P

AD-AQ58 &72

UNCLASSIFIED

CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2

FORMALIZATION AND AUTOMATIC DERIVATION OF CODE GENERATORS. (U)

APR 78 R G CATTELL
CMU=CS=78-115

AFOSR=TR=78=-1248

FUl620=73=C=0074

N [[[im[an

R DOCUME“TA:’:C\‘ FAGE R RIEAD INSTico0 TTONS

IH‘,l'()ln'l". COMPLLTING FORM

ER L 2. GOVT ACCESSION NO.| 3. RECIFILNT'S CATALGG NUMBER
i«] -~
j SRAR- ¢ 8 248 7 iz
P,.\TIYLE (and Subtitle) "\ JI1YPE OF RERBORI. &.REHIOD qovERED
sk o R S S e 3 S

P

(D Interim y—«glﬂ | }
_//_EDRMALIZATION AND_AUTOMATIC‘DER|VAT|0N OF ;ODE g
!

JENERATORSp : | ORT NUMBER

e — o { BJCMU-CS-78-115
\¥

%THOR(” PR S— NUMBER(s)
, Y— Y ——
‘WR.G.G./CatteH :,./ m,zF“"GZO'?B-C-OQﬂL/\
{] n

I S—— s

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :ggiﬂaAlwdoER LEM S‘NTTNPURMOBJEESS'I' TASK
Carnegie-Mellon University
Department of Computer Science i 61101E
Pittsburgh, Pennsylvania 15213 A02466/7

11. CONTROLLING OFFICE NAME AND ADDRESS 1_2_:_ SR
Defense Advanced Research Projects Agency //TT Aprit=1978 ///
1400 Wilson Bivd. ~ s
Arlington, Virginia 22209 130

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of thia report)
Air Force Office of Scientific Research/NM

Bolling AFB, Washington, DC 20332 S UNCLASSIFIED
l) Y 15a. DECLASSIFICAT!ON DOWNGRADING
i l 5 3 \ SCHEDU
" 4 gt v) i
16. DISTRIBUTION STATEMENT (of thia ou)L i LY
Approved f ublic release; di§tribution unlimited.

LT (77

17. DISTRIBUTION STATEMENT (of rﬁTiburat(entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

N
20 ABSTE&CT (Continue on reverse side If necessary and Identify by block number)

This work is concerned with automatic derivation of code generators,
which translate a parse-tree-like representation of programs into sequences of
instructions for a computer defined by a machine description, In pursuing
this goal, the following are presented:

(1) a model of machines and a notation for their description .
- A v

[oen g
{ ¢

DD ,%i": 1473 E0ITION OF 1 NOV 65 IS OBSOLETE UNCLASS IF 1ED

J ' ,0 3 Osguir CLASSIFICATION OF THIS PAGE (When Dara 5,.‘.\‘.,.

-
|

SECURITY CLASSIFICATION OF ThIS PAGE(When Data Er

ond) 4 p . ”

it 20. Abstract

-\753(2) a model of code generation, and its use in optimizing compilers.-

“>(3) an axiom system of tree equivalences, and an algorithm for derivation

of translators based on tree transformations (this is the main work of
the thesis)

{

“The algorithms and representations are implemented to demonstrate their
practicality as a means for generation of code generators.

K

o b et R R

R i Al o NI v B

UNCLASSIFIED

Formalization and Atfomatic Darivation
of Code Generators

R. G. G. Cattell

~ April 1978

Department of Computer Science
Carnegie-Melion University
Pittsburgh, Pennsylvania 15213

Submitted to Carnegie-Mellon University in
partial fulfillment of the requirements for the
degree of Doctor of Philosophy.
AIR FORCE OFFICE OF SCIENTIFIC RE
E OF TN SEAR
NOTICE OF TRAWIOMITTAL TO DDC ey
This technical repert hus Lien reviewed and is
aPprovad for publ*: roleuse IAd AFR 190~12 (7b)
Distribution is unlimited. i
A. D. BLOSE
Technical Information Officer

This work was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense
under contract number F44620-73-C-0074 and is monitored
by the Air Force Office of Scientific Research.

)
CMU-CS-78-115

Abstract

This work is concerned with automatic derivation of code generators, which translate a
parse-tree-like representation of programs into sequences of instructions for a computer
defined by a machine description. In pursuing this goal, the following are presented:

(1) a model of machines and a notation for their description
(2) a model of code generation, and its use in optimizing compilers.

(3) an axiom system of tree equivalences, and an algorithm for derivation of translators
based on tree transformations (this is the main work of the thesis)

The algorithms and representations are implemented to demonstrate their practicality as a
means for generation of code generators.

Acknowledgements

I'd like to thank Bill Wulf, Mario Barbacci, and Allen Newell, who served as my advisors at
various times during my stay at CMU. They also served on my thesis commitee, along with
Alice Parker and Joe Newcomer; | am grateful for all of their comments. Special thanks go to
John Oakley and Steve Saunders, for many interesting discussions on this thesis and on other
topics. I'd also like to thank Hans Berliner, Bill Brantley, Steve Crocker, Kitty Fisher, John
Gaschnig, Steve Hobbs, Dave Jefferson, Bruce Leverett, Bruce Schatz, and Nori Suzuki, who
contributed to this work in various ways. The CMU Computer Science Department in general
provides a dynamic, friendly atmosphere conducive to research. I’'d like to thank the
SIGLUNCH group in particular in this regard. Also conducive to good research are the
excellent computer facilities, making programming and document production more enjoyable;
Brian Reid, Ken Greer, and Craig Everhart maintain software used in the production of this
document. Finally, I'd like to thank my wife, Nancy, who has been very supportive, and my
cat, Shrdlu, who tends to sit in the middle of whatever I'm trying to do. 4

]

1. Introduction 2
1.1. Motivation and Goals 2
) 1.2. Background 3
1.3. Overview 4
2. A Formalization of Instruction Set Processors 7
2.1. Background 7
2.2. Overview - 8
‘ , 2.3. Components of an Instruction Set Processor 11
‘ 2.3.1. Storage Bases = 12
2.3.2. Instruction Fields 13
2.3.3. Instruction Formats . 14
2.3.4. Access Modes ; 14
2.3.5. Operand Classes 14
2.3.6. Data Types 15
2.3.7. Machine Operations 16
2.4. Instruction Set Processors 19
2.5. Relation to Other Descriptive Levels 20
2.6. Syntactic Representation and Implementation 22
3. A Formalization of Code Generation 24
3.1. Introduction 24
3.2. The Compiier 25
3.2.1. Compiler Structure and TCOL 25
3.2.2. Storage Allocation 28
3.2.3. Temporary Allocation 29
3.2.4. Object code ¢ 30
3.2.5. The Compiler-Writer’s Virtual Machine 31
3.3. Template Schemas BORIT S e 32
3.4. Code Generation Algorithms [AcoEss for — 34
3.5. The MMM Algorithm ' e - 36
3.6. Example Ve Sl 0 38
3.7. Use in a Compiler e . e B 46
3.8. An Implementation ; s : e e el 47
4. Automatic Derivation of Translators DTN ASLABTY S| a9
4.1. Introduction s 49
4.2. Tree Equivalence Axioms 50
4.2.1. Overview 50

4.2.2. Arithmetic and Boolean Laws

50

T T T T R

4.2.3. Fetch/Store Decomposition
4.2.4. Side Effects

4.25. Sequencing Semantics

4.3. A Scarch Algorithm using Tree Transformations
43.1. Introduclion

4.3.2. Transformations

4.3.3. Dccompositions

4.3.4. Compcnsalions

435. Limiting the Search

43.6. The Search Space

43.7. Completleness and Optimality
4.4. Code Generalor Generation
4.4.]1. Case Sclection

4.42. Inier-Stale Oplimization
4.43. Using the LOP

4.5. Rclation o Other Work

4.6. Implementation

S. Results and Conclusions

5.1. Summary
5.2. Resulls

5.3. Conliribulions
5.4. Future Work

Bibliography

Glossary et

Appendix A: TCOL

Appendix B: Machine Description Tables
Appendix C: Code Generator Prototype Trace
Appendix D: Search Examples

Appendix E: Code Selection Example

Appendix F: Code Generator Generator Axioms

53
53
54
55
55
56
63
66
69
70
70
71
71
75
76
77
79

80

80
80
82
84

86

89

%
101
103
122

127

1. Introduction

"I have made this letter longer than usual because I lack the time to make
it shorter”

- Pascal

1.1. Motivation and Goals

In the past decade there has been increasing interest in reducing the effort to construct
compilers. Most of the reasons for increasing interest in compiler generation are fairly
obvious, and have been discussed at length by others (Simoneaux{1975], Newcomer[1975])).

As new machines and languages are developed, the problem only becomes more acute. In
particular:

(1) It is now possible to generate new machine architectures quite easily, both through LSl
technology and microprogramming.

(2) High-quality machine code is often desired. This becomes increasingly important as
various technological limits are reached.

(3) Relatively large and complex languages are being developed, requiring larger and
better compilers.

Progress has been made in the design of compiler-compilers and translator writing systems,
particularly with respect to automating the parsing of programming language text into
internal notations. Much less progress has been made in automating the second part of the
compilation process: translating the internal representation into instructions for the target
machine. | believe this failure is primarily due to inadequate formalization of machines and
the code generation process, rather than fundamental difficulties in automating the process.

The goal of this thesis is to study and formalize machines and code generators, and using
these formalizations, to automatically derive code generators. The latter problem is a special
case of a more general problem of automatic programming: given a program and a set of
primitives available, how can the program be decomposed into the primitives? In general, the
thesis views the problem from this more abstract point of view; later, the specific properties
of machine code generation are exploited to make the problem feasible for practical resuits.

3

Most of the previous work in the area has been notably unsuccessful in the sense of
praclical applicability: it is important to consider the performance of the algorithms (speed
and oplimalily), the generality of the machine model, and the relationship between compiler
components, compiler generator, machine description, language description, etc. In order to
demonstrate the feasibilily, performance, and generality of the theories proposed here,
working prototypes have been implemenied to form as complete a system as possible within
the time constraints of the work.

1.2. Background

This thesis necessarily involves relatively disparate areas of computer science: computer
architecture, compilers, and automatic programming. It grew out of two projects currently
active at Carnegie-Mellon University: the Symbolic Manipulation of Machine Descriptions
(SMCD) and Production-Quality Compiler-Compiler (PQCC) groups.

The SMCD project (Barbacci & Siewiorek[1974)) is centered on a data base of machine
descriplions that can be shared by many applications thereof. The goal is that the same
computer descriptions be used for emulation of machines, automatic generation of assemblers
(Wick[1975]), diagnoslics (Oakiey[1976]), compilers, actual hardware specifications (Barbaccj
& Siewiorek{1975)), and other applications.

The PQCC group is interested in simplitying and/or automating the construction of a high-
quality compiler generaling optimized code. The work is concentrating on the machine-
dependent aspects of optimizing compilers, a difficult problem which has received little
attention. PQCC is using the mulliple-phase structure of the Bliss-11 compiler (Wulf et
al{1975]) as a starting point for the research.

Some work has been done in the area of code generation in general (Wilcox[1971],
Weingart[1973]}, Simoneaux[1975])). There have been two classes ot approach to simplifying
production of code generators. The first is the development of specialized languages for
building code generators, with built-in machinery for dealing with the common details; this
might be referred to as the procedural language approach. Early work in this area was done
in compiler writing systems (Feldman[1966}, Feldman & Gries[1968], McKeeman et al[1970),
While[1973]). Also, Elson & Rake[1970] and Young{1974] have concentrated specifically on
code generator specification languages and have been relatively successful. The other
extreme is the descriptive language approach: automatically building a code generator from a
purely structural and behavioral machine description. Miller[1971], Donegan[1973],
Weingart[1973], Snyder[1975], Newcomer[1975], and Samet[1975] fit this category, to
varying degrees. A survey of the above work, particularly as it relates to the goal of
automating the production of code generators, can be found in Cattell[1977]

q

The more important predecessors, including those concerned with code generator generation,
trec equivalence, and machine descriptions, will be discussed in the chapters related to their
work. Therefore, no more delailed discussion of background will be necessary here.

1.3. Overview

Figure | gives an overview of the problem as viewed by this work. Three algorithms and
representations are involved: '

(1) The formal description of the machine, labelled MOP in the figure, and its extraction
from a procedural machine description language such as ISP (Bell & Newell [1971]).

(2) The tabular representation of the parse-tree to machine-code translation, labelled LOP
in the figure, and the code generator which uses it.

(3) . The algorithms which derive (2) from (1).
These three problems are discussed in the next three chapters, respectively.

In Chapter 2 we formally define instruction set processors, the iclass .of machines with
which we will deal. A machine description specifies the types and accessibility properties of
data on the machine, and the properties of the machine instructions including space/time
costs, the format of the binary instruction words, and input/output assertions on the
processor state.” Machine description languages are also discussed.

The input/output assertions, which define the actions of the instructions, are the main
component of the machine description used in the remainder of the thesis. A simple
assertion, as an example, would be that for an ADD instruction, specifying that it leaves the
sum of a register and a memory location in the register.

In Chapter 3, a formalization of the code generation process is proposed. Its
relationships with other components of a proposed compiler are explained. A scheme for
separating the compilation process into machine-independent and language-independent
phases is used, introducing an intermediate canonical parse-tree notation, TCOL (Tree-base
COmmon Language, discussed in section 3.2.1). The front end of the compiler transiates a
language into TCOL. The back end, which is the concern of this thesis, translates TCOL into
machine code. As we will see in Chapler 2, the machine instruction. actions (i.e., the
input /Joutput assertions) are also given in terms of TCOL operators. The proposed code
generator is based on a table-driven tree transformation scheme, in which TCOL trees, in a
series of steps, are transformed into code sequences on the target machine.

ot

T e

T

Compile-time
(once for each program)

Compiler-compile time
(once for each machine)

]
: TCOL
: Program
: Tree
|
:

ISP Extraction MOP Derivation LoP CODE

i machine- -op to 8
do’:::::?i.on Di to 7hC°l-‘::’ % I\Eg:in_ofo:: s Generator
' mapping mapping 5.

I
L)
i
|
| .
: Machine
: Code
:
]
!
|
:

Figure 1: Relationship of the programs and representations progosed by the thesis. In the
horizontal direction, the construction of a code generator from the machine description is
shown. The MOP is the formal representation of the machine, which could be extracted
from a machine description such as ISP. The LOP is the formal representation of the code
*eneration process; the code ge nerator could be table-driven or construc.2d from the LOP.

he code generator derivation process constructs the LOP from the MOP. In the vertical
direction, the use of the derived code generator is shown, transiating program trees into
code for the target machine.

B S P

S EES— W—
.

The transformations for this table-driven scheme are given by a set of templates in the LOP.
A template specifies a TCOL tree pattern (a TCOL operator or operators with arguments in
certain locations) and code sequences to generate (or other actions to perform) when the
pattern occurs in the source program tree.

Chapter 4, building on the basis provided by Chapters 2 and 3, proposes
algorithms to produce the templates for the code generator from the machine description.
The task of this code generator generator is thus to determine the tree patterns defining the
special cases recognized by the table-driven code gerierator, and for each of these patterns,
determine the optimal code sequence. A system of axioms is presented to formalize the
semantic equivalence of trees (programs). A search algorithm based on transformation of
trees into semantically equivalent trees is proposed to derive code sequences. This is a
classical heuristic search problem, with givens, a goal, and rules (the axioms) that specify the
equivalent problems in the search space. Established methods of artificial intelligence, such
as means-ends analysis, are found to perform well on the probliem.

Chapter 5 summarizes the research, evaluates the results, and suggest future research.
If the reader is primarily interested in only one of the main three chapters (2, 3, and 4) of

the thesis, any of these may be read in isolation. The forward and backward references to
related sections should facilitate this. A glossary of terms is provided in the back.

2. A Formalization of Instruction Set Processors

"A problem well stated is a problem half solved”
- Charles Kettering

2.1. Background

Before we can derive code generators or other machine-dependent software, we must define
what a machine is for our purposes. In this chapter the necessary components and
properties of an instruction set processor are defined.

Fortunately, some work has already been done toward formalizing machines. In particular,
Bell and Newell’s ISP [1971] model has been taken as a starting point for this research.
However, a more precise and structured model than theirs is necessary here, because the
machine description is to be used for rigorous definition to a computer program rather than
for expository purposes. Also, the model we will develop is more amenable for automatic
generation of software.

The machine we are dealing with consists of a set of locations, whose values are collectively
termed the processor state, and an intcrpreter, which executes instructions to change the
processor state. As defined by Bell and Newell [p 22]:

“..Some set of bits is read from the program in Mp [primary memory] to a
memory within P [the processor] .. This set of bits then determines the
immediately following sequence of operations. ..After this sequence of
operations has occured, the next instruction to be fetched from Mp is
determined and obtained. The cycle repeats itself.”

We walk a fine line in making a rigorous definition of a machine in this chapter. Qn the one
hand, we want to include all the machines commonly classified as computers. On the other
hand, we want a formal definition that restricts the class of machines enough to make it
feasible to automatically generate software. Any useful model must therefore strike a
compromise between generality and feasibility.

2.2. Overview

We will define an instruction set processor in terms of seven major components: machine
operations and data types, which specify the operations available on the machine; storage
bases, access modes, and operand classes, which specify the locations available on the machine
and how they may be accessed as operands; and instruction fields and formats, which
specify the binary represention of instructions. These components will be defined formally
in sections 2.3.1-2.3.7; in this section we present a more informal but readable discussion.

Corresponding to the abstract definitions of the components are syntactic representations:

.sample MOPs for the a simplified PDP-8 and PDP-11, which will be used as examples in the

thesis, are given in appendix B. However, the syntax is independent of the abstract
definitions, so the details of this particular representation are left to the appendix.

The model is centered around the instructions themselves. We will formally define these as
Machine-Operations (M-ops), but continue to use “instruction” in its informal sense.

Associated with each M-op are a set of input/output assertions, which express the action of
the instruction. An output assertion specifies a processor state location and its value after
instruction execution as a function of the processor state locations prior to instruction
execution. Paired with each output assertion is an input assertion which specifies a
conditional function of the processor state locations (also prior to instruction execution). The
output assertion holds, i.e., the location has the new value, only it this input assertion is
satisfied (its value is unchanged if no input assertion is satisfied).

For the purposes of this work, we must relate the assertions to program trees. The
assertions will be represented as program tree patterns which correspond to the action the
instruction performs. In these terms, the previous definition of an input/output assertion is
equivalent to a conditional assignment statement:

If B; then L;«E; for assertion i

where B; is a boolean expression, L; is a location expression, and E; is a value expression. B,
may be identically true, giving just L~E. The utility of representing the assertions as
program trees is that we will be able to "match” these as pattern trees against program
trees which an M-op could implement. Both progran\ trees and assertion trees are expressed
in TCOL (section 3.2.1) to make this possible.

9

As an example of an M-op, consider an "Increment and Skip if Zero™ (ISZ) instruction, with
two input/output assertion pairs:

(1) ZeZ+1 (input assertion identically true)
(2) If Z=-1 then PCePC+l

As mentioned, these assertions are represented as trees. In this thesis, a parenthesized
LISP-like notation is used for trees. The previous assertions would be represented as:

(3 («Z (+2Z1)) («> (EQL Z -1) (« PC (+ PC 1))))

Instructions need not refer to fixed locations. In the above assertions, the operand "Z" may
be any location in the primary memory. As we will discuss shortly, there is even more
flexibility on most machines: "Z" might be accessed indirectly or by indexing, for example. To
specify the classes of locations that may be instruction operands, a three-level mechanism
will be defined: Storage Bases, Access Modes, and Operand Classes.

The actual locations of the processor state are the Storage Bases (SBs). The SBs may be
simple locations of various sizes, such as an accumulator or condition code, or arrays of
locations, such as the primary memory.

There are typically several choices for operands of an instruction, corresponding to different
modes of addressing on the machine: indexed by a register, indirect through a memory
location, an accumulator, and so on. These will be referred to as Access Modes (AMs). The
correspondence of the access modes to the M-op operands is specified by Operand Classes
(OCs). Specifically, each OC corresponds to a set of access modes, and each operand of an
M-op corresponds to an OC. Any of the specified set of access modes may be used in
fetching/storing the corresponding operand of the instruction. For example, an ADD
instruction might require a general-purpose register as the operand receiving the result, and
allow either an immediate constant or a memory location as the other operand.

In the earlier example, "Z" is an OC. For the ISZ instruction on the PDP-8, "Z" corresponds to
two access modes: direct and indirect access to primary memory.

Access modes, like M-ops, are specified by trees. The actual definition for these two access
modes, from the PDP-8 MOP, happens to be

%Mp: (<> Mp $1:#8 8 12)
%eMp: (<> Mp (<> Mp 81:#8 B 12) B 12)

10

It is not important to understand the syntax at this point: The first line defines the access
mode “"7Mp" to be an access fo the storage base “Mp" (primary memory) at a location defined
by "$1:#8" (which just means an 8-bit constant) using the full 12 bits of the word starting at
position 0. The second line defines an indirect access, in which the index into Mp is given by
an access to Mp.

Also associated with an OC are a set of assertions which specify how the different access.

modes relate to the actual bits of the instruction. On the machine, the OC corresponds to the
effective address calculation process; you might think of "OC" as standing for Operand
Computation in this context.

The main two advantages of using these three levels (storage bases, access modes, operand
classes) are (1) their usefulness in generating (good) code, and (2) the reduction in the
effective number of instructions to be dealt with. The latter is described further in section
2.3.5: the OCs allow M-ops to refer to a (limited) class of actions, namely the same action
performed with different operands, rather than exactly specifying the locations in the
processor state involved. This variability surfaces later in the fact that access modes and M-
ops and are parameterized to pass information to the OCs which will specify the actual
instruction fields.

Parameterized trees prove to be useful in many parts of this thesis, so a short explanation
would be helpful to the reader here. A parameter is a variable associated with a node in a
tree pattern, which, when referred to later, represents the program tree node that matched
the pattern node. These are used, for example, to refer to the address (value) for a symbol
node that malched a pattern in the generation of code, or to specify in a pattern that the
same subtree must occur two or more times. In the case of an ADD instruction, the pattern
tree might be

(- 81:Reg (+ 81:Reg 82:0pnd))

"$1" and "$2" are the parameter names in this expression. $1 is used to indicate that the
destination and operand registers must be the same register, and both 81 and $2 will be used
for later reference in determining the actual fields (e.g., register number or mode bits) of the
instruction (specified by the OC's "Reg" and "Opnd”). Details of the syntactic representation
of trees and tree patterns are given in Appendix A.

The preceding overview is all one really needs for a first-order understanding of the
machine model from the point of view of this thesis. However, to bé rigorous, complete, and
general enough to deal with real machines, a much more complex definition will be necessary.
For example, we must specify how the abstract M-ops and OCs are encoded in the binary
bits of the instruction words. This necessitates dealing with instruction:formats (including

11

variable-length ones), bits determined by the M-op (e.g., opcode), the access mode (e.g., mode
bits), or parameters of the access mode (e.g., address field); and so on. The reader may
choose to ignore these details for the purpose of understanding the important results of the
thesis, if desired. g j
In addition to the input/output assertions, each M-op has an associated cost (used for
determining optimality), a mnemonic (used for human convenience), an instruction format, and
a field-value list.

The instruction format specifies the instruction fields1 used by the instruction. Instruction
formats are used in conjunction with the last component of the M-op, the field-value list,
which specifies the values the instruction fields must have. For example, we might assert
that an Opcode field has value 7 for an "ADD" instruction. In the simplest case the
instruction format is a list of instruction fields, the field-value list is a list of constants, the
two lists are the same length, and the corresponding fields have the absolute constants as
values. Because, as mentioned, the M-ops represent classes of actions with different
operands, we also require a mechanism to give instruction fields values dependent on the
actual program tree that is the "instantiation” of this M-op (the particular action desired of
the class this M-op represents). That is, for different access modes and actual addresses in
the instantiation of the instruction, the fields must have appropriate values; these values are
specified by the OCs. How this is done, by matching subtrees against access modes, will be
described in section 2.3.7. .

2.3. Components of an Instruction Set Processor

In the following seven subsections, the instruction set processor components discussed in the
previous section will defined more precisely.

! The possible instruction fields, and their sizes and positions within instruction words, are separstely specifed.
Instruction formats sre distinguished es part of the machine model (rather than simply referring to a list of fields)
becsuse real machines are normally organized around » small set of such formats.

12

23.1 Storage Bases

The processor state consists of a set of Storage Bases (SBs). A Storage Base is an ordered
set of 1 or more words, each word consisting of a fixed number of bits. The SB is defined in
terms of:

(1) A word length, in terms of bits (a positive integer)
(2) An array length, also a positive integer; this is 1 if the SB is a single location
(3) A type; the type must be one of the following:

(a) Program Counter (PC)

(b) Primary Memory (Mp)

(c) Temporary location

(d) Reserved location

(e) Ceneral-purpose location

Each SB also has a name, for reference.

The processor state must contain exactly one SB of type PC and Mp, respectively. The Mp
must be a memory array (length in words > 1) in which instructions are stored. The PC
location, previous to instruction execution, must contain an index into the Mp array; Mp[PC]
contains the first word of the instruction that will be 2xecuted.

The other three types, (c)-(e), are defined in the machine model specifically to allow the
generation of code generators. Temporary locations are defined as those which the code
generator may destroy without saving in generating code (e.g., condition codes); general-
purpose locations may be used if saved; and reserved locations may not be used (e.g., stack
pointer). The use of these types will be described in section 4.3.4.

It should be noted that a word here does not necessarily correspond to its common definition.
A word is defined to be the smallest addressable unit of Mp, i.e,, of the size specified by the
Mp word. This might be less than the size of the smallest instruction. The problems of
different cata and instruction unit sizes, with different addressing schemes for Mp, and
alignment of data and instructions on various word boundaries are discussed in more detail

13
by Wick [1975] Dealing with storage bases that overlap in various ways is a relatively
involved problem, and is ignored for the purposes of this thesis.2
2.3.2 Instruction Fields
An instruction field consists of:

(1) A position, a non-negative integer giving the bit position relative to the first bit of the
instruction word.

(2) A size, a positive integer specifying the number of bits in this field.

(3) A word specifier, a non-negative integer used for variable-length instructions. It
specifies the word of the instruction (relative to the first) in which this field occurs. In
emitting code (section 3.2.4), instruction words are output as required for the given
instruction fields. (If no fields in a given word are assigned, the word is not output;

thus variable-length instructions are possible).

(4) A type, which specifies the use of the instruction field. The type can be determined
by the field’s use in the instruction interpreter:

(a) type O: Ihé field is used as an op-code, to determine the instruction executed
(M-op)

(b) type C: the field is used to control the operand selected (access mode)

(c) type D: the field is used only in data expressions (as constant or address)

2 Overlays (mappings) can be expregsed in the formalism fairly easily, either by using an oplional 4th component of an
SB which sllows it to be defined as equivalent lo (overlaying) another SB, or by reducing il SB references to common
denominators by using sub-word and multiple-word indexing into SBs. The problem which is left to future resesrch is
the allocation of these SBe to verisbles and temporaries: storage sllocation precedes code generation in the PQCC
compiler.

14

2.3.3 Instruction Formats

An instruction format is an ordered list of instruction fields and OCs. The use of instruction
formats is described in section 2.3.7. An OC format is the same as an instruction format
except OCs may not appear in the list. Instruction formats are used with M-ops, OC formats
with OCs, as we will see shortly.

2.3.4 Access Modes

An Access Mode (AM) is an expression which specifies a location or constant which can be
used as an instruction operand. Like input/output assertions, access modes are represented
by trees. A constant tree is simply a leaf specifying the length in bits of the constant. This
is referred to as an "open constant”, as it may take on any value of the specified size (the
actual value being specified by an immediate field of the instruction). A location tree
describes an access to a location in the processor state. It specifies a storage base, an index
(which could be a constant or expression) into the storage base, and a position and size
within the indexed word. Appendix A details the representation of constants and locations as
trees (using the "#" and "<>" pseudo-operators, respectively).

2.3.5 Operand Classes
An Operand Class (OC) is a list of OC-productions. Each production specifies:

(1) An access mode

(2) A space and time cost

(3) An OC format

(4) A field-value list
We will occasionally refer to the access set of an OC. This is the set of access modes which
appear in ils productions (i.e, the ones it "allows"). Recall that OCs represent instruction
operands, and the access set is thus the set of access modes which may be used in an
operand position.

The OC productions will be defined in. section 2.3.7 along with M-op productions, which are
analogous.

15

Operand Classes and Access Modes are not an essential component of the machine model.
They are defined for "practical” reasons, to simplify code generation and to reduce the
number of M-ops to deal with. Consider a two-operand instruction that refers to two OCs.
Suppose each OC could be assigned any of n access modes independently. Then the
instruction could be written as n? instructions which refer only to access modes (on the
assertion tree leaves). On some real machines, n is large enough to make OCs essential.3 If
desired, however, the reader may think of the M-ops as referencing the locations directly,
without loss of generality.

2.3.6 Data Types
A data type consists of
(1) A length in bits of the data type encoding
(2) An abstract domain: for example integers, reals, or characters.

(3) An encoding function which, given an object in the abstract domain, gives a bit string
that is the representation of the object.

(8) A decoding function which is the functional inverse of the encoding function

Each arithmetic operator used in an M-op assertion specifies the data type it operates upon;
the operators have meaning only through their correspondence to data types. It is also
important to note that the "data" type is associated with the ogerat&r, not the data or
locations as in a conventional programming language. Data bits have no type except through
their interpretation by Operators.4

Also implicitly associated with sach data type is the set of axioms that apply to the operators
on that type. The axioms will be described in section 4.2.

3 For the binary instructions on the PDP-11, ne12 (or so), for oumpl‘.

4 This approach is the conventional point of view in computer architecture; on an srchitecture taking the opposite point
of view, such ss the Burroughs 6500, it would be necessary to trest the sctions of operators as dependent on type
bits of the operands.

16

This thesis will not deal with data types in detail; the only information about data types
necded for code generalion is contained in the axioms, so the data type portion of a machine
description is nol required. For complete description of data types, two extremes of
approach may be taken.

One approach is to use a notation at the level of a programming language, specifying
procedures for the encoding/dccuding functions and the operations on the data type in terms
of some primitive data type(s), e.g., unsigned integer bit strings.

The other approach is to describe the data types statically, by parameterizing the possible
representations in some way, making it possible to specify a data type simply by a set of
paramelers and an alphabet of types. It is possible to characterize the common integer, real
and character data type in terms of a relatively small number of parameters (Cattell[1976]).
For example, fixed point numbers may be represented with different bases and fractional
point convenlions, and different encoding conventions such as two's complement, one's
complement, signed-magnitude, and excess-N. Floating point can then be categorized
according to the encodings and positions of the (fixed-point) mantissa and ex¥ponent.

The advantage of the first approach to describing data types (the procedural representation)
is that it is more general; the advantage of the static approach is that we have some hope of
a program automatically dealing with the properties of the data type. The best approach is
probably to combine the two, spccifying the complete algorithm for, say, machine simulation
purposes, but asserting particular properties (that could presumably be verified) for other
applications of machine descriptions.

Section 3.2.2 describes the use of data types in the compiler.

