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The Hearsay-ll system, developed at CMU as part of the five-year ARPA speech-\\
understanding project, was successfully demonstrated at the end of that project in =
September, 1976. This report reprints two Hearsay-Il papers which describe and } .~ -
discuss that version of the system: " =
1. Erman & Lesser. "The Hearsay-ll System: A Tutorial", Chap. 16 in W. A, Lea (ed.)
Trends in Speech Recognition, Prentice-Hall, Englewood Cliffs, NJ, 1978 (in press).
(Copy-writlen by Prentice-Hall -- reprinted here with their kind permission.)
2. Lesser & Erman. "A Retrospective View of the Hearsay-Il Architecture", Proc.
Inter. Joint Conf{. on Artificial Intelligence - 1977, Cambridge, MA, 790-800.
The first paper presents a short introduction to the general Hearsay-Il structure and
describes the September 1976 configuration of knowledge-sources; it includes a
detailed description of an utlerance being recognized. The second paper discusses the
general Hearsay-ll archilecture and some of the crucial problems encountered in
applying that architecture to the problem of speech understanding.

For a more general view of Hearsay-1l as a structure for problem-solving, see:

3. Erman & Lesser. "A Multi-Level Organization for Problem Solving Using Many,
Diverse, Cooperating Sources of Knowledge", Proc. 4th Inter. Joint Conf. on
Artificial Intelligence, Thbilisi, Georgia, USSR, Sept., 1975, 483-490.

For a description of the implementation, see

4. Erman & Lesser. "System Engineering Techniques for Artificial Intelligence
Systems"”, A. Hanson and E. Riseman (eds.) Computer Vision Systems, Academic Press,
Inc., NY, 1978 (in press). (Also available as CMU Technical Report, Dec., 1977.)

These four papers present a comprehensive overview of the Hearsay-Il project and
contain pointers to other relevant papers.
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THE HEARSAY-11 SPEECH UNDERSTANDING SYSTEM:
A TUTORIAL

Lee D. Erman and Victor R. Lesser

INTRODUCTION

In 1971-72, the Hearsay-l1 speech understanding system was developed at Carnegie-

Mellon University -- the first of a series of such systems. Hearsay-l1 [Reddy Erman & Neely .

73, Reddy Erman Fennell & Neely 73] was a successful attempt to solve the problem of
machine understanding of 'speech in specialized task domains. In this early system, the size of
the vocabulary (fewer than 100 words) and complexity of the grammar were very limited.
Experiences with Hearsay-l1 led to the more generalized Hearsay-Il architecture [Lesser
Fennell Erman & Reddy 75, Erman & Lesser 75, Lesser & Erman 77] in order to handle more
difficult problems (e.g., larger vocabularies and less-constrained grammars).

The active development of Hearsay-1l extended over three years. During this period, a
number of different knowledge-source configurations were constructed within the Hearsay-Il
framework. The most important of these are called configurations CO (January, 1975), Cl
(January, 1976), and C2 (September, 1976). This last configuration was very successful: it
came close to the original ARPA performance goals set out in 1971 to be met by the end of
1976 [Newell et al, 73] Ilts performance in Seplember, 1976, was 907 correct semantic
interpretation of sentences over a 1011-word vocabulary and constrained syntax [CMU 77].

This presentation is divided into three major sections. First, the Hearsay-ll system
architecture is presented. The next section discusses in detail the C2 configuration -- the
parficular types ot knowledge that are contained in this configuration, and how this knowledge
interacts in order to recognize spoken utlerances. The last section contains a detailed
example of C2 recognizing an utterance.

THE HEARSAY-1I ARCHITECTURE

The Hearsay-ll architecture is based on the view that the inherently errorful nature of
processing connected speech can be handled only through-the effective and efficient
cooperation of muiltiple, diverse sources of knowledge. Additionally, the experimental
approach needed for system development requires the ability lo add and replace sources of
knowledge and to explore different control strategies. Thus, such changes must be relatively
easy to accomplish; there must also be ways to evaluate the performance of the system in
general and the roles of the various sources of knowledge and control strategies in particular.
This ability to experiment conveniently with the system is especially crucial because the
amount of knowledge is large and many peoole are needed to introduce and validate it.

A major focus of the design of the Hearsay-ll system was the development of a
framework for experimenting with the representation of and cooperation among these diverse
sources of knowledge. Based on our experiences with Hearsay-l, we expected to need types




2 Tutorial

of knowledge and interaction patlerns whose details could not be anticipated at the outset of
the project. Therefore, inslead of designing a specilic speech understanding system, we
considered Hearcay-Il as a model for a class of systems and a framework within which specific
configurations of that general model could be constructed and studied. One can think of
Hearsay-Il as a high-level system for programming speech understanding systems of a cerlain
type -- i.e, those thal conform to the Hearsay-Il model.

In the Hearsay-ll archilecture, each of the diverse types of knowledge needed to solve
the speech problem is encapsulated in a knowledpe source (KS). For speech understanding,
typical KSs incorporate information about syntax, semantics, acouslic-phonetics, prosodics,
syllabiticalion, coarticulation, etc. The C2 configuration has about ten KS modules. KSs are
kep! separate, anonymous, and as independent as possible, in order to make the creation,
modification, and testing of KS modules as easy as possible.

As one knowledge source makes errors and creales ambiguities, other KSs must be
brought to bear to correct and clarity those actions. This KS cooperation should occur as
soon as possible after the introduction of an error or ambiguity in order to limit its
ramifications. The mechanism used for providing this high degree of cooperation is the
hypothesize-and-lest paradigm. In this paradigm, solution-finding is viewed as an iterative
process. Two kinds of KS actions occur: 1) the creation of an hypothesis, an “"educated
guess” about some aspect of the problem (e.g., thal a particular word was spoken during a
specified partion of the utterance), and 2) lests ot the plausibility of some hypothesis ar sets
of hypotheses. For both of these steps, the KS uses a priori knowledge about the problem, as
well as the previously generated hypotheses. This "iterative guess-building” terminates when
some subset of the hypotheses generated describes the spoken utterance "well-enough" to
saticfy some halling criteria.

The Blackboard

The requirement that knowledge sources be independent implies that the functioning
(and very existence) of each must not be necessary or crucial to the others. On the other
hand, the KSs are required to cooperate in the iterative guess-building, using and correcting
one another's guesses; this implies that there must be interaction among the KSs. These two
opposing requirements have led to a design in which each KS interfaces to the others
externally in a uniform way thal is identical across KSs and in which no knowledge source
knows which or how many other KSs exist. The interface is Implemented as a dynamic global
dalta structure, called the blackboard.

The blackboard is parlilioned into distinct information levels (e.g., “phrase”, “word",
“syllable”, and "phone”); each level holds a different representation of the problem space. The
current state of problem solution is represented in terms of hypotheses on the blackboard.
An hypothesis is an interpretation of a portion of the spoken utlerance at a particular level
(e.g., an hypothesis might be that the word ‘loday' occurred from millisecond 100 to
millisecond 600 in the ullerance). All hypotheses, no matter what their level, have a uniform
aliribute-value structure. For example, each hypothesis has attributes containing its level,
begin- and end-time within the ulterance (which can include notions of fuzziness), and
plausibility ratings. The level and time attribules place a two-dimensional structure on
hypotheses which partilions the blackboard and can be used for addressing hypotheses. Note
thal two or more hypotheses at the same level with significantly overlapping times are
compelitors; i.e., they represent competing interpretations of a portion of the utterance.
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Hypotheses at different levels are connected through an and/or directed graph
structure. Through these connections, hypotheses al each level can be described
approximalely as absltraclions of hypotheses at the next lower level. A partial solution (i.e., a
group of hypotheses) at one level can be used o constrain the search at an adjacent level.
For example, consider a KS which can predict and rate words based on acoustic information
and another KS which knows about the grammar of the language. The first KS can generate a
sel of candidate word-hypotheses. The second KS can use these hypotheses to generate
phrase hypotheses which can be used, in turn, fo predict words likely to precede or follow.
These predictions can now constrain the search for the first KS.

Knowledpe-Source Activation

Each knowledge source is activated in a data-directed manner, based on the occurrence
on the blackboard of palterns of hypotheses specific to its interests. For example, a KS which
knows how to make hypotheses about words given hypotheses about syllables is activated
whenever any KS creales new syllable hypotheses. Once activated, a KS may examine the
blackboard, typically in the vicinity of the hypotheses that activated It. Based on its
knowledge, the KS may then modify those hypotheses or other hypotheses, or create new
hypotheses. Such actions establish new patterns on the blackboard; these patterns may cause
other KSs to be activated. This mechanism for KS activation implements a data-directed form
of the hypothesize-and-test paradigm.

Each KS has two major components: a precondition and an action. The purpose of the
precondition is to find a subset of hypotheses that is appropriate for aclion by the KS and to
invoke the KS on that subset; the subsel is called the stimulus frame of the KS instantiation.
For example, the precondilion of the KS that generates word hypotheses based on syllables
looks for new syllable hypotheses. To keep from having to fire continuously lo search the
blackboard, each precondilion declares the primitive kinds of blackboard changes in which it is
interested. Each precondilion is lriggered only when such primitive changes occur (and is
then given pointers to all ot them). Whenever a precondition is executed, it checks all
blackboard events in which it is interested that have occurred since the last time it was
executed. For example, a "new hypothesis” to an executing precondition is any hypothesis
which was crealed since the last time the precondition was executed.

The action part of a KS is a program for applying the knowledge to the stimulus frame
and making appropriate changes to the blackboard. A stylized description of the likely action
thal the KS instantiation will perform (if and when it is allowed to execute) is called the
response frame. For example, a response frame for the syllable-based word hypothesizer
indicates that the action will be to generate hypotheses at the word level and in a time area
thal includes at least that of the stimulus frame. The stimulus and response frames, which are
generated by the precondition component of the KS, provide information for comparing the
desirability of execution of a KS instantiation to that of other KS lnstantiahons. this information
Is used for the scheduling of KS instantiations.

Scheduling of Knowledpne-Sources

At any point, there are, in general, a number of pending tasks to execute -- both
invoked knowledge sources and triggered preconditions. (In practice, the number of pending
tasks often exceeds 200.) If very, very large amounts of processing power (and memory)
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were available, one could consider actually activaling all KSs in all their possible contexts.
This would expand the blackboard with many (competing) hypotheses. Assuming this would
eventually terminate (i.e., al some point no new contexls are created), a decision process could
then try to pick from all the competing hypotheses that subset which best describes the data
-- {his would be the sysiem’s "solulion” to the problem. Because of this combinatoric
explosion of possibilities (caused mostly by the problems of variability and incompleteness in
the signal and errorfulness of the KSs), this complete expansion is not feasible. Therefore, the
control strategy can pick only a small subset of the applicable KS activations; this can be
thought of as exploring a limiled porlion of the (potential) fully-expanded blackboard.

This seleclion process is implemented by a scheduler which calculates a priority for
each waiting task and selecls for execution the task with the highest priority. The priority
calculation attempls, based on the specific stimulus and response frames of the actions, to
esltimate the usefulness of the action in fulfilling the overall system goal of recognizing the
utlerance. A more detailed explanation of the scheduler is contained in the next section and in
[Hayes-Roth & Lesser 77].

