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~~~IAX IAL CYCLIC LOADING OF

ELASTIC-VISCOPLASTIC MATERIALS

by

S.R. Bodner~, I. Partom
2 , Y. Partom~

ABSTRACT

Elastic-viscoplastic constitutive equations based on two

internal state variables are util’zed to determine material re-

sponse for uniaxial cyclic loading conditions. These equations

are capable of representing the principal features of cyclic

loading behavior including softening upon stress reversal , cyclic

hardening or softening , tendency towards a stable limit cycle,

cyclic relaxation , and cyclic creep . Calculations were performed

for various stress and strain controlled conditions using material

constants intended to represent commercially pure titanium and

aluminum and OFHC copper. Capabilities and limitations of the

analytical formulations are discussed in relation to computed

results and corresponding test data.
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INTRODUCTION ,• 

~
Plastic deformation of an initially isotropic polycrystalline

metal develops isotropic and directional anisotropic (i.e. stress

sign dependent) changes. Analytical representations of these ef-

fects have concentrated on general multiaxial hardening laws with

the classical isotropic and kinematic hardening models being

special cases. The capabilities of some of these formulations

have been discussed in the proceedings of recent conferences

edited by Krempl El], Saczalski and Stricklin [2], and Nemat—

Nasser [31 . Comparisons are generally made to uniaxial cycling

results which provide exacting tests of a theoretical model and

are also technologically important.

Most of the proposed formulations consider directional aniso-

tropic and isotropic hardening effects as completely separable

and thereby controlled by different internal state variables and

associated evolutionary equations , e.g., Rice (4], Kreig [5],

Miller [6]. The directional anisotropic hardening component is

usually represented by a “rest stress” or “back stress” which is

intended as a stress tensor manifestation of microscopic residual

stresses, and acts as an internal stress in resisting plastic

deformation . Subtracting this stress from the applied stress

leads to an “effective stress” which is taken to control plastic

flow. In the basic kinematic hardening model, the “back stress”

is the origin of the translated yield surface.

An alternative approach is to introduce internal state vari-

ables directly into the equation for plastic strain rate which
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characterize the resistance of the material to plastic flow. This

approach seems to be particularly suitable for plasticity theories

that do not require. a prescribed yield criterion, e.g. Bodner and

Partom [7,8] and Hart [9]. For isotropic hardening conditions, the

constitutive equations of Bodner and Partom utilized a single scalar

inelastic state variable , referred to as the “hardness” , which was

a function of plastic..work and which saturated at large plastic

strains. These equatIons were shown to adequately represent mater—

ial response for steady and varying strain rates, loading and un—

loading, stress relaxation , and creep (with a recovery term added)

under uniaxial stresses of constant sign [8,10].

The present pape~.is concerned with extending the “hardness”

concept to the case of uniaxial cyclic loading using the elastic-

viscoplastic constitutive equations of Bodner and Partom. This

requires introduction of a second hardness parameter to account

for the directional character of resistance to plastic flow

following deformation. An alternative approach based on a single ,

discontinuous inelastic state variable was used in an earlier

study of this problem [11]; the present method is considered

more basic and capable of generalization. Rules for determining

the changes of the hardness parameters with loading history are

developed in the paper. The equations are then applied to the

cyclic loading of commercially pure titanium and aluminum and

OFHC copper. Calculations were performed for strain controlled

cycling of these metals and compared to corresponding test data.

In addition , computations were made for conditions of cyclic

creep and cyclic relaxation.

~ 

--5 - - 5  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Although the work in this paper is based on two inelastic

state variables, it is not presumed that these are sufficient

for all aspects of cyclic loading which include a wide range of

phenomena as described, e.g. by Morrow [12] and Jhansale (13].