2.3.7 Machine Operations

A Machine-operation consists of:
(1) A mnemonic
(2) A space and a time cost
(3) An instruction format
(4) A field-value l'is{

(5) A set of zero or more input/output assertion pairs:

17

(a) Each input assertion is a boolean function tree: a tree whose top node is an
operator returning a boolean result, and whose leaves are constants or location
specifiers. A location specifier is normally an operand class, but an access mode
will also be permitted here if it is a fixed locaton.

- (b) Each corresponding output assertion consists of a location specifier (a location
modified by the instruction), and a (new-) value tree: a tree whose top node
returns an arithmetic value and whose leaves are constants or location
specifiers.

Each assertion pair specifies a potential change in the processor state affected when the
instruction interpreter processes the M-op. The semantics of the assertions are that if the
boolean function specified by (a) is satisfied over processor state values previous to
execution, then the location specified by (b) has the value specified by function (c) in terms
of the processor state previous to execution. There must be assertions for every location
potentially modified by the instruction. The only exception is that the assertion
"PCe~PC+<instruction size>" has been factored out; it applies to every instruction unless
explicitly overridden by an assertion on the PC (this simplifies human and machine use of the
assertions).

Note that if the input/output assertion set is empty, the instruction is a "No Op", i.e., it
performs no action; however, it has cost and takes space in memory.

The input/output assertions thus specify the effect of the instruction when it is executed by
the instruction interpreter. The field-value list, together with the instruction format, specify
the conditions under which the instruction is executed by the instruction interpreter, and also
the correspondence between instruction operands and binary fields. Specifically, the field-
value list (a list of parameters and constants) and the instruction format (a list of instruction
fields and operand classes) must be identical in length, and the corresponding elements of the
lists are paired as follows:

(1) The instruction fields in the instruction format are asserted to have the values
specified by the corresponding elements of the field-value list. For example, the
constant "7" in the field-value list might be associated with the instruction field
"QpCode".

(2) The operand classes in the instruction format indirectly specify instruction fields. As
mentioned earlier, the M-ops represent a family of actions, because (a) the operands
may correspond to different access modes, and (b) even for one particular access

18

mode (e.g., indexed by a register), different actual addresses may be involved (e.g., the
register number or memory location). To allow this field specification to be separated
from the M-op descriptions, a parameter is associated with each location specifier in
the input-output assertion. This parameter is paired with a particular operand class;
i.e,, the parameter and operand class occur in corresponding positions of the field-
value list and instruction format. The OC-productions for the operand class then
specify the actual fields according to the actual operands of the instruction. This, in
turn, is finally accomplished by the corresponding OC field-value list and OC format:

(a) As with the M-ops, constants may be assigned to fields by pairing constants in
the field-value list with instruction fields in the format. This would be used, for
example, for an address mode field.

(b) As with the M-ops, parameters may also appear in the field-value list. However,
they are used for a different purpose: the parameters are associated with the
open constants in the access mode trees, and the corresponding OC format
element must be an instruction field which is asserted to have the constant’s
value. For example, this would be used to relate the operands to an address or
immediate constant field of an instruction.

As an illustration of the above, consider the ISZ instruction whose input/output assertion
tree is

(; (« 81:Z (+ 81:Z2 1)) (=> (EQL $1:Z -1) (« PC (+ PC 1)))

The field-value list and instruction format for ISZ are the lists:

(2 81) and
oP 2).

What this means is that the OP instruction field has value 2 for ISZ, and the other fields
depend on $81:Z, which may be a direct or indirect memory reference. If it is a direct memory
reference ("7ZMp" access mode) then the QC field-value list and QC format are

(81 8) and
(ADR 1.81T),

meaning that the ADR field is the address of the operand (81 in the ZMp access mode tree)
and the LBIT field is O.

19

We define the ficld assertions of an M-op, with respect to a particular (program tree)
instantiation, to be the set of assertions about instruction field values resulting from the M-
op field-value lists and OC field-value lists as outlined in this section. That is, the field
asserlions specify the necessary instruclion field values to execute a particular instruction
wilh particular operands.

The delails concerning the actual instruclion bits as outlined above are not crucial to an
understanding ot this thesis, but the reader should keep in mind that the assertions are in
two levels: for each instruclion, fields assertions specifying the opcode bits, etc,; and for
each possible operand, field assertions specifying mode bits, address fields, etc.

2.4. Instruction Set Processors

In summary, an instruction set processor is a set of locations termed the processor state, and
an interpreter which fetches instructions from a primary memory and modifies the processor
state in a fashion specified by the instructions. The entire effect of an instruction is
represented by the change in the processor state, and the entire change in the processor
state is specified by the instruction.

More specitically, the interpreter iteratively performs the following two steps:

(1) Retrieves one or more words Mp[PC), Mp[PC+1), ... satisfying the field assertions of
exactly one M-op.

(2) Changes the processor state as specified by the input/output assertions for that M-op.

This completes the definition of an instruction set processor. The observant reader may
have noticed some of the choices made between generality (of the model) and feasibility (of
aulomalic generation), as menlioned in section 2.1. Some of these are fairly obvious; for
example, we are restricted to a uniprocessor execuling instructions from a primary memory,
as opposed to, say, an array processor. Other restrictions are more subtle; for example, the
conditions under which instructions are executed (i.e., the criterion the interpreter uses to
select an M-op in step (1) above) must be of the form

fieldl-valuel. fieldz-valuez. 1‘ielc:!,.,:-rvaluen

rather than some arbitrary boolean function of fields or storage bases. Some of the
assumptions made are important {0 making the results presented in this thesis possible, and

20

others could be changed with only minor consequences. The uniprocessor assumption is of
the former kind. In the case of the M-op field assertions, any boolean function that is
invertible would theoretically be satisfactory. That is, for a code generator we must be able
to satisfy (automatically) the conditions asserted, by setting instruction fields®. The chosen
form of the field assertions allows this to be done easily, while at the same time remaining
flexible enough to deal with essentially all conventional machine architectures.

2.5. Rclation to Other Descriptive Levels

The reader may be curious as to how the machine model described in this chapter relates to
the assembly language level of programming; the model is rresented in terms of the binary
representation of instructions and data in the actual machine.

The invenlion of an assembly language given only the machine language'for the "bare"
hardware is, of course, a creative non-trivial task. There are issues ranging from what the
instructions actually areG. to choosing appropriate syntactic representations for various
fields. This lopic is well covered by John Wick [1975].

Wick demonsirales a program which produces an assembly language and an assembler for
that language, given a derivative of ISP (Bell & Newell [1971]) with some human input to
specify mnemonics and the syntax for certain instruction fields. ‘Wick takes advantage of the
fact that current computers and assembly languages are very similar in structure, so that the
bulk of an assembler can easily be table-driven.

A simple assembly language format, similar to Wick's but obviously not as extensive, was
used in this thesis work to make code easily intelligible to humans. However, at the same
time we retain the ability to generate binary code.

It is quite easy to get a simple readable assembly language for a machine using the
instruction mnemonics and field types given in the MOP description. This is the way the
search program in Chapter 4 outputs code. Furthermore, a more sophisticated assembly
language can be supported almost as easily, by supplying an output formatting routine for

or processor stale localions, in the cxiremo case of a procossor whose instruction set depends on the value of some
flag or register

e This can be subject 1o human inferpretalion, for example whether "add” and "add immediate™ are treated as different
inslructions or the same instruction wilh different operand modes.

21

each instruction format defined. This is how the code generator described in Chapter 3
outputs code. Further refinements are possible, such as a simple macro notation for
describing the translation from the binary fields to textual output. Or, if desired, the MOP
definition itself could be changed to describe the machine at the assembly level rather than
in binary; however, it is probably a bad idea to throw away information altogether this way,
as the description is not as flexible.

The reader may also be wondering how the model of instruction set processors relates to
machine description languages.

It is not the intent, in deriving the model of machines for this thesis, to create a machine
description specialized to derivation of code generators. If anything, the opposite is true:
existing machine description languages were already too specialized to tasks such as
simulation. The purpose of the MOP representation is to describe a machine that fits the
mold of a model specific enough to make it reasonable for input to an application requiring an
instruction set processor description.

The proposed representation does suggest requirements that would be placed on a machine
description language for use in this kind of work. Nearly all current machine description
languages are simply programming languages with some special features for describing
computers or Iogic.7 Any particular syntax has been avoided here by defining the MOP
tables. However, a short discussion of machine description languages is included here for
completeness.

As mentioned in Chapter 1, there are many potential applications of a machine description
language: machine simulators/emulators (Barbacci & Siewiorek [1977]), proving correctness
of machine language programs (Crocker [1977]), register-transfer level design automation
(Barbacci & Siewiorek [1975]), and automatic generation of software such as assemblers
(Wick [1975]), diagnostics (Oakley [1977]), peephoie optimizers (Hobbs [1976]), and code
generators. If all of these applications were driven off the same machine descriptions, it
would be possible to write a machine description and obtain all this support software, and
even circuit layouts to construct the machine. Although this goal is still a ways off, initial
results in several areas have been promising, to suggest that at least semi-automatic
operation is feasible.

One candidate representation for machine descriptions in the common data base is a machine-

7 1SP (Ball & Newell (1971)) is somewhat more than this, bul as mentioned earlier, it is not sufficiently restrictive or
specific for our purposes.

22

readable variant of ISP, ISPS (Barbacci et al [1978]), which was designed with the intent of
providing a well-defined, machine-readable description language that could be used for
various applications, as required by SMCD.

ISPS has the necessary facilities to include the information required by applications such as
this work: the MOP tables could be automatically constructed from an ISPS description. The
ISPS description must specify, through special declarations, certain necessary components of
the description, such as the program counter (PC), primary memory (Mp), interpretation
process, address calculation processes, and instruction formats. Some additional information
can be derived automatically by recognizing accesses to the PC, Mp, and instruction fields.
The main step that must be performed to construct the MOP table is to symbolically simulate
each possible path through the interpretation cycle to determine the possible instructions,
and for each instruction, the input/output assertions on the processor state 8 The
input /output assertions consist of condition-value pairs which specify new values for the
processor state location for each possible path/sequence of branches and assignments
through the interpretation process.

For purposes of this thesis, at the time of this writing, the MOP tables are manually
constructed; the MOP (and LOP) tables are designed to be readable/writable by people as
well as machines. In fact, they are as short to write as the ISPS description, so the only
motive 1ur automatic translation is the SMCD goal.

2.6. Syntactic Representation and Implementation

The MOP is syntactically represented in a parenthesized form in a fairly straightforward way.
The syntax for the components defined in this chapter is given in BNF notation in appendix B,
along with the MOP for the the PDP-11 and the "Mini-S" (a slightly simplified PDP-8), used as
examples. These MOPs were manually generated; they may be automatically derived from
ISP descriptions at some future time, as mentioned earlier. Partial MOP tables were also
derived for the Motorola 6800, Intel 8080, and DEC-10 (to test the machine model with some
diverse architectures). These are not included.

It should be noted that the M-ops and OCs are represented as productions rather than a
simple enumeration of the components as defined in this chapter. Specifically, the
input/output assertion tree becomes the left-hand side of the production, and the other
components are specified by the right-hand side (recognizable by the "EMIT" keyword),

8 Oskiley(1977] is working on such a symbolic simulation.

23

which specifies the space/time cost, format, mnemonic, and field-value list. This form is used
for the MOP because its syntax is now compatible with the representation of the LOP tables
described in the next chapter. In the MOP, the RHSs are EMITs; in the LOP, they may be any
code sequence (EMITs, code labels, etc.), or even special commands to the compiler. The main
advantage of wusing the same notation is that the MOP/LOP tables can be
read/modified/written in several slages of the process of constructing a compiler, without
requiring several intermediate notations. However, the syntactic representation is not
important to any of the resulls presented in the thesis, and a different representation might
be more appropriate, for example, to improve human readability.

—— ————

24

3. A Formalization of Code Generation

"The most valuable of all talents is that of never using two words when
one will do [in code generation]”
- Thomas Jefferson

3.1. .Introduction

The code generator proposed here, which will be referred to as CODE, takes a program tree
as input, and produces as output a symbolic machine code stream with formatting information.

The code generation scheme is based on tree productions, or templates. A source program is
assumed to have been translated into an intermediate tree representation (TCOL). The code
generator traverses the program tree, matching each program tree node against patterns on
the left-hand-side (LHS) of the templates in the LOP. The right-hand-sides (RHSs) of the
templates matched may specify code to be generated, special compiler actions to be taken,
and further matches to be recursively performed. These template/productions, along with
other information about the target machine such as addressing and instruction formatting
(described in the previous chapler), are specified by the LOP table (see Figure 1), which
provides the machine-dependent information required by the compiler.

A description of a code generator without definition of the remainder of the compiler, at least
in terms of its relationship to code generation, would be of limited utility. Ideally, we would
like to:

(1) Show how the algorithms and data structures can be made to interact with the other
compiler phases.

(2) Demonstrate that they are capable of generating good code in the context of an
optimizing compiler. ’

To do this, we will take a dual approach. First, the basic requirements on the structure of a
compiler will be discussed. Then, to show how especially high-quality code can be
generated, we will use the structure of the PQCC compiler (section 1.2), which is patterned
after Bliss-11 (Wulf et al [1975]). Both the PQCC compiler structure and the basic compiler
requirements will be discussed in the next section.

25

3.2. The Compiler

3.2.1 Compiler Structure and TCOL
Several crucial decisions must be made with respect to the structure of the compiler.

One such decision must be made with respect to the language. In particular, we would like to
paramcterize the compiler by language as well as machine, so that a compiler for any
language-machine combination can be generated. This thesis takes an UNCOL-like approach
(UNiversal COmputer Language, Strong[1958)): the front end of the compiler translates a
source language into an intcrmediate language, and the back end (code generator, etc.)
translates the intermediate language into a machine language.

One problem with an UNCOL, which has limited its use in the past, is that an UNCOL notation
must be at a sufficiently high level to avoid any assumptions about the underlying machine
architecture, but at a low enough level to avoid any assumptions about the high-level
languages lo be translated. There are examples of UNCOLs that have made these
assumplions in either the machine or language direction (Conway [1958], Orgass & Waite
[1969]). The price of making such assumptions is that the corresponding translation becomes
inefficient and/or complicated for non-conforming languages or machines. The language we
will use, TCOL (Tree COmmon Language), alleviates this by using a very "low-level high-lcvel®
language. The notation is high-level in the sense that it is parse-tree-like to avoid any
assumptions about the target instructions. It is low-ievel in the sense that assumptions
about language construcls are avoided, by fully decomposing data accesses into index
computations, fetches and stores, separating the description of the data types, and so on.
The second problem with the original UNCOL approach is potential inefficiencies for special
language or machine constructs. To avoid this, we allow the addition of new TCOL operators,
by manually defining them in terms of existing ones, by extending the tables dependent on
TCOL operators, or by defining new data types.

With these two guidelines (intermediate level, and exiensibility), TCOL has proved to be quite
useful in separaling language-dependence and machine-dependence. The use of such
intermediale languages in compilers will probably become prevalent in the near future.

The actual operators and definition of TCOL as used for this work are given in Appendix A.
For an example of TCOL, the reader may wish to refer ahead to Figure 4, which shows a
program and its TCOL representation. However, the details of the notation are not important
for the understanding of this chapter.

26

Relatively little is required of the structure of the other components of a compiler using the
code gencralion scheme described here. The principal requirement is a TCOL representation
of the input program. The code gencralor produces output in a form that can be used in
multiple ways, as we will see in section 3.2.4. Register and storage allocation can .be
performed either during or before code generation. The various compiler functions such as
these, and their relation 1o the formalism, are discussed in the next three subsections.

As menlioned in the previous section, one compiler structure that could be used with the
code generator described here is that of Bliss-11 (Wult et al [1975]). Figure 3 illusirates
this structure; the phases are as follows:

- LEXSYN: Lexical and syntactic analysis; the input to this phase is the source program
lext; the output is an abstract program tree (TCOL in our case).

- FLOW: Flow analysis; common sub-expressions are found, and sequencing of operations
is rearranged.

- DELAY: Performs specialized optimizations on the tree, and also determines the "shape”
of the ultimate code (e.g., where registers would be desirable).:

- TNBIND: Allocates temporaries required by the program to-thesregister types available.

- CODE: The actual code generation; input is rearranged/decarated parse tree, output is
symbolic code stream. This is the concern of this thesis.

- FINAL: Performs peephole and branch optimizations that could not be recognized until
actual code adjacencies are known.

There are also subphases of these compiler phases, but this will not be important for our
purposes. What is important to nole is that a careful balance is struck with respect to the
ordering of compiler functions in this structure. The guiding principle is to perform a
function where it is most advantageous in terms of the information available and the ease of
description of the function. For example:

(1) DELAY determines the shape of the ultimate code to give TNBIND information about
register requirements, allowing better global and local allocation of temporaries.

(2) COOE can then concentrate on the case analysis for code generation, given (the
regisiers that will be available for use.

27

Source Code
d
LEXSYN Lexical and syntactic analysis
(TCovL)
FLOW Flow analysis
(TCOL)
DELAY Optimizations on tree
\L(TCOL)
TNBIND Allocation of temporaries to machine registers
J(reou
CODE Code generation
\L(Symbolic code)
FINAL Peepholg and branch optimizations
Mach\iLne Code

Figure 3: Structure of the Bliss-11 compiler, being used as basis for PQCC.

28

(3) The optimizations performed by FINAL could not be performed until the code is in
symbolic instruction form.

3.2.2 Storage Allocation '

The procedural information associated with a program is described with a TCOL tree. The
declared propertics of the data locations must also be expressed; this is inormally done in a
symbol table, and we will take this approach. However, to represent symbols machine-
independently and language-independently presents more of a challenge. We will discuss
how this can be done, although a full implementation has been left to further research.

A symbol table typically specifies information such as a print name, a datatype (e.g., integer,
real), an allocation type (e.g., own, dynamic), a size (e.g.,, for arrays or records), and other
properties.

To separate the essence of the language- and machine- independent information about a
symbol for the purposes of this thesis, two kinds of information are defined: an access
function and an allocation function.

The access function is represented by a location tree for each symbol, which specifies the
location the symbol represents. If the symbol is not a simple location, for example if it is an
array or slack location, the location tree contains parameters that are filled in for any
instantiation (use) of it in the program tree.9 For example, a reference to a 10 by 10 array
might be expressed. as memory address A+81+10282 where A is the base address of the
array and $1 and $2 are the indices. A location tree thus specifies a (parameterized) access
to a location.

An allocation function is required in order to create the symbol when it is declared, and
possibly to release it when appropriate. Some examples are:

(1) A simple one-word own variable allocated at compile(load)-time
(2) A dynamic array, probably allocated by calls to run-time routines

(3) A stack local, requiring manipulation of a stack pointer

9 Thore may also be some auxiliary code associated with every reference to » symbol, e.g, an array bounds check.

29

The allocation function and access function might be thought of as a secondary, language-
independent symbol definition, the primary definition being that defined by the language
directly, in terms of the language data types and data structures. The access function and
allocation function are derived from the primary definition. The compiler’s front end, which
creates the TCOL representation, must know the machine data type (sect‘ion 2.3.6) or virtual
machine data type (section 3.2.5) for each symbol. This data type is derived from the
language data type of this symbol, as will be described in section 3.2.5. Given the data type,
the compiler knows:

(1) The amount of space required for this symbol, and (word boundary) alignment
properties if any; together with the allocation type of the symbol this specifies the
allocation function.

(2) The encoding/decoding algorithm to transiate an ASCII representation of a constant of
this type (e.g., 1.234) to the binary representation for this type; any constants can
thus be encoded into binary before code generation occurs.

(3) How to translate source language operators such as "+" into the unambiguous TCOL
operators which are defined in terms of machine data types.

To simplify the discussion of code generation, we will assume that all symbol references in
the tree are expanded as if the actess funclion were a macro. We will similarly ignore the
processing of variable declarations, by assuming that a prepass has aliocated symbols and
inserted into the TCOL program tree any code necessary for dynamic allocation and other
run-time maintenance.

3.2.3 Temporary Allocation

In addition to the data locations explicitly declared by the user program, temporary locations
are required to hold intermediate resuits of expressions. These temporary symbols must also
be dynamically allocated to locations on the target machine, typically registers or primary-
memory locations.

In the classical compiler, this allocation is done "on the fly" during the generation of code.
That is, when a temporary is required in the evaluation of an expression, a location of the
required type is reserved by some scheme, and that location is used and marked available
again after it is no longer needed.

More optimal allocation of temporaries can be performed if the allocation is performed as a

T TR T D P ——

30

separale phase, preceding code generation; such a pass allows many possible assignments of
registers to temporaries to be considered, evaluating their relative costs. This is the
strategy taken in the Bliss-11 compiler. Johnsson [1975] extensively discusses this subject,
and evaluates algorithms for assigning lifetimes to each temporary, and packing these
temporaries into the available register types.

A global temporary allocator such as this can pass information to the code generator by
modifying the TCOL tree. In an implementation, this can be done by setting a target field in
the operator node in question to the desired location to be used for the result.

The proposed code generator is independent of the scheme used for temporary allocation. If
the target field is set, the node is treated just as if the programmer specified that location
for the result. If it is not set, the code generator calls a storage allocator provided
elsewhere in the compiler, specifying the type of location desired, and generates code using
what it is given.

3.2.4 Object code

The output of the code generation phases is a stream of tuples. Each tuple consists of a
format, and a set of fields. The format specifies how the fields are to be output; it may
specify: :

(1) A label is to be generated; in this case, the field specifies a user- or compiler-
generated label is to be defined at this location in the output code (for relerence to
this location elsewhere).

(2) A constant is to be output; in this case, the field is a binary word of data to be stored
at the current location in the output.

(3) An instruction is to be output; in this case, the format specifies one of the instruction
formats defined for the target machine (section 2.3.3), and the fields are to be
assembled and output according to that format.

Fields are of two kinds: constant fields, and parameter fields. The value to be output for a
constant field is given directly, while the value for a parameter field may be a variable or
code label not yet defined. (The operation code for an instruction is a constant field; a field
specifying an operand will normally be a parameter field.) The reader may recall these as the
constants and parameters in M-op formats in section 2.3.7; formats and their use will be
further described shortly (section 3.3).

A

o

P

31

The tuples output by the code generator can be output directly as binary code, or they may
be passed as a symbolic instruction stream representation to another phase of the compiler,
for example, a peephole optimizer.

Forward references in the tuples (for example, forward branches) must be resolved before
binary code is generated. This cannot be done during code generation, as these values are
not yet known, but the ficlds can easily be set in a second pass over the tuples, or, of
course, assembly code can be output, in which case the fields remain in their symbolic form.

Considerable improvement in code quality can be obtained by a second pass over the code,
and many people have worked on this problem. For example, branch optimizations can be
performed that could not be detected during code generation because code adjacencies were
not yel known. Hobbs [1978] discusses solutions to these problems in the context of PQCC.
In general, any optimization or filling-in that requires knowledge of code size or adjacencies
should be performed after code generation.

3.25 The Campiler-Writer's Virtual Machine

This thesis will not propose to completely automate the generation of code generators; this is
not desirable. Certain implementation decisions, that have historically been made by the
compiler designers, are still left to human discretion. These include:

(1) The mapping from language data-types to machine data-ty;;es. {-"or example, "long
reals” in the source language may be mapped onto the 64-bit floa’tiné point machine
data-type. Or, a language data-type may not correspond to a target machine data-
type, in which case a wirtual data-type must be provided via run-time code for each
operation on that data type. This could be simplified by providing a library of
machine-independent TCOL run-time routines from which the compiler designer could
select. :

(2) Procedure linkage and parameter-passing. The implementation of call/return
mechanisms for call-by-name, call-by-value, cali-by-value/result, or call-by-reference,
are defined by the compiler designer in terms of the lower-level TCOL primitives.

(3) Dynamic storage allocation. Closely related to the implementation of subroutines is the
scheme, if any, for allocation of local variables to the routine. In a language such as
Algol, code must be gencrated for biock entry/exit to set up the locals on the stack,

! e
(4) Operating system interface. Certain source language constructs, such as input/output
requests, are expanded info operating system or runtime system calls.

32

In making these high-level decisions, we essentially define a virtual machine on top of the

target machine, wilh certain operations defined in terms of in-line or out-of-line subroutines.

We will call this the Compiler-Writer's Virtual Machine (CWVM). In practice, these decisions
can easily be inserled after aulomatic generation of the basic code generator, by defining
new entries in the code-generation tabies described in the next section. How this is done in
an easily human-readable notation will be described in the next chapter.

3.3. Template Schemas

In this section we define the LOP, which specifies the code generation process, as was shown
in Fig;ure 1 (page 5). In the next two sections (3.4-3.5) the code generation algorithms
which use the LOP are dcfined. Finally, in section 3.6, a complete code generation example
is given to tic these together. The reader may prefer to skim sections 3.3-3.5, read the
example in 3.6, and then re-recad these sections to more easily understand the definitions
and their motivation.

The basic unit of the LOP is a tempiate. The essential parts of a template are a tree pattern
(LHS), and a rcsult scquence (RHS). The result sequence specifies code to generate, or further
submalches to perform, when the tree pattern is found in the program tree. The templites
are grouped into schemas, and the LOP consists of a set of these schemas. '
The schemas represent differcnt contexts in which code can be generated. Multiple schemas
(for multiple contexis) are theorctically unnecessary, but a hierarchy of them is used for
practical reasons. There might be schemas for contexts in which:

- A flow result is required (a conditional branch; see Wulf et al [1975]).

- A value result is required (integer, real, boolean, etc.).

- No result is desired (a "statement” tree).

- An addressing mode is to be selected.

- Subcases of an end-of-loop test are to be selected.

The remainder of this section gives a more precise definition of schemas, templates, patterns,
and resull sequences.

A schema is an ordered set of templales. A template consists of:

(]

G g O TP RGP

¥
£
¢
:
;
£
H
£
i

P Ve .2 T R s

-

33
(1) a pattern tree
(2) a result sequence

(3) a resource usage set

A pattern tree is a tree whose nodes are:
- For non-leaf nodes, a language operator which this node is to match.

- For leaf nodes, a set of access modes, namely the access set of an operand class.
These match classes of constants and locations that can be referred to in a single
machine instruction, and are machine dependent (section 2.3.5). Parameters may be
associated with the pattern leaf nodes for reference, as described in Appendix A.

The resource usage set specifies register allocation and cost information for this template; it
will not be necessary to define it further for our purposes.

The result sequence is an ordered set of code specifiers. A code specifier consists of a
format, as defined in section 3.2.4, and a list of field specifiers. The format determines the

interpretation of the code specifier and its field specifier(s); specifically, a code specifier may
represent:

(1) An instruction to be output; in this case, the format number gives the instruction
format, and the field specifiers define the fields of the instruction. The field specifiers
may be:

(a) A parameter defined in the corresponding pattern tree (e.g., this would be used
for an address field of an instruction).

(b) A constant (to define a fixed-value field, e.g., an opcode).
(c) A }nntch-tu.ple consisting of a schema (name) and a parameter; this is used when

the actual instruction fields are determined by an operand class; the fields
depend on the actual program subtree involved (given by the parameter).

(2) A label to be output; in this case the (one) field specifier is a parameter corresponding
to the label.

34

(3) A binary word to be output; in this case the (one) field specifier is its value (a
constant or parameter).

(4) A match-tuple; in this case the field specifier is a parameter (representing a program
subtree that matched the LHS pattern tree) which is recursively looked up in the
template schemas to determine the code to generate. For example, this sub-matching
scheme will be used to generate code for various sub-parts of an IF-THEN-ELSE: the
conditional jump, the THEN-body, the ELSE-body.

Examples of patterns and result sequences will be given in figures 5-7, for the code
generation example.

3.4. Code Generation Algorithms

It is the intent of the template schemas to describe the translation from TCOL to a machine
language. However, the template schemas are meaningless without defining the algorithm
which uses them; the algorithm is the topic of this section.

The reader may already have inferred the general idea of the use of templates at this point.
The template patterns are matched against the TCOL program tree and the corresponding
result sequence specifications are processed. With the templiates as defined, the only degree
of freedom we will have in using different aigorithms is in the interface "between” the
templates, for those templates which compute arithmetic expressions where intermediate
values must be stored. That is, the templates must be composed recursively to match an
entire program iree. '

Recall that the 'eaves of a template are access sets; the operands must be in these specified
locations {access modes) in order for the template to be applied. If a leaf '©f a template does
not matcr the corresponding segment of the program tree, it is possible to make the template
applicable by performing the subtask of a store into an allocated location (access mode) of
the type required by the template operand. Or, if it is the destination of the template that
mismatches the program subtree, it is possible to make the template applicable by allocating
a location of the type of the template destination, and following the template result code by
a store into the desired location from the allocated location. This process of making the
template match is called subtargetting. Subtargetting is used, for example, when an
instruction requires one or more of its operands in registers, but the operands in the
program tree are not in registers. Note that there are two types of subtargetting, depending

ip

35

on whether the offending access mode is the destination or source in the Iemplate.lo
f

Perhaps the most obvious way to apply the templates is the éknaustive "brute force
approach. Given a program tree, there may be a number of templates which match the top
of the tree, ignoring mismalch of the access set leaves, which can be subtargetted. For each
of these templates, there may be a number of access modes which would satisfy the operand
constraints, to which the operands could be subtargetted. Recur'sively, for e'ch
subtargetting subtask, there may be a number of templates which match,‘arld so on. In"an
exhaustive algorithm, we would recursively try all these possibilities at each node, and Use
the match(es) that gave the least expensive code sequence. :

The exhaustive approach here is not new. Newcomer[1975] and Aho & Johnson [1976] use
approximately this algorithm. Aho & Johnson show that the time for the exhaustive algorithm
is linear in the number of iree nodes, and exponential in the number' of choices (instructions,
or M-ops and access mades) at each point.

It should be noted in passing that Aho & Johnson's assumptions (and Newcomer’s) do not
correspond to ours, although the complexity result still applies. For example, we subdivide
the selection of instructions into the selection of an M-op and the selection of an acdéss
mode for each operand, to reduce the number of patterns (choices) to deal with. We also
deal with control constructs, rather than just arithmetic, and allow M-ops to consist of
multiple actions (more than one store) or to compute arbitrary expressions rather than
corresponding {0 a single language operator. Some of these differences add to the
complexity of code generation (e.g., multiple-operator M-ops), and others to the comple)‘t'ity
of code generator generation (e.g., multiple-action M-ops).

The time required for the exhaustive approach might not be excessive for many machines,
since the number of allernatives possible at each node is often small, and the size: of
arithmetic expressions is also empirically small (Knuth (1971]). However, another alternative
deserves consideration:

We might consider ordering the alternatives, which in our case corresponds to ordering the
templates in a schema, and using an algorithm which selects the first template which matches
a given program node. The instructions would be ordered so that less expensive special
cases occur before general cases; for example XeX+1 would occur before X«X+constant. We
order both the M-op aiternatives (for the instruction) and access mode alternatives (for each
operand class) in this way: the patiern templates are sorted by increasing cost per number

10 These will correspond to the Fetch/Store Decomposition Rule in the next chapter.

e T—— e

36

of nodes. This results in an algorithm which "bites off" the largest possible subtree at the
current program tree node at each step, and subtargets the remainder. We will consequently
refer to this as the “Maximal Munching Method"™ (MMM).

Other alternatives to the MMM algorithm and the exhaustive algorithm are possible. Rather
than picking the largest possible access mode matching at each point, we could always use
some common denominator for temporary results, such as a general purpose register, which
satisfies all the operand classes. This is still simpler than the MMM algorithm, but will not
generate as good of code in general.

