage of simple relation-
ships among measured variables in the engine.
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To account for the uncertainty in x and u, a two-step
procedure can be used to estimate the parameters. The algo-
rithm is discussed below.

An initial estimate of the parameter values is made using
results of previous data or ad hoc assumptions. A group of
measurements is processed together and reduced to an updated
set of parameter values which reflect the best estimate of
engine status and instrumentaticn errors. For a group of N in-
puts, (u(i),i=1,N), the implicit equations, Eq. (3.35), are
numerically solved for x, yielding the following result

x(1) = g (x(1),u(i)) + g, (x(i),u(i))B(0) (3.38)

The points, X(i), represent the best estimate of the engine
state without incorporating the new data but at the operating
conditions where the new data is taken. The measurement
equation is written:

y(i) = x(1) + hy(X(i),u(i))$(0) (3.40)
where ?(i) would be the best estimate of the outputs. This

set of values is used as the basepoint to calculate the new
parameter estimates from Eq. (3.37).

The operation can be linearized to solve for the relation-
ships between (X, 8, ) near (x, 9, ¢) as follows:

X = X - X (3.41a)
68 =6 - 9 (3.41b)
86 = 6 - ¢ (3.41c)
33
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The following expression results from expanding Eq. (3.38):

6% = C Mg, (X,u)66 - g, (X,u)w] (3.42a)

In this form, the difference term on the left hand side

Eq. (3.42) is correlated with the terms used to calculate the

right-hand side through errors in inputs, u. Defining

(x,u)8] (3.42b)

of

sy (i) = y(i) - y(i) (3.43)

Eq. (3.42) can be rewritten in a more convenient form as follows:

3

6; = BC ge(ﬁ,u)ée-gw(i,u)w +h®(§,u)6$ + V] (3.44a)
B =1+ hy (X,u)¢ (3.44b)
or, for N measurements indexed on i,
Ay; = Hy 86 + Iy v i=1,...,N (3.45a)
where
by; = y(i) - y(i) (3.45b)
T8T = [687 ' 847] (3.45¢)
v o= [vlwl] (3.45d)
- =1 o : .
Hy [B;C ge(xi,uil h¢(xi,ui)] (3.45e)
Py [1758,C 8] (3.45f)
i ’ 2 i R )
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The N measurements in Eq. (3.45) can be used to update the
parameter estimates using the sequential least squares procedure
as follows:

za Ta '—-l A <a -
86 (n+1) = 66(n)-+Mn+lHan [uyn-Hnde(n)] (3.46)
n=1, N
S i Ts-1 L
Mn+l Mn + Han Hn £3.47)
where
- = T
Rn = Tn cov(Vv) Fn

and MO measures the uncertainty in the parameter values at the

beginning of the process.

The procedure assumes that the measurement errors and error
statistics are known and that the parameters are constant. In an
engine environment, these assumptions may not be satisfied caus-
ing inaccurate parameter estimates. Also, the parameter estimates
may be significantly biased because of correlations between the
dependent and independent variables in Eq. (3.45).

The sequential algorithm presented in Eqs. (3.46) and (3.47)
is appropriate for situations in which data is continuously
received and not available after processing. This scenario is
typical of on-line, real time processing systems. The off-line
performance data processing scenario is different. Groups of
data points (5-10 measurements) are received for an engine. This
data is available for processing as long as necessary. It is
discarded after processing. Figure 3.2 illustrates the informa-
tion flow.

An algorithm for using data in this format is presented
below [46]. The likelihood function for estimating the engine
state and degradation parameters for N measurements is

- -
P
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Figure 3.2 Parameter Estimation Process

N

J(x(n),n=1,N;8) = % YanlYn + 3lv 17 (3.48)
n=1

S N A (3.49)

Yn = 8o (Xpoup) + 8o (Xp,u )8 +hy (X ,u )6 (3.50)

where M is an initial parameter covariance estimate.

The functional, J, 1is iteratively minimized. An initial
estimate of the parameters, 5, ¢ from previous runs is assumed
for the N data points. These values are used to estimate the

engine states, Qn’ at each point from Eq. (3.42). Then,




v

Eq. (3.46) is used to estimate the updated parameter estimates,

89, ¢, from the state estimates. This procedure is iteratively

executed until the estimates x, 8, & converge to a constant

value.

~ A

After a group of data has been used to estimate 3, ¢, X,
the residuals can be used to update the noise estimates and the
estimate uncertainty. The sensor noise covariance is estimated
from the residuals,

R = covy (ay) (3.51)
where covN(-) is the N sample covariance of the final residu-

als of the estimator. Using ﬁ, the uncertainty in the para-
meter estimates for the current record can be written:

— N -1
cov(s) = z HnRHn {5.52)
n=1
This can be combined with the original covariance estimates
using an exponentially fading memory filter,
» -1 = = 2

Myt, = Mgl + olcov(@) - Myt (3.53)
The value of p 1is chosen so that the filter '"ignores' meas-
urements taken at N time points prior to N where N¢ 1is
given approximately as follows:

Ng = 3/an(p) . (3.54)

This algorithm will provide estimates of the parameters
for data taken in an essentially finite window covering a
portion of the engine operating period. The system can also
be reinitialized after engine maintenance or trim.




An algorithm is briefly described above which uses parameter
estimation to establish values of engine parameters from static
data. In section 3.3.1, a procedure for developing the models
used in this algorithm is described. In Section IV, considera-
tions important in applying this algorithm to the F100 gas path
are presented.

- -

3.3.2 Model Development Techniques

The parameter estimation algorithm described in Section 3.3
uses a mathematical model of engine performance and derivatives
which is developed from a detailed simulation of the engine. The
calculation of the best form of the model is described below.
Parameter estimation results are closely tied to the model used.
A method of model selection is presented which allows a system
approach to formulating fault parameters which can be accurately
identified and which reflect the actual status of the engine.

3.3.2.1 Development of the Baseline Model

The engine baseline model describes the set of measured
variables as a function of other variables and a set of more
accurately measured independent quantities. This relationship
is written as follows:

X = go(x,u) (3<55)

A data base of generic engine operating points is formed. For
the aircraft turbine, this requires generation of typical
operating data at various points in the flight envelope where
measurements are to be taken. Data should be generated in
approximate proportion to the density of measurements which
will be processed during actual- flight operation. The windows
of data acquisition can be written as follows (as an example):
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TZmin < T2 : TZmax

pZmin €Ky A pZmax

0 <M« Mmax {3.56)

(Wf//%)min < wf//§5 < (wf/@d)max

Hain = Y1 = Vigax (geometry positions)

The pressure, temperature and Mach number constraints bound the
flight envelope. The fuel flow and geometry settings will be
independently specified and chosen from typical values. The
values of inputs are set independently of control schedules,
feedback, etc. The number of points in a particular region should
correspond to the expected data frequency. The models are
developed using a least squares regression analysis to determine
the model for each xj:

e : 2
J* = m;n [xj go(xj*,u)] £3.57)

where the baseline function, go(xj*,u) has the form:

q
* = * -
go(xj s1) 5 Biti(xj ,u) (5.58)

and the regression coefficients, Bi’ are chosen so that the

j*,u), match the data. The vari-

ables in the model do not contain the dependent variable, xj.

The vector of independent variables for the j-th equation can

terms in the equation, ti(x

be written as follows:
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The terms, tj(xj*,u), consist of polynomials in dependent
and independent variables. The independent variables, u,
are chosen as a set of accurately measured quantities which
determine the engine state uniquely. The choice of these
variables may be altered and the effect on the model accuracy
determined.

The regression in Eq. (3.57) is performed on many possible
combinations of model terms tj(xj*,u) and the best regressions

at various levels of parameterization are determined.

The regressions are designed to parameterize the dependent
variables with the minimum error and the minimum number of
terms. The number of regression terms is reduced because the
equations are allowed to contain variables which are independent
in other equations. This procedure can lead to poorly invertible
models. The selection of appropriate model terms must be
accomplished using the criterion of equation accuracy and over-

all invertibility.
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Consider the vector model,
X = go(x,u) * E (3.60)
where e 1is the fit error for each regression. A group of

operating points is selected and the model is inverted in these

regions as follows.

