
AD—A 058 872 CARNEGIE—MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ——ETC FIG 9/2
FORMALIZATION AND AUTOMATIC DERIVATION OF CODE GENERATORS. CU)
APR 78 R S CATTELL Ffl620—73—C—QO7I

UNCLASSIFIED CMU CS 78 115 AFOS R—TR—78—1248 NL

068872 _______

. ___

p 
_



.~~~~ ~c) 

cnU-cs-78-11s

78 1 
j

2

r 

4
~,
8 

• ln~i TVTrJmi un iii nij .unr I iii ~~
1
~
hhhh1?hhhhhhhhhh1

~ ni -wn

t 

/ 

Form&~z8Uon and AutomallcOerivMlon II ~VEU~’
N 

R. 0.0.

N ‘- - I April 1978

~ ~~~~~~~~~~~~~~~~~~~~~

1 ~f DEPARTME NT
UJ Of

__ COMPU TER SCIENC E

IOfl
- 

-

s r . . 
•

- 
- ,

09 05 07 
— 

• . •
• _
;

-4



DOCUME’JTA~~C~4 I’ AG E 
_______ ~~~~~ ~~~~~~~I Ek ER ~~~~. 2. GOVT ACCESSION NO. 3. R E C I I I L N  ~. ..A T A L ~~C NUMBER

? S R  I~_78 .12481,~ ________ ______
~..~ T IT L E  (and 5u till.) 

- ~~~LX2.L.D1 ~QgL~6..1M N1OO 9OVEREO

I -~~~~~~~~ I ~~~~~~~~ ~
-‘

~~~~ ~~~,/ EDRMAL I ZATION AND~~ ,JTOM A T IC .~,ER I VAT ION OF .cODE
f 
,t~/ ~~NERATORSp PERFORMiNG ORG RLPORT NUMBER 

——-- -. - — - -~~~ ~ CMU-CS- 78-115 f
7. THOR(.) . ~~~~~~~~ ~ l e ~~o~~~NUMBE R(a)

~~~~~~~ / Cat t e l i / (i~~~~~79. PERFORM ING O R G A N I Z A T I O N  NAME AND ADDRESS ID. PROGRAM ELEMENT.  PROJ E CT . T A SK
AR EA 6 WORK UNIT  NUMBERS

Carneg ie—Mel lon Univ ersity
Department of Computer Science 61IOI E
Pittsburgh , Pennsylvani a 15213 A0246617

II . CONTROLLIN G OFFICE NAME AND ADDRESS ~~~~~~~~~~~~~~~~~~~~~~~~~ -

Def en se Adva nced Res earch Projec ts Agency A pril ~978
1400 Wilson Blvd . ‘9. ~~~M R ~~~~~~X~~~~

Arlington , Virginia 22209 130
14. MONIT ORING AG ENCY NAME A AO D RESS( i f  different from Controlling Office) IS. SEC URITY CLASS. (of (hi. report)

A ir Force Of f i ce  of Sc ient i f ic  Re search/NM
Boiling AFB , Washing ton DC 20332 UNCLASSIFIED —ISa. DECLASS I FICATION. D O W N G R A D I N G

16. DI S T R I B U T I O N  S T A T E M E N T  (of (hi. orl) I

Approved f ub li c release ; distribution unlimited .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~T
17. DIST RiO~JT IO N S T A T E M E N T  (of 1 a at rac t entere d in Block 20 . i i  d i f f e ren t  from Report)

I$. S U P P L E M E N T A R Y  NOTE S

1 9. K E Y  W ORDS (Cont inu. on rev .ra. aide i i  nec.aaa ry and Iden ’i fy  by b lock number)

20 A B S~~ CT (Continue on r•0e 1• aid. II n.c.a.ary and Identify by block number)

This work is concerned with automatic derivation of code generators ,
which transla te a parse-tree-like representation of programs into sequences of
instructions for a computer defined by a machine description . In pursuing
this goa l , the fo l low ing are presen ted:

(1) a model of mach i nes and a nota t ion for their descri pt ion
~

DD 1 j A N 73 1473 EDITION OF I NOV G5 IS OBSOLETE UNCLASSIFIED

~~ ~~~ 

C L A S S I FIC A T I O N  OF T HI S PAGE (When ~~~~~~~~~~ .. 4



-~

S E C U R IT Y  C L A~~ .~~ I~.A T L O N  OF T i . i 5  PAGE(IThen (late I~, - ‘.1) . .

20. Abstract

a model of code genera t ion , and i ts use in optimizing compilers. ’

an ax i om sys tem of tree equivalences , and an algor i thm for deriva tion
of translators based on tree transformations (this is the ma in work of
the thesisL..

The algori thm s and representations are implemented to demonstra te their
practical ity as a means for generat ion of code generators. . .

~~1

•

, ’ , 1~11

UNCLASSIFIED

~~

-

~

-

~

-. -..~~~~~~ - - .-~~~~- - ~~~-.~~~~~--



-

~ ~~~~~~~~~~ CMU~CS~784i5

Formalization and Automatic Derivation
of Code Generators

R. G. G. Cattell

April 1978

Pittsburgh, Pennsylvania 15213

Submitted to Carnegie-Mellon University in
partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

~~~~~~ ~~I i
rr
~~
’ ott Sd T I F I C  RESEARCH (AFSC)

This t OC b I j c, i 1  - - .t rov 1o~ ed and isapproved ~~t r  
~~~~~~ T~~lLl ~4~~5 Lk.Y AIR i90— j~2 (7b).D~5tribut1o~a i~3 UnXij~j ted.

A. D. BLOS~
Tecbnloa). IotOreatj on Offioer

This work was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense
under contract number F 44620-73-C-0074 and Is monitored
by the Air Force Office of Scientific Research.

78 (
~

) ,

.

; 

—-_ _— — -—~~-—-- ~~~~~
--

~~
-
~~~~~.- —---— —---~~.- -~-



‘I

Abstrac t

This work is concerned with automatic derivation of code generators, which translate a
parse- tree-like representation of programs into sequences of instructions for a computer
defined by a machine descri ption. In pursuing this goal, the following are presented:

( 1) a model of machines and a notation for their description

(2) a model of code generation, and its use in optimizing compilers.

(3) an axiom system of tree equivalences, and an algorithm for derivation of translators
based on tree transformations (this is the main work of the thesis)

The algorithms and representations are implemented to demonstrate their practicality as a
means for generation of code generators.

Acknowledgements

I’d like to thank Bill Wulf , Mario Barbacci , and Allen Newell, who served as my advisors at
various times during my stay at CMU. They also served on my thesis commitee, along with
Alice Parker and Joe Newcomer; I am grateful for all of their comments. Special thanks go to
John Oakley and Steve Saunders, for many interesting discussions on this thesis and on other
topics. I’d also like to thank Hans Berliner, Bill Brantley, St eve Crocker , Kitty Fisher, John
Gaschnig, Steve Hobbs, Dave Jeffers on, Bruce Leverett, Bruce Schatz, and Non Suzuki, who
contributed to this work in various ways. The CMU Computer Science Department in general
provides a dynamic, friendly atmosphere conducive to researc h. I’d like to thank the
SIGLUNCH group in particular in this regard. Also conducive to good research are the
excellont computer facilities, making programming and document production more enjoyable;
Brian Reid, Ken Greer, and Craig Everhart maintain software used in the production of this
document. Finally, I’d like to thank my wife, Nancy, who has been very supportive, and my
cat , Shrdlu, who tends to sit in the middle of whatever I’m trying to do.

k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~ -—~ -.

I”

1. Introduction 2

1.1. Motivation and Goats 2
1.2. Background 3
1.3. Overview 4

2. A Formalization of Instruction Set Processors 7
2.1. Background 7
2.2. Overview . 8
2.3. Components of an Instruction Set Processor 11
2.3.1. Storage Bases -. 12
2.3.2. Instruction Fields 13
2.3.3. Instruction Formats . 14
2.3.4. Access Modes 14
2.3.5. Operand Classes 14
2.3.6. Data Types 15
2.3.7. Machine Operations 16
2.4. Instruction Set Processors 19
2.5. Relation to Other Descriptive Levels 20
2.6. Syntactic Representation and Implementation 22

3. A Formalization of Code Generation 24

3.1. Introduction 24
3.2. The Compi er 25
3.2.1. Compiler Structure and TCOL 25
3.2.2. Storage Allocation 28
3.2.3. Temporary Allocation 29
3.2.4. Object code . 30
3.2.5. The Compiler-Writer’s Virtual Machine 31
3.3. Template Schemas 

- _~~__ 32
3.4. Code Generation Algorithms - -

.. 
— 34

3.5. The MMM Algorithm C 36
3.6. Example “I- .

. 
38

3.7. Use in a Compiler ,, - - 46
3$. An Implementation 

-

4. Automatic Derivation of Translators ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 49

4.1. Introduction . ~~—‘-- - -~
- - 

- . 

9
4.2. Tree Equivalence Axioms 50
4.2.1. Overview 50
4.2.2. Arithmetic and Boolean Laws 50

_ _ _ _ _ _ _ _ _  
_ _ _  ~~~~~~~~~~~~~~~~~



iv

4.2.3. Fetch/ Store Decomposition 53
4.2.4. Side Effects 53
4.2.5. Sequencing Scmantics 54
4.3. ~ Search Algorithm using Tree Transformations 55
4.3.1. Introduclion 55
4.3.2. Transformations 56
4.3.3. Decompositions 63
4.3.4. Compensations 66
4.3.5. Limiting the Search 69
4.3.6. The Search Space 70
4.3.7. Completeness and Optimality 70
4.4. Coda Generator Generation 71
4.4.1. Case Selecti on 71
4.4.2. inter -State Optimization 75
4.4.3. Using the LOP 76
4.5. Relation to Other Work 77
4.6. Implementation 79

5. Results and Conclusions 80
5.1. Summary 80
5.2. Results 80
5.3. ContributIons 82
5.4. Future Work 84

Bibliography 86

Glossary . ,.- 89

Appendix A: TCOL 90

Appendix B: Machine Description Tables 93

Appendix C: Code Generator Prototype Trace 101

AppendIx 0: Search Examples 103

Appendix E: Code Selection Example 122

Appendix F: Cod. Generator Generator Ax Ioms 127 

-~ - ~~~~~~~-- ----.~ -~



~~~~~~~~~~~~~~~~~~

- -

~~~~~~~~~~

_  _ _ _  

2

1. Introduction

I have made this letter longer than usual because I lack the time to make
it shorter *

— Pascal

1.1. Motivation and Goals
— 

In the past decade there has been increasing interest in reducing the effort to construct
compilers. Most of the reasons for increasing interes t in compiler generation are fairly
obvious, and have been discussed at length by others (Simoneaux(1975], Newcomer(1975)).
As new machines and languages are developed, the problem only becomes more acute. In
particular:

( 1) It is now possible to generate new machine architectures quite easily, both through LSI
technology and microprogramming.

(2) High-quality machine code is often desired. This becomes increasingly important as
various technological limits are reached.

(3) Relatively large and complex languages are being developed, requiring larger and
better compilers.

Progress has been made in the design of compiler-comp ilers and translator writing systems,
particularly wit h respect to automating the parsing of programming language tex t int o
internal notations. Much less progress has been made in automating the second part of the
compilation process: translating the internal representation into instructions for the target
machine. I believe this failure is primarily due to inadequate formalization of machines and
the code generation process, rather than fundamental difficulties in automating the process.

The goal of this thesis is to study and formalize machines and code generators, and using
these formalizations, to automatically derive code generators. The latter problem is a special
case of a more general problem of automatic programming: given a program and a set of
primitives available, how can the program be decomposed into the primitives! In general the
thesis views the problem from this more abstract point of view; later, the specific properties
of machine code generation are exploited to make the problem feasible for practical results.

— - - - —~~ --~—---~ —-.- .-—------ .-- ~ . -



3

Most of the previous work in the area has been notably unsuccessfu l in the sense of
practical applicability: it is importan t to consider the performance of the algorithms (speed
and oplimality), the generality of the machine model, and the relationship between compiler
components, compiler generator , machine description, language description, etc. In order to
demonstrate the feasibility, performance , and generality of the theories proposed here,
working prototypes have been implemented to form as complete a system as possible within
the time constraints of the work.

12.  Background

This thesis necessarily involves relatively disparate areas of computer science: computer
archi tecture , compilers, and automatic programming. It grew out of two projects currently
active at Carnegie-Mellon University: the Symbolic Manipulation of Machine Descriptions
(SMCD) and Production-Quality Compiler-Compiler (PQCC) groups.

The SMCD project (Barbacci & Siewiorek[1974]) is centered on a data base of machine
descriptions that can be shared by many applications thereof. The goal is that the same
computer descriptions be used for emulation of machines, automatic generation of assemblers
(Wiclc(19753), diagnostics (Oatcley(1976]), compilers, ac tual hardware specifications (Barbacc~
& Siewiorek(1975)), and other applications.

The P0CC group is interested in simptilying and/or automating the construction of a high—
quality compiler generating optimized code. The work is concentrating on the machine—
dependent aspects of optimizing compilers, a difficult problem which has received little
attention. PQCC is using the multiple-phase structure of the Bliss-Il compiler (WuIf et
al(1975]) as a starting point for the research.

Some work has been done in the area of code generation in general (Wilcox[1971],
Wcingar t(1973), Simoneaux(1975)). There have been two classes of approach to simplif ying
production of code generators. The first is the development of specialized languages for
building code generators, with built-in machinery f or dealing with the common details; this
might be referred to as the procedural language appr oach. Early work in this area was done
in compiler writing systems (Feldman(1966), Feldman & Gries(1968), McKeeman et al(1970),
Whi lc(1973]). Also, Elson & RaKc(19703 and Young(1974] have concentrated specifically on
code generator specification languages and have been relatively successful. The other
extreme is the dcscr~ptivc language approach: automatically building a code generator from a
purely structural and behavioral machine description. Miller(1971), Doriegan(1973),
Weingar l(1973], Snyder(1975], Newcomer(1975], and Samet(1975] fit this category,, to
varying degrees. A survey of the above work, particularly as it relates to the goal of
automating the production of code generators, can be found in Cattell(1977).

3 

— - . . — - ,———— -- -—-.- - 
~~~ 

- - - -



___________________________________________________ - _ _ _ _ _ _ _ _

4

The more important predecessors , including those concerned with code generator generation,
trec equivalence, and mach ine desc rip t ions, w ill be discussed in the chapters related to their
work. Therefore, no more dot aUed discussion of background will be necessary here.

1.3. Overview

Figure 1 gives an overview of the problem as viewed by this work.. Three algorithms and
representations are involved:

(1) The formal description of the machine, labelled MOP in the figure, and its extraction
from a procedural machine descri ption language such as ISP (Bell & Newell [1971]).

(2) The tabular representation of the parse-tree to machine-code translation, labelled LOP
in the figure, and the code generat or which uses it.

(3) The algorithms which derive (2) from (1).

These three problems are discussed in the next three chapters , respectively.

In Chapter 2 we formally define instruction set processors, the class of machines with
which we will deal. A machine descri ption specifies the types and accessibility properties of
data on the machine, and the properties of the machine instructions including space/time
costs , the format of the binary instruction words, and input/output assertions on the
processor state. Machine description languages are also discussed.

The input/output assertions , which define the actions of the instructions, are the main
component of the machine description used in the remainder of the thesis. A simple
assertion, as an examp le, would be that for an ADD instruction, specifying that it leaves the
sum of a register and a memory location in the register.

In Chapter 3, a formalization of the code generation process is proposed. Its
relationships with other components of a proposed compiler are explained. A scheme for
separating the compilation process into machine-independent and language-independent
phases is used, introducing an intermediate canonical parse-tree notation, TCOL (Tree-base
COmmon Language, discussed in section 3.2.1). The front end of the compiler translates a I:
language into TCOL The back ond, which is the concern of this thesis, translates TCOL into
machine code. As we will see in Chapter 2, the machine instruction, actions (i.e., *he
input/output assertions) are also given in terms of TCOL operators. The proposed code
generator is based on a table-driven tree transformation scheme, in which TCOL trees, in a
series of stops, are transformed into code sequences on the target machine.



5

TCOL 1
Program ‘

Tree ]

ISP Extraction j  MOP Derivation j  LOP 
_____________ 

CODE
~~~~~~~~~ori ~i n~~o~ r ~~ Generator

____________ 

mappsn~ IT’•pp ” ,I j

Machin~1Code

Compiler-compile time Compile-time
(once f or each machine) (once for each program)

Figure 1: Relationship of the programs and representations proposed by the thesis. In the
horizontal direction, the construction of a code generator from the machine description is
shown. The MOP is the formal representation of the machine, which could be extracted
fr om a machine description such as ISP. The LOP is the formal representa t

~~n of the code
generation process; the code ge nerator could be table-driven or construc.ad from the LOP.
The code generator derivation process constructs the LOP from the MOP. In the vertical
direction, the use of the derived code generator is shown, translating program trees into
code for th. target machine. 



6

The transformations for this table-driven scheme are given by a set of tern plates in the LOP.
A template specifies a TCOL tree pattern (a TCOL operator or operators with arguments in
certain locations) and code sequences to generate (or other actions to perform) when the
pattern occurs in the source program t ree.

Chapter 4, building on the basis provided by Chapters 2 and 3, proposes
algorithms to produce the templates for t he code generator from the machine description.
The task of this code generator generator is thus to determine the tree patterns defining the
special cases recognized by the table-driven code ger erator, and for each of these patterns,
determine the optimal code sequence. A system of axioms is presented to formalize the
semantic equivalence of trees (programs). A search algorithm based on transformation of
trees into semantically equivalent trees is proposed to derive code sequences. This is a
classical heuristic search problem, wi th givens, a goal, and rules (the axioms) that specify the
equivalent problems in the search space. Established methods of artificial intelligence, such
as means-ends analysis, are found to perform well on the problem.

Chapter 5 summarizes the research, evaluates tt~e results, and suggest future research.

If the reader is primarily interested in only one of the main three chapters (2, 3, and 4) of
the thesis, any of these may be read in isolation. The forward and backward references to
related sections should facilitate this. A glossary of terms is provided in the back.



~ - - -~ -- ,. —~~~~~~
,- 

7

2. A Formalization of Instruction Set Processors

*A problem well stated is a problem half solved”
- Charles Ket ter ing

2.1. Background

Before we can derive code generators or other machine-dependent software, we must define
what a machine is for our purposes. In this chapter the necessary components and
properties of an instruction set processor are def ined.

Fortunately, some work has already been done toward formalizing machines. In particular,
Bell and Newell’s ISP [1971] model has been taken as a starting point for this research.
However, a more precise and struc tured model than theirs is necessary here, because the
machine description is to be used for rigorous definition to a computer program rather than
for exposit ory purposes. Also, the model we will develop is more amenable for automat ic
generation of software.

The machine we are dealing with consists of a set of locations, whose values are collectively
termed the processor state , and an ~ntcrpr cter , which executes instruct io ns to change the
processor state. As defined by Belt and Newell [p 22):

“...Some set of bits is read from the program in Mp [primary memory] to a
memory within P (the processor] ... This set of bits then determines the
immediately following sequence of operations. ...After this sequence of
operations has occured, the next instruction to be fetched fr om Mp is
determined and obtained. The cycle repeats itself.”

We walk a fine line in making a rigorous definition of a machine in this chapter. On the one
hand, we want to include all the machines commonly classified as computers. On the other
hand, we want a formal definition that restricts the class of machines enough to make it
feasible to aut omatically generate software. Any useful model must therefore strike a
compromise between generality and feasibility. 

~~~~--



8

2.2. Overview

We will define an instruction set processor in terms of seven major components: machine
operations and data types , which specify the operations available on the machine; storage
bases, access modes, and operand classes , which specify the locations available on the machine
and how they may be accessed as operands; and instruction fields and formats, which
specify the binary represention of instructions. These components will be defined formally
in sections 2.3.1-2.3.7; in this section we present a more informal but readable discussion.

Corresponding to the abstract definitions of the components are syntactic representations:
• sample MOPs for the a simplified PDP-8 and POP-i 1, which will be used as examples in the
thesis, are given in appendix B. However, the syntax is independent of the abstract
definitions, so the details of this particular representation are left to the appendix.

The model is centered around the instructions themselves. We will formally define these as
Machine-Operations (M-ops), but continue to use _instructionR in its informal sense.

Associated wi th each U-op are a set of input/output assertions, which express the action of
the instruction. An output assert ion specifies a processor state location and its value after
instruction execution as a function of the processor state locations prior to instruction
execution. Paired with each output assertion is an input assertion which specifies a
conditional function of the processor state locations (also prior to instruction execution). The
output assertion holds, i.e., the location has the new value, only if this input assertion is
satisfied (its value is unchanged if no input assertion is satisfied).

For the purposes of this work, we must rela te the assertions to program trees. The
assertions will be represented as program tree patterns which correspond to the action the
instruction performs. In these terms, the previous definition of an input/output assertion is
equivalent to a conditional assignment statement :

If B~ then L 1..E1 f or asser t ion i

where B~ is a boolean expression, 1, is a location expression, and E, is a value expression. B1
may be identically true, giving just L,’-(1. The utility of representing the assertions as
program trees is that we will be able to “match” these as pattern trees against program
trees which an N-op could implement. Both pr ogram t rees and assertion trees are expressed
in TCOI. (section 3.2.1) to make this possible.

-~~~~~~ - -___ ~~~~--—~~~~ ~~~~~~ 



9

As an examp le of an M-op, consider an “Increment and Skip If Zero” (ISZ) instruction, with
two input/output assertion pairs:

(1) Zi-Z+i (input assertion ident i cal l y true)
(2) If ZN-i then PC4-PC+1

As mentioned, these assertions are represented as trees. In this thesis, a parenthesized
LISP-like notation is used for trees. The previous assertions would be represented as:

(; (~- Z (+ Z 1)) (.> (EOL Z —1) (i- PC (+ PC 1) ) ) )  -

Instructions need not refer to fixed locations. In the above assertions, the operand “Z” may
be any location in the primary memory. As we will discuss shortly, there is even more
flexibili ty on most machines: “Z” might be accessed indirectly or by indexing, for examp le. To
specif y the classes of locations that may be instruction operands, a three-level mechanism
will be defined: Storage Bases, Access Modes, and Operand Classes.

The actual locations of the processor state are the Storage Bases (SBs). The SBs may be
simple locations of var ious sizes, such as an accumulator or condition code, or arrays of
locations, such as the primary memory.

There are typically several choices for Operands of an instruction, corresponding to different
modes of addressing on the machine: indexed by a register, indirect through a memory
location, an accumulator, and so on. These wilt be referred to as Access Modes (AMs). The
correspondence of the access modes to the N-op operands is specified by Operand Classes
(OCs). Specifically, each OC corresponds to a set of access modes, and each operand of an
N-op corresponds to an OC. Any of the specified set of access modes may be used in
fetching/s toring the corresponding operand of the instruction. For example, an ADD
instruction might require a general-purpose register as the operand receiving the resul t, and
allow either an immediate constant or a memory location as the other operand.

• In the earlier example, “Z” is an OC. For the ISZ instruction on the PDP-8, “ZN corresponds to
two access modes: direct and indirect access to primary memory.

Access modes, like U-ops, are specified by trees. The actual definition for these two access
modes, from the PDP-8 MOP, happens to be

%tlp: (c > lip $i:#8 0 12)
%eilp: (c , lip ic> lip $1:#8 8 12) 8 12)



_ _  _ _ _ _ _ _ _ __ _ _ _ _ _

10

It is not important to understand the syntax at this point: The first line defines the access
mode “iMp” to be an access to the storage base “Up” (primary memory) at a location defined
by “S1:*8” (which just means an 8-bit constant) using the full 12 bits of the word starting at
position 0. The second line defines an indirect access , in which the index into Up is given by
an access to Np.

Also associated with an OC are a set of assertions which specify how the different access-
modes relate to the actual bits of the instruction. On the machine, the OC corresponds to the
effective address calculation process; you might think of ‘OC” as standing for Operand
Computation in this context.

The main two advantages of using these three levels (storage bases, access modes, operand
c lasses) are (1) their usefulness in generating (good) code, and (2) the reduction in the
effective number of instructions to be dealt with. The latter is described further in section
2.3.5: the OCs allow M-ops to refer to a (limited) class of actions, namely the same action
performed with different operands, ra ther than exactly specif ying the locations in the
processor state involved. This variability surfaces later in the fact that access modes and U—
ops and are parameterized to pass information to the OCs which will specify the actual
instruction fields.

Parameterized tree, prove to be useful in many parts of this thesis, so a short explanation
would be helpful to the reader here. A parameter is a variable associa ted with a node in a
tree pattern, which, when referred to later, represents the program tree node that matched
the pattern node. These are used, for example, to refer to the address (value) for a symbol
node that matched a pattern in the generation of code, or to specif y in a pattern that the
same subtree must occur two or more times. In the case of an ADD instruction, the pattern
tree might be

( -  $1:Reg (+ S1:Reg S2:Opnd))

“$1” and $2” are the parameter names in this expression. 81 is used to indicate that the
destination and operand registers must be the same register, and both $1 and $2 will be used
for later reference in determining the actual fields (e.g., register number or mode bits) of the
instruction (specified by the OC’s “Reg” and “Opnd~). Details of the syntactic representation
of trees and tree patterns are given in Appendix A.

The preceding overview is all one really needs for a first-order understanding of the
machine model from the point of view of this thesis. However, to be rigorous, complete, and
general enough to deal with real machines,. much more complex definition will be necessary.
For example, we must specify how the abstract M-ops and OCs are encoded in the binary
bits of Itie instruction words. This necessitates dealing with instruction’ formats (including 

~~~~~~~~~~~~~ --  -~~~~~- 



~~~

--

11

variable-length ones), bits determined by the U-op (e.g., opcode), the access mode (e.g., mode
bits), or parameters of the access mode (e.g., address f ield); and so on. The reader may
choose to ignore these details for the purpose of understanding the important results of the

• thesis, if desired.

In addition to the input/output assertions, each U-op has an associated cost (used for
determining optimality), a mnemonic (used for human convenience), an instruction format , and
a field-value list.

The instruction format specifies the instruction fields ’ used by the instruction. Instruction
formats are used in conjunction with the last component of the M-op, the field-value list ,
which specifies the values the instruction fields must have. For examp le, we might assert
that an Opcode field has value 7 for an “ADD” instruction. In the simplest case the
instruction format is a list of instruction fields, the field-value list is a list of constants, the
tw o lists are the same length , and the corresponding fields have the absolute constants as
values. Because, as mentioned, the M-ops represent classes of actions with different
operands, we also require a mec hanism to give instruction fields values dependent on the
actual program tree that is the “instantiation of this N-op (the particular action desired of
the class this N-op represents) That is, for different access modes and actual addresses in
the instantiation of the instruction, the fields must have appropriate values; these values are
specified by the OCs. How this is done, by matching subtrees against access modes, will be
described in section 2.3.7. -

2.3. Components of an Instruction Set Processor

In the following seven subsections, the instruction set processor components discussed in the
previous section will defined more precisely.

Tb. poesbi. instruction fisld., and their sit.. and po.itions within instruction word., srs •.p.rst.ly specifed.
In .iructi on fo rmats Sr. distkluish.d a. part of th. macbin. mod.l (rather thin simply r.f.rrin ~ to a list of fi.lds)
b,c.us. r.sl macbin., irs normally or~sniz~d around , small act of such formats. 

-- - - - - -~~~~~--- - --~~~~--- --_ - - - “ --~~~~~~~~~~~~~~ -- -- - -- .-~~- ---



-
~~~~~~

12

2.3.1 Storage Bas.s

The processor state consists of a set of Storage Bases (SBs). A Stçrage Base is an ordered
set of 1 or more words, each word consisting of a fixed number of bits. The SB is defined in
terms of: -

(1) A word Length, in terms of bits (a positive integer)

(2) An array length, also a positive integer; this is 1 if the SB is a single location

(3) A type; the type must be one of the following:

(a) Program Counter (PC)

(b) Primary Memory (Up)

(c) Temporary location

Cd) Reserved location

Ce) Cen.raL-purpos. locati on

Each SB also has a name, for reference.

The processor state must contain exactly one SB of type PC and Np, respec tively. The Np
must be a memory array (length in words > 1) in which instructions are stored. The ~~
location, previous to instruction execution, must contain an index into the Np array; Mp[PC)
contains the first word of th, instruction that will be executed.

The other three types, (c)-(e), are defined in the machine model specifically to allow the
generation of code generators. Temporary locations are defined as those which the code
generator may destroy without saving in generating code (e.g., condition codes); general-
purpose locations may be used if saved; and reserved locations may not be used (e.g., stack
pointer). The use of these types will be described in section 4.3.4.

It should be noted that a word here does not necessarily correspond to its common definition.
A word is defir*d to be th. smallest addressable ~ il. of Up, i.e., of the size specified by the
Up word. This might be less than fli size of the smallest instruction. The problems of
different oat. and instruction unit sizes , with different addressing schemes for Up, and
alignment of dat a and instructions on various word boundaries are discussed in more detail

_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _ _ _ _  - -



_ _ _ _ _ _ _ _ _  -~~~~~~~~~ -- - -_.--~~~~— —-— ._ - -~~- — - -~~~-——~~~~~~~~~~
.

13

by Wick (1975]. Dealing with storage bases that overlap in various ways is a relatively
involved problem, and is ignored for the purposes of this thesis.2

2.3.2 Instruction Field;

An instruction fie ld consists of: 
-

(1) A position, a non-negative integer giving the bit position relative to the first bit of the
instruction word.

(2) A size, a positive integer specifying the number of bits in this field.

(3) A word spec&fi.er, a non-negative integer used for variable-length instructions. It
specifies the word of the instruction (relative to the first) in which this field occurs. In
emitting code (section 3.2.4), instruction words are output as required for the given
instruction fields. (If no fields in a given w ord are assigned, the word is not output;
thus variable-length instructions are possible).

(4) A type, which specifies the use of the instruction field. The type can be determined
by the field’s use in the instruction interpreter:

(a) type 0: the field is used as an op-code, to determine the instruction executed
(M-op)

(b) type C: the field is used to control the operand selected (access mode)

Cc) type D: the field is used only in data expressions (as constant or address)

2 Ov.rlay. (m.ppin .) cs n he sxor.ss .d in lb. foc mslism fairly sasily, sithir by usin an optionsl 4th componont of sn
- I SB which allows it to he d.fln.d sa squivalunt I. (.v.rl.yin ) another SB, or by r.ducln all SB r.f.ronc s to common

dsnominatora by usin sub-word and mulUpis-word induiiin life SB. Thu probism which is I.f t to futvr. r.smurcti is

Thu allocation of thu.. SB. to vsrisb iss and t.mporsri.m stors . allocat ion pr.c.d.a cod. ;sn.rstlon in the P0CC
compilm . 



- - - --.- -~ - -

14

2.3.3 Instruction Formats

An instruction format is an ordered list of instruction fields and OCs. The use of instruction
f ormats is described in section 2.3.7. An OC format is the same as an instruction format
except OCs may not appear in the list. Instruction formats are used with M ops, OC formats
with OCs, as we will see shortly.

2.3.4 Access Mode;

An Access Mode (AM) is an expression which specifies a Location or constant which can be
used as an instruction operand. Like input/out put assertions, access modes are represented
by trees. A constant tree is simply a leaf specify ing the length in bits of the constant. This
is referred t o as an “open constant”, as it may take on any value of the specified size (the
actual value being specified by an immediate field of the instruction). A location tree
describes an access to a location in the processor sta te. It specifies a storage base, an index
(which could be a cons tant or expression) into the storage base, and a position and size
within the indexed word. Appendix A details the representation of constants and locations as
trees (using the “a” and “ 0” pseudo-operators, respectively).

2.3.5 Operand Classes

An Operand Class (OC) is a list of OC-productions. Each production specifies:

(1) An access mode

(2) A space and time cost

(3) An OC format

(4) A field-valia, list

We will occasionally refer to the access set of an OC. This is the set of access modes which
appear in its productions (i.e., the ones it allows ). Recall that OCs represent instruction
operands, and the access set is thus the set of access modes which may be used In an
operand position.

The OC productions will be defined in. section 2.3.7 along with U-op productions, which are
analogous.

_ _ _ _ _ _ _



15

Operand Classes and Access Modes are not an essential component of the machine model.
They are defined for “practical” reasons, to simplify code generation and to reduce the
number of M-ops to deal with. Consider a two-operand instruction that refers to two OCs.
Suppose each OC could be assigned any of n access modes independently. Then the
instruction could be wr itten as n2 instructions which refer only to access modes (On the
assertion tree leaves). On some real machines, n is large enough to make OCs essential.3 If
desired, however, the reader may think of the M-ops as referencing the locations directly,
without loss of generality.

2.3.6 Data Types -

A data typ. consists of

(1) A Length in bits of the data type encoding -

(2) An abstract domain: for example integers, reals, or characters.

(3) An encoding function which, given an object in the abstract domain, gives a bit string
that is the representation of the object.

(4) A decoding function which is the functional inverse of the encoding function

Each arithmetic operator used in an N-op assertion specifies the data type it operates upon;
the operators have meaning only through their correspondence to data types. It is also
important to note that the “data” type is associated with the operatQr. not the ~~~ or

• locations as in a conventional programming language. Data bits have no type except through
their interpretation by operators.4

Also implicitly associated with each data type is the set of axioms that apply to the operators
on that type. The axiom; will be described in section 4.2.

For Thu bmivy inst ruction , on t he POP-fl , n- f 2 (or so), for sxampls.

This appro.ch is thu convun lionsl point of viuw in computur arch il.ctur. ; on an architu ctu rs taking thu oppo sit. point
• of visw, such as lb. Buvrou h. 6500, if would he nsc.ssary to trust thu actio n. of operators ss dupundunt on typo

bits .1 Thu opursnds.