Experimentation with various code generation algorithms and their relative performance is
beyond the scope of this work. However, small test cases suggest that the MMM algorithm
does nearly as weli as the (optimal) brute force method, and at much less cost. This is
therefore the method used here.

3.5. The MMM Algorithm

In figure 2, a simplified algorithmic version of the MMM algorithm is given.

In order to understand this aigorithm, it is first necessary to understand the data structures,
given first in the figure. Associated with each pattern leaf (except for “"closed constant”
leaves, e.g., "2") are:

(1) An operand class "OC" which the pattern demands in this leaf position of the pattern
tree.

(2) A parameter "parm” (implemented in the figure as an integer index into an array)
which is to be associated with the program tree node which matches this pattern node.
Parameters are used to save the subtrees which match pattern leaves for later use in
subtargetting and in generating code.

For the purposes of subtargetting a program subtree, we need to know:
(1) The pattern leaf the subtree matched, to determine the set of access modes this node
must match. A pointer to the pattern leaf is saved in the "pleat” field ot the subtree

root node.

(2) Whether the subtree matches one of the access modes specified by the pattern leaf.

"" '

LoArg

ot

37

class pattern = patternleaf or patternnode; _
patternnode= (integer op {TCOL operator s}; tree array sons);
patternleaf= (integer op; operandclass OC; integer parm; integer value);
class tree = (integer op; tree array sons; ... boolean match; tree pleaf);
class production = (pattern LHS; resultsequence RHS);

boolean procedure Treematch(tree T; pattern P; tree array Parms);
{matches tree T against pattern P, saves parameters in Parms)
if P.op=constant then return(T.op=constant and T.value=P.value)
else if P.op=location then
begin {leaf (location)}
Parms[P.parm]eT; T.pleafeP;
if T € P {match OC} then T.match«TRUE else T.match«FALSE;
return(TRUE)
end
else
begin {non-leaf}
if P.op#T.op or size(P.sons)#size(T.sons) then return(FALSE);
for i«1 thru size(P.sons) do
if not Treematch(T.sons[i],P.sons[i],Parms) then return(FALSE);
return(TRUE);
end;

procedure GenCode(tree T)
{generates code for TCOL tree T}
begin
PseteFindProds(T); {get set of templates to try for this tree}
foreach P¢Pset do
" begin MseteNIL array; if Treematch(T,P.LHS,Mset) then exitloop end;
{Fetch subtargetting}
foreach M in array Mset do
if not M.match then
begin Allocate(M.pnode); GenCode(M.pnode "«" M) end;
{Generation of code for RHS of template}
DoResultSequence(P.RHS Mset);
{DeAllocate}
foreach M in array Mset do
if not M.match then
Deallocate(M.pleaf);
end;

Figure 2: A simplified version of the MMM code generation algorithm. Comments are in {..}.

"X.F* means F field of variable X; fields are defined in the class definitions at the top.

38

If so, the "match” field of the subtree root node is TRUE, otherwise it is FALSE, and
subtargetting must be applied.

The tree and pattern node fields are shown in the figure. Following the data structure
definitions are the two central routines, TREEMATCH and GENCODE.

TREEMATCH takes a pattern and tree as argument, and returns TRUE if they match or can be
made to match by subtargetting. The array PARMS contains pointers to tree nodes that were
matched against pattern leaves; those that did not match must be subtargetted. Those that
match as well as those that must be made to match are returned in PARMS because both will
be needed in the generation of code for the right-hand side (RHS) of the template.

GENCODE uses a hashing scheme (FINDPRODS) to find a set of templates which might match
the program tree, uses TREEMATCH to find the first of these templates that can be made to
match the program tree, subtargets where necessary, generates code for the template itself,
and then cleans up by deallocating the temporary locations used (if temporary allocation is
done before code generation, allocation and deallocation has been handled in an earlier
phase).

The complete algorithm is several pages of code; this is an oversimplification. However, the
remaining details are relatively straightforward. In particular, we have not given the details
of the processing of the result sequences (this should be clear from the result sequence
definition and the example), or the store subtargetting (this is similar to fetch subtargetting,
but a special check is made for the destination of "«"s for mismatches).

3.6. Example

We will demonstrate the use of template schemas by tracing through the generation of code
for a small program using the MMM aigorithm.

Figure 4 shows an example program and how it would be internally represented in TCOL. Ve
will show how the CODE phase would generate PDP-11 machine code for this example using
the MMM algorithm with the tables (template schemas) in Figures S through 7.

The notation used in Figures S through 7 requires some explanation. Each figure is a schema;
the figures show the schemas for the statement context, value context, and flow context,

39
X«0;
2«724+2¢Y;
WHILE X<N AND V[X]#Z DO
XeX+1;
PRINT(X);
After conversion to internal TCOL tree:
H
WHILE
- - /\ CALL
e o . AT
/\‘ x/\ X
| Uss A
b s
I N 1
L eI S [. I
| b
X + z
v .
|
X

Machine code:

LO2: INC RI1

LO1: CMP R1,#N
BGE LO3
CMPB V(R1),Z
BNE LO2

LO3: MOV R1,~(SP
JSR PC,PRI

Figure 4: Example program. X, Y, and Z are integers; N is a constant; V is a byte array.

Pattern

WHILE

CALL

L1 Al A2l

40

Result Sequence

(» El &1 &2)
&l:

(S1)

&2:

(-~ E1 &1 &2)
&l:

(S1)

BR (ADR &3)
&2:

{ S2)

&3:

BR (ADR &2)
&1:

(s1)

&2:

(» El &1 &3)
&3:

7REPEAT 1
MOV (SRC AZI) "~(SP)"
7END

JSR "PC" (DST L1)

Figure 5: Statement context schema of LOP (top operator has no value)

)

IR L

= 41
Pattern Result Sequence
- CLR (DST Al)
Al 0

INC (DST Al)
ADD (SRC A2) (DST Al)

Al
/"\ ASL (DST A1)

MOV (SRC A2) (DST Al)

/"\ : BIS (SRC A2) (DST Al)

Figure 6: Value-context schema of LOP (top operator "«*").

42
Pattern

-

AND L1 L2

1/\2

-

NOT L1 L2

1

LSS

TN

NEQ

N

Al1<7:0> .A2<7:0>

!

-
L1 L2
-

L1 L2

Figure 7: Flow-context schema of LOP (top operator is "=+"). The semantics of

the "+" nodes are that control goes o location L1 if the first son is true, else to L2.

A single Ianguase operator corresponds to different TCOL o
of t in the figures

type and size he data; for simplicit

Result Sequence

(- El &1L2)

&l:
(2 E2L1 L2)

(= E1 L2LY)

CMP (SRC A1) (SRC A2)
BLT (ADR L1)
BR (ADR L2)

CMPB (SRC Al) (SRC A2)
BNE (ADR L1)
BR (ADR L2)

onl
versions are shown (except NEQ, whicg illustrates an 8-bi compare).

erators according to the
he 16-bit integer

43

re:.peciively.“ The leaves of the patterns are marked with S, E; A, or: L, depending!on
whether they match a statement, an expression, an "addressable” expression, or a label
expression, res.pteclively.12 In ihe resuit sequences, instructions are given in symbolic
as«embly-language form for readability; submatches are given in parenthesized form, le.,
"(context son; sony .. son,)". Labels are preceded by "&", special operators by "Z". The
use of these should become clear as we proceed through the example.

The reader may note that the submatches for fields of instructions use schemas (DST, SRC,
ADR) for operand classes, that we have omitted here for simplicity. These schemas have
patterns for each access mode that can be matched by the parameters (subtrees) passed
them, and the corresponding result sequence for each access mode causes output of the
appropriate PDP-11 addressing mode, register field, and index if present.

In an implementation, the result sequences would be encoded using formats to indicate the
types of code specifiers and field specifiers, as suggested in section 3.2.4; we are omitting
implementation details here for readability. For example, various schemes can be used for
representing and indexing pattern trees for efficient and flexible use.

Temporary register allocation will be done on the fly ‘or this example. We will assume
simple global allocation of variables to locations has already been done: suppose that all
locations but X have been assigned to memory, and that the loop variable X has been
assigned to a register.

We perform a traversal of the program tree in the code generation. In the program tree in
figure 4 the top operator is ";", so we proceed by generating code for each son, starting with
X<0.13 This tree is matched by the first template in Figure 6; the corresponding result
sequence indicates the generation of an instruction with opcode field CLR and destination
field given by looking up X in the DST table. Let’s suppose X has been assigned to register

1 Note that we only need these three conloxts which represent complete actions. For example, "+" never occurs at
the top of a template pallern troe because it makes no sense excepl in the context of a place to store the resuit
(value context). ¥ t

12 The lelters are usad as a reminder of what the parameters are for readability; the patiern leaves in actuality'are
either access sets or "wild" (ie, match anything, eg, E and S). A is the access set of both DST and SRC; L ig the
accoss sal of ADR

13 The samantics of " could be buill into the code generation algorithm, simply causing a recursive call on the sons.

T TeRTIEp —

N L e et gl Lo o o A

P T T

44
1, so that "CLR R1" is the instruction generated.!4

We then proceed to the second son of ™", and find that the first match is the third in Figure
6: Al«Al+A2. Al is matched exactly by the Z leaf, but 2+.Y will require a temporary
location and another malch; subtargetting occurs. CODE allocates a temporary location, say
R2;15 then it calls itself recursively to match R2¢2+.Y. This is matched by Al«2+.Al, but
again requires a further submatch, R2¢.Y, this time because the parameter Al is used twice
in the pattern tree, and since the first occurrence of Al matched R2, Y must be in R2 as well.
R2«.Y matches the 5th template in Figure 6 exactly, resulting in the generation of MOV Y,R2.
Upon returning from the two recursive calls, CODE generales:

ASL R2
ADD R2,2Z

The WHILE is then matched, by the third template in Figure 5. Note that CODE "understands"
the generation and use of labels, which are indicated in the result sequence as &1, &2, etc.
If symbolic output were being generated, names would be generated here. For example, the
first two code specifiers would generate BR LOl and a label definition LO2. The next line
causes a recursive call to match XeX+1, and INC R1 is generated. Then LO1 is defined.

The next code specifier causes lookup of the AND subtree in the flow-context table. The
AND is matched and indicates a submatch on the first son, "LSS", in the same table. This
match generates

CMP R1,&N
BLT LB4
BR LB3

Another label is generated, then the second son is matched, generating

18 Note thet something a8 complicated ss "@5(R3)" (in PDP-11 assembler notation) could have matched the sccess set
here, we just happened to have simply a register.

15 In the MMM aigorithm, we pick the bes! (cheapest per node) access mode for the operand class (DST in this case)
which can be made to match (Al). But since the top operator of the subtree is “", the first one found is register mode
(if a register is available).

Oll'

45

LO4: CMPB V(R1),Z
BNE LO2
BR LO3

Code then returns to complete evaluation of the WHILE node by generating LO3:.

Finally, the function call is processed. A simple argument passing mechanism is assumed.
This last son also serves to illustrate how CODE could be made to handle nodes with an
arbitrary number of sons, with a special control command in the result sequence, ZREPEAT.
The code generated is:

MOV R1,-(SP)
JSR PC,PRINT

This completes the example. An additional pass over the code stream is used1® to resolve
forward references, deal with long vs. short jumps, and remove redundant branches. The
bottom of Figure 4 shows the complete code sequence for the example after removal of two
redundant branches.

The main purpose of the example and this chapter is to design and demonstrate enough of a
feasible code generator to make the work in the next chapter possible. That is, we need a
model of code generators to generate code generators. There are many issues in .the
implementation of a code generator we cannot hope to discuss in detail here. There are
several ways to represent result sequences, as pointed out earlier. There are more
complexities involved in dealing with operand classes that we have avoided for simplicity; for
example, there are both byle and word addressing modes on the PDP-11, necessitating
separate templates for byle and word instructions. There are issues with respect to the
TCOL reprcsentation; for example it might be better to decompose the CALL node used here
into operations such as PUSH on the stack to make the calling and parameter-passing
mechanism explicit in the TCOL. Another likely change to the notation would be to encode
the explicit store nodes ("«") as a target field in the expression nodes (e.g., "+") which gives
the location to be used for the result (as a location tree). Finally, an indexing scheme for the
templales in a schema is essential to avoid serial matching of all the patterns. A simple hash

by the primary operalor (lst son for "»", 2nd son for "¢", main operator for statement

16 This could be implemented as a separale FINAL-like pass (Wull et al[1975]) and/or concurrently with CODE as part
of the instruction EMIT routine called for each n-tuple

46

context) worked well in the prototype implementation described in section 3.8. :{’he
templale matching might be implemented even more efficiently by combining the patterns
(automatically) into a single match tree, as done by Weingart [1973] Specifically, this
approach is best when the patterns are complicated (many nodes), and slightly differing
patterns occur. It should also be noted that the representations described in this chapter do
not necessarily correspond to those currently planned by PQCC. For example, the contexts
described in section 3.3 may be represented by special flags in the tree ncdes, and ‘he
control constructs (e.g., WHILE-DO) may be decomposed into blocks of code and conditional
jumps (flow contexts).

3.7. Usc in a Compiler

The previous section described how the template schemas could be used in a stand-algne
code generalor. Belter machine code can be generated if we use :the template schemas in
mullipie phases, for example if we perform temporary allocation as a'sepa_lfate phase, so that
many assignmenls of temporaries to locations can be considered.

In the Bliss-11 compiler structure (section 3.2.1), the template schemas could be used in the
DELAY, TNBIND, and CODE phases. Basically:

(1) The DELAY phase would act as a pseudo-code-generator. That is, it would perform the
code generation algorithm described in the previous section without generating code,
but only to determine where locations of each storage base type are required (namely,
where subtargetling is performed). We could do this by assuming an infinite number
of allocatable registers of each type, and setting the target fields of tree nodes which
require registers.

(2) The TNBIND phase would then allocate temporaries as best it can to the nodes of the
program tree which have been marked as requiring them. TNBIND knows the actual
number of locations of each storage base type, and the lifetimes (periods of use) of
the temporaries which are to be stored in these locations.

(3) The CODE phase would then generate code. Unlike in stand-alone mode, the targets
for the temporary results will have been specified, so that no on-the-fly allocation will
be required. Allernatively, we could permit TNBIND to fail to assign a register of the
type required to make a node match a template exactly; to handle this, CODE would fall
back inlo "on-the-fly" mode to subtargel to an allocaled temporary (taking into
account TNBIND's assumplions about register use; typically, a memory location would
be used in place of a register).

l'l’

L

3.8. An Implementation

In order to test the model of code generation proposed in this chapter, a prototype code
generator was implemented. As mentioned earlier, the goal of this test of the model was to
set the stage for the next chapter, so only a minimal system was necessary: in fact, the code
generation algorithm used is independent of the the LOP table and the discussion of its
generation in the next chapter. '

Because PQCC’s compiler is not yet designed and built, it was necessary to build a stand-
alone code generator for TCOL with makeshift simulations of register and storage allocation
(TNBIND) and code output (FINAL). The interfaces to these two compiler functions are quite
simple. We assume FINAL provides a routine which takes a list of symbolic fields and a
format specifying how to assemble them into an instruction or binary constant; this routine
could output code directly or create a data structure. TNBIND can communicate with CODE
through modification of target fields in the nodes, and by supplying routines to process
storage declarations and allocation of registers of various kinds.

The structure of the prototype code generator and the functions of its main routines are
shown in Figure 8. An example run of the code generator is shown in Appendix C.

No serious problems with the code generation model or its implementation were encountered
in the prototype. It is currently planned that a code generator based on the prototype be
integrated into the compiler system being built by the PQCC project.

ag

TCOL compiler

TREEIN SYMBALLOC MARKASDS GENCODE .::;L
bl labhl ihstruct)

iy,

v : !
GENDECLS EMITLABEL DOFLDSEQ EMITCODE

sup-
malch cpstant

GENFLD EMITFLD
L.

Figure 8: Structure of prototype code generator. The named procedures call one

of the subprocedures shown, or all subprocedures when marked by horizontal line
through alternatives. TREEIN inputs TCOL, SYMBALLOC outputs space reservations for
symbols (eg, own’ variables), MARKASDS marks the symbol nodes in the tree with

the access mode (AM) in which they fail, and GENCODE generates the code, being called
with a reference to the top of the program tree as parameter (initially). After

finding a template which malches the node it is ﬁiven, GENCQOE interprets the
corresponding resull sequence, which may specify a recursive submatch of another
node (recursive GENCODE call), output of ‘a label YEMITLAF'EL), local declarations

to be processed (GENDECLS called until code encounterec again), or output of an
instruction. In the latter case, DOFLDSE(US called to interpret the field sequence;
then the resulting fields are output by EMITCODE. Each field in the sequence may

be specified directly (EMITFLD called) or determined by a submatch (for OCs), in

which case GENFLD calls DOFLDSEQ recursively.

49

4. Automatic Derivation of Translators

"We should not introduce errors through sloppiness, we should do it
carefully and systematically®

- E. W. Dijkstra

[A Discipline of Programming, p. 56]

4.1. Introduction

In the previous two chapters, models of instruction set processors and code generators were
presented; these allow machines and translators to be represented e)(plicitly.17 An overview
was given in Figure 1 (page 5). In this chapter, we consider a scheme for automatically
generating code generators. More precisely, the scheme involves deriving the LOP, which in
turn controls the code generation process. The input to the code generator generator is the
MOP, which represents the target machine.

The central formalism on which this work is based is a set of axiom schemas which specity
semantic equivalences between trees. The axioms express the classical arithmetic and
boolean laws, as well as rules about programs and the model of instruction set processors.
The axioms will be used to specify legal (semantics-preserving) tree transformations, and are
used in a heuristic search for optimal code sequences. This search algorithm is the central
result of the chapter. The tree equivalence axioms are presented in the next section (4.2);
the search algorithm which uses them is presented in the following section (4.3).

The search algorithm is essentially a machine-independent code generator, which takes as
input not only the source tree, but also a description of the target machine, namely the MOP.
The algorithm uses the axioms to find a code sequence for the source tree in the target
machine language. This machine-independent code generator could be used directly as the
code generation phase of the compiler (i.e., the MOP could be used directly, obviating the
LOP). In practice, however, it is preferable to separate compile-time from compiler-compile
time, to make the code generator more compact and efficient (heuristic searches tend not to
be!). This is done by the introduction of the LOP table, as shown in Figure 9. Recall from the
previous chapter that the LOP contains templates used by the code generator. Each template

17 Note that TCOL provides s common representation for instruction actions, the source language, and the axioms used
to link the two. This is not strictly necessary, since {ranslations beiween notations could be done, but it makes the
overall organizetion conceptually simpler.

g e ———

50

consists of a tree paltern, and a code sequence to generate when that tree occurs in a
source program. The algorithm labelled SELECT in the figure is used to select the: pattern
trees, call the machine-independent code generator to find the corresponding code
sequences, and enter the resulting tree/code-sequence pairs (the templates) into the LOP.
The SELECT algorithm, and associated problems in the generation of the LOP table, are the
subject of section 4.4.

In section 4.5, the relation of this work to other work in the area will be discussed.
Finally, in section 4.6, examples and an overview of the actual implementation will be given.

4,2. Tree Equivalence Axioms

42.1 Overview

The central basis for the wark in this chapter is a set of axioms specifying equivalence of
programs. Examples of some of these axioms are shown in Figure 10.

Note that the axioms cover a wide class of equivalences: arithmetic and boolean laws, rules
about storage and side effects, and rules about program sequencing (including the semantics
of the program counter, PC). The axioms define an "algebra of trees” which will provide the
search space for our problem. In the remainder of this section (4.2), the various flavors of
axioms are discussed in more detail, 18

422 Arithmetic and Boolean Laws

The arithmetic and boolean axioms are relatively straightforward; see Figure 10 for examples.
Boolean laws include commutativity of AND and OR, DeMorgan’s law, and the double-
complement rule. Arithmetic axioms include commutativity of addition and multiplication,
special cases of adding, subtracting, or muitiplying by zero or one, relations between addition
and subtraction (e.g., a-b=a+(-b), -a=0-a), and so on.

18 The axioms are reprevented in the implementation ss produclions whose lefi-hand side (LHS) snd right-hand side
(RHS) are parenthesized TCOL trees; these axioms are shown in Appendix F. Note that the axioms in Figure 10 are
shown as bidirectional, ie, "A «» B" may be applied to transform A into B or vice versa. The actual axioms in Appendix F
sre uynidirectional (LHS into RHS). This difference is not crucial, it simply sllows additional control over the search.
(Three of the axioms sctually used sre represenied in the code rather than the parenihesized notstion; this is also due
to implementation considerstions.)

»

||1’

i
'g 51
!
! TCOL
‘ Machine-op to TCOL-op to
TCOL mapping Machine mapping i’
COODE
ISP MOP LOP S
Y GEN
SELECT— I
treei?code sequence Machine Code
Machine-independent
Code Generator
(Search Algorithm)
Fia.ure 9: Highly simplified view of code generator generator, generating LOP from MOP.
‘ SELECT insures that the necessary TCOL to code sequence mappings (productions) are in
the LOP, calling the search routines to find code sequences for the necessary trees.
The search routines are expanded in figure 11. .

52

Figure 10: Tree Equivaience Rules (Examples)

Boolean axioms

not not E <=> E

E) and Ep <=> nof((not E}) or (not E5))
Ej and E3 <=> Ej and E;

Eand E <=> E

Arithmetic axioms
E+0 <=> E

-E <=> 0O-E
EjsEa <=> EE
-E <=> (not E)+1
ET1 <=> E»2

Relational axioms
not (E; geq Ep) <=> (Eq Iss Ep)
(Ey Iss Ep) or (E] eqgl Ep) <=> Ej leq Ep

Fetch/Store decomposition rules
EI(EZ) <=> SeEo; Ey(S)
Sll-E <=> Szl—E; Sl(—SZ

Side-effect compensation axioms
S; D«E <=> S if D is temporary-type SB
S; D«E <=> Alloc(D); S if D is generai-type SB

Implementation rules
if Ethen S <=> if (not E) then goto L; S; L:

if E then S) else Sp <=> if E then goto L; Sp goto Ly Ly: Sy Lot
while E do § <=> Lj:if not E then goto Lo; S; goto Ly; La:

Sequencing Semantics axioms
goto E <=> PCe«E
PCe«PC+n; S<space n> <=> «<nil>

if E then S <=> if not E then PC~PC+n; S<space n>

goto L) <=> goto L;-Lo+PC; Ly

Notation:

L: location in instruction store;

D: location in data store;

E: combinatorial tree;

S: statement (assignment or conditional) tree;

l‘l’ .

(]

53

Axioms are required for each data type (section 2.3.6). A special set of axioms specify
properties of the data type representation. For example, for two’s complement integer
arithmetic:

-E <=> (NOT E)+1
ETl <=> 2xE ("1" denotes shift left)

Other axioms simply specify relationships between relational and boolean operators. In the
implementation, special simple cases of arithmetic are also encoded as axioms, e.g., 1+1=2,
since so few cases are required. These could of course be obviated by making the program
“"smarter”. o

4.2.3 Fetch/Store Decomposition

EI(EZ) <=> SeEp; Eq (S) (Fetch Decomposition)
S1+E «<=> Sp«E; S1¢S7 (Store Decomposition)

These rules are centrally important. They represent the fact that there are storage locations
on a machine, and that they can be used to hold intermediate results.

Fetch Decomposition states that an expression El with a sub-expresslon E5 can be computed
by first computing E5 in a location S, and then replacing E with S in the computation of El
Note that the location S must be available for use to hoid the intermediate result, and S may
not be stored into for any other use until after the fetch of S in the computation of E;. This

is the only axiom with side effects on the machine state. Aspects of the machme state will
be discussed in section 4.4.2.

The second rule, Store Decomposition, is a special case of Fetch Decomposition in which € is

an assignment statement. It is treated separately because of the way the means-ends
analysis works, in section 4.3.2,

4.2.4 Side Effects

S; DeE <=> S [if D is temporary-typel
S; DeE <w> Alloc(D); S [(if D is general-typel

"*w“,. B S Lo o
-

54

If a machine-operation tree has more than one effect, it may be possible to use the
instruction for a subset of its effects, and ignore or compensate for the undesired side
effects. The side effects we are concerned with here are in the form of changes (or
conditional changes) to the value of a storage location on the machine. The storage bases on
the machine were classified in section 2.3.1 according to whether they were temporary,
general-purpose, or reserved. Temporary locations, for example, condition codes, may be
destroyed in the process of generating code. General purpose locations, for example
registers or memory locations, may be used if they are allocated. If no location of the type
required is available for use, this could involve saving the value in anocther location
temporarily. Reserved locations, for example a stack pointer or subroutine linkage register,
may never be used for intermediate results.

The use of these rules about side effects will be discussed further in section ‘4.3.4. Side
effects on the program counter, the gth type of storage base, will be dealt with in the next
section.

4.25 Sequencing Semantics

The remaining axioms are concerned with flow of control. We assumed, in the model of
instruction set processors in Chapter 2, that the processor state contains a program counter,
PC. The PC’s value, after each instruction cycle, is the address of the next instruction to be

executed.

Sequencing semantics are specified by two kinds of axioms: First, there are definitions of
higher-level constructs in terms of conditional and unconditional jumps. For example:

if E then S <=> if not E then goto L; S; L:

Second, there are three basic axioms which specify the semantics of the program counter.
These will be referred to as the Hop, Skip, and Jump rules. The Hop rule merely defines the
PC:

goto L <e> PCel
The Skip rule says that a block of code is skipped when the PC is incremented:
PC-PC+n; S<space n> <=> <nil>

The "S<space n>" in this axiom represents a tree S which requires exactly n words (section
2.3.1) of machine code. The Skip rule will be combined with the definition of “if" in the
examples in the next section for the special case of skip-decomposition:

.

\'\’

M

55
if E then S <=> if not E then PC-PC+n; S<space n>

We will also use the abbreviation

E->L for if E then PCel
in the next section, using the operator "->" for the very common case of a conditional jump.

Finally, the Jump rule allows the use of relative and absolute jumps interchangeably:

PCPLI <=> PC#PC+L1-L2: Lz:

4.3. A Search Algorithm using Tree Transformations

4.3.1 Introduction

Now let’s consider the machine-independent code generation problem. We are given a
machine M with instructions mj, My, .. m,, and a goal tree G for which we would like to
generate code (in the machine language of M). That is, we would like to find a sequence of
machine-operation tree instantiations which is semantically equivalent to the goal tree G.
The axioms presented in the previous section define the term “equivalent": if a subtree
matches one side of an axiom schema, the subtree may be replaced by the instantiation of
the other side. In this way, the goal G can be successively transformed into other trees,
until eventually we may arrive at a tree which is a sequence of M-op trees:

C => 0" =>(G"’ => ..., => mi.s my

1 2: e e Miko

Because more than one axiom may be applicable to a tree at any point, and we can test for
the termination condition of a sequence of M-ops, we have a classical search problem. That
is, starting with G, we may apply all applicable axioms to obtain a set of equivalent trees,
recursively apply all applicable axioms to those trees, and so on, until we have one or more
instruction sequences for the goal tree.

Applying this algorithm literally is undesirable, as the search space is combinatorially large.
Note that axioms may be applicable at more than one point in a goal tree, and more than one
axiom may be applicable at each one of these points.

56

To deal with this problem, we will use some established methodology from the field of
artificial inlelligence. In fact, we will use not one method, but several, allowing the strongest
applicable method to be used for each kind of information. To do this, the axioms have been
divided into three classes:
(1) Transformations. These are the axioms concerned with arithmetic and boolean
equivalence. Transformations will be used in conjunction with means-ends analysis in
section 4.3.2. :

(2) Decompositions. These axioms are normally those concerned with control constructs;
they decompose constructs into sequences of other constructs, allowing the search to
recursively proceed on subgoals. Decompositions will be used in conjunction with a
general heuristic search described in section 4.3.3.

(3) Compensations. These are the axioms concerned with side effects. No search at: all
will be associaled with these axioms; it will be possible to use them in a pre-pass on
the MOP table, as will be described in section 4.3.4.

The use of these three kinds of axioms will be discussed in the next three sections. The
reader may wish to refer ahead to Figure 11 (page 72) at this point, to get an overview of
the routines invaolved in this process. Briefly, TRANSFORM applies transformations, SEARCH
applies decompositions, and INDEX applies compensations. Note the recursive relationship
between SEARCH and TRANSFORM; SEARCH attempts to match a goal tree against the
available machinc-operations and decompositions, and then calls TRANSFORM to try
transformations. The recursive cails of SEARCH and TRANSFORM are to process subgoals.
All possible code sequences found for a given goal tree are returned by the search routines,
and the best of these is chosen by SELECT to be entered into the LOP table. The "best" cost
is delermined by a user-supplied function of time and space; the time and space cost for
instructions are known from the machine description, as described in Chapter 2. Following
discussion and examples of the search algorithms, we will see how the algorithms are
combined in the composite scarch for code sequences, and the figure will be explained in
more detail.

4.3.2 Transformations

The first and "strongest”™ method we will use in-the search for code sequences is means-ends
analysis (Ernsl & Neweli[1969], Newcomer[1975]). Briefly, means-é_nds analysis is deciding
how to get from what you have to what you want by representing the difference between
the two in some way, and picking an action to perform on the basis of that difference, with
the idea of reducing the difference.

Hip

(BRI

57

In order to apply means-ends analysis we need both a starting point and a goal. However, in
the search for code sequences, we have only a goal: the tree to be coded. Therefore, the
algorithm involves two steps: first finding feasible instructions to work toward from the
current goal tree, and then applying means-ends analysis to transform the goal tree to a
form to which each such instruction is applicable:

(1) (FINDFEASIBLES) Using some simple heuristics, we find a subset of the M-cps, ordered
by decreasing feasibility for use in implementing all or part of the goal tree. The
heuristics are:

(a)

(b)

(c)

Pick instructions whose primary operator is the same as the primary operator of
the goal tree. The primary operator of a tree is simply a convenient key used
for indexing trees. Operationally defined, it happens to be the root operator of
the second operand (the source) in the case of "«", and the root operator of the
condition in the case of "->" or "IF"; thus the primary operator provides an index
to the main expression computed by an instruction. This primary operator key
is used frequently in this work as an indexing scheme to avoid serially matching

trees.

Include (as second choice to the above) instructions whose primary operator is
closely related to that of the goal tree (e.g., "+" for "-"). "Closely related"
means, for our purposes, that there is a transformation axiom which can turn
one operator into the other (i.e., the root of the axiom’s LHS is the first
operator, the root of the RHS is the closely related operator).

We order the selected M-ops so that those that most closely match the
remainder of the tree come first. Specifically, in the case of a "«", those M-ops
with the correct destination are put first. When the primary operator node is an
operand class, which can represent several kinds of locations or constants,
special checks are necessary to eliminate/order the possibilities.

(2) (TRANSFORM) For each of the feasible M-ops for the goal, in the above order, we
attempt to transform the goal to match the M-op. This is done by matching the trees,
node by node:

(a)

(b)

When a match occurs, we recurse on the descendents; if they match, we return
successfully.

When a mismatch occurs, we select transformation axioms whose LHS and RHS
match the root operators of the (sub-)goal and (sub-)M-op, respectively, and

58

apply them to transform the goal tree into new goal trees (this corresponds to
the selection of operator by difference in means-ends analysis). For each new
goal thus formed, we recursively attempt to transform it into the (sub-)M-op.