Given (xio’uio) is an equilibrium point, then
Gxi +xio = go(xio’uio) 5 gox(xio’uio)(SX
+ gou(xio,uio)du (3.61)
or
s T ’gox(xio’uio)]‘1 gou(xio’uio)(Su Sl

The overall modeling error due to fit errors and in knowledge
of u can be evaluated using the following criterion function
(p is the number of measurements and r 1is the number of test

flight conditions):

)-1 T K )-1]

LU ) RguBonti By

=
L—
+
|
e

(3.63)

where Q is the expected covariance of the errors in the inde-
pendent variable, u, or

Q = diag[oal, 032, v 35 o Gam] (3.64)

The performance index, JFIT can be evaluated for several
parameterizations of the model and the most accurate expression
chosen.




™

3.3.2.2 Development of Performance Parameters

After an accurate model is developed for the generic base-
lines, the data base must be increased to include data representing
the deteriorated engine. These effects will include efficiency
changes, area changes, pressure drops, flow changes as well as
disturbances due to bleed effects and control actuator hyste-
resis.

There are a large number of points represented by complete
combirations of these effects. The linear characteristics of
the model can be used to reduce the computation overhead.
Values of fault parameters can be varied, one at a time, at a
selected group of operating points which span the envelope.

The computer resources for this type of data base are not over-
whelming.

The model for the fault parameters, instrumentation effects

and random errors is written below

Ay = Hg@ + Hy¢ + v (3.65)

e’
flight condition and are defined in Section 3.3. The covari-

where the matrices H H¢, and I are functions of the

ance of the estimation error for the maximum likelihood (mini-

mum variance) estimate must satisfy the following relationship
M = 323/08° (3.66a)
where J is the log likelihood function of the estimation

problem. It can be shown that the following inequality is
valid [47]:

-1
M., ' M
3 88 1 8¢ :
cov (--) L A g wt (3.66b)
) i
Moo + Moo
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where (STfOT)T is assumed to include all possible variable

engine and instrumentation parameters. The matrix M 1is
calculated as follows:

EH¢)(rRrT)‘1 o S (3.67a)

N
o | (3.67b)

where the sum is taken over N flight points at which data is
taken with fractional frequency ﬂi. In the algorithm develop-
ment, a representative group of flight points and frequencies
is chosen. This relation may be expanded as follows:

M= .M. £ .M. € ... & M

o N L3:68)

In general, if p measurements are taken at each point, only

p or less parameters can be estimated. However, since the
sensitivities vary with flight condition, it is possible to

estimate far more parameters than the number of measurement

variables using this procedure. The precise number and their accur-
acy is calculated using the following technique, developed in Ref. 1.

Consider the parameter vector (eT:¢T) and reorder this
vector into elements (ei; ez)T where er parameters will be
estimated and ee parameters will be ignored.

The covariance of the estimates of er using the full set

of equations from Fq. (3.66) is

,1 1 ‘ 1 -1 o2
cov(er) Mrere(Me weerere) Meerr L3605
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where

B! oot shomi i 3.70)

Since the estimates are unbiased

cov(er) = MSE(er)

where MSE(+) 1is the mean square error. In the case when

fewer parameters are actually estimated, i.e., 9e parameters are

ignored, it can be shown that the estimates are biased and the

mean square error is as follows:
1 =1

MSE (6,) = M_1 + M_TM__D(3_)M M1

rT T re er rr (3.71)

where D(ee) is the approximate uncertainty level in the ex-
traneous parameters,

D(8,) = diag(Aeg) (3.72)

Comparing Eqs. (3.70) and (3.71), the accuracy of the estimate

of 6, improves if 6o Pparameters are not estimated and

“ly 4-1 (3.73)

D(ee) £ (Mee - Mo M Mg

. . B -1 =il . Ty
Lty D(Be) (Mee Meerere) is positive definite.

In order to evaluate the accuracy of an estimator for all
subsets of the parameters using Eq. (3.71), all possible
combinations of the parameter sets must be evaluated. This is
an extremely tedious procedure if Eq. (3.71) is used directly.
However, there is an algorithm available to efficiently and
economically evaluate the optimal subset of estimated parameters.
This procedure is based on complete enumeration of all possible
subset combinations in a systematic order. The covariance
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estimates are available for each subset from the preceding sub-
set using a simple calculation on a portion of the information
matrix. A detailed description of this technique and examples
of its application to the modeling problem are included in the
next interim report for this effort.

An alternative procedure aids in qualitative analysis for
the important parameter effects. The information matrix for the
full system, e.g., Eq. (3.69), is diagonalized and the eigen-
value spectrum is examined. Large eigenvalues indicate that the

linear combinations of parameters determined by the corresponding

eigenvectors are accurately identified with flight data. Small
eigenvalues imply that the estimated covariance of the linear
combination of parameters corresponding to that modal direction
is large. The information matrix can be partitioned into groups
of certain parameters by associating the large eigenvalues

with these parameters. Equation (3.71) can be used to calculate
the estimation accuracy for the reduced parameter vector using
an estimate of the magnitude of the ignored parameters.

This procedure allows flexibility in the choice of re-
tained parameters and a quantitative measure of parameter
identifiability and accuracy tradeoffs. The resulting set of
estimated variables along with the associated generic baseline
and sensitivity system can be directly incorporated into the
sequential estimation algorithms discussed in Section 3.3.

3.4 TREND ANALYSIS

In the static analysis described in Section 3.3, the para-
meter values were assumed constant over the data. Provision
for a '"fading memory'" construction was discussed in the devel-
opment of the algorithm. In this section, the augmentation
of the static model identification equations with simple trend
models will be discussed as well as the association of an

appropriate time variable with the trends.
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5.4.1 Trending Equations

The trending process assumes a linear relationship exists
between a function mapping the data acquisition times to changes
in the parameter values. The simplest mapping is the associa-
tion of the sampled point with the time of the sample. This
time point may be calendar time, flight time, engine operating
hours, or some other function of the usage period of the tur-
bine. This functional mapping, for example,. specifies the separ-
ation of the data points on a sequential plot. In this section
the time of the kth sample, teo will be associated with the
kth variable. In the next section, some properties of a
function, f(tk), will be discussed and techniques for devel-
oping appropriate forms from flight data will be described.

The data may be written in the ordered sequence given

below:

{yk, U, tk} k = 1,N teo1 Sty

A dynamic representation of parameter variations may be formu-

lated as linear motion, or
88 (k+1) = 86 (k) + r(k)[tk -tk_ll (3.74)
r(k+1l) = r(k) + wr(k) {3.75)

Ay = Heée + Hdop + v (S« 76

¢
where 1r(k) 1is assumed to be a constant or slowly varying
deterioration rate and W is a nominal noise sample which
reflects the uncertainty in this variable.

Two approaches may be used to estimate 8 (k) and r(k).
Equations (3.74)-(3.76) can be used as the basis of a Kalman
filter for the state (86! r) and an algorithm can be designed
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to estimate these quantities. The dynamics of the system are
written as follows:

560 (k+1) | R S 58 (k) 0
rik+l) j=j0 L1 @ r(k) | +]1]w_ (k) (3.77a)
o (k+1) 0 0 1 3¢ (k) 0
where
At = ty,q - T (3.77b)
This may be written as follows:
z(k+1) = ¢pz(k) + rw(k) (3.78)
ay (k) = Hpz(k) + v(k)
where
20T = se)T )T o) 7] (3.79)
The estimate of z(k) is z(k) given as follows:
z(k+1) = z(k) (3.80)
z(k) = z(k) *+ Ky [ay(k) -HkE(k)] (3.81)
L A
Kk = PkaR LS 82)
2 T ) B e ) -
Pk+1 = Pk¢k+¢kpk+¢kaPK¢ (R+HPkH J ¢kaPk¢+Q (3.83)

In these equations, the matrix, Pk’ represents the
uncertainty in the parameter estimates after processing data up
to t=t,. The initial condition, Po’ represents the a priori




uncertainty on the parameter values, i.e., before any measure-
ments are taken. The disturbance process, Wi is assumed to
be known, white, zero mean with constant covariance, Q. In
practice, this can be estimated from the amount of variability
in the rate or from the performance of the filter after a
group of data have been processed [49].