_ _ _ _  



~~~~~~~~~~~~~~~~~~~~~~~~

16

This thesis will not deal with data types in detail; the only informat ion about data types
needed for code generation is contained in the axioms, so the data type portion of a machine
description is not required. For complete description of data types, two extremes of
approach may be taken.

One approach is to use a notation at the level of a programming language, specif ying
procedures for the encoding/decoding functions and the operations on the data type in terms
of some primitive data type(s), e.g., unsigned integer bit strings.

The other approach is to describe the data t ypes statically, by parameterizing the possible
representati ons in some way, making it possible to specify a data type simply by a set of
parameters and ~n alphabet of types. It is possible to characterize The common integer, rea l
and character data type in terms of a relatively small number of parameters (Cattell(1976)).
For example, fixed point numbers may be represented with different bases and fractional
point conventions, and different encoding conventions such as two’s complement, one’s
complement , signed-magnitude, and excess-N. Floating point can then be categorized
according to the encodings and positions of the (fixed-point) mantissa and evponent.

The advantage of the first approach to describing data types (the procedural representation)
is that it is more general; the advantage of the static approach is that we have some hope of
a program automatically dealing with the properties of the data type. The best approach is
probably to combine the two, spec i fy ing the complete algorithm for, say, machine simulation
purposes, but asserting particular properties (that could presumably be verified) for other
applications of machine descriptions.

Section 3.2.2 describes the use of data types in the compiler.

2.3.7 Machine Operations

A Machine-operation consists of:

(1) A mnemonic

(2) A space and a time cost

(3) An instruction format

(4) A field-value list

(5) A set of zero or more input/output assertion pairs: 

•~~ ~~~~~~• •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  - 



_ -

17 
-

(a) Each input assertion is a boolean function tree: a tree whose top node is an
operator returning a boolean result, and whose leaves are cons t an ts or location
specifiers. A location specifier is normally an operand class, but an access mode
will also be permitted here if it is a fixed tocaton.

(b) Each corresponding output assertion consists of a Location specifier (a location
modified by the instruction), and a (new-) value tree: a tree whose top node
returns an arithmetic value and whose leaves are constants or Location

- specifiers.

Each assertion pair specifies a potential change in the processor state affected when the
instruction interpreter processes the U-op. The semantics of the assertions are that if the
boolean function specified by (a) is satisfied over processor state values previous to
execution, then the location specified by (b) has the value specified by function (c) in terms
of the processor state previous to execution. There must be assertions •or every locat ion
potentially modified by the instruction. The only exception is that the assertion
“PC,-PC+cinstruction size>” has been fac tored out; it applies to every instruction unless
explicitly overridden by an assertion on the PC (this simplifies human and machine use of the
assertions).

Note that if the input/output assertion set is empty, the inst ruct ion is a “No Op ’, i.e., it
performs no action; however, it has cost and takes space in memory.

The input/output assertions thus specify the effect of the instruction when it is executed by
the instruction interpreter. The field-value list, together with the instruction format , specify
the conditions under which the instruction is executed by the instruction interpreter, and also
the correspondence between instruction operands and binary fields. Specifically, the field—
value list (a list of parameters and constants) and the instruction format (a list of instruction
fields and operand classes) must be identical in length, and the corresponding elements of the
lists are paired as follows:

(1) The instruction fields in the instruction format are asserted to have the values
specified by the corresponding elements of the field-value list. For example, the
constant 1” in the field-value list might be associated with the instruction field
“OpCode”.

(2) The operand classes in the instruction format indirectly specify instruction fields. As
mentioned earlier, the U-ops represent a family of actions, because (a) the operands
may correspond to different access modes, and (b) even for one particular access

- - -



-~ - - - - -

18

mode (e.g., indexed by a register), different actual addresses may be involved (e.g., the
• register number or memory location). To allow this field specification to be separated

from the U—op descriptions, a parameter is associated with each location specifier in
the input-output assertion. This parameter is paired with a particular operand class;
i.e., the parameter and operand class occur in corresponding positions of the field-
value list and instruction format. The OC-productions for the operand class then
specify the actual fields according to the actual operands of the instruction. This, in
turn, is finally accomplished by the corresponding QQ field-value list and ~~ format:

(a) As with the M-ops, constants may be assigned to fields by pairing constants in
the field-value list with instruction fields in the format. This would be used, for
example, for an address mode field.

(b) As with the M-ops, parameters may also appear in the field-value list. However,
they are used for a different purpose: the parameters are associated with the
open constants in the access mode trees, and the corresponding OC format
element must be an instruction field which is asserted to have the constant’s
value. For example, this would be used to relate the operands to an address or
immediate constant field of an instruction.

As an illustration of the above, consider the 152 instruction whose input/output assertion
tree is

(; (i- S1:Z (+ $1:Z 1)) ( —> (EQL $1:Z —1) (a- PC (+ PC 11)) )

The field—value list and instruction format for ISZ are the lists:

• (2 *1) and
(OP Z) .

What thi s means is that the OP instruction field has value 2 for ISZ, and the other fields
depend on $1:Z, which may be a direct or indirect memory reference. If it is a direct memory
reference (“IMp” access mode) then the ~~ field-value list and ~~ format are

($ 1 0) and
(ADA I.BIT) ,

meaning tha t the ADR field is the address of the operand ($1 in the ZUp access mode tree)
and- the I.BIT field is 0.

L • •~~ •~~~~ •~~ ~~~~~~~~~~~~~~~~ - •~~~•~~~~~~~~~~~~~~



We define the ficLd asscrt~orts at an M-op, with respect to a particular (program tree)
instantiation , to be the set of assertions about instruction field values resulting from the U—
oj, field-value lists and OC field-value lists as outlined in this section. That is, the f ield
assertions specify the necessary instruction field values to execute a particular instruction
with particular operands.

The details concerning the actual instruction bits as outlined above are not crucial to an
understanding of this thesis, but the reader should keep in mind that the assertions are in
two levels: for each instruction , fields assertions specifying the opcode bi ts, etc.; and for
each possible operand, field assertions specifying mode bits, address fields, etc.

2.4. Instruction Set Processors

In summary, an £izs tr izction set processor is a set of locations termed the processo r state , and
an interpreter which fetches instr i *c tions from a prunary memory and modifies the processor
state in a fashion specified by the :nstructions. The entire effect of an instruction is
represented by the change in the processor state, and the entire change in the processor
state is specified by the instruction.

More specifically, the interpreter iteratively performs the following two steps:

(1) Retrieves one or more words Mp[PC), )~p[PC+1), ... satisf ying the field assertions of
exactl y one U-op.

(2) Changes the processor state as specified by the input/output assertions for that U-op.

This completes the definition of an instruction set processor. The observant reader may
have noticed some of the choices made between generalit y (of the model) and feasibility (of
automatic generation), as mentioned in section 2.1. Some of these are fairl y obvious; for
example, we are restricted to a uniprocessor executing instructions from a primary memory,
as opposed to, say, an array processor. Other restrictions are more subtle; for example, the
conditions under which instructions are executed (i.e., the cr i ter ion the interprete r uses to
select an U-op in step (1) above) must be of the form

f i e l c l 1— value 1 , f i e ld2—va l ue2, ... fie l d ~.va l ue~

rather than some arbitrary boolean function of fields or storage bases~ Some of the
assumptions made are important to making the results presented in - this thesis possible, and

_ _  

— - - - — -~~-.-—-_ -~~~~_



20

others could be changed with only minor consequences. The uniprocessor assumption is of
the former kind. In the case of the U-op field assertions , any boolean function that is
invertible would theoreticall y be satisfactory. That is, for a code generator we must be able
to satisf y (automaticall y) the conditions asserted , by setting instruction fields5. The chosen
form of the field assertions allows this to be done easily, while at the same time remaining
flexible enough to deal with essentiall y all conventional machine architectures.

2.5. Relation to Othcr Dcscri ptive Levels

The reader may be curious as to how the machine model described in this chapter relates to
the assembly language level of programming; the model is r’resented in terms of the binary
representation of instructions and data in the actual machine.

The invention of an assembly language given only the machine language for the “bare~hardwa re is, of course , a creative non-trivial task. There are issues ranging from what the
inst ruct ions actually are6, to choosing appropriate syntactic representations for various
fields. This topic is well covered by John Wick [1975].

Wick dem onstrates a program which produces an assembly language and an assembler for
that language, given a derivative of ISP (Bell & Newell [1971]) with some human input to
specify mnemonics and the syntax f or certain instruction fields. Wick takes advantage of the
fact that current computers and assembly languages are very similar in structure, so that The
bulk of an assembler can easily be table-driven.

A simple assembly language format , similar to Wick’s but obv iously ni~t as extensive, was
used in this thesis work to make code easily intelli gible to humans. Howeve r, at the same
time we retain the ability to generate binary code.

it is quite easy to get a simp le readable assembly language for a machine using the
instruction mnemonics and field types given in the MOP description. This is the way the
search program in Chapter 4 outputs code. Furthermore, a more sophisticated assembly
language can be supported almost as easily, by supplying an output formatting routine for

or pro ceaao r .1.1. oca lion ,, in tha eii$r.m. cat. of a proc o,.o r wh og. in.truclion ,.t d.p.ndu on ik. valu. of .oms
fl.~ or r.gs.I.r 

-

6 Ti,,. can ba ~~~~~~~ lo human inIerpr ~ t ation . for .ir ~ mple wh.lh.r add” and sdd imm.dials ur. tr.at.d a, diff.r.nt
insiructions or t~S ian,. ins truct ion with diff.,.nt opvsnd mod.,.

- -~~---~~~~~~~~- -•~~~~- -~~~~~~__ - — — ---_—-- -- rn ~~~ -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
~~~~~

--
~~~~~~~~~~~~~



21

each instruction format defined. This is how the code generator described in Chapter 3
outputs code. Further refinements are possible, such as a simple macro notation for
describing the transla tion from the binary fields t o textual output. Or, if desired, the MOP
definition itself could be changed to describe the machine at the assembly level rather than
in binary; however, it is probably a bad idea to throw away information altogether this way,
as the description is not as flexible.

The reader may also be wondering how the model of instruction set processors relates to
machine description languages.

It is not the intent , in deriving the model of machines for this thesis, to create a machine
description specialized to derivation of code generators. If anything, the opposite is true:
existing machine descri ption languages were already too specialized to tasks such as
simulation. The purpose of the MOP representation is to describe a machine that fits the

• mold of a model specific enough to make it reasonable for input to an application requiring an
instruction set processor descri ption.

The proposed representation does suggest requirements that would be placed on a machine
description language for use in this kind of work. Nearly all current machine description
languages are simply programming languages with some special features for describing
computers or logic.7 Any particular syntax has been avoided here by defining the MOP
tables. However, a short discussion of machine description languages is included here for
comp leteness.

As mentioned in Chapter 1, there are many potential applications of a machine description
language: machine simulators/emulators (Barbacci & Siewiorek (1977]), proving correctness
of machine language programs (Crocker (1977]), register-transfer level design automation
(Barbacci & Siewiorek [1975]), and automatic generation of software such as assemblers

• (Wick (1975)), diagnostics (Oakley (1977]), peephole optimizers (Hobbs [1976]), and code
generators. if all of these applications were driven off the same machine descriptions, it
would be possible to write a machine descri ption and obtain all this support software , and
even circuit layouts to construct the machine. Although this goal is still a ways of f, initial
results in several areas have been promising, to suggest that at least semi-automatic
operation is feasible.

One candidate representation for machine descriptions in the common data base is a machine-

ISP (8. & P4,w,lI (1g71J) is ,om.wh.$ more than this, but a. m.ntion.d earlier, it is not su ff ic iently r.,t ricti v u or
•p cif ic for our puvpo s.s.

-

~

- ----- ~~~~~~~~~ — —-•—-— _ _ _



-

22

readable variant of ISP, ISPS (Barbacci et al (1978)), which was designed with the intent of
providing a well-defined, mac hine-readable description language that could be used for
various applications, as required by SMCD.

ISPS has the necessary facilit ies to include the information required by applications such as
this work: the MOP tables could be automatically constructed from art ISPS description. The
ISPS description must specif y, through special declarations, cer tain necessary components of
the description, such as the program counter (PC), primary memory (Up), interpretation
process, address calculation processes, and instruction formats. Some additional information
can be derived automatically by recognizing accesses to the PC, Up, and instruction fields.
The main step that must be performed to construct the MOP table is to symbolically simulate
each possible path through the interpretation cycle to determine the possible instructions,
and f or each instruction, the input/output assertions on the processor state 8~ The
input /output assertions consist of condition-value pairs which specify new values for the
processor state location for each possible path/sequence of branches and assignments
through the interpretation process.

For purposes of this thesis, at the time of this writing, the MOP tables are manually
constructed; the MOP (and LOP) tables are designed to be readable/writable by people as
well a-’~ machines. In fact , they are as short to write as the ISPS description, so the only
motive i..ar automatic translation is the SMCD goal.

2.6. Syntactic Representation and Implementation

The MOP is syntactically represented in a parenthesized form in a fairly strai ghtforward way.
The syntax for the components defined in this chapter is given in BNF notation in appendix B,
along with the MOP for the the POP-li and the “Mini-5 (a slightly simplified PDP-8), used as
examples. These MOPs were manually generated; they may be automatically derived fr om
ISP descriptions at some future time, as mentioned earlier. Partial MOP tables were also
derived for the Motorola 6800, intel 8080, and DEC-10 (to test the machine model with some
diverse architec tures). These are not included.

It should be noted that the M-ops and OCs are represented as productions rather than a
simple enumeration of the components as defined in this chapter. Spec ifically, the
input/output assertion tree becomes the left-hand side of the production, and the other
components are specified by the right-hand side (recognizable by the EMIT keyword),

• O.kiey( 19773 is work ing on such a symbolic simuistloit

L - •~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~- •~~~~~~•



1

23

which specifies the space/time cost, format , mnemonic , and field-value list. This form is used
for the MOP because its syntax is now compatible with the representation of the LOP tables
described in the next chapter. In the MOP, the RI-ISs are EMITs; in the LOP, they may be any
code sequence (EMITs, code labels, et c.), or even special commands to the compiler. The main
advantage of using the same notation is that the MOP/LOP tables can be
read/modified/written in several stages of the process of constructing a comp iler, without
requiring several intermediate notations. However , the syntactic representation is not
important t o any of the results presented in the thesis, and a different representation might
be more appropriate, for examp le, to improve human readability.



24

3. A Formalization of Code Generation

“The most valuable of all talents is that of never using two words when
one will do (in code generation]”

• 
- Thomas Jefferson

3.1. Introduction

The code generator proposed here, which will be referred to as CODE, takes a program tree
as input, and produces as output a symbolic machine code stream with formatting information.

The code generation scheme is based on tre. productions, or templates. A source program is
assumed to have been translated into an intermediate tree representation (TCOL). The code

generat or traverses the program tree, matching each program tree node against patterns on
the left-hand-side (LHS) of the templates in the LOP. The ri ght-hand-sides (RHSs) of the
templates matched may specify code to be generated, special compiler actions to be taken,
and further matc hes to be recursively performed. These template/productions, along with
other information about the target machine such as addressing and instruction formatting
(described in the previous chapter), are specified by the LOP table (see Figure 1), which -

provides the machine-dependent information required by the compiler.

A description of a code generator without definition of the remainder of the compiler, at least
in terms of its relationship to code generation, would be of limited utility. Ideally, we would
like to:

(1) Show how the algorithms and data structures can be made to interact with the other
compiler phases.

(2) Demonstrate that they are capable of generating good code in the context of an
optimizing compiler. 

_

To do this, we will take a dual approach~ First, the basic requirements on the structure of a
compiler will be discussed. Then, to show how especially high-quality code can be
generated, we will use the structure of the P0CC compiler (section 1.2), which Is patterned
after Bliss-i 1 (WuIf et al (1975]). Both the P0CC compiler structure and the basic compiler
requirements will be discussed in the next section.



25

3.2. The Compiler

3.2.1 Compiler Structure and TCOL

Sevcral  crucial decisions must be macic with respect to the structure of the compiler.

One such decision must be made with respect to the language. In particular , we would like to
parameter ize the compiler by language as well as machine, so that a comp iler for any
language-machine combination can be generated. This thesis takes an UNCOL-like approach
(UNiversa l COmputer Language , Strong[1958)): the front end of the compiler translates a
source language into an intermediate language , and the back end (code generator , etc.)
translates the intermediate language into a machine language.

One problem with an UNCOL, which has limited its use in the past , is that an UNCOL notation
must be at a suffi cientl y hi gh evel to avoid any assumptions about the underlying machine
architecture , but at a low enough level to avoid any assump tions about the high-level
languages lo be translated. There are examples of UNCOLs that have made these
assumptions in either the machine or language direction (Conway (1958), Orgass & Waite
[1969)). The price of making such assumptions is that the correspondin8 translation becomes
inefficient and/or complicated for non-conforming languages or machines. The language we
will usc , TCOL (m oo COmmon Language), alleviates this by using a very “low-level high-lt.vel”
language. The notation is high-level in the sense that it is parse-tree-like to avoid any
assumptions about the target  instructions. It is low-level in the sense that assumptions
about language constructs arc avoided, by fully decomposing data accesses into index
computations, fetches and stores , separating the descri ption of the data types, and so on.
The second problem w ith the orig inal UNCOL approach is potential inefficiencies for special
language or machine constructs. To avoid this, we allow the addition of new TCOL operators,
by manuall y deftning thorn in terms of existing ones , by ex tending the tables dependent on
TCOL operators , or by defining new data types.

With these two guidelines (intermediate level, and extensibilit y), ICO!. has proved to be quite
useful in separating language-dependence and machine-dependence. The use of such
intermediate languages in compilers will probably bec ome prevalent in the near future.

The actual operators and definition of TCOL as used for this work are given in Appendix A.
For an example of TCOL, the reader may wish to refer ahead to Figure 4, which shows a
program and its TCOL representation. However , the details of the notation are not important
for the understanding of this chapter.

L



26

Relatively l i t t l e  is required of the structure of the other components of a compiler using the
code genera tion scheme described here. The principal requirement is a ICOL representation
of Ihe input program. The code generator produces output i n a form that can be used In
multi ple ways, as we will see in section 3.2.4. Register and st orage allocation can 1be
performed either during or before code generation. The various comp iler func tions such as
these, and thoir relation to the formalism, are discussed in the next three subsections.

As mentioned in the previous section, one compiler structure that could be used with the
code generator described here is that of Bliss-il (Wuif et at (1975)). Figure 3 illustrates
this structure; t he phases are as follows:

- LEXSYN: Lexical and syntactic analysis; the input to this phase is the source program
text; the output is an abstract program tree (ICOL in our case).

- FLOW: Flow analysis; common sub-expressions are found, and sequencing of operations
is rearranged.

- DELAY: Performs specialized optimizat ions on the tree , and also determines the ~shapeu
of the ultimate code (e.g., wher e reg sters would be desirable).,

— TNBIND; Allocates temporaries required by the program to the.~register types available.

- CODE: The actual code generation; input is rearranged/decorated parse tree, output is
symbolic code stream. This is the oncern of this thesis.

- FINAL: Performs peephole and branch optimizatlons that could not be recognized until
actual code adjacenc ies are known.

There are also subphases of these compiler phases, but this will not be important for our
purposes. What ~ important to note is that a careful balance is struck with respect to the
ordering of compiler functions in this structure. The guiding principle is to perform a
function where it is most advantageous in terms of the information available and the ease of
descript ion of the function. For example:

• (1) OELAY determines the shape of the ultimate code to give TNBIND information about
register requirements, allowing better global and local allocation of temporaries.

(2) CODE can then concentrate on the case analysis for code generation, given ~he
registers that will be available for use.



-~

27

Source Code

~1~
~

I

~
EXSYN1 

Lexical and syntactic analysis

(TCOL)

[
iow 

j 
Flow analysis

~j ,(TCOL)

• DELAY Optimizations on tree

(TCOL)

1rNBIN]
~ 

Allocation of temporaries to machine registers

(TCOL)

coo
~1 

Code generation

~~Symbolic code)

FINAL] Peephole and branch optimizations

Machine Code

Figure 3: Structure of the Bliss-il compiler, being used as basis for PQCC.



• 28

(3) The optimizations performed by FINAL could not be perforñ~ed until the code is in
symbolic instruction form.

3.2.2 Storage Allocation

The procedural information associated with a program is described with a TCOL tree. The
declared properties of the data locations must also be expressed; this is normally done in a
symbol table , and we will take this approach. However, to represent symbols machine—
independently and language-independently presents more of a challenge. We will discuss
how this can be done, although a full implementation has been left to further research.

A symbol table typically specifies information such as a print name, a data type (e.g., integer,
real), an allocation type (e.g., own, dynamic), a size (e.g., for arrays or records), and other
properties.

To separate the essence of the language- and machine- independent information about a
symbol f or the purposes of this thcsis, tw o kinds of information are defined: an access
function and an aLlocation function.

The access (unct ion is represented by a location tree I or each symbol, which specifies the
location the symbol represents. If the symbol is not a simple location, for example if it is an
array or stack location, the location tree contains parameters that are filled in for any
instantiation (use) of it in the program tree.9 For example , a reference to a 10 by 10 array
mi ght be expressed. as memory address A+$1+1O*52 where A is the base address of the
array and $1 and 52 are the indices. A location tree thus specifies a (parameterized) access
to a location.

An allocation function is required in order to create the symbol when it is declared, and
possibly t o release it when appropriate. Some examp les are:

(1) A simple one-word own variable allocated at compile(load)-time

(2) A dynamic array, probably allocated by calls to run-time routines

(3) A slack local, requiring manipulation of a stack pointer

Thor. may also b. some .u*iliary cods ssu oci at d w ith every r.f.rine. to .  symbol , ..~~., an array bour~ds check.

- - ~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _  _ _



29

The alloca tion function and access function might be thought of as a secondary, language-
independent symbol definition, the primary definition being that defined by the language
direc tly, in terms of the language data types and da ta structures. The access func tion and
allocation func tion are derived from the primary definition. The compiler ’s front end, which
creates the TCOL representation, must know the machine data type (section 2.3.6) or virtual
machine data type (sec tion 3.2.5) for each symbol. This data type is derived from the
language data type of this symbol, as will be described in sec tion 3.2.5. Given the data type,
the comp iler knows:

(1) The amount of space required for this symbol, and (word boundary) alignment
properties if any; together with the allocation type of the symbol this specifies the
alloca tion function.

(2) The encoding/decoding algor ithm to translate an ASCII representation of a constant of
this type (e.g., 1.234) to the binary representation for this type; any constants can

• thus be encoded into binary before code generation occurs.

(3) How to translate source language operators such as N
+

u into the unambiguous TCOL
operators which are defined in terms of machine data types.

To simplif y the discussion of code generation, we will assume that all symbol references in
the tree are e%panded as ~t the access function were a macro. We will similarly ignore the
processing of variable declarations, by assuming that a prepass has allocated symbols and
inserted into the TCOL program tree any code necessary for dynamic allocation and other
run-time maintenance.

3.2.3 Temporary Allocation

In addition to the data locations explicitly declared by the user program, temporary locations
are required to hold intermediate results of expressions. These temporary symbols must also
be dynamically allocated to locations on the target machine, typically registers or primary—
memory locations.

In the classical compiler , this allocation is done TMon the fly during the generation of code.
That is, when a temporary is required in the evaluation of an expression, a location of the
required type is reserved by some scheme, and that location is used and marked available
again after it is no longer needed.

More optimal allocation of temporaries can be performed if the allocation is performed as a 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  



30

separate phase, preceding code generation; such a pass allows many possible assignments of
reg i ste rs to temporari es to be co ns idered, evaluating their relative costs. This is the
strategy taken in the Bliss-il comp iler. Johnsson [1975] extensively discusses this subject,
and evaluates algorithms for assigning lifet imes to each temporary, and packing these
temporaries into the available register types.

A global temporary allocator such as this can pass information to the code generator by
modifying the TCOL tree. In an implementation, this can be done by setting a target field in
the operator node in question to the desired location to be used for the result.

The proposed code generator is independent of the scheme used for temporary allocation. If
• the target field is set , the node is treated just as if the programmer specified that location

for the result. If it is not set, the code generator calls a storage allocator provided
elsewhere in the comp iler, specifying the type of location desired, and generates code using
what it is given. - .

3.2.4 Object code

The output of the code generation phases is a stream of tuples. Each tuple consists of a
format , and a set of fields. The format spec i f ies how the fields are to be output; it may
specify: .

(1) A labeL is to be generated; in this case, the field specifies a user- or compiler-
generated label is to be defined at this location in the output code (for reference to
this location elsewhere).

(2) A constant is to be output; in this case, the field is a binary word of data to be stored
at the current location in the output. -

(3) An instruction is to be output; in this case, the format specifies one of the ~nseruction
formats defined for the target machine (section 2.3.3), and the fields are to be
assembled and output according to that format.

Fields are of two kinds: constant fields, and paremeter fields. The value to be output for a
constant field is given directly, while t he value f or a parameter f ield may be a va riable or
code label not yet defined. (The operation code for an instruction is a constant field; a field
specify ing an operand w ill normally be a parameter field.) The reader may recall these as the
constants and parameters in M-op formats in section 2.3.7; formats and their use will be
further described shortly (section 3.3).

—I



31

The tuples output by the code generator can be output directly as binary code, or they may
be pa~~ed as a symbolic instruction stream representation to another phase of the comp iler,
for example, a peephole optimizer.

Forward references in the tuptes (for example, forward branches) must b~ resolved beforebinary code is gene rated. This cannot be done dur ing code generat ion, as these values are
not yet known, but the f ields can easily be set in a second pass over the tuples, or, of
course , assembl y code can be output , in which case the fields remain in their symbolic form.

Consideral,le improvement in code quality can be obtained by a second pass over the code,
and m any people have worked on this problem. For examp le, branch optiniizations can be
performed that could not be detected during code generation because code adjacencies were
not yet known. Hobbs [1978) discusses sotutions to these problems in the context of PQCC.
In general, any optimization or fillin g-in that requires knowledge of code size or adjacencies
should be performed after code generation.

3.2.5 The Cotnpiler-Writor’s Virtual Machine

This thesis will not propose to corn pictety automate the generation of code generators; this is
not desirable. Certain implementation decisions, that have historicall y been made by the
compiler designers, are still left to human discretion. These include:

(1) The mapp ing from language data-t ypes to machine data-tyç~es. F~or examp le, “long
reals’ in the source language may be mapped onto the 64-bit flo~ting point machine
data-type. Or, a language data-t ype may not corresp ond to a target machine data—
type, in which case a uirtuaL data-t ype must be provided via run-time code for each
operation on that data type. This could be simplified by providing a library of
machine-indep endent TCOL run-time routines from which the compiler designer could
select.

(2) Procedure linkage and parameter-passing. The implementation of call/ return
mechanisms for c alt-by-name, call -by-value, call-by-value/result, or call-by-reference,
are dafined by the compiler designer in terms of the lower-level TCOI.. primitives.

(3) Dynamic storage allocation. Closely related to the implementation of subroutines is the
scheme, if any, f or allocation of local variables to the routine. in 4 language such as
Algol, code must be ~encrated for block entry/exit to set up the locals on the stack.~

(4) Operating system interface. Certain source language constructs, such as input/output
requests , are expanded into opera ting system or runtime system calls.

_ _ _



32

In makir~g these high- level decisions , we essentially define a virtual machine on top of the
target machine , with cer tain operat ions defined in terms of in-line or out—of-line subroutines.
We will call this the Compile r-Writer ’s Virt uol Machine ~CWVM ). In ‘practice , these decisions
can easily be inserted after autom atic generation of the basic code generator , by defining
new entries in the code-generalion tables described in the next section. How th is is done i n
an easily human-read able notation will be described in the next chapter.

3.3. Template Schemas

In this section we define the LOP, which specifies the code generation proc ess, as was shown —

in Figure 1 (page 5). in the next two sections (3.4-3.5) the code generation algorithms
which use the LOP are defined. Finall y, in section 3.6, a comp lete code generation examp le 

—

is given to tic these together . The reader may prefer to skim sec tions 3.3-3.5, read the
examp le in 3.6, and then re-read theso sections to more easil~ understand the definitibns
and their motivation.

The basic unit of the LOP is a te:iap iate. The essential parts of a temp late are a tree pattern
(LHS), and a rcstilt sequence (RHS). Th~ result seque nce specifies code to generate , or furt~ier
submatches to perform , when the tree pattern is found in the program tree. The templates
are grouped into schcnzr4s, arid the LOP cons ists of a set of these schemas.

The schemas represent d iff o rc nt contexts in which code can be generated. Multiple schemas
(for multiple contexts) are theoreticall y unnecessary , but a hierarch y of them is used for
practical reasons. There might be schernas for contexts in which:

- A flow result is required (a coriditional branch; see Wult et al (1975)).

- A value result is required (integer , real , booleari, etc.).

— No result is desired (a “s tatement” tree).

- An addressing mode is to be selected.

- Subcases of an end-of -loop test are to be selected.

The remainder of this section gives a more precise definition of schemas , templates , patterns,
and result sequenc es.

A schema is an ordered set of templates. A templat e consists of:

_ ___



.

~~~~~~~~

.

33

(1) a pattern tree

(2) a result sequence

(3) a resource usage set

A pattern tree is a tree whose nodes are:

- For non-leaf nodes, a language operator which this node is to match.

- For leaf nodes, a set of access modes, namely the access set of an operand class.
These match classes of constants and locations that can be referred to in a single
machine instruction, and are mac hine dependent (section 2.3.5). Parameters may be
associated with the pattern leaf nodes for reference , as described in Appendix A.

The resource usage set specifies register allocation and cost information for this template; it
wilt not be necessary to define it further for our purposes.

The result sequence is an ordered set of code specLfLers. A code specifier consists of a
format , as defined in section 3.2.4, and a list of field specifiers. The format determines the
interpretation of the code specifier and its field specifier(s); specifically, a code specifier may
represent:

(1) An instruction to be output; in this case , the format number gives the instruction
format , and the field specifiers define the fields of the instruction. The field specifiers
may be:

(a) A parame ter defined in the corresponding pattern tree (e.g., this would be used
for an address field of an instruction).

(b) A constant (to define a fixed-value field, e.g., an opcode).

(c) A n*atch-tuple consisting of a schema (name) and a parameter; this is used when
the actual instruction fields are determined by an operand class; the fields
depend on the actual program subtree involved (given by the parameter).

(2) A label to be output; in this case the (one) field specifier is a parameter corresponding
to the label.



34

(3) A binary word to be output; in this case the (one) field specifier is i ts value (a
constan t or parameter).

(4) A match-tup le; in this case the field specifier is a parameter (representing a program
subtree that matched the U-IS pattern tree) which is recursively looked up in the
temp la te schemas to determine the code to generate. For examp le, this sub-matching
scheme will be used to generate code for various sub-parts of an IF-THEN-ELSE: the
conditional jump, the THEN-body, the ELSE-body.

Ex a m p les of patterns and result sequences will be given in figures 5-7, for the code —

generation example. -

3.4. Code Generation Algorithms

It is the intent of the temp late schemas to describe the translation from TCOL to a machine
language. However , the temp late schemas are meaningless without defining the algorithm
which uses them; the algorithm is the topic of this section.

The reader may already have inferred the general idea of the use of templates at this point.
The temp late patterns are matched against the TCOL program tree and the corresponding
result sequence specifications are processed. With the temp lates as defiied, the only degree
of freedom we will have in using different algorithms is in the interface “between ” the
templates , for those templates which compute ar~ hmetic expressions where intermediate
values must be stored. That is , the templates must be composed recursively to match an
entire program tree.

Recall that the eaves of a ten- plate are access sets; the operands must be in these specifie d
locations (acces s m odes ) in order for the template to be applied. If a leaf ’bf a template does
not matcr’ the corresponding segment of the program tree, it is possible to ~~~~~~~ the temp la te
applicable by perf orming the subtask of a store into an allocated location (access mode) of
the t ype regu red by the temp late operand. Or, if it is the destination of the template that
mismatches the program subtree, it is possible to make the templat e applicable by allocating
a location of the type of the template destination, and following the temp late resul t code by
a st ore into the desired location from the allocated location. This process of making the
template match is called subtargetting. Subtargetting is used, for example, when an
instruction requires one or more of its operands in registers, but the operands in the
program tree are not in registers. Note that there are two types of subtargetting, depending



~

35

on whether the offending access mode is the destination or source in the template.’°
Perhaps the most obvious way to apply the temp lates is tt~e ~ chaus tive “brute force ”
approach. Given a program tree , there may be a number of templates which match the top
of the tree , ignoring riismatch of the access set leaves , which can be subtargetted. For each
of these templates , there may be a number of access modes which w’ould ~atisfy the operand
constraints , to which the operands could be subtargetted. ‘Recur~ively, for etách
subtargetting subtask , there may be a number of templates which match,’arld so on. In an
exhaustive algori thm, we would recursively try all these possibilities at each node, and ~ise
the match(es) that gave the least expensive code sequence.

The exhaustive approach here is not new. Newcomer(1975] and Aho & Johnson (1976] use
approxima tely this algorithm. Aho & Johnson show that the time for the exhaustive algorithm
is linear in the number of tree nodes , and exponential in the number~ of choices (instructi&ns,
or M-ops and access modes) at each point.

It should be noted in passing th at Aho & Johnson’s assump tions (‘and l’fewcomer ’s) do ~not
correspond to ours, although the complexity resul t still applies. For examp le, we subdivide
the selection of instructions into the selection of an M-op and the selection of an aci~éss
mode for each operand, to reduce the number of patterns (choices) to deal with. We also
deal w ith control constructs , rat her than just arithmetic , and allow M—ops to consist t of
multiple actions (more than one store) or to compute arbitrary expressions rather than
corresponding to a single language operator. Some of these differences add to ~he
complexit y of code generation (e.g.~ multiple-operator M-ops), and others to the comple~ity
of code generator generation (e.g., multi ple-action M-ops).

