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OPTIMAL CONTROL OF MARKOV DIFFUSION PROCFSSES

Wendell H. Fleming*
Professor
Department of Mathematics
Brown University
Providence, Rhode Island 02912

ABSTRACT

Some results from optimal stochastic theory are surveyed in this paper, with
particular emphasis on control of diffusion processes. Methods for cbtain-
iag necessary and sufficient conditions for an optimum are obtain=d, as wcll

as some techniques for approximate solution. A new aoplication cf stochas-
tic control methods is made to obtain Ventcel-Freidlin type estimates for =i
probability that the states of a diffusion process remain in a given vzgicon
during a given time period.

INTRODUCTION

This paper is intended as a concise survey of recznt results in the :heorw
of optimal control for Markov diffusions. We mention results which estab-
lish rigorously conditions for an optimum, in case of complete or partial

observations, as well as some techniques of approximate solution.
THE MODEL

Consider a control system with state space finite dimensicnal ©"

to random disturbances which are modelled as white noise. The state ot &ti:
t 1is denoted by £(t) and the control by wu(t) . The state process cboys
a stochastic differential equation (Ito sense)

dg = flE(t),u(t)]dt + ol[§(t)]dw , (1)
with w(t) a brounian motion process of some dimension m , and with
u(t) ¢ U where U 1is a given "control space". The controller may havc

complete or partial information about past system states, Various kir
performance criteria have been considered. Tor instance, one mav consider
(1) on a finite time interval 0 < t < T , and seek a control minimizing un
expectation

’l\
J = E{I LIE(t),u(t)]dt + Y[E(T)]} (o),
0

See [10, Chap. VI]. Another possible criterion, discussed below, is the
probability of exit from a given region D .

The white noise idealization in (1) implies that the state process £(t) is
a Markov diffusion if the control enters in feedback form as ul(t) =
u(t,E(t)) . 1In [4] it is shown that certain stability and other properties
of stochastic control systems continue to hold for wide band (approximately
white) noise. 1If the noise coefficient o 1is not constant, care must be
used in passing from wide band to white noise. This is related to the mat-
ter of Ito vs. Stratonovich sense interpretation of (1) (10, pr 126-7].
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We shall not review here the considerable recent literature on -fjunp Markov
processes. See for instance [5] [21] ([23].

COMPLETELY OBSERVED SYSTEM STATES

Consider the problem of minimizing a criterion J of type (2), in which the
controller can observe the state &(t) . The theory is in a rather mature
state for this problem. To a conulderable extent it is based on dynewic
programming methods. Let x = £(0) , and let V = V(x,T) denote the nininun

of J . Earlier rigorous treatments of the dynamic programAina method re-
lied on the fact that V 1is a smooth solution of the Bellman CudaulO“
which is a unlformly parabolic second order pa*tlul differential egu
the problem is nondegenerate. By nondegenerate is meant that the ry:r:tric
matrices o(x)o'(x) have eigenvalues bounded below by some c¢ > 0 Sce
{10, Chap. VI], and the more complete development in the new book 1
More recently, other techniques have been developed to justify the Jvnar i
programming principle without appealing to the theory of paraboclic partial
differential equations. A purely probabilistic method, rr‘"1w1 heavily on
the Girsanov transformation for measures and martingale *ep;ecgrt*.:oJ
theorems was used in [6]. Related ideas were developed further in i2) [7],
and for the average cost per unit time problem in [l1l6]. An elecganc sewi-
group approach was used in [19]. For simplicity let L =0 in (2), and

Jgrite Vix,T) = {(x) . Then {S } is a nonlinear semigroup, acting
functions Y . The method in [19] is to construct this semigrour airectlw
by a suitable monotone sequence of approximations which are pieccewiss cor-

stant in time.
PARTIALLY OBSERVED SYSTEM STATELS
Suppouse that the controller can observe n(t) , which satisfies

dn = g{E(t)ldt + o,dw

1y (3)
with w a brownian motion independent of w and n(0) = 0 . From :
practical viewpoint, the most important result is the classical separa
principle in case of linear state and observation eguations (1), (3)
{101 [15]. There remains a technical issue in connection with the sor
tion principle, concerning the class of controls admitted [15] [22,
nonlinear systems, general necessary and sufficient conditions for O”LII alli~
ty have been given [6] [7] [13] [20]. However, it seems difficult to got
practically useful information about the sclution from these ccnditions.

Another point of view is the following. Let w¢ denote the conditional

distribution of E(t) given n(s) for 0 < s € t . Even in the nonlinear
case a kind of "separated" control problem can be introduced, :n which the
state is 7 (regarded as completely observed). If E(t) is a finite

)

state contrdlled Markov chain, rather than a scolution to (1),
vation process obeys (3), then the separated problem is itself
mensional diffusion [3] [23]). When E(t) obeys (1) and n(t)
the conditional distribution is a measure-valued process obe: !
nonlinear filter equation [17, “Chap. 8). The relation between the separat-
ed and original problem with partial observations in this case is & topic of
current research,

APPROXIMATE SOLUTIONS

We return to controlled diffusions with complete observations. Ixplicit so-
lutions to the problem of minimizing J are available in few instances.

The best known example is the linear regulator; another is the portroi.o se-
lection problem (10, p. 160, 166]. One method of approximate solution is by
discretization. This replaces the Bellman equation by difference eguations,
which are the dynamic programming equations for a corresponding controllea
Markov chain [15, Chap. 9]. A quite different kind of approximaticn method,
in case the noise coefficient ¢ is small, was described in [8]. A related
perturbation technique was applied to a resource management problem in [18].
A method for approximate solution to nonlinear perturbations of the stochas-
tic linear regulator was given in (24]. If the perturbation of the scate
dynamics is polynomial in the state, then the approximation can be implement-
ed knowing only higher order moments of the (Gaussian) solution to tha lin-
ear regulator.
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MINIMUM EXIT PROBABILITY
Let D be a given region in R" , with initial state E{0) 'in Ve !
say that exit occurs if §£(t) reaches the boundary of D during the time |
intexrval 0 < t < T . Instead of (2) we may take the exit probability as
criterion to be minimized., This is reasonable if 1 is regarded as a re-
gion in which the system operates acceptably.
The following asymptotic estimate, for low noise intensitics, waz given in .
[11]. Let ¢ = VeI , with I the identity matrix; and let % donote the }

minimum exit probability. Then =-e log q® + J° as e + 0 , where J°¢ is

the lower value of a certain differential game. This is analoqous to aa es-
timate of Ventcel-Freidlin tvpe for unccntrolled diffusions [12, Chep. 14] }
(2.

OTHER PROBLEMS

Among optimization problems for diffusions which we have not discusscd arcs
optimal stoppina [12] [14] [15]), and impulsive control [l). TFirally, we
should mention techniques of variational inequalities and guasivariational
inequalities [1], which provide another framework in which tc study 2 hiroad
class of optimization problemns.
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