A steady state representation of the gain Eqs. (3.82) and
(3.83) can be more efficiently used. There are problems in filter
convergence for this model due to the lack of "disturbability"
of some of the bias states, ¢¢. The most straightforward method
to avoid this problem is to use pole placement for these neu-
trally stable modes to assure convergence of the filter.

An alternate formulation is the static, extended Kalman
filter algorithm for both the parameters and the state [46].
This algorithm is presented for completeness below. The state

model is given as follows:

X(lcel)s = nafic] wx(k)

S8 (k+1) = 66(k) + r(k) (¢t -tk) + we(k) (3.84)

k+1
r(k+1l) = r(k) + wr(k)

The measurements are defined by the equation:
Y = go(x,u) + go(x,u)de + g (x,u)s¢ + v (3.85)

In this case, wx(k) is assumed N(O,Qx) where Qx is chosen
large enough to ensure the engine state at the (k+1l)st point

is not correlated (to a practical degree) with the state at

k, as would be the case in sparsely sampled data. The covari-
ance of Wy s N(O,Qe) represents a priori information on the

parameters. The uncertainty in the rate is w N(O,Qr) and

r’
in the measurement is v, N(O,R) and




207 = xTrssmT 0T s aoT)

is given from the following recursion,

AL A <3
2(k+1) = zZ(k) + PkH{R [ay (k) - Hpz(k)]
where
Ay (k) = sz(k)
and
ag ] I 1
B = =2 g 0z 3
k ax: e: : (b X =X
58 = 88
S6 =86

(3.86)

(3.89)

The optimal gain can be calculated for the data and the algo-

rithm can be applied in the manner described in Ref. 46.

Alternate methods of parameter estimation can also be used
to trend the parameter data. The maximum likelihood method is
perhaps the most accurate. This procedure requires a list of

the data points and iteratively processes the entire data

record to achieve its estimate. Accurate estimates of the small

deterioration rates within the noise level of the measurements

will probably require this type of processing. For a more complete

discussion of these procedures, see Ref. 47,

3.4.2 Time Variable Correlations

The trending procedures for aircraft turbines can be formu-
lated as standard parameter estimation problems as discussed in
Section 3.4.1. An important aspect is the definition of a time

variable to model deterioration as a constant rate, r1(k).

As-

suming that deterioration is continuous, i.e., step changes due

to foreign object damage, structural failure, maintenance action,
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etc., do not occur, it would be expected that a constant
deterioration rate,

e (3.90)

exists for a function t*(t).

The time variable t* should be influenced by the phen-
omenological processes within the engine that cause deteriora-
tion. Maintenance procedures, e.g., ‘turbine module replacement,
should influence the performance parameter levels, &6, but
not the deterioration rates. Thus, the trending procedure has
the potential to be extremely useful in maintenance assessment
and prognostication if the appropriate correlation function,

t*, can be identified.

Previous trending systems have used many choices for
the variable t*. Early monitoring schemes trended the engine
variables versus engine time. In turbine engines, the power
level, temperature and hence stress levels vary significantly
from flight to flight. An approach to developing this correla-
tion is embodied in the advanced mission test (AMT) [22] concept
currently being employed during development of military air-
craft powerplants. It is assumed that deterioration occurs
mainly during power modulation. Characteristic power transients
are formulated for each aircraft mission profile. Engines are
then tested with these transients and equivalent engine hours
are tabulated. Periodically performance tests and rebuilds as-
sess the levels of deterioration and performance shifts which
have occurred. This procedure can be related to the development
of the time-1like variable, t*, which, in the case of the AMT,
is experimentally related to engine hours using a standard mis-
sion profile and the assumption that deterioration rates in

steady state are negligible.
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There are several approaches to the determination of the

trending variable. An example of the concept is presented to

illustrate the problem. Figure 3.3 shows plots of measured and

derived data. The measurements are taken at many flight points

power conditions. The parameter estimates should have only

A

t*(a) ’

MAINTENANCE
THRESHOLD
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Figure 3.3 Utilization of a Time Like Variable, t*,
to Measure Rates of Engine Deterioration
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low frequency components associated with the deterioration
process. The function t* (t, 11,;3,...,13] 1s sought which
will map t to t* given values of intermediate variables
%y Az Parameter estimates plotted against t* form a
nearly straight line. This functional form can be used for all
engines to assess: (a) the status of the engine, (b) the value
of t* when a maintenance limit is reached, (c) the time (in
engine hours) until the deterioration limit is reached given
nominal values of Gpsenesy which are associated with the

mission.

The performance associated variables, «, represent
measurements in the gas path that are monitored in real time
or sampled in the data. Examples of these variables might be:
(a) engine time, (b) time above 85% power, (c) time above a
specified turbine inlet temperature, (d) temperature profile
(spread) characteristics at the turbine inlet, (e) number of
accelerations and decelerations greater than a specified magni-
tude, and (f) integrals of speed and turbine inlet temperature

which are measured in reél time.
3.5 MONITORING TRANSIENT PARAMETERS

In the previous sections, the engine has been treated as a
quasi-static system. Degradation has been determined by changes
in operating line values of the measurements. One drawback of
this approach is that one cannot always differentiate between
engine and sensor failures.

To achieve failure isolation, utilization of transient data
from continuous or discrete control inputs is attractive. Ini-
tial attempts at this process have been made in Europe [34,36].
The utility of transient data can be qualitatively justified

by examining the expansion of the general system model as follows:




x = £0 8 ) + £f.6x + £ 6u + £_58
( (‘o’uo’ o) X u” 3

1 P S 2 =R N &
+ 68 ( 5 2 Sudx
5 (raﬁ + fxx>x + ruuﬁu + txu,u,x
+ 2fx86X66 + queéuée) (3.91)
where
£ = 3f/5x 5 et {3.92)
%
= X
o]
ks

Assuming that an equilibrium point is chosen for the expansion,
Eq. (3.91) can be rewritten as follows:

ik : 1 ’
x = (£, +£00)8x+ (£, + £ j68)6u+ (£ +5 f,486)60

2 .1 2
fxx6x " fuuéu +fxu6u6x (3.93)

| =

In the static problem, the choice of linearization point forced

§x = 0

and (5.9%)
Su =0

The remaining terms represented the steady offset in dx due
to 6. In the transient case, 6x, Su are assumed time
varying. The time varying response is not greatly influenced
by instrument biases and other steady stacte effects. For
this case, the equations reduce to the following:

. 2
x = (£, +£,,60)8x + (f +£ ,88)6u + 6(8%) (3.95)
If the higher order terms in Eq. (3.95) are neglected except

for the dependence of the transient terms on the fault para-
meters, the linear system resulting is as follows:
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X = F(8)8x + G(9)3u (3.96)

Terms of the form f(ede may be comparable to the terms f‘<
for small values of 88. If this is the case and these para-
meters can be estimated from the measurements, then an alternate

class of fault coefficients may be derived.

As an initial experiment, two linear models were generated
for the F100 turbofan engine at idle power. One model used
nominal values of the engine build parameters. The other used
values which represented a fully deteriorated engine. Linearized
dynamical parameters are compared in Table 3.1. These results
indicate that the second order fault parameters may be signifi-
cant in these transient equations. Engines in many practical
situations (e.g. military missions) operate with a continuous
series of small throttle motions. This type of input environment
is suited for real-time parameter estimation. Data can be

acquired nearly continuously in flight and storage or recording

Table 3.1

Effect of Deterioration, Power Extraction, and
Bleed on System Equations
(Sea Level Static/Idle)

INSTALLATION |

TIME CONSTANTS NOMINAL SFFEETS UNITS

Fan Stream 9 %5.6, 52,91 | w =5.1, 5= .92 sec”!

Core Stream 1/t =+0.75 1/t=0.72 sec”!

DYNAMIC INSTALLATION

E ENATS NOMINAL CFPECTS UNITS

CWLTR +0.58 -0.84 sec”!

S,/ 8N, -5.04 -4.40 sec”!

: <3

<SP6/<SP6 -0.23 -2.45 sec

iy /60 -6250 -3620 (RPM/PSIA) sec™

3B/, -0.0017 -0.00041 (PSIA/RPM) sec™

54
ety N I 5 g - '——-—-r‘:‘:"—‘—,




7

is not required. At the end of the mission, the updated fault
coefficient can be retrieved and parameter trending procedures
performed against previous engine operation.