The time required for the exhaustive approach might not be excessive for many machines,
since the number o~ alternatives possible at each node is often small, and the size of
arithmetic expressions is also empirically small (Knuth (1971)). However , another alternative
deserves consideration:

We might consider ordering the alternatives , w hich in our case corresponds to ordering the
templates in a schema , and using an algorithm which selects t he first temp la te which ma tches
a g iven program node. The instructions would be ordered so that less expensive special
cases occur before general cases; for example X~-X+1 would occur before X~-X+constant. We
order both the M-op alternatives (for the instruction) and access mode alternatives (for each
operand class) in this way: the pattern templates are sorted by increasing cost per number

Th... will co,’r..pend to lb. F.lch/Stor• D.compo.itien ~ul• in lb. n.*t chapt.r.

k



• 

— - - -, - - - -- - -  -

36

of nodes. This resu lts in an algor ithm which “bites of f” the largest possible subtree at the
cul rent program tree node at each step, and subtargets the remainder. We will consequently
refer to this as the “Maximal Munching Method” (MMU).

Other alternatives to the MMM algorithm arid the exhaustive algorithm are possible. Rather
than picking the largest possible acc ess mode matching at each point, we could always use
some common denomina tor for temporary results , such as a general purpose reg is t er , which
sat isf k~3 all the operand classes. This is sti ll simpler than the MMM algori thm, but will not
generate as good of code in general.

Experimentation with various code generation algorithms and their relative performance is
beyond the scope of this work. However , small test cases suggest tha t the MMM algorithm
does nearly as wel, as the (op timal) brute force method, and at much less cost. This is
therefore the method used here.

3.5. The MMM Algorithm

In figure 2, a simp lified algori thmic version of the MMM algori thm is given.

In order to understand this algorithm, it is first necessary to understand the data structures,
given firs t in the figure. Associated with each pattern leaf (except for “closed constant ”
leaves, e.g., “2”) are:

(1) An operand class “OC which the pattern demands in this leaf position of the pattern
tree.

(2) A parameter “parm ” (imp lemented in the fi gure as an integer index into an array)
which is to be associated with the program tree node which matches this pattern node.
Parameters are used to save the subtrees wnich match pattern leaves for later use in
subtargetting and in generating coce.

For the purposes of subtargetting a program subtree, we r’eed to know:

(1) The pattern leaf the subtree matched, to determine the set of access modes this node
must match. A pointer to the pattern leaf is saved in the “pleat ” field ~ the subtree
root node.

(2) Whether the subtree matches one of the access modes specified by the pattern leaf. 

~~-- -~~~~~~~~~~~~ -~~~~~~~-•~~~~~~~~~~~ 



class pat tern — patternteaf or patternnode;
patterrinode— (integer op {TCOL operator *); tree array Sons);
patter nleaf— (integer op; operandclass OC; integer parm; integer value);
class t ree — (integer Op; tree array sons; ... boolean match; tree pleat);
class production — (pattern LHS; resultsequence RHS)

boolean procedure Treematch(tree T; pattern P; tree array Farms);
(matches tree T against pattern F, saves parameters in Farms)
if P.op—constant then return(T.op—constant and T.value—P.value)
else if P.op—location then

begin (leaf (location))
Parms(P.parm]4-T; T.pleaf4-P;
if I ( P (match OC) then T.match~-TRUE else T.match4-FALSE
return(TRIJE);
end

else
begin (non-teaf)
if P.op#T.op or size(P.sons),’size(T.sons) then return(FALSE);

• for i4- 1 thru size(P.sons) do
if not Treematch(T.sons(i ),P.sons(i],Parms) then return(FALSE);

return(TRUE)
end;

procedure GenCode(tree 1);
(generates code for TCOI tree T)
begin
Pset4-FindProds(T); (get set of templates to try for this tree)
foreach PEPset do

begin Mset.-NIL array; if Treematch(T,P.LHS,Mset) then ex itloop end;
(Fetch subtargetting)
foreach M in array Mset do

if not M.match then
begin Allocate(M.pnode); GenCode( M.pnode “i-” M ) end;

(Generation of code for RHS of template)
DoResultSequence(P.RHS,Mset);
(DeAllocate)
foreach M in array Mset do

If not M.match then
Deallocate(M.pleaf);

end;

Figure 2: A simplified version of the MMM code generation algorithm. Comments are in (..j .
UIX.FW means F field of variable X; fields are defined in the class definitions at the top.

11

~ 

~~~~~~~~~~~~~~~~



-- - --—- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——‘-.~~~ ~~-~~~-
--

~
- —- 

38

If so, the “match” field of the subtree root node is TRU E, otherwise it is FALSE, and
subtargetting must be applied.

The tree and pattern node fields are shown in the figure. Following the data structure
definitions are the two central routines, TREEMATCH and GENCODE.

TREEMATCH takes a pattern and tree as argument , and returns TRUE if they match or can be
made to match by subtargetting. The array PARMS contains pointers to tree nodes that were
matched against pattern leaves; those that did not match must be subtargetted. Those that
match as well as those that must be made to match are returned in PARMS because both will —
be needed in the generation of code for the right-hand side (RHS) of the te m plate.

GENCODE uses a hashing scheme (FINOPRODS) to find a set of temp lates which might match
the program tree , uses TREEMATCH to find the first of these templates that can be made to
match the program tree, subtarge ts where necessary, generates code for the temp late itself ,
and then cleans up by deallocating the temporary locations used (if temporary allocation is

• done before code generation, allocation and deallocation has been handled in an earlier
phase).

The complete algorithm is several pages of code; this is an oversimp lification. However , the

remaining details are relativel y strai ghtforward. In particular , we have not given the details
of the processing of the result sequences (this should be clear from the result sequence
definition and the examp le), or the store subtargetting (this is similar to fetch subtargetting,
but a special check is made I or the destination of ~-“s for mismatches).

3.6. Example

We will demonstrate the use of template schernas by tracing through the generation of code
for a small program using the MMM algorithm.

Figure 4 shows an examp le program and how it would be internally represented in TCOL. ‘~‘ e
will show how the CODE phase would generate POP-i 1 machine code for this example using
the MMM algorithm wi th the tables (template schemas) in Figures 5 through 7.

The notation used in Figures 5 through 7 requires some explana tion. Each figure is a schema;
the figures show the schemas for the statement context , value context , and flow context,



_ _ _ _  - - - -  •-~~~~~~~~~ --~~~——-~~~--• -

39

• Z4-Z+2sY;
WHILE X<N AND V(X)~Z DO

Xi-X+1;
PRINT(X);

After conversion to internal TCOL tree:

~~
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AND PRI~~~~
• 

-

/ \
• I (‘\ LSS NEQ /\Z~~~~~~~~/ \ / \

y~~~~~~N .

• I
x +

/\
V

Machine code: X

d R  Ri
MOV V R2
ASL R~ADD R2,Z
BR LOt

L02: INC Ri
LOt: CMP Ri eN

BGE LO~CMPB V(R1),Z
BNE L02

L03: MOV Ri -(SP)
JSR PC,~’RINT

Figure 4: Example program. X , V, and Z are integers; N Is a constant; V Is a byte array.

_ _ _ _  _ _  --- -- -~~~ - -- - -~~~~~~~~~ -~~~~~~~~~~~~~



40

• Pattern Result Sequence

IF (-. E1 &i &2)

&2:

IF (-~E1 &1 &2)

&1: 
-

El Si S2 ($1)

BR (ADR &3)

-

( $ 2)

&3:

WHILE BR (ADR &2)

&1:

El Si (SI)

C-’ El &3)

CALL ZREPEAT 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MOV (SRC Mi) “-(SP~

Li Al A2 ... ?.END

.JSR “PC” (DST Li)

Figure 5: Statement context schema of LOP (top operator has no value)



41

Pattern Result Sequence

4- CLR (DST AI)

4- INC COST Al)

~~~~~~
4- ADD (SRC A2) COST Al)

./\

A l t  

ASL (051 Al)

4- MOV (SRC A2) COST Al)

-

~~~~~~~~~~~~~~~~~~~~~~ A

,
,
,

..Z..~~~~ 
BIS (SRc A2) (OST Al)

H AI OR 

.

Figure 6: Value-context schema of LOP (top operator “‘-1. 



42

Pa t t e rn  Resu lt Sequence

(-‘ El &i L2)

AND Li L2 (.4 E2 Li L2)

• (-‘- E1 12u)

NOT L i L2

E~1

-,

CMP (SRC Al) (SRC A2)

BLT (ADR LI)

LSS LI 12 BR (ADR L2)

.A{”\
-*

/N CMPB (SRC Al) (SRC A2)

BNE (ADR Li)

NEQ Li L2 BR (ADR 12)

.Aic7:O> .A2<7 0’

Figure 7: Flow-context schema of LOP (top operator is 0.4~)~ The semantics ofthe “-‘“ nodes are that control goes to location Li if the first son is true, else to L2.A single language operator corresponds to different TCOL operators according to thetype and size of the data; for simplicity in the figures only the 16-bit integerversions are shown (except NEQ, which illustrates an u-bit compare).

_ _ _ _ _ _ _ _ _ _ _  — - ,-, - -~~ , 
~~~~~~~~ -~~~~—



_ _ _ _ 
- 

1
43

re~pect ivel y.11 The leaves of the patterns are marked with S, E; A, or~ L, depending Ion
whether they match a s ta te m ent , an expression, an “addressable ” expressi on, or a label
expression, re~.pect iveIy.12 In the result sequences, instructions are given in symbolic
as.emhl y-Ianguage form for readability; submatches are given in parenthesized form, I.e.,
“(context son1 son2 ... son~)”. Labels are preceded by “&“, special operators by “7.”. The
use of these should become clea r as we proceed th rough the exa mp le.

The reader may note that the submatches for fields of instructions use schemas (OST, SRC,
ADR) for operand classes, that we have omitted here for simplicity. These schemas have
patterns for each access mod e that can be matched by the parameters Csubtrees) passed
them, and the corresponding result sequence for each access mode causes output of the
appropriate POP-I 1 addressing mode, register field, and index if present.

In an imp lementation , the result sequences would be encoded using formats to indicate the
types of code specifiers and field specifiers , as suggested in section 3.2.4; we are omitting
implementation details here for readabilit y. For examp le, various schemes can be used f or
representing and indexing pattern trees for efficient arid flexible use.

Temp orary reg ister allocation will be done on the fl y ‘or this examp le. We will assume
simple global allocation of variables to locations has already been done: suppose that all
locations but X have been assi gned to memory, and that the loop variable X has been
ass i gned to a register.

We perform a traversal of the program tree in the code generation. In the program tree in
figure 4 the top operator is “;“, so we proceed by generating code for each son, starting with
x4-O.’3 This tree is matched by the f irst template in Figure 6; the corresponding result
sequence indicates the generation of arm instruction with opcode field CLR and destination
f ie ld  given by looking up X in the DST table. Let’s suppose X has been assi gned to reg is ter

I’lot. th a t we on i y ne..d thus, thr e. cnntoat p which r.pres .nt comp l.t. action s For examp le, “.“ n.ver occurs it
th e lop of a t emp lat . pillt’rn true b~c.u~e i t mak ., no eon ,, exc ep t ,~ the con t ex t of a placs to store th. resul t
(valu. cont ext).

12 T he l~Ito , ,  are uv,d as a rvmin de , of what the perameterl •r~ for rs.d.biIity~ lb. p.%t•rm ).evee in scivalily ir.
.,th. , acce ss set s or “w ild” (i.. , match eny thing . s g ,  E and S). A is the •ccas ~ set of both OST end SRC; I ii~ the
accos , so t of ADP

13 Tb, paina ntic , of could b. built into thø c ode generation algorithm , aim ply causing a rscu ,siv e cell on the sons.

L •~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_



44

1, so that “CLR Ri” is the instruction generated. ’4

We then proceed to the second son of “;“, and find that the first match is the third in Figure
6: AI~ .AI÷ .A2. Al is matched exactly by the Z leaf , but 2*.Y will require a temporary
location and another match; subtargettut g occurs. CODE allocates a temporary location, say
P2;’5 then it calls itself recursivel y to match R2i-2s.Y. This i s matched by A1.-2*.Al , but
again requires a fur ther submatch, R2.-.Y, this time because the parameter Al is used twice
in the pattern tree , and since the firs t occurrence of Al ma tched P2, V must be in R2 as well.
R2~ .Y matches the 5th temp late in Figure 6 exactly, resulting in the generation of MOV Y,R2.
Upon re turning from the two recursive calls , CODE generates:

ASL R2
AOO R2,Z

The WHILE is then matched, by the third temp late in Figure 5. Note that CODE “understa nds”
• the generation and use of labels , which are indicated in the result sequence as &l, &2, etc.
• If symbolic output were being generated, names would be generated here. For examp le, the

first two code specifiers would generate BR LO1 and a label definition L02. The next tine
causes a recursive call to match X~.Xi1 , ~,md INC RI is generated. Then LOl is defined.

The next code specifier causes lookup of the AND subtree in the flow-context table. The
• AND is matched and indicates a subrnatch on the first son, “LSS , in the same table. This

match generates

CMP R1 ,#N
BLT LB4
BR LØ3

Another label is generated, then the second son is matched, generat ing

14 Not. that something aa comp licated p. ~~5(R3)” (in POP-Il •a.amb l.r noteti on) could have match ed the ecce sa s it
he,~, we ~vst heppened to havi simp ly a regishe r.

In the MMM algorithm , we pick the bes t (chea pest per node) .cc e,s mod , for the operand class (DST in this cc.. )
which can be mad. to match (Al). 8u1 sinc e lb. top operetor of the subtr.. a “., the first one found is regi s ter mode
(if • regi. ter is availebte).



45

L04: CMPB V(Rl),Z
BNE 102
BR L03

Code then returns to comp lete evaluation of the WHILE node by generating L03 .

Finally, the function call is processed. A simple argument passing mechanism is assumed.
This last son also serves to illustrate how CODE could be made to handle nodes with an
arbitrary number of sons , with a special control command in the result sequence, 7.REPEAT.
The code generated is:

MOV P1,-tSP)
JSR PC ,PRINT

This comp letes the example. An additional pass over the code stream is used ’6 to resolve
f orward references , deal with long vs. short jumps , and remove redunda~t branches. The
bot tom of Figure 4 shows the comp le te code sequence for the examp le after removal of two
redundant branches.

The main purpose of the example and this chap ter is to desi gn and demonstrate enough of a
feasible code generator to make the work in the next chapter possible. That is, we need a
model of code generators to generate code generators. There are many issues in -the
implementation of a code generator we cannot hope to discuss in detail here. There are
several ways to represent result sequences, as pointed out earlier. There are more
comp lcx it ics involved in dealing with operand c lasses that we have avoided for simp lici ty; for
examp le , there are both by te and word addressing modes on the POP-I 1, necessitating
separate templates for by te and word instructions. There are issues with respect to the
TCOL representation; for examp le it might be better to decompose the CA LL node used here
int o operations such as PUSH on the stack to make the calling arid parameter-passing
mechanism explicit in the TCOL. Another likel y change to the notation would be to encode
the explicit store nodes (“ u- ”) as a targ et field in the expression nodes (e.g., “+“) wh i ch gives
the location to be used for the result (as a location tree). Finally, an indexing scheme for the
templates in a schema is essential to avoid 5eria l matchi ng of all the patterns. A simple hash
by the primary operator f i s t  son for “

~~~
“
, 2nd son for “ #.“ , main opera tor for statement

16 Tb,, couid be implemented as a eu paratu F INAL-I k, pass (Wult it .1(1975)) and/or concurrently with CODE is part
of lb. instruction EMIT routin. cplied for each n-tup l,



____________

46

• context)  worked well in the prot ot ype implementation described in section 3.8. The
template m atching might be imp lemented even more efficientl y by combining the patterns
(automaticall y) into a sin~te match tree , as done by Wei ngart (1973]. Specificall y, th is
approach is best when the patterns are comp licated (many nodes), arid slight l y differing
patterns occur. It should also be noted that the representations described in this chapter do
riot necec~.arily correspond to those currentl y planned by P0CC. For examp le, the contexts
described in section 3.3 may be represented by special flags in the tree nodes, and ~he
control constructs (e.g., WHILE-DO) may be decomposed into blocks of code and conditional
jumps (flow c ontexts) .

3.7. Usa in a Compiler

The previous section described how the template schemas could be used in a stand-alone
code generat or. Better machine code can be generated if we use the te mp late schemas i n
multi ple phases, f or example if we perform temporary allocation as a separate phase, so that
many assignments of temporaries to locations can be considered.

In the Bliss-i I compi ler structure (section 3.2.1), the template schemas could be used in the
DELAY, TNBIND, and CODE phases. Basically:

(1) The DELAY phase would act as a pseudo-code-generator. That is, it would perform the
code generation algorithm described tn the previous section without generating code,
but only to determine where locations of each st orage base type are required (namely,
where subtar getting is performed). We could do this by assuming an infinite number
of al locatable registers of each t ype, and setting the target fields of tree nodes which
require registers.

(2) The TNB!ND phase would then allocate temporaries as best it can to the nodes of the
program tree which have been marked as requiring them. TNBIND knows the actual
number of locations of each storage base t ype, and the lifetimes (periods of use) of
the temporaries which are to be stored in these locations.

(3) The CODE phase would then generate code. Unlike in stand-alone mode, the targets
or the temporary results will have been specified , so that no on-the-fly allocation will
he required. Alt ernativel y, we could permit TNBINO to fail to assign a register of the
type required to make a node match a template exactl y; to handle this , CODE would fall
back into “on-the-fly” mode to subtarget t o an allocated temporary (taking into
account TNBIND’s assurnptiorm s about register use; typically, a memory location would
be used in place of a register).



47

3.8. An Implementation

In order to test the model of code generation proposed in this chapter , a prototype code
generator was implemented. As mentioned earlier , the goal of th i s test of the model was to
set the stage for the next chapter , so only a minimal system was necessary: in fact , the code
generation algorithm used is independent of the the LOP table and the discussion of its
generation in the next chapter.

Because PQCC’s comp iler is not yet designed and built , it was necessary to build a stand-
alone code generator f or TCOL with makeshift simulations of register and storage allocation
(TNBIND) and code output (FINAL). The interfaces to these two comp iler functions are quite
simple. We assume FINAL provides a routine which takes a list of symbolic fields and a
format specif ying how to assemble them into an instruction or binary constant; this routine
could output code directly or create a data structure. TNBIND can communicate with CODE

• through modification of target fields in the nodes, and by supplying routines to process
storage declarations and allocation of registers of various kinds.

The structure of the prototype code generator arid the functions of its main routines are
shown in Figure 8. An examp le run of the code generator is shown in Appendix C.

No serious probtems with the code generation model or its implementation were encountered
in the prototype. It is currentl y planned that a code generator based on the proto type be
integrated into the compiler system being built by the P0CC project.

_ _ _ _ _ _



~~~~~

—---. -- .

~~ ~~~~~~~~~~~~~~~~

-- -

~~~~

--••-.--- .-- -- 

~

• —

~~~~

48

TCOL compiler

TREEIN SYMBALLOC MARKASDS GENCODE s b-

• GENDECLS EMITLABEL DOFLDSEQ EMITCODE

su-
I ma ch c ristant
I /
[
~~NFLD EM ITFLD

Figure 8: Structure of prototype code generator. The named procedures call one
of the subprocedures shown, or all subprocedures when marked by horizontal line
through alternativ .~s. TREEIN inputs TCOL, SYMBALLOC outputs space reservations for
symbols (eg, own variables), MARKASDS marks the symbol nodes in the tree with
the access mode (AM) in which they fa l l , and GENCODE generates the code, being called
with a reference to the top of the program tree as parameter (initia ll y). After
finding a template which matches the node it is given, GENCODE interprets the
corresponding result sequence, which may specify a recursive submatch of another
node (recursive GENCODE call) , output of a label (EMITLAPEL), local declarationsto be processed (GENDECLS called until code encounterec again), or output of an
i nstruction. In the tatter case, DOFLDSEQ is catted to interpret the field sequence;then the resulting fields are output by EMITCODE. Each field in the sequence maybe spec ified directl y (EMITFLD called) or determined by a submatch (for OCs), inwhich case GENFLD calls DOFLOSEQ recursively.



49

4. Automatic Derivation of Translators

“We should not introduce errors through sloppiness, we should do it
carefully and systematically”

— E. W. Dijkstra
(A Discipline of Programming, p. 56]

4.1. Introduction

In the previous two chapters, models of instruction set processors and code generators were
presented; these allow machines and translators to be represented exp licitly.’7 An overview
was g iven in Figure 1 (page 5). In this chapter , we consider a scheme for automatically
generating code generators. More precisely, the scheme involves deriving the LOP, which in
turn controls the code generation process. The input to the code generator generator is the
MOP, which represents the target machine.

The central formalism on which this work is based is a set of axiom schemas which specif y
semantic equivalences between trees. The axioms express the classical arithmetic and
boolean laws , as well as rules about programs and the model of instruction set processors.
The axioms will be used to specify legal (semantics-preserving) tree transformations , and are
used in a heuris tic search for optimal code sequences. This search algorithm is the central
resul t of the chapter. The tree equivalence axioms are presented in the next section (4.2);
the search algori thm which uses them is presented in the following section (4.3).

The search algori thm is essentiall y a machine-independen t code generator , which takes as
input not only the source tree , but also a description of the target machine, namely the MOP.
The algorithm uses the axioms to find a code sequence for the source tree in the target
machine language. This machine-independent code generator could be used directly as the
code generation phase of the compiler (i.e., the MOP could be used directly, obviating the
LOP). In practice, however , it is preferable to separate compile-time from compiler-compile
time, to make the code generator more compact and efficien t (heuristic searches tend not to
be!). This is done by the introduction of the LOP table, as shown in Figure 9. Recall from the
previous chapter that the LOP contains templates used by the code generator. Each template

17 Note that TCOL provide, s common rep ’s .entati o n f or instruction action. , the source lanluals, and lb. a*ioms used
to link th. tw o . This is not strictl y n.c..a.ry , since translations between notat io ns could be dons, but it makes th.
ov. rall or~anizetio n conceptuall y simpler.

• .~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
~~~~~~ ~~~~~~~

•
~~~~~~

•- -
~~

-
~~~~~~~~~~~~~~~

50

consists of a tree pattern, and a code sequence to generate when that tree occurs in a
source program. The algorithm labelled SELECT in the fi gure is used to select the pattern
trees , cal l the machine-independent code generator to find the corresponding code
sequences, and enter the resulting tree/code-sequence pairs (the templates) into the LOP.
The SELECT algorithm , and associated problems in the generation of the LOP table, are the

• subject of section 4.4.

• In section 4.5, the relation of this work to other work in the area will be discussed.
Finally, in sec tion 4.6, example s and an overview of the actual implementation ~wi ll be given.

4.2. Tree Equ iva lence A xioms

4.2.1 Overview

The central basis for the work in this chapter is a set of axioms specif ying equivalence of
programs. Examp les of some of these axioms are shown in Figure 10.

Note that the axioms cover a wide class of equivalences: arithmetic and boolean laws, rules
about storage and side effects, and rules about program sequencing (including the semantics
of the program counter, PC). The axioms define an “algebra of trees” which will provide the
search space for our problem. In the remainder of this section (4.2), the various flavors of
axioms are discussed in more detail. ’8

4.2.2 Arithmetic and Boolean Law;

The arithmetic and boolean axioms are relativel y stra ightforward; see Figure 10 for examples.
Boolean laws include commutativity of AND and OR, DeMorgan’s law, and the double—
complement rule. Arithmetic axioms include commutativity of addition and multiplication,
special cases of adding, subtracting, or mul t ip l ying by zer o or one, rela tions between addition
and subtraction (e .g., a-b—a’ ( -b), -a~0-a), and so on.

18 Tb, ax ioms are repres ented in lb. inpt.msntstion as productions whose left-hand aids (U45) avi d vi~hi-hsnd aid.
(RHS) are parenthesized TCOL t rs es~ th ea. axioms are shown in Appendix F. Not . that the axioms in F~ ur. 10 era

• s hown a, b d i recti on ai . j e . “A ~ B” may be applied to transform A into B or vice versa. Th. actua l axiom s in Appendix F
are ~nidir.~~t i pnal (IMS into PItS), Thi , d ifference is not crucial , it pimpl y allows addi tional control over the search.
(T hre. of the axioms actual ly ua.d are represente d in the c ods rather than the parenthesi zed notstio n; this is also du.
to implementation considerations. )



-.---~~~~~‘-‘.‘--—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

51 
.

Machine-op to TCOL-op to 
TCOL

TCOL mapping Machine mapping

~~ISP ~~~MOP
j

I I  r SELECT
t ree ,j/ ~ ode sequence Machine Code

L~, Machi ne-independent
Code Genera tor

(Search Algorithm)

F~gure 9: Highly simp lified view of code generator generator , generating LOP from MOP.
SELECT insures that the necessary TCOL to code sequence mappings (productions) are in
the LOP, calling the search routines to find code sequences for the necessary trees.
The search routines are expanded in figure 11.



52

• Figure 10: Tree Equivatence Rules (Examples)

Boolean axioms
• not not E <~~> E

and E2 <=> not( (not E1) or (not E2) )
E 1 and E2 <a> E2 and E1
E and E <=> E

Arithmetic axioms
E+0 <=> E
-E <=> O-E
E1*E2 <=> E~.E1
-E <a> (not E)+1
Eli <a> E*2

Relational axioms
not (E1 geq E2) <a> (E1 Iss E2)
(E 1 Iss E2) or (E1 eqi E2) <=> E1 leq E2

Fetch/Store decomposition rules
E1(E2) <a> St- E2; E1(S)
S14-E <=> S24-E; S14-S2

Side-effect compensation axioms
S; D4-E c-> S if 0 is temporary-type SB
S; D4-E <a> AIloc(0); S if 0 is general-type SB

Implementation rules
if E then S <a> if (not E) then goto L; S; L:
if E then 

~i 
else S2 <a> if E then goto L1; S2; goto L2; Lj : S1; L2:

while E do S <a> L1: if not E then goto L2; S; goto Lj ; L2:

Sequencing Semantics axioms
goto E <a> PC4-E

• PC€.PC+n; S<space n> <a> <nil>
if E then S <a> if not E then PC~-PC+n; S<space n>
gob L1 <a> goto L1-L2+PC; L2:

Notation:
L: location in instruction store;
D: location in data store;
E: combinatorial tree;
S: statement (assignment or conditional) tree;



• 53

Axioms are required for each da ta t ype (secti on 2.3.6). A special set of axioms specify
properties of the data type representation. For examp le, for two’s comp lement integer
ari thmetic:

-E <— > (NOT E)+1
E1~1 <—> 2*E (“V’ denotes shift left )

Other axioms simp ly spec ify relationships between relational and boolean operators. In the
implementation , special simple cases of arithmetic are also encoded as axioms, e.g., 1+1~ 2,
since so few cases are required. These could of course be obviated by making the program
“smar ter ”.

4.2.3 Fetch/Store Decomposition

E1(E2) <—> S~-E~ ; E1(S) (Fetch Decomposit ion )
Sis-E <a > S2’El 

~1’-~2 
(Store Decomposit ion )

These rules are centrally important. They represent the fact that there are storage locations
on a machine, and that they can be used to hold intermediate results.

Fetch Decomposition states that an expression E1 with a sub-expression E2 can be computed
by first computing E2 in a locati on S, and then replacing E2 with S in the computation of E1.
Note that the location S must be available for use to hold the intermediate result , and S may
not be sto red in to for any other use until after the fetch of S in the computation of E1. This
is the only axiom with side effects on the machine state. Aspects of the machine state will
be discussed in sect ion 4.4.2.

The second rule, Store Decomposition, is a special case of Fetch Decomposition in which E1 is
an assignment statement. It is treated separately because of the way the means-ends
analysis works, in section 4.3.2.

4.2.4 Side Eff.cts

S: O.-E <—> S ( i f  0 is temporary—type)
S; O.-E c— , A l l o c (O) ; S ( i f  0 is general—type]



54

If a machine-operation tree has more than one effect , it may be possible to use the
• instruction for a subset of its effects , and ignore or compensate for the undesired side

effe cts. The side effects we are concerned with here are in the form of changes (Or
conditional changes) to the value of a storage location on the machine. The storage bases on
the machine were classified in section 2.3.1 according to whether they were temporary,
general-purpose , or reserved. Temporary Locations , for examp le, condition codes, may be
dest royed in the process of generating code. Cer eral purpose Locations , for examp le
reg isters or memory locations , may be used if they are allocated. If no location of the type
requir ed is ava i lable for use, this could involve saving the value in another location
temporarily. Reserved locations, for examp le a stack pointer or subroutine linkage register ,
may never be used for intermediate results.

The use of these rules about side effe cts will be discussed further in section 4.3.4. Side
ef fects on the program counter , the 4th type of storage base, will be dealt with in the nex t
section.

4.2.5 Sequencing Semantics

The remaining axioms are concerned with flow of control. We assumed, in the model of
instruction set processors in Chapter 2, that the processor state cont ains a progr am counte r,
PC. The PC’s value, after each instruction cycle, is the address of the next instruction to be
executed.

Sequencing semantics are specified by two kinds of axioms: First , there are definitions of
higher-level constructs in terms of conditional and unconditional jumps. For example:

if E then S <-> i f  not E then goto Li 5; L:

Second, there are three basic axioms which specif y the semantics of the program counter.
These will be referred to as the Hop, Skip, and Jump ruLes. The Hop rule merely defines the
PC:

goto L c-> PC.-L

The Skip rule says that a block of code is skipped when the PC is incremented:

PC.-PC+n; Scepace n> <.> <nil>

The “Scspace n>” in this axiom represents a tree S which requires exactly n words (section
2.3.1) of machine code. The Skip rule will be combined with the definition of “it” in the
examples in the next section for the special case of :kip-decovnpos~tien:

~



55

i f  E then S <-> i f  not E then PC~-PC+n; Scspace n>

We will also use the abbreviation

E->L for i f  E then PC.-L

in the next section , using the operator “->“ for the very common case of a conditional jump.

Finally, the Jump rule allows the use of relative and absolute jumps interchangeably:

PCi-L1 <a> PCi-PC+L1-L2; L2:

4.3. A Searc h Algorithm using Tree Transformations

4.3.1 Introduction

Now let’s consider the machine-independent code generation problem. We are given a
machine M with instructions m 1, m2, ... m~, and a goal tree G for which we would like to
generate code (in the machine language of M). That is, we would like to find a sequence of
machine-operation tree instantiations which is semantically equivalent to the goal tree C.
The axioms presented in the previous section define the term “equivalent”: if a subtree
matches one side of an axiom schema, the subtree may be replaced by the instantiation of
the other side. In this way, the goal G can be successivel y transformed into other trees ,
until eventually we may arrive at a tree which is a sequence of M-op trees:

G — > G’ — > G ’ ’  > ... a> m~ ; m~ ; ... in.
‘1 ‘2

Because more than one axiom may be applicable to a tree at any point , and we can test for
the termination condition of a sequence of M-ops, we have a classical search problem. That
is, starting with G, we may apply all applicable axioms to obtain a set of equivalent trees ,

• recursively apply all applicable axioms to those trees , and so on, until we have one or more
• instruction sequences for the goal tree.

Applying this algorithm literall y is undesirable, as the search space is combinatoria lly large.
Note that axioms may be applicable at more than one point in a goal tree, and more than one
axiom may be applicable at each one of these points.

-A



—-- —

56

To dnal with this problem, we wil l use some established methodology from the field of
artihci al intefli~ence. In fact , we will use not one method, but several , allowing the str ongest
applicable method to be used for each kind of information. To do this , the axioms have b~en
divided into three classes:

(1) Transformations. These are the axioms concerned with arithn~et ic and bool~ an
equivalence. Tra nsformat ions wil l be used in conjunction w ith means-ends anal ysis in
section 4•3.2.

(2) Decomposilions. These axioms are norma ll y those concerned with control constructs;
they decompose constr ucts into sequences of other constructs , allowing the search to
recursivel y proceed on subgoals. Decompositions will be used in conjunction with a
general heuris tic search described in section 4.3.3.

(3) Compensations. These are the axioms concerned with side effects. No search at all —

will be associated with these axioms; if will be possible to use them in a pre-pass on
thc ~.4OP table , as wilt be described in section 43.4.

The iso of these three kinds of axioms will be discussed in the next three sections. ‘The
reactor may w%th to refer ahr ad to Figure 11 (page 72) at this point , to get an overview of
the routines involved in this process. Briefl y, T RANSFORM app lies transformations , SEARCH
app lies ciec~ompositions, and INDEX applies compensations. t~Jote the recursive relationshi p
betwccn SEARCH and TRANSF ORM; SEARCH attempts to match a goal tree against the
available mach ine-operations and decompo sitions , and then calls TRANSFORM to try
transfor mations. The recursive call s of SEARCH and TRANSFORM are to process subgoals.
AU po~sihtc code sequences found for a given goal tree are returned by the search routines,
and the best of these ~. chosen by SELECT to be entered into the LOP table. The “best” cos t
is determine d by a user-supolied funct ion of time and space ; the time and space cost for
instructions are known from the machine descri pti on, as describe d in Chapter 2. Fo l lowing
discussion and examp les of thc search algorithms , we will see how the algorithms are
combined in the composite search for code sequences , and the figure will be explained in
more detail.

4.3.2 Transformations

The f irst and “strongest ” mcthod we will use in the search for code sequences is means-ends
analysis (Ernst & Ncwcll(1969], Ncwcomer (1975]). Briefl y, means-ends analysis is deciding
how t o get from what you have to what you want by representing the difference betw ~en
the two in some way, and picking an acti on to perform on the basis of that difference , w i t h

• the idea of reducing the difference.

- - -~~~~~~~~~~ -• - 



~ -- .•~ -- - •~ --~ -____

57

In order to apply means-ends analysis we need both a starting point and a goal. However , in

the search for code sequences , we have only a goal: the tree to be coded. Therefore , the
al gorithm involves two steps: first finding feasible instructions to work toward from the
curren t goal tree , and then app lying means-ends anal ysis to transform the goal tree to a
f orm to which each such instruction is applicable:

(1) (FINOFEASIBLES) Using some simple heuristics , we find a subset of the M-ops, ordered
by decreasing feasibilit y for use in implementing all or part of the goal tree. The
heuristics are:

(a) Pick instructions whose primary operator is the same as the primary operator of
the goal tree. The pr imary operato r of a tree is simp ly a convenient key used
for indexing trees. Operationa lly defined, it happens to be the root operator of
the second operand (the source) ri the case of “i-”, and the root operator of the
condition in the case of “ ->“ or “IF”; thus the primary operator provides an index
to the main expression computed by an instruction. This primary operator key
is used frequentl y in this work as an indexing scheme to avoid seriall y matching
trees.

(b) Include (as second choice to the above) instructions whose primary operator is
close ly related to that of the goal tree (e.g., “+“ for “ -“ ). “Closely related”
means, for our purposes , that there is a transformation axiom w hich can turn 

-

one operator into the other (i.e., the root of the axiom’s LHS is the first
opera tor , the root of the RHS is the closel y related operator).

(c) We order the selected M-ops so that those tha t most closely match the
remainder of the tree come first. Specifica ll y, in the case of a “ - , those M—ops
wit h the correct destination are put first. When the primary operator node is an
operand class , which can represent several kinds of locations or constants ,
special checks are necessary to eliminate/order the possibilities.

(2) (TRANSFORM) For each of the feasible M-ops for the goal, in the above order, we -

attemp t to transform the goal to match the U-op. This is done by matching the trees,
node by node:

(a) When a match occurs , we recurse on the descendents; if they match, we re turn
successfully.

(b) When a mismatch occurs, we select transformation axioms whose LHS and RHS
match the root operators of the (sub-)goal and (sub-)M-op, respectively, and

~ 

- -- ~~~~~~
- -~~~~~~~~~~~ -~~~~~ ~~ - ~~ • - -~~~~~~- - • -- ~ —-•-~~~~-~~~~ 



- - - - - •~~~~ -~~~--— - --- -~~~~~~~~~~~~ - -
~~~
- - —

~~~
-•-

~~
• - -