Note that the algorithm does not stop upon finding one code sequence for the given goal
tree. It tries to transform the goal for each feasible instruction; each can lead to code
sequences. Also, it tries all axioms applicable to a given mismatch when a mismatch occurs.
All the possibilities for a node and its subnodes are then returned.19 At the top level, the
best code sequence found will be chosen according to a best-cost criterion, which is
provided by the user as a function of time and space.

As an example of the use of transformations, consider the problem of loading the accumulator
on the PDP-8 (there is no load instruction to do this directly). This can most easily be
understood by following the steps of the actual search algorithms; a trace output from the
implementation is shown below. The MOP description has been input at this point, and the
top-leve! search routine is given the goal tree "(« 7ACC 7MP)", the TCOL representation of
the problem of interest (the comments in italics have been inserted to annotate the output;
also, parts have been truncated with "." for readability; see Appendix D for the complete
version):zo

Search: (« ZACC 7MP) +SEARCH (s passed goal tree
Attempting M-op-match *no instructions match goal
Attempting Decompositions
Attempting Transformations

t(Decomp’s are explained next section)

Feasible[1]: (¢« ZACC (+ 7ZACC $1:2)) tattempt using TAD for goal
Transform: (¢« ZACC 7ZMP) => (« ZACC (+ 7ZACC 81:2))
Transform: ZACC => ZACC *LHS of "«" matches

19 Actually keeping an enumeration of all possible code sequences and forming cross-products is not necessary.
Instead s “disjunction” node is inserted into the resull code (the result code is represenied as a tree, except the only
legal nodes are sequencing (i), disjunction (|), code (EMIT), and special pseudo-ops (LABEL, ALLOC)).

20 1he parenthesized LISP-like form used for the irees is explained in Appendix A. For example, (« ZACC (+ 2AUC
7ZMP)) means add a memory location (7MP) to the accumulator (ZACC) Paramelers, e g, "$1", are sssocisted with nodes
for reference, ss explained in the appendin. Global paramters, e g. "$31°, are parameters whose scope is over an entire
search, as opposed o » single axiom or M-op; they are used to refer to lemporaries needed in the code sequence, for
example (sne appendix) Access modes sre preceded with "2° by convention. Operand classes (eg, Z in the example)
sre not. The full text of all the examples in this chapter can be found in Appendix D, if the reader is interested in more
delails of any particuler sesrch

»

"'

(]

A s i et st s T

E—

S

59
. Transform: ZMP => (+ 7ACC $1:2) tbut RHS mismatches
Applying 81 :: (+ O $1) to: 7MP ttry axiom to reduce difference
Transform: (+ O ZMP) => (+ ZACC $1:2) tnow "+" node matches
Transform: 0 => 7ZACC tbut 0 mismatches 72.ACC
Applying Fetch Decomposition to: 0 tAcce0 will fiz this mismatch
Search: (« ZACC 0) tand there is a CLRA M-op
Attempting M-op-match #(M-op match explained later)

M-op Match: (; (ALLOC §82:2) (EMIT[DCA 1 1 1] 3 8§82:2)) signore this line for now
M-op Match: (EMIT[CLRA 3 1 1]7 0 20)
Transform: ZMP => §1:2 22 is an OC which matches ZMp
Feasible[2]): (« ZACC (+ ZACC 1)) ttry other feasible M-ops...
Transform: (« ZACC 7ZMP) => (« 7ZACC (+ ZACC 1))
o tbut no other solutions found
Best Sequence is:
[Alloc 881:7ZACC]
CLRA
TAD 7ZMP

- -

The first feasible instruction found is the two’s complement add (TAD) instruction, whose tree
representation is "(« ZACC (+ 7ZACC $81:2))"; no other instruction more closely matches the
primary operator and also has the appropriate destination (ZACC). We therefore attempt to
transform

(« %ACC %MP) => (e %ACC (+ %ACC 81:2)).

The 7ZACC part matches, but the RHSs mismatch. The program finds the transformation, $1 =>
(+ O §1), whose root operators match the mismatching subtrees, and it is applied ta create
the subproblem of transforming

(+ B YMp) => (+ %ACC 81:2).

The "+"s now match, but the 0 and ZACC mismatch. Fetch decompostition is applied to make
these match, by storing O into ZACC. Two instructions are found to do this (more on this
later), the better one being CLRA (clear accumulator). The ZMP matches the operand class Z,
because Z is defined to allow either a direct or indirect memory reference on the PDP-8. We
have then completed the match. The search proceeds to try other feasible instructions, but
no further code sequences are found. The best code sequence to load ZACC is therefore to
clear ZACC and add 7ZMP.

As a second example of transformations, we will consider subtraction on the PDP-8. This is

60

probably one of the most difficult cases the code generator must handle: not only is there no
subtract instruction on the PDP-8, there is not even a negate inslruction.21

This example will illustrate the learning behavior exhibited by the algorithm. When a code
sequence is found for a given goal tree, the goal-tree/code-sequence pair is stored away for
later use. This is done in the implementation by storing the goal tree as if it were an M-op:
if the goal tree is encountered again later, this Pseudo-M-op will be found, and the (multiple-
instruction) code sequence previously found will be generated. Pseudo-M-ops will be
discussed further in section 4.3.4. In this particular example, code sequences have
previously been derived for loading the accumulator (the previous example), and for negating
the accumulator (see appendix), as noted in the commentary below. In the use of the search
algorithm, as will be described in section 4.4.1, the code generation cases are attempted in
order from simpler to more complex cases, to maximize the re-use of earlier results. Of
course, at the expense of greater search depth, this is not necessary.

Search: (« ZACC (- ZMP ZACQC)) tgoal is AcceMp-Ace

Attempting M-op-match

Attempting Decompositions

Attempting Transformations

Feasible(1]: (« ZACC (- ZACC 1))

*the above M-op (DECA) is chosen because its primary operator (=)

*matches that of the goal, but it is useless for subtraction...
Transform: (« ZACC (- ZMP 7ACC)) => (« ZACC (- 7ZACC 1))
Transform: (- ZMP 7ACC) => (- ZACC 1)

[fail on (« ZACC (- ZMP 7ACC)) }

Feasible[3]: (« ZACC (+ 7ZACC $81:2)) sfinally TAD is chosen as a possibility
Transform: (« ZACC (- ZMP 7Z.ACC)) => (« ZACC (+ 7ACC 81:2))
Transform: ZACC => 7ACC tdestinations match, but

Transform: (- ZMP ZACC) => (+ 7ZACC 81:Z) #source expressions mismatch
*the following axiom is applied to attempt to correct the +/- mismatch
Applying (- 81 82) :: (+ 81 (- 82)) to: (- ZMP 7ACC)

Transform: (+ ZMP (- 7ACC)) => (+ 7ZACC $1:2)
Transform: 7ZMP => 7ACC
Applying Fetch Decomposition to: ZMP using: $84:72.ACC
Search: (« $34:7ACC 7MP)
Attempting M-op-match

21 The fact that there is only one sccumulator slso complicates matters, butl this is a register aliocation problem and
does not concern the TRANSFORM aigorithm (see seclion 3.23).

"'y

o

Best Sequence is:

61

M-op Match: (; (ALLOC §$5:ZACC) (EMIT[CLRA 3 1 1] 7 0 20) (EMIT[TAD 1 1 1] 1 7ZMP)
Transform: (- ZACC) => §1:2
Applying Fetch Decomposition to: (- ZACE':) using: $86:7MP

Search: (« §86:7ZMP (- ZACC)) *856:7MP was allocated for $1:Z here

Attempting M-op-match

*no soln is found using this approach,
[fail on (- ZACC)] *so try another axiom, commutativity(¥):
Applying (+ 81 82) :: (+ §2 81) to: (+ ZMP (- 7ZACC))
Transform: (+ (- ZACC) 7MP) => (+ 7ZACC $1:2)

Transform: (- ZACC) => ZACC

Applying Fetch Decomposition to: (- ZACC) using: §88:7ACC

Search: (« $88:7ACC (- ZACC)) sthis quickly leads to a soln because
Attempting M-op-match tM-op from earlier search found(¥*)
M-op Match: (; (ALLOC $89:7ZACC) (EMIT[COMA 31 1] 7 0 40) (EMIT[INCA3 1 1]..))
Transform: ZMP => §1:2 tand RHSs match
Feasible[4]: (« ZACC (+ ZACC 1)) tother M-ops are tried...

Transform: (« ZACC (- ZMP 7ZACC)) => (« ZACC (+ 7ZACC 1))

sbut no other solutions found

[Alloc ZACC)
COMA
INCA

Note the lines marked by (1), where it was necessary to use commutativity and the
previously derived code sequence for negating the accumulator (COMA; INCA) to find a code
sequence for the goal.

The search algorithm was also tried on other machines. An interesting example is computing
an AND of two locations on the PDP-11; we will use this as the third and final example of
transformations. There is no AND instruction, so it is necessary to apply axioms relating the
AND, OR, and NOT operations:

Search: (« $§1:7M (AND §82:7M $83:7M)) tgoal is $$1:7M«$82:7M AND $3$3:7M
Attempting M-op-match sthe "$$n"s in o goal tree are distinguished
Attempting Decompositions tfrom "$n"s in azxioms/M-ops; see App. A
Attempting Transformations BIC instruction is tried for the goal:

Feasible[1]: (« 8$1:DST (AND $1:DST (NOT $2:SRC)))

Transform: (« 881:7M (AND $$2:7M $$3:7M)) => (« 81:DST (AND $1:DST (NOT $2:SRC)))
Transform: §81:7ZM => 81:DST 2831:7M matches $1:DST, but
Transform: (AND $82:7M $83:7M) => (AND $1:DST (NOT $2:SRC))

62

Transform: §82:7M => §1:0ST *$82:7M mismatches $1:DST, because (¥:x)
Applying Fetch Decomposition to: $82:7M using: $81:7M
Search: (« $81:7M $82:7M) tboth occurences of $1:DST must be same
Attempting M-op-match *s0 @ move is generated (using FetchD)
M-op Match: (EMIT[MOV 2 1 1] 1 $82:7M $81:7M)

Transform: $83:7M => (NOT $2:SRC) tnow only BIC node mismatching is NOT

Applying 81 :: (NOT (NOT $1)) to: $83:7M taziom invoked to resolve this
Transform: (NOT (NOT $83:7M)) => (NOT $2:SRC)

Transform: (NOT $83:7M) => §2:SRC *must apply Fetch D, which causes
Applying Fetch Decomposition to: (NOT $83:7M) using: $84:7R
Search: (« $84:7R (NOT $$3:7M)) treg (§54:7.R) to be alloc’d for $2:SRC

Attempting M-op-match

Attempting Decompositions

Attempting Transformations

Feasible[1]: (~ 81:0ST (NOT §1:0ST)) stry COMplement for the NOT
Transform: (« $84:7R (NOT $83:7M)) => (« §1:0ST (NOT 81:DST)

Transform: 884:7R => 81:0ST *destination matches, but again,

Transform: (NOT 883:7ZM) => (NOT $1:DST)

Transform: 883:7M => 81:DST tboth occurences of $1:0ST must be same
Applying Fetch Decomposition to: $$3:7M using: 884:7R
Search: (~ $84:7R $83:7M) *so another move is generated
Attempting M-op-match tthis completes code seq using BIC

M-op Match: (EMIT[MOV 2 1 1] 1 $83:7M $84:7R)
Feasible[2]: (~ 8$1:0ST $2:SRC)

Feasible[2]: (« $1:DST (NOT $1:DST)) *this M-op doesn't lead to code seq,
Transform: (« $8i:7M (AND $82:7M $83:7M)) => (« $1:DST (NOT 81:DST))
Transform: $81:7M => §1:0ST *although it could, 6y using

Transform: (AND $82:7M $$3:7M) => (NOT $1:D0ST) sDeMorgan’s Law:
Applying (AND $1 $2) :: (NOT (OR (NOT $1) (NOT $2))) to: (AND $82:7M 883:7M)
- %the search doesn’t go deep enough to find this more roundabout sequence
Best Sequence is:
[Alloc 881:7M)
MOV $82:7M $81:7M
[Alloc $84:7R]
MOV $383:7M $84:7R
COM $84:7R
BIC 884:7R 881:7M

The best code sequence therefore requires complementing one of the arguments of the AND,

63

then using the BIC instruction to AND the complement of the (now complemented) argument
with the other argument. Also note the line marked with (##), which illustrates how
parameters constrain the arguments of instructions. In the BIC instruction, for example, one
of the source arguments, $1:0ST, must be the same as the destination:

(« 81:0ST (AND 81:DST (NOT $2:SRC)))

Since the locations spe.cified by the goal tree, $§81:7M and $82:7M, are not the same, Fetch
Decomposition is applied to move $82:7M to $$1:7M.

4.3.3 Decompositions

The second method applied in the search for optimal code sequences is decomposition by
heuristic search. In this case, we have only a goal tree (as opposed to a goal tree plus
feasible instructions in the last section):

(1) If the goal tree matches an instruction (or instructions), then the instruction(s) are
returned as the code sequence(s) for the goal ("M-op Match"). Otherwise:

(2) For each decomposition axiom whose LHS matches the goal tree, we apply the axiom to
create a new goal tree.

(3) For each new goal tree, we recursively search for code sequences. All resulting code
sequences are returned.

As an example illustrating the use of decompositions, we will use the PDP-8 again, generating
code for "If Acc=0 then Accel":

Search: (IF (EQL ZACC 0) (« 7ZACC 1))

Attempting M-op-match

Attempting Decompositions tfirst SEARCH tries applying defn of IF

Applying (IF 81 82) :: (; (-> (NOT $§1) $3:72MP) §2 (LABEL $3:72MP))

tnote (-> A B) means "if A then goto B". LABEL means emit label.

Simplifying (NOT (EQL 7ZACC 0)) to (NEQ 7ZACC 0)

Search: (; (-> (NEQ ZACC 0) 881:7MP) (« ZACC 1) (LABEL $81:7MP))

Attempting M-op-match
Attempting Decompositions
Applying Sequence-Decomposition
Search: (-> (NEQ 7ZACC 0) §81:72MP)
Attempting M-op-match

sSEARCH decomp’s ";" node from IF defn
tand treats each subnode as a subgoal
¢]st subgoal (from IF-defn)

64
Attempting Decompositions
Applying Skip-Decomposition tdecomp into skip and goto
Search: (GOTO $81:7MP) tthe goto

Attempting M-op-match

Attempting Decompositions

Applying (GOTO 81) :: (« 7ZPC 81)

Search: (« ZPC $§$1:7MP)

Attempting M-op-match

M-op Match: (EMIT[JMP 2 1 1] 5 $81:7MP)

Attempting Transformations

Simplifying (NOT (NEQ 7ZACC 0)) to (EQL ZACC 0)
Search: (-> (EQL ZACC 0) (+ ZPC 1)) sthe skip
Attempting M-op-match

M-op Match: (EMIT[SKPE 31 1]7 1 5) <

Breadth Limit Reached(6)

Search: (« 7ZACC 1) *2nd subgoal (of IF-defn)

Attempting M-op-match

M-op Match: (EMIT[SET1A.3 1 1] 7 0 30)

Search: (LABEL 881:7MP) tlast subgoal (of IF-defr)
stnow have "SKPE; JMP $S1; SET1A; $81:" sequence
*SEARCH tries applying Skip-decomp to original goal instead (of IF-defn)
Applying Skip-Decompasition

Search: (« ZACC 1) ¢first try THEN-part |
Attempting M-op-match

M-op Match: (EMIT[SETIA 31 1] 7 0 30) *OK, it takes ! instr

Simplifying (NOT (EQL ZACC 0)) to (NEQ %ZACC 0)

Search: (-> (NEQ ZACC 0) (+ 7ZPC 1)) tnow try cond skip of 1

Attempting M-op-match

M-op Match: (EMIT[SKPNE3 1 1]7 1 2) tsuccess. inow have 2 segs.

Attempting Transformations tkeeps trying, but no more solutions..

- - - -

Nodes Examined: 15
Est. Seconds: .620@-1
Result Sequence(s):
€L LLLLLLLLLCLLLLL
SKPE
JMP $81:7MP
SET1A

65

SKPNE

SET1A
DIDIDIDDIIDIOODIDDIIOOOD>>
Best Sequence is:

SKPNE

SETI1A

Both the definition of IF and skip-decomposition get applied in this derivation, and two
alternative code sequences are found depending on which is tried. The better sequence is to
do a SKPNE (skip if accumulator non-zero) followed by SET1A (set accumulator to 1).

Note that in the search for code sequences, decompositions are applied to the goal first.
This normally decomposes it inlo a sequence of more primitive control constructs, such as
conditional and unconditional jumps. These constructs then either match M-ops directly, as
they did above, or the TRANFORM algorithm may take over. On a machine with "condition
codes” such as the Motorola 6800 or the PDP-11, a conditional jump may require several
transformations. The TRANSFORM algorithm must handle relational operators on these
machines by using Fetch Decomposition on boolean results in condition codes. For example,
on the PDP-11, consider the case of an inequality test in a flow context (conditional jump):

Search: (-> (NEQ 881:7M $82:7M) $83) tjump to $83 if 2M locations not equal
Attempting M-op-match
Attempting Decompositions
sdecompositions don’t help
Attempting Transformations
Feasible[1]: («~ $1:DST (NOT 81:DST))
Feasible[2]: (-> (NOT 7.Z) $1:ADR) tattempt to transform into BNE instr
Transform: (-> (NEQ $81:7M §52:7.M) 883) => (-> (NOT 7Z) 81:ADR)
Transform: (NEQ $81:7M 882:ZM) => (NOT 7.Z) *must apply defn of NEQ using EQL
Applying (NEQ 81 82) :: (NOT (EQL 81 $2)) to: (NEQ $81:7M 882:7M)
Transform: (NOT (EQL $$1:7M 8$2:7M)) => (NOT 7.2)
Transform: (EQL $81:7M $82:7M) => 7Z tnow is the key Fetch D:
Applying Fetch Decomposition to: (EQL 881:7M 882:7M) using: $83:72Z
Search: (« §83:2Z (EQL $S1:7M §82:7M))

Attempting M-op-match tand we find a match: we're done
M-op Match: (EMIT[CMP 2 1 1] 2 $82:7M 881:7M)
Transform: $§83 => $1:ADR suser’s label is $33

Feasible[3]: (-> (NOT 7N) $1:ADR) scontinue looking for other seqs.
sbut no more found

Best Sequence is:

o i ———— e — v
.

66

CMP $82:7M 881:7M
BNE 883

After considering several examples of transformations and decompositions, the essence of
both the SEARCH and TRANSFORM algorithms should now be clearer. It may be useful to
contrast them at this point. Note, for example, that TRANSFORM guides the application of
axioms by using a feasible instruction selected for the goal, while SEARCH [almost] blindly
applies axioms. TRANSFORM is thus a more powerful method; however, the means-ends
analysis does not in general succeed with control constructs, and so we fall back on SEARCH
in these cases (in actuality, both SEARCH and TRANSFORM are tried at the statement level; if
the M-ops are high-‘evel enough or goal tree low-level enough for TRANSFORM to succeed,
the best code sequence is of course chosen). The relatively small search space makes this
feasible: for example, there were only two ways to implement the IF in the first example in
this section.

The reader may have noted that decomposition axioms are only applied at the top (root)
node of the goal tree; SEARCH does not apply axioms elsewhere in the tree (unless an axiom
applied at the top requires the subnode as a subgoal). Axioms need only be applied at the
top node because decompositions are being used to decompose control constructs into
sequences of more primitive constructs. It would be possible to fall back on applying axioms
blindly to all points of the goal tree rather than the top node, but it was not necessary for
the actual code generation cases encountered, so this was not attempted. This strategy
would probably be computationally infeasible except for limited cases, anyway.

4.3.4 Compensations

The third procedure used in the derivation of code generators is a pre-pass on the MOP,
performed by the INDEX algorithm. For each M-op, the following steps are performed:

(1) To allow efficient selection of M-ops (either to find feasible instructions in TRANSFORM
or to check for M-op match in SEARCH), the M-ops are indexed according to their
primary operators. This is simply a heuristic to speed the lookup of M-ops later.

, meaning that it involves several actionszz.

(2) If the root operator of an M-op is

22 e are using ;" in its sense in ISP for purposes of the M-op trees, not ss @ sequencing operation. That is, "A; B;
C" means A, B, and C may be performed in any order and have no interaction. This independence of the M-op
input/ouipul ssserlions makes possible this algorithm for desling with muitiple sctions.

o ol e s 1

67

special checks are made to determine if it might be usable for any of its several
effects separately. We index each sub-action of the M-op as follows:

(a) If any co-action (other sub-action besides the current one) has a side-effect on
a Reserved-type storage base, then this sub-action is not indexed.

(b) Otherwise, we create a new Pseudo-M-op whose LHS is the sub-action and
whose RHS is the M-op RHS except with the addition of a co-action list, which,
when the Pseudo-M-op is used, causes the inserticn of the appropriate
compensations for the side-effects. For example, if a side effect is on a
General-purpose-type storage base, a storage-allocation pseudo-operation,
ALLOC, would be inserted for the SB. If a side-effect is an increment of the PC,
a No-op instruction is inserted as the compensation.

These Pseudo-M-ops are treated as M-ops during the search phase (SEARCH, TRANSFORM),

when looking for an M-op matching a given goal tree. This lookup is somewhat complex.

First, a set of possible M-ops is selected for a goal tree using the primary-operator hash

scheme above. Then, to determine if each of these M-ops (or Pseudo-M-ops) matches the

given tree, four cases must be considered:

(1) Both M-op and goal are single actions: in this case, we simply test whether the trees
match.

(2) M-op is a multiple action, goal is a single action: match goal against sub-action, insert
compensations for other sub-actions.

(3) M-op is a single action, goal is a multiple action: no match. (Goal will be decomposed
into its sub-actions by the sequence-decomposition rule, at which point the M-op may
match one of the sub-actions.)

(4) Both M-op and goal are multiple actions: test that every sub-action of the goal
matches a sub-action of the M-op, then insert compensations for unused M-op sub-
actions.

Dealing with side effects is thus done in two parts: indexing the M-ops under the sub-actions
they perform, and then applying the compensation axioms to construct the code when the M-
ops are retrieved during the search ‘for code sequences. This two part algorithm avoids
dealing with side effects as part of the search itself.

68

Incidentally, the four steps above could be performed at code generation time also. A slight
variation of step (4) is being considered in the PQCC code generator to improve code quality:
At a ;" node, as many as possible of the sub-actions are subsumed at each step. The source
sequence ".II+]1; If 1=0 then.." might be subsumed by an "Increment-and-Skip-if-Zero®
instruction. (These optimizations could alternatively be detected in peephole optimization.)

As an example, consider the deposit-and-clear-accumulator instruction on the PDP-8, DCA. 1t
can be used for either of its two sub-actions ((1) depositing the accumulator in a memory
location, and (2) clearing the accumulator) by inserting an ALLOC for the other location
effected:

Search: (« 7ZACC 0)
Attempting M-op-match

Result Sequence(s):

<€L<LLLLLLLLLLCCLLLLLC L LS
[Alloc $81:7MP)
DCA $81:7MP

CLRA
233333353 O3D3D3I3D3355>>
Best Sequence is:

CLRA

Search: (« ZMP 7ACC)

Best Sequence is:
[Alloc ZACC]
DCA 7ZMP

In the first case, we use DCA to clear ZACC by allocating a memory location ($81:7MP) into
which 7ACC can be stored (the search also finds the CLRA instruction which clears ZACC
directly at lower cost in this case). In the second case, we use DCA to store ZACC in a
memory location; but the compensation axioms have inserted the warning that ZACC is
destroyed in this process, as shown by the [Alloc %ZACC] in the output code.

A more common example of multiple-action instructions are the arithmetic operations on
machines with condition codes. These instructions can be used for the primary arithmetic

69

operation performed, ignoring the effects on the condition codes, which are Temporary-type
storage bases. All of the arithmetic instructions on the PDP-11 are of this form.

Side effects on the program counter are also handled by compensations. Increment-and-
skip-if-zero (ISZ) can be used in conjunction with a no-op to get just the effect of the
increment:

Search: (« 7ZMP (+ ZMP 1))

Best Sequence is:
1SZ 7MP

4.3.5 Limiting the Search

There are parameters to control the extent of the search. Without these, the search couid
go on forever. The cutoff criteria are:

(1) A maximum depth of search. The depth of search is increased by one for each
recursive application of a decomposition (in SEARCH) or transformation (in
TRANSFORM).

(2) A minimum and maximum breadth. These are used in conjunction with FINDFEASIBLES,
and are in units of search cost (the number of nodes in the search tree). We continue
to try feasible instructions until the minimum number of nodes have been searched and
a solution has been found, or until the maximum number of nodes have been searched
and no solution has been found.23

A nice property of the cutoff parameters is that we can trade off between the speed with
which a solution is found and the quality of the resulting solution (in terms of optimality). We
could try searching for a long time if we are interested in optimal code. Also, we can
automatically increase the parameters if no solution at all is found.

23 For better performance, these limils are decreased with search depth, but this is not important to an understanding
of their purpose.

70

Another nice property of the search is that it is possible to vary the code cost funcfion
supplied to the search roulines to generale code oplimized for space, time, or any ratio
thereof. '

The axioms could also be changed, to modify the assumptions the code generator makes; for
example, whether floaling point multiplies can be computed in any order.

436 The Search Space

The reader may be curious about the quantitative properties of the search space defined for
this problem. Although the primary contribution in this chapter is providing a reasonably
general solution to the machine-independent code generation problem at all, rather than in
achieving some new level of performance, some rough data may be useful to give some
insight into the nature of the probiem and its solution.

The goal tree (the desired action) is the starting point in the search space. Each application
of an axiom leads to a new naode in the space (a new goal); this is true for both SEARCH and
TRANSFORM. For the axiom set used, the branching factor, i.e., the number of axioms (or
feasible instructions) altempted at each point, is typically about 2.5; the depth ot the search
tree varies widely according to the goal tree. For a typical machine, in fact, the vast
majority of the tempiates for which code sequences are required are satisfied immediately by
machine instruclions (depih=1). But for the "interesting™ problems that make the search
necessary, the depth typically ranges 3 to 7 to find the best code sequence, leading to a
typical search space size of a few dozen nodes.

The reader familiar with search problems such a computer chess will recognize this as a
reiatively small search space. This is in fact a key factor in making the search practical.
Although the use of multiple methods reduced the size of the search space, the problem
domain itself, when suitably represented, is not unmanagably large. The choice of
representation is important in several dimensions of this work; for example, the
representation of instructions and addressing, the use of trees as a common notation for
matching, and the use of axioms to represent the legal moves in the search space. These
representations lead to relatively straightforward algorithms.

437 Completeness and Optimalily

Note that the search algorithm presented in the previous sections dogs not guarantee optimal
code, or any code at all for that matter, because the search may not be deep enough to
discover the equivalence. Furthermore, even if we searched to an arbitrary depth, a code

71

sequence might still not be found, because a necessary axiom to determine the code
sequence’s equivalence to the goal tree may not be in the axiom repertoire. This is not an
error in the construction of the axioms. Unsolvablility of program equivalence is based on
the fact that no set of axioms can express all the equivalences that are true over program
trees.

This indicates that no one will ever be able to construct a program which satisfies the
ultimate goal of this work: to take an arbitrary machine description and generate code.
Fortunately, as in the field of proving programs correct, such theoretical results do not have
great practical impact. For "real” machines (and "real™ programs) a relatively small set of
axioms seems to be adequate.

4.4, Code Generator Generation

441 Case Selection

We have now discussed the three main algorithms used in finding code sequences. The
reader may want to refer to them in Figure 11 at this point. INDEX is applied as a pre-pass.
SEARCH is the central search routine: it tests for termination (i.e. a M-op match), tries
applying decompositions, and calls TRANSFORM to try transformations. We will now discuss
how these routines are used with the final routine in the figure, SELECT, in the generation of
code generators.

Considered as a whole, SEARCH, TRANSFORM, and INDEX constitute a machine-independent
code generator. That is, SEARCH generates code for TCOL trees, for any given machine. In
theory, this code generator could be used directly in a compiier. In practice, however, this
would probably be too slow for general use: although consjderable speedup of this specific
implementation could be achieved since little attention was paid to the efficiency of this
prototype, it is unlikely that we could do much better than 1000 instructions per second.
While generating code machine-independently is useful in itself, it is of greater practical
impact if comparable with conventional compilers in speed as well.

The aiternative that comes to mind is to tailor the code generator to the machine, so that:
(1) The algorithm is much simpler, not requiring all the axioms about program equivalence.

(2) The algorithm can go directly to the best solution, alternatives having already been
explored and rejected implicitly.

72
Machine-op to TCOL-op to
TCOL mapping Machine mapping \i
MOP LOP

¥ 1 >SELECT---- T 7

L N@—r

- ->INDEX 3 SEARCH

........ N
p TRANSFOR@

oo B

Fi?ure 11: The flow of control (solid lines) and data (dashed lines) in the code generator generator.

All routines use the MOP table; INDEX modifies it. The templates in the LOP table are derived by

- SELECT, which selects the special-case tree patterns, and SEARCH, which determines the code
sequences for these tree patterns.

73

This desire to separate compile-time and compiler-compile-time is the reason for the
existence of the LOP and the LOP-driven code generation scheme described in the previous
chapter. The only axiom incorporated in the basic code generation algorithm discussed there
is Fetch/Store Decomposition, which is performed by subtargetting to allow composition of
the LOP patterns. Of course, the code generator generator, which constructs the LOP, has
made use of many axioms.

There is a continuum of alternatives in the trade-off between the number of axioms
incorporated in the code generator as opposed to the code generator generator. This ranges
from the minimum of Fetch/Store Decomposition, without which the LOP patterns could not be
composed, to the extreme of incorporating all axioms at compile time as mentioned earlier. It
is not the intent of this work to imply that this trade-off be made at either extreme. A
compromise between the two is probably the best solution. For example, there is no need to
perform searches such as the transformation-axiom examples (in section 4.3.2) in the code
generator. On the other hand, one might include Skip-decomposition at compile-time, so that
IF B THEN S could be implemented optimally when S is one instruction long and the machine
has a conditional skip instruction. Otherwise, it would be necessary to include all cases of
one-instruction THEN-parts in the LOP.

In this section we will discuss an algorithm to automatically generate a LOP for the minimal
code generator described in the previous chapter. The same LOP could also be used with a
code generator with more axioms incorporated: this algorithm is independent of the choice
made in the above irade-off. 1t is forlunate and perhaps not too surprising that this is so,
because otherwise detecting the various special case combinations of language operators
would have made compilers unreasonably complex.

The basic purpose of this (SELECT) algorithm is to insure there is a template in the LOP for
every basic arithmetic computation, conditional, and control construct. The algorithm derives
the entries in the LOP in five steps:

(1) Include all the M-ops in the LOP. Figuratively, set LOPMOP. Thus, if a program tree
segment matches an M-op directly, the M-op will be selected to code the tree.

(2) To these, add the Pseudo-M-ops defined by INDEX, which allow the use of the M-ops
in additional cases (namely, for their partial effects).

(3) Insure there is a template for A«B, for every pair of distinct access modes A and B
such that A and B are "simple” references to locations of the same size. A "simple”
reference is one in which the index into the storage base is a constant or open
constant (as opposed to, say, indirect or relative addressing). If there is already such
an entry from steps (1) and (2), no action is taken. Otherwise, SEARCH is called to find

RIS e s s U

74

the best code sequence for A«B, and if a solution is found (there may be no way to do
this move), a template is created whose pattern (LHS) is the A«B tree and whose
result sequence (RHS) is the code sequence.