The Hearsay-ll Implementation

Based on the archilecture just described, a high-level programming system was
constructed to provide an environment for programming knowledge sources, configuring
groups of them into syslems, and execuling them. Because KS interactions occur via the
blackboard (iriggering on patlerns, accessing hypotheses, and making modifications) and the
blackboard has a uniform sltructure, KS interactions are also uniform. Thus, one set of
facilities can serve all KSs. Facilities are providad for

o defining the levels on the blackboard,

o configuring groups of KSs into runnable systems,

o accessing and modifying hypolheses on the blackboard,

o activating and scheduling KSs.
These facilities, along with other utilities for debugging and user (researcher) interaction, are
called the Hearsay-ll ‘kernel’. The kernel is the high-level environment for creating and
lesting KSs and configurations of them [Erman & Lesser 78).

Hearsay-Il is implemented in the SAIL programming system [Reiser 76], an Algol-60
dialect which has a sophisticated compile-time macro facility as well as a large number of data
structures (including lists and sets) and control modes which are implemented fairly efficiently.
The Hearsay-Il kernel provides a high-level environment for KSs at compile-time by extending
SAIL's data types and syntax through declarations of procedure calls, global variables, and
complex macros. This exlended SAIL provides an explicit structure for the specification of a
KS and its interaction with other KSs (through the blackboard). The high-level environment
also provides mechanisms thal enable KSs to specify to the kernel (usually in non-procedural
ways) a variely of informalion which the kernel uses when configuring a system, scheduling KS
activity, and controlling user interaction.

The knowledge in a KS is represented using SAIL data structures and code, in whatever
form the KS developer finds appropriate. The kernel environment provides the facilities for
structuring the interface between this knowledge and other KSs, via the blackboard. For
example, the syntax KS contains a grammar for the specialized task language that is to be
recognized; this grammar is In a compact, network form. The KS also contains procedures for
searching this network, for example, to parse a sequence of words. The kernel provides

W oo b I S e — e T
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facilities (1) for triggering this KS whenever new word hypotheses appear on the blackboard,
(2) for the KS to read those word hypotheses (in order to find the sequence of words to be
parsed), and (3) for the KS to creale new hypotheses on the blackboard, Indicating the
structure of the parse.

THE_KNOWLEDGE -SQURC F SEPTEMBER, 1976

In this section, a description of the September, 1976, version of the Hearsay-ll system
-- configuration C2 -- is given in lerms of the funclions and interactions of its knowledge
sources. Included is an example run of the system.

The task for the system is to answer questions about and retrieve documents from a
collection of computer science abstracts (in the area of artificial Intelligence). Example
senfences are

“Which abstracts refer 1o theory of computation?”

“List thase articles.”

“"Wha!l has McCarthy writlen since nineteen seventy-four?"”

The vocabulary contains 1011 words (in which each extended form of a root, e.g, the plural of
a noun, is counted separately, il it appears). The grammar which defines the legal sentences
is context free and includes recursion. The style of the grammar is such that there are many
more non-terminals than in conventional syntactic grammars; the information contained in the
greater number of nodes provides semantic and pragmatic constraint within the grammatical
structure. For example, in place of *Noun' in a conventional grammar, this grammar includes
such non-terminals as 'Topic’, 'Author’, *Year’, ‘Publisher’, etc.

The grammar allows each word to be followed, on the average, by seventeen other
words of the vocabulary.l The standard deviation of this measure is very high (about 51),
since some words can be followed by many others (up to 300 in several cases). For the
sentences used for performance testing, the average length is seven words and the average
number of words thal can follow any initial portion of the sentence is thirty-four.

Figure 1 gives a schematic of configuration C2 as it was operational in September, 1976.
The levels are indicated by solid horizontal lines and are labeled al the left. KSs are indicated
by vertical arcs with the circled end indicating the level where its stimulus frame is and the
pointed end indicating the level of its response frame. The name of a KS is connected to its
arc by a dashed horizontal line.

Sipnal Acquisition, Parameter Extraction, Segmentation, Labeling (SEG)

An input utlerance is spoken into a medium-quality Electro-Voice RE-51 close-speaking
headset microphone in a fairly noisy environment (>65 db). The audio signal is low-passed
fillered and 9-bit sampled at 10 KHz. All subsequent processing, as well as controlling the
A/D converler, is digital and is done on a time-shared PDP-10 computer. Four parameters
(called "ZAPDASH") are derived by simple algorithms operating directly on the sampled signal

1 Actually, a family ot grammars was generated, varying In the number of words (terminals)
and in the number and complexity of sentences allowed. The grammar described here and
used in most of the testing is called "X05",
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-Levels-
SEMANT
ST0P
PHRASE
PREDICT
CONCAT
PARSE
WORD-SEQUENCE
WORD-SEQ-CTL
WORD-SEQ
WORD-CTL
HOROD
YERIFY
I: ————— — — — MOW
SYLLABLE o
t————-—«\;——— POM
SEGMENT = o
——————— SEG
PARAMETER o

Figure 1. The levels and knowledge sources of configuration C2.

[Goldberg Reddy & Gill 77). These paramelers are extracted in real-time and are used initially
to detect the beginning and end of the utterance.

The ZAPDASH parameters are next used by the SEG knowledge-source as the basis for
an acoustic segmentation and classification of the utterance. This segmentation is
accomplished by an iterative refinement technique: First, silence is separated from non-
silence; then, the non-silence is broken down into the sonorant and nen-sonorant regions, elc.
Eventually, five classes of segments are produced: silence, sonorant peak, sonorant non-peak,
fricative, and flap. Associated with each classified segment is its duration, absolute amplitude,
and amplitude relative to its neighboring segments (i.e, local peak, local value, or plateau).
The segments are contiguous and non-overlapping, with one class designation for each.

Finally, the SEG KS does a finer labeling of each segment. The labels are allophonic-
like; there are currently 98 of them. Each of the 98 labels is defined by a vector of auto-
correlation coefficients [ltakura 75] These templales are generated from speaker-dependent
training data that have been hand-labeled. The result of the labeling process, which maiches
the central portion of each segment against each of the templates using the Itakura metric, is
a vector of 98 numbers; the i'th number is an estimate of the (negative log) probability that
the segment represents an occurrence of the i'th allophone in the label set.

Word Spotling (POM, MOW, WORD-CTL)

The initial generation of words, bottom-up, is accomplished by a three-step process.

i
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First, using the labeled segments as input, the POM knowledge source [Smith 76]
generates hypotheses for likely syllable classes. This is done by first identifying syllable
nuclel and then “parsing” outward from each nucleus. The syllable-class parsing is driven by
a probabilistic "grammar” of "syllable-class -> segment” productions; the rules and their
probabilities are learned by an off-line program which is trained on hand-labeled utterances.
(The current training, which is speaker-dependent, uses 60 utterances containing about 360
word tokens.) For each nucleus position, several competing syllable-class hypotheses are
generated -~ typically three to eight.

The syllable classes are used to hypothesize words. Each of the 1011 words in the
vocabulary is specified by a pronuncialion description. For word hypothesization purposes, an
inverled form of the dictionary is kept, in which there is associated with each syllabie-class all
the words which have some pronunciation coniaining that syllable-class. The MOW KS [Smith
76] looks up each hypothesized syllable class and generates word candidates from among
those words containing that syllable-class. For each word that is multi-syllabic, all of the
syllables in one of the pronunciations must match above a threshold. Typically, about 50
words of the 1011 -word vocabulary are generaled al each syllable nucleus position.

Finally, the gecnerated word candidates are rated and their begin- and end-times
adjusted by the WIZARD procedure [McKeown 77). For each word in the vocabulary, WIZARD
has a nelwork which describes the possible pronunciations. This rating is calculated by
finding the path through the netlwork which best matches the labeled segments, using the
distances associated with each label for each segment; the rating is then based on the
difference between this best path and the segment Iabels.é

The result of the processing to this point is a set of words.. Each word includes a
begin-time, an end-time, and a confidence rating. MOW selects a subset of these words, based
on their times and ratings, to be hypothesized; it is these selected word hypotheses that form
the base for the "lop-end"” processing. Typically, these hypolheses include about 757 of the
words actually spoken (i.e,, "correct” word hypotheses). Each correct hypothesis has a rating
which ranks it on the average about three, as compared to the five to twenty-five or so
incorrect hypotheses which compete with it (i.e., which significantly overlap it in time). The
non-selected words are retained internally by MOW for possible later hypothesization.

The amount of hypothesization that MOW does is controlled by the WORD-CTL (‘Word
Control') KS. WORD-CTL creates "goal" hypotheses at the word level; these are interpreted
by MOW as indicaling how many word hypotheses to atlempt to creale in each time area. One
can think of MOW as a generator of word hypotheses (from the candidates it creates
internally) and WORD-CTL as embodying the policy of how many to hypothesize. This clear
separation of policy from mechanism has facilitated experimentation with various control
schemes. For example, a trivial change to WORD-CTL, such that goal hypotheses are
generated only at the start of the utlerance ("left-hand end"), results in MOW creating word
hypotheses only at the start, thus forcing all top-end processing to be left-to-right.

2 Since the September, 1976, version, the POM and MOW KSs have been replaced by Noah
[Smith 77, Smith & Sambur 78 (section 7-3.2.2.3)). This KS outperforms POM-MOW on the
1011-word vocabulary (in both speed and accuracy) and is able to handle much larger
vocabularies -- it has a performance degradation which is only logarithmic in vocabulary
size in the range of 500 to 19,000 words.

3 WIZARD is, in effect, a miniature version of the HARPY speech recognition system [Lowerre
76, Lowerre & Reddy 78], except that it has one network for each word, rather than one
network with all words and all sentences.
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3 WORD-CTL fires al the start of processing of an utterance in order to create goal
hypotheses. Subscquently, it may re-trigger if the over-all search process stagnales; this
condilion is recognized as there being no waiting KS instantiations above a certain priority (as
described in the seclion below on "Attention Focussing") or as the global measures of current
state of the problem solution not having increased in the last several KS executions.

Top-End Processing

Word-lstand Generation (WORD-SEQ, WORD-SEQ-CTL) - The WORD-SEQ knowledge source
[Lesser Hayes-Roth Birnbaum & Cronk 77] has the job of generating, from the word
hypotheses generated botlom-up, a small set (about three to ten) of word sequence
hypotheses. Each of these sequences, or islands, can be used as the basis for expansion into =
larger islands, hopefully culminating in an hypothesis that spans the entire utterance. Multi- N
word islands are used rather than single-word islands because of the relatively poor reliability =
of ratings of single words as well as the limited syntactic constraint supplied by single words.

WORD-SEQ uses two kinds of knowledge to generate multi-word islands:

o A table derived from the grammar indicates for every ordered pair of words in the
vocabulary (1011 x 1011) whether that pair can occur in that order in some sentence
of the defined language. This binary table {(which contains about 1.772 "1™s) thus
defines "language-adjacency”.

o Acoustic-phonetic knowledge, embodied in the JUNCT (‘juncture’) procedure, is applied
to pairs of word hypotheses and is used to decide if that pair might be considered to
be time-adjacent in the utterance. JUNCT uses the dictionary pronunciations and
examines the segments at their juncture (gap or overlap) in making its decision.

WORD-SEQ takrs the highest-rated single words and generates muiti-word sequences
by expanding them with other hypothesized words that are both time- and language-adjacent.
This expansion is controlled by heuristics based on the number and ratings of competing word
hypotheses. The best of these words sequences (which occasionally includes single words)
are hypothesized.