~~~~~
--- - -

~~~~
-,-

58

apply them to transform the goal tree into new goal trees (this corresponds to
• the selection of operator by dif ference in means-ends analysis). For each new

goal thus formed, we recursively attempt to transform it into the (sub-)M-op.

Note tha t the algorithm does not stop upon finding one code sequence for the given goal
tree. It tries to transform the goal for each feasible instruction; each can lead to code

• sequences. Also, it tries all axioms applicable to a given mismatch when a mismatch occurs.
All the possibilities for a node and its subnodes are then returned.19 At the top level, the
best code sequence found will be chosen according to a best-cost criterion, which is

• provided by the user as a function of time and space.

As an example of the use of transformations, consider the problem of loading the accumulator
on the PDP-8 (there is no load instruction to do this directly). This can most easily be
understood by following the steps of the actual search algorithms; a trace output from the
imp lementation is shown below. The MOP descri ption has been input at this point , and the

• top-level search routine is given the goal tree “(.- ~ACC 7.MP)”, the TCOL representation of
the problem of interest (the comments in italics have been inserted to annotate the output;
also, parts have been truncated with “..“ for readability; see Appendix 0 for the comp lete
version):20

Search: (4- 7.ACC 7.MP) *SEARCH is passed goaL tree
Attempting U-op-match *no ins tructions match goal
Attempting Decompositions *(Decomp’s are explained next seet&on)
At tempting Transformations

• Feasible (13: (4- ZACC (+ 7.ACC S1:Z)) *attempt using TAD for goal
Transform: (~- %ACC 7.MP) —> (4_ 7.ACC (+ T.ACC $1:Z))
Transform: 7.ACC —> ZACC *LHS of ~~~-“ matches

A c t ually k..pin~ an •numsrali on of all possibi . code s.qus nc.s and fo,min~ cross-produc ts is net *c .,sa ry .
Inst. ad • “ disjunc tion ” node is inse rte d into th. resu l t cod. (tt~. resul t cod, is rapr.,enl.d as a ti.. , exce p t th . onl y
la~.l node s •re e.qu.nc in~ (i), disju nction (I), cod. (EM T), and special pseudo —op. (LABEL , ALLOC )).

20 The par.nth. e~ .d LISP-bk. fe,~ ut,d fo r the tre es a explained in A ppendix A For •xamp la, (.. IACC (. ~Ai.~C
IMP)) meanS add a m.mo ry loca tio n (iMP) t o th. accumulator (~ACC) Psrsm.l .rs , ~~~ “ $1” . a,. associated with nod..
for ,.f. ,.nce, a. •tp$a,ned in th. appendix. ~tob.l p.rsmters , . t fl~”, are perimete rs w)ioie stop, is ever an enhr.
searc h, a. oppo,.d to a sint i, axiom or M-op~ they a,. used to ref. , to t .mpora,ie s n..d.d in th. code s.qu.ncs, for

exafnp le (see app.ndix) Acc..s mod.s are preceded with “2” by conven tion. Operand classes (.~~., Z in the example)
a,. net. The full t..t of all h. examples in this ch.pt.r can b. found in Appendix 0, if the reader is interested in more
details of any par tic ular sesrck



~~~~~~~~ - - -~~ 

59

Transform: ZMP *> (i. ZACC S1:Z) sbut RHS mismatches
Apply:ng SI (+ 0 51) to: 7.MP etry axiom to reduce difference
Transform: (+ 0 ZMP) 

~
> (i 7.ACC $1:Z) snow “+“ node matches

Transform: 0 —> 7.ACC sbut 0 mismatches 7.ACC
Applying Fetch Decomposition to: 0 sAcc4-.0 will fix this mismatch
Search: (.- 7.ACC 0) sand there is a CLRA M-op
Attempting U-op-match s(M-op match explained Later)
U-op Match: (; (ALLOC S52:Z) (EMIT[DCA 1 11] 3 S52:Z)) *i gnore this line for new
U-op Match: (EMIT[CLRA 3 1 1) 7 0 20)

Transform: ZMP ~~> S1:Z *Z is an OC which matches ZMp
Feasible(2]: (4- ZACC (+ 7.ACC 1)) stry other feasible M-ops_
Transform: (4- 7.ACC 7.MP) > (#- ZACC (+ ~ACC 1))

*bat no other solutions found
Best Sequence is:

(Al loc SS1:ZACC]
CLRA
TA D 7.MP

The first feasible instruction found is the two ’s comp lemen t add (TAD) instruction, whose tree
representation is “(. 7.ACC (+ 7.ACC $1:Z))”; no other instruction more closely matches the

• primary operator and also has the appropriate destination (ZACC). We therefore attempt to
transf orm

(.. %ACC %tlP) —, (~~- %ACC (+ %ACC S1 :Z)) .

The %ACC part matches, but the RHSs mismatch. The program finds the transformation, $1 ~~>
(+ 0 SI), whose root operators match the mismatching subirees, and it is applied to create
t he subproblem of transforming

(+ B %Mp) -> (+ %ACC 5hZ) .

The “+“s now match, but the 0 and ZACC mismatch. Fekh decompostit ion is applied to make
these match, by storing 0 into ZACC. Two instructions are found to do this (more on this
later), the better one being CLRA (clear accumulator). The ?.MP matches the operand class 2,
because Z is defined to allow either a direct or indirect memory reference on the PDP-8. We
have then completed the match. The search proceeds to try other feasible instructions, but
no further code sequences are found. The best code sequence to load 7.ACC is therefore to
clear 7.ACC and add 7.MP.

As a second example of transformations, we will consider subtraction on the POP-S. This is



— -

60

probably one of the most difficult cases the code generator must handle: not only is there no
subtract instruction on the PDP-8, there is not even a negate instruction.2’

This examp le will Illustrate the learning behavior exhibited by the algorithm. When a code
sequence is found for a given goal tree, the goal-tree/code-sequence pair is stored away for
later use. This is done in the implementation by storing the goal tree as if it were an M-op:
if the goal tree is encountered again later , this Pseudo-M-op will be found, and the (multiple-
instruction) code sequence previously found will be generated. Pseudo-M-ops will be
d scussed further in section 4.3.4. In this particular examp le, code sequences have
previously been derived for loading the accumulator (the previous examp le), and for negating
the accumulator (see appendix), as noted in the commentary below. In the use of the search
al gorithm, as will be described in section 4.4.1, the code generation cases are attempted in
order from simpler to more complex cases , to maximize the re-use of earlier results. Of
course, at the expense of greater search depth, this is not necessary.

Search: (#- %ACC (- ?.MP 7.ACC)) *goal is Acc’-Mp-Acc
Attempting M-op-match
Attempting Decompositions
Attempting Transformations
Feasible (1]: (s- ZACC (- ZACC 1))
*the aboue M-op (DEC A) is chosen because its primary operator C-)
*matc hes that of the goal, but it is useless for subtraction...

• Transform: (~
- 7.ACC (- 7-UP 7.ACC)) ~ > (i- 7.ACC (- ZACC 1))

Transf orm: C- 7.MP ZACC) ~ > C- %ACC 1)

(fail on C’- ZACC (- ZUP ZACC)) 3
Feasible [3]: (‘- ZACC (+ 7.ACC S1:Z)) sf~nalLy TAD is chosen as a possibilit y
Transform: (i- 7.ACC C- 1.MP 7-ACC)) —> (#- ZACC (+ ZACC 31:2))
Transform: 7.ACC —> ZACC *destinations match, but
Transform: C- ZMP 7.ACC) —> (+ %ACC 31:2) Ssource expressions mismatch
eth. following axioni is applied to attempt to correct the +/- mismatch
Applying (- Si 82) :: (+ Si (- $2)) to: (- ZMP ZACC)
Transform: ( i  ZMP C- 7.ACC)) s> (

~ ZACC S1:Z)Transform: 7.MP -, 7.ACC
Applying Fetch Decomposition to: 7.MP using: $$4:ZACC
Search: (,- $S4:7.ACC ZMP)

• At tempting U-op-match

21 The fact that f here is only one •ccu mulat o , also co mplica tes matters, but ihia is a re$is ter allocation problem and
do. s no t co nc .rn the TRANSFORM algorithm se. •.cHen 3.2 3).



‘F-

- 61

U-op Match: (; (ALLOC 5S5:7.ACC) (EMIT(CLRA 3 113 7 0 20) (EMIT(TAO 1 1 13 1 ZMP)
Transform: C— ZACC) —> S1:Z
Apply ing Fetch Decomposition to: C- 7.AC’C) using: SS6:7.UP
Search: (~

- S36:7.MP C- 7.4CC)) sSS6:ZMP was allocated for $l:Z here
Attempting U-op-match

*itø so ln is found using this approach,
[fail on (- 7.ACC)] ~50 try another axiom, commutatiuity (J:i~k
Applying (i. $1 $2) :: (+ 32 81) to: (+ 7.MP C- 7.4CC))
Transform: (s (- 7.ACC) ~MP) 

~
> Cs ZACC $1:Z)

Transform: C- ZACC) —> 7.4CC
Applying Fetch Decomposition to: C- 7.4CC) using: 8$8:ZACC
Search: (.- 388:7.4CC C- 7.4CC)) Ct his quickl y leads to a soln because
Attempting U-op-match sM-op from earlier search found(~*)
U-op Match: (; (ALLOC $S9:7.ACC) (EMJT[COMA 3 11] 7 0 40) (EMIT(INCA 3 11] ..))

Transform: 7.MP —> 8hZ sand RHSs match
Feasible (4): (~- 7.ACC (+ 74CC 1)) sother M-ops are tried...
Transform: (i- 7.ACC C- ZUP 7.4CC)) —> (4- 7.ACC (+ 7.4CC 1))

sbut ito ot her solutions found
Best Sequence is:

(Ab c 74CC]
COMA
INCA
TA O ZMP

Note the lines marked by (s*), where it was necessary to use commutativity and the
previously derived code sequence for negating the accumulator (COMA; INCA) to find a code
sequence for the goat.

The search algori thm was also tried on other machines. An interesting example is computing
an AND of two locations on the PDP-11; we will use this as the third and final example of
transformations. There is no AND instruction, so it is necessary to apply axioms relating the
AND, OR, and NOT operations:

Search: C.- SS1:7.M (AND 5S2:7.M $$3:ZU)) sgoal is SS1:7.M~ $S2:7.M AND $S3:7.M
Attempting N-op-match sthe “$$n : in a goaL tree are distinguished
Attemp ting Decompositions sfrorri “Sn”: in azioms/M-ops; see App. A
Attemp ting Transformation s BIC instruction is tried for the goaLS
Feasible(1]: (~- SI:DST (AND S1:DST (NOT 82:SRC)))
Transform: (*- SS 1:7.M (AND 582:7.M 533:l.M)) —> (.- $1:DST (AND $1:DST (NOT $2:SRC)))
Transform: SSI:7.M —> $1:DST sS$1:7.M matches Sl:DST, but
Transform: (AND $82:7.M 833:7.M) —> (AND 81:051 (NOT $2:SRC)) 

~~ •~~~~~ - - ~~~ - -~~~ 
4



62

Transform: $82:7.M 
~~

> 51:051 *$$2:7.M mismatches $1:DST, because (.i.~*)Apply ing Fetch Decomposit ion to: S$2:7.M using: SSI:7.M
Search: Cs- S$1:7.M $32:7.M) *both occurences of S1:DST must be same
Attempting U-op-match *so a move is generated (using FetchO)
N-op Match: (EMIT (MOV 2 1 1) 1 $32:ZM $S1:7.M)

Transfor m: $$3:7.M —> (NOT 82:SRC) snow onLy BIC node mismatching is NOT
Applying $1 :: (NOT (NOT Si)) to: $S3:7M *axiorn invoked to resolve this
Transform: (NOT (NOT $$3:2M)) —> (NOT $2:SRC)
Transform: (NOT 8S3:TM) ~ > S2:SRC Smus t apply Fetch 0, which causes
Applying Fetch Decomposition to: (NOT S$3:7.M) using: 3S4:7.R

Search: (~ $$4:7.R (NOT 8$3:7.M)) *reg (S$4:7.R) to be alloc ’d for 52:SRC
Attemp ting N-op-match
Attemp ting Decompositions
Attemptin g Transformations
Feasible(j): (s- S1:OST (NOT S1:OST)) Stry COMplement for the NOT
Transform: (4- S$4:ZR (NOT $S3:7.M)) —> (4- $ 1:051 (NOT Si:OST))
Transform: U4:ZR ~ > 81 :DST *dest m a t  ion matches , but again,
Transform : (NOT 8S3:7.M) —> (NOT S1:OST)
Transform: SS3:ZM ~ > $1 :DST *both occurertces of $I:DST must be same
Apply ing Fetch Decomposition to: S$3:7.M using: 884:7.R
Search: (s- 884:7.R S83:7.N) iso another move is generated
Attempting N-op-match it his completes code seq using BIC
N-op Match: (EMIT(MOV 2 11] 1 $33:7.M $84:7.R)

Feasible (2]: (~- $1:DST S2:SRC)

Feasible [2]: (i- 31:091 (NOT Sl:DST)) *this M-op doesn’t lead to code seq,
Transform: (~- S$~~ZM (ANO 382:7.M $33:7.M)) ‘-> (s- S1:DST (NOT 81:DST))
Transform: SS I:7.M —> 81:051 *although it could, ôy using
Transform: (AND S32:7.M S$3 7.M) —

~ (NOT 81:051) s0eMorgart ’s Law:
Applying (AND $1 82) :: (NOT (OR (NOT $1) (NOT $2))) to: (AND $82:7.M 3S3:ZM)... sthe search doesn’t go deep enough to find this more roundabout sequence

Best Sequence is:
[Alloc $31 :7.M)
NOV SS2:7,M S$1:7.M
(Attoc $$4:7.R)
NOV $$3:7.M $34:ZR
CON $$4:ZR
BIC SS4:7.R $81:ZM

The best code sequence therefore requires complementing one of the arguments of the AND,

- - -

~

•—



63

then using the SIC instruction to AND the comp lement of the (now complemented) argument
wi th the other argument. Also note the line marked with (ss), which illustrates how
parameters constrain the arguments of instructions. in the BIC instruction, for examp le, one
of the source arguments, S1:DST, must be the same as the destinat ion:

(.- S1:OST (ANO S1:DST (NOT 82:SRC )))

Since the locations specified by the goal tree , SS1:7.M and $82:7.M, ar e not the same, Fetch
Decomposition is applied to move S82:ZM to $81:7.N. -

4.3.3 Decompositions

The second method app lied in the search for op timal code sequences is decomposition by
heurislic search. In this case , we have only a goal tree (as Opposed to a goal tree plus
feasible instructions in the last section): -

(1) If the goal tree matches an instruction (or instructions), then the instruction(s) are
returned as the code sequence(s) for the goal (“U-op Match”). Otherwise:

(2) For each decomposition axiom whose Lt-4S matches the goal tree , we apply the axiom to
create a new goal tree.

(3) For each new goal tree , we recursivel y search for code sequences. All resulting code
sequences are returned.

As an example illustrating the use of decompositions, we will use the PDP-8 again, generating
code f or “If Acc~ O then Accs-1”:

Search: (IF (EQI. 1.4CC 0) (s- 7.4CC 1))
Attemp ting N-op-match
Attempting Decompositions sfirst SEARCH tries appl y ing defrt of IF
A ppl ying (IF Si $2) :: (; (-> (NOT Si) 33:7.MP) $2 (LABEL 53:7.MP))
snote (-> A B) means “if A then goto B”. LABEL means emit LabeL
Simplifying (NOT (EQL 7.4CC 0)) to (NEQ 7.ACC 0)
Search: (; (-> CNEQ 7.4CC 0) $S 1:7.MP) (i- 7.ACC 1) (LABEL $S1:7.MP)) -

Attemp ting N-op-match
Attempting Decompositions *SEARCH decomp’: “;“ node from IF defn
Appl ying Sequence-Decomposition sand treats each subnode as a subgoal
Search: C-> (NEQ 7.ACC 0) SSI:7.MP) *1st subgoaL (from IF-deft)
Attempting U-op-match

—

~ 

- -~~- . -~ 
-.. - -.. 



-

~~~~~~~~~~~~~~~

-

~~~~

- . - -

~~~~~~~~~~

. - - 

~~~~~~~~~~~~~~

-

~~~

- 

~~~

-

64

At tempting Decompositions
• Applying Skip-Decomposition *decomp into skip and goto

Search: (GOTO SS1:7.MP) *the goto
Attempting U-op-match
Attempting Decompositions
Applying (GOTO $1) ;: C’- ZPC $1)
Search: (s- 7.PC SS1:7.MP)
Attempting M-op-match
N-op Match: CENIT(JMP 2 1 1) 5 S$1:7.MP)

Attempting Transformations
Simplify ing (NOT CNEQ 7.ACC 0)) to (EQL 7.ACC 0)
Search: C-> CEQL 7.4CC 0) (+ 7.PC 1)) sthe skip
Attempting U-op-match
N-op Match: (EMIT[SKPE 3 113  7 1 5)

Breadth Limit Reached(6)
Search: (s- ZACC 1) *2nd subgoaL (of IF-dc fit)
Attempting N-op-match
U-op Match: (EMIT(SET1A.3 11]  7 0 30)
Search: (LABEL $S1:7.MP) slast subgoal (of IF-deft)

snow have “SKPE; JMP SSI; SETIA, 551:” sequence
*SEARCH tries app Ly ing Ski p-decoinp to original goal instead (of IF-deft)
Applying Skip-Decomposition
Search: (s- V.ACC 1) sfirst try THEN-part
Attempting U-op-match
U—op Match: (EMIT(SETIA 3 1 1] 7 0 30) *0K, it takes I in.str
Simplif ying (NOT (EQL 7.4CC 0)) to (NEQ 7.ACC 0)
Search: C-> (NEQ 7.ACC 0) (s 7.PC 1)) *now try cond skip of I
Attempting U-op-match
U-op Match: (EMIT[SKPNE 3 1 1] 7 1 2) ~success. now have 2 s.qs.

Attempt ing Transformations ske,ps trying, but ito more soLutions..

Nodes Examined: 15
Est. Seconds: .620~ -1
Result Sequence(s):

SKPE
JMP S$ 1:7.MP
SETIA

$81: 
or 

_ _ _ _ _ _ _ _ _ _  _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ---———



65 

-- - -•

~~~~~~ 

- - - -- -•

~~~~~ 

- - 

~~1

SKPNE
SET1A

>>>>>>>>>>>>>>>>>,>>>>>>

Bes t Sequence is:
SKPNE
SET 1A

Both the definition of IF and skip-decomposition get applied in this derivation, and two
alternative code sequences are found depending on which is tried. The better sequence is to
do a SKPNE (skip if accumulator non-zero) followed by SET1A (set accumulator to 1).

Note tha t in the search for code sequences , dec ompositions are applied to the goal first.
• This normally decomposes it into a sequence of more primitive control constructs , such as

• conditional and unconditional jumps. These constructs then either match M-ops directly, as
they did above, or the TRANFORM al gorithm may ta ke ove r. On a machine with “condi tion
codes” such as the Motorola 6800 or the POP-I 1, a conditional jump may require several
transformati ons. The TRANSFORM algorithm must handle relational operators on these
machines by using Fetch Decomposition on boolean results in condition codes. For example,
on the POP-I 1, cons ider the case of an inequality test in a flow context (conditional jump):

Search: C-> (NEQ SSi:7.M 532:7.M) $83) *j ump to $53 if ZM Locations riot equal
Atte mp t ing N-op-match
Attempting Decompositions

sdecorn positions don’t help
Attempting Transformations
Feasibte (1]: (s- S1:DST (NOT S1:DST))
Feasible(2]: C-> (NOT 7.Z) S1:AOR) sattempt to transform into BNE instr
Transform: (-> (NEQ S$1:7.M $S2:7.M) 3S3) —, C-> (NOT 7.Z) S1:AOR)
Transform: (NEQ SS 1:7.M 8S2:1.M) -> (NOT ZZ) *mast apply deft of NEQ using EQL
Applying (NEQ $1 $2) ;: (NOT (EQL $1 $2)) to: (NEQ $Si:7.M 832:7.M)
Transform: (NOT (EQL SS 1:1.M 8$2:ZM)) ~ > (NOT 1.Z)
Transform: (EQL SS1:7.M SS2:7.M) —> 7.Z snow is the key Fetch 0:
Applying Fetch Decomposition to: (EQL $S I:ZM $32:7.M) using: SS3:ZZ
Search: (s- 8S3:7.Z (EQL SS 1:ZM $S2:7.U)) -

Attempting N-op-match sand we find a match we’re don.
U-op Match: (EMIT(CUP 2 11] 2 532:7.M $S1:7.M)

Transf orm: 883 —> $1:ADR *user ’s Label is $$3
Feasible(3]: (-> (NOT 2N) $1 :ADR) Scontinue Looking for other seqs..

no more found
Best Sequence is:

- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



—~~ 

66

CUP S82:ZM 881 :ZM
SNE $83

After considering several examp les of transformations and decompositions, the essence of
both the SEARCH and TRANSFORM algorithms should now be clearer. It may be useful to
contrast them at this point. Note, f or examp le, that TRANSFORM guides the application of
axioms by using a feasible instruction selected for the goal, while SEARCH [almost] blindly
app lies axioms. TRANSFORM is thus a more powerful method; however, the means-ends
analysis does not in general succeed with control constructs , and so we fall back on SEARCH
in these cases (in actuality, both SEARCH and TRANSFORM are tried at the statement level; if
the M-ops are high- evel enough or goat tree low-level enough for TRANSFORM to succeed,
the best code sequence is of course chosen). The relatively small search space makes this
feasible: for examp le, there were only two ways to implement the IF in the first examp le in
this sec tion.

The reader may have noted that decomposition axioms are only applied at the top (root)
node of the goal tree; SEARCH does not apply axioms elsewhere in the tree (unless an axiom
applied at the top requires the subnode as a subgoal). Axioms need only be applied at the
f- op node because decompositions are being used to decompose control constructs into
sequences of more primitive constructs. It would be possible to fall back on apply ing ax ioms

blindly to all points of the goal tree rather than the top node, but it was not necessary for
the actual code generation cases encountered, so this was not attempted. This strategy
would probably be computationally infeasible excep t for limited cases , anyway.

4.3.4 Compensations

The third procedure used in the derivation of code generators is a pre-pass on the MOP,
performed by the INDEX algorithm. For each U-op, the following steps are performed:

( 1) To allow efficient selection of M-ops (either to find feasible instructions in TRANSFORM
or to check for U-op match in SEARCH), the U-Ops are indexed according to their
primary operators. This is simply a heuristic to speed the lookup of M-ops later.

(2) If the root operator of an U-op is “;“, meaning that It involves several actions 22,

22 W. a,. using ‘;“ in fi s,ns. in ISP for purpos.s of 1k. M-op Ire.., not .. . s.qu.ncin~ op.r.Iio* Thai is, A; B;
C means A, 8, •nd C msy b. performed in any ord.r and hay, no int*ractioft This ind.p.nd.ncs of lb. M-op
inpui/oui pui u.. ,f ions ,n.hi , pe,s~~I. this .Iprith m fo r d..Iin~ with muttipi. sctj ons

~



- - - • -~~~~~ ~~~~~~~~~~~~~ -~~~~~~~~~~~
_- -~~~~~~

67

specia l checks are made to determine if it might be usable for any of its several
effec ts separately. We index each sub-action of the U-op as follows:

(a) If any co-action (other sub-action besides the current one) has a side-effect on
a Reserved-t ype storage base, then this sub-action is not indexed.

(b) Otherwise , we create a new Pseudo-M-op whose LHS is the sub-action and
whose RHS is the M-op RI-iS exçgp~ wi th the addition of a co-action list , which,
when the Pseudo-U-op is used, causes the insertion of the appropriate
compensations for the side-effects. For example, if a side e f f e c t is on a

Genera l-purpose-type storage base, a s torage-allocation pseudo-operation,
ALLOC, would be inserted for the SB. If a side-effect is an increment of the PC,
a No-op instruction is inserted as the compensation.

These Pseudo-U-ops are treated as M-ops during the search phase (SEARCH, TRANSFORM),
when looking for an U-op matching a given goal tree. This lookup is somewhat complex.
First , a set of possible M-ops is selected for a goal tree using the primary-operator hash
scheme above. Then, to determine it each of these M-ops (or Pseudo-M~ops) matches the
given tree, four cases must be considered:

(1) Both U-op and goal are single actions: in this case , we simply test whether the trees
match.

(2) N—op is a multi ple action , goal is a single action: match goal against sub—action, insert
compensations for other sub-actions.

(3) U-op is a single action, goal is a multip le action: no match. (Goal will be decomposed
into its sub-actions by the sequence-decomposition rule, at which point the U-op may
match one of the sub-actions.)

(4) Both M-op and goal are multiple actions: test that every sub-action of the goal
matches a sub-ac tion of the M-op, then insert compensations for unused U-op sub-
actions.

Dealing with side effects is thus done in two parts: indexing the M-ops under the sub-actions
they perform, and then applying the compensation axioms to construct the code when the N-
ops are re trieved during the search -for code sequences. This two part algorithm avoids
dealing with side effects as part of the search itself.

--- -_

~

-

~

—- -

~

-- ----~~~ - -~~~~ - -~~~~  --- - -~~ - - - - - - - -



68

Incident ally, the four steps above could be performed at code generation time also. A slight
variation of step (4) is being considered in the PQCC code generator to improve code quality:

• At a “; node, as many as possible of the sub-actions are subsumed at each step. The source
sequence “...I.-1+1; If 1—0 then...” might be subsumed by an “Increment-and-Skip-if-Zero ”
instruction. (These optimizations could alternatively be detected in peephole optimization.)

As an examp le, consider the deposit-and-clear-accumulator instruction on the PDP-8, OCA. It
can be used for either of its two sub-actions ( (1) depositing the accumulator in a memory
location, and (2) clearing the accumulator ) by inserting an ALLOC for the other location• effected:

Search: C.- ?.ACC 0)
Attempting N-op-match

Result Sequence(s):

(Alloc SS1:7.MP]
OCA S$1:7,MP 

or 
CLRA

Best Sequence is:
CLRA

Search: (4- 7.MP ZACC)

Best Sequence is:
[Alloc ZACCJ
DCA ~MP

In the first case, we use DCA to clear 7.ACC by allocating a memory location (8$l:7.MP) into
which ~ACC can be stored (the search also finds the CIRA instruction which clears ZACC
directly at lower cost in this case). In the second case, we use DCA to store 7.ACC in a
memory location; but the compensation axioms have inserted the warning that ~ACC is
destroyed in this process, as shown by the (Attoc ZACC] sn the output code.

A more common examp le of multiple-action instructions are the arithmetic operations on
machines with condition codes. These instructions can be used for the primary arithmetic

_ _ _ _  • - -



- •~ --~ — -~ - - - - •  —- -~
-- -~~~~~ ~~~~~~ - 

69

operation performed, ignoring the effects on the condition codes, which are Temporary- type
storage bases. All of the arithmeti c instructions on the POP-i 1 are of this form.

Side effects on the program counter are also handled by compensations. Increment-and-
ski p-if-zero CISZ) can be used in conjunction with a no-op to get just the effect of the
incremen t :

Search: (.-~~MP (+ 7.NP 1))

Best Sequence is:
ISZ ZMP
r~oi’

4.3.5 Limiting the Search -

There are parameters to control the extent of the search. Without these, the search could
go on forever. The cutoff criteria are:

(1) A maximum depth of search. The depth of search is increased by one for each
recursive application of a decomposition (in SEARCH) or transformation (in
TRANSFORM).

(2) A minimum and maximum breadth. These are used in conjunction with FINOFEASIBLES,
and are in units of search cost (the number of nodes in the search tree). We continue
to try feasible instructions until the minimum numbe r of nodes have been sea rched and
a solution has been found, or until the maximum number of nodes have been searched
and no solution has been found.23

A nice property of the cutoff parameters is that we can trade off between the speed with
which a solution is found and the quality of the resulting so’ution (in terms of optimatity). We
could try searching for a long time if we are interested in optimal code. Also, we can
automatically increase the parameters if no solution at all is found.

23 For bell ., p.rform.nc s , lb.. . limi ts irs d.crsa..d with s..rch d.pth, but this is no t imporisnt t o sn und.r.t.ndin~
of their purpos e



70
/

Another nice propert y of the search is that it is possible to vary the code cost function
supplied to the search routines to generate code optimized for space , time, or any ratio
thereof.

The axioms could also be changed, t o modify the assumptions the code generator makes; for
example , whether floating point multiplies can be computed in any order.

4.3.6 The Search Space

The reader may be curious about the quantitative proper ties of the search space defined for
this problem. Although the pri m ary contribution in this chapter is providing a reasonably
general solution to the machine-independent code generation problem at ~~~, rather than in
achieving some new level of performance , some rough data may be useful to give some - -

insight into the nature of the problem and its solution.

The goal tree (the desired actio n) is the starting point in the search space. Each application
of an axiom leads to a new node in the space (a new goal); this is true for both SEARCH and
TRANSF ORM. For the axiom set used, the branc hing fac tor, i.e., the number of axioms (Or
feasible instructions) atternp led at each point , is typically about 2.5; the depth O the search
tree varies widely acc ording to the goal tree. For a typical machine, in fact , the vast
majority of the templates For which code sequences are required are satisfied immediately by
rnac%’~ne instructions (depth— I). But for the “interesting” problemS that make the search
necessary, the dcpth t yp icall y ranges 3 to 7 to find the best code sequence, leading to a
typical search space size of a few dozen nodes.

The reader familiar with sea rch problems such a computer chess wilt recognize this as a
relativel y small search space. This is in fact a key factor in making the search practical.
A lthot’gli the use of multi ple methods reduced the size of the search space, the problem
doma~n itsell , when suitnbi y reprcse ti tcd , is not unmanagably large. The choice of
representat ion is important in several dimensions of this work; for examp le, the
representation of instructions and addressing, the use of trees as a common notation f or
matching, and the use of axioms to represent the legal moves in the searc h space. These
representations lead to relativel y strai ghtforward algorithms.

4.3.7 Comp eteness and Optimality

Note that the search algorithm presente d in the previous sections does not guarantee optimal
code, or any code at all for that matter , because the search may not be deep enough to
discover the equivalence. Furthermore , even if we searched to an arbitrary depth, a code



71

sequence might st ill not be found, becau se a necessary axiom to determine the code
sequenc e’s equivalence to the goal tree may not be in the axiom repertoire. This is not an
err or in the construction of the axioms. Unsolvablility of program equivalence is based on
the fac t that no set of axioms can express all the equivalences that are true over program
trees.

This indicates that no one will ever be able to construct a program which satisf ies the
ultimate goal of this work: to take an arbitrary machine descri ption and generate code.
Fortunatel y, as in the field of proving programs correct , such theoretical results do not have
grea t practical impact. For “real” machines (and “real ” programs) a rela tively small set of
axioms seems to be adequate.

4.4. Code Generator Generation

4.4.1 Case Selection

We have now discussed the three main algorithms used in finding code sequences. The
reader may want to refer to them in Figure 11 at this point. INDEX is applied as a pre-pass.
SEARCH is the central search routine: it tests for termination (i.e. a U-op match), tries
app l y ing decompositions, and calls TRANSFORM to try transformations. We will now discuss
how these routines are used with the final routine in the figure, SELECT, in the generation of
code generators.

Considered as a whole, SEARCH, TRANSFORM, and INDEX constitute a machine-independent
code generator. That is, SEARCH generates code for TCOL trees , for any given machine. In
theory, this code generator could be used directly in a compiler. In practice , however, th is

would probably be too slow for general use: although considerable speedup of this specific
implementation could be achieved since little attention was paid to the efficiency of this
protot ype, it is unlikely that we could do much better than 1000 instructions per second.
While generating code machine-independently is useful in itself , it is of greater practical
impact if comparable with conventional compilers in speed as well.