Maximum likelihood parameter estimation procedures for
sequential processing are reviewed in detail in Refs. 1 and 47.
A significant fallout of this on-line algorithm is an accurate
failure detection method for system parameter jumps. These
sharp parameter changes can be caused by sensor failure, foreign
object damage, structural failure of gas path components, fuel
leaks, manifold clogs, or control malfunctions of certain types.
The application of this procedure is illustrated in Figure 3.4
for a simple model of a turbojet driven by small deterministic
inputs and random disturbances.

The simple turbojet speed model can be written as follows:

H-dw-u-w (3.97)

where u 1is modeled as small commanded speed inputs of random
width and w is a white, Gaussian disturbance process, N(0,Q).
The rotor speed is measured and the engine time constant, T,

is estimated. At time t =t;, T abruptly changes value from
1 sec to 2 sec. The estimate of the parameter <t and the pre-
dicted disturbance covariance are shown. The system equations
for this example are as follows:

Estimator: = (1/T)(x-u) + ﬁ(y -2) (3.98)

Observation: Y * % * N,

(yy - %) (3.99)

ey
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Figure 3.4 Example of Parameter Estimation with a Jump in an
Engine Parameter Showing Large Increase in Disturbance
Covariance During Data Window Containing Jump

The results indicate that for the finite data length, the jump

in the parameter value causes a significant increase in the esti-
mated disturbance level. This occurs because behavior not
modeled by the linear dynamics is attributed to the disturbance
process. Failure detection techniques can utilize this sharp
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rise in estimated Q to quickly and accurately determine sharp
plant variations. It should be noted that no a priori knowledge
of the expected value of the time constant is required to imple-
ment the suggested procedure. The monitoring of the shift in the
parameter estimate would produce a far less robust detection
technique. In this case, the 2:1 change in the time constant
yields a 20:1 change in the estimated disturbance. The approach
also functions in the presence of actual disturbances, inputs,
and measurement errors including biases.

3.6 SUMMARY

This chapter has developed a unified framework within which
the requirements of performance monitoring, trending, and transi-
ent fault detection/isolation may be achieved. This framework
is based on maximum likelihood methods for state and parameter
estimation. Formulating the problem from the more general view-
point, algorithms for the particular engine monitoring objectives

are synthesized.




SECTION IV
PERFORMANCE MONITORING FOR THE F100 TURBOFAN ENGINE

4.1 INTRODUCTION

The feasibility of the performance monitoring approach is
investigated for the F100 turbofan engine. The objective of this
study is to utilize a detailed nonlinear digital simulation of
the F100 engine to create a preliminary engine data base. Models
of the generic data are created and the predicted accuracies
calculated. A more detailed set of models and a more extensive
set of engine data will be utilized for full system development
at a later date.

In this section, the F100 Engine Diagnostic System (EDS)
data acquisition is discussed. Simulation programs are utilized
in the development of an initial set of quasi-linear regression
models for the envelope of data acquisition. These models are
discussed and proposed modifications to the generation procedure
are presented to improve the overall accuracy. Finally, in-flight
acquisition algorithms are reviewed with the aim of improving

data quality.
4.2 F100 ENGINE DIAGNOSTIC SYSTEM

The F100 engine diagnostic system (EDS) program is an on-
going development effort sponsored by the Air Force involving
the engine and airframe manufacturer of the F-15/F-16 flight
systems. The EDS program is chartered to develop and flight
test practical avionics hardware and software to acquire and
process logistically meaningful fault and deterioration data for
the engine.
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The EDS system uses a series of engine transducers mounted
in conveniently located positions in the gas path. Engine, as
well as lubrication and fuel distribution systems, are monitored
to detect out-of-1limit behavior. Subsystem variables are sampled
continuously by an engine-mounted, fuel-cooled microprocessor
system, the engine multiplex (EMUX). This processor is connected
via a data bus to an airframe-mounted avionics computer dedicated
to the EDS, the data processing unit (DPU). The DPU stores data
consisting of time histories of key engine variables before,
during, and after an event is detected. This data is later
recoverable for general analysis to isolate faulty behavior.

In addition to fault information, steady state data is
acquired in flight for performance and trend checks. These
data ''points'' are recorded when aircraft and throttle states
have not changed significantly for a predetermined settling
period. The limits of altitude and throttle are shown in
Table 4.1. Analysis by the engine manufacturer has indicated
that these preliminary settling times are necessary to achieve
engine operation with the slower heat sink and temperature lag
processes sufficiently equilibriated for accurate steady state

measurement.

Data acquired by the DPU for performance and trend consists
of several samples which are processed to remove noise and are
stored in the DPU. After a flight, the data generated in flight
is passed to one of two portable units, the data collection unit
(DCU) or the data display unit (DDU) for remote processing.

The DDU is used for engine troubleshooting and trim. It is
connected when trouble flags appear in the DPU panel. The DCU
is used under normal conditions to retrieve stored data for
trending and analysis. This data is made available for on-sight
processing or off-base macroprocessing via telephone MODEM link.

The EDS provides state-of-the-art avionics engine diagnostic
capability to the F-15/F-16 fleet. Automated troubleshooting
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Table 4.1

Data Collection Windows for
EDS Flight Test Program

TYPE WINDOW CONDITIONS
IN-FLIGHT PLA > 33° FOR 140 SEC
PERFORMANCE | 33° < pLA < 89° FOR 10 SEC

3000 < H < 25,000 FT.

ANTI-ICE OFF
TREND DATA | 40° < PLA < 89° PLA = CONSTANT +10° FOR 175 SEC.
COLLECTION 1 \ i g
S el PLA - CONSTANT +1° FOR-LAST 5 SEC.

N1 = CONSTANT +60 RPM FOR ~ SEC.

N2 = CONSTANT +60 RPM FOK <€,

Pb = CONSTANT +0.5% OF PQINT FOR 5 SEC.
0<M < .7

0 < ALT < 10K FT

ANTI-ICE OFF

and trim procedures can be performed utilizing the sophisticated

DDU minicomputer. In addition, the on-board data acquisition
capability provides an excellent source of well-controlled in-
flight engine data. This information can be directly processed
by performance analysis and trending algorithms to accurately
determine engine status and identify engine deterioration pro-
cesses.

The engine transducers which will be used for EDS perform-
ance and trend measurements are listed in Table 4.2. These
transducers can be installed without major modification to the
existing engine structure. In most cases these sensors will
replace existing F100 sensors providing improved accuracy.
Sensors are provided with electronic interfaces. Critical
instrument accuracy specifications involve long-term repeat-
ability. Noise levels are assumed small and channel errors
associated with discrete sampling and transmission will be re-

duced with hardware/software processing of the signal.
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Table 4.2
EDS Instrumentation Characteristics

PARAMETER géﬁ:@t OPERATING RANGE SYSTEM ACCURACY
a Airframe -10° - +35° +0.10°
PAMB 0DU 10 - 15 PSIA +5% of F.5./10 - 15 PSIA
TAMB 00U -65 - +120°F +2°F/-65 - +120°F
PT2 (DERIVED) | Airframe | 1 - 38 PSIA +0.5% of F.S./8.5 - 18.8 PSIA
™2 Engine -65 - +415°F +2°F/-65 - +150°F
N1 Engine 3,000 - 13,000 RPM | +.2% of PT./3,000 - 12,000 RPM
N2 Engine 6,000 - 15,000 RPM | +.2% of PT./6,000 - 15,000 RPM
PT6 Engine 0 - 100 PSIA +0.5% of F.S./16 - 65 PSIA
FTIT AVE Engine 0 - 1100°C +7°C/0 - 1100°C
AJ Engine 2.75 - 6.50 Sq. Ft. | +3% of F.S./2.75 - 6.50 Sq. Ft
RCVV Engine -40 - +4° +0.5°/-40 - +4°
2.5 Engine -20 - +315°C +4°C/-20 - +191°C
3.0 Engine 335 - 685°C +2°C/200 - 600°C
PT2.5 Engine 0 - 100 PSIA +0.5% of F.S./17 - 60 PSIA
PB Engine 0 - 600 PSIA +0.25% of F.S./100 - 470 PSIA
WFGG Engine 600 - 14,000 PPH +2.0% of F.5./2,400 - 13,400 PPH
MO (DERIVED) | Airframe | 0 - 2.6 +0.5/0 - 2.6
H Airframe 0 - 80K ft +0.2% of F.S./0 - 80 K ft
PLA Engine 0 - 130° +0.5°/0 - 130°