The WORD-SEQ-CTL (‘Word-Sequence-Control’) KS controls the amount of
hypothesization that WORD-SEQ does by creating "goal" hypotheses which are interpreted by
WORD-SEQ as indicating how many hypotheses to create. This provides the same kind of
separation of policy and mechanism achieved in the MOW/WORD-CTL pair of KSs. WORD-SEQ-
CTL fires at the start of processing of an utlerance in order to create the goal hypotheses.
Subsequently, WORD-SEQ-CTL triggers it stagnation is recognized; it then modifies the word-
sequence goal hypolheses, thus stimulating WORD-SEQ to generate new word-sequence islands
from which the search may be be more fruitful. WORD-SEQ will generate the additional
hypotheses by decomposing word-sequence islands already on the blackboard or by re-
gererating islands which were initially discarded because their ratings were too low.

Word-Sequence Parsing (PARSE) - Because the syntactic constraint used in the generation of
the word sequences is only pair-wise, a sequence longer than two words might not be
syntactically acceptable. The PARSE knowledge source of the SASS module [Hayes-Roth
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Erman Fox & Mostow 77, Hayes-Roth Mostow & Fox 78] can parse a word sequence of
arbitrary lenglth, using the full constraints given by the language. This parsing does not
require that the word sequence form a complete non-terminal in the grammar nor that the
sequence be sentence-initial or senfence-final -- the worcs need only occur contiguously
somewhere In some sentence of the language. If a sequence hypothesis does not parse, the
hypothesis is marked as “"rejecled”. Olherwise, a phrase hypothesis is crealed. Associaled
with the phrase hypothesis is the word sequence of which it is composed, as well as
information about the way (or ways) the words parsed.

Word Predictions from Phrases (PREDICT) - The PREDICT knowledge source of the SASS
module can, for any phrase hypothesis, generate predictions of all words which can
immediately precede and all which can immediately follow that phrase in the language. In
doing the computation to generate these predictions, this KS uses the parsing information
atlached to the phrase hypothesis by the parsing component.

Word Verification (VERIFY) - An attempt is made to verify the existence of or reject each such
predicted word, in lhe context of its predicting phrase. This verification is handled by the
VERIFY knowledge source. If verified, a confidence rating for the word must also be
generated. First, if the word has been hypothesized previously and passes the test for time-
adjacency (by the JUNCT procedure), it is marked as verified and the word hypothesis is
associaled with the prediction. (Note that a single word hypothesis may thus become
associaled with several different phrases.) Second, a search is made of the inlernal store
created by MOW lo see if the candidale can be malched by a previously-generated candidate
which had not been hypothesized. Againh, JUNCT makes a judgment abcut time-adjacency.
Finally, WIZARD compares its word-pronunciation network to the segments in an attempt to
verify the prediction.

For each of these different kinds of verificalion, the approximate begin-time (end-time)
of the word being predicted to the right (left) of the phrase is taken to be the end-time
(begin-time) of the phrase. The end-time (begin-time) of the predicted word is not known and,
in fact, one requirement of the verification slep is to generate an approximate end-time
(begin-time) for the verified word. In general, several different "versions" of the word may
be generated which differ primarily in their end-times; since no context to the right (left) of
the predicted word is given, several different estimates of the end (beginning) of the word
may be plausible based solely on the segmental information.

Word-Phrase Concatenation (CONCAT) - For each verified word and its predicting phrase, a°

new and longer phrase may be generated. This process, accomplished by the CONCAT
knowledge source of SASS, which is similar to the PARSE knowledge source, involves parsing
the words of the original phrase augmented by the newly verified word. The extended phrase
Is then hypothesized and includes a rating based on the ratings of the words that compose it.

If a verified word is already associated with some other phrase hypothesis, CONCAT

tries o parse that phrase with the predicting phrase. If successtul, a new, larger phrase
hypothesis is created which represents the merging of the lwo phrases.

Complele Sentences and Halting Crileria (STOP) - Two unique “word" hypotheses are
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generaled before the first and afler the last segment of the utlerance to denote begin and
end of utlerance, respectively, These same “"words" are included in the syntactic specification
of the language and appear as the first and last lerminals of every complete sentence. Thus,
any verified phrase that includes these as ils extreme constituents is a complete sentence and
spans the entire utlerance. Such a sentence becomes a candidate for seleclion as the
syslem’s recognition result,

In general, the control and rating strategies do not guarantee that the first such
complete spanning hypathesis found will have the highest rating of all possible spanning
sentence hypotheses thal might be found if the search were allowed to continue, so the
syslem does not just stop wilth the first one generated. However, the characteristics of such
an hypothesis are used by the STOP knowledge source to prune from further consideration
other partial hypotheses which, because of their low ratings, are unlikely to be extendible into
spanning hypotheses with ratings higher than the best already-discovered spanning sentence.

This heuristic pruning procedure is based on the form of the ratings function (i.e,, how the.

rating of the phrase is derived from its constituent words). The pruning procedure considers
each partial phrase and uses the ralings of other word hypotheses in the time areas nol
covered by the phrase to determine it the phrase might be extendible to a phrase rated
higher than the spanning hypothesis; if not, the partial phrase s pruned. This pruning process
and the rating and halting policies are discussed in [Mostow 771

The recognition processing finally halts in one of two ways: First, there may be no
more partial hypotheses left to consider for predicting and exlending. Because of the
combinatorics of the grammar and the likelihood ot finding some prediction that is rated at
least above the absolute rejection threshold, this form of termination happens when the
pruning procedure has been effective and has eliminated all competitors. Second, the
expenditure of a predefined amount of computing resources (lime or space) also halts the
recognition process; the actual thresholds used are set according to the past performance of
the system on similar sentences (i.e, of the given length and over the same vocabulary and
grammar).

Once the recognition process is halled, a selection of one or more phrase hypotheses is
made lo represent the resull. If at least one spanning sentence hypothesis was found, the
highest-rated such hypothesis is chasen; otherwise, a selection of several of the highest-rated
of the partial phrase hypotheses is made, biasing the selection to the longest ones which tend
to overlap (in time) the least.

Hypothesis Ratings (RPQL) - The RPOL KS runs in high priority immediately after any KS action
thal creates a new hypothesis or that modifies an existing hypothesis. RPOL uses rating
information on the hypothesis, as well as rating information on hypotheses to which the
stimulus hypothesis Is connected, to calculate the over-all rating of the stimulus hypothesis.

Atlention Focussing - The top-end processing operations include (a) word-island generation,
(b) word sequence parsing, (c) word prediction from phrases, (d) word verification, and (e)
word-phrase concatenation. Of these, (c), (d), and (e) are the most frequently performed.
Typically, there are a number of these actions waiting to be performed at various places in
the utlerance. The seleclion at each point in the processing of which of these actions to
perform is a problem of combinaloric control, since the execution of each action usually
generates other actions to be done.
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To handle this problem, the Hearsay-ll system has a statistically-based scheduler
[Hayes -Roth & Lesser 77] which calculates a priority for each action and selects, at each time,
the waiting action with the highest priority. The priorily calculation attempls to estimate the
usefulness of the aclion in lullithng the over-all syslem goal of recognizing the ullerance. The
calculation is based on the stimulus and response frames specified when the action is
triggered. For example, the word verifier is triggered whenever words are predicted from a
phrase hypothesis; the information passed to the scheduler in order to help calculate the
priorily of this instantiation of the verifier includes such things as the time and rating of the
predicting phrase (in the stimulus frame) and the number of words predicted (as given in the
response frame). In addition to the action-specific information, the scheduler keeps track of
the overall state of the system in terms of the kinds and qualily of hypotheses in each time
arca.

Interpretation and Response (SEMANT, DISCQ)

The SEMANT knowledge-source (Fox & Mostow 77] accepts the word sequence(s) result
of the recognition process and generates an interpretation in an unambiguous format for
interaction with the data base that the speaker is querying. The interpretation is constructed
by actions associated with "semantically interesting” non-terminals (which have been pre-
specified for the grammar) in the parse tree(s) of the recognized sequence(s). If recognition
results in two or more parlial sequences, SEMANT construcls a consistent interpretation based
on all of the partial sentences, taking into account for each partial sentence its rating,
temporal position, and semantic consistency, as compared to the other partial sentences,

The DISCQ (‘discourse’) knowledge-source [Hayes-Roth Gill & Mostow 77] accepls the
formatted interpretation of SEMANT and produces a response to the speaker. This responce
is often the display of a selected portion of the queried data base. In order to retain a
coherent interpretation across senlences, DISCO has a finite-state model of the discourse
which is updated wilh each interaction.

AN EXAMPLE QF RECQGNITIQN

Following is a description of the reconnition of the utlerance "ARE ANY BY FEIGENBAUM
AND FELDMAN?® by configuration C2 of Ho.are'.ay-ll.a Each major step of the processing is
showm a slep usually corresponds to the action of a knowledge source. Execution of the
precondilions is nol shown explicitly, nor is indication given of knowledge-source instantiations
which are never scheduled. Also, executions of RPOL are not shown,

The name of the KS activated at each step follows the step number. If the KS name is
followed by an aslerisk, this indicales that the hypotheses in the stimulus trame of this KS
instantiation are all correct. Single numbers in parentheses after hypotheses are their ratings
(on a scale of 0-100). All limes given are in centi-second unils; thus the duration of the whole
ullerance, which was 2.25 seconds, is 225. When begin- and end-limes of hypotheses are
given, they appear as two numbers separated by a colon (e.g, 52:82). Hypoftheses which are
correct are marked with an asterisk,

4 For reasons of clarity, the description differs from the actual run in a few detalls,
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Figure 2.d. Syllable-Classes.
Figure 2.¢c. Segments.
Figure 2.b. The correct words (for reference).
Figure 2.a. The waveform of "Are any by Feigenbaum and Feldman?".

Fig. 2. The example ufterance.

The waveform of lhe spoken utlerance is shown in Fig. 2.a. The "correct" word
boundaries (determined by human inspection) is shown in Fig. 2.b for reference. The
remaining sections of Fig. 2 contain all the hypolheses crecated by the KSs on the blackboard
(except that the goal hypotheses created by WORD-CTL and WORD-SEQ-CTL. are not shown).
Each hypothesis is indicaled by a box; the hypotheses are grouped by level -- segment,
syllable, word, word-sequence, and phrase. Within each hypothesis box, the number preceding
the colon indicates the step number in which the hypothesis was created. The symbol
following the colon names the hypothesis. At the word level and above, a "t" following the .
symbol indicates that the hypothesis is correct. The trailing number within the hypothesis box :
Is the rating, on a scale of O (lowest) to 100. ;
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None of the links between hypotheses are shown in Fig. 2. In general, each hypothesis
is connecled via mulliple binary links to hypotheses above and below it. For example, a word
hypothesis has downward links connecling it to each of the syllables which compose it and
upward links connecting it lo each phrase and/or word-sequence in which it takes part.

1. KS: WORD-CTL
Stimulus: Start of processing.
Action: Create goal hypotheses at the word level. These will control the amount of
hypothesization that MOW will do.

2. KS: WORD-SEQ-CTL
Stimulus: Start of processing.
Action: Creale goal hypotheses at the word-sequence level. These will control the
amount of hypothesization that WORD-SEQ will do.