The alternative tha t comes to mind is to ~ j !or the code generator to the machine, so that:

(1) The algorithm is much simpler , not requiring all the axioms about program equivalence.

(2) The algorithm can go directly to the best solution, alternatives having already been
explored and rejected implicitly.



- 

- 1

72

Machine-op to TCOL-op to
TCOL mapping Machine mapping

f
MOP

] 

. 

~~LOP
J

~~~~~ ~-->SELECT 
‘T’l ~ih1~ 4c-i :

I: : 

=>INDEX ,S~ARC~J 
- -‘

‘TRANSFO~~~

Figure 11: The flow of control (solid lines) and data (dashed lines) in the code generator generator.All routines use the MOP table; INDEX modifies it. The templales in the LOP table are derived by
- SELECT, which selects the special-case tree patterns, and SEARCH, which determines the codesequences for these tree patterns.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



73

This desire to separate comp ile-time and comp iler-comp ile-time is the reason for the
existence of the LOP and the LOP-driven code generation scheme described in the previous
chapter. The only axiom incorporated in the basic code generation algorithm discussed there
is Fetch/Store Decomposition, which is performed by subtargetting to allow composition of

• the LOP patterns. Of course , the code generator g ~erato ,~ which construc ts the LOP, has

I . made use of many axioms.

There is a continuum of alternatives in the trade-off between the number of axioms
incorporated in the code generator as opposed to the code generator generator. This ranges
from the minimum of Fetch/ Store Decomposition, without which the LOP patterns could not be
composed, to the extreme of incorporating all axioms at comp ile time as mentioned earlier. It
is not the intent of this work to imply that this trade-off be made at either extreme. A
compromise between the two is probabl y the best solution. For examp le, there is no need to
perf orm searches such as the transformation-axiom examples (in section 4.3.2) ir the code
generat or. On the other hand, one mi ght include Skip-decomposition at compile-time , so that
IF B THEN S could be implemented optimally when S is one instruction long and the mach ine
has a condi tional skip instruction. Otherwise , it would be necessary to include all cases of
one-instruc tion THEN-parts in the LOP.

In this section we will discuss an algorithm to automaticall y generate a LOP for the minimal
code generat or described in the previous chapter. The same LOP could also be used with a
code generator with more axioms incorporated: this algorithm is independent of the choice
made in the above trade-off. It is fortunate and perhaps not too surprising that this is so,
because otherwise detecting the various special case combinations of language operators
would have made compilers unreasonably complex.

The basic purpose of this (SELECT) algorithm is to insure there is a template in the LOP for
every basic arithmetic computat ions conditional, and control construct. The algorithm derives
the entries in the LOP in five steps:

(1) Include all the M-ops in the LOP. Figurat ively, set LOPi-MOP. Thus, if a program tree
segment matches an M-op directly, the U-op will be selected to code the tree.

(2) To these, add the Pseudo-M-ops defined by INDEX, which allow the use of the M-ops
in additional cases (namely, for their partial effects ).

(3) Insure there is a template for A4-B, for every pair of distinct access modes A and B
such that A and B are “simple” references t o locations of the same size. A “simple”
reference is one in which the index into the storage base is a constant or open
constant (as opposed to, say, indirect or relative addressing). If there is already such
an entry from steps (1) and (2), no ac t ion is taken. Otherwise, SEARCH is called to find

L —- -- —. --~~~~~~ . - -~~~~~~~~~~~~~ .~~~~~~~~~~~~~ -—~~~- -~~-~~~~~~~~~~~--. , -



- - .  
~~

-

74 
- 

.

the best code sequence for A’-B, and if a solution is found (there may be no way to do
this move), a template is created whose pattern (LHS) is the A4-B tree and whose
result sequence (RHS) is the code sequence. 

-

(4) Insure there are temp lates in the LOP for every operator in value and flow contexts.
This is done similarl y to the previous step, calling SEARCH for every tree of the form
“Ai-B op C”, “A’-op B”, and “A op B -> C”. A, B, and C may be any access modes, since
the code generator wiI~ make any required moves to perform operation “op” on data in
other locations. For examp le, if logical “AND” didn’t exist as the primary operator of
an U-op directly on the machine, a code sequence for it would be derived (by catting
SEARCH) and the resulting template (LHS is the AND tree , RHS is the derived code
sequence) added to the LOP. All derived templates are also indexed as Pseudo-M-ops
as discussed in secti on 4.3.2, for use in further searches.

(5) Finally, add to the LOP the productions for control operators. These correspond to the
ax oms in Figure 10 which define WHILE-DO, IF-THEN-ELSE, etc., in terms of conditional
and Unconditional jumps. These templates are machine-independent, because :1
conditional jumps have already been handled in step (4).

The reader may wish to refer to Figure 11 one more time to see the relationship be tween
this top-level algorithm (SELECT) and the algorithms previously discussed (INDEX, SEARCH).
The LOP is figuratively divided into two parts to show that SELECT chooses the LHSs of
productions, and SEARCH chooses the RHSs. INDEX is shown augmenting the MOP table with
the derived Pseudo-M-ops. In Appendix F, an example trace of the SELECT algorithm is
given.

This al gorithm insures that the minimal code generator using the LOP will be able to generate
code for all TCOL operators , and that if there exists a one-instruction code sequence for a
subtree , it will find it. It does 

~Qt guarantee that if the search algorithm discussed in the
previous section generates optimal code that the code generator using the LOP generated
therefrom wilt do so, because the necessary special case combination of TCOL operators may
riot have been included in the LOP. Interestingly, however, this rarely happens with the
simple SELECT algorithm suggested: special cases more complex than single TCOL operators
(in all contexts) are not normally needed, except for those cases which match M-ops directly
(which SELECT handles in step (4)).

It is intuitively unsatisfying, however, that this approximation does well for existing machines.
We would like a scheme to automaticall y determine what special cases should go into the LOP
to insure optimal code. Another solution would be to tailor the code generator proposed in
the last section to make if efficient for each specific machine, for example by including only



- -~~~~~~~. - . ~~~~~~~ - -----~~~ - .

the necessary axioms. The tailored code gen:rator would then go into the compi ler di rectly.
Further exp loration of these alternatives and other possible solutions has been left to future
research.

4.4.2 Inter-State Optimization

Even if the axioms were complete, and we searched to arbitrary depth, the se arch algori thm
does not guarantee optimal code. The algorithm does not simulate the processor state to
keep track of the current contents of the various locations. Common sub-expressions are
not recognized. If a value is required in a register the code generator wilt re-load it even if
it already happened to be there. This isn’t a problem with inadequate special case analysis
due to an inadequate set of axioms; the code preceding the re-load may have been generated
fr om an arbitrarily distant piece of the program tree.

This kind of optimization is probably hopeless to deal with in any local tree context analysis.
However, this immediatel y suggests the solution to this problem: it is most efficiently handled
outside of the code generator (see WuIf et al[1975)):

(1) before code generation, common sub-expression analysis has been performe d, and

(2) ~~~~ code generation, peephole optimizations collapse redundant operations.

A second problem also arises from the search algori thm’s i gnorance of the machine state: we
must check that it has not inconsistentl y used storage. Namely, in app lying Fetch/ Store
Decomposition, an unsatisfiable set of allocation commands may be emitted: for example,
there may not be enough locations of the required storage base type. This problem can be
corrected quite simply by doing a post-test on the solutions generated by the search
al gorithm. Specifically, we could put the best solution which does riot violate allocation
constraints in the LOP (this is the generate-and-test paradigm from artificial inteltigence).

On the other hand, this problem suggests some alternative approaches:

(1) Do a simulation of the processor state in parallel with the search as described. This is
complicated by the fact that we are finding multiple solutions, typically with different
effec ts on the processor stale , that locations may overlap in strange ways on the
machine, and that we cannot guarantee that the symbolic simplifications will always
detect equivalent expressions when they occur.

(2) It is possible to use an en t ire ly differen t representation than trees in the search for

- -~~~ -- ~- - - -. - - - -  -.-.-~~



- 
________

76

co de sequences. In particular , an interesting a lternative would be letting the nodes in
the search space be states of the machine , described as a set of simultaneous
equations over the processor state location values. M-ops transform one node in this
s.pace into another. In the starting st a te , all locations S have their initial values S~, and
the goal state is to achieve a given se t of equations , e.g., 7ACC~,7.MP*+~ACC*. This
appr oach has some dis .aclvantages and advantages with respect to the approach taken
here; exp loring this alternative to see if the Al methods could still be used practically
in this less structured representation would be a good topic foi further research.

Further ideas in these areas may come from PQCC work on the last comp iler phase (peephole
optimization) or earlier comp iler phases (common sub-expression analysis)

4.4.3 Using the LOP

Given that we have constructed the LOP, how do we use it in a compiler? This is the problem
of the com piler construction phase of Figure 1.

The LOP table can be used in a variety of ways. Although in the previous discussions we’ve
assumed the code generator is table-driven , it would also be possible to construct the actual
source code for the code generator from the LOP table. However, entirely adequate speed
and flexibility was obtained w i t h  the table-driven code generator implemented in Chapter 3;
so the approach suggested here is a simple program, BUILD, which trans la te~ the LOP into
tables that can be comp iled by BLISS and loaded with the comp iler source code. Facilities in
the BLISS language (Wul t et at [1970)) greatly simplif y the construction of the tables of tree
patterns and result sequences at compile time 24, but tables could of course be generated for
any language.

Because the LOP is human readable/writ able (before translation into program tables), it is
possible to manually modif y or augment the table (the syntax of the LOP is similar to that of
the MOP, see appendix E). Programs can also be written to read, modify, and rewrite the LOP
table; this might he desirable to extract special information , or to optimize it in some way.
However , if the LOP is manually modified, it would be desirable to verify that the
modifications maintain the correc tness of the table , by proving that the LHS and RHS of the
mcdii icd or added pr.oductions are semanticall y equivalent under the TCOL equivalence
axioms. This is beyond the scope of this thesis , but previous work in this area has been
successful on this kind of task (Sanietf 1975]).

p.rtic ula rl y hi pr..Ioa dcd dii. ( p 1s 1 )  and so urc.-f ii. incl usi on ( i-equir.’) con slr ucis

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --,,~~~- -



~~~~- . -~~~~~~~~~~~~~~~~~~~~~~~~ - - - . -

77

The LOP is not just used in the code generation phase of the compiler. The template
productions, for examp le, are required in reg ister alloca tion and other phases of an
optimizing comp i ler , as described in section 3.7. From a human-engineer ing point of view, it
would be desirable to centralize the machine-dependent data base of tables used by the
comp iler, in human-readable tables. The LOP could be used for this function, although some
extensions and modifica tions to the format as suggested in this thesis would probably be
desirable.

It should be noted that the compiler we have been discussing is a cross-compiler , i.e., the
machine-dependent tables are to be used by source code compiled to run on the POP-lO.
However, a likely possibility for future work would be to bootstrap the comp iler wi th itself ,
i.e., comp ile itself into code for the target machine. A translator from BLISS to TCOL is
relatively straightforward; the main aspec t which would require special attention to allow the
bootstrapping would be dealing with word size differences and memory size limits

4.5. Relation to Other Work

There has been very little work prior to this one in the area of automatic derivation of code
generators , and even less successful work. In Cattell(1977], there are discussions of most of
this work; however, the most closely related work will be mentioned here.

Newcomer (1975) was a predecessor to this work, and contributed in several ways. The
princi pal ideas shared with Newcomer ’s work are the use of means-ends analysis to find code
sequences, and the use of tree templates as the central representation. This work d~/f ers in
two main respects. The most important one is probably the machine model. While Newcomer
used trees to represent instructions , the essential semantics with respec t to the means-ends
analysis were encoded in “attributes ” which must be set up by the user of the system.
Newcomer suggests attributes , for example , that specify where the result of a tree
expression is stored, or whether the tree has the correct or inver ted sign. In this work,
attributes have been dropped; we need only the semantics of the TCOL operators.
(Incidentally, although attributes were dropped for co&~ generator generation, they may well
be- the best general mechanism for dealing with optimizations in the DELAY phase of the
compiler.) As should be apparent from Chapter 2, the model of the machine is more general,
dealing with control constructs , side effec ts, binary representation, and so on. The secottd
main difference in this work is the use of other methods besides means-ends analysis to deal
with control constructs and side effects. -

*v’other predecessor of this work is Samet(1975]. Samet’s goal was not to generate code,
~~ ‘at ’er to verif y that the code generated for a source language tree is in fact correct.

• - - - -~~~ ---~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~ -~~~
—- - -



-~~~-. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— ~—~~~~~--.-

78

However , there are some similarities in tha t Samet also used an axiomatization of the
equivalence of trees. His work also might be used in the verification of the LOP, as
mentione d earlier.

The reader who is interested in other work in the area of this thesis should also see three
theses that were completed quite recen tly (all less than six months at the time of this
writing) : Fraser (1977), Ri pken(1977], and Granville[1977). These were not completed at .the
time of the survey (Catte ll (1977]) , so a short comparison of approach may be helpful  to the
reade~r here. - 

-

Fraser designed a human-knowLedge-based code generator taking an ISP description as input.
His central algorithm consists of pattern matching common cases which the system
“understands”. For example , the program exp licitl y checks for machines with conditional
skips as opposed to conditional-jump architectures. The obse rvat ion that makes this —

approach possible is that most curren t computer architectures are quite similar in design, and
consequently it is possible to base the system on a manageable number of cases (Fraser
presents evidence that the amount of new programming knowledge that must be added
decreases as new machines of similar architecture are added). In contrast , as should be
apparent by now , the present w ork was to test the feasibility of taking a more formal -

approach, using equivalence axioms r ather than built-in programming knowledge to minimize
the machine-dependency of the system. The main disadvantage of the formal approach is
that it is potentiall y combinat oriall y exp losive, since it does not direc tly match “built—in”
special cases; but this chapter has presented evidence that it can in fact be done practically.
This does not mean there is no longer a need for the human-knowledge based approach. The
best approach is probably a combination, using formal methods plus human-knowledge special
cases to make decisions that are infeasible to otherwise automate for some reason.

The other two theses (Riplcen and Glanville) are principally concerned with code generation
rather than with code generator generation (at least as defined by Fraser and this work).
They both assume a one-to-one correspondence between the machine and language
operators. For example , they cannot generate code for the cases such as those given as
examp les in this chapter: operators which do not exist on the machine, e.g., AND on the PDP-
11 , or simply loading the accumulator on the PDP-8, as well as control constructs. It is
therefore more appropriate to compare these works to Chapter 3 rather than Chapter 4 of
this thesis.

Glanville’s work is an extension of that of Weingart( 1973), using the more recent LR(K) 
-

parser tec hnology. This algorithm is similar to the MMM algorithm in chapter 3: program
trees are matched against instructions represented in the form of a grammar.

Ri pken’s scheme is quite sopl,isticated, as his goal is generating near-optimal code. Ripken

- - -

~

_ _

~

- -

~

-- . - .  
- -



-. -

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

79

deals with the interaction of code generation and temporary allocation in detail, using
multiple passes on the program tree. It is interesting to constrast his scheme to the DELAY-
TNBIND-COOE scheme; the models have arrived at similar conclusions with respect to the
necessary structures to generate good code. Ripken did not implement his model, so it is
hard to evaluate whether his dynamic-programming algorithm can be implemented practically,
or w hether he can properly deal with the details of real machines; however , it is clear that
Ripken has studied the problem thoroughly, and an implementation should be forthcoming.25

4.6. Implementation . 
-

In Appendix F is a list of the axioms used in the search. The MOPs for the Mini-S and POP-
11, used for the examp les in this chapter , can be found in Appendix B, along with an
explanation of the syntax used for the representation. In Appendix 0, traces of the search
algorithm f or various examp les are given. In particular , the full text of the examp les in this
chapter can be found there. In Appendix E, a t race of the generation of the LOP is shown
for the POP-i 1.

25 
~~~~ P1k. to th ink Bin Sp,.lp.iwwn1 (I 971) fo, his £ni Pi.h .umm.ry of Ripk.n’p work.

_ _ _ _ _ _ _  ~~~~~~
,--~~~~-—~~~~

-
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5. Results and Conclusions 
-

A conclusion is the place w here you got tired thInking”
Martin H. Fischer

5.1. Summary

This dissertation has presented: (1) a model of instruction set processors, (2) a code
generation algorithm in which machine-dependent information is separated into tabular form,
and (3) a scheme for heuristic search for optimal code sequences, based on an ax iomatizatior,
of tree equivalence. Each of these ideas has been studied in some depth. The crucial
representations and algorithms have been implemented to test the consistency of the ideas —

and to evaluate empirically the practicality of their use in the generation of code for real
machines.

Evaluation of work in areas of this complexity is crucial. This is apparent to anyone who has
tried to read previous work whose strengths and weaknes ses are not discussed, requiring a
painf ul analysis of the details in almost as much depth as the original work. On the other
hand, first—hand evaluation of work is difficult , as the limitations are normally either not
understood or are overlooked by the original author (otherwise , they woul d very likely not
be limitations). With this in mind, let ’s try to examine at least those contributions and
limitations that are apparent. The next section provides some quantitative and qualitative
data on the results of the thesis. The remaining two sections of the chapter then summarize
the contributions and limitations.

5.2. Resuits

The results have been encouraging. The machine representation appears to be general
enough to deal with a variety of ac tual machine architectures, and the representa tion is
extendable to deal manually or automatically with unusual features that do not directly f i t  the
model. The code generation algorithm satisfies the goals of tabularizing machine dependence
and at the same time remaining simple, flexible, and fast enough for use in a production
compiler. The last and perhaps most interesting result is that the formal approach to
heuristic search for code sequences was successful in finding op t imal code sequences for
real machines.

One might expect the code generator to be relatively slow, since it involves a table-driven

L - ~~~~~~~~ 



81

pattern-ma tching scheme. However , the prototype implementation on a POP-IC/KIlO is
basically I/O bound, generating dbOUt 2000 instructions per second. The code itself is quite
compact , requwing only 1K 36-bit words , because all the machine-dependent information is in
the tables, which require more space (the amount being target-machine dependent, bu t or der

of 10K. words). These figures can only be regarded as estimates until the code generator
has been interf aced with the P0CC compiler under development. The complete compiler will
also be necessary f or an objective evaluation of the code quality, although the examp le in

Chapter 3 provides a limited demonstration of the code optimality.

The code gei~erator generator is also surprisingly fas t in comparison to previous results in
the area (Newcomer [1975]). The example derivations of code sequences in Chapter 4
typically took about .1 seconds (KIlO). The generation of the LOP itself took about 10
seconds for the POP-li , as shown in appendix E. The code generator generator uses 40K
words plus 10 to 20K data; it is imp lemented in SAIL (Reiser et at (1976]).

The speed of the code generator generator is not greatly affected by e i ther the number of
axioms or the number of instructions on the target machine. This is because the primary
operator indexing scheme allows the search routines to go almost direc tly to the applicable
axiom (for a mismatch) or instruction (for a goal tree). Note also that the axioms are
machine-independent, so that it should only be necessary to add new axioms when a new
domain is added, e.g., when TCOL. is extended to include a new data type such as character
strings.

Probably the most impressive result , although difficult to quantity, is the scope of machine
architectures the code generation scheme handles. To evaluate this, we wilt consider a
cross-section of common architectures: the IBM 360, POP-IC, POP-i I, Intel 8080, Motorola
6800, and PDP-8. The proposed scheme is capable of generating a code generator for all of
these machines with certain restrictions; the following discussion will therefore concentrate
on the restric tions.

The heuristic search algorithm itself was quite successful in cases where the machine fit the
model; the restrictions are primarily with respect to the machine model. With regard to these
restricti ons, there are four main areas which should be considered:

(1) The top-level definition of the instruction interpreter, which fe tches instructions from
memory and acts according to the input/output assertions. It is surprising how well
this simple scheme fits so many architectures. However, certains instructions, such as
the XCT instruction on the POP-iC which recursively calls the instr.uction interpreter,
and the “micro” instruction on the PDP-8 which can independently execute 9 simple
actions, do not fit this scheme. 



- -~ - - -~ 
~~~~~~~~~~~~~~~~~--~~~- - -- ~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~

82 I

(2) Instructions with multiple ac tions. Previous work has not tried to deal with these.
Some examp les would be ISZ on the PDP-8, BCT on the IBM 360, and use of auto-
increment on the POP-I 1. This thesis has presented a scheme for dealing with these,
when the program tree contains the matching actions in immediate succession, although
rearrangemen ts of the program tree to make these app licable are not considered (this
would occur in DELAY in the PQCC model).

(3) Data types and axioms. It is necessary to extend TCOL to deal with special machine
data t ypes. The algorithm will not determine what they are intended for: it is
necessary to have axioms describing their properties and relationships to program
cons tructs. For example , the charac ter and decimal arithmetic instructions on the IBM
360 fall in this class , as does byte manipulation and block transfer on the PDP-1O.
Also not covered by the axioms in the actual implementation are the properties of
shifting and testing of bits within a word, and special ari thmetic properties, namely —

carry and overflow (the code generator simply ignores overfl ow on the POP-li
examples given).

(4) The representation of storage. The Operand Classes and Access Modes successfully
deal with all these machines, including the POP-il and Motorola 6800- which have many
addressing modes. Note that the code generator is not fooled by mnemonics a~ a
person might be; for example , it will use indexing (intended for address computation) to
do addition if it is optimal in the context of its use. Also, the Storage Base scheme can
deal with machines with many reg ister types (Intel 8080), one accumulator (POP-8),
and many different operand sizes (IBM 360). However, note that the problems
concerned with the allocation of these registers are not part of this thesis; work is
under way in PQCC on this problem.

5.3. Contr ibutions

All three of the main chapters of this thesis contain potential contributions. Some ideas that
m,ght prove useful are:

(1) The model of machines, including the input/output assertion representation of
instructions, the separation of the addressing functions, and the at tention paid down to
the bit-level representation of data and instructions. This model is not just for code
generation purposes; it can be used for other applications, and also makes suggestions
f or machine description languages. The importance of the machine model is that it
defines and restricts the class of objects that we are dealing with; this formalism is a
key to making this work possible.

~

--.-- --

~ 



~~~~ .- --- ~~~~~~~—-~~~~~~~~~~~~. - - -~~- - -~~ -~~~ - - -~~~~~~~~~~~~~~~~--

83

(2) The code generation algorithm, including the tabular representation of the process, ~nd
the ideas for interaction with other components of a comp iler,’such as regis ter

allocation. Previous work has not separated machine-dependence to this degree; or
dealt wilh its interaction with the other phases of an optimizing compiler. The MMM
algorithm is also a new idea: it could prove to be a good compromise between
optimality and fast code generation. Note that the formalization of the code generalion
pr ocess is not only necessary for code generator generation, but is independently
useful.

(3) The axioms for tree equivalence (in particular those concerned with programs and
machines), the heuristic search algorithm, which includes the application of several
methods, and, f inally, the ideas for the use of this algorithm for the automatic
generation of code generators. The search algorithm and axioms are probably the
mos t significant contributions of the thesis. The central reason for the success of the
work is largely the representation: that is, t he algorithms are rela tively straightforward
once the problems have been represented. This can be seen to apply in several areas
of the work , including the machine repesentation, c ode generator repesentation, and
the use of axioms and trees in the search for code sequences. -

Some of the techniques used in this work may be applicable to other applications of machine
descriptions. For example , automated hardware generation is conceptually analogous to code
generation, as it involves decomposing a given algorithm into a set of given primitives (Leive
(1977]). As just mentioned, this thesis illustrates the principle that a problem is often easy
once it has been precisely and flexibly represented. Some important representational issues
in th is  work were:

(1) The use of a common notation, TCOL, to represent procedural semantics. Also
important is the extensibilit y of TCOL with respect to new data types and operators.

(2) The restricted form of the instruction interpreter , reducing the selection of primitives
to sequences of actions represented by input/output assertions.

(3) Abstraction of orthogonal properties such as addressing and binary representation
from the representation of the abstract operations themselves (the instructions).

_ _ _ _ _ _ _ _ _ _  _ _  _ _ _



84

5.4. Future Work -

A strong point of this thesis is t hat it ties together the rather disparate areas of macli~ne
representation, optimizing compilers, and l,euristic search. Previous work has not attempted
to bridge those gaps, so this broad scope was badly needdd. Howe’ver, as marty new
questions have arisen as have been resolved. The relatively bro 1ad sc ope of the the~sis,although necessary to bridge the gaps in previous work , dictates that Only some of the
problems have been studied in detail. There is room for future research in all three areas of
the thes is. This future work includes:

(1) Generali?ations in the machine model, to deal with a wider range of architectures.
Some extensions to the model that would be useful are: -

(a) A concise representation of data types, including a way to deal with phenomena
such as arithmetic overflow and complex instruct ions such as character st~ing
manipulation.

(b) A way to describe input/output.

(c) A way to take into account special machine features such as multiple ALUS,
instruction lookahead, pipelines, or caches in the code optimization (probably
after code generation). -

(2) Further research on compilers, namely:

(a) Optimizing temporary and storage allocation (ss 3.2.2, 3.2.3).

(b) Further evaluation of code generation algorithms (3.4), and their interaction with
other phases of an optimizing compiler (3.2).

(c) Peephole optim ization, dealing with optimizations that are best detected after
code generation (4.4.2).

(d) Easing the selection of the “compiler-writer ’s virtual machine (3.2.5), t o deal
with higher-level languages which require considerable run-time support.

(3) New ideas in code generator genera tion, to deal with:

L ~ - - -~-~-- - -~~~~~~.- - —-—--- -- —~~~~- - — - .~~~~~~~—-- - - - - -- -— - -- .-~---~~ --



- . -~~~~~.
_-~~~~~~~~~~~~ 

85 -

(a) Optimal case selection in the generation of the code generator tables (4.4.1).

(b) Cases on which the heuris tic search could fail due to the complexity of the
equivalence, i.e., very high-level machine-operations. . -

(c) Domains for which axioms were not developed here, e.g., bit field extractions,
shifts , and other operations within a data word.

It should be noted that this work is a study to test the feasibility of the approach, not a
production implementation. However , a compiler-writing system using this work wou’d be a
l ikely area for future imp lementation.

In summary, suggested future re~earch includes further work in the direction of the thesis
itself , generalizing the machine model and code generator generation schemes, and fu r ther
work on compilers, par ticularly on the other phases of compilation as discussed in section
3.2. The present work could also be directly applied to a production implementation, as just -

mentioned, or to peripheral areas , such as related “automatic generation of...” applications.

Success with the current work suggests that compiler generation, and automatic generation
of software from machine descrip tions in general, are likely to be developed as practical
tools in the not-too-distant future, given suffic ient effort on these problems. 

-— -~~~~~-~~~~~ -~~~~ - - - ~~~“--
.



-.~ --_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~ —~~~~~~~-~~~~~~~~~~~~~~-~~~~~~~~~~~~~~ 

86

Bibliography

Aho, A. V., and Johnson, S.C.: “Optimal Code Generation for Expression Trees ”, JACM 23, 3
(July 1976), pp 458-50 1

A llen, F., Carter , J., Harrison, W., Loewner , P., Tapscott , R., Trevi tlyan, L., Wegman, M.: “The
Experimental Compiling Systems Project”, IBM Researc h Report , IBM Yorktown, 1977

Barbacci , tA., Barnes, G., Ca t te l l , R., and Siewiorek, 0.: ISPS Reference Manual, CMU Computer
Science Technical Report , 1978.

Barbacci , M., and Siewiorek , D.: Some Aspects of the Symbolic Manipulation of Computer
Descriptions, CMU Computer Science technical report , 19 74 -

Barbacci, M., and Siewiorek, 0.: “Evaluation of the CFA Test Programs via Formal Computer
Descriptions”, Computer 10,10 (October 1977), pp 36-43

Barbacci , M., and Siewiorek, 0.: “The CMU RT-CAD System: An Innovative Approach to
Computer Aided Design”, CMU Computer Science Review 1974-1975

Bell, C. G., and Newell, A.: Computer Structures: Readings and Examples, McGraw-Hill, 1971

Catte tl , Roderic C.: “Description of Machine Data Types”, interna l memo, ISPS group, CMU
Computer Science Department , 1976

Cat te l l, Poderic C.: “A Survey and Criti que of Some Models of Code Generation”, CMU
Computer Science Technical Report , 1977

Coleman, Samuel S.: JANUS: A Universal Intermediate Language, PhD thesis, Electrical
Engineering, University of Colorado, 1974

Conway, Melvin E.: “Proposal for an UNCOL”, CACM 1,10 (October 1958), pp 5-8

Donegan, Michael K: An Approach to the Automatic Generation of Code Generators , PhD
t hesis, Computer Science & Engineering, Rice University, 1973

Ernst , C. W., and Newell, A.: CPS: A Ca;. Study in Generality and Problem Solving, Academic
Press , 1969

Elson, M., and Rake, S. T.: “Code-generation Technique for Large-language Compilers”, IBM
Systems Journal 9,3 (1970), pp 166-188

~ 

_ _  ~~~~ ---. --~~ -~~~ . ~-— ~~~—~~~— -



87

Feldman, J.: A Format Semantics for Computer-Oriented Languages, PhD thesis, Computer
Science, Carnegie-Mellon Universit y, 1964

Feldman, .1. and Gries, 0.: “Translator Writing Systems ”, CACM 11,2 (February 1968) pp 77-
113 -

Fraser , Christopher W.: Automatic Generation of Code Generators, PhD thesis, Computer
Science, Yale University, 1977 -

Glanville, R., and Graham, S.: ‘A New Method for Compiler Code Generation”, Proceedings of
the 5th conference on Principlos of Programming Languages, 1978 (rev iew of PhD thesis
of same title by Glanville, University of California at Berkeley, 1977) -

Hobbs, Steven: “Object Code Optimization ”, thesis proposal, Computer Science, Carnegie—
Mellon University, 1976 -

Knuth, Don: “An Empirical Study of FORTRAN Programs ”, in Software-Practice and Experience
1, 1971 (pp 105-133)

Leive, Gary: “The Binding of Modules to Abstract Digital Hardware Descriptions”, thesis
proposal, Electrical Engineering, Carnegie-Mellon Universi ty, 1977

McCarthy, .1.: “A Basis for a Mathematical Theory of Computation”, in Computer Programming
and Formal Systems (Eds: Baf fort and Hirshberg), North Holland, 1963

McKeeman, W. U., Horning, .1. J., and Wor tman, D. B.: A Compiler Generator, Prentice Hall,
1970 -

Miller, Perry L.: Automatic Creation of a Code Generator from a Machine Description, TR—85,
Project MAC, Massachusetts Institute of Technology, 1971

Newcomer , Joseph M.: Machine Independent Generation of Optimal Local Cod., PhD thesis,
Compu ter Science, Carnegie-Mellon University, 1975

Oakley, John: “Automatic Generation of Diagnostics from ISP”, thesis proposal, Computer
Science, Carnegie-Mellon University, December 1976

Reiser , J., et at: SAIL, Stanford Artificial Intelligence Lab Memo AIM-289, Computer Science,
Stanford University, 1976

Ripken, Knut: Formal. Beschreibung von Maschinen, Implementierungen und optimierender

- -~~ -~ -rn.. ~~~~~~~ 



-~~~~~~~~~~~~~~~~~~~ - - . ~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~

- - - -

~~~~

88

Uaschincncodeerzeugung aus attributierten Programmgraphen, dissertation, Technische
Universitat Munchen (German) 1977 -

Samet , l-tanan: Automaticall y Prov ing the Correctness of Translations involving Optimized Code,
PhD thesis, Computer Science, Stanford University, 1975

Simoncaux , Donald C.: High-Level Language Compiling for User-Defineabla Architectures, PhD
thesis, Electrical Engineering, Naval Postgraduate School, 1975 

-

Snyder, Alan: A Portable Compiler for the Language C, TR- 149, Project MAC, Massachuse tts
Institute of Technology, 1975

Speelpenning, Bert: “A Review of Ripken’s The sis”, personal communication from T. Wilcox,
1978

Strong, J., et at : “The Problem of Programming Communication with changing Machines: A
Proposed Solution”, CACM 1,8 (1958)

Weingart , Steven W.: An Efficient and Systematic Method of Compiler Code Generation, PhD
thesis, Computer Science, Yale University, 1973

White, John R.: JOSSLE: A Language for - Specifying and Structuring the Semantic Phase of
Translators, Ph D thesis, Urtivers~ty of California at Santa Barbara, 1973

W ick, John 0.: Automatic Generation of Assemblers, PhD thesis , Computer Science, Yale
University, 1975

Wilcox , Thomas R.: Gonorating Machine Code for Hirh—Level Programming Languages, PhD
thesis, Computer Science, Cornell University, 1~./1

Wuif , W., Johnsson, R., Weinstock , C., Hobbs, S., and Geschke, C.: The Design of an Optimizing
Compiler, American Elsevier , 1975

Young, Raymond: The Coder: A Program Module for Code G.n.ration in High-level Language
Compil.rs, MS thesis, Computer Science, University of illinois, 1974 

---- -.- ~~~~~~-~



~ -- -~~~~~~~~~~
----- . -~~~~~~~~ 

- . -~ ~~~~~~~~—~~~~~~~~~
. - - -—— 

89 -

Glossary

Access Mode (AM): An expression specifying a location or constant which can be used as an
instruction operand. For example, M(C1+R(C2]] where U is memory, R is a register array,
and Cl and C2 are constants (this AM represents indexing of f a regis ter).

Closed Constant: an integer

Field Assertions: Assertions about instruction field values that result when an instruction
field is paired wit h a field-value list (of the same length). The instruction fields (or OCs) of
the instruction format are asserted to have the values specified by the corresponding field—
value list elements.

Field—value list: A list of closed constants and parameters.

Instruction Field: A field of the binary instruction representation, e.g., the opcode.

Instruction Format: A list of instruction fields and operand classes. For example, 2-operand
instructions on the PDP-1 1 have the format (OPCODE2 SRC OST) where OPCODE2 is an
instruction field, and SRC and DST are operand classes.