(4) Insure there are templates in the LOP for every operator in value and flow contexts.
This is done similarly to the previous step, calling SEARCH for every tree of the form
"AeB op C", "A~op B", and "A op B -> C". A, B, and C may be any access modes, since
the code generator will make any required moves to perform operation "op” on data in
other locations. For example, if logical "AND" didn’t exist as the primary operator of
an M-op directly on the machine, a code sequence for it would be derived (by calling
SEARCH) and the resulting template (LHS is the AND tree, RHS is the derived code
sequence) added to the LOP. All derived templates are also indexed as Pseudo-M-ops
as discussed in section 4.3.2, for use in further searches.

(5) Finally, add to the LOP the productions for control operators. These correspond to the
axioms in Figure 10 which define WHILE-DO, IF-THEN-ELSE, etc., in terms of conditional
and unconditional jumps. These templates are machine-independent, because
conditional jumps have already been handled in step (4).

The reader may wish to refer to Figure 11 one more time to see the relationship between
this top-level algorithm (SELECT) and the algorithms previously discussed (INDEX, SEARCH).
The LOP is figuratively divided into two parts to show that SELECT chooses the LHSs of
productions, and SEARCH chooses the RHSs. INDEX is shown augmenting the MOP table with
the derived Pseudo-M-ops. In Appendix F, an example trace of the SELECT algorithm is
given.

This algorithm insures that the minimal code generator using the LOP will be able to generate
code for all TCOL operators, and that if there exists a one-instruction code sequence for a
subtree, it will find it. It does not guarantee that if the search algorithm discussed in the
previous section generates optimal code that the code generator using the LOP generated
therefrom will do so, because the necessary special case combination of TCOL operators may
not have been included in the LOP. Interestingly, however, this rarely happens with the
simple SELECT algorithm suggested: special cases more complex than single TCOL operators
(in all contexts) are not normally needed, except for those cases which match M-ops directly
(which SELECT handies in step (4)).

It is intuitively unsatisfying, however, that this approximation does well for existing machines.
We would like a scheme to automatically determine what special cases should go into the LOP
to insure optimal code. Another solution would be to tailor the code generator proposed'in
the fast section to make it efficient for each specific machine, for example by including only

75

the necessary axioms. The tailored code generator would then go into the compiler directly.
Further exploration of these alternatives and other possibie solutions has been left to future
research.

4.4.2 Inter-State Qptimization

Even if the axioms were complete, and we searched to arbitrary depth, the search algorithm
does not guarantee optimal code. The algorithm does not simulate the processor state to
keep track of the current contents of the various locations. Common sub-expressions are
not recognized. If a value is réquired in a register the code generator will re-load it even if
it already happened to be there. This isn't a problem with inadequate special case analysis
due to an inadequate set of axioms; the code preceding the re-load may have been generated
from an arbitrarily distant piece of the program tree.

This kind of optimization is probably hopeless to deal with in any local tree context analysis.
However, this immediately suggests the solution to this problem: it is most efficiently handled

outside of the code generator (see Wulf et al[1975)):

(1) before code generation, common sub-expression analysis has been performed, and

(2) after code generation, peephole optimizations collapse redundant operations.

A second problem also arises from the search algorithm’s ignorance of the machine state: we
must check that it has not inconsistently used storage. Namely, in applying Fetch/Store
Decomposition, an unsatisfiable set of allocation commands may be emitted: for example,
there may not be enough locations of the required storage base type. This problem can be
corrected quite simply by doing a post-test on the solutions generated by the search
algorithm. Specifically, we could put the best solution which does not violate allocation
constraints in the LOP (this is the generate-and-test paradigm from artificial intelligence).

On the other hand, this problem suggests some alternative approaches:

(1) Do a simulation of the processor state in parallel with the search as described. This is
complicated by the fact that we are finding multiple solutions, typically with different
effects on the processor state, that locations may overlap in strange ways on the
machine, and that we cannot guarantee that the symbolic simplifications will always
detect equivalent expressions when they occur.

(2) It is possible to use an entirely different representation than trees in the search for

76

codle sequences. In particular, an interesting alternative would be letting the nodes in
the secarch space be states of the machine, described as a set of simultaneous
equalions over the processor state location values. M-ops transform one node in this
space into another. In the starting state, all locations S have their initial values S*, and
the goal state is to achieve a given set of equations, e.g., ZACC=7ZMP*+7ZACC*. This
approach has some disadvantages and advantages with respect to the approach taken
here; exploring this alternative to see if the Al methods could still be used practically
in this less structured representation would be a good topic for further research.

Further ideas in these areas may come from PQCC work on the last compiler phase (peephole
optimization) or earlier compiler phases (common sub-expression analysis)

4.43 Using the LOP

Given that we have constructed the LOP, how do we use it in a compiler? This is the problem
of the compiler construction pihase of Figure 1.

The LOP table can be used in a varicty of ways. Although in the previous-discussions we've
assumed the code generator is table-driven, it would also be possible to construct the actual
source code for the code generator from the LOP table. However, entirely adequate speed
and flexibility was obtained with the table-driven code generator implemented in Chapter 3;
so the approach suggested here is a simple program, BUILD, which translates the LOP into
tables that can be compiled by BLISS and loaded with the compiler source code. Facilities in
the BLISS language (Wulf et al [1970]) greatly simplify the construction of the tables of tree
patterns and result sequences at compile timezq, but tables could of course be generated for
any language.

Because the LOP is human readable/writable (before translation into program tables), it is
possible o manually modify or augment the table (the syntax of the LOP is similar to that of
the MOP, see appendix E). Programs can also be written to read, modify, and rewrite the LOP
table; this might be desirable to extract special information, or to optimize it in some way.
However, if the LOP is manually modified, it would be desirable to verify that the
modifications maintain the correctness of the table, by proving that the LHS and RHS of the
modificd or acdded productions are semantically equivalent under the TCOL equivalence
axioms. This is beyond the scope of this thesis, but previous work in this area has been
successful on this kind of task (Samet[1975]).

24

particularly the pre-loaded dala ("plit™) and source-file inclusion (“require”™) constructs

77

The LOP is not just used in the code generation phase of the compiler. The template
productions, for example, are required in register allocation and other phases of an
optimizing compiler, as described in section 3.7. From a human-engineering point of view, it
would be desirable to centralize the machine-dependent data base of tables used by the
compiler, in human-readable tables. The LOP could be used for this function, although some
extensions and modifications to the format as suggested in this thesis would probably be
desirable.

It should be noted that the compiler we have been discussing is a cross-compiler, i.e., the
machine-dependent tables are to be used by source code compiled to run on the PDP-10.
However, a likely possibility for future work would be to bootstrap the compiler with itself,
i.e.,, compile itself into code for the target machine. A translator from BLISS to TCOL is
relatively straightforward; the main aspect which would require special attention to allow the
bootstrapping would be dealing with word size differences and memory size limits

4.5, Relation to Other Work

There has been very little work prior to this one in the area of automatic derivation of code
generators, and even less successful work. In Catteli[1977], there are discussions of most of
this work; however, the most closely related work wiil be mentioned here.

Newcomer{1975] was a predecessor to this work, and contributed in several ways. The
principal ideas shared with Newcomer’s work are the use of means-ends analysis to find code
sequences, and the use of tree templates as the central representation. This work differs in
two main respects. The most important one is probably the machine model. While Newcomer
used trees to represent instructions, the essential semantics with respect to the means-ends
analysis were encoded in "attributes™ which must be set up by the user of the system.
Newcomer suggests attributes, for example, that specify where the result of a tree
expression is stored, or whether the tree has the correct or inverted sign. In this work,
attributes have been dropped; we need only the semantics of the TCOL operators.
(Incidentally, although attributes were dropped for coc» generator generation, they may well
be the best general mechanism for dealing with optimizations in the DELAY phase of the
compiler.) As should be apparent from Chapter 2, the model of the machine is more general,
dealing with control constructs, side effects, binary representation, and so on. The second
main difference in this work is the use of other methods besides means-ends analysis to deal
with control constructs and side effects.

Another predecessor of this work is Samet[1975] Samet’s goal was not to generate code,
but rather to verify that the code generated for a source language tree is in fact correct.

78

However, there are some similarities in that Samet also used an axiomatization of the
equivalence of trees. His work also might be used in the verification of the LOP, as
mentioned earlier.

The reader who is interested in other work in the area of this thesis should also see three
theses that were completed quite recently (all less than six months at the time of this
writing): Fraser[1977], Ripken[1977]), and Granville[1977]. These were not completed at the
time of lhe survey (Cattell[1977]), so a short comparison of approach may be helpful to the

-reader here. -

Fraser designed a human-knowledge-based code generator taking an ISP description as input.
His central algorithm consists of pattern matching common cases which the system
“understands”. For example, the program explicitly checks for machines with conditional
skips as opposed to conditional-jump architectures. The observation that makes this
approach possible is that most current computer architectures are quite similar in design, and
consequently it .is possible to base the system on a manageable number of cases (Fraser
presents evidence that the amount of new programming knowledge that must be added
decreases as new machines of similar architecture are added). In contrast, as should be
apparent by now, the present work was to test the feasibility of taking a more formal
approach, using equivalence axioms rather than built-in programming knowledge to minimize
the machine-dependency of the system. The main disadvantage of the formal approach is
that it is potentially combinatorially explosive, since it does not directly match "built-in"
special cases; but this chapter has presented evidence that it can in fact be done practically.
This does not mean there is no longer a need for the human-knowledge based approach. The
best approach is probably a combination, using formal methods plus human-knowledge special
cases to make decisions that are infeasible to otherwise automate for some reason.

The other two theses (Ripken and Glanville) are principally concerned with code generation
rather than with code generator generation (at least as defined by Fraser and this work).
They both assume a one-to-one correspondence between the machine and language
operators. For example, they cannol generate code for the cases such as those given as
examples in this chapler: operators which do not exist on the machine, e.g., AND on the PDP-
11, or simply loading the accumulator on the PDP-8, as well as control constructs. It is
therefore more appropriate to compare these works to Chapter 3 rather than Chapter 4 of
this thesis.

Glanville’s work is an extension of that of Weingart[1973), using the more recent LR(K)
parser technology. This algorithm is similar to the MMM algorithm in chapter 3: program

trees are matched against instructions represented in the form of a grammar.

Ripken's scheme is quite sophisticated, as his goal is generating near-optimal code. Ripken

79

deals with the interaction of code generation and temporary allocation in detail, using
multiple passes on the program tree. It is interesting to constrast his scheme to the DELAY-
TNBIND-CODE scheme; the models have arrived at similar conclusions with respect to the
necessary structures to generate good code. Ripken did not implement his model, so it is
hard to evaluate whether his dynamic-programming algorithm can be implemented practically,
or whether he can properly deal with the details of real machines; however, it is clear that
Ripken has studied the problem thoroughly, and an implementation should be forthcoming.25

4.6. Implementation

In Appendix F is a list of the axioms used in the search. The MOPs for the Mini-S and PDP-
11, used for the examples in this chapter, can be found in Appendix B, along with an
explanation of the syntax used for the representation. In Appendix D, traces of the search
algorithm for various examples are given. In particular, the full text of the examples in this
chapter can be found there. In Appendix E, a trace of the generation of the LOP is shown
for the PDP-11.

25 g like 1o thenk Bert Speelpenning [1978) for his English summery of Ripken's work.

80
5. Results and Conclusions

"A conclusion is the place where you got tired thinking”
= Martin H. Fischer

5.1. Summary

This dissertation has presented: (1) a model of instruction sel processors, (2) a code
generation algorithm in which machine-dependent information is separated into tabular form,
and (3) a scheme for heuristic search for optimal code sequences, based on an axiomatization
of tree equivalence. Each of these ideas has been studied in some depth. The crucial
representations and algorithms have been implemented to test the consistency of the ideas
and to evaluate empirically the practicality of their use in the generation of code for real
machines.

Evaluation of work in areas of this complexity is crucial. This is apparent to anyone who has
tried to read previous work whose strengths and weaknesses are not discussed, requiring a
painful analysis of the details in almost as much depth as the original work. On the other
hand, first-hand evaluation of work is difficult, as the limitations are normally either not
understood or are overlooked by the original author (otherwise, they would very likely not
be limitations). With this in mind, let's try to examine at least those contributions and
limitations that are apparent. The next section provides some quantitative and qualitative
data on the results of the thesis. The remaining two sections of the chapter then summarize
the contributions and limitations.

5.2. Resuits

The results have been encouraging. The machine representation appears to be general
enough to deal with a variety of actual machine architectures, and the representation is
extendable to deal manually or automatically with unusual features that do not directly fit the
model. The code generation algorithm satisfies the goals of tabularizing machine dependence
and at the same time remaining simple, flexible, and fast enough for use in a production
compiler. The last and perhaps most interesting result is that the formal approach to
heuristic search for code sequences was successful in finding optimal code sequences for
real machines.

One might expect the code generator to be relatively slow, since it involves a table-driven

»

81

pattern-matching scheme. However, the prototype implementation on a PDP-10/KL1O is
basically 1/0 bound, generating abcut 2000 instructions per second. The code itself is quite
compact, requiring only 1K 36-bit words, because all the machine-dependent information is in
the tables, which require more space (the amount being target-machine dependent, but order
of 10K words). These figures can only be regarded as estimates until the code generator
has been interfaced with the PQCC compiler under development. The complete compiler will
also be necessary for an objective evaluation of the code quality, although the example in
Chapter 3 provides a limited demonstration of the code optimality.

The code gemerator gencrator is also surprisingly fast in comparison to previous results in
the area (Newcomer [1975]. The example derivations of code sequences in Chapter 4
typically took about .1 seconds (KL10). The generation of the LOP itself took about 10
seconds for the PDP-11, as shown in appendix E. The code generator generator uses 40K
words plus 10 to 20K dala; it is implemented in SAIL (Reiser et al [1976]).

The speed of the code generator generator is not greatly affected by either the number of
axioms or the number of instructions on the target machine. This is because the primary
operator indexing scheme allows the search routines to go almost directly to the applicable
axiom (for a mismatch) or instruction (for a goal tree). Note also that the axioms are
machine-independent, so that it should only be necessary to add new axioms when a new
domain is added, e.g., when TCOL is extended to include a new data type such as character
strings.

Probably the most impressive result, although difficult to quantify, is the scope of machine
architectures the code generation scheme handles. To evaluate this, we will consider a
cross-section of common architectures: the 1BM 360, PDP-10, PDP-11, !qiel 8080, Motorola
6800, and PDP-8. The proposed scheme is capable of generating a code generator for all of
these machines with cerlain restrictions; the following discussion will therefore concentrate
on the restrictions.

The heuristic search algorithm itself was quite successful in cases where the machine fit the
model; the reslrictions are primarily with respect to the machine model. With regard to these
restrictions, there are four main areas which should be considered:

(1) The top-level definition of the instruction interpreter, which fetches instructions from
memory and acls according to the input/output assertions. It is surprising how well
this simple scheme fits so many architectures. However, certains instructions, such as
the XCT instruction on the PDP-10 which recursively calls the instruction interpreter,
and the "micro” instruction on the PDP-8 which can indépendently‘ execute 9 simple
actions, do not fit this scheme.

82 i

(2) Instructions with multiple actions. Previous work has not tried to deal with these.
Some examples would be ISZ on the PDP-8, BCT on the IBM 360, and use of auto-
increment on the POP-11. This thesis has presented a scheme for dealing with these,
when the program tree contains the matching actions in immediate succession, although
rearrangements of the program tree to make these applicable are not considered (this
would occur in DELAY in the PQCC model).

(3) Data types and axioms. It is necessary lo extend TCOL to deal with special machine
data types. The algorithm will not determine what they are intended for: it is
necessary to have axioms describing their properties and relationships to program
constructs. For example, the character and decimal arithmetic instructions on the 18M
360 fall in this class, as does byte manipulation and block transfer on the PDP-10.
Also not covered by the axioms in the actual implementation are the properties of
shifting and testing of bits within a word, and special arithmetic properties, namely
carry and overflow (the code generator simply ignores overflow on the PDP-11
examples given).

TN oy T P s AR e

(4) The representation of storage. The Operand Classes and Access Modes successfully
deal with all these machines, including the PDP-11 and Motorola 6800 which have many
’addressing modes. Note that the code generator is not fooled by mnemonics as a
person might be; for example, it will use indexing (intended for address computation) to .
do addition if it is oplimal in the context of its use. Also, the Storage Base scheme 'can
deal with machines with many register types (Intel 8080), one accumulator (PDP-8),
and many different operand sizes (IBM 360). However, note that the problems
concerned with the allocation of these registers are not part of this thesis; work is
under way in PQCC on this problem.

5.3. Contributions]

All three of the main chépters of this thesis contain potential contributions. Some ideas that
might prove useful are:

(1) The model of machines, including the input/output assertion representation of
instructions, the separation of the addressing functions, and the attention paid down to
the bit-level representation of data and instructions. This model is not just for code
generation purposes; it can be used for other applications, and also makes suggestions 1
for machine description languages. The importance of the machine model is that it
defines and restricts the class of objects that we are dealing with; this formalism is a
key to making this work possible.

(2)

(3)

83

The code generalion algorithm, including the tabular representation of the process, and
the ideas for interaction with other components of a compiler, such as register
allocation. Previous work has not separated machine-dependence to this degreey or
dealt wilth its interaction with the other phases of an optimizing compiler. The MMM
algorithm is also a new idea: it could prove to be a good compromise between
oplimality and fast code generation. Note that the formalization of the code generation
process is not only necessary for code generator generation, but is independently
useful.

The axioms for tree equivalence (in particular those concerned with programs and
machines), the heuristic search algorithm, which includes the application of several
methods, and, finally, the ideas for the use of this algorithm for the automatic
generation of code generalors. The search algorithm and axioms are probably the
most significant conltributions of the thesis. The central reason for the success of the
work is largely the rcpresentation: that is, the algorithms are relatively ‘'straightforward
once the problems have been represented. This can be seen to apply in several areas
of the work, including the machine repesentation, code generator repesentation, and
the use of axioms and trees in the search for code sequences.

Some of the techniques used in this work may be applicable to other applications of machine
descriptions. For example, automated hardware generation is conceptually analogous to code
generation, as it involves decomposing a given algorithm into a set of given primitives (Leive
[1977]). As just mentioned, this thesis illustrates the principle that a problem is often easy
once it has been precisely and flexibly represented. Some important representational issues
in this work were:

(1)

(2)

()

The use of a common notation, TCOL, to represent procedural semantics. Also
important is the extensibility of TCOL with respect to new data types and operators.

The restricted form of the instruction interpreter, reducing the selection of primitives
to sequences of actions represented by input/output assertions.

Abstraction of orthogonal properties such as addressing and binary representaiion
from the representation of the abstract operations themselves (the instructions).

84

5.4. Future Work

A strong point of this thesis is that it ties together the rather disparate areas of macHine
representation, optimizing compilers, and heuristic search. Previous work has not attempted
to bridge these gaps, so this broad scope was badly needed. However, as many new
questions have arisen as have been resolved. The relatively broad scope of the thesis,
although necessary to bridge the gaps in previous work, dictates that only some of the
probleins have been studied in detail. There is room for future research in all three areas of
the thesis. This future work includes: i

(1) Generalizations in the machine model, to deal with a wider range of architectures.
Some extensions to the model that would be useful are: , .

(a) A concise representation of data types, including a way to deal with phenomena
such as arithmetic overflow and complex instructions such as character string
manipulation,

(b) A way to describe input/output.

(€) A way to take into account special machine features such as multiple ALUs,
instruction lookahead, pipelines, or caches in the code optimization (probably
after code generation). -

(2) Further research on compilers, namely:

(a) Oplimizing temporary and storage allocation (ss 3.2.2, 3.2.3).

(b) Further evaluation of code generation algorithms (3.4), and their interaction with
other phases of an optimizing compiler (3.2).

(¢) Peephole optimization, dealing with optimizations that are best detected after
code generation (4.4.2).

(d) Easing the selection of the "compiler-writer’s virtual machine” (3.2.5), to deal
with higher-level languages which require considerable run-time support.

(3) New ideas in code generator generalion, to deal with:

SRR PRSP SO

85
(a) Optimal case sclection in the generation of the code generator tables (4.4.1).

(b) Cases on which the heuristic search could fail due to the complexity of the
cquivalence, i.e., very high-level machine-operations.

(c) Domains for which axioms were not developed here, e.g., bit field extractions,
shifts, and other operations within a data word.

It should be noted that this work is a study to test the feasibility of the approach, not a
production implementation. However, a compiler-writing system using this work woutd be a
likely arca for future implementation.

In summary, suggested future research includes further work in the direction of the thesis
itself, generalizing the machine model and code generator generation schemes, and further
work on compilers, particularly on the other phases of compilation as discussed in section
3.2. The present work could also be directly applied to a production implementation, as just
mentioned, or {o peripheral areas, such as related "automatic generation of..." applications.

Success with the currenl work suggests that compiler generation, and automatic generation
of software from machine descriptions in general, are likely to be developed as practical
tools in the not-too-distant future, given sufficient effort on these problems.

86
Bibliography
.Aho. A. V., and Johnson, S.C.: "Optimal Code Generation for Expression Trees”, JACM 23, 3
(July 1976), pp 458-501

Allen, F., Carter, J, Harrison, W,, Loewner, P., Tapscott, R, Trevillyan, L., Wegman, M.: "The
Experimental Compiling Systems Project”, IBM Research Report, IBM Yorktown, 1977

Barbacci, M., Barnes, G., Cattell, R., and Siewiorek, D.: ISPS Reference Manual, CMU Computer
Science Technical Report, 1978.

Barbacci, M., and Siewiorek, D.: Some Aspects of the Symbolic Manipulation of Computer
Descriptions, CMU Computer Science technical report, 1974

Barbacci, M., and Siewiorek, D.: "Evaluation of the CFA Test Programs via Formal Computer
Descriptions”, Computer 10,10 (October 1977), pp 36-43

Barbacci, M., and Siewiorek, D.: "The CMU RT-CAD System: An Innovative Approach to
Computer Aided Design”, CMU Computer Science Review 1974-1975

Bell, C. G., and Newell, A.: Computer Structures: Readings and Examples, McGraw-Hill, 1971

Cattell, Roderic G.: "Description of Machine Data Types", internal memo, ISPS group, CMU
Computer Science Department, 1976

Cattell, Roderic G.: "A Survey and Critique of Some Models of Code Generation”, CMU
Computer Science Technical Report, 1977

Coleman, Samuel S.: JANUS: A Universal Intermediate Language, PhD thesis, Electrical
"Engineering, University of Colorado, 1974

Conway, Melvin E.: "Proposal for an UNCOL", CACM 1,10 (October 1958), pp 5-8

Donegan, Michael K.: An Approach to the Automatic Generation of Code Generators, PhD
thesis, Computer Science & Engineering, Rice University, 1973

Ernst, G. W,, and Newell, A.: GPS: A Case Study in Generality and Problem Solving, Academic
Press, 1969

Elson, M,, and Rake, S. T.: "Code-generation Technique for Large-language Compilers”, IBM
Systems Journal 9,3 (1970), pp 166-188

87

Feldman, J.: A Formal Semantics for Computer-Oriented Languages, PhD thesis, Computer
Science, Carnegie-Mellon University, 1964

Feldman, J. and Gries, D.: "Translator Writing Systems", CACM 11,2 (February 1968) pp 77-
113

Fraser, Christopher W.: Automatic Generation of Code Generators, PhD thesis, Computer
Science, Yale University, 1977

Glanville, R, and Graham, S.: “A New Method for Compiler Code Generation”, Proceedings of
the 5th conference on Principles of Programming Languages, 1978 (review of PhD thesis

of same title by Glanville, University of California at Berkeley, 1977)

Hobbs, Steven: "Object Code Optimization™, thesis proposal, Computer Science, Carnegie-
Mellon University, 1976 '

Knuth, Don: "An Empirical Study of FORTRAN Programs”, in Software-Practice and Experience
1, 1971 (pp 105-133)

Leive, Gary: "The Binding of Modules to Abstract Digital Hardware Descriptions”, thesis
proposal, Electrical Engineering, Carnegie-Mellon University, 1977

McCarthy, J.: "A Basis for a Mathematical Theory of Computation”, in Computer Programming
and Formal Systems (Eds: Baffort and Hirshberg), North Holland, 1963

McKeeman, W. M, Horning, J. J, and Wortman, D. B.: A Compiler Generator, Prentice Hall,
1970 ;

Miller, Perry L.: Automatic Creation of a Code Genorator from a Machine Description, TR-85,
Project MAC, Massachusetts Institute of Technology, 1971

Newcomer, Joseph M.: Machine Independont Generation of Optimal Local Code, PhD thesis,
Computer Science, Carnegie-Mellon University, 1975

Oakley, John: “"Automatic Generation of Diagnostics from ISP", thesis proposal, Computer
Science, Carnegie-Mellon University, December 1976

Reiser, J,, et al: SAIL, Stanford Artificial Intelligence Lab Memo AIM-289, Computer Science,
Stanford University, 1976

Ripken, Knut: Formale Beschreibung von Maschinen, Implementierungen und optimierender

e i e s e e et e

88

Maschinencodeerzeugung aus attributierten Programmgraphen, dissertation, Technische
Universitat Munchen (German) 1977 '

Samet, Hanan: Automatically Proving the Correctness of Translations involving Optimized Code,
PhD thesis, Computer Science, Stanford University, 1975

Simoncaux, Donald C.: High-Leve.I Language Compiling for User-Defineable Architectures, PhD
thesis, Electrical Engineering, Naval Postgraduate School, 1975

Snyder, Alan: A Portable Compiler for the Language C, TR-149, Project MAC, Massachusetts
Institute of Technology, 1975

"Speelpenning, Bert: "A Review of Ripken's Thesis", personal communication from T. Wilcox,
1978

Strong, J, et al: "The Problem of Programming Communication with changing Machines: A
Proposed Solution™, CACM 1,8 (1958)

Weingart, Steven W.: An Efficient and Systematic Method of Compiler Code Generation, PhD
thesis, Computer Science, Yale University, 1973

White, John R.: JOSSLE: A Language for Specifying and Structuring the Semantic Phase of
Translators, PhD thesis, University of California at Santa Barbara, 1373

Wick, John D.: Automatic Generation of Assemblers, PhD thesis, Computer Science, Yale
University, 1975

Wilcox, Thomas R.: Genorating Machine Code for Hirh-Level Programming Languages, PhD
thesis, Computer Science, Cornell University, 1< /1

Wulf, W, JohnAsson, R., Weinstock, C., Hobbs, S., and Geschke, C.: The Design of an Optimizing
Compiler, American Elsevier, 1975

Young, Raymond: The Coder: A Program Module for Code Generation in High-level Language
Compilers, MS thesis, Computer Science, University of lllinois, 1974

89

Glossary

Access Mode (AM): An expression specifying a location or constant which can be used as-an
instruction operand. For example, M[C1+R[C2]] where M is memory, R is a register array,
and C1 and C2 are constants (this AM represents indexing off a register).

Closed Constant: an integer

Field Assertions: Assertions about instruction field values that result when an instruction
field is paired with a field-value list (of the same length). The instruction fields (or OCs) of
the instruction format are asserted to have the values specified by the corresponding field-
value list elements.

Field-value list: A list of closed constants and parameters.

Instruction Field: A field of the binary instruction representation, e.g., the opcode.

Instruction Format: A list of instruction fields and operand classes. For example, 2-operand
instructions on the PDP-11 have the format (OPCODE2 SRC DST) where OPCODE2 is an
instruction field, and SRC and DST are operand classes.

Machine-Operation (M-op): An instruction.

Open Constant: represents any closed constant of a given size, i.e., a length in bits is given
but no specific value.

Operand Class (OC): A set of access modes, and for each one, field assertions which specify
the instruction field values for that access mode (e.g., mode bits, address field).

Operand Computation (OC): Same as Operand Class.

Parameter: variable associated with a leaf of a tree pattern, which is bound to a, subtree
matched against the pattern tree leaf.

Primary Memory: The memory from which instructions are fetched.

Processor State: The set of all locations which can store values between instruction
executions. :

Storage Base (SB): A location, or indexed array of locations, in the processor state.

90

Appendix A: TCOL

The Tree COmmon Language (TCOL) representation of procedural semantics can be
thought of as an abstract parse tree. TCOL is used for the representation of the
instruction actions in the machine description, the patterns in the code generation
tables, and the common language-independent program representation in the compiler.

The TCOL syntax is therefore any convenient representation of a tree. In this thesis, a
parenthesized LISP-like notation is used:

<tree> ::= <leaf> | (<operator> <tree-list>)
<tree-list> ::= <tree> | <tree-list> <tree>
<leaf> ::= <0C> | <AM> | <constant> | <special leaf>

The TCOL semantics are defined in this appendix, by a specification of the TCOL
operators.

To define the operators we must first define the four contexts in w.hich an operator
tree can occur:

(1) A value context: the tree represents a (bit string) value. It is not necessary to
distinguish between different kinds of values (integer, real, etc.) for our
purposes.

{(2) A booiean context: the tree represents the result TRUE or FALSE.

(3) A statement context: the tree produces no result, it is executed only for the side
effects of its subtrees.

(4) A location context: the tree represents a location.

Each operator produces a resuit in one of these contexts, and similarly demands
operands in specific contexts. In the table on the next page, these contexts are
indicated in the context column in the férm operand *toperandj..=>result where the
contexts are represented by V (value), B (boolean), S (statement), and L (location). For
example, the context for "«" is given as "L+V=>S" meaning that it is a statement whose
operands are a location and a value, respectively. "+", on the other hand, takes two
values as arguments, and produces a value as result (VaV=>V). Aiso note the location
descriptor operator, "<>%, which is simply used to specify an access to a storage base.
Note that a location must be distinguished from a value. The location descriptor
operator was found to be more convenient than giving more arguments to the fetch
(".") and store ("«") operators (to specity the storage base, etc.)

Pattern trees are also used in this work. For example, machine instructions are
represented as patterns and matched against program trees in the code generation
process. Pattern trees are defined and represented identically to trees except that
pattern leaves may be parameterized for later reference:

= -
"y

AD=A058 872 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER =-ETC F/6 9/2 B
FORMALIZATION AND AUTOMATIC DERIVATION OF CODE GENERATORS. (U) :
APR 78 R 6 CATTELL F44620=73=C=0074

UNCLASSIFIED CMU=CS=78-115 AFOSR-TR-78-1248 NL

91

<leaf> ::= $<integer>: <leaf>

The subtree matching this pattern leaf may be referred to elsewhere by "$<integer>".
Patterns may also specify leaves that match any node, by omitting the <leaf>
altogether and simply writing "$<integer>". See the instruction patterns in appendix B,
and the axioms in appendix F, for examples of patterns.

What are patterns to the code generator are trees in the code generator generator. It
is therefore necessary to distinguish between "local® parameters in the M-op trees and
axioms, and "global® parameters in the global goal tree given to the search routines.
Global parameters are distinguished from local ones by doubling the "$":

<leaf> ::= 88<integer>: <leaf> | $8<integer>

It may be necessary to introduce new global parameters when it is necessary'to
allocate a temporary location or code label in the generation of code for a given tree;
these are simply assigned new global parameters in numeric sequence. In the traces
in Chapter 4 and appendix D, global parameters are found in the goal trees and code
sequences, and local parameters in the axioms and M-ops. The global parameters are
then printed out as local parameters when constructing the LOP table for the code
generator. _ :

In certain contexts, other special notations are used for TCOL tree leaves. For

example, in an access mode tree an open constant (= any constant of size <integer>) is
represented by:

<special leaf> :1:= #<integer>

Operators

<>

+,-,v,/,M0D

+S,-5,%S,/S,
+L,-L,, /7L,
+F,-F,F,/F,--F
+0,-0,+0,/0,--D
?
#FD,HF1,H400,..