3. KS: SEG
Stimulus: Creation of ZAPDASH parameters for the utlerance.
Action: Create segment hypotheses with vector of estimated allophone probabilities. (The
several highest-rated labels of each segment are shown in Fig. 2.c.)

4. KS: POM
Stimulus: New segment hypotheses.
Action: Create syllable-class hypotheses.

Figure 2.d shows the syllable-class hypotheses created. Each class name is made up of
single-letler codes representing classes of phones, as follows:

Code Phone-class Phones in class
A A-like AE,AA AH,AQ,AX
I I-like 1Y, IH,EY,EH,IX,AY
U U-like OW,UN,U,UW,ER,AW,0Y,EL,EM,EN
L liquid Y W,R L
N nasal M,N,NX
P  stop P,T,K,B,0,G,DX
F fricative HH,F,TH,S5,SH,V,DH,Z,ZH,CH,JHL WH
5 KS: MOW

Stimulus: New syllable hypmhr.'ses.5
Action: Create word hypotheses.

Sleps 1, 3, 4, and 5 comprise the low level, bottom-up processing; this results in a
seleclion of word hypotheses (created in step 5). Figure 2.e depicts these word hypotheses.

Four words (ARE, BY, AND, and FELDMAN) of the six In the utlerance were correctly
hypothesized; 86 incorrect hypotheses were generated. The 90 words that were
hypothesized represents approximately 1.57 of the 1011-word vocabulary for each one of the
6 words in the utlerance.

5 MOW willl also be re-invoked upon a modification to the word goal hypotheses by WORD-
CTL
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6. KS: WORD-SEQ
Stimulus: New words created bottom-up.
Aclion: Create 4 word-sequence hypotheses: AND-FELDMAN-]¥(90,145:225), [-ARE*
(97,0:28), SHAW-AND-MARVIN(75,72:157), EIGHT(85,48:57).

Step 6 resulls in the generation of 4 multi-word sequences. (See Fig. 2.g.) These will be
used as initial, alternative anchor points for additional searching. Note that two of these
islands are correct, each representing an alternalive search path that potentially can lead to a
correct interpretation of the utlerance.

In earlier versions of KS configuration of the system (e.g.,, Cl), low-level processing was
not done in the serial, lock-step manner as in steps 3, 4, and 5 (l.e., level-lo-level, where each
level is completely processed before processing on the next higher level is begun). Rather,
processing was done in an asynchronous, data-directed manner (i.e., as interesting hypotheses
were generaled at one level, they were immediately propagated to and processed by KSs
operaling at higher levels). It was found thal the asynchronous processing at these lower
Invels (e.g., segment, syllable, and word) was inappropriate because there was not enough
accuracy in credibility ratings of hypotheses to fornf hypothesis islands thal could direct the
search reliably. It is only with the word-sequence hypotheses produced in step 6 that the
reliainlity of the hypothesis ratings is high enough that selective search can be employed.
This conclusion is substantiated by experiments wilh several island-driving strategies [Lesser
Hayes-Roth Birnbaum & Cronk 77].

High level processing on the mulli-word sequences is accomplished by the following KSs:
PARSE, PREDICT, VERIFY, CONCAT, STOP, and WORD-SEQ-CTL. Since an execution of the
VERIFY KS will often immediately follow the execution of the PREDICT KS (each on the same
hypothesis), we have combined the descriptions of these two KS exeruhons into one step for
ease of understanding.

Steps 7 through 10 involve the PARSE KS. The PARSE KS verifies whether a multi-word
sequence (created in slep 6) is a legal language fragment of the grammar. It the sequence is
grammatical, a phrase hypothesis is constructed from it; otherwise, the sequence is marked
rejected. In this example, all four multi-word sequences were verified to be valid language
fragments. However, if a mulli-word sequence had been rejected, the WORD-SEQ KS might be
reinvoked to generate addilional multi-word sequences in the time area of the rejected
sequence. WORD-SEQ would generate the addilional hypotheses by decomposing word-
sequence islands already on the blackboard or by re-generating islands which were initially
discarded because their ratings were oo low. Additional word-sequence hypotheses might
also be generated in response to the modificalion of "goal” hypotheses at the word-sequence
level by the WORD-SEQ-CTL.

The scheduling strategy is so paramelerized that processing at the phrase level is delayed
until an adequate number of highly-rated phrase hypothesis islands are generated. This
strategy is not built directly into the scheduler, but rather is accomplished (1) by
appropriately setling external scheduling parameters (i.e., the high setling of the prlorlhcs of
WORD-SEQ and PARSE KS aclions in contrast to those of PREDICT, VERIFY, and CONCAT),6 and
(2) by taking into account the current state of hypotheses on the phrase level of the
blackboard in evaluating the usefulness of potential KS actions as described by their response
frames.

7. KS: PARSE*
Stimulus: [-ARE* (word sequence)
Action: Creale phrase: [+ARE* (97,0:28)

6 These setlings are determined empirically by observing a number of training runs. They
are not adjusted during test runs of the system.
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8. KS: PARSE®*
Stimulus: AND-FELDMAN-)* (word sequence)
Action: Creale phrase: AND+FELDMAN+]* (90,145:225)

9. KS: PARSE
! Stimulus: EIGHT (word sequence)
Action: Create phrase: EIGHT (85,48:57)

g 10. KS: PARSE
Stimulus: SHAW-AND-MARVIN (word sequence)
Action: Creale phrase: SHAW+AND+MARVIN (75,72:157)

Each of the four execulions of the PARSE KS (steps 7-10) resulls in the creation of a
phrase hypothesis; each phrase is shown in Fig. 2.h. Each of these hypotheses causes an
invocatlion of the PREDICT KS. The PREDICT KS allempls lo extend a phrase hypothesis
through the predictions of words that can, according to the grammar, follow or precede the
hypothesis. Its action is to attach a “word-predictor” attribule to the hypolhesis which
specifies the predicted words. Not all of these PREDICT KS instantiations are necessarily

i execuled (and thus indicated as a step in the execution history). For instance, further
processing on the phrases [+ARE and AND+FELDMAN+] is sufficiently positive that the
scheduler never executes the instantiation of PREDICT for the phrase SHAW+AND+MARVIN
(created in step 10). In turn, VERIFY is invoked by the placing of a word-predictor attribute
on a phrase hypothesis. For each word on the attribute list that VERIFY verifies (against the
segmental data), it creales a word hypothesis (if one does not already exist) and the word is
placed on a "word-verificalion" attribute of the phrase hypothesis. (Such newly-created word
hypotheses are shown in Fig. 2.f.) CONCAT is then invoked on phrase hypotheses which have
A word-verification atiribules allached. For each verified word, lhe phrase and new word are
= parsed logether and a new, extended phrase hypothesis is created (and shown in Fig. 2.h). If
all word predictions to the right or left of the phrase had been rejected, the phrase 1
hypothesis is marked as “rejected”, as is the underlying word-sequence hypothesis if all the
phrase hypotheses it supporls are rejected. (Note that this last action will re-trigger WORD-
SEQ to generate more word sequences.)

11. KS: PREDICT & VERIFY*
Stimulus: [+ARE* (phrase)
Action: Predict (from the grammar) 292 words to right. Reject (using the acoustic
information) 277 of them. The four highest-rated of the fifteen verified words are
REDDY(85,26:52), ANY*(65,24:49), HUGH(55,30:39), and YOWX55,28:39).

12. KS: CONCAT
Stimulus: [+ARE* (phrase), REDDY (word)
Action: Create phrase: [+ARE+REDDY (91,0:52)

13. KS: CONCAT*
Stimulus: [+ARE* (phrase), ANY* (word)
Action: Create phrase: [+ARE+ANY* (86,0:49)

In steps 11 through 13, the highly-rated phrase [+ARE is extended and results in the
generation of the additional phrases [+ARE+REDDY and [+ARE+ANY. These phrases, however,
are not immediately exlended because the predicted words REDDY and ANY are not rated
sufficiently high. Instead, the scheduler, pursuing a strategy more conservative than strict
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best-first, investigates phrases that look aimost as good as the best one. This scheduling
stralegy resulls in the execulion of the PREDICT and VERIFY KSs on two of the other Initial
phrase islands: AND+FELDMAN+] and EIGHT.

14. KS: PREDICT & VERIFY*
Stimulus: AND+FELDMAN+]* (phrase)
Action: Predict 100 words to left. Reject 76 of them. The best of the verified 24 (in
descending rating order) are FEIGENBAUM®(80,72:150), WEIZENBAUM70,72:150),
ULLMAN(70,116:150), NORMAN(70,108:150), and NEWBORN(70,108:150)

15. KS: PREDICT & VERIFY
Stimulus: EIGHT (phrase)
Action: Predict the word NINE to right and verify it (80,52:82). Predict SEVEN to left,
reject prediction.

The atlempted extension of the phrase EIGHT at step 15 is not successful -- none of the =
grammalically predicted words is acoustically verified, even using a lenient threshold. Thus, N\
this phrase is marked rejected and is dropped from further consideration,

16. KS: CONCAT®
Stimulus: FEIGENBAUM?® (word), AND+FELDMAN+]® (phrase)
Action: Creale phrase: FEIGENBAUM+AND+FELDMAN+]* (85,72:225)

Beginning with step 16, the highly-rated left word exlension FEIGENBAUM to the phrase
AND+FELDMAN+] looks sufficiently promising that processing now continues in a more depth-
first manner along the path FEIGENBAUM+AND+FELDMAN+] through step 25.7 Processing on
the path [+ARE+REDDY does nol resume until step 26.

17. KS: PREDICT & VERIFY*
Stimulus: FEIGENBAUM+AND+FELDMAN+]* (phrase)
Action: Predict eight words to left. Reject one (DISCUSS). Find two already on
blackboard: BY*(80,52:72) and ABOUT(75,48:72). Verify five others: NOT(75,49:82), ED
(75,67:72), CITE(70,49:82), QUOTE(70,49:82), CITES(65:49:82).

In steps 18 through 24, alternative word extensions of FEIGENBAUM+AND+FELDMAN+] are
explored. As a result ot this exploration, the phrase BY+FEIGENBAUM+AND+FELDMAN+] is
considered the most credible.

18. KS: CONCAT
Stimulus: BY* (word), FEIGENBAUM+AND+FELDMAN+]* (phrase)
Action: Create phrase: BY+FEIGENBAUM+AND+FELDMAN+]* (84,52:225)

19. KS: CONCAT
Stimulus: ABOUT (word), FEIGENBAUM+AND+FELDMAN+]* (phrase)
Action: Create phrase: ABOUT+FEIGENBAUM+AND+FELDMAN+] (83,48:225)

7 The rating on an hypothesis is only one parameter used by the scheduler to assign
priorities to wailing KS instantiations, In particular, the length of an hypothesis is also -
important. Thus, FEIGENBAUM with a rating of 80 looks better than REDDY with a rating of
85 because it is much longer.
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20. KS: PREDICT & VERIFY
Stimulus: ABOUT+FEIGENBAUM+AND+FELDMAN+] (phrase)
Action: Predict one word to left: WHAT. Verity it (10,20:49),

21. KS: CONCAT
Stimulus: CITE (word), FEIGENBAUM+AND+FELDMAN+] (phrase)
Action: Creale phrase: CITE+FEIGENBAUM+AND+FELDMAN+] (83,49:225)

22. KS: PREDICT & VERIFY
Stimulus: CITE+FEIGENBAUM+AND+FELDMAN+] (phrase)
Action: Predict four words to left. Reject two of them: BOOKS, PAPERS. Verify THESE
(25,28:49), YEAR(20,30:49),

23. KS: PREDICT & VERIFY*
Stimulus: BY +FEIGENBAUM+AND+FELDMAN+]* (phrase)
Action: Predict len words to left. Reject five: ABSTRACTS, ARE, BOOKS, PAPERS,
REFERENCED. Find two already on blackboard: ANY‘(65,24109). THESE(25,28:49).
Verify three more: ARTICLE(25,9:52), WRITTEN(25,24:52), ARTICLES(10,9:52).