The number and mathematical form of inelastic state variables

required for different loading conditions for various materials

has been discussed recently by Onat [14]. He indicates that con-

stitutive equations based on two inelastic variables should be

able to provide the main features of cyclic loading for certain

classes of metals. Generalization of the inelastic state vari-

able approach to the multi—dimensional stress case appears to

be a difficult problem but some tentative suggestions have been

made in (151. This will be the subject of another paper. 

5 -- .  —-- - 5 -5.5— --- -~~~~-— —4
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FORMULATION OF CONSTITUTIVE EQUATIONS

AND HARDENING ’ LAW

The basis of the elastic-viscoplastic constitutive equations

developed by Bodner and Partom [7,8,16,17] is the separation of

the total deformation rate d into elart.ic (reversible) and

plastic (non-reversible) components , ~~~ and ~~~~ which are taken

to be always non—zero and functions of current values of state

variables . Deformation rate is defined as the symmetrical part

of the particle velocity gradient and would be equivalent to

strain rate for small strains. Expressed mathematically, for

the small strain case (present paper),

d
~1 

= ~~~ + d~~ = + (1)

For large strains, a strain measure is introduced into the analy-

sis and the reference geometry is continually updated with deforma-

tion history , (7]. The elastic deformation rate is a function

of stress rate through the time derivative of Hooke ’s Law for

small strains and through a strain measure and strain energy

functions for large strains .

The law governing plastic, i.e. non-reversible , deformations

is taken to have the form of the Prandtl-Reuss flow law

= = Xs1~ (2)

L. S “~ 554
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where the bar symbol indicates the deviatoric component. Squaring

eq. (2) leads to

D~ = A 2J.~ (3 )

where D~ is the second invariant of the plastic deformation rate

and J2 is the second invariant of the stress deviator. A basic

assumption of the formulation is that all non—reversible deforma-

tions are controlled by the relation

= F
~
(J2,T,Zk) (4)

where T is the temperature and Zk are internal state variables

whose current values contain all pertinent effects of prior

inelastic deformations . On the basis of eqs. (3) and (4), d~~

in eq. (2) can be expressed as a function of stress, T, and the

Zk quantities.