Machine-Operation (M-op): An instruction.

Open Constant: represents any closed constant of a given size, i.e., a length in bits is given
but no specific value.

Operand Class (CC): A set of access modes, and for each one, field assertions which specify
the instruction field values for that access mode (e.g., mode bits, address field).

Operand Computation (OC): Same as Operand Class.

Parameter: variable associated with a leaf of a tree pattern, w hich is bound to a~ subtree
matched against the pattern tree leaf.

Primary Memory: The memory from which instructions are fetched.

Processor State: The set of all locations which can store values between instruction
executions. -

Storage Base (SB): A location, or indexed array of locations, in the processor state. 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

90

Appendix A: TCOL
The Tree COmmon Language (TCOL) representation of pr ocedural semantics can be
thought of as an abstract parse tree. TCOL is used for the representation of the
instruction actions in the machine description, the patterns in the code generation
tables, and the common language-independent program representation in the compiler.

The TCOL syntax is therefore any convenient representation of a tree. In this thesis, a
parenthesized LISP-like notation is used:

<tree> : : —  <leaf> I (<operator> < t re e—l i s t > )
• <tree— l i s t>  ::— <tree> I <tree —list> <tree>

<leaf> ::— cOC> I <All> I <constant> I <special leaf>

The TCOL semantics are defined in this appendix, by a specification of the TCOL
operators.

To define the operators we must first define the four contexts in which an operator
t ree can occur:

(1) A value context: the tree represents a (bit string) value. It is not necessary to
distinguish between different kinds of values (integer , real, etc.) for our
purposes. -

(2) A boolean context: the- tree represents the result TRUE or FALSE.

(3) A statement context: the tree produces no result , it is executed only for the side
effec ts of its subtrees.

(4) A location context: the tree represents a location.

Each operator produces a result in one of these contexts , and similarly demands
operands in specific contexts. In the table on the next page, these contexts are
indicated in the context column in the form operand1soperand2....>result where the
contexts are represented by V (value), B (boolean), S (statement ), and L (location). For
examp le, the con text for “~- is given as “L*V~>S”, meaning that it is a statement whose
operands are a location and a value, respect ively. “+“, on the other hand, takes tw o
values as arguments, and produces a value as result (VsV—’V). Also note the location
descriptor operator , “<>“, which is simpl y used to specif y an access to a storage base.
Note that a location must be distinguished from a value. The location descriptor
operator was found to be more convenient than giving more arguments to the fetch
(“.“) and store (“a-”) operators (to specify the storage base, etc.)

Patt ern trees are also used in this work. For example, machine instructions are
represented as pattern; and matched against program tree; in the code generation
process. Pattern trees are defined and represented identically to trees except that
pattern leaves may be Darameterized for later reference: 

~~~~-~~~~~—~~~-•~~ -~~~~~~~~~~~~~---•---~~~~~~~-~~~~~~ 



Ut—

AO—M58 872 CARNEGIE—MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ——ETC FIG 9/2
FORMALIZATION AND AUTOMATIC DERIVATION OF CODE GENERATORS. (U)
APR 78 R G CATTELL F1414620—73—C—0O714

UNCLASSIFIED CMU—CS— 78—115 AFOS R—T R—78—1248 IL

2’~2
ADA

DbA P 72

END
D A T E

FILIE 0

78



91

<leaf> ::— $cinteger> : <leaf>

The subtree matching this pattern leaf may be referred to elsewhere by “Scinteger>”.
Pat terns may also specify leaves that match any node, by omitting the <leaf>
altogether and simply writing “$cinteger>”. See the instruction patterns in appendix B,
and the axioms in appendix F, for examples of patterns.

What are patterns to the code generator are trees in the code generator generator. It
is therefore necessary to distinguish between local” parame ters in the M-op trees and
axioms, and “global” parameters in the global goal tree given to the search routines.
Global parameters are distinguished from local ones by doubling the “1”:

<leaf> ::— U<integer>: <leaf> I $1<integer>

It may be necessary to introduce new global parameters when it is necessary ’ to
allocate a temporary location or code label in the generation of code for a given tree;
these are simply assigned new global parameters in numeric sequence. In the traces
in Chapter 4 and appendix 0, global parame ters are found in the goal trees and code
sequences, and local parametørs in the axioms and M-ops. The global parameters are
then printed out as local parameters when constructing the LOP table for the code
generator.

In certain contexts, other special notations are used for TCOI tree leaves. For
example, in an access mode tree an open constant (— any constant of size <integer>) is
represented by:

<special leaf> s : —  #ctnteger>

~ 

—-. .
~~~~ . _ _ _



92

Operators Context Comments

L—>V dereference operator, Ncontents ~fN ,
Wil l  omit this operator unamb i guously.
by mak i ng L.>V conversion implicit.

V*.>L location descriptor op; operands are;
Storage Base, Index into SB (value) ,
b it position in word, size in bi ts

V*V.>V integer . NOTE: arithmetic types are
machine -defined , these are suggestions.

+S,—S ,*S ,IS, V*V->V short integer ar i thmetic
+L,—L ,*L,/L, V~V.>V long integer ar i thmet ic
+F,—F ,*F,/F,——F V*Vz>V standard f loat ing point ar ithmetic
+O,~ O,*O,/O,~~ D V*V-,V double l ength floating

V~€V=~V sh i f t  left
#FO,#FI ,#LD,.. V~>V Floating, Integer , etc. , convers ions

(eg, #FI-F loat— >Int)
ANO#, OR#, NOT# V*V.,V Bit-wise log ica l ops

(or V— >V )
L*V~ >V “s-” wi th  a value

IF# B*V~V~>V”1F” w i th a va lue
literal V occurs as leaf
AND, OR B~B=>B standard conditionals
NOT Ba>B
EQL, NED V~V->B integer relationa le
GTR, LEO
LSS, GEG
EOLF, •.. V~V—>B relationals for floating . etc.
—> BwL->S conditiona l jump operator

L*V=>S assignment statement
S*—>S statement sequence

IF B*S~S—>SWHILEOO,00WHILE B~.S->SL: lb~S->S generates l abe l (argi) before arg2 code
6010 V=>S
CALL,RETURN V -S Procedure linkage
PUSH, V.>S
POP L->S



93

Appendix B: Machine Description Tables

This appendix contain s sample MOP machine descript ion tables for those machin es used as
exa Mp les In the the slst (1) the flInl— S, a PDP— 8 sli ghtly s i mplified for expository purposes ,
and (2) a POP—lj/29.

The components of the descr iption are described In cP~apt.r 2; th. syntax for thu
representation Is described here, in a simp lified BNF . 1’.. syntax for the hOP is relatively
strai ghtforward , given the definit i on of the components and of trees. The only unusual
feature Is probabl y that th. OCs and hI—ops are represen ted as productions rather than as a
simple enumerat ion of their components. This allows the sam. syntax to be used for the LOP

• as for the MOP , becaus , the RHS of the production , which Is simp ly an EM IT node for li—ops
(and OCs), can then be any result sequence In the LOP productions.

No tes on BN~~ ‘ .~~ means the precedin g non—termina l may be repeated 0 or møre times. Items
• enclosed in curly brac kets l. .I are comments . Blanks and end of line are not si gnif icant.

<> Is the TCOL location—descr i ptor operator , not a non—terminal of the grammar.

<MOP>,:. (<I- f  Id>..) (<58,..) (<Ph> ..) (<OC>..3 (<Fmt>. .3 (<fl-op> ..]
cl— f Id,,:. ( cl — l id name> <positIon > <s i ze> <ward spec> <field type> )
< f i e l d  type> ::. 0 I C I 0
<SB,::. ( <SB name, <length in words> < len gth in bits > <SB type ,
<SB type> ::. C I C I R I P Itemporary, general , reserved , PCI
<Ph.::. <PM name, :: <PM locn tree>

• <OC>u . <OC name, : C <OC—p roduction >. .
<OC—production>::. <P11 name > :: (EIIIT(<FutI> <timecost> r.spacecost.] < field value ...)

• < f i e l d  value> ::. <Integer > I <parameter label>
<pa ramter label> ::. S< lnte ger >
<FmtI. ::.  <Inte ger , gives 101 Fet In sequencel
<Fet>,,. C <Fmt Item> .. )
<Fait Item.::. <I.~f Id name> I <OC name ,
<PI—op,.::. <assertion tree> :i (EMI T (cFmtl, < timecost , <spacecost.) <field value,..)
<assertion tree>::. C ; <input/outpu t assertion>..) I < input/output assertion>)
<input/output assertion .:;. (IF <input assertion> <outpu t assertIon .) I <output assertion>
<Input assertion ,:;. <boo l tree>
<out put assert Ion.,:. No.Op I C— <Iocn spec> < .xpr tree> )
< iocn spec,::. <P11 name> I <OC name >
<expr tree,::. (<value—ope rator> <expr tree>..) I <locn tree>
<boo l tr.e,.:: . (cbo oiean—operator> cexpr tree,..) I <l eaf>
< lo cn tree>::. (<> <SB name> <expr tree> <position> <size>) I <leaf>

<leaf , may be d ifferent things dependin g on the context. In an P1—op t
<leaf ,,,. <constant> I cOC name> I <PM name >
In an P11 (access mode),
<leaf.:: . <Constant, I <open constant>
<open constant,::. <parameter label> Icinteger , Ir .prsnts const wIth <Integer, bIts )
In a goa l trees
<leaf.::. <constant> I <OC name, I cAM name, I <w i l d  node>
<wild node>,:. <parameter label>



r — ‘

~~~~~~~~~~~~~~~~~~~~~~~~ ~
‘
~~~~L

94

IPIOP f i l, for MInI—S (tieplif led POP—1) l

I I— f I dsi C
(OP 0 3  0 0)
(I.BlT 3 1 0 C)
(P0* 4 8 0 0 )
(I0.BITS 4 8 0 0)
( U B 1 V S S 7 3 0 )
(UCLPSS 4 I S O ) )

ISBeI C
(PC 1 8  P)
(lip 256 12 P1)
(Acc 1 12 0)
ClO.REG t 8 R)
(118*) )

lPflsl C
Xl: *1:18
Zilpi (<. lip *1:18 S 12)
Zelips (c > lip (<, lip *1:18 I 12) 8 12)
XPCs (<. P C I S $ )
ZRcc: Cc> Ace 1 8 12)
~~~: (<. 1188)
ZlO.REGs (<, 1O.REG 1 I 8) 3

10Cc) C

Vi C
Xl ii (EPIITCS I I) $1 I)
~ ip is (~EflIT (S 1 83 SI 1) 1

Zs C
VIp ii (EPIIT(S I I) SI 8)
ZilIp ss (EIIITCS 2 83 SI 1) )

10: C
Xl :s (EliIT(S I 8) *1) ) 3

Il—FliTs)
IFMT II (OP 2) l1—opnd formatl

• fF111 21 (OP V) Ijump format l
(FlIT 3% (OP UCLASS IJILTS) lmlcro format)
(Ff17 II (OP 10) (lOT format)

IOC —FMTsI
IFPIT 5) (*0* 1.811) IV and Z)
(FlIT SI (10.5173) 3 110$

IlIopel I

C. ZAcc (*140 ZAce 1h Z)) is
(EflITIANO 1 1 1) S $1)

(. *1cc C. lAce 11:2) ) *5
CC1IITCTPO 1 1 13 1 11)



95

(~ (.- 1hZ (+ 51:2 1)) C., (EOL 51:2 —1) C.. ZPC C. ZPC 1)))) is
(EMIT(ISZ 1 1 1) 2 SI)

C ; (a. 5h Z ZRcc) Ce. ZPcc I)) is

(EIIIT(OCA 1 1 13 3 SI)

C; (. 71 ZPC) C.. XPC ShiV) ) i*
((IIIT(JIIS 2 I 13 4 51)

C.. ZPC 51sf ) is
(EI1IT(JMP 2 1 13 5 51)

C. ZIO.R(C 10) ii

(EIIIT(IOT 4 1 13 6 II)

(a. Xf%cc (NOT XRcc)) is
((I1ITICO1IR 3 1 13 7 S 45)

(a. 211cc 0) ;:
(EIIIT(CLRR 3 1 13 7 S 21)

C.. 211cc C, 211cc 1)) ::
(EMITCINCA 3 1 13 7 S II)

(.. X11c~ C— 211cc 1)) ii

(EIIITCOECA 3 1 U 7 I 4)

(a. 211cc Ct 211cc 1)) ~
CEPIIT(SLA 3 1 1) 7 S 1)

(N0.OP) :s
(EPIITINOP 3 1 13 7 I I)

(.. 211cc 1) is

CEMITISET 1A 3 1 13 7 I 3$)

(a. 211cc 2) ii

(EPIITCSET2P 3 1 13 7 I 31)

C. ZPC XL) is
(CII ITCATS 3 I 13 7 1 45)

C. ZPC 211cc) is
IEIIITEJIIPR 3 1 13 7 1 25)

(., (LSS *11cc I) (a. ZPC (+ XPC 1))) ii
(E1lIT(S~PL 3 113 7 1 4)

(..~ (EOL 211cc 0) (a. ZPC C. XPC 1))) is

((NIT(SKPE 3 1 13 7 1 5)

C.. (NEQ lAce 0) (a. XPC (. XPC 1))) is
(EMIT ISKPNE 3 1 13 7 1 2)

C.. CGTR 21cc I) (a. IPC C. IPC I))) is
(EPIIT(SKPC 3 1 1) 7 1 1)

C.. (LEO lAce I) (a. XPC C. ZPC 1))) ii

~ 

~~~~~~~~~~~~~~~



~‘1
9$

(EPIIT(SKPLE 3 1 13 7 1 6) 
•

C., (CEQ 211cc 0) (a. ZPC C, XPC 1))) is
(EI1IT(SPZPGE 3 1 13 7 1 3) 3



97

• IIIOP f i l e  for POPII/2S (truncated))

fl— f idel C
COpCodeI I II I 0) I1—opndl
(Op Code2 I 4 I 0) 12—opndi
COpCodeB I 8 0 0) (branch)
(OpCodeJ S 7 I 0) IjumpI
COpCodeR I 13 I 0) Irsturnl

(Of fsetl 5 8 S 0) (branch)
(Srcflede 4 3 0 0) I2—opnd)
CSrc Reg 7 3 I 0) 12—opnd)
(Srclndex I 16 1 0) 12—opnd)

• Cflstilode II 3 I C) (1—opnd I 2—opndl
COstReg 13 3 I 0) Il—opnd I 2—opndl
COst Index I 16 2 0) I1—opnd I 2—opndl 3

iSBs) £
(II 65536 8 II)
CM 1 1 C)
(2 1 1 C)
IV 1 1 C) m e t  used )
(C 1 1 C) (no t usod l
(PC 116 P)
(SP 1 16 R)
(R 6 16 0) )

(1111$) C
23: 31:18

• 216: $1,116
XSPs C<> SP 0 0 15 )
XPCs (<> PC I I 16)
ZN, (<. N 0 I 1)
ZZs C<. 2 I I 1)
XC: (<.d ll)
Xt.s C<> 11 C. XPC C? 5u S$ 1)) I 16)
ZR: Cc> A 51:53 I 16)

• XRbs Cc> * 11:53 8 8)
211; 1<> 11 51:516 I 16)
2Mb: (<. II 51:515 S 8)
ZeR: Cc> 11 Cc> A 11,53 I 16) I 16)
ZeRbi (<, II 1<. A 11:53 S 16) 8 0)
Xiii : 1<. 11 Cc, II $1,515 I 11) 5 IS)
Xuiib: (<. II Cc. 11 11,515 I 15) 0 0)
ZR,C: (<, II C. Cc, A 11:13 I IS) 52iI1S) I 15)
XR.Cb: Cc> II C, (<. 1 11,53 I 11) 12* 111) II)
ZeReCs Cc> 11 Cc, II C, (4> * $hsS3 S 1$) Sh Ill ) S 11) S hi)
XaR,Cb; (<. 11 (<> 11 I, (<, A 11*13 5 15) *2,515) I ll ) SI)
(auto—incremen t arid —docre en t not used except wi th  PC)
2.At Cc> 11 C.. 2* (. 2* 2)) I 16)
X.Rbs Cc. 11 Ca. ZR C, 2* 1)) I 8)
2-Ri Cc> II (a. ZR C— ZR 2)) I IS)
2—Rb s Cc > 11 (a. ZR C— *1 1)) I I) I

0Cc) 1

I.. —- — — • - - -—-- -— ~~~~~~~~~ —---



95

Srcs C
216 ii CEI1IT(13 8.0 13 2 7 Il)
ZR :: (El11Tt12 5.0 Ii I SI)
XII ii ((1111(13 1.5 13 3 7 SI)

• TsR ;: (EMIT(12 1.5 03 1 Il)
ZelI is ((11(1(13 2.7 1) 7 7 $1)
ZR.C si (EMITCI3 2.7 I) 6 51 52)
leR.Cs, (EMIT(13 3.9 13 7 51 12)

3rd , C
XR bs; ((P111(12 0.0 0) S SI)
7J1b*s ((1111(13 1.5 11 3 7 $1)
ZeRb:: ((1111(12 1.5 53 1 51)
ZeIib:s (EMITII3 2.7 13 7 7 51)
2R,Cbs: ((1111(13 2.7 13 6 51 52)
XeR,Cbs:CE11IT(13 3.9 1) 7 51 $2)

Dst , C
215 z, ((1111(15 5.0 1) 2 7 11)
ZR :: ((MITtS 5.5 SI S SI)
211 is  ((1111(15 1.4 13 3 7 SI)
TeA ;~ 

((1111(9 1.4 I) 1 51)
Zell is (E111T(II 2.6 13 7 7 51)
XR.C ii ((1111(11 2.6 13 S $1 $2)
XeR.C:s ((I1ITCII 3.8 13 7 51 $2) )

OstBs C
XRb:: (EMITIS 5.5 I) ~ 51)
2Mb,: CEIIITtIS 1.4 13 3 7 51)
XeRb:: ((P111(9 1.4 I) 1 SI)

• XeIlbss ((1111(11 2.6 13 7 7 SI)
2R.Cbs* ((1111115 2.6 13 6 51 $2)
Z.*<.Cbss((fl IT(hI 3.1 II 7 SI $2)

• SrcR: C (for JUMP, JSRI
2* ii (EMITCII II II 11) 3

OstA: C (for *13)
ZR i i  ((MITtS 1.1 I) $1) I

Pdr : C (for branch.sI
XL is ((1111114 1.1 II 111 ) 3

( I— lo ts )
(1) (OpCodel Ott)
(21 COpCod.~ Sec Ott)
(31 (OpCodel Rdr)
(4) (OpCodeJ SecA Ott)
(5) (OpCodeR Ost i)
III (Opcodol DstS )
(7) (Optod.2 Si tS OstI)
(OC— f.tsl
III (Ost Reg )
(SI (Ostflode Ost*eg)
(Ill (Ostilode DstReg Ostiridex)
111) (SrcAeg )
1121 (SeeMed . IreNeg)
(13) (Srcflod. $rcl .q Secindess )

I

~

—

~

--

~

- - -

~

- - -- •



99

(14) (O ffs etB ) 3

Ill—ops) £

(byte versions of Instructions have been om itted ; these are
similar to word instrs but use OCs Src5 and Osil and formats 6 and 71

il—opnd instruc t lonsl
(~ C.. SIsOST 0) (.. ZN (15$ I 5)) (a. 22 ((CL I I))) is

((IIIT(CLR 1 1 13 55 II)

C ; Ca. 11:051 (NOT IIsOST)) (a. ZN (LSS (NOT 11:051) I)) (a. 22 ((CI. (NOT SItOST) 8))) i i
(EMIT(CO1I 1 1 13 51 51)

(; C a. 51:0$T C. S1;OST 1)) (a. ZN (LSS C. SIsOST 1) 5)) Ca. 22 ((01 C’ 51:OST I) I))) S i

CEIIIT(INC 1 1 11 52 $1)

C ; (a. S1:0$T C— S1:OST I)) (a. ZN (ISS C— SIsOST 1) 0)) (a. 22 ((01 C— $l:OST 1) I))) is
(Efl1TtOEC I 1 13 53 51)

C ; (a. 51:DST C— 11:051)) C.. ZN (GEC 51:DST I)) (a. 12 ((CL SIsOST I))) is
((1117(14(0 1 1 1) 54 SI)

C ; (a. ZN (ISS S1sOST 5)) C.. 12 ((01 SL;OST El) ii
((1111(151 1 1 1) 57 Si)

C ; C.. 51:0$T C? S1:OST —1)). C.. 214 (ISS Ct 51:051 —1) I)) (a. 22 ((CL C? 11:OST — 1) 5))) is

C CIIIT(RSR 1 1 II 62 51)

C ; C. 11:051 C? SIsOST 1)) C.. 214 (15$ (t 11:051 1) I)) (a. 22 ((CI. C? 51:051 1) 5))) u
(EMIT(RSL I I 13 63 $1)

12—oprid instructions)
C ; (a. SIiOST S2:SRC) (a. ZN (ISS S2:SRC I)) (a. 22 ((01 52:SRC 5))) ,s
(EI1ITItIOV 2 1 13 1 12 SI)

C ; (a. 51.051 C. S1:DST 52:SRC)) (a. ZN CISS C. 51,051 $2:SRC) 5)) C.. 22 CEOL C, Si;OST 52:SRC)G)))
((1111(1100 2 1 1) 6 12 11)

(; C.. S 1:OS T C— $1:OST 12:SRC)) (a. ZN (US SI50ST S2sSRC)) (a. 22 ((DL 51:OST $2:SRC))) is
((1111(5115 2 1 1) IS 52 11)

C ; Ca. iN (15$ S2sO ST Sl,SRC)) Ca. 22 ((DI. 12,051 SIsSAC))) ii
((IIITICMP 2 1 II 2 52 51)

C~ (a. ZN (155 (OR S1:OST S2sSRC) I)) (a. 12 ((DI. (OR I1sOST S2s SRC) 5))) is
((1111(811 2 1 13 3 $2 Si)

C ; (a. S1:OST (AND S1:OST (NOT S2iSRC)))
(a. 714 (133 (AND 11:031 (NOT 52:SRC)) I)) Ca. 12 ((DL (11140 SIsOST (NOT $2sSRC)) 5)) ) s:

((IIIT(81C 2 1 1) 4 12 SI)

(~ Ca. SliOST (OR SI:DST $2sSRC))
(a. XII (US (OR 51*051 $2 s SRC) 5)) (a. 22 ((CL (OR 11:051 $2:SRC) I))) Ii

CEPI1T(91S 2 I 13 5 52 11)

(eu~reutin. and jump Instruc t lonil

L • .



r~~w~ :.~~~~
. - . •

LBS

(CMLI) is
((IIIT(JSR 4 1 II 4 7 I)

(RETURN) *:
(EMIT (RTS 5 1 13 20 7)

(a. ZPC 11:516) si
(EMITIJMP 4 1 13 5 1 11)

(branch instru c t lonsl

(a. ZPt 5lsROR) is

(EIIIT(BR 3 1 13 4 II)

C— > 12 S1:ROR) s:
(EMIT(BEO 3 1 I) 14 SI)

C—, (NOT 22) 51:POR) si
(EIIITLBNE 3 1 II II SI)

C—> ZN $1:ROR)
CEIIIT(8LT 3 1 1) 24 SI)

C— , (NOT ZN) 11:110*) is
(EMIT(BGE 3 I 1) 20 II)

C—> (OR 22 ZN) 51:110*) si
(E1IIT(BLE 3 1 13 34 51)

C— . (AND (NOT 22) (NOT ZN)) *1*110*) ss
(EIIITCBGT 3 1 13 31 11)

3

L . ~~~~~~~~~~~~~ • ~~~~~~~~ •~~~~~~~~ • •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • ~~~~~~~~~~~ • . - •--
~~~~~~~~~



151

Appendix C: Code Generator Prototype Trace

ThIs Is a trace of a user’s interaction wIth th. stand—alone code generator , CODE, whose
tabl e s hav , been fill e d  In for the POP—iS. (Other phases of the P0CC complIer have not been
completed at t he tIme of this writin g .) The user ’s rou ti ne, called TEST , Is printed out in
the pare n thesI zed TCOL notation. The TEST program ii to add the Integers up to 18 and prInt
the result. TEST.TCL, the TCOL file , is read by COOE to produce TEST.MRC , In assembl y
language. Then, TEST.I1AC Is assembled and loaded w it h  th. user’s CaIn program , writ ten In
01155— 10, and expcuted . TEST prints out th. answer that the sum is 45.

.SET WATCH ORY,*UN

.type t .st.tc i
(13:05:183
(BLOCK

X ( O WPI )
RI (REGISTER 1)
PRNT(EXTERNAL )
TEST(CLOBPL ROUTINE)

(ROUTINE TEST C;
(.1 9)
(.- R1 1)
(DOUNTIL

C; (a. I C. (.  I) C. Ri)))
Ca. *1 C, C. RI) 1))

((CL C. Ri) 19)
(PUSH C. X ) )
(CALL PANT)
(POP XI )) )

18.23 3

ru code
(13:I5s 19)

Input F l i es  tes t . t cl

Outpu t F l ies  test oac

CODE pass Os
CODE pass Is

• COQE P$5$ 2~

EXIT
(1.26 3

.ty ps tost.mac
£I3sISs213
I: OCT I

EXTERN P*NT
• INTERN TEST

TEST: S(TZII I
MOVE I 1,1

LI. 110DM 1,1
MOVE! 1,1(1)



- •

102

CRIE 1,12
• JRST LI

JRST Li
LI: PUSH I

PUSHJ PRNT
POP I
pOPJ I
END

18.88

.type mai n .b li
(13:85* 213
module main(stac~).
begin
external te s t ,outnum ,out msg ;

globa l routine prnt (y).outnum (—1,.y,iO,9);

outms g C— i ,p IIt ascii ‘CODE t est programflt?JX.’);
test ()
end ;

(8.06 3

.•x main .b(5 ,t.st.mac,syss b illl b/ ll b
(13:05:22]
BUSI9s IIRIN.BLI
MACROs .IIAIN
LINK : LoadIng
(LNKXCT (lAIN (xecut Ion)
CODE t~ tt progra.
1.45
EX21
(1.83 3

I.



___ -a.--
-Y -~~~~~ 

-
~~~~ 

- •

103

Appendix 0: Search Examples

Search (a. ZACC IMP)
Attemp ting M-op-match
Attemp ting Decompoeitione
Attemp ting Transformatione

• Feasible (1): (a. ZACC (a ZACC $1:Z))
Transform: (a. ZACC ZMP) ., (a. ZACC C, ZACC $12))
Tr.nif orn5: ZACC -> ~ACC
Transform: ZMP .> (a. ZACC $1Z)
Applying $1 :: C. 0 $1) to: IMP
Transform: (. 0 IMP) -, (a XACC $1:Z)
Transform: 0 -. IACC
Applying Fetch Decompoeition to: 0 veing: $$1:!ACC
Search: Ci- $$1:XACC 0)

• Attempting M-op-malch
M-op Match: C; (AU. OC $$2XMP) (EMIT(DCA l iiJ  3 $$2:ZMP))
M-op Match: CEMIT(CLRA 3 11]  7 0 20)

Transform: ZMP .. $12
F.aeibl.(2j (a. ZACC (. IACC I))
Transform: C.- ZACC ZMP) -. (a. ZACC (. ZACC 1))

• Transform: ZACC .> ZACC
Transform: ZMP .> (. ZACC I)
Applying $1 :: (.0 $1) to: ZMP
Transform: C. 0 IMP).> (a. ZACC 1)

• Transform: 0 a.. ZACC
Applying Fetch Decomposition to: 0 uuing: $$3~IACC
Search: (a. $$3:ZACC 0)
Attempting M-op-match
M—op Match: C; CALLOC $$4 XMP) (EMIT(OCA I 11] 3 $$4:ZMP))
M-op Match: (EM1T(CLRA 3 1 1) 7 0 20)

Transform IMP -. 1
(fail on IMP
(f.iI on IMP )
Applying (. $1 $2) :: C. $2 $1) to: (. 0 IMP)
Transform: (~ IMP 0).> (.IACC 1)
Trend arm: ZMP ., ZACC
Depth Limit Reached
(fail on IMP

(feil on ZMP I
Depth Limit Reach.d
(fiil on C. IMP 0) J

(fail on C. IMP 0)
(feil on (. 0 IMP ) 3
(fail on (.0 ZMP)3
(fail en IMP
(fed on IMP )
(fail on (a.. IACC XMP) 3
(fail en (a. ZACC ZMP) 3
(f.ii on C.- IACC iMP) 3
F.a.ibie(33: (a. IACC C- IACC U)
Transform: (a- IACC IMP).. (a. ZACC (- ZACC 1))
Trend ores: IACC.. !ACC
Trensf ores: IMP., C- IACC 1)
Applying $1 u (— (— $1)) to: IMP
Tr.neforsm: (- (- IMP)) .. C- ZACC 1)
Applying C- $1) C- 0 $1) to: C- C- IMP))



Transform: (- 0 C- iMP)) —. (- IACC j)
Transform 0.> 2ACC
Depth Limit R.ach.d
(fail on 0 3
(fell on 0 3
Depth Limit Reached
(f ail on C- 0 C- iMP)) 3

(fail on (- 0 C- iMP)) 3
(fail on C— C- iMP)) 3
(fail on C- C. iMP)) 3
(fail on IMP 3
(fell on iMP 3• (fail on (a. 7ACC IMP) 3
(fail on (a. XACC IMP))

(fail on (a- IACC IMP) 3
Br.ad*h Limit Pe.ch.d(24)

Nod.. E*amin.d: 25
Est. Second s : .7580- 1
Result Sequence (s):

(AIIoc $51 :ZACC)

(AIIoc $$2:ZMP3
OCA $$2:ZMP 

or 
CIRA

TAD IMP
Beet Sequence is:

• (Afloc 5$ 1 :ZACC3
CLRA
TAO IMP

Search : (a.. IACC C- IACC))
Attempting M-op.match
Attempting Decompositions
Attempting Transformations

• F.aeibl.( 13: Ci- IACC C- IACC I))
Transform: (a. IACC C- IACC)) .. (a- ZACC (. ZACC I))
Transform: IACC .. ZACC

• Transform C- ZACC) ., C- ZACC 1)
Applying (.$1):: C- 0 51) to• C- IACC)
Tran foqm C- 0 IACC) a., C- IACC 1)
Tranef ores: 0 .. IACC
Applying Fetch Decomposition to 0 using: $$1:ZACC
Search : C.- flI :IACC 0)
At tempting M-op-mstch
M-op Match: C; (ALLOC 5$2:IMP) (EMIT(DCA 1 1 1 3 3 $$2:ZMP))
M-op Metch: CEMIT(CLRA 3 1 13 7 0 20)

Tranef ores IACC .. 1
(fail on IACC

(fail on ~ACC 3
(fail on (.0 IACC) 3

(fail •n C- 0 XACC))
(fail on C— IACC))
(fail on C. IACC) 3
(fail on (a. ZACC C- ZACC)) 3



105 
•

(fail on (a. IACC C- ZACC)) 3
(fail on (a. ZACC C- ZACC)) 3
Fe~øibl (2J (a- 1ACC C. 7ACC $1:Z))
Transform: (a. 7ACC (- ZACC)).. (I .. ZACC C’ ZACC 5 1:2))
T,snstorm IACC -. IACC
Transform: C- ZACC) -. (a. ZACC SI:Z)
Applying C- $1) I: C. 0 C- SI)) to: C- ZACC)
Transform: C. 0 (- IACC)) -, C. ZACC 51:2)
Tra nsform: 0., IACC • 

•

A pply ing Fetch Decomposition to: 0 uein~: S$3.ZACC
Search (a. S$3ZACC 0)
Attemp ting M-op-melch
M.op Match: (; CALLOC $$4.1MP) (EMIT(OCA 1 1 1 3  3 $$4~ZMP))
P.4-op Match- ((MIT(CLRA 3 I I] 7 0 20)

Transform: C- ZACC) —‘ $12
Applying Fetch Decomposition tø: C- ZACC) using $$52MP
Search: (a- $55 iMP (- IACC))
Attempting M-.p-m.tch
Attempting Decompositions
At tempfing Traneformatione
F.aalbI.(IJ: (a. $~ :~ C. $12 I))
Transform: (a. fl5 7MP C- 7ACC)) .> Ca- $12 (.$1:Z 1))
Tranaf ores: $$5:ZMP a., liz
Transform: (. ZACC) a., (a. lIZ 1)
Depth Limit Reached
(fail on C- IACC) 3

(fail on (. IACC) 3
0.pth Limit R.ached
(fail on (a- flS iMP (- IACC’~) 3
(fail on (a. $$5IMP C- IACC)) 3

(fail en (a. $$5:ZMP C. iACC)) 3
Feambl (23: (a. $J :Z ZACC)
Transform: (i- $$5 1MP (- IACC)) —. (a. 51:2 ZACC)
Transform: 5$5~iMP -. 51:2
Transform: (- IACC) .~~ IACC
Depth Limit Resched
[fail on (— !ACC)

(fail on C- IACC) 3
• Depth Limit Reached

(fail on (a- 5$5IUP C— IACC)) 3
(fail on (a- $$5 ZMP (- IACC)) 3

(fall on (a- $$5 ZMP C. IACC)) 3
Fsasible( 33: (a. IACC C- ZACC I))
Attempting Store-Decomposition using $$6 IACC
Search: (a- $$5IMP $$6IACC)
Attempting M-op..imetclt
Pat-op Match: C; (ALLOC 5$77ACC) CEMIT(OCA 1 1 1 3  3 $$5IMP))
Transform: C— ZACC) ., C- 2ACC 1)
Depth Limit Reached
(f au en C- ZACC) )

(fall on C— ZACC) 3
[fail on C.- $$5:ZMP C- ZACC)) 3
Breadth Limit Pe.ch,d(9)
(fail on C.. ISS ZMP C— ZACC)) 3