24. KS: CONCAT
Stimulus: NOT (word), FEIGENBAUM+AND+FELDMAN+]*
Action: Creale phrase: NOT+FEIGENBAUM+AND+FELDMAN+] (83,49:225)

25. KS: CONCAT®
Stimulus: ANY* (word), BY+FEIGENBAUM+AND+FELDMAN+]* (phrase)
Action: Creale phrase: ANY+BY+FEIGENBAUM+AND+FELDMAN+]* (82,24:225)
[OARE#ANY‘BWFEIGENBAUM¢ANI)¢FELOMANO]' (85,0:225) is also created, from
[+ARE+ANY and BY+FEIGENBAUM+AND+FELDMAN+).

In step 25, the word ANY is concalenated onto the phrase BY+FEIGENBAUM+AND+
FELDMAN+]. However, instead of only creating this new combined phrase, the CONCAT KS also
notices that the word ANY is the last word of the phrase [+AND+ANY; this leads the CONCAT
KS to merge the two adjacent phrases [+ARE+ANY and BY+FEIGENBAUM+AND+FELDMAN+] into
a single enlarged phrase, afler first ascerlaining that the resulting phrase is grammatically
allowed. This merging bypasses the several single-word PREDICT, VERIFY, and CONCAT
actions thal would be necessary lo generate the enlarged hypothesis from either of the two
original hypotheses in an incremental fashion. Thus, the recognition process is sped up, not
only because the several single-word aclions are eliminated, but also because KS actions on
competing non-correct hypoltheses are avoided since these aclions do not appear to the
scheduler as attractive as actions on the new, enlarged hypothesis. Such mergings occur in
approximately half of the runs on the 1011-word grammar with the small branching factor
("XO5"); in grammars wilh higher branching factors, the merging of phrase hypotheses occurs
with even higher frequency.

It has been our experience that, just as a multi-word island is more credible than the
individual words that compose it, so a merged phrase hypothesis is more credible than its two
conslituent phrases. For example, aboul 807 of the mergings in XO5 runs produce correct
hypotheses. In more complex grammars, this statistic drops to about 357, but there are
correspondingly more phrase mergings that occur.

The newly-crealed merged phrase also happens to be a complete sentence; ie, it has
begin- and end-of-utlerance markers at as its extreme constituents. Thus, it is a candidate for
the interpretation of the utterance.
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26. KS: STOP
Stimulus: [+ARE+ANY +BY +FEIGENBAUM+AND+FELDMAN+]* (complete phrase)
Action: Deactivation of several score hypotheses.

STOP responds to the crealion of a complele phrase. STOP lests each phrase hypothesis
on the blackboard to sece whether there is any possibility of extending it to produce a
complele phrase that is raled higher than the one just created. It performs this heuristic test
by trying to combine the phrase, just based on simple time adjacency constraints, in the best
possible way wilth words already hypothesized. Each phrase that cannot be extended by this
process into a word sequence that spans the enlire ullerance and is beller than the newly
created complete phrase is discarded. Subsequently, the RPOL KS (whose executions are not
shown here) will discard hypotheses as they are created if they also cannot pass the same
test.

Of the hypotheses notl discarded, extensions to the phrase [+ARE now appear as the most
likely candidates to produce new and betler complete phrases. This search for betler
completle phrases resulls, in steps 27 through 36, in the examination of numerous alternative
ex!ensions, each of which is promising.

27. KS: PREDICT & VERIFY
Stimutus: [+ARE+REDDY
Action: Predict three words to right. Verity CITED(60,52:86), OR(30,52:67), AND
(25,52:82).

28. KS: CONCAT
Stimulus: (+ARE (phrase), HUGH (word)
Action: Create phrase: [+ARE+HUGH (83,0:39)

29. KS: CONCAT
Stimulus: [+ARE (phrase), YOU (word)
Action: Create phrase: {+ARE+YOQU (83,0:39)

30. KS: CONCAT
Stimulus: [+ARE+REDDY (phrase), CITED (word)
Action: Create phrase: [+ARE+REDDY+CITED (80,0:86)

31. KS: PREDICT & VERIFY
Stimulus: [+ARE+REDDY+CITED (phrase)
Action: Predict two words to right. Verify BY(75,83:98), IN{20,86:114).

32. KS: CONCAT
Stimulus: [+ARE+REDDY+CITED (phrase), BY (word)
Action: Croate phrase: [+ARE+REDDY+CITED+BY (80,0:98)

33. KS: PREDICT & VERIFY
Stimulus: [+ARE+REDDY+CITED+BY (phrase)
Action: Predict one word to right. Verity ANY(30,105:126).

34. KS: PREDICT & VERIFY
Stimulus: [+ARE+HUGH (phrase)
Action: Predict one word to right. Verify NAGEL(40,42:63).
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35. KS: PREDICT & VERIFY
Stimulus: [+ARE+YOU (phrase)
Action: Predict three words to right. Reject USUALLY. Verify REGULARLY(25,39:116),
ALWAYS(15,39:72).

36. KS: CONCAT
Stimulus: [+ARE+REDDY (phrase), OR (word)
Action: Create phrase: [+ARE+REDDY+OR (79,0:67)

37. KS: CONCAT
Stimulus: [+ARE+REDDY (phrase), AND (word)
Action: Creale phrase: [+ARE+REDDY+AND (78,0:82)

38. KS: STOP
Stimulus: Stagnation
Action: Stop search and accept [+ARE+ANY+BY+FEIGENBAUM+AND+FELDMAN+]*,

KS STOP is again executed; this execution is caused by the lack of any KS instantiations
thal are raled sufficiently high. STOP here makes a decision to terminate the search process
and accept the phrase [+ARE+ANY+BY+FEIGENBAUM+AND+FELDMAN+] as the correct
interpretation,

39. KS: SEMANT?®
Stimulus: Recognized utlerance: [+ARE+ANY+BY+FEIGENBAUM+AND+FELDMAN+]
Action: SEMANT parses the utlerance, using the same grammar, but with semantic
routines on some of the non-terminal nodes. The execution of these routines
incrementally produces the following structure: '
F:[ U:( [ ARE ANY BY FEIGENBAUM AND FELDMAN ])
N:( 8PRUNE'LIST
S:($PRUNE'LIST!AUTHOR K:(A:(( FEIGENBAUM ¢ FELDMAN)))) )

"F" denotes the total message. "U" contains the utterance itself. "N" indicates the main
type of the utlerance (e.g., REQUEST, HELP, elc.), “S" the sub-lype. "K" denotes the
different attribules associaled with the utlerance (e.g., "A" is the author and “T" is the
topic).

This structure is passed on to the discourse component, which queries the data base
and responds to the speaker.

CONCLUSIONS

The Hearsay-1l system has been successful. It came very close to meeting the ARPA
performance goals: In September, 1976, the C2 configuration achieved correct semantic
interpretation of 907 of a test set of utterances (with 737 of the utterances being recognized
word-for-word correctly). This performance was with the highly constrained "XO5" grammar
over the 101]-word vocabulary. The test set contained twenty-two utlerances, averaging
seven words each. These ulterances were totally new to the system and were run "blind".
The processing time averaged 85 mipss (million instructions per second of speech) on a
PDP-10 computer. (Subsequently, some trivial implementation modifications reduced the
processing costs to about 60 mipss.)

m
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In addilion to its successful performance, the structure of the system is interesting. An
allempt was made from the start to develop a clean model for the kinds of complex
interactions thal would be required of the various sources of knowledge. Although the system
was modified substantially as expericnce was gained, it retained its fidelity to that model,
inchicating s validity. A detailed discussion of the evolution of the architecture with respect
to the model can be found in [Lesser & Erman 77] Several other problem areas have been
allacked with organizations slrongly influenced by the Hearsay-1l structure: image
understanding [Prager et al 77), rcading comprehension [Rumumelhart 76), protein-
crystallographic analysis [Engelmore & Nii 77), signal understanding [Nil & Feigenbaum 78],
and complex learning (Soloway 771
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A RETROSPECTIVE VIEW OF
THE HEARSAY-11 ARCHITECTURE!

Victor R. Lesser and Lee D. Erman

ABSTRACT

The Hearsay model has been presented as a paradigm for attacking errorful knowledge-
intensive problems requiring multiple, cooperating knowledge sources. The Hearsay-II
architecture is the lalest atlempt to explore the model. This paper describes experiences
gained while successfully applying this architecture to the problem of speech understanding.
The major conclusions are:

1. The paradigm of viewing problem solving In terms of hypothesize-and-test actions

istributed among distinct representations of the problem has been shown to be
compu!ahonally feasible.

2. A global working memory (the "blackboard”), in which the distinct representations are
integrated in a uniform manner, has made it convenient to construct and integrate the
individual sources of knowledge needed for the problem solution.

3. The use of a uniform data-directed structure for controlling knowiedge-source activity
has made the system easy to understand and modity.

4. A solution has been demonstrated to the problem of focus-of-attention in this type of
control environment. This solution does not need to be modified when the sources of
knowledge in the system are changed.

INTRODUCTION

The Hearsay model [Red73Mo] has been developed tor problem-solving in domains
which must use large amounts of diverse, errorful, and incomplete knowledge in order to
search in a large space.2 The Hearsay-I architecture and system [Red73Hx and Erm74En]
represented a first (and successful) attempt to apply that model to the problem of
understanding connected speech in specialized task domains. In this first application, the size
of the vocabulary (less than 100 words) and complexity of the grammar were very limited.

Experiences with Hearsay-l led to the more generalized Hearsay-II architecture
[Les750r and Erm75Mu] in order to handle more difficult problems (e.g., larger vocabularies
and less-constrained grammars). The first configuration of knowledge sources (KSs) for
Hearsay-Il -- configuration Cl -- was complete in January, 1976 [CMU76WA4] This
implementation had poor performance (e.g, 107 sentences correct in 85 MIPSS (million
instructions per second of speech) on a 250-word vocabulary). Experience with this
configuration has led to a substantially different set of KSs -- contiguration C2 [CMU77Sul
This configuration performs substantially better (e.g., 857 correct in 60 MIPSS on a 1,000-
word vocabulary).

1 This paper is slightly modified from its original IJCAI-77 form.
~ 2 Other approaches for solving this class of problem Include production systems, frames
[Min74Fr]), heterarchical structures [Wal770v and Woo76Fi}, relaxation techniques [Bar76MS

and Ros765Sc), Planner [Hew?72De], QA4 [Rul73Qa), and the Locus model [Low76Ha and
Rub77Lo]
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The Hearsay-Il system, with the second configuration, has been successful: It comes
close to the original performance goals set out in 1971 to be met by the end ot 1976 for the
ARPA speech understanding effort [New73Sp] and does so with a system organization that is
of interest because of the potential for its application to other problem areas. Several other
problems have been attacked with organizations strongly influenced by the Hearsay-Il
structure: image understanding (Pra77Se), reading comprehension [Rum76To), protein-
crystallographic analysis [Eng77Kn]}, signal understanding [Nii77Ru), and complex learning
[Sol77Kn].