To account for energy losses for reversible deformations

and certain types of transient effects, an anelastic stress term

which is not a state variable, could be added to the “elas-

tic” stress 
~~~~ 

It would represent an additional rate dependent

resistance to flow of the material and could be significant for

studies of internal damping (18] or for transient effects at

high temperatures. At moderate temperatures, is not a sig-

nificant factor in plastic flow problems although it may influ-

ence the cyclic hysteresis curves of annealed metals. Another
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transient e f fec t  that arises in cases of stress reversals is an

apparent increased dislocation mobility acting over a short strain

range. This can be accomodated by an additional term in eq. (2).

A particular form adopted in previous studies for eq. (4),

for a constant temperature , is

D~ = Do exp [_ (Z2/3J2)fl(~~!)] (5)

which utilizes only a single internal variable Z. For conditions

of isotropic hardening , Z was taken to be a scalar positive and

increasing function of plastic work, Z = f(W~). Creep conditions

would generally require addition of a hardness recovery (annealing)

equation of the form

Z = F2(Z,J2,T) (6)

When is the only non-zero stress component , eqs. (2), (3)

and (5) reduce to

d~ = = ~~~ 
0x exp[_ (l/2) (Z2/oZ)fl (~ t~)] (7)x X ~/~~.I 0 I x n

where d~ and s~ are the plastic deformation (strain) rate and the

deviatoric stress in the axial (x) direction . Under cyclic load—

ing, the material develops a directional characteristic with

respect to resistance to plastic flow. In terms of inelastic

state variables, there would therefore be a separate hardness

value for each sign of the stress with the applicable quantity

~ ~~~— _.__ - - - -5 5 _- ~~~ •-— -55 • - 5~~~
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used in eq. (7). There would be no actual discontinuity in plas-

tic strain rate since d~ = 0 when the stress changes sign. The

proposed rules for determining the changes in the hardness vari-

ables are as follows’:

a. A single valued, positive, functional re lation is taken

to exist between the reference hardness parameter Z and plastic

work for a given material at a constant temperature T, i.e.,

Z = f(W ); this relation has a saturation value: Z -
~~ Zi as W~ 

-
~

b. Current values of the two hardness variables , Z÷, Z ,

corresponding to each sign of the stress, could be represented by

points on the f(W~) curve where the associated W~ coordinates are

taken as reference and not as absolute values.

c. An increment of loading to a new current stress leads

to an increment of plastic work and an increment 1~Z given by

AZ = f(W~ + AW~) — f(W~) (8)

where W~, is the W~, coordinate for the previous hardness state.

d. The corresponding changes in the two hardness variables

to the loading increment are given by

= q(AZ) ± (l—q) (AZ) (9)

where q is a constant, q ~ 1; the positive sign in eq. (9) applies

to the hardness variable in the current stress direction and the

negative sign to that in the reverse direction ; these increments

are added to (or subtracted from) the previous values
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at each load increment to give current values of the hardness

variables which are always positive .

e. A change in sign of the stress requires application of

the corresponding hardness variable in eq. (7).

Eq. (9) states that part of the hardness increment due to

an increment in plastic work is isotropic (q) and the remainder

(l—q), is directional . The total hardness increment in the

direction of the current stress (assumed ÷), from eq. (9), would

be

(AZ)~ = ( t~Z) (10)

and the decrement in the opposite direction

(AZ) = — (l—2q) (AZ) (11)

Taking q = 1 corresponds to isotropic hardening and q = 0 could

be interpreted as a form of kinematic hardening within a context

of isotropic hardening since Z = f(W~). The parameter q enables

representation of either cyclic hardening of softening with the

former corresponding to q ~ 0 and the latter to q < 0. It is

noted that a small excursion of stress reversal would have a

negligible effect on the hardness variables if the plastic work

for that excursion is small. 

- 5 5 5~~~~~~5 — - -  —‘—-5---- ~~~~~~~~~~~~~ ’-
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EXAMPLES

Among the experimental observations for cyclic loading are

softening upon stress reversal , existence of a stable limiting

stress-strain curve consequent to cyclic hardening or softening,

and strain rate dependent effects such as cyclic creep and cyclic

relaxation under appropriate loading conditions. To examine the

capability of the proposed equations to represent these effects ,

a number of numerical exercises were performed for uniaxial cyclic