Several detailed digital simulations of the engine are
available to develop analytic or generic engine models. The
transient simulation program (transient deck) models dynamic
engine and control behavior for various conditions of deterior-
ation specified by perturbed values of lumped efficiencies and
areas. A detailed steady state performance deck (status deck)
is used to match engine performance with an extremely detailed
steady state model of the component performance and control laws.
This steady state status program is considered an accurate point
performance model but does not include nonlinear dynamic effects.
The dynamic simulation program has the capability to generate
this type of data but the computational overhead can be severe.
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PRELIMINARY MODEL DEVELOPMENT

4.3.1 Generic Baseline Models

A generic baseline model of the F100 was developed in this
phase of the program to demonstrate the analytical and numerical
procedures involved and to develop the necessary software capa-
bility. The EDS sensor set and accuracies were used as the basis
for analysis. A data base was developed using the transient
deck modeling generic engine performance. A set of measurement
equation models was determined. The overall accuracy matching
generated engine data was evaluated for a slightly larger flight
window than specified for EDS. The conclusion is reached that a
generic model can be developed to match the baseline data.
Coefficients depend on altitude and speed.

4.3.2 Fault Parameter Selection

Fault parameters were chosen to reflect a 'complete' set of
component performance parameters. For the rotating machines
(e.g. compressors and turbines) the functional relationships are
shown by the simplified thermodynamic descriptions of the energy
conversion and flow modification processes which occur. For a
compressor, these are as follows:

- ¥=1/% "
Tr-n—c-(Pr - 1) 1 (4.1)
n/e N
5~ £( —e » P Ry) (4.2)

where the isentropic efficiency, Nes represents the effective-
ness of the compressor in raising the gas pressure. The second
equation shows the functional relationship between gas flow and
rotational speed and pressure. In high power regions, the oper-
ating line characteristics will be such that. the following is
nearly true:
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In this case, Eqs. (4.1) and (4.2) represent two independent
relationships between the four independent variables, ﬁ, Tr,
Pr, and N. The two quantities, AC and n. can be used to
model the changes in component operation resulting in decreased

energy conversion efficiency or compression characteristics.

Flow continuity and mechanical torque balance are used to determine

the unique operating point. Non-ideal flow effects are modeled
as pressure loss coefficients (e.g. in a duct) of the form:
(4.4)

e oy, (38

P P
where Kp models flow-dependent duct losses and np can be used
to determine changes in this value caused by duct obstructions
and radial velocity distribution changes. The torque balance
equations do not contain loss effects since small mechanical
conversion losses due to bearing friction, etc. can be lumped into
the compressor characteristics. Gross changes in these values

due to mechanical failures are usually detected by alternate

means such as vibration accelerometers.

Component performance can be modeled by effective areas
and isentropic (lumped) efficiencies. Flow through the duct,
burner, and augmentor volume is modeled by pressure loss coef-
ficients. These equations certainly do not reflect the necessary
complexity to accurately model the microscopic processes occur-
ring in the turbofan gas path. For example, mixing and flow
in the augmentor volume can be modeled by up to six variable
pressure loss terms. However, the performance monitoring pro-
cedures assume small variations in overall behavior. Thus,
lumped parameter models can be assumed for small enough effects.
This assumption must certainly be verified by a detailed analysis
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of actual engine performance deterioration. The performance
monitoring requirement is not necessary to model microscopic
effects, but rather to approximate the behavior of the sensed
variables close enough to infer performance changes in one or more

components of the system.

The preliminary fault parameters are shown in Table 4.3.
They constitute areas and efficiencies in the fan, compressor,
high pressure turbine, and low pressure turbine. Flow losses are
associated with the duct, burner, and augmentor. These 11 para-
meters form the initial set of engine descriptors which will be
evaluated for possible inclusion in the final algorithm.

Several other variables will also enter the problem as
unidentified disturbances whose effect on the accuracy of the
estimated parameters is determined, but whose values are assumed
random. These variables are distinct from measurement uncertain-
ties in that they cause changes in more than one measured quantity.
Thus, in the static algorithm, they produce correlated errors.

Table 4.3
Candidate Fault Parameters

PARAMETER DEFINITION RANGE (%)
SAFAN .... | Fan area change 2.0
5”FAN .... | Fan efficiency change 2.0
SACOMP ... | Compressor area change 2.9
Sneomp c e Compressar efficiency change 2.0
SAHT ..... High turbine area change 2.0
Syp e High turbine efficiency change 2.9
SALT ..... Low turbine area change 2.0
‘S"LT ..... Low turbine efficiency change 2.0
dnpc ..... Combustor efficiency change 3.0
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Three parameters of this type are initially considered important.
These are RCVV angle uncertainty, customer bleed and steady state
distortion. The RCVV angle is measured in the EDS system. It

is scheduled in the control to be a function of corrected rotor
speed. However, there can be an uncertainty in this pcsition due
to positioning errors. In the monitoring algorithm, control
variables are checked against their schedules to determine
healthy control performance. For the RCVV actuator, the control
input is assumed '"on schedule'" for the baseline model development
and a disturbance term due to off-schedule position added. This
term 1s initially assumed unbiased, but it could be correlated
with the past values of RCVV to determine its value more accur-
ately. The customer bleed flow is taken at the compressor dis-
charge to supply to the F-15 environmental control system (ECS).
Other bleed air is also taken for turbine cooling and nozzle
actuation. There is no accurate measurement of compressor bleed.
Bleed is modeled as a random variable with a non-zero mean. The
estimated mean is assumed to be the specified nominal flow rate.
Using manufacturer data, uncertainty about the mean can be
approximated.

4.3.3 Sensor Model Development

Table 4.2 shows the measured variables. It is assumed that
thermodynamic properties are determined by two ambient variables
(i.e., there is only a small Mach number dependence at subsonic
conditions). It is also assumed that the RCVV and CIVV's are on
their hardware control schedules and that the customer bleed is
at its mean value. In this case, engine behavior can be uniquely
specified by four independent quantities. For the preliminary
analysis, the set of independent variables specifying engine
operation were chosen as TTZ’ PTZ’ N1 and NZ‘ These variables
represent accurately measured quantities except for pTZ' The
engine face pressure, PTZ’ is derived from airframe measurement
of Mach number and ambient conditions using a detailed inlet
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performance model. This '"'measurement' technique should produce
repeatable results which would correlate with an averaged total
pressure at the engine face. Uncertainties in this quantity are
modeled by distortion values specified as disturbances. The EDS
measurement set can be divided into eight dependent and four
independent variables. There are 11 fault coefficient variables,
three disturbance variables and eight measurement noise variables.

Each of the eight transduced variables is assumed to be
sampled from an imperfect instrument with associated instrument
fault modeling coefficients. Typically, transducers will exhibit
complex systematic error effects. Models are available for
typical measurement errors which occur in the static environment.
These models are reviewed below for completeness; however, they
were not used in the initial evaluation.

Temperature sensors are generally low bandwidth devices
that filter high frequency local temperature variations. Outputs
which are '"averaged' over several circumferential positions from
total rakes are typically quite repeatable. Low signal levels
can be susceptible to high frequency interference from electro-
magnetic components located nearby. This EMI may be dependent
on engine power condition. Generally, analog filtering can remove
most of this error. Aliasing into the bandpass of the instrument
should produce a d.c. error smaller than the transducer repeat-
ability. Some care is necessary in averaging and detrending
the inputs to remove these effects. The model for the sensor data
can be represented for algorithm development as follows:

Tm =T+ v +b (4.5}
v = N(o,r) (4.6)

The bias term, b, 1is treated as a long-term calibration drift.