This paper is divided into two major parts. The first part presents an overview of the
Hearsay model, the Hearsay-Il architecture, which is a further specification of this model, and
the two KS configurations. (More detailed descriptions of these configurations are contained
in the appendix.) The second part of the paper discusses the implication of these experiences
for the Hearsay mode! and the Hearsay-Il architecture. In particular, those aspects of the
architecture are identified that have contributed most strongly to the success of the system,
as well as those parts thal need the most future work.3 This discussion is structured around
two themes -- the multi-level global data base (blackboard) for KS cooperation, and the
asynchronous, data-directed control structure tor KS aclivation.a

QVERVIEW OF THE HEARSAY MODEL

A number of characteristics of the problem drive the Hearsay moda!:

. lLarge search space.

. Diverse sources of knowledge. Many of the KSs are large; some have large internal

search problems of their own,

3. Error and variability. These are characteristics of both the input data (the acoustic
signal) and the processing of knowledge sources. h

4. Experimental approach needed for system development. This implies the need for
iterating the system and running over large amounts of data.

5. Performance requirement -- accuracy and speed. This is true of any practical solution
1o the problem as well as during development (because of the experimental nature).

r »—

The basic notions of the Hearsay model [Red73Mo] were developed in response to the
requirements just stated:
1. The KSs are kept separate, independent, and anonymous. This separation is felt to be
a decomposition which is natural and also can help make the combinatoric problems
more tractable. For development purposes, the separation should help with system
modifications (especially adding and modifying KSs) and evaluation.

3 The fact that certain parts of the implementation need further work does not necessarlly
indicate deficiencies with the basic Hearsay model, but rather points out inadequacies in the
Hearsay-Il implementation of the model. It is to the model's credit that even though some of
its more sophisticated capabilities are not implemented effectively, it still provides an
appropriate framework for the successful solution of a complex task. Thus, one of the
intents of this paper is to define some of the major design goals for the next iteration in
the implementation of the Hearsay model.

4 While this paper discusses the means of organizing the knowledge and applying it to the
problem, it does not describe in detail nor quantify the knowledge in the system. At least as
much work has been expended on specifying and debugging the knowledge in the system as
on building and refining the structure to hoid and apply that knowledge.
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2. A global data structure -- the blackboard -- is the means of communication and
interaction ot KSs. This provides an hypothesize-and-test means of Interaction. Each
KS accesses and modifies the blackboard in a uniform way.

3. A KS responds to changes to the blackboard which it is concerned with; It applies its
knowledge within the context of such a change. This implies data-directed activation
of KSs.

OVERVIEW OF THE HEARSAY-II ARCHITECTURE

The Hearsay-Il architecture is one framework for implementing the Hearsay model. In
this section, a very brief overview of that architecture is given. More details are described In
[Les750r and Erm75Mul

The Blackboard

The blackboard is partitioned into distinct information levels; each level is used to hold a
different representation of the problem space. (Examples of levels are “"phrase”, "word",
“syllable”, and "segment®.) The decomposition of the problem space into levels is a natural
parallel to the decomposition of the knowledge into separate KSs. For most KSs, the KS needs
to deal with only a few (usually two) levels to apply its knowledge. Its interface to the rest of
the system is in units and concepts that are natural to it.

The sequence of levels forms a loose hierarchical structure in which the elements at
each level can be described approximately as abstractions of elements at the next lower level.
The possible hypotheses at a level form a problem space for KSs operating at that level. A
partial solution (i.e., a group of hypotheses) at one level can be used to constrain the search
at an adjacent level. For example, consider a KS which can predict and rate words based on
acoustic information and another KS which knows about the grammar of the language. The
first KS can generate a set of candidate word hypotheses. The second KS can use these
hypotheses to generate phrase hypotheses which can be used, in turn, to predict words likely
to precede or follow. These predictions can now constrain the search for the first KS.

Associated with each level Is a set of primitive elements appropriate for representing
the problem at that level; e.g., the elements at the word level are the words of the vocabulary
to be recognized. The major units on the blackboard are hypotheses. An hypothesis is an
interpretation of a portion of the spoken utterance at a particular level. E.g., an hypothesis
might represent the assertion that the word "GIVE" was spoken at the beginning of the
utterance. Each hypothesis at a given level is labeled as being a particular element of the set
of primitive elements at that level.

Each hypothesis, no matter what its level, has a uniform attribute-value structure. Some
attributes (and values) are required of all hypotheses and others are optional, as needed.
Included among the required attributes of an hypothesis are its level (e.g., word), its element
name (e.g., "GIVE"), and an estimate of its time coordinates within the spoken utterance (which
can Include notions of "fuzziness" of estimate). The level and time attributes place a two-
dimensional structure on hypotheses which partitions the blackboard and can be used for
addressing hypotheses. Note that two or more hypotheses at the same level with significantly
overlapping limes are competitors; l.e., they represent competing Interpretations of a portion
of the utterance.
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Other attributes of an hypothesis include information about its structural relationships
with other hypotheses (forming an AND/OR graph), validity ratings (i.e., estimates by KSs of
the "truth” of the hypothesis), and processing state. The processing state atlributes are
summaries and classilications of the other atlributes. E.g., the values of the rating attributes
are summarized by the “rating state” altribute that takes a value from the set "Unrated",
“Neutral", “Verified", “Guarantecd”, or "Rejected”. New atlribules can be created by any KS
and may be used for passing arbilrary information about an hypothesis between instantiations
of the same or different KSs.

A KS can create new hypotheses, specifying values for attributes of the new
hypothesis. Given the "name” of an hypothesis, a KS can examine or modify attributes of that
hypothesis. In addilion, sets of hypotheses may be retrieved associatively, based on the
values of their attributes (e.g., all hypotheses at the syllable level whose durations are greater
than 250 msec.). The hypothesis structure is uniform across all levels in the blackboard.
Thus, the form of access and modification to hypotheses by KSs can also be uniform and Is
accomplished by calling kernel procedures; the sel of these procedures comprises the
blackboard handler.

In addition to the information in each hypothesis which can be accessed by KSs,
auxiliary state information is maintained by the blackboard handler in specialized data
structures. Examples of this information are (1) a representation of hypotheses at each level
arranged for efficient associative retrieval by time and (2) the name of the highest-rated
hypothesis in each time area. These auxiliary structures are updated by the blackboard
handler automatically as KSs make changes to the blackboard.

Structure of Knowledpe-Sources

Each KS has two major components: a precondition and an action. The purpose of the
precondition is to find a subset of hypotheses thal are appropriate for action by the KS and
to invoke the KS on that subsel; the subset is called the stimulus frame of the KS instantiation.
For example, the precondition of the KS that generates word hypotheses based on syllables
looks for new syllable hypotheses. When invoking the KS, the precondition provides the
system scheduler with, in addition to the stimulus frame, a stylized description of the likely
action that the KS instantiation will perform (if and when it is allowed to execute); this
estimate of action is called the response frame. For example, a response frame for the
syllable-based word hypothesizer (MOW) indicales that the action will be to generate
hypotheses at the word level and in a time area that includes at least that of the stimulus
frame. The action part of a KS is a program (writlen in SAIL [Rei76SA)) for applying the
knowledge to the stimulus frame and making appropriate changes to the blackboard. In
general, the changes made will serve lo trigger more KS activations.

To keep from having to fire the precondition continuously to search the blackboard,
each precondition declares to the blackboard handler in a non-procedural way the primitive
kinds of blackboard changes Iin which it is interested. Each precondition is triggered only
when such primitive changes occur (and is then given pointers to all of them). This changes a
polling action into an interrupt-driven one and is more efficient, especially as the number of
preconditions gets large. After being triggered (and when scheduled for execution), the
precondition (also a SAIL procedure) can do arbitrary searching of the blackboard for
hypothesis configurations of interest! o its KS.

i i S
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Several KSs may be grouped together into modules. The KSs within a module may share
code and long-term built-in data. A discussion of the module construct, Including Its ?
implications for KS independence, Is given below in the section on "KS Independence”.

Scheduling

E | Whenever a precondition is execuled, it checks all blackboard events in which it is
interested that have occurred since the last time it executed. For example, a "new hypothesis"
to a precondition is any hypothesis which was created between the last time the precondition
execuled and Its current execulion. Thus, a precondition may be thought of as executing, then
“sleeping” for a time while retaining stale, then waking (executing again) and being able to find
all new events of interest to it.

However, whenever a KS execules, it uses the stimulus frame specific to that invocation. -
Each KS execution goes to completion; that is, the KS cannot pul itself to “sleep”, waiting for -
some other event (on the blackboard) to occur. -

At any point, there are, in general, a number of pending lasks to execute -- both
invoked KSs and triggered precondilions. (In practice, the number of pending tasks often
exceeds 200.) A scheduler in the kernel [Hay77Fo] calculates a priority for each waiting task
and selecls for execution the lask with the highest priority. The priority calculation attempts
to estimale the usefulness of the action in fulfilling the overall system goal of recognizing the
utterance. This estimation is based on the specific stimulus and response frames of the
actions and on overall blackboard state information, which includes such notions as the best
hypotheses in each time area in the utterance, and how much time has elapsed since the
current best hypothesis was generated. The priority of a KS is recalculated if the validity of
its stimulus frame is changed or the auxiliary state pertinent to evaluating the significance of
the response frame is modified.

Some KSs are not directly involved in hypothkesizing and testing partial solutions;
Instead, these control the search by influencing the activation of other KSs. These policy KSs
can be used to impose global search strategies on the basic priority scheduling mechanism.

THE CONFIGURATIQNS

Following are brief overviews of configurations Cl and C2, to provide a basis for
subsequent discussion. The appendix contains more detailed descriptions of the KSs, as well
as pointers to published papers.

Figure 1 gives a schematic of configuration C1 as it was operational in January, 1976.
The levels are indicated by solid horizontal lines and are labeled at the left. KSs are indicated |
by vertical arcs with the circled end indicating the level where its stimulus frame is and the
pointed end indicating the level of its response frame. The name of a KS is connected to its
arc by a dashed horizontal line. As segment hypotheses were generated from the acoustic
data (SEG), they migh! be combined to form larger segment hypotheses (CSEG). Phone
hypotheses were crealed, based on one or more contiguous segments (PSYN). Syllables were
predicted from the phones (POM) and words from the syllables (MOW). Phrase hypotheses
were constructed from contiguous word or phrase hypotheses which were syntactically
consistent (RECOG). Other KSs (PREDICT, RESPELL, and POSTDICT) accomplished various
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syntactic extension and prediction functions at the phrase and word levels. Verification of
predicted words was carried out by expanding the words into their expected syllables (WOM),
expanding the syllables Into expected phonemes (MOS), and matching the sequences of
expected phonemes with the recognized phones (TIME and SEARCH). Changes of ratings of
hypotheses were propagated fo structurally connected hypotheses (RPOL). The FOCUS policy
KS controlled the search by setting priorities for various kinds of KS actions.