AND#, OR#, NOTH

1

1F#
literal
AND, OR
NOT

EQL, NEQ
GTR, LEQ
LSS, GEQ
EQLF, ...
-2

IF

WHILEDO, DOWHILE
L

GOTO
CALL,RETURN
PUSH,

POP

92

Context Comments

L=>V dereference operator, "contents of".
Will omit this operator unambiguously.
by making L=>V conversion implicit.

Ve=>L location descriptor op; operands are:
Storage Base, Index into SB (value),
bit position in word, size in bits

VeVa>Y integer. NOTE: arithmetic types are
machine-defined, these are suggestions.

V«¥=>Y short integer arithmetic

ViY=>Y long integer arithmetic

VsV=>Y standard floating point arithmetic

Vi«V=>V double length floating

VieV=>Y shift left

Va>V Floating, Integer, etc., conversions
(eg, #Fl=Float->Int)

VwV=>V Bit-uise logical ops

(or Va>V)

LseV=>V "«" uith a value

BueVyeV=>V"IF" with a value

v occurs as leaf
BxB=>B standard conditionals
B=>B

VvV=>B integer relationals

V«V=>B relationals for floating, etc.
ByxL=>S conditional jump operator
L»V=>S assignment statement

Sw=>5 statement sequence

ByS+S=>S

B:w:S=>S

IbxS=>S generates label (argl) before arg2 code
V->S

V=55 Procedure |inkage

V->S

L=>S

93

Appendix B: Machine Description Tables

This appendix contains sample MOP machine description tables for those machines used as
examples In the thesis: (1) the Mini-S, a POP-8 slightly simplified for expository purposes,
and (2) a PDP-11/20.

The components of the description are described In chrapter 2; the syntax for this
representation is described here, in a simplified BNF. The syntax for the NOP is relatively
straightforuard, given the definition of the components and of trees. The only unusual
feature is probably that the OCs and M-ops are represenied as productions rather than as a
simple enumeration of their components. This allous the same syntax to be used for the LOP
as for the NOP, because the RHS of the production, which is simply an EMIT node for N-ops
(and 0Cs), can then be any result sequence In the LOP productions.

Notes on BNF: ".." means the preceding non-terminal may be repeated 8 or mors times. Items
enclosed In curly brackets I..! are comments. Blanks and end of line are not significant.
"<>" Is the TCOL location-descriptor operator, not a non-terminal of the grammar.

<NOP>::= (<I-fld>..) [<SB>..) (<AM>..) [<OC>..) [<Fmt>..] (<M-o0p>..]

<I-fld>t:a (<I-fid name> <position> <size> «word spec> <fiald type>)

<field type>::= 0 I C I D

«<SB>::a (<SB name> <length In words> <length In bits> <SB type>)

<SB type>::= C | G | R | P {temporary, general, reserved, PC}

<Af>::= <AN name> :: <AN locn tree>

<0C>::= <OC name> : (<0C-production>..)

<0C-production>::s <A name> :: (EMIT(<Fmt#> <timecost> <spacecost>] <field value>..)
<field value>::= <integer> | <parameter label>

<paramter label>::= S$<integer>

<Fmt#>::= <integer> Igives # of Fmt in sequencel

<Fmt>i:= (<Fmt ltem>..)

<Fmt)tem>::= <I-fid name> | <OC name>

<M-op>:ii= <assertion tree> :t (EMIT(<Fmt#> <timecost> <spacecost>) <fleld value>..)
<assertion tree>ii= (; <input/output assertion>..) | <input/output assertion>)
<input/output assertion>i:s (IF <input assertion> <output assertion>) | <output assertion>
<input assertion>i:= <bool! tree>

<output assertion>:ts No.Op | (+ <locn spec> <expr tree>)

<locn spec>ii= <A name> | <OC name>

<expr tree>::= (<value-operator> <expr tree>..) | <locn tree>

<boo! tree>:ts (<boolean-operator> <expr tree>..) | <leat>

<locn tree>its (<> <S5B name> <expr tree> <position> <size>) | <leat>

<leaf> may be different things depending on the context. In an N-op:

<leaf>::= <constant> | <0C name> | <A name>

In an AN (access mode):

<leaf>::= <constant> | <open constant>

<open constant>i:s <parameter label> : f<integer> Ireprsnts const uith <integer> bitsi
In a goal tree:

<leaf>t1= <constant> | <OC name> | <AN name> | <wild node>

<ulld node>::s <parameter label>

94
IMOP tile for Nini-S (simplified POP-8)I

{I-fi1dsl [-
oPe3em
(1.81T3 180
(ROR 4 8 8 D)
(10.BITS 4 8 @
WBITS S 78 O
(UCLRSS 4 1 8 0))

iSes! (

(PC 18P
(Mp 256 12 n)
(Ree 1 12 G)
(10.REG 1 8 R)
(L18R))

iRns)

%8: $1:48

ZNps (<> Mp S1:48 8 12) A
Tellp: (<> Mp (<> NMp $1:48 0 12) 8 12)
ZPC: (<>PC 108

ZRcc: (<> RAec 1 8 12)

ZL: (c>L 188

X10.REG: (<> I0.REG 1 @ 8))

10Cs! (

Yo ¢
X8 :: (EMNIT(S 0 @) s10)
XMp 33 (ENITIS 1 @) S11))

2: (
ZMp 1: (ENITIS 1 0) $1 @)
Xeflp :3 (EMITIS 2 @) 31 1))

10: «(
X8 :: (ENIT(E 0 8) 1)))

{1-FNTs}

IFUT 11 (oP 2) 11-opnd formatl
IFAT 21 (0P Y) ljump (ormati
(FRT 31 (OP UCLASS UBITS) imicro format}
IFNT 41 (OP 10) {107 tormat}
10C-FNTs!

IFAT S} (ROR 1.BIT) iY and 2)

IFAT 61 (10.BITS)) 1101

Mops!

(= ZAcc (AND XRcc $1:2)) 13
(ERITIAND 1 1 1) ® s1)

(e ZAcc (¢ ZAcc $1:2)) 12
(ERITITRO 1 1 1) 1 8V

A .y‘

(4 (e $1:2 (+ $152Z 1)) (=> (EQL $1:2 =1) (= XPC (+ XPC 1)))) 11
(EMITIISZ 11 1) 2 sD)

(; (= $1:2 ZRcc) (= XAce 8)) 1:
(ERITIOCA 1 1 1) 3 s1)

(3 (= ZL ZPC) (e XPC $1:Y)) 13
(ERITOINS 2 1 1) 4 s1)

(« ZPC $1:Y) 13
(ENITEIAP 2 1 1] S5 S1)

(e XI0.REG 10) ::
(EMITIIOT 4 1 1) 6 s1)

(e« ZRce (NOT ZXRcc)) 13
(ENITICOMAR 3 1 1) 7 @ 4@

(e« XZAcc 8) :1:
(EMITICLRA 3 1 1) 7 98 28)

(e« ZRce (+ ZAce 1)) 13
(EMITCINCA 3 1 1) 7 0 10

(v ZAce (- XRce 1)) 13
(EMITIDECAR 3 1 1) 7 @ &)

(= ZRecc (T ZRce 1)) 113
(EMITISLA 31 1) 781))

(NO.OP) ::
(ENITINOP 31 1) 720 @

(- ZAce 1) ::
(ENITISETIA 3 1 1) 7 @ 30

(e XAce 2) 13
(EMITISET2R 3 1 1] 7 @ 3))

(e« ZPC L) 13
(ENITIRTS 3 1 1) 7 1 40

(« ZPC ZAce) i3
(ENITIJRPR 3 1 1) 71 20

(s> (LSS XAcc @) (« ZPC (¢ XPC 1))) 11 -
(EMITISKPL 3 1 1) 71 @)

(> (EQL XRcc 8) (= IPC (o ZPC 1))) 1:
(ENITI(SKPE 31 1) 7189

te> (NEQ ZRcc 8) (e XPC (+ XIPC 1))) 13
(EMITISKPNE 3 1 1) 71 2)

(s> (GTR ZAce §) (= XIPC (s XPC 1))) 13
‘(EMITISKPG 3 1 1) 71 D)

(s> (LEQ ZRcc 8) (« IPC (+ ZPC 1))) 11

it

(ENITISKPLE 31 1) 71 86)

(=> (GEQ ZRcc 8) (e XPC (4 XPC 1))) 33
(ENITISKPGE 3 1 11 7 1)

97

INOP file for POP11/20 (truncated))

{I-f1dst

(OpCodel @ 10 8 0) [1-opnd!}
(OpCode2 @ &4 8 0) 12-opndi
(OpCodeB 8 8 @ 0) [branchl
(OpCodeJ 8 7 8 0) [jumpl
(OpCodeR @ 13 8 0) ireturni
(OttsetB 8 8 8 D) Ibranchi
(Srclflode 4 3 0 D) 12-0pnd}
(SrcReg 7 3 8 D) 12-0pnd)

(Srclndex 8 16 1 D) {2-opndl

(Ostfode 18 3 8 C) {l-opnd & 2-opndl
(DstReg 13 3 8 D) (l-opnd & 2-opnd!
(Dstindex 8 16 2 D) {1-opnd & 2-opnd})

iSBs! (

(M 65536 8 M)
(N11C)

2110

(V11C) inot usedt!
(C11C0C) Inot used!
(PC 1 16 P

(SP 1 16 R)

(R 6 16 G))

iANs) (

%8: $1:#8
%16: $1:#16
ZSP: (<> SP 0@
ZPC: (<> PC O
IN: (<> NB S
22: (<> 28 8
XC: (<> C 0 @
ZL: (<> N (& XPC (T $1:78 1)) @ 16)

ZR: (<> R $1:#3 8 16)

ZRb: (<> R $1:#3 8 8)

ZM: (<> N $1:216 0 16)

ZMb: (<> N $1:716 0 8)

ZeR: (<> N (<> R $1:43 0 16) 0 16)

YeRbt (<> N (<> R $1:43 0 16) 8 8)

ZeM: (<> N (<> N $1:1716 0 16) 0 16)

Zafbs (<> M (<> N $1:1416 0 16) 0 8)

ZR+C: (> B (& (<> R $1:43 0 16) $2:716) 8 16)

ZR+Cb: (<> M (¢ (<> R $1:43 0 16) $2:716) 0 8)

JeR4Ct (<> M (<> N (& (<> R $1:#3 @ 16) $2:716) & 16) 8§ 16)
ZeR4Cb: (<> M (<> N (& (<> R $1:43 0 16) $2:416) 8 16) 0 &)
lauto-increment and -decrement not used except with PCl
Z+R: (<> N (« ZR (& XR 2)) 0 16)

XZ+Rb: (<> N (¢« XR (¢ XZR 1)) 0 &)

Z-R: (<> N (« XR (-~ ZR 2)) 0 1)

Z-Rb: (<> N (=« ZR (=~ ZR 1)) 0 8))

16)
16)

{0Cst

98
Src: (
%16 31 (EMIT(13 0.8 1) 2 7 $1)
IR :: (EMIT(12 0.0) @ S1)
m :: (EMITC13 1.5 1) 3 7 s1)
ZeR 33 (EMIT(12 1.5 @) 1 s1)
ZeM 33 (EMITI13 2.7 11 7 7 1)
ZR+C 311 (EMIT(13 2.7 1) 6 S: $2)
ZeR+C:: (ENMIT(13 3.9 1) 7 s1 82))
SrcB: (
IRb: s (ENIT(12 8.8 8] 8 $1)
ZNbs s (EMITI13 1.5 11 3 7 31)
ZeRb:: (EMITI12 1.5 @) 1 s))
ZeMb:: (EMITI13 2.7 1) 7 7 s1)
ZR+Cb:: (ENITI1I 2.7 1) 6 S1 $2)
ZeR+Cbs:: (ENITI13 3.9 1) 7 s1 82))
Dst: (
%16 :: (EMIT(10 6.8 1) 2 7 81)
ZR 13 (ENITI9 0.0 8) @ 1)
m 1 (ENITII0 1.4 1) 3 7 s
YeR 33 (EMITI9 1.4 8] 1 81)
Zeft 11 (EMITI16 2.6 1) 7 7 s1)
ZR+C :: (EMIT(1G 2.6 1) 6 S1 $2)
YeR+C:: (EMITI10 3.8 1) 7 s1 32))

OstB: ¢ !
ZRb:: (ENITIS 0.0 8 s1)
IMb:: (ENITI10 1.4 37 81)
ZeRb:: (ERNITI9 1.4 181
Zeftbs: (ENIT(10 2.6 1) 7 7 s1)
ZR+Cbe: (ENITIIO 2.6 6 81 32)
3.8 7

ZeR+Cb:: (ENITI10 sl $2))

SrcR: (Ifor JUNP, JSRI
IR :: (ENITI11 0.0 0] 81))

DstRs ({for RTS}
ZR :: (EMITIS 0.8 0) $1))

Adr: ({for branches!

XL 32 (EMIT(14 0.0 0) 81)))

11-tmts) [

111 (OpCodel Dst)

121 (OpCode2 Src Dst)

131 (OpCodeB Rdr)

14) (OpCodeJ SrcR Dst)

ISt (OpCodeR DstR)

161 (Opcodel DstB)

17} (OpCode2 SrcB Dst8B)
10C-fmisl

18} (DstReg)

191 (Dstfode DstReg)

1181 (Dstfode DstReg Ostindex)
1111 (SrcReg)

112} (Srcfode SrcRegq)

1131 (Srcflode SrcReg Srclindex)

- e ——

—

99
1141 (OffsetB))

{H-ops! (

ibyte versions of instructions have been omitted; these are
similar to word instrs but use OCs SrcB and DstB and formats 6 and 7|

11-opnd instructions!
(3 (« $1:DST @) (~ XN (LSS @ 8)) (~ X2 (EQL 8 0))) 12
(ENITICLR 1 1 1) S8 si1)

(3 (« $1:0ST (NOT $1:0ST)) (e XN (LSS (NOT $1:0ST) 8)) (« XZ (EQL (NOT $1:0ST) 8))) 1t
(EMITICOM 1 1 1) S1 s1)

(; (- $1:DST (+ $1:DST 1)) (« IN (LSS (+ S1:DST 1) 8)) (+ X2 (EQL (+ $1:DST 1) 8))) 12
(ERITCINC 1 1 1) S2 s1)

(; (« $1:DST (- $1:DST 1)) (e XN (LSS (- $1:0ST 1) 8)) (~ XZ (EQL (- $1:DST 1) 8))) ::
(EMIT(DEC 1 1 1) S3 s1)

(; (~ $1:0ST (- $1:0ST)) (e~ IN (GEQ $1:0ST 8)) (~ X2 (EQL $1:0ST @))) 11
(ERITINEG 1 1 1) S4 s1)

(3 (« IN (LSS $1:0ST 8)) (+ XZZ (EQL $1:0ST @8))) 1t
(ERITITST 1 1 1) S7 s1)

(; (e $1:0ST (T $1:0ST -1)). (~ XN (LSS (T $1:0ST -1) 8)) (e« X2 (EQL (T $1:0ST -1) 8))) ::
(ENITIASR 1 1 1) 62 1)

(; (« $1:0ST (T $1:0ST 1)) (« XN (LSS (T $1:057 1) @) (+ X2 (EQL (T $1:0ST 1) 8))) s
(ENITIASL 1 1 1] 63 s1)

12-0pnd instructions!
(; (= $1:0ST $2:SRC) (~ XN (LSS $2:SRC 8)) (« XZZ (EQL $2:SRC 8))) 13
(EMITIMOV 2 1 1] 1| 82 s1)

(; (= $1:0ST (+ $1:0ST $2:SRC)) (+ XN (LSS (+ $1:0ST $2:SRC) 8)) (s~ X2 (EQL (+ $1:DST $2:SRC)@)))
(ENITIRDD 2 1 1) 6 $2 $1)

(; (o $1:0ST (- $1:DST $2:5RC)) (+~ XN (LSS $1:DST $2:SRC)) (+ X2 (EQL $1:0ST $2:SRC))) 13
(EMIT(SUB 2 1 1) 16 $2 s1)

(; (e YN (LSS $2:0ST $1:SRC)) (+ ZZ (EQL $2:0ST $1:SRC))) 13
(EMITICHP 2 1 1) 2 82 81)

(3 (~ YN (LSS (OR $1:0ST $2:SRC) 0)) (« %2 (EQL (OR $1:0ST $2:SRC) 8))) 1:
(EMITIBIT 2 1 1) 3 32 3D

(3 (+ $1:0ST (AND $1:0ST (NOT $2:SRC)))
(« IN (LSS (AND $1:0ST (NOT $2:SRC)) 8)) (s XZ (EQL (AND $1:0ST (NOT $2:SRC)) 9))) 3:
(EMIT(BIC 2 1 1) 4 32 81) i

(3 (~ $1:0ST (OR $1:0ST $2:SRC))
(= IN (LSS (OR $1:0ST $2:SRC) 9)) (« X2 (EQL (OR $1:DST 32:SRC) §))) 1
(EMIT(BIS 2 1 1) S $2 81)

isubroutine and jump instructions!

-

188

(CALL) 1
(ENITIJSR 4 1 1) 4 7 @)

(RETURN) ::
(ERITIRTS S 1 1) 28 7)

(e« ZPC $1:#16) ::
(ENITIUNP 4 1 1) 8 1 81)

{branch instructionsi

(« ZPC $1:RO0R) 1:
(EMITIBR 3 1 1] 4 s1)

(=> %2 $1:ROR) 1:
(EMIT(BEQ 3 ! 1) 14 S1)

(-> (NOT X2) $1:RDR) ::
(EMIT(BNE 3 1 11 1@ $1)

(-> XN $1:RDR) ::
(EMITIBLT 3 1 1) 24 81)

(-> (NOT ZN) $1:RDR) ::
(EMITIBGE 3 1 1) 20 $1)

(-=> (OR %2 %N) $1:RDR) 13
(EMITIBLE 3 1 1) 34 $1)

(-> (AND (NOT X2) (NOT ZN)) S1:ROR) 1t
(EMITIBGT 3 1 1) 30 s1)

)

e e — Y i

161

Appendix C: Code Generator Prototype Trace

This Is a trace of a user’s interaction with the stand-alone code generator, CODE, whose
tables have been filled In for the POP-18. (Other phases of the PQCC compiler have not been
completed at the time of this writing.) The user’s routine, called TEST, is printed out In
the parenthesized TCOL notation. The TEST program is to add the integers up to 18 and print
the result. TEST.TCL, the TCOL file, is read by CODE to produce TEST.MRC, In assembly
lanquage. Then, TEST.MAC s assembled and loaded with the user’s main program, wuritten in
BLISS-18, and executed. TEST prints out the answer that the sum is 4S.

.SET UATCH DAY, RUN
. type test.tc!
(13:95:18)

(BLOCK

X (ONN)

R1(REGISTER 1)

PRNT (EXTERNAL)
TEST(GLOBAL ROUTINE)

(ROUTINE TEST (;
(« X 8)
(« R1 1)
(DOUNTIL
G
(« X €+ €. X) (. R
(« RL (+ (. RD) 1)))
(EQL (. R1) 1®))
(PUSH (. X))
(CALL PRNT)
(POP X))))
18.23)

.ru code
(13:85:19)

Input File: test.tcl
Output File: test.mac
COOE pass 0:

CODE pass 1:
CO0E pass 2:

EXIT

[(0.26)

. type test.mac

[13:05:21)

L ocT 8
EXTERN PRNT
INTERN TEST

TESTs SETZn X
MOVED 1,1

L8: RODON 1,X
MOVED 1,1()

S e

182

CRIE 1,12
JRST Le
JRST Ll

Ll PUSH X
PUSHJ PRNT
POP X
POPJ 8
END

[(8.88)

.type main.bli

(13:05:21]

module main(stack)s

begin

external test,outnum,outmsg;
global routine prnt(y)=outnum(-1,.y,108,8);

outmsg(-1,plit asciz 'CODE test program?N?JXs’);
test ()
endj

(8.86 1

.ex main.bli,test.mac,sys:blilib/}ib
[13:05:22)

BLIS18: MAIN.BLI

MACRO: .MRAIN

LINK: Loading

[LNKXCT NRIN Execution)

CODE test program

X=4S

EXIT

(1.3)

B A R PRy re L oy vy —‘
-

103

Appendix D: Search Examples

Search: (« ZACC 7ZMP)
Attempting M-op-match
Attempting Decompositions
Attempting Transformations
Feasible[1]: (« ZACC (s ZACC $1:2))
Transform: (« ZACC ZMP) «> (+ ZACC (s ZACC $1:2))
Transform: ZACC => 7ACC
Transform: ZMP «> (+ ZACC $1:2)
Applying $1 :: (+ 0 $1) to: ZMP
Transform: (¢ 0 ZMP) «> (¢ 2ACC $1:2)
Transform: 0 «> 2ACC
Applying Feich Decomposition to: O using: $$1:7ACC
Search: (« $$1:7ACC 0)
Attempting M-op-match
M-op Match: (; (ALLOC $$2:2MP) (EMIT[DCA 1 1 1] 3 $$2:7MP))
M-op Match: (EMIT[CLRA 3 | 1] 7 0 20)
Transform: ZMP > $1:2
Feasible[2]: (~ ZACC (+ ZACC 1))
Transform: (« ZACC 7ZMP) =5 (¢« ZACC (+ ZACC 1))
Transform: ZACC => ZACC
Transform: ZMP => (« ZACC 1)
Applying $1 = (+ 0 $1) to: ZMP
Transform: (¢« O ZMP) => (» ZACC 1)
Transform: 0 «> ZACC
Applying Fetch Decomposition to: O using: $$3:2ACC
Search: (« $$3:7ACC 0)
Attempting M-op-match
M-op Match: (; (ALLOC $$4:2MP) (EMIT[DCA 1 1 1] 3 $$4:2ZMP))
M-op Match: (EMIT[CLRA 3 1 1] 7 0 20)
Transform: 2MP e> 1
[fail on ZMP)
[fail on ZMP }
Applying (¢ $1 $2) :: (+ $2 $1) to: (+ O ZMP)
Transform: (« ZMP 0) => (+ ZACC 1)
Transform: 7ZMP «> ZACC
Depth Limit Reached
[fail on ZMP]
(fail on ZMP]
Depth Limit Reached
[fail on (¢« ZMP 0))
[fail on (+ ZMP 0)]
[fail on (+ O ZMP) }
[fail on (+ O ZMP))
[fail on ZMP)
[fail on ZMP)
[fail on (= ZACC 7MP)]
[fail on (= ZACC ZMP))
[feil on (~ ZACC ZMP)]
Feasible[3]): (« ZACC (- 2ACC 1))
Transform: (~ ZACC ZMP) «> (« ZACC (- ZACC 1))
. Trensform: ZACC «> ZACC
Transform: ZMP «> (- ZACC 1)
Applying $1 = (- (- $1)) to: 2ZMP
Transform: (- (- ZMP)) => (- ZACC 1)
Applying (- $1) = (- 0 §1) to: (- (- ZMP))

R BB

| ; 104

Transform: (- O (- ZMP)) > (- 7ACC 1)
Transform: 0 «> 2ACC
Depth Limit Reached
[fail on O)
{fait on O } |
Depth Limit Reached : ; !
[fail on (- O (- ZMP))]
[fail on (- O (- ZMP)) }
[fail on (- (- ZMP))]
[fail on (- (- ZMP))]
(fail on ZMP |
[fai! on ZMP]
[fail on (« ZACC ZMP))
[fail on (= ZACC ZMP))
[fail on (= ZACC ZMP))
Breadth Limit Reached(24)

Nodes Examined: 25
Est. Seconds: .756e-1
Result Sequence(s):
[Alloc $31:2ACC)
€CCCLLCLCLLLLLCCLCLCLLCLCLCCCKLL
[Alloc $$2:ZMP)
DCA $3$2:7MP

CLRA
3333333333333333333333>>
TAD ZMP

; Best Sequence is:

y [Alloc $$1:ZACC]
! CLRA

TAD IMP

———

Search: (« ZACC (- ZACC))
Attempting M-op-match
Attempting Decompositions
Attempting Transformations
: Feasible[1]: (~ ZACC (- ZACC 1))
: Transform: (« ZACC (- 2ACC)) => (« 2ACC (- ZACC 1))
Transform: ZACC «> ZACC
Transform: (- ZACC) «> (- ZACC 1)
Applying (- $1) = (- O $1) to: (- ZACC)
Transform: (- 0 ZACC) «> (- ZACC 1)
Transform: 0 «> ZACC
Applying Fetch Decomposition to: O using: $$1:2ZACC
Search: (« $$1:2ACC 0)
Atltempting M-op-match
M-op Match: (; (ALLOC $$2:2ZMP) (EMIT(DCA 1 1 1] 3 $$2:2MP))
M-op Match: (EMIT[CLRA 3 1 1] 7 0 20)
Transform: ZACC o> |
[fail on ZACC]
[fail on ZACC]
[fail on (- 0 ZACC)]
[fail on (- O ZACC))
(fail on (- TACC)
[fsil on (- ZACC))
[fail on (« ZACC (- ZACC))]

o olaades sagirr e o o al

o 4 Y —— e ——————

105

[fail on (« 7ACC (- ZACQ))]
[fail on (« ZACC (- 2ACC))]
Feasible(2): (~ ZACC (» 2ACC $1:2))
Transform: (« 2ACC (- 2ACC)) «> (+ ZACC (s 2ACC $1:2))
Transform: ZACC «> ZACC
Transform: (- ZACC) «> (+ ZACC $1:2)
Applying (- $1) = (+ O (- $1)) to: (- 2ACC)
Transform: (¢ O (- ZACC)) > (¢ ZACC $1:2)
Transform: 0 «> ZACC
Applying Fetch Decomposition to: 0 using: $$3:2ACC
Search: (- $$3:2ACC 0)
Attempting M-op-match
M-op Match: (; (ALLOC $$4:7MP) (EMIT(DCA 1 1 1] 3 $$4:2MP))
M-op Match: (EMIT[CLRA 3 1 1) 7 0 20)
Transform: (- ZACC) «> §1:2
Applying Fetch Decomposition to: (- ZACC) using: $$5:2MP
Search: (= $$5:2MP (- 2ACC))
Attemptling M-op-match
Attempling Decompositions
Attempting Transformations
Feasible[1]): (- $1:2 (+ $1:2 1))
Transform: (e $$5:2MP (- 7ACC)) «> (« $1:2 (+ $1:2 1))
Transform: $$5:7MP > $1:2
Transform: (- ZACC) «> (+ $1:2 1)
Depth Limit Reached
[*fail on (- ZACC)]
[fail on (- ZACC))
Depth Limit Reached
(fail on (« $$5:7MP (- 7ACC)))
[fail on (« $$5:2MP (- ZACC)))
[fail on (« $85:ZMP (- ZACC))]
Feasible[2]: (- $1:2Z 7ACC)
Transform: (« $35:7MP (- ZACC)) => (¢« $1:2 2ZACC)
Transform: $3$5:ZMP «> $1:2
Transform: (- ZACC) => 2ACC
Depth Limit Reached
[fail on (- ZACC))
[tail on (- 2ACC))
Depth Limit Reached
[fail on (« $$5:ZMP (-~ 7ACC)) }
[fail on (- $$5:ZMP (- ZACC))]
(fail on (~ $$5:2ZMP (- ZACC))]
Feasible[3): (« ZACC (- 2ACC 1))
Attempting Store-Decomposition using: $$6:2ACC
Search: (« $$5:7MP $$6.7ACC)
Attempling M-op-match
M-op Match: (; (ALLOC $$7:7ACC) (EMIT[DCA 1 1 1] 3 $$5:2MP))
Transform: (- 2ACC) «> (- 2ACC 1)
Depth Limit Reached
{fail on (- ZACC))
(fail on (- ZACC))
[fail on (+ $$5:7MP (- ZACCD) |
Breadth Limit Reached(9)
[fail on (~ $85:2MP (- ZACC)))
[fail on (- 2ZACC))
(fail on (- ZACC) }
Applying (¢ $1 $2) = (+ $2 ¢1) to: (+ O (- ZACC)
Transform: (+ (- ZACC) 0) «> (+ ZACC $1:2)
Transform: (- 2ACC) «> ZACC

106

Applying Fetch Decomposition to: (- ZACC) using: $$8:2ACC
Search: (- $8$8:7ACC (- 2ACC))
Attempting M-op-match
Depth Limit Reached
[fail on (- $$8:2ACC (- 2ACC)))
[fail on (- ZACC)]
[fail on (- ZACC) }
Applying (» $1 $2) = (+ $2 $1) to: ((- 7ACC) 0)
Transform: (» O (- ZACC)) => (¢ 7ACC $1:2)
Transform: 0 «> ZACC
Depth Limit Reached
[fail on 0)
{fail on O } :
Depth Limit Reached
[fail on (s O (-~ ZACC)) }
[fail on (s O (- ZACC))]
(fail on (s (- ZACC) 0) }
[fail on (s (- ZACC) 0))
[fail on (+ O (- ZACC)))
[fail on (+ O (- ZACC)))
Applying (- $1) = (¢ (NOT $1) 1) to: (- ZACC)
Transform: (« (NOT ZACC) 1) «> (s ZACC $1:2)
Transform: (NOT 2ACC) «> ZACC
Applying Fetch Decomposition to: (NOT ZACC) using: $$9:7ACC
Search: (~ $$9:7ACC (NOT ZACC))
Attempting M-op-match
M-op Match: (EMIT(COMA 3 | 1] 7 0 40)
Transform: 1 «> $1:2
Applying Constant Fetch Decomposition
Feasible(3): (« ZACC (+ ZACC 1))
Transform: (~ ZACC (- ZACC)) => (+ ZACC (+ ZACC 1))
Transform: ZACC => ZACC
Transform: (- ZACC) «> (+ ZACC 1)
Applying (- $1) = (¢ 0 (- $1)) to: (- ZACC)
Transform: (« 0 (- ZACC)) «> (+ 2ACC 1)
Transform: 0 «> 2ACC
Applying Fetch Decomposition to: O using: $$11:2ACC
Search: (« $$11:2ACC 0)
Altempting M-op-match
M-op Match: (; (ALLOC $$12:2MP) (EMIT[DCA 1 1 1] 3 $$12:2ZMP))
M-op Match: (EMIT[CLRA 31 1] 7 0 20)
Transform: (- ZACC) > §
[fail on (- ZACC))
[fsil on (- ZACC)) *
Applying (» $1 $2) = (+ $2 $1) to: (s O (- ZACC))
Transform: (+ (- ZACC) 0) «> (+ 2ACC 1)
Transform: (- ZACC) «> ZACC
Applying Fetch Decomposition to: (- ZACC) using: $$13:2ACC
Search: &
Attempting M-op-match
Depth Limit Reached
[tail on &)
[fail on (- 2ACC))
[tail on (- ZACC))
Applying (+ $1 $2) = (+ $2 $1) to: (» (- ZACC) 0)
Transform: (+ O (- 2ACC)) => (¢ ZACC 1)
Transtorm: 0 «> 2ZACC
Depth Limit Reached
(feil on O]

e R O U

107

(fait on O }
Depth Limit Reached
[fail on (+ O (- 7ACC)) |
[fail on (+ O (- 7ACC)))
[fail on (+ (- ZACC) 0))
[fail on (s (- ZACC) 0)]
{fail on (+ O (- 2ACC)))
[fail on (+ Q (- ZACC)) }
Applying (- $1) :: (¢« (NOT $1) 1) to: (- 2ACC)
Transform: (+ (NOT ZACC) 1) => (¢« ZACC 1)
Transform: (NOT ZACC) -> 7ACC
Applying Fetch Decomposition to: (NOT ZACC) using: $$14:2ZACC °
Search: (« $§14:7ACC (NOT 7ACC))
Attempling M-op-match
M-op Match: (EMIT[COMA 3 1 1] 7 O 40)
Transform: | > 1
Feasible[8): (« $1:2 (+ $1:2 1))
Attemptling Store-Decomposition using: $$15:7MP
Search: (« ZACC $$15:7MP)
Attempting M-op-match
Depth Limit Reached
[fail on (« ZACC $$15:2MP) }
[fail on (« ZACC (- ZACC))]
Feasible[5): (« $1:Z2 ZACC)
Attempling Store-Decomposition using: $$16:2ZMP
Search: (« ZACC $$16:7MP)
Atlempting M-op-match
Depth Limit Reached
[fail on (« ZACC $$16:2MP) }
(feil on (« ZACC (- ZACC))]
No more feasible M-ops