Pressure sensors can exhibit a far more complex behavior
due to resonance effects, flow radial distribution shifts, wake




effects, temperature changes, etc. Most probes must be temper-
ature corrected either internally or externally. Vibration
sensitivity can be a problem. High frequency aliasing is also

possible without prefiltering. One possible model is as follows:

Pm A 0 R T ) SR A (4.7)
Liquid flow measurements are subject to temperature depen-
dnet inaccuracies, density and velocity profile effects. Most
devices must be carefully calibrated. Inputs must be filtered
and may contain low frequency components due to interactions
with fuel metering dynamics. Models may be assumed to have the
following form:

(W) = f(We,a) + b + v (4.8)
f f

m
where o 1is a manufacturer-specified set of correlations and

%%__ B 1 (4.9)

Area and RCVV measurements contain bias and hysteresis ef-
fects. Hysteresis can be important in this type of signal. In
this case, the error is not due to the sensor, but to backlash
in linkages. The apparent measurement differs from the actual
value by a function which is dependent on previous position.
These may be written in sampled data form as follows:

S A(n) - h Ac(n+1) > A(n) + h
A(n+l) = A(n) A(n)+h > Ac(n+1) >A(n)-h
I A(n) + h Ac(n+1) > A(n) - h

(4.10)

where A(n) and Ac(n) are the actual position and the position
with hysteresis. This model is illustrated in Figure 4.1.
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Figure 4.1 Hysteresis Model

In the preliminary model development, each of the eight
measurements was assumed to have a random, constant bias. The
assumption of eight biases increases the uncertainty in the para-
meter estimates.

4.4 DATA BASE GENERATION AND DATA REDUCTION PROCEDURES

Generic engine data was generated using a detailed engine
simulation deck. A large number of operating points were chosen
with engine fault parameters set at their undeteriorated values.
Fault coefficients and disturbance parameters were perturbed and
performance variation calculated at a reduced number of points.

Baseline operating points were chosen to span the envelope
of data acquisition in an evenly distributed grid. This data
can then be weighted to bias the models toward a more accurate
match where large amounts of data will be recorded.

The operating points are chosen in the flight envelope to
represent nonstandard conditions. A standard atmosphere profile
(Table 4.4) is used as the starting point. Altitude limits
determine standard ambient pressures and temperatures. Pressures
are assumed constant. Typical hot and cold day temper~tures are
assumed to vary +20°F of the standard conditions. Isentropic
inlet recovery (for subsonic data) is used to construct pTz/TTZ
curves shown in Figure 4.2. Lines of constant Reynolds index are

69




n: g

Table 4.4
U.S. Standard Atmosphere - 1962

e [ Temp Press. P Alt Temp ¢ Press. P
fe [ R C Tin He  Ihotes fr F R “C [ He Ib/fef
590 5187 150 2992 2116. 36000 [ -69.2 13505 -56.2 | 5732 476 2
$54 5is1 130 2886 2041 37000 | -69.7 3900 -565 | 6417 4539
519 5115 110 2782 1968 38000 | -69.7 3900 -565 | 5117 4327
483 080 91| 2682 1897 39000 | -69.7 3900 -565 | S &3l s124
L) 2581 1828 | 50000 | -59.7 3900 -565 | 5558 3911 |
*—:3‘?’—32?3 3 : P—Ja_._%aql_ 11000 [ 697 3900 -365 | 3299 37138
376 4913 B o 42000 | -697 3900 -565 | 5051 3573
440429, N1iliedio 163 43000 | -697 3900 -565 | 4815 330 6
395 4302 -08| 2223 1572 44000 | -69.7 3300 -565 | 4530 324 §
23 1836 -28 | 2139 35.';3 45000 | -697 3900 -565 | 4375 309.5
198 4795 68 1980 1303 el 887 o8 Sl od
162 4759 -88| 1503 1345 0 < 263
152 & 150 134 48000 | -69.7 3900 -565 [ 37%0 268 1
t&d 4led -1l 1830 1234 49000 | -697 3900 -565 | 3513 255 6
g U ‘_:sg il ] :é ig }f«;; 50000 | -697 3900 -565 | 424 2435
e e T = S1000 | -697 3900 -565 | 3284 2322
TR U 1 52000 | -69.7 3900 -565 | 3.130 2214
SHEaN o e pi };;5 $3000 | -697 3900 -565 | 2984 211.1
Sl 23; ie 54000 | -69.7 3900 -565 [ 2345 201.2
SRR e a3 55000 ( -69.7 3900 -56.5 ( 2.712 1913
880 b
- - = 55000 [ -69.7 3900 -565 | 2.585 1829
B R S 57000 | -697 3900 -565 | 2365 1743
To3d 637 308 857 3 $3000 | -69.7 330.0 -56.5 | 2350 186 2
565 4332 324 8312 59000 | -69.7 3900 -565 | 2230 158 4
e 4 i 386 4 60000 | -69.7 390.0 -56.5 | 2135 151.0
=336 4261 =365 752 8 i000| -69.7 3900 -56.5 2.036 1440
329 4928 3w 720 3 62000 ( -69.7 3900 -565 | 1331 1373
-307 4190 -204 539 0 63000 | -69.7 3300 -56.5 | 1.8%0 1309
£33 4154 —3128 658 3 64000 | -69.7 3900 -565 [ 1.763 1248
4TR 4118 434 6297 65000 | -69.7 3900 -56.5 1.682 1189
T o[ -5i % 3083 <63 €01 6 65000 | 696 3901 -565 | 1603 1134
00| -549 4087 483 S74 6 67000 | —691 3906 -56.1 | 1528 108 1
90| -585 4012 -53.3 548 6 53000 | -685 3912 -558 { 1457 103.1
3:000( -621 1975 -523 $218 S9000 | ~68.0 J91.7 -55.5 | 1190 38 29
00| -556 3941 542 199 3 70000 | -67.4 3922 -55.2 | 11325 3373

superimposed on these curves. The operating points were chosen
equally spaced along lines of constant REI passing through
standard day, altitude-Mach number points which were judged to

be operating points in the aircraft flight profile. At each
operating point specified by TTZ’ pTZ’ a nominal operating Mach
number was assumed. Table 4.5 shows the flight points chosen for
baseline data generation. '

Fuel flow and nozzle area specify the operating point.
Nozzle area perturbations of 0.1 sq ft were run at each flight
point to assess measurement uncertainty effects.

Five values of fuel flow were chosen at each operating point
to match points in the EDS flight envelope (see Table 4.6).
The total number of baseline points for this preliminary set of
calculations was:
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Figure 4.2 Data Generation Points
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Table 4.5

PTZ-TTZ Points at Constant REI

Chosen for Baseline Data Generation

4 Pr2 Tr2 -
Rep = 1.0 13.5 | 483 2

14.7 | 518 0

15.4 | 538 | 0.6

16.2 | s60 | 0.9

16.9 | s80 | 1.2

Rgp = 0.77 10.14 | 474 0

10.77 438 0.6

11.4 520 0.9
12.03 544 el
12.66 567 1.2

R..I = 0.56 7.0 454 0

T2 465 0.6
7.4 478 0.9
7.8 496 1.0
d4e2 516 1.2

REI = 0.37 3.8 388 0

4.07 410 0.3
4.34 432 0.6
4.62 453 0.9
5.00 484 1.2

Table 4.6

Fuel Flow Poinfs
Corrected Fuel Flow (Wf/ﬁz/ﬁz)

[% Intermediate Power]

100
95
80
65
50
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(4 REI) 3% L5 PTZ/TTZ) X (S Fuel Flow) x (3 AJ) 300

A subset of these baseline points was chosen to create per-
turbational data. Perturbational inputs include positive and
negative variations of a specified amount (see Table 4.3) to
each of the 11 fault variables and variations of bleed and RCVV
position corresponding to two nominal amounts (see Table 4.7)
at a particular flight condition. Flight points were chosen in
"high probability'" acquisition windows (Table 4.7). Values of
nozzle area and fuel flow were chosen to be representative of
the flight condition. There were 72 points run with these

inputs.

Stepwise regression was used to fit the simulation data.
Initially, regression terms were chosen as transgenerated poly-
nomial functions of desired variables and nondimensional func-
tional combinations. Table 4.8 1lists the functional forms for
the baseline model fits. Accuracy and worst case errors are also

shown.