loading of titanium , aluminum and copper. Titanium in the cominer-

cially pure condition has relatively high strain rate sensitivity

and low work hardening . It wa.~ used as the reference material

in earlier studies on uniaxial stress histories of constant sign

(81. The functional form used for  Z = f ( W ~ ) fox titanium was

Z = Z1 — (Z~~—Z 0 ) e x p ( — m ’W )  ( 12)

where Z 0 ,  in this case, is a parameter def in ing  f ( W ~~) and the

initial state point on the curve , Z1 = Z0. In general, it is

necessary to distinguish between Z~ as a constant defining the

Z(W~) curve and Z~ as the initial state point on that curve.

Values of the material constants in eqs. (7) and (12) could be

obtained from two monotonic stress—strain curves at different

steady strain rates. The set of values obtained is not completely

unique and a limited range of variations would result from differ—

ent criteria of curve matching. For cyclic loading, the additional

constant q, eq. (9), must be specified and this is chosen to pro-

- - -- -5 - -- - . - -- - ---— .~~~~~~~~~ - — 5-  --,‘ - .~~~~~~~~~~~~—-‘-
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vide for the observed degree of cyclic hardening or softening.

In addition to these constants, the relevant elastic constant

E or G must be specified.

Commercially pure aluminum and OFHC copper are relatively

strain rate insensitive and experience large work hardening. To

obtain more exact matching of the monotonic stress—strain curves

for these materials , the m ’ factor in eq. (12) was generalized

to the form H

= mo + m1 ex~ (-czW~) (13)

which introduces two more constants. The numerical exercises

for Al and Cu reported here utilized eq. (13), but it is uncer-

tain whether this refinement is fully necessary within the over-

all capabilities of the equations.

Values obtained for the material constants in eqs. (7) and

(12) and the elastic constants for the reference metals are

listed in Table 1. An additional material constant, C1, is

indicated in the list. It is introduced since changes of

the hardness parameter alone would not lead to the softening

observed immediately upon stress reversal. A tentative explana-

tion of this effect on the microscopic level is that dislocations

that were immobil ized during the previous stress cycle become

mobile over short ranges in the reverse direction. Such soften-

ing is therefore transient as the effect diminishes with increas—

ing straining in the reverse direction. A method of providing

for this effect is to add a term to ~~~~ eq. (2), having either

-- -5- -—- - — - - -5 - - - -- -~~~~ - . --—-— ~~
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of the forms

(d
~ j )

add = Cl [(Z
max 

- z~~~
rrent

)/(zO) 2 ]s~~ ( 14a)

or

(d
~~
.) dd = C~~NJ~

ax 
— J~~

urrent
)/(Z0)2 l S (14b)

where ~~~~ and are the maximum values of the parameters

achieved in the previous cycle, and the total quantity in the

brackets is taken to be positive or zero . These are essentially

equivalent forms on the basis of eq. (4). The possible need to

introduce eq. (14a) or (l4b) indicates a limitation in using

only two internal state variables in the formulation .

Calculations for uniaxial cyclic loading of the reference

metals were performed based on the material constants obtained

from steady rate stress—strain curves and suitable q ’s (Table 1).

All the constants were determined from experiments at room tem-

perature. Results are discussed for each metal separately .

a. Titanium (commercially pure):

These specimens were similar but not identical to those

used in the tests reported in [8]. The constants are the same as

those given in [8] with the difference that Zu is slightly lower

~nd m ’ (=m/Zo of (8]) is somewhat higher. Experimental strain

controlled stress-strain curves for ±1% strain in tension and

compression are shown in Fig. 1. This material shows a small 

-5- 
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amount of cyclic hardening and the associated parameter q was set

to be 0.05. Calculated stress-strain curves for a strain range

of ±1% are shown in Fig. 2. These results look reasonable except

for the sharp knee in the computed curves upon stress reversal

instead of the gradual curve of the test data. When eq. (14a)

is added to ~~~ with C . = 4xlO 2sec 1, then somewhat more realistic

curves , Fig. 3, are obtained . Numerical exercises with larger C1 ’s

and increased strain amplitudes showed local concavities in the

first few stress-strain cycles. Fig. 4 is an example of such

calculations for a strain range of ±2% using the same material

constants but with C1 = SxlO 2sec 1. At strains of ±1% the

concavities commence when C1 exceeds 7.5xlO 2sec 1. It is noted

that such effects have been observed experimentally [19] and have

been discussed by Asaro 120).