Nodes Examined: 58
Esi. Seconds: .199
Result Sequence(s):
€CLCLCCCLLCLLLCLLLLLCLCLLLLLLL
(Alloc $$3:ZACC])
COMA
[Const $810:ZMP 1]
TAD $$10:2MP

[Alloc $$14:2ACC]
COMA

INCA
PIDIDIIEIIIIIIIIIIIIIIIII>D>
Best Sequence is:

{Afloc $314:ZACC)

COMA

INCA

Seerch: (« ZACC (+ ZACC $81:2))
Attempting M-op-match
M-op Match: (EMIT(TAD 1 1 1} 1 §81:2)

Nodes Examined: |
Est. Seconds: .372e-2
Resuit Sequence(s):

108 \
TAD $$1:2
Best Sequence is:
TAD $$1:2

Search: (-« 2ACC (- 2ZMP 2ACC))
Attempting M-op-match
Attemptling Decompositions
Attempting Transformations
Feasible{1]): (« ZACC (- ZACC 1))
Transform: (« ZACC (- 7ZMP 7ACC)) »> (« ZACC (- ZACC 1))
Transform: ZACC => 7ACC
Transform: (- ZMP ZACC) => (- ZACC 1)
Transform: ZMP «> ZACC
Applying Fetch Decomposition 1o: ZMP using: $$1:2ACC
Soarch: (¢« $$1:ZACC ZMP)
Attempting M-op-match
M-op Match: (; (ALLOC $$2:2ACC) (EMIT[CLRA 3 1 1] 7 0 20) (EMIT[TAD 1 1 1) 1 ZMP))
Transform: ZACC > |
[fail on ZACC)
[fail on ZACC]
[fail on (- ZMP 2ACC) }
(fail on (- ZMP 2ACC)]
{fail on (« ZACC (- ZMP ZACC))]
{fail on (= ZACC (- ZMP 2ACC)))
[fail on (« ZACC (- ZMP 7ACC)))

Feasible[2]: (+ ZACC (- ZACC))

Transform: (- 2ZACC (- ZMP ZACC)) «> (« ZACC (- ZACC))
Transform: ZACC => ZACC
Transform: (- ZMP ZACC) «> (- ZACC)
[fail on (- ZMP ZACC)) Y
[fail on (- ZMP ZACC)]
{fail on (= ZACC (- ZMP ZACC))]
[fail on (~ ZACC (- ZMP ZACC)) }
[fail on (« ZACC (- ZMP ZACC)))
Feasible[3): (« ZACC (+ ZACC $1:2))
Transform: (~ ZACC (- ZMP ZACC)) => (+ ZACC (s 2ACC $1:2))
Transform: ZACC «> ZACC
Transform: (- ZMP ZACC) «> (+ ZACC $1:2)
Applying (- $1 $2) :: (¢ $1 (- $2)) to: (- ZMP ZACC)
Transform: (¢ ZMP (- ZACC)) «> (+ 7ACC $1:2)
Transform: ZMP <> ZACC
Applying Fetch Decomposition to: ZMP using: $$4:2ACC
. Search: (- $$4:7ACC 2MP)
Attempling M-op-match
M-op Match: (; (ALLOC $$5:7ACC) (EMIT(CLRA 3 1 1] 7 0 20) (EMIT({TAD 1 1 1] 1 ZMP))
Transform: (- ZACC) «> $1:2
Applying Fetch Decomposition to: (- ZACC) using: $$6:2MP
Search: (« $$6:2ZMP (- 2ACC))
Altempting M-op-match
Attempting Decompositions
Altempting Transformations
Feasible[1]): (~ $1:2 (+ $1:2 1))
Transform: (« $$6:ZMP (- ZACC)) => (= $1:Z (+ $1:2 1))
Transform: $$6:ZMP o> $1:2
Trensform: (- ZACC) o> (s $1:2 1)
Depth Limit Reached
[feil on (- TACC))

109

[fail on (- ZACC))
Depth Limit Reached
[fail on (« $$6:2MP (- 2ACC)))
[fail on (~ $§6ZMP (- 7ACC))]
[fail on (« $3$6:ZMP (- 7ZACC)))
Breadth Limit Reached(3)
[fail on (« $86:ZMP (- ZACC))]
(fail on (- ZACC).]
[fail on (- 2ACC))
Applying (¢ $1 $2) = (+ $2 $1) fo: (« ZMP (- ZACC))
Transform: (+ (- ZACC) ZMP) «> (+ 2ACC $1:2)
Transform: (- ZACC) «> 7ACC
Applying Fetch Decomposition to: (- 2ACC) using: $$7:7ACC
Search: (« $$7:2ACC (- 7ACC))
Attempling M-op-maich
M-op Match: (; (ALLOC $$8:ZACC) (EMIT[COMA 3 1 1] 7 0 40) (EMIT[INCA 3 1 l] 7 0 10))
Transform: ZMP «> $1:2
Breadth Limit Reached(23)

Nodes Examined: 24
Est. Seconds: 899a-1
Result Sequence(s):
[Alloc $87:2ACC]
[Alloc $$8:ZACC)
COMA
INCA
TAD 2MP
Best Sequence is:
[Alloc $$7:ZACC)
[Alloc $$8:2ACC])
COMA
INCA
TAD IMP

Search: (IF (EQL 2ACC 0) (« ZACC 1))
Attempting M-op-match
Attempting Decompositions
Applying (IF $1 $2) :: (; (-> (NOT $1) $3:ZMP) $2 (LABEL $3:2MP))
Simplifying (NOT (EQL ZACC 0)) to (NEQ ZACC 0)
Search: (; (-> (NEQ 7ACC 0) $31:7MP) («~ 2ZACC 1) (LABEL $$1:2MP))
Attempling M-op-match
Attempling Decompositions
Applying Sequence-Decomposition
Sesrch: (-> (NEQ ZACC 0) $$1:2MP)
Altempling M-op-mateh
Atltempling Decompositions
Applying Skip-Decomposition
Search: (GOTO $$1:2MP)
Attempling M-op-match
Attemptling Decompositions
Applying (GOTO $1) = (« 2PC ﬂ)
Search: (¢ 2PC $$1:IMP)
Attemptling M-op-mateh
M-op Match: (EMIT[JMP | 1 1] 5 $81:2MP)
Attempting Transformations
Simplif ying (NOT (NEQ ZACC 0)) to (EQL ZACC 0)
Search: (-> (EQL ZACC 0) (+ 2PC 1))

. —

110

Attempling M-op-maich
M-op Match: (EMIT[SKPE 21 1]715)
Atiempting Transformations
Feasible[1]): (-> (NEQ ZACC 0) (+ ZPC 1))
Transform: (-> (NEQ 7ACC 0) $$1:ZMP) => (-> (NEQ ZACC 0) (+ ZPC 1))
Transform: (NEQ ZACC 0) «> (NEQ ZACC 0)
Transform: ZACC «> ZACC
Transform: 0 «> O
Transform: $$1:ZMP «> (¢ ZPC 1)
Depth Limit Reached
[fail on $$1:2MP]
[fail on $$1:ZMP)
Depth Limit Reached
[fail on (-> (NEQ ZACC 0) $$1:ZMP)]
[fail on (-> (NEQ ZACC 0) $$1:2MP)]
(fail on (-> (NEQ ZACC 0) $$1:ZMP)]
Feasible[2]: (-> (EQL $1:2 -1) (+ ZPC 1))
Transform: (-> (NEQ ZACC 0) $8$1:ZMP) > (-> (EQL $1:2 -1) (+ ZPC 1))
Transform: (NEQ ZACC 0) «> (EQL $1:2 -1)
Depth Limit Reached
[fail on (NEQ ZACC 0))
[fail on (NEQ ZACC 0))
Depth Limit Reached
[fail on (-> (NEQ ZACC 0) $$1:ZMP)]
(fail on (-> (NEQ ZACC 0) $$1:2MP)]
[fail on (-> (NEQ ZACC 0) $81:2MP)]
Breadlh Limit Reached(6)
Search: (« ZACC 1)
Attempting M-op-match
M-op Match: (EMIT[SET1IA 21 117 0 30)
Search: (LABEL $$1:2MP)
Applying Skip-Decomposition
Search: (« ZACC 1)
Attempling M-op-match
M-op Match: (EMIT[SETIA 21 1}7 0 30)
Simplifying (NOT (EQL ZACC 0)) to (NEQ ZACC 0)
Search: (-> (NEQ 2ACC 0) (+ 2ZPC 1))
Attempling M-op-match
M-op Match: (EMIT[SKPNE 21 1])7 1 2)
Attempting Transformations
Feasible(1): (-> (EQL $1:2 -1) (» ZPC 1))
Feasible[2]): (-> (EQL ZACC 0) (+ 2PC 1))
Feasible[3): (-> (NEQ ZACC 0) (+ ZPC 1))

Nodes Examined: 15
Est. Seconds: .686e-1
Resvuit Sequence(s):
€CCCLLLLCLLLLLLLLLLLLLCCL
SKPE
JMP $81:2MP
SETIA
$s1:

SKPNE

SETIA
IEIIIIIIIIIIIIIIIIIIIIID>
Best Sequence is:

SKPNE

SETIA

Search: (« 7ACC 0)

Atllempling M-op-maltch

M-op Match: (; (ALLOC $$1) (EMIT[DCA 1 1 1] 3 §81))
M-op Malch: (EMIT[CLRA 31 1] 7 0 20)

Nodes Examined: 1.

Est. Seconds: .493a-2

Result Sequencea(s):
CCCCCLCCCCCLCLLCLCLLCLCCCLL

[Alloc $81)
DCA $81
CLRA‘"

>3>333333333>33>>>>3>>3>>>
Best Sequence is:
CLRA

Search: (= 7MP 7ACC)
Attempting M-op-match
M-op Match: (; (ALLOC ZACC) (EMIT[DCA 1 1 1] 3 ZMP))

Nodas Examined: 1

Est. Seconds: .3570-2

Result Sequenco(s):
(Alloc 7ACC])
DCA ZMP

Best Scquence is:
[Alloc ZACC)
DCA ZIMP

Soarch: (« $$1:7MP (« §$1:2MP 1))
Attompling M-op-malich
M-op Match: (; (EMIT[ISZ 1 1 1] 2 $§1:2MP) (EMIT[NOP 31 1) 7 0 0))

Nodes Examined: |

Esl Seconds: 531m-2

Result Soquence(s):
1S2 $$1:2MP
NOP

Best Sequencs is:
1sZ $$1:7MP
NOP

{PDP-11 examples}

Search: (« §$1:7M (AND $$2:7M $$3:7M))
Attempling M-op-match
Altemptling Decompositions
Allempting Transtormations
Feasible[1]: (~ $1:DST (AND $1:DST (NOT $2:SRC)))
Transform: (« $$1:7M (AND $$2:7M $$3:7M)) o> (« $1:0ST (AND $1:DST (NOT $2:SRC)))
Transform: §$1:7M <> $1.0ST
Transform: (AND $$2:7M $$3:7M) «> (AND $1:DST (NOT $2:SRC))

112

Transform: $$2:7M «> $1:0ST
Applying Fetch Decompasition to: $$2:7M using: $$1:7ZM
Search: (~ $$1:7M $$2:7M)
Attempling M-op-match
M-op Match: (EMIT[MOV 2 | 1] 1 $§2:7M §$1:2ZM)
Transform: §$37M «> (NOT $2:SRC)
Applying $1 :: (NOT (NOT $1)) to: $$37M
Transform: (NOT (NOT §$3:7M)) => (NOT $2:SRC)
Transform: (NOT $$3:7M) «> $2:SRC
Applying Feich Decomposition to: (NOT $$3:7M) using: $$4:2R
Search: (« §§4:7R (NOT $$3:7M))
Attempting M-op-match
Attempting Decompositions
Attempling Transformalions
Feasible[1): (« $1.0ST (NOT $1:0ST))
Transform: (« $34:2R (NOT $$3:ZM)) => (« $1:DST (NOT $1:0ST))
Transform: $$4:7R «> $1:0ST
Transform: (NOT $$3:7M) => (NOT ¢1:0ST)
Transform: $§$37M => $1:0ST
. Applying Fetch Decomposition to: $§3:ZM using: $§4:2R
Search: (« §$4:7R $$3.7M)
Altempling M-op-maich
M-op Maich: (EMIT[MOV 2 | 1] 1 $$3:7M $34:7R)
Breadth Limit Reached(3)
Feasible(2): (~ $1:DST (NOT $1.0ST))
Transform: (~ $$1:7M (AND $$2.7M $$3:7M)) «> (~ $1:0ST (NOT $1:DST))
Transform: $§1:7M <> $1-0ST
Transform: (AND $$2:7M $$3.:7M) => (NOT $1:DST)
Applying (AND $1 $2) :: (NOT (OR (NOT §1) (NOT $2))) to: (AND $$2:2M $$3:7M)
Transform: (NOT (OR (NOT $§2:7M) (NOT $$3:2ZM))) «> (NOT $1:0ST)
Transform: (OR (NOT $$2:7M) (NOT $$3:ZM)) «> $1:0ST
Applying Fetch Decomposition to: (OR (NOT §$2:2M) (NOT $$3:ZM)) using: ”l IM
Soarch: (« $81:7M (OR (NOT $$2:2M) (NOT $$3:2M)))
Attempting M-op-match
Attempling Decompositions
Atltempting Transformations
Foasible[1]: (~ $1.DST (OX §$1.0ST $2.SRC))
Transform: (= $$3:7M (DR (NOT $$2:7M) (NOT $$3:2M))) => (+ $1:DST (OR $1:0ST $2:SRC))
Transform: §$1:7M «> $1:0ST
Transform: (OR (NOT $$2:7M) (NOT $$3:ZM)) «> (OR $1:0ST $2:SRC)
Transform: (NOT $$2:7M) «> $1:DST
Applying Felch Docomposition to: (NOT §$2.7M) ulm $$1:IM
Search: (« §8$1:7M (NOT $82:2M))
Atlempling M-op-match
Depth Limit Reached
[fail on (« $$1:ZM (NOT $$2:7M))]
[fail on (NOT $$2.7M) }
[fail on (NOT $$2:7M))
[fail on (OR (NOT $$2:7M) (NOT $83:7M)))
[feil on (OR (NOT $$2:7M) (NOT $$3:7M))]
(foil on (« $$1:7M (OR (NOT $$2:72M) (NOT $$3:2M)))]
(fsil on (= $$1:7M (OR (NOT §§2:7M) (NOT §$3:7M))) }
[fail on (« $$1:7M (OR (NOT $$2:7M) (NOT $$3:2M)))]
Breadth Limit Reached(S)
[fail on (- $81:7M (OR (NOT $§2:7M) (NOT $$3:7M))))
[fail on (OR (NOT $$2:7M) (NOT $$3:7M)))
[fail on (OR (NOT $$2:7M) (NOT $$3:7M))]
[fail on (NOT (OR (NOT $$2:7M) (NOT $$3:7M))) }
[fail on (NOT (OR (NOT $$2:7M) (NOT $$3:2M)))]

Applying $1 :: (NOT (NOT $1)) to: (AND $$2:7M $$3:7M)
Transform: (NOT (NOT (AND $82 7M $§3.7M))) «> (NOT $1:DST)
Transform (NOT (AND $$27M §$3.7M)) «> $1:0ST
Applying Fetch Decomposition to: (NOT (AND $$2:72M §$3.7M)) using: $$1:ZM
Search: (« $§81:7M (NOT (AND $$2 7M §§3:7M)))
Attempling M-op-malch
Atiemptling Decompositions
Attempling Transformations
Feasible(1): (~ $1:DST (NOT $1:DST)) ;
Transform: (« $$1:7M (NOT (AND $$2:7M $$37M))) «> (+ $1:DST (NOT $1:0ST))
Transform: §§1:7M «> $1-DST
Transform: (NOT (AND §$2 7M §§3:7M)) «> (NOT $1:0ST)
Transform: (AND $$27M $$3.7M) «> $1.0ST
Applying Felich Dacomposilion fo: (AND $$2:7M §$3.7M) using: $$1:ZM
Search: (« $§81:7M (AND §§2:7M §$3.7M))
s Attemptling M-op-maich
Depth Limit Reached
(fail on (~ $81:7M (AND §§2:7M §§3.7M)) }
[fail on (AND $52:7M $$3.7M) }
[fail on (AND $$2.7M $$3.7M) }
[fail on (NOT (AND $$2:7M $$37M))]
[fail on (NOT (AND $§2.7M $§§3.7M))]
[fail on (« $$1:7M (NOT (AND $52.7M $$3.7M)))]
{fail on (¢~ $$1:7M (NOT (AND $$2:7M §$3:7M))))
(fail on (~ $$1.7M (NOT (AND $§2:7M §$3:7M))) |
Broadth Limit Reached(S)
[fail on (- $31:7M (NOT (AND $$2:7M $$3.7M))))
[fail on (NOT (AND $$2:7M $$37M)))
[fail on (NOT (AND $$2:7M §$3.7M)))
[fail on (NOT (NOT (AND §$2:7M $§3:7M)))]
[fail on (NOT (NOT (AND $$2:7M $§37M)*"]
[fail on (AND $§2:7M $§$3:7M) |
[fail on (AND §$2:7M $$3.7M)]
[fail on (« §$1:7M (AND $$2:7M §$3:7M))]
[fail on (« §$1:7M (AND $$2.7M $§$3:7M)))
[fail on (« $81:7M (AND §§27M $§3:7M))]
Feasiblo[3): (« $1:DST $2:SRC)
Tranoform: (« $$1.7M (AND $$2:7M §§3:7M)) => (« $1.0ST $2:SRC)
Transform: §$1:7M «> $1.0ST
Transform: (AND §$2:7M $$3.7M) > $2:SRC
Applying Fetch Docomposition 1o: (AND §$2.7M $$3:7M) using: $35:1R
Search: (~ $$5:7R (AND $$2:7M $$3:7M))
Attomptling M-op-match
Atltempting Decompositions
Attemptling Transformations
Feasible(1]: (« $1:DST (AND $1-DST (NOT §2.SRC))
Transform: (« $35:7R (AND $$2.7M $$3:7M)) «> (« $1:0ST (AND $1:DST (NOT $2:SRC)))
Transform: §$5:-7R «> $1:0ST
Transform: (AND $$2.7M $$3 7M) «> (AND $1:DST (NOT $2:SRC))
Transform: $§$2:7M <> §1:DST
Applying Fetch Decomposition to: $$2:7M using: $85:7R
Search: (« $$5:7R §$2:7M)
Attempling M-op-match °
M-op Match: (EMIT[MOV 2 1 1] 1 $$2:7M §$5:2R)
Teansform: $$3.7M «> (NOT $2:SRC) 1
Applying $1 :: (NOT (NOT $1)) to: $83:7M
Transform: (NOT (NOT §$3:7M)) »> (NOT $2:SRC)
Transform: (NOT $$3:7M) «> $2.SRC
Applying Fetch Decomposition fo: (NOT §$3:7M) vsing: $86:2R

3

g e

| —

114

Search: (« §§6.7R (NOT §$3.7M))
Attempling M-op-match
Depth Limit Reached
{fail on (- $$6:7R (NOT $§3.7M)))
[fail on (NOT §$37M))
[fail on (NOT §§37M))
(fail on (NOT (NOT $$3.7M))]
[f#il on (NOT (NOT §$3.7M)))
[fail on $33:7M)
[fail on $§$3.7M]
[fail on (AND §§2:7M §§3.7M))
[fail on (AND $$2.7M §$3.7M)]
{fail on (« $$5:7R (AND $§2.7M §$3.7M))]
[fail on (« $§5:7R (AND $$2:7M $$3.7M))]
[fail on (~ $85:7R (AND $$2:7M $$3 7M)) }
Breadth Limit Reachod(10)
(fail on (« $35.7R (AND §$2:7M $$37M)) |
[fail on (AND $$2:7M $$3.7M)] .
{fall on (AND §$2.7M $$37M))
[fail on (~ $$1:7M (AND $$2:7M $83.7M)))
[fail on (= §$1:7M (AND §§2:7M §§3.7M)))
[fail on (« $$1:7M (AND $$2:7M §$3:7M))]
Broadth Limit Roached(45)
Nodes Examined: 46
Est. Soconds: 227
Result Sequenco(s):
[Alloc $$1:7M)
MOV $$2:7M §$1:7M
[Atloc $84:7R)
[Alloc $84:7R)
MOV §$37M ¢$4.7R
COM $$4:7R
B8IC $$4:7R §$1:7M
Best Sequence is:
[Alloc $§1:7M)
MOV $$27M §$1:7M
[Aloc $84:7R)
[Alloc $$4:7R)
MOV $$3.7M $34.7R
CcCoM $$4:7R
BIC $$4:7R $$1:2M

Search: (-> (NEQ $$1:7M $$2.7M) $$3)
Atlempling M-op-match
Attempting Decompositions
Altemptling Transformalions
Feasible(1] (« $1:DST (NOT §1.0ST))
Feasible[2]: (-> (NOT 72) $1.ADR)
Transform: (-> (NEQ $$1.7M §$2:7M) $33) «> (-> (NOT 22) $1:ADR)
Transform: (NEQ $$1 ZM $$2.7M) «> (NOT 22)
Applying (NEQ $1 $2) = (NOT (EQL §3 $2)) to: (NEQ $$1:ZM $$2:2M)
Transform: (NOT (EQL $$1:7M $$2.7M)) «> (NOT 22)
Transform: (EQL $81:7M $$2.7M) o> 22
Applying Fetch Decomposition to: (EQL $§1:7M $§2:7M) vsing: $$3:72
Search: («~ $33:72 (EQL $31:7M $82:7M))
Attampling M-op-match

115

M-op Malch: (EMIT[CMP 2 | 1] 2 $§2.7M §$1:7M)
Transform: §$3 «> $1.ADR
Feasiblo[3]: (-> (NOT 7N) §1-ADR)
Transform: (-> (NEQ §$1.7M $§2.7M) $$3) «> (-> (NOT 7N) $1:ADR)
Transform: (NEQ §$1:7M $52 7M) «> (NOT ZN)
Applying (NEQ §1 §2) : (NOT (EQL §1 $2)) to: (NEQ $31:7M $$2.7M)
Transform: (NOT (EQL $$1:7M §$2.7M)) > (NOT 7N)
Transform: (EOL §§1:7M §§2:7M) => 7N
Applying Fetch Docomposition to: (EQL $$1:7M $§2.7M) using: $$4.7N
Secarch: (« §§4.7N (EQL $$1:7M §§2:7M))
Attempling M-op-maltch
Attempting Decomposilions
Attempting Transformations
Feasiblo[1} (« 7Z (EQL $1:DST O)
Attempling Slore-Decomposilion using: $§5:72
Search: (~ $$4:7N $$5:72)
Attempting M-op-malch
Depth Limit Reached
{fail on (~ §$4:7N $$5:72) |
[fail on («~ $34:7N (EQL §$1:7M §§2.7M)))
Feasible[2): (« 72 (EQL $1 DST $2 SRC))
Attempling Slore-Docomposition using: $§6:22
Search: (« $$4:7N $$6:72)
Attompling M-op-maich
Depih Limit Reached
[fail on (~ $84 7N §$§672)]
[fail on (~ §$4.7N (EQL $$1:7M §§2:7M))]
Feasible[3): (~ 72 (EQL (OR $1:0ST $2:SRC) 0))
Attempting Slore-Decomposition using: §$7:22
Search: (~ $$4:7N §$7:22)
Attempling M-op-match
Depth Limit Reached
[fail on (- $34:7N §$7:72))
[fail on (- $$4.7N (EQL §$1:7M $§2:7M))]
Feasible{4]: (« $1:DST (NOT $1.DST))
Atlempling Store-Decomposition using: $$8:7R
Search: (~ §$4.7N $$8:7R)
Attempting M-op-match
Depth Limit Reached
[fail on (« §$4.7N $$8:7R) }
[fail on («~ $$4.7N (EQL $$1:7M §§2:7M)))
Feasible[5]): («~ $1:DST $2.SRC)
Attempling Store-Decomposition using: $$9:7R
Search: (- $84.7N $$9:7R)
Attampting M-op-match
Depth Limit Reached
[fail on (~ §$4.7N $$9.7R)]
[fail on (« §$4.7N (EQL §$1:7M $$2:7M))]
Broadih Limit Reached(10)
[fail on (« $$4.7N (EQL $$1:7M §§2:7M)))
{fail on (EQL §81:7M §82:7M))
(fail on (EQL $$1:7M $32 7M)]
[fail on (NOT (EQL $81:7M $$2:7M))]
[fail on (NOT (EQL $81:7M §$2:7M)))
Applying $1 :: (NOT (NOT $1)) to: (NEQ $$1:7M $§2:7M)
Transform: (NOT (NOT (NEQ $$1:7M $§2:2M))) «> (NOT ZN)
Teansform: (NOT (NEQ $§1:7M $§2:7M)) «> 7N
Applying Felch Docomposition to: (NOT (NEQ $$1:7M $$2:2M)) using: $$10:ZN
Search: («~ §810:ZN (NOT (NEQ $$1:7M §$2:7M)))

Attempting M-op-match
Attemptling Decompositions
Attempling Transformalions
Feasible{1]): (« $1:DST (NOT §1:0ST)
Atlempling Store-Docomposilion using: §$11:7R
Scarch: (« $§10:7N $$11:7R)
Attemptling M-op-match
Depth Limit Roached
[fail on (« $$10:7N §8$11:7R)]
[fail on (~ §$10:7N (NOT (NEQ §$1:7M §$2:7M)))]
Feasible[2]): (« §1:DST $2.SRC)
Attempling Slore-Decomposition using: $§$12:7R
Search: (« §$10:7N §$12:7R)
Atiempling M-op-match
Depth Limit Reached
[fail on (~ §§10:7N §8$12:7R)]
[fail on (« §$10:7N (NOT (NEQ $$1:7M §§2:7M)))]
No more feasible M-ops
[fail on (« $$10:7N (NOT (NEQ §$1:7M $§§2:7M)))]
[fail on (NOT (NEQ $$1:7M §§2.7M))]
[fail on (NOT (NEQ §$1:7M §$2.7M))]
[fal on (NOT (NOT (NEQ $$1:7M §§2:7M)))]
[fail on (NOT (NOT (NEQ $$1:7M $§2.7M)))]
[fail on (NEQ §81:7M §§2.7M))
[fail on (NEQ §$1:7M §§2:7M)]
[fail on (-> (NEQ $§31:7M $$2.7M) §33))
[fail on (-> (NEQ $§1:7M ¢$2.7M) $$3)]
[£ail on (-> (NEQ $$1:7M §32:7M) $§3))
Feasible[4]): (~ 22 (EQL $1:0ST 0))
Feasible[S]): (« 722 (EQL $1:DST §2.SRC})) 1
Feasible[6]: («~ 72 (EQL (OR $1:DST $§2:SRC) 0))
Feasible[7]): (; (~ §1:DST §2.SRC) (~ 7N (LSS $2.SRC 0)) (« 72 (EQL $2:SRC 0)))
Feasible{8): (- $1:DST $2.SRC)
Feasible(9]): (~ 7PC $1:ADR)
Feagible[10): (-> 72 $):ADR)
Transform: (-> (NEQ $$1:7M $$2:7M) $$3) «> (-> 72 $1:ADR)
Transform: (NEQ $$1:7M §$2:7M) => 72
Applying Fetch Docomposition to: (NEQ $$1:7M §$2:7M) using: $$12:22
Secarch: (« §513:72 (NEQ $$1:7M §$2:7M))
Altempiling M-op-malch
Attempling Decompositions
Attempling Transformations
Foasible[1]): (~ 72 (EQL $1:0ST 0))
Transform: (« §§13:72 (NEQ $$1:7M §$2:7M)) > (« 72 (EQL $1:0ST 0))
Transtorm: §§1372 > 72
Transform: (NEQ $$1:7M §§2.7M) => (EQL $1:DST 0)
[fail on (NEQ $31:7M §327M))
[fail on (NEQ $$1:7M §$27M)]
[fail on (= §$13:72 (NEQ $$1:7M $$2:7M))]
[fail on (« $$1372 (NEQ $$1:7M §§2.7M)))
{fail on (= $$1372Z (NEQ §$1:7M $§2.7M)))
Feasible[2]) (« 72 (EQL $1:DST $2 SRC)) .
Teanaform: (« §§13:72 (NEQ $$1:7M §$2:7M)) «> (« 22 (EQL $1:0ST $2:SRC))
Transform: $§1372 «> 72
Transform: (NEQ $$1:7M $§2:7M) »> (EQL $1:0ST $2:SRC)
[fail on (NEQ $$1:7M §$27M))
[fail on (NEQ $$1:7M §§27M)]
[fail on (« $$13:72 (NEQ $$1:7M §$2:7M)))
[foil on (« $$13:22 (NEQ $$17M $§2:7M))]