The fits indicate models with very few terms (< 30) can be

used to fit the engine data closely. The windows chosen for the

Table 4.7
Nonlinear Simulation Points for Perturbed Model Generation
W./5,/8, DELTA | OFF SCHED-

T2 (°R) PT2 mch | 22 AJ ULE RCVV

CONDITION (ps1A) | no. | (% INTER- 2 (0EG)
HOT | STD | coLD : MEDIATE) (FT)
0K/0/83 538 | 518 498 14.7 0 105 0.1 0
10K/0.6/80 | 536 | 516 496 13.9 0.6 102 0.0 +1.0
15€/0.5/70 | 510 | 490 470 10.2 0.5 80 0.0 +1.0
10K/0.5/50 | 514 | 504 484 11.7 0.5 50 0.0 +1.0
20K/0.9/83 | 540 | 520 500 11.4 0.9 108 -.05 0
12/0.8/70 | 545 | 525 505 13.8 0.8 80 0.0 +1.0
8K/0.3/50 524 | 504 484 12.0 0.3 50 0.0 +1.0
18k/0.8/83 | 548 | 528 508 12.4 0.8 110 +0.5 0
0K/0/70 538 | 518 498 14.7 0.0 105 0.0 1.0
5K/0.2/60 526 | 506 486 12.7 0.2 63 0.0 1.0
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data base are larger than expected for EDS performance and trend
acquisition. Alternate algorithms utilizing globally optimal
regression models were available as well as more sophisticated
transgeneration procedures. However, since the transient deck
represents a slightly different definition of the performance
than the status deck, further investigation of improvement of
the model structure will be pursued in the next contract phase.

The baseline models shown in Table 4.8 were subtracted from
the perturbed operating data points. These residuals were then
regressed for models of the following form:

&y » egl(x,u) (4.11)

where gl(x,u) represents polynomial functions of the corrected
and uncorrected states and controls. A subset regression tech-
nique is used to choose only those variables which affect the
perturbations according to the model equation. Table 4.9 shows
an example of the variable fault coefficient regression for the
compressor efficiency effects on the fan corestream measurements.
This procedure is repeated for each fault parameter to determine

the full matrix of valuable fault coefficients, 8oy

Table 4.9

Example of Generation of Variable Fault
Coefficients for Compressor Efficiency
Using Core Stream Variables

2 o
e R S L TR S R T

= 2 Y ' y—
T3 - T'T3° nc[az.' *ay, N2 * a5, I‘F/vez's]

2 —
PT4 - PTAQ = 1c£a31 + a3292.5 *+ 2,5, Nz *ag, "F"'2,5]

3
TT45 - 745, wc[adl Nz]
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Full development of an estimation model will be undertaken
in the second phase of the program. The status deck will be
utilized to generate data for regression within the EDS flight

envelope.
4.5 ALGORITHM OUTPUTS - ENGINE HEALTH ASSESSMENT

Once a model has been established, parameter estimates must
be related to maintenance and trend decisions. Specific causative
phenomena, viz. foreign object damage, seal leakage, fouling,
etc., will affect these parameter values. A correlation between
parameter changes and specific deterioration mechanisms will
be aided by AMT type testing as well as the EDS flight test
program itself.

The user-directed output of the identification procedure
must consist of information with which maintenance personnel
and logistic support can confidently make repair and overhaul
decisions. It is specifically in this area that advanced
monitoring procedures will have their most substantial payoff.

Previous fault isolation systems have relied on threshold
detection of parameter values. When a failure occurred, the
threshold exceedances were compared to patterns for typical fault
situations. Most easily replaced items, e.g. sensors, are ini-
tially changed in an attempt to correct the problem. In a sense,
the threshold values were utilized to filter out uncertainties
in parameter estimates due to noisy data input.

The performance monitoring algorithm utilized for fault
diagnosis and isolation with the EDS data will primarily monitor
shifts in fault parameters and instrument bias estimates to
detect changes in sensor accuracy or performance shifts.

The algorithm output provides a state estimate which is
made by '"'smoothing' the noisy measurements with the modeled
performance. The measurements of control actuator values and
control input values can be used in an "inverse' control model

alna
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to accurately assess the performance of the hydromechanical and
electronic fuel control on the F100. It is possible to diagnose
the control to the component part using this procedure.

A hypothetical example of this procedure is given below.
A set of data is processed indicating that the RCVVs have shifted
from the hardware schedules and that the engine is running at a
different operating condition for a specific power point. This
information is derived from the accurate analytic model which
represents the operation of the engine with the most current
deterioration parameters and a model of the hydromechanical fuel
control which has been identified to match previous flight data.
Since the anomalous behavior is common to both the fuel flow
output and RCVV output, the RCVV actuation system is eliminated
along with specific internal hydromechanical governor failure.
The remaining two candidates are the hydromechanical speed and
temperature sensors and plumbing of the fuel signal pressures
into the hydromechanical control.

The most important diagnostic output of the performance
monitoring algorithm is an assessment of engine health relative
to long term aging and normal deterioration. This information
must be presented to the maintenance personnel as a condensed
figure representing the impact on routine maintenance activities.
Long term analysis and calculation of population statistics and
trends are performed at a remote site. This processing may utilize
flight data which has been reduced to parameter and variance esti-
mates at the base level. This procedure results in a significant

reduction of data transfer, storage, and manipulation overhead.

Maintenance area decisions can be summarized as the deter-
mination to remove an aircraft from the flight line, to attempt
engine control trim, and to remove an engine from an aircraft
for further maintenance. It is most economical to maintain
only those engines that require service and to be able to schedule
maintenance to keep work level constant and part movement uniform.

(i




The decision to remove an aircraft from the flight line
can be made if the performance of the engines is significantly
degraded relative to normal operating standards. The precise
level of degradation allowed will be a function of the status
of the remaining engines and the present workload. It is desir-
able to formulate a single figure-of-merit which can be used to
evaluate an engine's present performance relative to the other
aircraft engines (rather than to itself when it was new).

One such figure of merit has\been proposed as the remaining
turbine temperature trim margin in the control. Assuming that
various engine components have not.failed or are not damaged,
the level of engine degradation can bhe assessed by the overall
thermal efficiency of the system in converting fuel to thrust.
This figure does not reflect module-directed phenomena. How-
ever, this number can be used to schedule engine trim activities
and maintenance shop scheduling. Further breakdown to module
status is appropriate to the intermediate maintenance shop which
must overhaul degraded engines.

The engine turbine temperature margin must be viewed as a
combination of overall performance variables (i.e. as an overall
efficiency) which assesses the engine status relative to the
minimum acceptable standard. This figure is not necessarily
related to a particular build of engine and control which is
trimmed on a particular day.

A "standard" FTIT margin, ATTO, can be defined as the
difference between the running FTIT and the FTIT 1imit as

STD’ T'STD
(1 ATM, 518°R), zero air speed conditions at intermediate power

specified for the nominal control schedule at P

when the engine is turbine-temperature limited. This margin

will represent the mean value of measured temperature margin

for a population of engines and controls of the same degraded
status which are trimmed at sea level standard conditions.




Practically, given the engine fault parameters, the ATTo for

that engine can be estimated directly from the baseline models
as follows:

272 = P2 = £ Q9 a5 L
PT,MO fl(TT~ S18°R. PF2 1ATM, 66, Nl’ N,)

<

Tr45 = £ .(TF2 = 5I8°R. PT2 1AT™M, 68, Nl, N,)

Ny = £(N

1 ,» TT2 = 518°R)

i.e., the value of PT7M (EPR) is specified by the trim curves,

N1 is a specified control function of N, and TTZ’ the geometry
is on schedule and the bleeds are closed. These conditions can
be used to solve for the unique standard operating point solution
for TT45 and

ATT0 = TT4SMAX(TT2 = 518°R) - TT45

This value is an estimate of the actual margin for the engine if
trim is performed at these standard conditions. Variance inform-
ation is available from the parameter estimates and model sensi-
tivity calculations.