Under cyclic hardening conditions , q 0, the maximum stress

increases with each cycle until a stable limit cycle is reached

with the stress level determined by the saturation value of Z, Z1,

and the strain rate. For Z , constant, the stress will reach the

same maximum value for all cyclic strain amplitudes at the same

• strain rate. This does not agree with experimental observations

which means that either Z1 , q, or some other parameter should be

treated as a third inelastic variable rather than as a simple con-

stant. Some preliminary numerical exercises taking Zi to vary

with cycling indicate more realistic limit cycles as well as better

agreement with other details. An alternative procedure that could

also lead to reasonable limit cycles is to let q -
~ 0 with cycling.

5 - . -~~~
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Some computations were also performed to demonstrate that cyclic

softening does, in fact, occur when q < 0 .  Again , similar

problems arise for the limit cycles which could be remedied by

allowing Z1 or q to vary with cycling.

Since the material characterization is time dependent, cyclic

relaxation and cyclic creep should result from appropriate loading

conditions. Strain controlled cycling between positive strain

limits (1.25 and 0.225%) leads to cyclic relaxation, i.e. diminish-

ing mean stress , as shown by the calculated curves in Fig. 5. Cycling

between fixed stress limits under stress control with a non-zero

mean stress leads to cyclic creep as shown in Fig. 6. The compu-

tations resulting in Figs. 5 and 6 did not include the added com-

ponent to the plastic deformation rate, eq. (14a ,b). They also

did not include a hardness recovery term, eq. (6), which would

have emphasized the relaxation and creep effects. Corresponding

experimental data for these cases was not available, but the

calculated results are similar to test results reported in the

literature , e.g. [21 ,22,23].

b. Copper (OFHC, annealed):

Copper in its almost pure form shows some variation of mechani-

cal properties for changes of impurity content and heat treatment.

Nevertheless , it is frequently used for basic studies on material

testing. Most of the material constants listed in Table 1 for

copper were obtained in a previous study (10] and were based on

experiments reported in [24]. The more elaborate expressions for

Z = f (W~)1 eqs. (12) and (13) , were used in this example. The
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initial value of Z , Z 1, for copper is relatively small compared

to the saturation value Z1 which is an indication of relatively

large work hardening. Copper is also relatively strain rate

insensitive with a high n value (n = 9 . 2 )

The cyclic hardening parameter q should be large enough to

ensure that both Z parameters ( i . e .  in tension and compression)

remain positive under cyclic loading. A minimum value for q is

therefore inferred from eq. (11) ,

Zmin = Z~ 
— (l—2q) (AZ)max ~ 0 (15)

where ( A Z )  = Z 1 - Z..max i

For copper , eq. (15) requires q to be equal to or greater

than 0.425 for the viscoplastic constants listed in Table 1. A

higher value, q = 0.55 , was used in the calculations to match the

strong cyclic hardening effects indicated in the reference experi-

mental data for annealed OFHC copper (25].

Calculated stress-strain curves for strain controlled cycling

of copper between ±1% strain are shown in Fig. 7 for c = 2x1O 4sec~~ .

The additional plastic deformation term, eqs. (l4a,b) seemed to

be unnecessary in this case and was not used . Indicated in Fig. 7

are data points obtained from tests on annealed copper reported

in (25] for almost exactly the same strain rate but over a narrower

strain range. These seem to be in fairly good agreement with the

L - 
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calculated results considering possible variations in specimen

properties.

As in the case of titanium, the stable hysteresis loop will

be determined by the saturation value of Z 1 and the strain rate,

and would be the same for all strain amplitudes. A non-flat locus

of stable hysteresis loops is actually observed for copper (121

which indicates again that introduction of another inelastic

state variable is desirable for better overall matching.

c. 1100 Aluminum (commercially pure , annealed):

Commercially pure alumi num is also a standard re ference

material for mechanical testing although it exhibits variations of

plastic response for differences in the type and amount of impuri-

ties and in the heat treatment. The viscoplastic material con-

stants for aluminum listed in Tab le 1 (except for q) were based

upon the steady rate stress-strain curves of (26]. Details of

the impurity content and heat treatment of the specimens are also

given in (26].