(fail on C— IACC) 3
(f.il on (- ZACC)3 •
Applying C. $1 $2) :: (a $2 $1) %~: (.0 C- 11CC))
T,aneforses C. (a. ZACC) 0) -, (. IACC *12)
Tr.nef ores: (a. ZACC) .. IACC 

--~~~~~~~~ -



108

• 
• Applying Fetch Decomposition to: (- 7.ACC) using: $58:ZACC

Search: (a.. $$8.1ACC C— ZACC))
Attempting hi-op-match
Depth Limit Reached
(fai’ on (a- $$8fZACC C- 1ACC)) 3

(fail on C- 1ACC) 3
(fail on C- ZACC)3
Applying C. $1 $2) :: (a $2 $1) to: C. C- IACC) 0)
Transform: (.0 (a. 1ACC)) .. C. 7.ACC 81:2)
Transform: 0 -> ZACC
Depth Limit Reached

• (faii onoj
[fail o n 0j
Depth Limit Reached
(fail on (. 0 C- IACC)) 3

(fail on C. 0 C- 7ACC)) 3
(fail on C. C— IACCI 0)3
(fail on C. C— ZACC) 0)3
(tilt en C. 0 (a. IACC)) 3
[fail on C. 0 (a. IACC)) 3

Applying C- $1) :: C. (NOT 51) 1) to: (a. 11CC)
Transform: C. (NOT ZACC) 1) ., C. ZACC $ 1:2)
Transform: (NOT 1ACC) .. !ACC
Applying Fetch Decomposition to: (NOT ZACC) using: $$9I1CC
Search: (a. $$97ACC (NOT IACC))
Attempti ng hi-op-match
hi-op Match: (EMIT(COMA 3 11 3 7 0 40)

Transform: I .> $12
Applyi ng Constant Fetch Decomposition

Feaaibl.(33 (a. IACC C. IACC I))
Transform: (a. !ACC C- %ACC)) -, (a- 1ACC (• ZA1~C 1))
Transform IACC .. IACC
Transform: (a. 1ACC).. (.iAV~C 1)
Applying C— $1) :: (a. 0 C— $1)) to: C- ZACC)
Transform: C. 0 C- ZACC))., C. ZACC 1)
Transform: 0., ZACC
Applying Fetch Decomposition to: 0 using: $51 l~IAcC
Search: (a- $51 j :ZACC 0)
Attempting hi-op-match
M-op Match: (; (ALLOC $$121MP) (EMIT(DCA 1 1 1 3  3 $$12:ZMP))
M-op Match: (EMIT(CLRA 3 1 13 7 0 20)

• Transform: (- ZACC) ., I
(fail on C— ZACC) 3

(fail on C— IACC) 3
Applying C. $1 52) :: C. 52 51) to: C. 0 C. IACC))
Transform: (a. (. ZACC) 0) —, C. 2A~C I)
Transform: (a. ZACC).> IACC
Applying Fetch Decomposition to: C- IACC) using: $81 3IACC
Search: £,

• Attempting hi-op-match
Depth Limit R.ach.d
(fail on 8 3• (fail on (- IACC) J

(fail on C— 21CC) )
Applying (.11 $2) (. $2 $1) te: C. (.11CC) 0)
Transform (.0 C- IACC)) -. (. IACC 1)
Transferm: 0 -, IACC
Depth Limit Reached
(fail on 0 3

____ • - • -~~~~~~~ -~~~~~~~~~~~~~~ - • - - -~~~~~~~~~~~~~~



107

(fail on 0 3
Depth Limit Reached
(fail on C. 0 C— 7ACC)) 3

[fail on C. 0 C— 7ACC)) 3
[fail on C. C- 1ACC) 0)3
(fail on (. C- ZACC) 0 )3
(fall en C. 0 C- IACC)) 3
(fail on (~ Q (a. 2ACC)) 3

Applying C— $1) :: C. (NOT $1) 1) to: C- IACC)
Transform: (a. (NOT IACC) i)•> (. IACC 1)
Transform: (NOT IACC) .> 7ACC
Applying F•tch Decomposition to (NOT ZACC) ueing: $$34ZACC
Search: (a. $$14:1ACC (NOT IACC))
Attsmpting hi-op-match
M-op Match: CEM1T(COMA 3 1 1 3  7 0 40)

Transform: 1 .. 1
Feasible (43 Ca. $12 C. $1:Z 1))
Attempting Store-Decomposition using $$15:ZMP
Search: (a. 7ACC $$157MP)
Attempting hi-op-match
Depth Limit Reached
(fail on (a. ZACC $$15ZMP) 3

[fail on Ca. ZACC (- IACC)) 3
Feaalbl.(53: (,- $j :Z IACC)
Attempting Store-Decomposition using: 5$) 6:ZMP
Search: (a. 1ACC $$16ZMP)
Afiemp ting hi-op-match
Depth Limit Reached
(fail en (a. ZACC $$16:ZMP) 3

(fail on (a. IACC C- ZACC)) 3
No more feas~ Ie hi-epa

Nodes Esamined: 58
Eat. Seconds: .199
Resul t Sequence(s) :

(Alloc $$9 ZACCJ
COMA

• (Const $$10 ZMP lJ
TAD $$102MP 

(Altoc $$14ZACCJ
COMA
INCA

Best Sequenc. is:
(Altoc $$1 4fZACC)
COMA
INCA

Search: (a- IACC C. IACC $112))
Attempting hi-op-match
hi-op Match (LMIT(TAD lii) 1 5512)

Node. Lsamined 1
Le t. Seconds: 3720-2
Result S.queece(,)



10$

TAD 5 h Z
Beet Sequence is:

TAO $$I:Z

Search: (a.. IACC (a. iMP 1ACC))
Attempting hi-op-match
Attempting Decompositions
Attempting Transformations
Feaa8~l.(IJ (a. 7ACC (a. 1ACC 1))
Transform (a. 7.ACC C- iMP 1.ACC)) a.> (a. ZACC C- IACC U)
Transform: ZACC ., 2ACC
Transform: C- IMP IACC) ., (a. IACC 1)
Transform iMP .. ZACC
Applying Fetch Decomposition to: iMP using: $$J :ZACC
Search: (a. $51 :ZACC iMP)
Attempting N-op-match
Ma.op M tch: C; (ALLOC $$2:ZACC) (EMIT[CLRA 3 1 1 3  7 0 20) (EMIT(TAD 1 1 1 3 1 IMP))

Transform: 1ACC ., I
(fail on IACC 3
(fail on 1ACC 3
(fail on C- IMP IACC) 3

(fail on (- iMP IACC) 3
[fail on Ca- ZACC (- iMP ZACC)) 3
(f ail on (a- 2ACC C- IMP IACC)))

(fail on (a. ZACC C- IMP 1ACC)) )
Feseib le(23: (a. ZACC C- 7.ACC))
Tranif ores: (a. ZACC C- iMP IACC)) .. (a. IACC (a. IACC))
Transform ZACC .. ZACC
Transform: C- IMP ZACC) .. (a. ZACC)
(fail on (- iMP IACC) 3

(fail on C— IMP ZACC) 3
(tail on (a. 2ACC (- IMP 1ACC)) 3

(fail on (a- 1ACC (a. iMP ZACC)) 3
(fail on (a- ZACC (a. IMP IACC)) 3
Fe.s~~le(3J: C.. ZACC (a ZACC $12))
Transform: (a.. IACC C- iMP 2ACC)).> Ca. ZPICC C. IACC $12))
Transform: IACC ., IACC
Transform: C— IMP IACC) ., (. 11CC $12)
Applying C. $1 $2) :: C. $1 (a. $2)) to: C- IMP IACC)
Tpanaf ores: (a IMP C- 21CC)).. (.11CC 112)
Transform: IMP., IACC
Applying Fetch Decomposition to: IMP using: $$4 ZACC
Search: (a. $$4 1ACC iMP)
Attempting hi-op-match

V 14—op Match: C, (ALLOC $$5:IACC) ((MIT(CLRA 3 11) 7 0 20) (EMIT(TAO 1 1 13 1 IMP))
Transform: C- IACC) -. $12
Applying Fetch Decompo sition to : C. IACC) using: $$8:IMP
Search (a- $$5:IhIP C- 21CC))
Attempting hi-op-match
Attempting Decompositions
Al tempting Transformations
F.asbl.(13 (a. $12 C. $12 I))
Transform: (a- $$6:IMP C- IACC)) .. (a. $12 (a. $12 1))
Transform: U8:IP.4P .> $12
Transform C— 2ACC) ., (.112 1)
Depth Limit Reached
(fail en C- IACC) 3

— • - •

~

-

~

--

~

- - • -• - - -•



109

(fail on C. ZACC)
Depth Limit Reached
(fail on (a. $$6 ZMP C- iACC)) 3

(fail on (a- $$6:ZMP C- 1ACC)) 3
[fail on C.- $$6:ZMP (- 2ACC))

• Breadth Limit R.ached(3)
(fail on (a- $$6;ZMP C- ZACC)) 3

(fail on C. ZACC).]
(fail on (- 2ACC) 3

• Applying C. $I $2) r (. $2 $1) to: C. iMP C- IACC))
Transform: C. C- 7.ACC) iMP) -. C. 1ACC $12)
Transform: (- 1ACC) a.. IACC
Applying Fitch Decomposition to: C- ZACC) using: $$7:IACC
Search: (a.. $$7:ZACC ( ZACC))
Attempting hi-op-match
14—op Match: (; (ALLOC $$8 ZACC) (EMIT[COMA 3 113  7 0 40) (EMIT(INCA 3 I 13 7 0 10))• Transform: ZMP .. $1.2

Breadth Limit Reached(23)

Nodes Examined 24
Est. Seconds: 8990-1
Result Sequence(s):

(Alloc $$7:1ACC3
(Alloc $$$iACCJ
COMA
INCA
TAO IMP

Best Sequence is:
[Alloc $$71ACCJ
(Alloc $$8ZACCJ
COMA
INCA
TAO IMP

Search (IF (tOt. IACC 0) (a- IACC 1))
Attempting 14-op-match
Attempting Decompositions
Applying (IF $ 1 $2) : C; C-. (NOT $1) $3ZMP) $2 (LABEL $3ZMP))
Simplifying (NOT ((01. IACC 0)) to (NED IACC 0)
Search C; C-> (NED IACC 0) $81 IMP) (a. IACC I) (LABEL $$1IMP))
At tempting U-op-match
Attempting Decompositions

• Applying Sequence-Decomposition
Search (-, (NEQ 21CC 0) $$1 2MP)
Attempting U-op-match
At tempt ing Decomposition,
Applying Skip-Decomposition
Search (GOTO $$1 IMP)
Attempting hi-op-match
Attempting Oecosipaeition,
Applying (0010 $1) (a. IPC $1)• Search: (a. IPC $$1 IMP)

• Attempting U-op-match
N-op Match: C(MIT(JMP Ill)  S $$l:IMP)
Attem pting Transforma tions
Simpkf ying (NOT (NED ZACC 0)) t• ((DI. 21CC 0)

• Search: (a., ((DI. 11CC 0) (a IPC 1))



1)0

Attempti ng M-op--match
hi-op Match: CEMIT (SKPE 2 1 1 3 7 I 5)
Attem pting Transformations

• Feaaib le(IJ : C-> (NED I.ACC 0) (. 7.PC 1))
Transform: C-. (NEQ 7.ACC 0) t$I7MP) ., C-. CN(Q IACC 0) (a IPC 1))
Transf ores: (NED 7.ACC 0).> (NEQ ZACC 0)
Transform: ZACC .> IACC

• Transi ores: 0 -. 0
• Transform: $$I:ZMP .> C. ZPC 1)

Depth Limit Reached
• I (fail on $$I:1MP 3

(fail on $$1:1MP 3
Depth Limit Reached
(fail on C-. (NED ZACC 0) $$1:ZMP) 3
(fail on C-. (NED IACC 0) $$1:ZMP) 3
(fail on C-, CNEQ IACC 0) $$1:IMP)

• Feasible(2J: (-> ((01 $12 —I ) C. IPC I))
Transform: C-. (NEQ 1ACC 0) $$11MP) .. (-> ((DL $1:Z -1) C. ZPC 1))
Transform: (NED 1ACC 0) ., ((DL $12 -1)
Depth Limit Reach.d
(fail on (NED IACC 0)3

(fail on (NED IACC 0)3
Depth Limit Reached
(fail on (-> (NED IACC 0) $$11MP) 3
(fail on C-> (NEQ IACC 0) $$1:ZMP) 3
(fail on Ca.> (NED 1ACC 0) $$l:1MP)
Breadth Limit Reached(6)
Search: (a- IACC 1)
Attempting U-op-match
U-op Match: (EMITISETIA 2 113 7 0 30)
Search (LABEl $81 IMP)

Applying Skip-Decompoaition
Search: (a- IACC 1)
Attempting hi-op-match
U-op Match: (EMIT(SETIA 2 111 7 0 30)
Simplifying (NOT ((01 2ACC 0)) to (NED IACC 0)
Search: C-, (NED iACC 0) C. IPC I))
Attempting U-op-match
U-op Match: (EMIT(SKPNE 2 113 7 1 2)

• Attempt ing Transformations
Feasible(1J C—> (EQL $I:Z —1) C. ZPC I))
Feaeèl,(2J: (-. ((DL IACC 0) C. 1PC I))
Feasible(3) C-. (NED ZACC 0) C. 1PC 1))

Nodes (xamjned: 15
Let. Seconds : .8860- 1

• Result Sequence(s):

SKpz
SUP 551:1KW
SET IA

-— or— -

SKPN(
SET IA

,.‘,,,, ,,, ‘,., ‘,>,>‘,.>‘
Oi,t Sequence 1s

SKPN(
SETIA

-~~~~~ • - • • - • •- ~~--.- - • ---~~~~~~~~~~~~~~~~~ -•~~~~~~ • •-~~~~~~~~~~~~~~--•• - •



• _ 
_ _ _ __ _  ---~~~~~~~-~~~~~~—~~~~~~~~~~~~

- • . • • • •

II)

• Search: (a. 7ACC 0)
At~omp %irig M-op-ma%ch
M-op Match : C, CALLOC $51) (EMIT(DCA 1 1 1 3  3881)) 

•M-op Match: (EMIT(CLRA 3 1 I] 7 0 20)

Nodes Examine d: I.
Eat . Second. • 493’~-2
Result Sequence(s):

(Alloc 5$!)
OCA 851 

or 
CLRA

>>>>>>>>>>>>>>>>>>>>>>>>

Beat Sequence is:
CLRA

Search: (a. 7.MP ZACC)
Attemp ting hi-op-match
U-op Match: (; (ALLOC ZACC) (EMIT(DCA I I I ]  3 iMP))

Nodes Examin,d: I
Eat. Seconds: .3570-2
Result Sequence(s):

(Allec 7ACCJ
OCA iMP

Boa t Sequence is:
(Altec 2ACCJ
DCA IMP

Search: (a. 5$17MP C. 5$l:7MP 1))
Attempting M-op-match
Ma.op Match: (; ffMIT(ISZ I I 1) 2 $$1:IMP) (EMIT(NOP 3 11 3 7 0 0))

Node. Examined: I
Ee l. Seconds 5310-2
Result Soquence(s)

ISZ 5$l:ZMP
NOP

Best Sequence ii:
152 $81 IMP
NOP

(POP-li examplis)

Search: (a- $51:IM (AND $$2 714 $$37M))
Attempting hi-op-match
Atte mpting Decompositions
Attempting T rsn~formaIions
Feasible (l] (a- $IDST (AND $1051 (NOT $2 SRC)))
Transform: (a- $5 1714 (AND $$2 7M 553.714)) a> (a. $1:DST (AND $1:DST (NOT $2SRC)))
Tranef ores: 5517M -, Si 051
Transform (AND $$21M $$3 7M)., (AND $1 D$T (NOT $2SRC))

L ~~~~~~~~~~~~~~~~~~~ • • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~ ~~~~~~~~~.•-~~~~~~ • •~~~•- -.. • - 
_ 

_ _



112

Transform $52:1M a.> $1:DST
• Applying Fetch Decomposition to $52114 using’ $51:IM

Search: (a- 5$ 1:714 $52 114)

Atte mpting hi-op-match
14—op Match CEMIT(MOV 2 I 1 )1 $$2 ZM $81114)

Transform: $$37M -, (NOT $2SRC)
Applying $1 :: (NOT (NOT $1)) to’ $53114
Transform : (NOT (NO T 553.714)) .> (NOT $2-SRC)
Transform: (NOT 5$37M)., $2SRC
Applying Fetch Decomposition to: (NOT $$31M) using: j$4:ZR
Search ’ (a. 554:1R (NOT $$3IM))
Attemp ting hi-op-match
At tempting Decompositions
Attempti ng Tranaformation.
Feasible(IJ: (a- $1 OST (NOT $1:DST))
Transform: (a. $$4ZR (NOT $$3:ZM)) a., (a. $1DST (NOT $ l OST))
Transform $$4 1R ., $1051
Transform’ (NOT $53714) a.> (NOT 51:051)
Transform- $53714., $3:DST
Applying Fetch Decomposition to $53214 using: $$4:ZR
Search: (a- $$4 1Q 553.714)
Attempting 14-op-match
U-op Match: ((MIT(MOV 2 I I)! $$3.ZM $$4 ZR)

Breadth Limit Rssched(3)
Feaaible(23- (a- $1:DST (NOT $i.DST))
Transform: (a.. $53:714 (AND 552 714 553.714))., (a- h OST (NOT $iDST))
Transform- $$I :1M .> 51 OST
Transform: (AND $$2 ZM $53714) a., (NOT $1 :DST)
Applying (AND SI $2) :: (NOT (OR (NOT $1) (NOT $2))) to: (AND $$2lM $$3IM)
Transform: (NOT (OR (NOT 552:714) (NOT 553:214))).> (NOT $3 051)
Transform: (OR (NOT $82714) (NOT $53714))., $l~OST
Applying F.tch Decomposition to: (OR (NOT 552:714) (NOT $53214)) using: $$1:ZM
Search: (a- 511:714 (OR (NOT $$2:ZM) (NOT $53214)))
Attemp ting U-op-match
Attempting Decomposition.
Attempting Transformations
Foas ible(1) (a- h OST (O~ $1 OST $2SRC))
Transform: (a- $51 114 (~)R (NOT 852:214) (NOT $53714))) a., (a. $IDST (OR $l:OST $2:SRC))
Transform: 5$! :714.> 8 lOST
Transform: COP (NOT $52714) (NOT $$3:IM)).., (OR $ l OST $2SRC)
Transform. (NOT 1*2:714).> $1051
Applying Fetch Decomposition to: (NOT $82114) using: 551:214
Search (a- $11 714 (NOT 552:714))
Attempting U-op-match
Depth Limit Reached
(fail on Ca- 15 1:714 (NOT 512214)) 3

(fail on (NOT 552 714)3
(fail on (NOT 552:714)3
(fail on (OR (NOT $52 114) (NOT $$3:IU)) 3
(fail on (OR (NOT *52:714) (NOT 5$37M)) 3
(fail on (a- $$1714 (OR (NOT 852:714) (NOT $$3ZM)))
(fail on (a. 551:714 (OR (NOT 552:714) (NOT 5$37M))) 3
(fail on Ca. 551:114 (OR (NOT $$2IM) (NOT $53:IM))) 3
Breadth Limit Reached(S)
(fail on (a- $$J 714 (OR (NOT $52714) (NOT 553214))) 3
(fail on (OR (NOT $52714) (NOT 553 714)) ]

(fail on (OR (NOT $52114) (NOT 553ZM))3
(fail on (NOT (OR (NOT j$2IM) (NOT $$37M))) 3
(fail on (NOT (OR (NOT $$2:7M) (NOT 553:214))))

-

~

- • - -

~ 

— -~~~~•~~~ • - 
•



- -~~~~~~ ~~~~~- I
113

Applying 51 :1 (NOT (NOT $1)) to (AND 552:714 $53114)
• Transform: (NOT (NOT (AND 552 714 $$3.7M))) a.> (NOT $IDST)

Transform (NOT (AND 552 714 553.714)).> t IOST
Apply ing Fetch Decomposition to (NOT (AND S$2 1.M 553 714)) using : 5$ 1:214
S~arch (a- 55l~7M (NOT (AND $52 714 553:714)))
Attemp ting 14-op-match
Attemp ting Decompositions
Attempting Transfornistions
Fessible( 11 (a. $1 OST (NOT $1 OST))
Transform (.- $$l 7M (NOT (AND SS2:1M 553714)))., (a. $1 DST (NOT h OST))
Transform: S$I 7M a., $1 DST
Tran sf ores (NOT (AND $52 7M 553.714)) -> (NOT $1:DST)
Transform (AND 552 /U 553714) a.> 5 lOST
Applying Fetch Decomposition to: (AND 552.1.14 553.714) using: 5$1:ZM
Search (a. $5 1114 (AND 552.714553714))
Attemp ting U-op-match
Depth Limit Reached
(fail on C.- 55 1:714 (AND 552 714 553114)) )

(fail on (AND $52114 553714)3
(fail on (AND 552.114 553.714))
(fail on (NOT (AND 552 714 ~~3.7M)) 3
(fail on (NOT (AND $$2 714 5$3.7M)) 3
(fail on (a- 55 1:714 (NOT (AND 5S27M 5$3.7M))) 3
(fail on (a. 511:114 (NOT (AND 552:714 553.714)))]
(ta il on (.- 551.714 (NOT (AND 552114 5 3714))) 3
Broadth Limit ReachedC5)
(fail on (a- 551114 (NOT (AND 552 114 553 714))) )
(fail on (NOT (AND $52 714 553 7M)) I
[fail on (NOT (AND SS27M 553.714))]
(fail on (NOT (NOT (AND U2:7M 553114))))
[fail on (NOT (NOT (AND 552.714 $$3714)’ 3

(fail on (AND 552.114 553:714)1
(fail on (AND 552:714 553.714) )
[fail on (a. 55 1:714 (AND 552114 553:714))]

(fail on (a. 5$ I .7M (AND 552.114 553.714)) ]
(fail on (a.. 5$ 1 114 (AND 552 714 553:714)) ]
Fossablo(33: (a. $1 DST 52 SPC)
Transform’ Ca- 553.714 (AND 552:714 553:114)).> (a.. $I.DST $2:SRC)
Transform 511714 .., $1 DST
Transform. (AND 5$2 7M 553 /14) a.> 52:SRC
Apply ing Fetch Decomposition to- (AND 552.714 553:214) using : $$5flR
Search: (a. $S5 7R (AND 552:114 553 714))
At tompting N-op-match
Attempting Decompositions
Attempting Transformations
Feasible(13: (a.. $1.DST (AND II OST (NOT S2SRC)))
Transform: (a- $55~7R (AND $52714 553714))., Ca- $l:DST (AND $1:OST (NOT $2:$RC)))
Transform $$51R a., $1051
Transform (AND 552 714 513 714) .> (AND $lDST (NOT $2:SRC))
Transform- $$2:7M .> SIDST
Applying Fetch Decomposition to: 552:214 using: $$5:2R
Search (a. 555 7R 552.714) -
Attempti ng 14-op-match
N-op Match: (EMIT(MOV 2 I 1311*2 :714 5$5:ZR)

Transfo rm- 553 714 .> (NOT $2SRC)
Applying $1 :: (NOT (NOT $3 )) to’ $53714
Transform: (NOT (NOT 553714)) a.> (NOT $2SRC)
Transform: (NOT $$3~7M)., $2.SPC
Applying Fetch Decomposition to: (NOT $53714) using: $$6:ZR

___________________________



114

Search: (a- 556.7R (NOT 553.1M))
Attemp ting 14-op-match
Depth Limit Pe~ched
(fail on C.- 5$61Q (NOT 553214)))

[fail on (NOT $53714)
(fail on (NOT 553114) ]
(fail on (NOT (NOT 513.714)) ]

(fail on (NOT (NOT 553.714)))
[fail on 153-714 3
(fail on 553114 3
[fail on (AND 552:714 553.714) 3
(fa il on (AND 552.714 553714)
(fail or, (a.. $$5.YR (AND 552 714 553.714)) ]

[fail on (a- 5$5.7P (AND 552:714 553.714)) ]
(fail on (a.. 555.1Q (AND 552:714 553714)))
Breadth limit Reach~d(1O)
(f~it on (a.. $55:7R (AND 552:714 $53714)) 3
(fail on (AND 552:714 553.714)]
(fail on (AND 552.114 553 714) 3
[fail on (a.. 551:714 (AND 552:714 553 714)) )
(fail on (a.- 553:714 (ANt) 552:714 553714))]

[fail on (a.. 551:114 (AND 552:714 553;1M))
Broadth Limit Roached(45)

Nodes Examined: 46
Eat. Seconds: .227
Resvlt Sequence(s):

[Alloc $51 714]
NOV 552:714 551.714
(Altec 5$4:7R3
(Al loc $$4:7RJ
NOV 553.714 $$4:7R
COM $$4’7R
BIC $$4:7R 5$ 1:714

Best Sequence •:
[Altec $51 lU)
NOV $$2 7M 551:714
(Alloc $$4:7R)
(Alloc $14:ZQJ
MOV 553 714 $$4 7Q
COM $$4 7R
BIC $$4’ZR 1*1:214

Search: C— > (N(Q $51 714 *52.714) $$3)
Attempting 14-op-match
At tempting Decompositions
At tempting Transformations
Fea.ibte(Ii (a- $1OST (NOT II OST))
Fessible(23: (-> (NOT 1Z) 1I.ADR)
Tr*nsf ores: (a.> (N(Q $51 714 552.114) 553) a., (-, (NOT 22) $I.ADR)
Transform: (NEQ 551.714 512 114) -, (NOT 22)
Applying (NEQ $1 $2):: (NOT (tQL $1 $2)) to (NEQ $$1:lhl *52:214)
Transform: (NOT (EQI. 551114 552.714)) a.> (NOT 22)
Transform: (EQI 111:714 552 714) •> 22
Applying Fetch Decomposition to: ((OL 551:714 152:714) using: 553:22
Search: (. 513:72 (EQL 111.714 552714))
Attempting 14-op-mitch

_ 
• •‘ ~~~~. -- ..



135

U-op Match (1MIT(CMP 2 1 33 2 552.714 5$12M)
Transform: $53 -> $1-ADR

Foasihlo(33: C-> (NOT 7t~) SI ADR)Trariaj fo rm: (..> (N(Q 553.714 552.714)553) -, C.., (NOT 7N) $ 1AD R)
Transform : (11(Q 511.714 552 714) ..> (NOT iN)
Applying (NCQ $ 1 52) :: (NOT ((01 51 52)) to: (NEQ 551:214 552.214)
Transform: (NOT ((01 55 1:714 552 714)) .> (NOT iN)
Transform: ((01 551 714 152 714)., IN
Applying Fetch Decomposition to: ((01 55 1:714 552 714) using: $$4fZN
Search: C.- $54.7N (EQI 5$I 714 552:114))

• Attempting M-op-nistch
At tompting Decompocitions
Att empting Transformation ,
Tea~iblo( Ii (a.. 1Z ((01. 53 OST 0))

• Att emp ling Slore-Decomposition using: 555:72
Search: (a- 554 iN 5S5:7Z)
Attempt ing 14-op-match
Dep th Limit Reache d
(fail on (a.. $547N S55:7Z) 3

(fail on (a.. 5$4:7N ((01 $51.7U 552 714)) ]
Foaeible(2J: (a- 7Z ((01 $ 1 DST $2SRC))
At tempting Slore-Docomposition using: 556:22
Search. (a.. $54 iN 5$6 1Z)
Attomp t ing N-op-match
Depth Limit Rpached
(fail on (a.- $54 iN $56 72) I

(fail on (a. 554 iN ((01 55 1714 552 IM))
Fe~aibte(3) (a- 72 ((03. (OR $1 DST 52SRC) 0))
At tempting Slors-Decoanposition using: 557:72
Search (a- $54 /N 5$7ZZ)
Attemp ting M-op-match
Dep th limit Reached
(fail on (a-. $547N $$7:7Z)
[fail on (a.. $54 IN ((01 553:714 552:714)))
F.asible(43- (a- $1:DST (NOT $1 DST))
Attempting Store-Decomposition using. $$8:7R
Search: (a.. $54 iN $$81R)
Att emptin g U—op-match
Depth limit Reached
(fail on (a- ~~4 iN $58 1R)
[fa il on (a- $54 iN (EQL 553 :714 552:714))]
Feasible(S): (a.. 51:D57 S2SRC)
At tempting S tore-Oecomposition using: $$9iR
Search (a.. 5$4.7N $597P)
Attemptin g N-op-match
Depth limit Reached
[fail on (a.. $54;7N 5$9.7P) 3

(fail on (a- $54-iN (EQt. 551:114 552:714)) )
Breadth Limit PeachedClO)
(fail on (a. $54-iN ((01 551.714 552:714))]

(fail on ((QI $%1.714 552:714)
(fail on ((01. 151:714 152 714))
(fail on (NOT ((OL 551:714 552-714))]

(f sal on (NOT ((0%. $51714 552 714)) )
App lying II :: (NOT (NOT $ I)) to: (N(Q 551:714 552.714)
Treraif ores: (NOT (NOT (N(Q $5 1714 552.714)))., (NOT iN)
Tran~foqes (NOT (P4(0 55 1:714 552:714)).> iN
Applying Fetch Decomposition to: (NOT (N(Q 55 1:714 *52:214)) using: 5*10Th
Search: (a.. 55 lOIN (NOT (NEQ 55 3:714 552:714)))



-~~~~~ ~~~~~~~~ - - -— - • -
~~~~~~~~

-
~~~~~
-

~~~ 
_ _ _ _ _ _

116

Attemp ting 14-op-match
Attempting Decompo,itions
Attempting Transformations
Fea~ible(l]: (a.. 5 lDST (NOT 5 l OST))
At tempting Store- Decomposition using: $511 ‘ZR
Search- (a- $510.7N $51 I:iR)
Attemp ting 14-op-match
Depth Limit Poached
(fail on (a- 5510.7N 5$11:7R)

(fail on (a.. 5$ lOiN (NOT (NEQ 551;1M 552-714))) )
Feasible[23: Ca. 51:DST 52.SPC)
Attempting Store-Decomposition using: 5$12:7.R
Search (a- 5$ 30./ N 5$12:7R)
Attempting U-op-match
Depth Limit Reached
(fail on (a- 5510:719 553 2 -7R )
[fail on (a.. $$10:7N (NOT (NEQ 5$ 3:714 552.714))))

• No more feasible TM—ops
[fail era (a.. 5510:/N (NOT (P4(0 551:7M 552:714))) ]

(fail on (NOT (NEO 55 1714 552 714)))
[fail on (NOT (NEQ $51 714 552.714)) )
[fail on (NOT (NOT (NEQ 551:714 552.7.14))))

[fail on (NOT (NOT (NEQ 553:714 552 714))) )
(fail on (NEQ 553.7 14 552:714) )

(fail on CNEQ 55 1:714 5527 14) )
(fail on (— > (19(0 551:714 552.714) 553) )

[fail on C—, (NEQ 55 1:714 $52 714) 553) )
[faa on (a.> (NEQ 55 1:714 552:714) 553) 3
Feasible (4): (a.. 22 ((01 $ 1 :DST 0))
Foas.ble(5): (a- 72 ((01 5 l OST $2 SRC))
Feasible(6): (a- 72 ((01. (OR $1:DST $2:SPC) 0))
Feasa&e(7): (~ (a.. $l:D$T $2.SRC) (a- 7.19 (ISS 52.SRC 0)) (a. 22 ((03. $2-SRC 0)))
Feaaiblo(83 (a- $j:t)~T $2.SPC)
Feasible(93: (a- 7PC $1:AOP)
Feaaible( 30) C-> IZ $1:ADR)
Transform: (-, (NEQ 881:714 552-714) 553) a., C-, ZZ $1:ADR)
Transform. (P4(0 5$ 1:714 552.714) —> 72
Applying Fetch Decomposition to: (P4(0 5$ 3.714 552:714) using: $513IZ
Search: (a- 5513IZ (N(Q 55 1:114 552 714))
Attemp ting U-op-match
Attempti ng Decompositions
Attempting Transform ations
F.,asible( 1). (... 72 ((01 $1 .DST 0))
Transform: (a- $5 13:/2 (NEQ 551 714 552:714)) -, (a. 72 ((01 $1.DST 0))
Transform: 551372 a., 72
Tranuform (P4(0 $51 114 552 714) , ((01 $1:DST 0)
(fail on (P4(0 551:714 552 714) )

(fail on (P4(0 551-114 552-714) )
(fail on (a- 5$I3-1Z (P4(0 551.114552:714)) ]

(tail on (a- 553372 (P4(0 553.714 552 714)) )
(fad on (a.. 5513 7Z (N(O 553:714 552714))]
Feasuble[23 (a. 1Z ((Q3. $I:DST 52SPC))
Trsn,f ores: (a. $5131Z (P4(0 551:714552:714)) .> (a. 22 ((01 $t:OST $2:SRC))
Transform: 5813-72 a., IZ
Transform: (N(Q 5$ 3:714 $52714) a.

~~ 
((QI 51:OST $2.SRC)

• (fail on (N(Q $$1 114 552 114) ]
[fail on (P4(0 $51:714 $52 714) J
(f ail on (a- 5$ 1 3:72 (P4(0 551:714 552.714)))

(fail on (a- $$13.7Z (NEQ $$I-7M 552.714)) )

_  . -- • -~~-•~~~~~~ . 
.
~~ - --- ~~~~~~~~~~~~~~~~~~ -

•. • -- ~~ ---- .-,--
~~~~