The standard margin, ATTO, is utilized to measure the
"closeness'" to maximum overall degradation (ATTO = 0) and the
relative degradation between two engines [(ATTO)l e (ATTO)Z].
This information may be monitored and maintenance activities
scheduled according to probable predicted status using this

method.
4.6 REAL-TIME DATA ACQUISITION TECHNIQUES
Several methods for processing sequential measurements are

presented. These reduce uncertainty due to measurement noise,
slow trends and sudden changes during recording. A typical data
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acquisition procedure is to record only when the system has
assumed a steady state condition for several minutes. When this
occurs, measurements are taken with synchronous or asynchronous
scans of the sensors and the scans are averaged. In this way,

the standard deviation of the noise can be reduced by a factor of

nearly N, where N 1is the number of scans. This procedure
leads to poor results when the system is undergoing a small
transient as shown in Figure 4.3. Thus, the performance data
windows are restricted to regions of the flight envelope where
the steady state requirements can be met without impacting the
mission. It is possible that an entire mission will be flown
without any performance data being taken.

S T A
- a ]
DESIRED »-:-‘ AVERAGED
DATA = DATA
b
\ P TIME

\ g SCAN

STATE, X

- TIME

Figure 4.3 Effect of Average Scan in Nonequilibrium
Condition Versus Estimation Procedure
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Several single-channel processing procedures are commonly
available for accurate data acquisition. The first method uses
a variance estimate as a recording threshold. Basically, data
is taken when the previous N scans have been acceptably con-
stant. The average of the N last measurements is calculated

as follows:

where Xj(i) is the jth measurement at time i. The sample
variance is calculated as follows:
N

N Rt AN,

and a weighted sum of the variances is used as a threshold:

T(i) =
j

[T e =

Bz
W gi (L
L

The mean of the data is recorded at time i when

TEi) < Tmin

where T can be chosen small enough to assure that the sample

min
mean is close to the real mean to high probability. Figure 4.4

illustrates this concept.

The above procedure requires N storate locations and mN
lications per step. A more easily implementable procedure
ped as follows. This procedure is commonly referred to

r exponential filtering. At time i,

» % (X(i+1) - X(i+1-N))

easurement, X(i+l1-N), has not been stored,

-
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Figure 4.4 Data Acquisition Logic

n

X(i) % X(i+1-N)

and the formula reduces to the following

& 4 _ N-1& :q
Xj(1+l) o Xj(l) +

ik
+1

X;(i*1) j=1,...,m

-

which requires no more storage locations than averaging. Using
a similar argument, the sample variance is




e _ N-1° 1
oj(1+l) = ﬁf—‘oj(k) Wl

[

(X (1+1) - Xj(i+1))2 j=1,...,m

[§8]

The same threshold detection scheme can be applied with little
loss of precision.

A further implementation tradeoff can be evaluated consider-
ing the error statistics of the above filter. Consider measur-
ing a constant value with white, Gaussian errors additionally

superimposed:

y(n) = x(n) + v(n)

where

\% N(O,R)
and

x(n+1l) = x(n)

The optimal sequential filter for this system can be written as

follows:
x(n+1) = x(n) + K(n) [y(n+1) - x(n)]
K(n) = 28y
S(n+1) = [1-K(n)]% s(n) + K(n)? R
where

S(n) = cov(x -x)
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If it is assumed that no a priori information exists for x,

S(0) = =
then

K(n) = 7

S(n) = 2

i.e. the optimal Kalman filter reduces to the averaging algorithm
described above. The tradeoffs associated between calculating the
sequentially varying gain, K(n), and a constant value can be
determined by analyzing the a posteriori error covariance S(n+1)
for these systems. These figures are shown in Figure 4.5. This
plot indicates that the filter statistics reach stationarity

more quickly at higher gains, but the overall performance is
degraded. Acceptable performance can be realized with constant
gains. As an example, consider the situations presented in

Table 4.10 where actual differences in optimal and suboptimal
filter behavior are shown to be small. This permits a simplified
implementation of the data acquisition algorithm.

Time-varying data can be assumed to have a constant drift.
In this case, the measurement is assumed to be taken at equal
time increments, A, and have the following form:

X(t) = X(0) + Bt

Using the N scans, the best estimate of the base value can be
written as follows:
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RATIO OF VARIANCE OF ESTIMATE TO VARIANCE OF MEASUREMENT ERROR
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Figure 4.5 Mean Square Error Reduction using
Time Varying and Steady Gains

Table 4.10

Comparison Estimation Errors for Optimal
Varying Gain and Constant Gain

N S(N)/R OPTIMAL
FIXED
(NO. OF SAMPLES) K OPTIMAL GAIN
5 0.29 0.20 0.228
10 0.18 0.10 0.124
30 0.02 0.02 0.03
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% N N
X(0) = Kl 2 X(i) ¥ K, E X
i=1 " i=1
where the precalculated coefficient, Kl’ is given as follows:
N
§ AL
X, = 11

and K2 has a similar form. This scheme eliminates constant

time variation during a scan. The algorithm can be implemented
sequentially and the memory storage and processor overhead are
quite small. Also, a similar constant gain assumption can be

used with a modest performance 1loss.

An alternative procedure can be used to estimate final
values in the engine when the process has been identified as a
slow exponential decay to equilibrium. The time constants may
be estimated from engine test data and the dynamics can be

written as follows:
X = F(x-xf)

or solving for the discrete time solution:
x(n+*l) = ox(n) + (I-9) Xg

where

® = exp(F.AT)
x(n+1l) = x(nAT + AT)

Xg = X ()
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This equation can be solved for Xe!

xg(n) = x(n) + 61 - 1) axta)
where
Ax(n) = x(n+l) - x(n)

The final value can be sequentially estimated for this solution
as follows:

;f(n+1) = xg(n) * K(xg(n) - xg(n))

where the gain vector K 1is most easily chosen as a particular
constant Kalman filter gain or an observer design.

4.7 SUMMARY

A preliminary study has been described which assesses the
feasibility of developing generic engine models for the F100
turbofan. The models are designed to operate on flight-acquired
data from a currently developing avionics system, the EDS. Engine
operating data is generated using a nonlinear digital simulation
for the EDS performance data acquisition window. Models using
polynomial terms are derived from the baseline data. Several
fault coefficients are calculated which are explicit functions
of the operating point. A full set of generic engine baseline
models and variable fault coefficient equations can be used as
the foundation of the fault parameter estimation algorithms
presented in Section III. The results indicate that the engine
operating data and off-nominal responses can be matched accurately
with a set of equations requiring only a small amount of para-
meter storage and calculation capability.
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SECTION V
SUMMARY AND CONCLUSIONS

The problem of engine fault monitoring is difficult to
define because of the many mathematical modeling, physical hard-
ware and software considerations, and test and evaluation aspects,
which must be evoked. Figure 5.1 illustrates some of the more
significant aspects. The overall scope of this program was to
bound the engine fault monitoring problem by selecting a particu-
lar subset of these various requirements, formulating specific
fault isolation criteria from a general diagnostic theoretical
framework, and subsequently investigate the development of a
software system to achieve a practical diagnostic tool.

The particular diagnostic application selected for this
program was that of thermodynamic cycle monitoring (TCM).
Vibration and accessory monitoring are not included, for example.
Within the TCM scope, however, considerations of maintenance and
trim procedures, sensor fault detection, and snapshot recording
can be integrated to provide an operational diagnostic procedure.

The objective of the overall program is to provide a totally
self-contained, well-documented, and validated gas path diagnostic

system for utilization on advanced installed engine data. Specific

application is to the Air Force F-15/F100 system, data obtained
from the Engine Diagnostic System (EDS) program. This EDS program
is the most advanced in-flight monitoring opportunity to integrate
a unique set of typical data into this proposed software program.
The overall program can produce a software code which is compat-
ible with the EDS systenmn.

This aspect of fault detection and isolation is particularly
important to the Navy and the Air Force because of the signifi-
cant improvements in aircraft availability, reduction in engine
maintenance costs, and increased safety of flight which results
from the ability to accurately diagnose engine operational

e
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Figure 5.1 Requirements of Engine Fault Monitoring

characteristics before severe failures. Such benefits have
already been demonstrated in the Navy in-flight Engine Condition
Monitoring System (IECMS) now being tested on TF4l engines in
the VSD A-7E aircraft. Future aircraft systems which will
incorporate these concepts are the F404 turbofan engines in the
Navy's F-18 fighter, and the Air Force's F100 turbofan engine
used on the F-15 and F-16. Beyond these present aircraft, it is
anticipated that future advanced cycle engines will require even
more sophisticated diagnosis systems as the complexity required
for higher performance increases.
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