Although considerable work on cycling of 1100 aluminum was

performed in the early 196 0’s, especially by L. F. Coffin and his

associates , detailed stress-strain curves don ’t seem to be readily

available. The cyclic hardening parameter q used for the calcu-

lations was therefore chosen by the criterion of eq. (15) and

was 0.40 for the given viscoplastic constants. As a consequence,

cyclic hardening will be fairly strong which is shown by the corn-

puted stress-strain curves in Fig. 8 for a strain controlled

- -5 -
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amplitude of ±2%. Also indicated on Fig. 8 is an experimental

10th cycle stress-strain curve obtained from [23].

A comparison of results could only be in very general terms

since the impurity contents and heat treatments of the specimens

in [23] and [261 were not the same . In addition, the applied

strain rate in [23] was not specified and may have been about a

decade less than that used in the computations. The general

shape and level of the indicated experimental stress—strain curve

is, nevertheless , fairly close to the calculated curves for the

third and fourth cycles. The overall agreement could probably be

better with more exact correspondence of the material constants S 
-

to the specimens used in the cyclic loading tests.

Aluminum also shows some degree of rate sensitivity ; more

than copper and less than titanium. The relevant material para-

meter in the equations is n which varies inversely with strain

rate sensitivity. This parameter is 5 for Al compared to 1 for

Ti and 9.2 for Cu. Aluminum would therefore experience cyclic

creep and relaxation under appropriate loading conditions as

reported in [23]. Calculated results for these cases would be

similar to Figs. 5 and 6 but with greater cyclic hardening effects.

______  --5 -~~~~~~~~~~~- 
-5 ’ - - -
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CONCLUSIONS

The main features of material response to uniaxial cyclic

loading can be represented by the numerical integration of a set

of incremental constitutive equations for the prescribed control

conditions. These equations contain both elastic and visco-

plastic components and utilize two inelastic variables in this

application. Among the properties indicated by the computational

results are softening upon stress reversal , cyclic hardening (or

cyclic softening), a (strain rate dependent) asymptotic stable

hysteresis loop, cyclic relaxation , and cyclic creep. The equa-

tions are capable, in principle , of treating arbitrary combina-

tions of cyclic and monotonic loading.

An apparent limitation of the formulation is that the corn-

puted cyclic stress-strain curve , i.e. the locus of maximum stresses

of the stable hysteresis loops , would be independent of the strain

amplitude range and therefore flat. More realistic matching of

this property could be obtained by treating the saturation value

of the hardness parameter as a third, history dependent, inelastic

state variable.
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LIST OF CAPTIONS

Fig. 1 - Experimental stress-strain curves for titanium subjected

to ten cycles of ±1% strain (tension/compression).

Fig. 2 — Computed stress-strain curves for titanium for ±1% strain
(tension/compression) using material constants of Table 1

with C1 = 0.

Fig. 3 - Computed stress—strain curves for titanium for ±1% strain

(tension/compression) using material constants of Table 1

(C 1 = 4x lO 2 sec 1)

Fig. 4 - Computed stress-strain curves for titanium for ±2% strain

(tension/compression) showing local concavities; material

constants of Table 1 with C1 = 5xl0 2sec 1.

Fig. 5 - Computed stress—strain curves for titanium for strain

controlled cycling with positive strain limits showing

creep relaxation .

Fig. 6 - Computed stress-strain curves for titanium for stress

controlled cycling with a positive mean stress showing

cyclic creep.

Fig. 7 - Computed and experimental stress—strain curves for

annealed OFHC copper under strain controlled cycling

(tension/compression) ; computations based on constants

- 
of Table 1.

Fig. 8 - Computed and experimental stress-strain curves for

annealed 1100 aluminum for ±2% strain (tension/compression) ;

computations based on constants of Table 1.
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Table 1

Material Constants

a. Elastic Constants:

E ( M P a )  12 . Ox lO 4 12. Oxl O ’ 6.8xlO &

b. Viscoplastic Constants , eqs. (5 )  , (9) , (12)  , ( 13) , ( 14a)

TJ~
D0 (sec ’) l0 z

~ 10 ” 10”

n 1 9 . 2  5

Z0 (=Z1) (MPa ) 1000 31 25
Z j (MPa ) 1400 237 150

m ’ (MPa) ’ 0 . 3 5  — —

mo (MPa) 1 
— 0.15 0.15

rn~~(MP a)~~ — 0.25 0.45

.dMPa) — 0.50 0.30

0 .05  0 . 5 5  0 . 4 0

C~ (sec)~~~ 4x10 2 0 0

-L 5 - ---- -—-
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