117

[fail on (« $$1372 (NEQ $$1:7M $§2:7M))]
Foasible[3]: (« 72 (EQL (OR §1:DST §2:SRC) 0))
Transform: (« §§13 72 (NEQ $$1:7M §$2:7M)) «> (« 72 (EQL (OR $1:DST $2:SRC) 0))
Transform: §§13:72 «> 72
Transform: (NEQ $$17M $82 7M) «> (EQL (OR $1:DST $2:SRC) 0)
[fail on (NEQ $$1:7M §827M))
[fail on (NEQ §$1:7M §§27M)]
(fail on (« §$1372 (NEQ $$1:7M $$2:7M))]
[fail on (+ $$13-7Z (NEQ $$1:7M $§2.7M))]
[fail on (~ $81372 (NEQ $$1:7M §$2:7M))]
Feasible[4): (~ §1.DST (NOT §1.0ST))
Atiampting Store-Decomposilion using: §$14:7R
Search: (« $$1372 §§147R)
Attempting M-op-match
Depth Limit Reached
[fail on (« $$13.7Z $§14:7R)]
[fail on (« $§1372 (NEQ $$1:7M $§2:7M))]
Feasible[S]: («~ §1:DST §2.SRC)
Attempling Store-Decomposition using: §§15:7R
Search: (« $$13:72 $515:7R)
Attempling M-op-match
Depth Limit Reached
[fail on (~ $$13.72 $$15:7R)]
[fail on (~ §§13.72 (NEQ §§1:7M §§2:7M))]
No more feasiblo M-ops
[fail on (« §513.72 (NEQ §51:7M §§2:7M))]
[fail on (NEQ $$1:7M §§2:7M)]
[fail on (NEC $$i:7M $52:7M)]
[fail on (-> (NEQ $$1:7M §$2:7M) $§3)]
[fail on (-> (NLQ $§1:7M $§2.7M) $§3)]
{fail on (-> (NEQ $$1:7M §82:7M) $83)]
Feasibio{11]: (-> 7N §1:ADR)
Tranaform: (-> (NEQ $$1:7M §$2:7M) §$3) => (-> ZN $1:ADR)
Transform: (NEQ $$1:7M $§§2:7M) => ZN
Applying Fetch Decomposition lo: (NEQ $$1:7M $$2:2M) using: $$16:2ZN
Soarch: (« $§16:7N (NEQ §$1:7M §§2:7M))
Attempting M-op-match
Attempting Decompositions
Attempling Transformations
Feasible{1]: («~ $1:DST (NOT $1-0ST))
Attemptling Store-Decomposition using: $$17:7R
Search: (~ $§§16:7N §§17:7R)
Altempling M-op-malch
Depth Limii Reached
[fail on («~ §316:7N §$17:7R))
[fail on (= $$1G 7N (NEQ $§1.7M §$2:7M))]
Feasible{2) (~ 72 (EQL §1 DST 0))
Attempling Storo-Decomposition using: §$18:72
Search: (« §$16:7N $$18:22)
Attlempling M-op-maich
Depth Limit Reached
[fail on (- $8167N $§18:72))
[fail on (- $816:7N (NEQ $31:7M §$2:7M)))
Feasible[3): (« 72 (EQL §1:DST §2:5RC))
Altempling Store-Decomposition using: $$19:22
Search: (- $$16:7N $$19:72)
Attempling M-op-match
Depth Limit Reached
[fail on (~ $$16:ZN $$19:72))

118

[fail on (« $316:/N (NEQ $$1.7M §$2:7M))]
Feasible[4): (- 72 (EQL (OR $1:DST $2:SRC) 0))
Attempling Store-Decomposition using: $$20:22
Search: (- $§$16.7N §$20:72)
Attempting M-op-match
Depth Limit Reached
[fail on (~ $$16:7N §$20:72))
[fail on (~ $$16:7N (NFQ $§1:7M §§2:7M)))
Feasible[S]: (~ $1:0ST $§2:SRC)
Attemptling Store-Decomposilion using: $$21:2R
Search: (- $§$16:7N §$21:7R)
Attompling M-op-malch
Depth Limit Reached
[fail on (~ $$16.7N §$21:7R)]
{fail on (« §516.7N (NEQ $§1:7M $$2:7M)))
No more feasible M-ops
[fail on (« $$16.7N (NEQ $$1:7M §§2:7M))]
[fail on (NEQ $$1:7M §§2:7M)]
(fail on (NEQ $$1:7M §§2:7M))
[fail on (-> (NEQ §§1:7M §§2:7M) §$3) |
(fail on (-> (NCQ §$1:7M §§2.7M) $$3)]
[fail on (-> (NEQ §81:7M $$2:7M) $§3)]
No more foasible M-ops

Nodes Examined: 62
Est Seconds: 288
Rosult Sequenco(s):
[Alloc $$372)
CMP $$2:7M $$1:7M
BNE $$3
Best Sequence is:
© [Alloc $$3:72)
CMP $$27M $8$1:7M
BNE $3$3

Search: (-> (LEQ $$1:7M §$2:7M) $$3)
Atlempling M-op-match
Attempting Decompositions
Attempting Transformalions
Feasible(1]: -(« $1:0ST (OR $1:0ST $2:SRC))
Feasible[2]): (-> (OR 72 7N) $1:ADR)
Transform: (-> (LEQ $$1:7M $$2:7M) $$3) «> (-> (OR 22 2N) $1:ADR)
Transform: (LEQ $$1:7M $$2:7M) > (OR 722 7N)
Applying (LEQ $1 $2) : (OR (EQL §1 $2) (LSS $1 $2)) to: (LEQ $$1:2M $$2:ZM)
Transform: (OR (EQL §$17M §$2.7M) (LSS $$1:7M §$2.2M)) «> (OR 22 ZN)
Transform: (EQL $$1:7M $$2 7M) => 72
Applying Fetch Decomposition to: (EQL $$1:7M $$2:7M) using: $$3:72
Search: (~ §8$3:72 (EQL $$1:7M $$2:7M))
Atlempting M-op-match
M-op Match: (EMIT[CMP 2 1 1] 2 $$1.7M $$2:7M)
Transform: (LSS $$1:7M §82.7M) > 7N .
Applying Felch Dacomposition to: (LSS $$1:7M §$2:2M) veing: $34:2N
Search: (~ $$4:7N (LSS $$1:7M $§2:2M))
Altempting M-op-match
M-op Match: (EMITICMP 2 1 1) 2 $$1:7M $$2:2M)
Transform: $§$3 «> $1:ADR
Fessible(3): (~ $1:0ST (NOT ¢$1.DST))

119

Feashlo[4) (-> (NOT 72) $1 ADR)
Transform: (-> (LEQ $$1:7M §§2.7M) $$3) => (-> (NOT 22) $1:ADR)
Tranasform: (LEQ §$1.7M $§2 7M) «> (NOT 72)
Applying (LEQ §1 §2) : (NOT (GTR §1 $2)) to: (LEQ $$1.7M $§2:7M)
Transform: (NOT &) => (NOT 72)
Transfarm: & «> 72
Applying Fotch Docomposition to: & using: $§5:72
Scarch. (« $85:72 (GIR $$1:7M §$2:7M)
Attempting M-op-malch
Attoempling Decomporilions
Attempling Transformations
Feasible[1): (- §).DST (NOT §1 DST))
Attempling Store-Decomposilion using: $$6 7R
Soarch: (« §8572 $$6 7R)
Atlompling M-op-malch
Deopth Limil Reachod
{fail on (- $$572 §367R))
[fail on (~ §$5:72 (GTR $$1:7M §§2.7M))]
Feasible(2] (- §1 DST (AND $1 DST (NOT $2 SRC)))
Atlemptling Store-Decomposition using: §$7 7R
Search: (« §§572 §§7 7R)
Altempling M-op-malch
Dopth Limit Reached
[fai on (= $§572 §$77R))
[fail on (v $§5.72 (GTR §$1.7M §$2.7M))]
Feasible[3) (« $1:DST $2 SRC)
Altempling Slore-Decomposilion using: $$8 7R
Search (~ $$5:72 $$8:7R)
Attempling M-op-match
Depth Limit Reachod
[fad on (~ §§5 72 $$8:7R))
[fail on (= $$5.7Z (GTR §$17M §§2:7M)))
Breadth Limil Reached(6)
[fail on (« $$5:72 (GTR $$1:7M $$2:7M))]
(fail on (GTR §$1:7M §§2.7M))
[fail on (GTR §§1.7M §$2.7M)]
[fail on (NOT (GTR §$17M §32 7M)))
[fai on (NOT (GTR $$1:7M §$2 7M))]
Applymg $1 = (NOT (NOT $1)) fo: (LEQ $$1 7M §$2 7ZM)
Transform: (NOT (NOT (LEQ §§1.7M §§2:2M))) => (NOT 72)
Transform. (NOT (LEQ $$1.7M $$2:7M)) o> 72
Applying Felch Decomposition to: (NOT (LEQ $$1:2M $$2:7M)) using: $$9:22
Saarch: (¢ §89:72 (NOT (LEQ $$1.7M §$2.7M))
Attempting M-op-malch
Altempling Docompositions
Altempling Transformalions
Feanibin[1]: (« $1.DST (NOT $1:0S7))
Attempling Stora-Decomposition using: $§10:7R
Search: (~ $$972 $$10:7R)
Attompling M-op-match
Depth Limit Reachod
[fail on (- $$9.72 $810-7R)]
[fail on (« $§9.72 (NOT (LEQ $$1.7M §$2: ™)))
Feasible(2]: («- $1:0ST $2.SRC)
Attempling Slore-Decomposition using: $$11: R A
Search: (~ §59:72 $§$11:7R)
Attempling M-op-match
Dapth Limit Reached
[fail on (~ $49:72 $811.7R)]

I

120

(3l on (~ $$97Z (NOT (LEQ $51.7M $§27M)))
No more feasible M-ope
[fail on (« $$9:72 (NOT (LEQ $S1.7M $82.7M))))
[fail on (NOT (LEQ §§1 7M §§2 7M))]
[fail on (NOT (LEQ $§1 7M §$2 7M))]
[fail on (NOT (NOT (LEQ $$1:7M §$2.7M))))
(fail on (NOT (NOT (LEQ $§1:7M §$2.7M))))
{ail on (LEQ §$1:7M $52.7M))
[fail on (LEQ $$1 7M §$2 7M))
[fai on (-> (LEQ $$1.7M $$27M) $53))
[fail on (-> (LEQ §$1:7M §§2:7M) $§3))
(fadl on (-> (LEQ $$17M $§2 7M) §§3) |
Feasible[5] (-> (NOT 7N) §$1.ADR)

Transform: (-> (LEQ $$17M $$2 7M) $83) > (-> (NOT 2N) $1.ADR)
Transform: (LEQ $$1:7M $$2-7M) > (NOT 7N)
Applying (LEQ $1 $2) :: (NOT (GTR $1.82)) to: (LEQ $81:7M $$2:2M)

Transform: (NOT (GTR $$1-7M $$2:7M)) => (NOT ZN)
Transform: (GTR $$1:7M $$2:7M) «> 2N
Applying Felch Dacomposition to: (GTR $$1:7M $$2.7M) using: $$12:IN
Search: (~ $$12:7N (GTR $$1:7M §$2.7M))
Atltempling M-op-match
Att{empling ODecomposilions
Attempling Transformations
Feanible[1]: (« $1:0ST (NOT $1:0ST))
Attempting Store-Decomposition using: $$13:2R
Search: (- $§12.7N $§13.7R)
Atiempting M-op-match
Dapth Limit Reached
[fait on (- $312:7N $§$13.2R)]
[fail on (« $512:7N (GTR $$1:7M §$2.2M))]
Feasible[2]: (~ $1:DST (AND §$1:DST (NOT $2:SRC)))
Attempting Store-Decomposition using: $§$14.7R
Scarch: (- $$12:7N $$14:2R)
Attempting M-op-match
Depth Limit Reached
[fail on (- $332:7N $$14.7R))
[fail on (v $$12.7N (GTR $§1.7M §§2.7M)) |
Feasible(3]: (« $1.0ST $2:SRC)
Attempting Store-Dacomposition using: $$15:7R
Search: (~ $812:7N $§15:7R)
Attompling M-op-match
Dopth Limit Reached
{fail on (- $$12.7N $815.7R) }
[fail on (- $812.7N (GTR $$1.7M $$2.7M))]
Broadth Limit Roachod(G)
{foil on (- §$12:7N (GTR §$1.7M §§2:7M)))
(fait on (GTR $81:7M $§2.7M) }
[fail on (GTR §$1:7M §§2:7M)]
[fal on (NOT (GTR $$1:7M $$2.7M))]
[fail on (NOT (GTR $$1:7M $$2.7M)) }
Applying $1 :: (NOT (NOT $1)) to: (LEQ $$1:7M $$2:7M)
Transform: (NOT (NOT (LEQ $$1:7M $$2.7M))) «> (NOT ZN)
Transform: (NOT (LEQ $$1:7M $$2:7M)) «> 7N
Applying Felch Decomposilion lo: (NOT (LEQ $$1:2M $$2:7M)) using: $$16.IN
Search: (o $$16:7N (NOT (LEQ $$1:7M $52:2M)))
Altempling M-op-match
Attempting Decompositions
Attempling Transformations
Feasible[1]: (« $1.0ST (NOT $1.08T))

— |

121

Attempling Store-Docomposition using $§17:2R
Scarch: (~ $§16:2N §$17:7R)
Attempling M-op-malch
Depth Limit Reached
[fail on (- $$16 7N ¢$17:7R))
[fail on (~ $$16:7N (NOT (LEQ §$1:7M $52.7M)))]
Feasible[2): (« §1:DST §2.SRC)
Attempting Store-Decomposition using: SSIB ZR
Scarch: (~ $$16:7N $$18.7R)
Attempting M-op-malch
Depth Limit Reached
[fail on (~ $$16 7N §$18:7R)]
[fail on (= §§16 7N (NOT (LFQ §§1-7M §§2.7M))]
No more franihle M-ops 2
| [fail on (« $$16:7N (NOT (LEQ $$1.7M §52.7M)))
* (fail on (NOT (LEQ $§1-7M §$2.7M))]
| [fail on (NOT (LEQ $$1:7M §§2.7M))]
‘t (fail on (NOT (NOT (LEQ $$1:7M §§2 7M)))]
[fail on (NOT (NOT (LEQ $$1.7M §$2.7M))) }
[fait on (LEQ §$1:7M $32.7M))
[fail on (LEQ $S17M §§2.7M)]
(fail on (-> (LEQ $$1:7M §§2 7M) $$3) |
(fail on (-> (LEQ §81:7M §$2:7M) §§3))
[fail on (-> (LEQ $$1.7M §$2:7M) §$3)]
Breadih Limit Reached{49)
Nodes Exaninad: 50
Est Seconds: 225
Rosgult Soquenco(s):
[Alloc $$372)
CMP $$1:7M $$2.7M
[Alloc $84.7N)
CMP §S1.7M §$2:7M
BLE $$3
Best Scquence is:
[Alloc $8372]
CMP $$1.7M §$2:7M
{Alloc $84:7N]
CMP $S17M $82.7M
BLE $$3

122

Appendix E: Code Selection Example

This is a frace of a user's interaction with the code generator generator. PDP11.MOP is given as the input file.
The SELECT routine, which has five passes as described in chaptler 4, creates the PDP11.LOP file. The output
affer the «Pase ne messages is the actual representation of the LOP fable.

run cgg
[14.02.58)

CGG v.a|
Input file? pdp11 mop

Reading PDP11.MOP

1fids: OPCODE 1 OPCODE2 OPCODEB OPCODEJ OPCODER OFFSETB SRCMODE SRCREG
SRCINDEX DSTMODE DSTREG DSTINDEX

SHa: MNZV CPCSPR

AMes: 78 716 7SP 7PC 7N 72 7C 7L 7R 7RB 7M 7MB 76R 7aRB 1AM 76MB 7R.C
7R+CB 72R+C 7nR.CB 7+R 7+RB 7-R 7-RB

OCs: SRC SRCB DST DSTB SRCR DSTR ADR

FMTs: 1234567891011 121314

M-ops: CLR COM INC DEC NEG TST ASR ASL MOV ADD SUB CMP BIT BIC BIS

JSR RTS JMP BR BEQ BNE BLT BGE BLE BGT

Indaxing MOP
Selup time: 1.94
{CGG V.41 output for PDP]1.LOP}

+Pass O

{1-fids) [

(OPCODE1 0 100 0)
(OPCODE2 040 0) 4
(OPCODEB 0 80 0)
(OPCODEJ O 7 0 0)
(OPCODER 0 130 0)
(OFFSETB 880 D) -
(SRCMODE 4 30 D)
(SRCREG7300D)
(SRCINDEX 0 16 1 D)
(DSTMODE 1030 0C)
(DSTREG 13 30D)
(DSTINDEX 0 16 2 D))

{SBs} (

(M 65536 8 M)
(N11C)
(2110)
(V11C0C)
(C110)

(PC 1 16 P)
(SP 1 16R)
(R6166))

{AMs]} [

78: $1:«8 ‘
716: $1:=16 . |
7SP: («x>SP 0018

7PC: (<> PCOO 16)

e

123

7N: (<> NOO 1)

722 («<»2001)

7C: (¢<>C001)

7L: (<> M (« 7PC (1 8§1:28 1)) 0 16)

7R: («> R§1'%30 16)

7RB: (<> R§1:=x388)

7M: (<> M §1016 0 16)

7MB: (<> M $1:2160 8)

7aR: (<> M (<> R $1:«3016)0 16)

7¢RB: (<> M (<> R $1 =30 16) 8 8)

7aM: (<> M (<> M $1:216 0 16) 0 16)

7aMB: (<> M (<> M§1 8160 16) 0 8)

7R+C: (e> M (s (<> R$1 =230 16)$2x16) 0 16)

7R«CB (<> M (+ (<> R$1 %30 16) $§2:#1G6) 0 8)

7aR«C. (> M (<> M (s (<> R$1 230 16)$2#16)0 16) 0 16)
72R.CB: (> M (<> M (s (<> R$1:030 16) §2:216) 0 16) O 8)
7+R: (<> M (e« 7R (+ 7R 2)) 0 16)

7+RB° (<> M (+~ 7R (+ 7R 1)) 0 8)

7-R: («>M(« 7R (- 7R 2) 0 16)

7-RB: (<>M(+7R(-7R1))08)]

{OCs} [

SRC: {

716 = (EMIT{ 130 1) 2 7 $1)

7R = (EMIT[12 0 0] 0 §1)

7M = (EMIT[13 150 1]3 7 §1)

7aR (EMIT[12 150 0] 1 $1)

76M : (EMIT{ 13270 1} 7 7 $1)
7RsC = (EMIT[13 270 1) 6 $1 $2)
70RC = (EMIT[13390 1]7 $1 $2))

SRCB: (

7RB = (EMIT[1200) 0 $1)

7MB = (EMIT[13 150 1] 3 7 $1)
7GRB = (EMIT[12 150 0] 1 §1)
7aMB = (EMIT[13270 1]7 7 §1)
7R¢CB = (EMIT{ 13270 1) 6 $1 $2)
75R+CB = (EMIT] 13390 1] 7 $1 $2))

DST (

716 (EMIT{ 100 1] 2 7 $1)

7R - (EMIT[90 0) 0 §1)

7M (EMIT] 10 140 1) 3 7 §1)

7aR -« (EMIT[8 140 0} 1 $1)

7aM = (EMIT[10'260 1]7 7 $1)
7R«C = (EMIT[10 260 1) 6 §1 $2)
76R¢C . (EMIT[10 380 1] 7 §1 $2))

0S8 (

7RB - (EMIT(9 0 0] 0 §1)

7MO = (EMIT[10 140 1) 3 7 §1)
7aRB : (EMIT[9 140 0] 1 $1)

74MB - (EMIT[10 260 1] 7 7 §1)
7R.CB - (EMIT[10 260 1] 6 $1 §2)
7aR.CB = (EMIT[10 380 1] 7 $1 §2))

124

SRCR: ()
7R :: (EMIT[11 0 0] $1))

DSTR: (
7R = (EMIT[8 0 0] $1))

ADR: (
7L = (EMIT[1400} §1)))

{(FMTs} [

{FMT 1} (OPCODE1 DST)

{FMT 2) (OPCODE2 SRC DST)

{FMT 3} (OPCODEB ADR)

{FMT 4} (OPCODEJ SRCR DST)

{FMT 5} (OPCODER DSTR)

{FMT 6} (OPCODE 1 DSTB)

{FMT 7} (OPCODE2 SRCB DSTB)

{FMT 8} (DSTREG)

{FMT 9} (DSTMODE DSTREG)

{FMT 10} (DSTMODE OSTREG DSTINDEX)
{FMT 11} (SRCREG)

{FMT 12) (SRCMODE SRCREG)

{FMT 13} (SRCMODE SRCREG SRCINDEX)
{FMT 14} (OFFSETB))

+Pass 1.
(
{M-op templates}
G (~ $1.DST 0) (~ 7N (LSS 0 0)) (~ 22 (EQL 0 0))
: (EMIT[CLR 1 1 1) 50 §1)
G (« $1 DST (NOT $1:0ST)) (« ZN (LSS (NOT $1:DST) 0)) (« 72 (EQL (NOT $1:0ST) 0)))
= (EMIT[COM 1 1 1] 51 1)
G (=~ $1:DST (+ $1:0ST 1)) (« 7N (LSS (s $1:DST 1) 0)) (+ 22 (EQL (+ $1:0ST 1) 0)))
= (EMIT(INC 1 1 1] 52 ¢1)
G (« §1:DST (- §1:0ST 1)) (~ 7N (LSS (- $1:0ST 1) 0)) (« 22 (EQL (- $1:0ST 1) 0))
= (EMITIDEC 1 1 1) S3 ¢1)
(i (e $1:0ST (- $1:DST)) (- 7N (GEQ $1:0ST 0)) (« 22 (EQL $1:0ST 0)))
= (EMIT[NEG 1 1 1) 54 §1)
(; (= 7N (LSS $1:0ST 0)) (~ 72 (EQL $1:DST 0)))
= (EMIT[TST 1 1 1] 57 $1)
G (« $1:0ST (1 §1:0ST -1)) (« 7N (LSS (t $1:0ST -1) 0)) (+ 22 (EQL (T $1:0ST -1) O))
= (EMIT[ASR 1 1 1) 62 §1)
¢ (= $1:0ST (t $1:0ST 1)) (= 7N (LSS (t $1:DST 1) 0)) (= 72 (EGL (* §$1:DST 1) O
= (EMIT[ASL 1 1 1) 63 §1)
G (« $1:DST §2:SRC) (« 7N (LSS $2:5RC 0)) (~ 72 (EQL $2:SRC 0))
= (EMIT(MOV 2 1 1] 1 $2 $1)
G (~ $1:0ST (s $1:DST §2'SRC)) (& 7N (LSS (+ $1:DST $2:SRC) 0)) (+ 22 (EQL (+ $1:DST $2:SRC) 0)))
= (EMIT(ADD 2 1 1] 6 $2 §1)
G (= $1:0ST (- $1:DST $§2 SRC)) (« 7N (LSS $1.0ST $2:SRC)) (« 22 (EQL $1:0ST $2:SRC)))
T (EMIT(SUB 21 1] 16 $2 81)
(i (« 7N (LSS $2.DST $1:SRC)) (= 72 (EQL $2:0ST §1.SRC))
= (EMITICMP 2 1 1) 2 $2 §1)
G (= 7N (LSS (OR $1:0ST $2:SRC) 0)) (~ 72 (EQL (OR $1:0ST $2:SRC) 0))
= (EMIT[BIT 21 1) 382 ¢1)
(; (= $1:DST (AND §1:0ST (NOT $2'SRC))) (« ZN (LSS (AND $1:0ST (NOT $2:SRC)) 0))
(= 72 (EQL (AND $1:0ST (NOT $2:SRC)) 0))) : (EMIT[BIC 2 1 1) 4 $2 §1)
G (« $1:0ST (OR ¢1 DST $2SRC)) (« N (LSS (OR $1:0ST $2:SRC) 0)) (+ 12 (EQL (OR $1:DST $2:SRC) O))
= (EMIT[BIS 21 1) 5 $2 $1)

125

(CALL) ~ (EMIT[JSRA4 1 1)4 7 0)
(RETURN) :: (EMIT(RTS 51 1120 7)
(+ 7PC $1:01G) = (EMIT[JMP 4 1 1]J0 1 §1)
(« 7PC §1-ADR) = (EMIT[BR 3 1 1] 4 ¢1)
(-> 72 §1.ADR) = (EMIT[BEQ 3 | 1) 14 §1)
(-> (NOT 72) §1:ADR) :: (EMIT[BNE 31 1] 10 §1)
(-> 7N $1 ADR) = (EMIT[BLT 3 1 1] 24 §1)
(-> (NOT 7N) §1.ADR) :: (EMIT[BGE 3 1 1] 20 §1)
(-> (OR 72 7N) §1 ADR) =: (EMIT[BLE 3 1 1} 34 ¢1)
(-> (AND (NOT 72) (NQT 7N)) $1 ADR) :: (EMIT(BGT 3 | 1] 30 ¢1)
+Pass 2.
{P-M-op templates}
(« $1 DST 0) = (EMIT(CLR 1 1 1] 50 $10ST)
(« $1 DST (NOT §1.DST)) :: (EMIT{COM 1 | 1] 51 $1:DST)
(« $1 DST (+ $1.0ST 1)) = (EMIT[INC 1 1 1) 52 $1:DST)
(~ $3 DST (- $1.DST 1)) = (EMITIDEC 1 1 1) S3 $1:DST)
(- $1 DST (- $1:0ST)) :: (EMIT(NEG 1 1 1] 54 $1.0ST)
(« 7N (LSS §1:05T 0)) =: (EMIT[TST 1 1§ 1] 57 $1:DST)
(« 72 (EQL $1:DST 0)) = (EMIT[IST 1 1 1) 57 $1.DST)
(~ $1.0ST (1 §1.0ST -1)) = (EMIT{ASR | 1 1] 62 $1.0ST)
(« §1:DST (1 §1:DST 1)) = (EMIT{ASL 1 1 1) 63 $1:0ST)
(« $1.0ST §2 SRC) = (EMIT[MOV 2 1 1] 1 $2SRC §$1:DST)
(- $1:DST (+ §1.0ST $2SRC)) :: (EMIT[ADD 2 1 1) 6 $2.SRC $1:DST)
(- $1.0S7 (- §1 DST §2SRC)) =: (EMIT[SUB 2 | 1] 16 §2.SRC $1 DST)
(— 7N (LSS $2.057 §1:SRC)) :: (EMIT[CMP 2 1 1) 2 $§2.0ST $1:SRC)
(« 72 (EQL $2:0ST §1 SRC)) : (EMIT[CMP 2 1 1] 2 $2.DST $1.SRC)
(« 7N (LSS (OR §1.0ST $2SRC) 0)) = (EMIT[BIT 2 1 1) 3 §2SRC §$1:DST)
(« 72 (EQL (OR $1:DST §2SRC) 0)) = (EMIT(BIT 2 1 1] 3 $2.SRC $1:0ST)
(~ §1 DST (AND $1:DST (NOT $2SRC))) == (EMIT(BIC 2 1 1] 4 $2.SRC $1:0ST)
(~ $1:DST (OR $1 DST §2SRC)) :: (EMIT[{BiS 2 1 1] 5 $2:SRC $1.0ST)
+Pass 3.
{derived templatos}
{No entry made for («~ §§1 7RB §$2 7MB)}
{No enlry made for (« §31 7MB §32 7R8)}
+Pass 4. :
{No entry made for («~ $340 &DST (+ & &))}
{No eniry made for (- $$20 &DST (/ & &))}
{No entry made for (« $$20 &DST (+F & &))})
{No eniry made for (« $320 &DST (-F & &))}
{No eniry made for (« $$20 &DST (\F & &)))
{No entry made for (« §$20 &DST (/F & &)))
(~ $1 DST (AND §1 DST $27R))
= (; (ALLOC $2:7R) (EMIT[COM 1 1 1] 51 $§2:7R) (EMIT[BIC 2 1 1) 4 $2:7R $1:DST))
(GOTO ¢$1) - (EMIT[BR 3 1 1}481)
(-> (EQL $1:DOST $2 SRC) $3)
= (i (ALLOC $4-72) (EMIT[CMP 2 1 1] 2 $1:DST §2.SRC) (EMIT[BEQ 3 1 1] 14 $3))
(-> (NEQ $1:DST §2 SRC) $3)
= (; (ALLOC §4:72) (EMIT[CMP 2 1 1] 2 §1:DST $2SRC) (EMIT(BNE 3 1 1] 10 $3))
(-> (GTR §$1:DST §2SRC) §3)
= (; (ALLOC $472) (EMIT[CMP 2 | 1] 2 $5DST $6:SRC)
(ALLOC$7 7N) (EMIT[CMP 2 1 1] 2 $1.DST $2SRC) (EMIT[BGT 3 1 1) 30 $3))
(-> (LSS $1.DST $2.SRC) §3) :
= (; (ALLOC $4 7N) (EMIT[CMP 2 1 1] 2 §1:DST $2.SRC) (EMIT(BLT 3 1L 1] 24 $3))
(-> (GEO $1.DST $2:SRC) $3)
= (; (ALLOC $3 7N) (EMIT[CMP 2 | 1] 2 $1:DST $2.SRC) (EMIT[BGE 3 1 1) 20 $3))
(-> (LEQ $1:DST §2:SRC) $3)
= (; (ALLOC $4.72) (EMIT(CMP 2 1 1] 2 $50ST $6 SRC)
(ALLOC $7:7N) (EMIT[CMP 2 1 1] 2 $1 DST $2:SRC) (EMIT[BLE 3 1 1] 34 $3))
+Pass 5

126

{fixed tomplales}

(WHILE §1 $2) = (; (LABEL $3) (-> (NOT $1) $4) $2 (GOTO $3) (LABEL $4))
(IF §1 $2) = (; (-> (NOT $1) $3) $2 (LABEL $3))

(IF §1 $2 $3) == (; (-> $1 §4) $3 (GOTO §5) (LABEL $4) $2 (LABEL $5))]

End of SAIL oxecution
(903]

127

Appendix F: Code Generator Generator Axioms

IAxioms used by the code generator ganerator|

I (+ 2D 21 1 D
$1 :: (+ 0 81)

$1 :: (- (- 31))

(- $1) :: (- 0 $1)

(- %1) :: (¢« 0 (- 31

(- $] 32) :: (4 %] (- 32))

(+ $1 %2) :: (+ 32 8)1)

(: $1 $2) :: (= $2 $1)

$1 :: (NOT (NOT $1))
(RND &) 32) :: (NOT (OR (NOT $1) (NOT $2)))
(OR $]1 %$2) :: (NOT (AND (NOT %1) (NOT $2)))

(LSS %1 32) :: (NOT (GEQ %1 32))

(LEQ 31 32) :: (OR (EQL $1 32) (LSS 31 $2))

(LEQ $1 32) :: (NOT (GTR %1 %2))

(EQL $1 32) :: (NOT (NEQ $1 $2))

(NEQ $1 32) :: (NOT (EQL $1 $2))

(GEQ $1 32) :: (NOT (LSS §1 $2))

(GEQ 31 32) :: (OR (EQL %1 %2) (GTR $1 $2))

(GTR 31 $2) :: INOT (LEQ $1 $2))

(GTR %1 $2) :: (AND (NEQ %] $2) (GEQ 31 $2))

{tuo's complement machines onlyl
(= 31> :: (+ (NOT 31) 1)
(x 81 2) :: (T 81 1)
(RHILE %1 32) :: (;
(LRBEL $3)
(-> (NOT $)) 34)
$2
(GOTO $3)
(LABEL $4))

(IF $1 $2) 1: (; (=> (NOT $1) %3)
$2
(LABEL $3))

(IF $1 82 $3) :: (;

: (-> $1 $4)

$3 (GOTO $5)
(LABEL $4) $2
(LABEL $5))

(GOTO $1) :: (« 7PC $1)
(IF $1 (= 7PC $2)) :3 (-> $1 $2)

llho'!olloulnq are Simplifications for logical negation)

(NOT (NOT $1)) :: Si :

(NOT (GTR $1 $2)) :: (LEQ $1 $2) (NOT (LEQ $1 $2)) :: (GTR $1 $2)
(NOT (LSS $1 $2)) :: (GEQ $1 $2) (NOT (CEQ $1 $2)) 1: (LSS $1 32)
(NOT (EQL $1 $2)) :: (NEQ $1 $2) (NOT (NEQ $1 $2)) :: (EQL $1 $2)