N it

Figure 2 gives a schematic of configuration C2 as it was operational in September,
1976. First, all segment hypolheses are generated from the parametric representation of the
: acoustic signal (SEG). Nexl, syllables are predicted from the segments (POM). Then, words are
E . predicted from the syllables (MOW); the most likely words in each time interval placed on the
blackboard (WORD-CTL). Next, a heuristic word-sequence hypothesizer (WORD-SEQ) attempts
to identify the most probable sequences of word hypotheses (consisting of successive
language-adjacent word pairs). Because this KS exploits statistical methods to improve
credibility, the initial word sequence hypotheses are much more accurate than are hypotheses
based on single words. Subsequently, KSs are invoked to attempt to parse the hypothesized
word sequences to determine if they are grammatical (PARSE), to predict possible time-
adjacent grammatical word extensions (PREDICT), to hypothesize and verify new words
satisfying these predictions (VERIFY), to concatenale grammatical and time-adjacent word
sequences (CONCAT), to propagate ratings (RPOL), to reject phrases and to determine when
the serach should be terminated (STOP), and to generate new word sequence hypotheses
(WORD-SEQ-CTL).

The major system-related differences between these ct‘mﬁgurations5 are listed here;
they will be discussed individually throughout the paper.

1. C1 has asynchronous processing throughout. C2 has an Iinitial pass of sequential,
bottom-up processing to the word level; ie, all segments are created, then all
syllables, then a selection of words.

2. Cl used the blackboard extensively for intra-KS state-saving between instantiations of
a KS (e.g., SEARCH and RECOG-PREDICT-RESPELL-POSTDICT). In C2, this was greatly
reduced, with KSs doing more computation internally and In larger units (e.g., VERIFY
and PARSE-PREDICT-CONCAT).

3. C2 generated simpler hypothesis networks than those in C1. For example, SEARCH and
TIME built complex structures to represent verifications of words; VERIFY builds very
simple ones for the same purpose.

EXPERIENCES WITH HEARSAY-II

This section addresses the following questions: How well did the Hearsay-Il system meet ;
its original design goals and were these goals appropriate for problem solving in the speech '
understanding domain (and more generally in errorful domains which require extensive
search)? This discussion is based on approximately three years of experience with the
Hearsay-Il architecture, including numerous iterations of both the system architecture and KS 4

5 Though we are here concerned with systems issues, it is worth pointing out that WORD-SEQ
Is a novel KS which significantly contributes to the success of C2. It limits the search space
by providing large hypotheses which act as islands of reliability and bases for further
search. This KS uses approximate syntactic knowledge {o examine efficiently many
alternative sequences of low-reliability word hypotheses and generate a small number of
more reliable phrase hypotheses.
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configurations.® These questions will be discussed in the context of two major aspects of the
Hearsay-1] architecture: the blackboard global data base, and KS interaction and control.

Blackboard Data Base

There are two major design themes reflected in the structure of the blackboard. The
first theme is the avoidance of expensive and complicated backtracking control structures by
the representation of allernative, distributed hypotheses in an integrated multi-level manner.
The second design theme is the representation of all information levels with a high-level,
uniform structure, in order to allow all KSs to contribute their information to the blackboard in
an identical and anonymous manner.

Distributed Representation

It was hoped that the first design theme would (a) avoid the redundant calculation of
previously-generated results and (b) allow KSs to apply their knowledge selectively to places
in the blackboard where further processing would resolve contradictory evidence supporting
likely, alternative hypotheses.

The ability to save partial results on the blackboard in an integrated manner, in terms of
hypothesis sub-networks, has been a very positive characteristic of the architecture; it avoids
a significant amount of unnecessary recalculation of results previously generated.8 This was
especially true for KSs operating at the word and phrase levels. This was also true for KSs in
the C1 configuration operating at lower information levels, for example, the TIME and SEARCH
KSs. However, later versions of these KSs (e.g., VERIFY in C2), for reasons of efficiency (to be
discussed later), do not save partial results on the blackboard.

The use of an integrated representation as a way of efficiently resolving competition
among KSs wanting to work on the same hypotheses has not been exploited, nor has the
ability to bring to bear specialized knowledge dynamically to resolve the conflict among
competing, alternative hypotheses (for example, a specialized KS to resolve ambiguity between
two word hypotheses that are very close acoustically -- e.g., "sit" and "split"). In addition, the
ability given by the integrated representation to re-evaluate automatically (i.e., without KS
intervention) an hypothesis’ credibility when its supporting environment is modified is not
exploited in the C2 configuration (although it was Cl). In the C2 configuration, hypothesis
credibility is never modified in an explicit sense; rather, new and different hypotheses are
created. A side effect of this approach is that hypotheses are never deleted from the
blackboard.

6 The emphasis on the two configurations as fixed points can be misleading; rather than
appearing full-grown, the configurations evolved over time, with numerous iterations
required first to develop Cl and then C2 from C1.

7 Hayes-Roth [Hay77Ro], in discussing how to evaluate the potential usefulness of a KS action,
introduces the concept of diagnosticity as an important component in a KS priority tunction.
Diagnosticity is a measure of how much contradictory evidence could potentially be resolved
by a particular KS action.

8 The usual manner of accomplishing this is having each KS, as it is about to create a new
hypothesis, first check that a hypothesis does not already exist which is sufficiently similar
to the one it is about to create.
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One explanation for the lack of full use of the integrated, multi-level representation of
hypotheses could be just that the parlicular task domain of speech understanding does not
need these capabilities. However, it is our feeling thal there are fundamental weaknesses in
the Hearsay-ll representation of an integrated, multi-level hypothesis; these weaknesses (to
be discussed below) make it difficult, both in terms of execulion time and programming
complexity, to perform the desired analyses of the hypothesis structure and its surrounding
environment. This type of analysis is the key to the effective use of the sophisticated
processing capabilities that are possible within the framework of the Hearsay model.

othesis Network Structure

A major problem in using the blackboard is that one cannot operate on a network (in its
simplest form, a tree) of interconnected hypotheses as a composite unit. There Is a basic
confusion in Hearsay-Il's implementation of hypathesis networks between (a) the hypothesis at
the top of the tree (the highest level of interpretation) and (b) the whole tree; the state
information associated with an hypothesis is very local and does not adequately characterize
the state(s) of the hypothesis network(s) connected to it. In order to operate effectively in a
distributed manner on interconnected multi-level hypothesis networks, the state information
associaled with an individual hypothesis must allow a KS to analyze quickly the local
environment of an hypathesis and, more importantly, the role that the hypothesis plays in the
larger context of the hypothesis networks it is part of. One of the consequences of this
deficiency is the difficulty encountered in making appropriate scheduling decisions because the
more global import of a potential KS action cannot be delermined easily.9

For example, in configuration Cl, an hypathesis at the phrase level was constructed out
of hypotheses at the phrase, word, syllable, surface-phoneme, phone, and segment levels,
Because of the asynchronous nature of processing, a phrase hypothesis could be supported
by word hypotheses in different stages of verification -- some might be fully verified, others
only partially verified, or some totally unverified. Possible KS actions waiting to work on this
hypothesis network could be a separate verification of each unverified word, an attempt to
exlend the phrase in either the right or left direction, a search for co-articulation effects
among different word pairs, or a full verification of a partially verified word. These actions
represent processing at different information levels. Given the existing hypothesis
Interconnection primitives, there is no way to determine easily that all these actions relate to
the same hypothesis network, nor what import each action could potentially have in judging
the credibility of the entire network.

Another symptom of this problem is the inability to express, except in a very limited
way, what type of processing has already been applied to an hypothesis network and what
further processing could possibly be applied. This inability again impacts the scheduler
because it makes it difficult to schedule "competing™ KSs (i.e., KSs which could work on the

9 It is expensive to trace through an hypothesis network to determine the global import of a
polential KS action. But this cost is not unreasonable relative to the total system execution
time for a configuration which contains KSs that perform moderately large amounts of
internal computation. However, the major computational expense comes in dynamically
updating the global import of a pending KS action as modifications are made to the
blackboard since there are a large number of these modifications: it is necessary both to
find which waiting KS Instantiations have priorities that are atfected by the modification and
then to recalculate the priorities for those affected.
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same or different parts of a specilic hypothesis network) appropriately. Because of these
difficulties there has been, In later KS configurations, only a very limited (and simply
represented and analyzable) form of KS competition.

Another aspect of the inadequate network structure is that the primitives for specifying
structural relationships between hypotheses require many intermediate levels to represent
cerlain types of connectivity patlerns. This need for many intermediate levels is expensive in
in storage space and, more importantly, time; it requires a great deal of network searching
through the connection structure to analyze the relationship of an hypothesis to its immediate
surrounding environment. These intermediate levels represent a level of detail which is
unnecessary for some types of KS analysis and which interfere with these analyses by making
them unwarrantedly complex. Once it has been constructed, it is impossible to bypass this
level of detail in situations in which it is not pertinent. For example, an information level may
contain many intermediate sublevels built out of the connection primitives; a KS using
information at this level may want only to examine those hypotheses which are the highest
sublevel in each time area. This type of operation, given the current blackboard retrieval
primitives, requires the examination of all hypotheses in a specified time area. Another
complication of not being able to hide these intermediate levels is that a KS in some cases has
to know the exact structure of the intermediate levels used by another KS Iin order to be able
to skip over them, thus making the KSs less independent.

In summary, the experience to date on the distributed representation approach indicates
that the implementations of this concept explored so far are neither general nor efficient
enough in two major interrelated aspects -- how hypotheses can be combined into a network
and how the state information associaled with an individual hypothesis reflects the hypothesis
networks connecled to it. To elaborate further, what is missing from the blackboard structure
is a way of viewing the shared network structure from a different perspective. This
perspective should permit the particular path through the network that defines a specific
composite hypothesis to be both viewed in isolation from other paths that are intertwined
with it, and also in a way that eliminates superfluous sub-structure. From this type of
perspective, the importance of potential KS actions could be judged efficlently and related to
the history of previous processing.

Uniform Blackboard Structure

Let us now examine the second major design theme used to structure the blackboard: a
uniform structure at all information levels. From a programming point of view, both in terms
of KS wrilers and system implementors, the uniform structure of the blackboard has been a
good design choice. By having a uniform structure, a variety of standard blackboard creation,
accessing, display, analysis, and debugging functions couid be developed that are usable by all
KSs. These standard functions, some of which are quite complex, make it convenient for a KS
writer to interface his knowledge source with the system. The ease with which this
interfacing could be accomplished is exemplified by the tact that, in a period of six months,
configuration C2, which Is almost entirely new relative to Cl, was developed and debugged.
Because of this uniform structure of hypotheses and their connections, it is often possible for
a KS to be recoded so that it generates a different local hypothesis structure without
requiring the recoding of other KSs in the system; this is true because a KS can probe the

10 A possible approach for implementing this different type of perspective is discussed in
work by Hendrix [Hen75Ex) on partitioned semantic networks.
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blackboard with sophisticated built-in retrieval operations which, in many cases, shield the KS
from changes made by other KSs. For example, there is the structural-adjacency blackboard
primitive which, given a hypothesis, finds all hypotheses at a particular Information level that
are immediately adjacent to the given hypothesis based on the AND/OR connection structure
among hypotheses. '

The uniformity of the atlribute structure of hypotheses also makes It possible to
monitor efficiently for blackboard changes which are {o trigger preconditions. Each
precondition needs only to declare to the blackboard handler the names of the attributes at
each level in which it is interested. When an attribute is changed, the blackboard handler then
triggers all preconditions interested in it.