~ -•.•--~ •~ ~~~~—
. -~~~~~~~~~~~~~~~ - - . ~

117

(fail on (a.. 5513 72 (P4(0 551:714 552:714)) )
Foasiblo(33: (a. 72 (EQL (OR 5l:DST 52 SRC) 0))
Transform’ (a. 551372 (P4(0 551:714552:714))..> (a- 7Z ((01 (OR $1:DST $2.SRC) 0))
Tr~nstorm: 55 13/Z ., 7Z
Transform- (P4EQ 553 714 552 714) a., ((01 (OR $3:DST $2:SRC) 0)
[f ail on (P4(0 551:714 552 114) )

(fail on (NEQ $517 14 552 714) )
(fail on (a- 55131Z (NEQ 551:714552:714))]
(fail on (a- $513 1Z (N(0 55 1 714 552-714)) )

(fail on ( -  S$131Z (P4(0 55 3 .7 14 $52:7~M)) ]
Feaaible(4J. (.- 51 OST (NOT 5 l OST))
Attampt ing Store- Decomposi lion using: 5514:1.R
Search. (a.. 5$137Z $5 147R)
Attempting U-op-match
Depth limit Reached
(fail on (a- 5$13-7Z 5514:7R)

[fail on (a. 553372 (N(Q 551:714 552-714)) )
Fnasiblo(53- (a- 51 DST 52-SRC)
Attemp ting Store- Decomposition using- 581 SiR
Search: (a- 5$ 3 3:7Z 5515:/P)
Att empting 14-op-match
Depth limit Reached
(fail on (a- 5513.72 $$15:7R) 3
(f ad on (a.. $5 13.12 (19(0 55 1:114 552.714)))
No more foa~ible U-opa
(fail on (a- 55 33-72 (19(0 553:714 552:714)) ]
(fail on (NEQ 55 3: 714 552.714))

(fail on (NEC 55 i :714 152-714)3
(fail on (-> (NEQ 55 3:114 512:714) 553) ]

(fail on C-> (NEQ 55 3 :714 552.714) 553) 3
(fail on (-> (1-1(0 55 1.714 552.714) 553)
F.asablo( l I). C-> iN $3:ADR)
Tranoforna: (-> (N(Q 553:714 552:714) 553) —, (—> IN 51:AD~)
Transform: (NE0 55 1:714 $52:7M) a.> iN
Applying Fetch Decomposition to : (NEQ 55 1.714 552:714) using: $$16:IN
Search- (... $51 6:7N (19(0 551:714 552 714))
Attempting 14-op-match
Attempting Decompositions
Attem pting Transformations
Fea~ible( 1): (a- 51 OST (NOT $1 -OST))
Attempting Store-Decomposition using’ 551 7:ZR
Sca,ch (a. 5516:7N 5517:7R)
Attempting Ma.op match
Depth Limit Reached
(fail on (a. 5516-iN 55 17: IR)  3

(tail on (a- $536 iN (19(0 55 1-714 552:714)) )
Faasible(2) (a. 72 ((0%. $1 DST 0))
Attemp ting Storo-Deconiposition using: 5518:72
Search: (a- 5516.7N $5 18:22)
Attempting N—op-match
Depth Limit Reached
[fail on (a- $$ 167N *538:72) 1

(tail on (a.. $516-iN (N(Q 551:714 552:714)) )
Feaaib)e(3): (a- 72 (EQL $3 :DST $2:SRC))
At tempting Store-DecompositIon using: $51922
Search C.- 5516:7PI 551922)
Attempting 14-op-match
Depth Limit Reached
(fail on (a. 5$ 16-ZN $51922) 3

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-:--~~~~

118

(fail on (a.. 5$36:7N (N[Q 55 1-114 552-714)) )
Feasibl.(43: (a- 7Z ((0%. (OR 51DST 52-SRC) 0))
A ttempting Store-Decomposition using: 5520:12
Search. (a- 5536 .719 5520:72)
Attempting 14-op-match
Depth Limit Poached
(fail on (a- $53 6:7N 55 20:72) 3

(fail on (a. 5516-iN (N~Q 551./14 552:714)) )
Feasit-ale[53: (a-. 53 -(1ST 52 SRC)
At tempting Slo.-o-Decompogilion using: 5523 :ZR
Search: (a- 5516:719 5$21.7R)
Attempting 14-op-match
Depth Limit Reached
(fail on (a.. 5536.719 S521:7R) 3

(tail on (a. 5516-iN (NEQ 55 3:714 552:714)))P No move feanible N-epa
(fail on (a. 5536- iN (NEQ 551:714 512-714)) ]

(tail on (19(0551:714 552714) ]
(fail on (N(Q 553:714 552.714) )
(fail on C-> (P410 55 1:714 552 714) 553)

(foil ova C—> (NCQ SI 1:714 552:714) 553) ]
(fail on (-,  (NEQ 55 3:714 552:714) 553) )

• No more feasible TM-opa

Nodes Esanuned: 62
(at Seconds: 288
Result Sequence(s):

(Allot $53-7Z]
CMP $$2;7M 551:714
BNE $53

Bee t Sequence is:
[Altoc 553:72)
CMP 5*2 714 553:714
BNE 553

Search : (-> (LEO 551:714 552:714) 553)
Attempting N-op-match
Attempting Decompositions
Attempting Transformations
Feasib le ( 1]: (a- $ 3 -DST (OR 51 :DST $2.SRC))
Feas ibl.(2): C-, (OR 7Z iN) $3 -ADR)
Transform: C-, (lEO 55 3:714 552:714) 553) a.> (.> (OR 22 iN) $IADR)
Transform (LEO 553:714 552:714).> (OR 72 iN )

• Applying (LEO $1 52) :: (OR ((01 53 52) (LSS $1 52)) to: (L(Q $51-ZN *52:714)
Transform: (OR ((03. $51 /14 552.714) (LSS 553 -714 552.714)) a.> (OR 22 iN)
Transform: ((OL 553 :714 552 114) a., 72

• Applying Fetch Decomposition to : ((QL 55 3:714 552:714) using : 553:72
Search: (.- 553-72 (EQI. 551:714 552:714))
Attempti ng 14-op-match
P.4-op Match: (EMIT[CMP 2 I I] 2 55 3~1M 552:114)

Transform: (ISS $5 3114 552.714).> iN
Applying F.tch Decomposition to: (ISS 553114 552:114) ueing: 5$4:2N

• Search: (a.. 554-719 (LSS 5$ 1:114 552:ZM))
Attempting N-op-match

• 14-op Match: (EMIT(CMP 2 1 3] 2 553:714 552.714)
Transform: 553.> 53 .ADQ

Feasible[33: (a. $I:()ST (NOT 51(1ST))

_ _ _  _



119

Fnasihle(43 ( -,  (NOT 7Z) 53 ADR)
Transform C-, (LEO 5*1 714 552.714) $53) a> (-> (NOT 72) $I.ADR)
Transform. (LEO 553 .7 14 ~~2 714) a.> (1901 72)
Applying ([(0 51 52) :: (NOT (GTR 53 52)) to: (1(0 551-714 552714)
Tranofo pm- (3401 S.) -> (1901 72)
Transfn,m: £ -> 72
Applying Fotch Docompnsition to: & using- 555.12
Search. (a- ~~5 72 (G1R 553.114 $52714))
Attempting N-op-match
Att emp ting Decomponitione
Attempting Transformat ions
F~a~iblo( I)- (a- 5 3 (1ST (NOT 53 (1ST))
At temp ting Sloro-Decomposilion using- $56 7R
Search (a- $55 7Z $56 ZR)
Attem p ti ng U-op-match
Depth limit Reached
(fail on (a. $557Z $56 1R)

(fail on (a.. 5$5-7Z (GTR 55 3.714 152714)) ]
F.asible(23 (a- 53 DST (AND 53 (1ST (NOT $2SRC)))
Attempting Store-Decomposition using 557 ZR
Search : (a- 555 1Z $~7 7R)
Attemp ting 14-op-match
Depth limit Reached
(fail oi Ca- $55 12 5$7-7R)
(fail on (a- $55-7Z (GTR 551.114 $52714))]
Feasible[3J (a. 5 3 ( 1ST 52 SRC)
A ttemptin g Store-Decomposition veins $58 ZR
Search (a- 555-12 558-ZR )
Attempting N-op-match
Depth Limit Reached
(fail on (a- 555 72 $58-/R )

on (a- $55 /Z (GT R 551 714 552.714)) ]
Breadth Limi t Peached(6)
(fail on (a... 555 72 (GTR 551/U 552714))]
(fail on (GIR 55 3:714 552.714))
(fail on (GTP 553. 114 552 7M)
(fail on (NOT (GIP 553-714 552 714)) )
(fai l on (NOT (GIR $5 1:714 552 714)))
Applying $3 :: (NOT (NOT $1)) to (LEO 551 714 552714)
T,anafeavm (NOT (NOT ([EQ 551 /P.4 552 714))) a, (NOT 72)
Transform (NOT (LEO $51 714 552 714)) -, 72
Applying Fetch Decomposition to (NOT (1(0 $5 I-ZN $52714)) using 559:22
Search- (a. 559-72 (NOT (LEO 55 1-/.14 552.-lU)))
Atte mpting N-op-match
Attempti ng Decompositions
Attempting Transformati ons
Fea. ibln( I). (a- 51(1ST (NOT 51(1ST))
Attempting Store-Decomposition veing: $5 lO.7R
Sea.ch: (a-. $$9 7~ $5lO 7R)
Attempting N-op-match
Depth Limit Reached
(fail on C.- 559.12 $510 1R)
(fail on (a- 559-72 (NOT (LEO 55 1.714 552.714)))]
Fesiaible(23 (a- * 1 051 52.SRC) -

Attempting Store-Decompo,iliun Usifl $: 5*1 I:IR
Search - (a- 559-72 55 11 -7R)
Attemptin g 14-op-match
Depth Limit Reached
(fail on (a- $$9 7Z $5117R) 3



-~ -~ ---- 

1
320

[tail on (a.. 559 7Z (NOT ((EQ 5$L 714 552714))) )
No more feasible U..ops 

e(fail on (a.. 559-7z (NOT (LEO 553 714 552 714))) ]
(fail on (NOT (LEO $51 714 552 114)) )

[fail on (NOT ([EQ 553 714 552 714)) ]
(fail on (NOT (NOT ([EQ 5$1-714 552 714))) ]

(fa.il on (NOT (NOT (LEO 55 3:7 14 552 714))) ]
on (1(0 553.714552 714)3

(fail on (1(Q 551 714 552 714) )
(fail on (.., (3 10 55 1.71 4  552-714) U3) 3
(fail on (—a (LEO 55) 714 552 714)553))

(fail on (-a (( EQ 551 114 552 1143 553) 3
Feasib l.(5) (-a (NOT 734) 51.ADR)
Tra nsform- C-a (LEO 553 ZM 552 13-4) 553) -, (-a (NOT ZN) $1.ADR)
Trans form (LEQ S$1-7M 5$2-714)., (NOT iN)
Applying (LEO 53 52) : (NOT (GTR 51 52)) to: (1(0 551-7 14 $52-ZN)Transform- (NOT (GIR 553 714 552 714)) —, (NOT ZN)

Tran sform- (GTR 55 3 -714 552 114) .> iN
Applying Fetch Decomposition to: (GTR SSI:ZM 552.714) using- 5512:219Search: (a.. 5 5 3 27 34  (CTR 551 714 $52-iN))
Attemptin g N-op-match
Attempting Decompositions
Att empting Transformations
Feaiaibl.(1 J- (a.. $3:( 1ST (NOT 51:DST))
Al temp ting Store-Decomposition using: $51 3:ZQ
Search (a- 5512 iN 553 3-7R)
Attempting U-op-match
Depth Limit Reached
(fail ova (a.. 5532:719 $513.7R)

(fail on (a- *512:719 (GTR 553:714 552 114))]
Feasible(2): (a- 53:DST (AND 5l:DST (NOT 52-SRC)))
Attemp ting Store-Decomposit ion using: 5514-ZR
Search: (a.. 5512:/N 5514 ZR)
Attempting U-op-match
Depth L imit Rpact,ed
[(cit on (a.. 553 2:719 553 4-7R) )

(fail on (a- 551 2-719 (GTR 551 714552.714)))
Feasible(33: (a- 53 (1ST $2-SRC)
Attemp ting Store-Decomposit ion usin g: 551 5:7k
Search: (a- 5*12:7N 5515:7R)
Attempting N-op-match
Depth Limit Reached
(fa.il on (a-. 5512-iN 5535 ZR) 3

(fail on (a.. 551 2-734 CCTR 553:114 552.ZM)) 3
Breadth Limit Roached(O)
[fail on (a- 55 3 2:719 (DIP 55 1-714 552:714))]

(fail on (GIP *51:714 552 714) )
(fa il on (GTP 551-714 552-714) 1
(fail on (NOT (DIR 551 714 $52-lU)) 3
all ova (NOT (GTR $5 3 73.4 552 714))]

Applying 53 :: (NO T (NOT 51)) to- (LEO 553- 7 14 552:714)
Transform (NOT (NOT (((0 55 3 -714 552 7M))3 a.> (NOT ZN)
Transform: (NOT (LEQ 55 1-714 552-714)) ., 734
Applying Fptch Decomposition to- (NOT (310 551714 552:714)) using: 5516:119Search: (a- 553 6 719 (NOT (LEO 5*1.714 552:714)))
Attempting N-op-match
Attempting OecompesiUon,
At tempting Tranalormatj,ns
Fe.suble( 3]: (a- 5) - OST (NOT 51 (151))

L



121

Attemp ting Stor~-Decc.mpositi~n using 5537 7R
Search: (a- 5516.734 $$1 7 :7R)
Attemp ting 14-op.match
Dep th Limit Poached
(tail on (a- 5516 734 $517:7R)

(fail on (a- 55167N (NOT ([EQ 55 3:714 552.714)))]
Feasibk.[23: (a.. 53 ( 1ST 52-SRC) - -

Attempting Store-Decomposition using: 551 8Z R
Search: (a-. $516-iN $$I8-7R)
Attempting U-op--match
Depth Limit Poached
(fail on (a- 5516 iN 5S38-1P) I

h ail on (a-. $516134 (NOT (110 553:114 552.7 14))) )
No morn fe.iaihli, 14. ops .
[tail can (a.- 5536.119 (NOT (((0 553 714 552-714))) )

[fail on (NOT (LEO ~~I 714 552 714)) ]
(fail on (NOT ([EQ 551.714 552 714)) 3
(fail on (NOT (NOT ((EQ 551.7M 552714))))

[fail on (NOT (NOT (t.EQ 551 114 552.714))) )
(fail on (1(Q 553.714552714)]
(fail on (LEO 553 714 552 714) ]
(fail on (-a (((0551 -114 552 714) 553) 3

(fail on (-a (1(0 553 :7 14 552.714) 553) 3
[fail on (- ,  (1(0 551-714 552-714) 553)]
Breadth limit Roached(439)

Nnd~~ (saniini,d 50
Eat Secon ds .225
Result Soquonco(s)-

(Alloc 553 ?Z)
CUP 55 1:714 $52 714
[A lloc 554 134)
CUP 55 1-714 552-714
fILE 553

Beat Sequence is:
(A lloc 553-721
CUP 551-714 552:714
(All~c 554.7343
CUP 551 714 552 714
Sit $53



Appendix E: Code Selection Example
This is a trace of a user ’s interac tion with the c ode generator generator. PDP1I.MOP is given as the input file.
The SELECT routine, which ha. five passes as described in chapter 4~ crea tes the PDPI I.LOP file. Th. output
after the aPa~, va. messages is the sttu.t aeptes eiitatioia of the lOP j ibis.

run
(1402.58)

CCC V .41
Input file’ pdpl 1 mop

Roading POPI I.MOP
If Ids: OPCODEI OPCOOC2 OPCODEB OPCODEJ OPCODER OFFSETS SRCMOO[ SRCREG
SPCINOE)( DSTMOOE OSTR(G OSTINOEX
5H~: U N Z V C PC SP P
AMs: 78 736  iSP 7PC IN 72 1C 71 12 IRS 114 2146 loP 7pRB I~aM loMB ZR.C
7R.CB ThP.C 7~P.CB 7.R 7.25 7-2 7-29
~~~~5: SRC SRCB (1ST DSTB SRCR DSTR ADR
FNTs: I 2 34 5 6 7 8 9 10 Il 32 13 14
U-.ops: CIR CON INC DEC NEC TST ASP ASL NOV ADO SUS cu~ BIT BIC BIS
.ISR RIS .1MP BR SEQ SNE BIT DDE Bit SOT

lndeaaing MOP
Setup lime: 1.94
ICGG V.43 output f or PDP1I.LOP)

‘Pass 0.

(1-fld.) [
(OPCOOE1 0 300 0)
(OPCODE2 0 4 0 0)
(OPCODEB 0 8 0 0)
(OPCOOEJ 0 7 0 0)
(OPCOOER O 1 3 0 0 )

(OFFSETB 8 8 0 (1) -

(SRCMODE 4 30 D)
(SRCR(G 7 3 0 0)
(SRCINDEX O 16 ID)
(OSIMODE )O 3 0 C)
(DSTREG 13 30 D)
(DSTIND(X 0 36 20) ]

(SSs) (
(14 65536 8 14)
(33 3 1 C)
(Z I I C)
(VI I C)
(C 1 1 C)
(PCII6 P)
(SP I 36 R)
( 2 8 1 8 0 ))

(AM.)
7-8- 53 .8
ill : 51:s tI  $
iSP: (c,$POO)S)
7PC: (<, PCOO1I)



323

734 (<aNOO I) f
7Z : (<a 2 00  3 )

IC: ( < a C O O I )
71- ( ca  Ut.  7PC (1 5 3 .8 1)) 0 16)
12: (.>  251.30 36)
729: (<> R 5 I  .3 8 8)
7M. ( < > 1 45 3 . 3 6 0 3 6 )

7148 (<> 1 4 5 3 . 3 6 0 8 )

1a~R (<a M (ca P 5 1 .3 0 3 6 ) 0 16)

7r.RB: (<a U (<a 2 5 3  .30 36) 8 8)
7a~14. (<> 14 (c > 14 $ I : a36  0 16) 0 36 )
7~MB- (<a M (<a 1451 .160 16)0 8) 

a
72.C (<a 14 (. (c a  2 5 1  .3 0  16) 52 . 3 6 ) 0 36 )

J R.CB (ca 14 (. (ca  2 5 1  .30  3 6 )  52 - a I G)  0 8)

7r~R.C. (.c > M (-c a U(.(-c~- R 5 )  .30  36) 52 .36 ) 0 16) 0 16)

3.4 (<> 34 (~ (-c, 2 51 .30 36) 52stS) 0 16) 0 8)
7.2: (<> 14 (a.. 7R (. 72 2)) 0 36 )

7.28 (<a M (a- 7R (. 72 I)) O 8)

7-P (ca N (a. 7R (- 72 2) )  0 16)
7- 29- (-c> M (a- 12 (- 72 1)) O 8))

SRC:
116 : ((M1T[ 13 0 1) 2 7  51)
7R::  (EMIT( 12001051 )
714 : (EMIT( 13 I 50 1) 3 7 $1)

- : (EMIT( 12 1 50 0 3 3  5 3 )
7~ M :: (EMIT( 13 2.70 1) 7 7 51)
7R+C :: (EMIT( 1 3 2 7 0  3 ) 6 5 3 52)

7~’P.C -: (EMIT( 13 390 1) 7 51 52)

SPCB (
728 :: (EMIT( 1 2 0 0 ) 0 5 3 )
7MB :: ((MIT[ 33 3.50 3) 3 7 51)
1~ PB :: (EMIT( 32 350 0 115 1)
7r~M8 :: (EMIT( 132.70 31~ 7 5 1 )
724CC - - ((MIT( 13 270  I] 6 5 1 52)

7-’~PaCB :: (EMII[ 3 3 3 9 0  I ]  7 $1 52) )

DST (
716 :: (CUIT( 100 1 3 2  7 5 1 )
72~~ (EMIT( 9001051 )
iN -: (EMIT[ 30 140 1) 3 7 5 3 )

((MITj 9 3 40 0 ) 3 5 3 )
7~~M :: (EMIT( 3 0 - 2  60 I )  7 7 51)
7R.C :: (EMIT( 10 260 3) 6 5 1 52)

loR.C -- ((MIT( 30 380 1) 7 5 3 52) )

DSTB C
7RB :: (EMIT( 90  0)0  51)

7145 :: (E14ITf 10 1 40 3) 3 7 51)
74~P9 : (EMIT( 9 1 110 0 3 3 5 1 )
l’sMD - (ENITL 10 260 1) 7 7 SI )
lRaCl3 :: (EMIT( 30 260 I) 651 $2)
7-’P.CB :: (EP41T( 10 380 II 7 5L $2)

___________--



- --
~

---- - - -~ ---~

- 124 -

SRCP: (
7R (EMIT( 11 003 $ 1))

DSTR: (
7R :: (EMIT( 8 003 5 3 ) )

ADP: C
- 71 -: (EMIT) 14 0 0) 51))  3

~FMTs) (
(FUT 1) ( OPCODE 1 DST)
)FMT 2) ( OPCOOE2 SPC DST)
{FMT 3) ( OPCOD(B ADR)
)FMT 4) ( OPCOOEJ SRCP OST) :
(FUT 5) (OPCQDER DSTR)
)FMT 6) ( OPCOOEI DSTB)
(FUT 7) ( OPCODE2 SRCS DSTS)
3FMT 8) C DSTREG)
(FMT 9) ( OSIMODE OSTREC)
(FMT 10) ( OSTMOO( OSTREG OSTINOEX)
IFMT 1 1) ( SPC PEG )

)FMT 12) ( SRCMODE SRCREG)

( FMT 13) ( SRCMODE SPCR(G SPCZNDEX)
IFMT 14) (OFFSETB) 3

P..5 1.

(N

~

op templates)
( (a. $3 OST 0) (a- 719 (LSS 0 0)) (a- 22 (EQL 0 0)))

(EMIT(CLR I I 1)5051)
(; (... $1 OST (NOT 5l:OST)) (a- ZN (LSS (NOT $1:DST) 0)) (a. 12 ((01 (NOT $I:OST) 0)))
1: (EMIT(COM 1 1 I] 5 3 $  I)
(; (a. 51:QST (. 51:DST 3)) (a.. 719 (LSS C. $I:DST 1)0)) (a.. 72 (EQL (a $I:DST 3)0)))
(EMIT(INC 1 I 1] 52 51)

(; (a.. 53 :DST (.. $J :DST 1)) (a- IN (LSS (- $3:DST 3)0)) (-22  ((01 (.. $105T 1)0)))
(EMIT[DEC I I  3)5351)

(; (a.. 5j :QST (.. 5I:flsT)) (a- 734 (G(Q 51~DST 0)) (a.. 7~~ ((01 $1:DSI 0)))
(EMIT[NEG I I I) 54 $3 )

(. (a-. 7N (LSS 51:OST 0)) (a. 7Z (EOL 51 DST 0)))
-- ((1437(1ST I 1 3)57 $1)
(~ (a- $I.OST (1 51:DST -1)) (a- 734 (LSS (7 $1.DST -- .3)0)) (a.. 72 ((01 (7 51:OST —I ) 0)))
-i (EMITIASP 1 I I) 62 51)
C. ( 51:DST (7 51OST 1)) (a- 719 (ISS (7 53:057 1)0)) (a.. 72 (tOt . (7 $1DST 1)0)))
1: (E143T(ASI 1 I 1] 6351)
(
~ (a- 51 DST 52:SRC) (a- IN (LSS 52-SRC 0)) (a. 72 (EQI. 52:SRC 0)))

((MIT(MOV 2 I 3 3 3 5 2 5 3 )
(; (a.. 51-DS T (a 5 I DS T 52 SPC)) (a- IN (LSS (. 51DST 52SRC) 0)) (a- 12 (EOt. (~ 5IOST $2:SRC) 0)))

(EM3TV iDD 2 I 3 ) 6 5 2 5 3 )
(; (a- $1-OS T (- $I:DST $2SRC)) (a- 734 (LSS SI-OST $2:SRC)) (a- 22 ((01, 51:051 $2-SRC)))

- .. ((1411(5118 2 I I) 36 $2 51)
(~ (a- 719 (LSS 52 OST $3 SRC)) (a. 22 ((01 $2:OST $I-SPC)))

(EM1T[CMP 2 1 I) 2 52 $1)
(. (— 731 (LSS (OP SI OST $2 SPC) 0)) (a. 72 ((01 (02 $1-OST $2-SRC) 0)))

((MITIBIT 2 I I )  352 5 1)
(; (a- $ 3 -O$T (AND 53 :OST (NOT $2 SPC))) (a- ZN (LSS (AND $3 :OST (NOT $2SRC)) 0))

(a. 72 ((OL (AND 53 051 (NOT $2-SPC)) 0))) ((PaIIT(BIC 2 I I) 4 52 $1)
(i C.- $1-OST (08 51 OST $2SRC)) (a. IN (ISS (OR 53:057 52:SRC) 0)) (a. 22 ((01 (02 $3:OST $2~SRC) 0)))

(EMIT(BI S 2 I 3 ) 5  52 $1)

_



_ _ _ _  -~~~~~~~~~~ - -. -- -

125

(CALL) :: (EM1T)JSR 4 3 3] 4 7 0)
(RETURN) ;: (EMIT(RTS 5 1 1] 20 7)
(a.. 7PC $3~~16) :: (EMIT(.JMP 4 1 1)0 1 51)
(a-. YPC 51 ADR) 1: ((MIT)BP 3 I 13 4 5 3 )
(—a 72 53 ADR) :: ((1431)8(0 3 1 3) 14 51)
(-a (NOT 12) 5 1-AOR ) :: (EMIT)ON( 3 I 13 1051)
(-a iN 51 AOP) :: (EMIT(BLT 3 1 1) 24 5 3 )
(-a (NOT 734) $1AD R) :: (EMIT[CCE 3 1 1] 20 $1)
(-a (02 72 iN) SI AOR) :1 ((U3T(81.( 3 I 3)3453)
( ->  (AND (NOT 12 ) (NOT 734)) $1 AOP) -: ((1431(867 3 I 3 3 30 $1)
‘Pa.. 2.
(P-U-op tnmplatpa)
(a.. 5 3 (137 0) : (EMIT(CLR 1 I 3 3 5 0 5 1( 1S T )
(a-. 51 (1ST (NOT 51(1ST)) :: (EMIT(COM 1 11 )  51 5I :DST) -
(a- 51 DST C. 51( 1ST 3)) :: (EMIT)1NC 1 3 3 ) 5 2  $1:05T)
(a- 5) (1ST C- 53 ( 1ST 1)) :: (EMIT)DEC 3 1 1 ) 5 3 5 1 ( 1S T )
(.- 53 (1St C- 51:OST)) :: (EMIT( NEC 1 1 1 3 5 4  53.031)
(a- iN lESS 53057  0)) :: ((MIT(TST I 3 1) 57 SI :DST)
(a-. 72 ff01.. 51 (1ST 0)) .- ((1431(1ST 1 1 1) 57 5 3 ( 1ST )
(a.. 51 (1ST (t 53 (1ST -I)) (EMIT(ASR I 3 1)6251 ( 1ST)
(a- 53 (1ST (3 51 (1ST I)) :: (EMIT(ASL I 1 3 ) 6 3 5 3 ( 1 S T )
(a- 53 ( 1ST 52S~?C) -: (EM1T(MOV 2 I 3 3 1  S2 SRC 51(1ST)
(a- . 53 (1ST Ca 51 (1ST $2-SPC)) : (EMII)ADO 2 3 3 )  6 52-SRC $I:DST)
(a- 51( 1ST (- SI (1ST S2SPC)) :: (EUIT(SUB 2 3 1 3 16 $2 SRC 53 (1ST)
(a- 734 (ISS 52(1ST 5 3 SPC ) :: ffMIT(CMP 2 I I) 2 52(1ST $1 .SRC)
(a- 72 ((01 52(1ST 5 1 SRC)) - : (EM~T(CMP 2 I 1)2  S2- DST $1 SRC)
(a- IN (ISS (OR 51 031 52SRC) 0)) -- ((1431)831 2 1 1)3 $2SRC $1 DST)
(.-. 72 (EQL (02 5 1( 1ST $2S PC) 0)) (EM3T ( BIT 2 1 1 )  3 52-SRC $I- OST )
(a. $1 DST (AND $1 (1ST (NOT 52S2C))) :: (EM31[BIC 2 3 1] 4 $2S RC $1~L)5T)(a-. 51(1ST (02 $1 (1ST 52 SRC)) : (EMIT(BIS 2 I 3 ) 5  52S2C 51(1ST) 

-Pass 3.
)d.’rivcd tem plates)
(No entry n,acte for (a. SS1 728 552 7148))
(No entry made for (a- 551 7MB 552 720))
Pass 4. -

(No entry made for (a- $540 &DST (a &
(No entry made for (a.. $520 LOST (/ & &) ) )
( No entry made for (a- 5520 LOST (.F & LI))
(No entry msde for (a- 5520 LOST (-F & £.)))
(No entry made for (a- $520 LOST (‘F L &)))
(No entry made for (a- 5520 &DS1 (/F & &)))
(a.. 51 (1ST (AND $ 1 (1ST $2 72))

C (ALLOC 52 72) (EMIT(COM 1 1 3) 53 52 7R) (EMIT(B1C 2 11]  4 52:72 51:DST))
(6070 51 ) . (EMIT)BR 3 I 3 ) 4  SI )
(-a ((01 53(1ST 52SRC) 53)

(;  (ALLOC 14-72) (EMITLCMP 2 I 1) 2 51(1ST S2SRC) (EMIT(BEQ 3 3 3) 14 53))
(-a (34(0 $3-OS T 52SRC) $3)
- (, (A LLOC 54-12) ([N1T(CMP 2 I 1) 2 51-DST $2SRC) ((MITIBNE 3 I 33 10*3))
(-a (612 51(1ST $2 SPC) $3)

C. (ALIOC 54 72) (EMIT(CMP 2 I 13 2 5 5 (1ST 56SRC)
(ALLOC ’57 733) (EM3T(CMP 2 1 I) 2 51 (1ST $2 SRC) (EMIT(BCT 3 1 3330 53))

(-> (LSS5IOST $2SRC)$3) -
(; (A LLOC $4734 ) ((MITICMP 2 I 1) 25 1( 1ST S2 SRC) ((M1T(BLT 3 1 1) 24 53))

(-a (CEO $1 (1ST $2S RC) 53)
(~ (AI..LOC 53 iN) ((M31)CMP 2 3 3] 2 53 (1ST $2SRC) ((M3T(BCE 3 I I] 2053))

(-a (L(Q 53 (1ST $2-SRC) $3)
(~ (ALLOC $4.72) ((3.431(CMP 2 I I) 2 S5 DST $GSPC)
(ALLOC $7734) (EM31(CMP 2 I I) 251 (1ST $2 SPC) (EMIT(8LE 3 1 I) 34 $3))

Pass 5. 



{f,,ta~m4 tnmp$afos)
(WilliE $1 $2) :- (; (LABEL $3) (-a (NOT $1) S4) $2 (COTO $3) (LABEl. $4))
(IF $1 52) : (; C.-.> (NOT SI) 53) 52 (EASEL $3))
(IF 51 $2 $3) :: (~ (-> $1 54) 53 (COlD $5) (LABEL 54) 52 (LABEL 55)) 3

End of SAIL o’aecution
(903 3



F—,-- - 
- — - .  —.- -. —-— - -

~~~~ 
- --- -~~~Z~~~~~~~~~~~~ T - ~~~~~~~- 

- —

127

Appendix F: Code Gcncrator Generator Axioms
lOam oms usad ba~ th. cod. yaa n.ratoa- . ~j ane rat o rI

3 :: (+ 2 1) 2 i : (a 1 1)
$1 :: ( -I. 0 SI)
$1 :: (— (— S I ) )
C— $1) 2 : C— 0 Si)
3 —  21) :: C. 0 C— $1))
C— $1 52) :: (~ $1 (— $2))
I. Si $2) :2 (a 52 SI)
C.. $1 $2) :: Cs 52 $1)

$1 :: (NOT (NOT S i))
I RN U $1 $2) u (NOT (OR (NOT $1) (NOT $2)))
(OR Si $2) :: (NOT (AND (NOT $1) (NOT $2)))

(LSS 51 $2) 2: (NOT (CEO $1 $ 2 ) )

(LEO 21 22) :: (OR ((01. Si $2) (LSS Si $2))
(LEO Si $2) :: (NOT (&TR $1 $2))
((OL Si 22) :: (NOT (NED $1 $2))
(NED $1 $2) :2 (NOT ((01.. 51 $2))
(CEO $1 22) :: (NOT (1.53 51 5 2 ) )
(CEO 21 $2) :: (OR ((01. 51 $2) (CIA SI $2))
IGTR Si $2) :: (NOT (LEO $1 $2))
(GTR 21 22) ‘: (flNO (NED 21 52)  (C EO Si $2))

I two ’s complement machinss only l
3— 51) :: C, (NOT 51) 1)
(o $1 2) 2: (1 51 1)
(.I~H1LE $1 32) 2: 1 ;

(LABEL $3)
(— a  (NOT Si) $4)
52
(COTO $3)
(LABEL $4)

(IF  Si $2) u ( ; (-a (NOT $1) $3)
52
(LABEL $3)

ti c $1 $2 $3) :2 1;
(—a $1 $4)
53 (6010 55)
(LAREL $4) $2
(LABEL $5) )

(6070 SI) (a- TPC $1)
(IF 51 (a. 1PC $2)) U (—a $1 $2)

(the fol l owi ng are S lmpllfi ca tm on s for lo g ical nega tion )
(NOT (NO T $ 1) )  :2 SI
(NOT (CTR $1 52)) U (LEO Si 52) (NOT (LEO $1 $2)) i: (CTR Si $2)
(NOT (L.SS $1 $2)) t i  (CEO St $2) (NOT (CEO $1 $2)) i t  (US Si $2)
(NOT ((01. Si $2)) :z  (NEO $1 $2) (NOT (((CO SI 12)) u ((01 51 $2)