The uniform blackboard structure, though efficiently implemented, is not appropriate as
a scratchpad for the internal computations of a KS. This type of use of the blackboard is
often inappropriate because its uniform, general structure does not come completely free in
the storage requirements for an hypothesis and the cost of creation and access; most internal
computations of a KS do not need lhis generality. An example of a misuse of the blackboard
was the case of the syntax analyzer knowledge source, SASS [Hay77Un]. In early versions of
this KS, the blackboard was used to hold the partial parse trees developed in attempting to
parse a language fragment; current versions of this KS, which use a tailored, internal data
structure for parsing, are two orders of magnitude faster than the original blackboard-based
version of this KS. This case history seems to confirm the notion that there are advantages to
specialization of structures: one for KS interaction (i.e.,, the blackboard), and separate ones
for each KS.

The blackboard has also proven to be useful as a data base for the scheduler
[Hay77Fo]). Because of the uniform hypothesis structure, instantiations of KSs can specify
scheduling information in a uniform way (as stimulus and response frames), allowing new KSs
to be introduced without having to modify the scheduler. The representation of alternative
hypotheses in an integrated, uniform fashion also makes it possible to compare directly the
pending KS instantiations to determine which will likely contribute most to further progress;
the scheduler 1) can determine those areas on the blackboard that most need further work
and locate the pending KS instantiations that are relevent to those areas and 2) estimate the
amount that a KS instantiation will improve the quality of hypotheses in the area of its action.

Long-Term Information Structures

Associated with each information level of the blackboard, there Is, as previously
discussed, a set of primitive elements thal are used to label hypotheses at that level. The
kernel interface provides facilities for creating, accessing, and displaying these labels. In
addition, arbitrary data structures can be associated with each label. These structures, for
example at the word information level, can be simple, such as the average expected duration
of each word, or complex, such as a network which specifies alternative syllabic spellings for
each word. In the complex case, this structure often is used to relate labels at one
information level with labels at another; this relationship is used by a KS which operates
between different levels (e.g., in the example given here, WOM in configuration C1). These
data structures related to labels constitute much of the long-term (built-in) KS-defined
information structures of the system and often represent most of the problem-specific
knowledge In a KS.
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Each KS (or group of KSs) defines whatever ad hoc structure seems appropriate for the
parlicular kind of information to be represented. There has been no attemp! to define a
uniform set of kernel interfaces for crealing and accessing these long-term data structures,
nor a set of relationships (connection primitives) for relating labels at different levels.
However, it seems possible o atlempt to define a small number of representations within the
kernel; these structures would mimic the hierarchical structure of the blackboard. (Hanson and |
Riseman in their work on image understanding have a system architecture [Pra77Se] very :
similar to the blackboard and have included a complementary long-term memory structure.)

The major drawback of not having a predefined long-term memory is that if KSs want to
share this information they have to agree among themselves upon a specific structure, thus
violating independence considerations. In addition, uniform structures could meke KSs easier
to understand, develop, and analyze.

On the other hand, these long-term structures must be highly optimized because of their
large size and the high frequency with which they are accessed.“ The approach taken of
tailoring these structures to the particular KS(s) using them allowed for efficient .
implementations in terms of both time and space. It is also possible that explicit tailoring has :
led to KSs which are easier to understand than if they were forced to fit their requirements
into a uniform structure.

ey

Thus, there are still open questions about the desirability of providing uniform
structures for representing the knowledge in KSs; hopefully, future implementations will
explore these possibilities. :

Conclusions About Blackboard Usage

In trying to draw some conclusions about our experiences with the use of the
blackboard, the main issue that constantly comes up is time and space efficiency. In errorful
task domains, such as speech understanding, a large number of alternative interpretations of
the data must be examined and analyzed. The blackboard concept Is effective in the Hearsay-
Il implementation to the degree that it allows this search to be efficient. Analysis of the Cl
configuration indicated that cerlain types of KS processing on the blackboard were not
efficient. Reimplementation of the KSs in order to eliminate those types of processing resulted
in the C2 configuration. The major uses of the blackboard in the C2 configuration are:

1. A storage area for high-level intermediate results generated by the search. This ﬂ
storage area avoids the unnecessary recalculation of these results if they are '
encountered on future search paths.

2. A communication area for KSs, with strong and simplified assumptions by a KS of what
structures can be generated by other KSs.

3. A data base for the scheduler.

4. A common display, debugging, and performance evaluation area.

11 For example, the description of the grammar used by the KSs within the SASS module in
configuration C2 is a network of 3100 nodes. Each node has about seven pointers to other
nodes, plus several pieces of auxiliary information. A typical KS action, e.g., parsing a tour-
word phrase, might make 100 to 5,000 node accesses.
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Knowledge-Source Interaction and Control

The asynchronous, data-directed control structure used in Hearsay-ll was designed to
permit:
1. The quick refocusing of atlention to appropriate hypotheses in the blackboard.
2. The flexible reconfiguration of the system with different sets of Independent (and
possibly competing) KSs, and different global control strategies.
3. The exploration of paralle!l processing. '

This section will examine each of these requirements along two dimensions: Were the
capabilities embodied in the requirement important to the project, and how well did the control
structure (in terms of time, space, and ease of representation) implement these capabilities?

Appropriateness of a Data-Directed Control Structure

The first requirement, quick refocussing, was based on the following model for
processing in the speech domain. Processing can be organized in terms of the incremental
additions of small units of information to a limited number of alternative hypotheses. The
limited number of alternatives derives from the view that there are islands of reliability in the
acoustic data that can be used to anchor the search. Each small increment of information
should help to verify, refute, or augment (expand) an hypothesis. A KS action, though
performed in a local context, could also have the side effect of contributing information useful
in the evaluation of alternalive hypotheses (i.e, in other contexts). Thus, after each
incremental addition of information (through the execution of a KS), it is necessary to re-
examine the set of potential actions that now can be activated and determine which of these
will most likely resolve ambiguity. An asynchronous, data-directed architecture makes it
convenient to implement such a processing strategy by permitting KS action to be directed by
the data: it delays the application of knowledge until there is enough information for a
meaningful result (decision), and it re-applies the knowledge when, at a later time, additional
information is generated thal bears on the original decision.

In those parts of the blackboard where processing followed this model, the data-
directed control structure was very effective. However, at lower levels of speech processing
(i.e., segmentation and labeling, syllable hypothesis generation based on segments, and word
spotling based on syllables), this model was found to be inappropriate because there is not
enough reliability in credibility scores of hypotheses to form hypothesis islands that can
reliably anchor the search. Thus, processing at these levels cannot be selective (depth-first),
and instead requires a complete scan (breadlh-first), for which asynchronous control has no
advantages (and considerable costs).

A major change In going from configuration Cl to C2 was making the lower levels of
processing more sequential and botiom-up. Not until the word level Is reached do hypothesis
credibility scores have enough reliability to justify the more complex processing required of
an asynchronous, data-directed control structure. The presence of these islands of reliability
is in itself not a sufficient condition for the use of this sophisticated control structure. What is
additionally required is that there is either a significant cost to evaluate each alternative or a
large number of alternatives (combinatoric explosion in the search space); only then is the
overhead involved in implementing a data-directed control structure worthwhile.

In addition to the control overhead, an asynchronous control structure requires a more
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complex internal structure for a KS. This complexity arises because, as new information is
asynchronously generaled, a KS must have the additional logic to determine whether this new
information allows it to make a decision it could not previously make or whether this
information contradicts a previous decision. In the latler case, it must modify the previous
decision, which may involve modifying decisions made as a consequence of the original one.
Where processing involves a complex hypothesis nelwork structure with much detailed
structure, the nature of asynchronous processing in response to a change at the detailed level
is costly, both in terms of processing time and complexity of the KS, and should be avoided
unless the compensatory benefits are large. As previously mentioned, the inadequacies in the
blackboard structure which make it difficull to skip over delailed structure exacerbate these
problems. (The SEARCH KS in configuration Cl is an example of a KS working asynchronously
at a detailed level. Although the acoustic-phonelic knowledge applied by SEARCH was
represented by a relalively simple data structure within the KS, the code necessary for
examining and incrementally building large, integrated, and competing AND/OR structures on
the blackboard was very complex and the number of KS executions needed to verify a word
was large -- on the order of ten to one hundred. In C2, the function of word verification was
replaced by the VERIFY KS -- here, verifying a word is an atomic act (as far as other KS
actions are concerned) and is carried out using tailored structures internal to the KS. Each
execulion of VERIFY forced a recalculation of the detailed structure, rather than sharing such
structures across executions.)

QOverhead Costs of Data-Directed Control

The overhead cost of implementing an asynchronous data-directed control structure for
computation of medium level granularity (i.e,, a KS action which involves greater than 1/10
second of internal computation) is not significant. The major cost involves monitoring each
modify operation to the blackboard to determine whether any preconditions are interested in
being notified of this specific change. This cost of monitoring and nolification makes a modify
operation 12 times as expensive as a read operation. However, in the C2 configuration there
are 29 times as many reads as modify operations, thus making this aspect of implementing a
data-directed control only 47 of the total cost of a run.

Another cost associated with implementing this type of control structure involves
maintaining a scheduler queue of waiting KS instantiations and performing priority calculations
to decide which instantiation to run next. However, these focus of control calculations,
possibly expressed in a different way, are necessary in any problem-solving system that
involves a dynamic search. The more general implementation of these calculations in the
context of an asynchronous control structure does not appear to generate significantly more
system overhead than a specialized implementation of them in a system with more explicit
control structure. The cost of maintaining and updating the scheduler queues and calculating
the priorities was about 57 to 77 of a total run.

Further costs involved in implementing this type of asynchronous control structure arise
because of the delay between the invocation of a KS and its execution. The KS must, in
general, contain code that revalidates its invocation context before beginning execution.
However, by making some assumptions about the type of processing other KSs could effect at
particular information levels, there was in practice very little need for context revalidation.
KSs did not in general interact by modifying previously-made assumptions and detailed
struclures constructed by other KSs, but rather through the incremental addition of new
hypotheses to existing structures or the verification of previously unverified hypotheses.
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KS Independence

As indicated above, complete independence among KSs was not accomplished. However,
information about the processing characteristics of other KSs Is generally very restricted, and
relates only to KSs which share either dynamic information on the blackboard or long-term
static information. To facilitate such data sharing, the concept of a module was intreduced into
the architecture. A module contains a set of preconditions and KSs which share common
structures and related accessing procedures. The KSs contained in a module generally
operale at the same or adjacent information levels and thus also share specialized accessing
and display roulines for these information levels of the blackboard. A module usually
represents the code of one KS programmer and typically contains one to four KSs and one to
four preconditions. The clustering of KSs by their long-term information structures turned out
to be a convenient decomposition for separably instantiable but related activity. The KS
module Is the atomic unit which is the basic building block for different KS configurations.12

How important is the property of independence of KSs? For the two configurations
discussed here, the KS modules are not completely independent. However, during the lifetime
of the project, which involved numerous iterations of KSs, there has been very little difficulty
encountered by this lack of complete independence (i.e., the "subroutine interaction problem"
did not haunt us). It has been possible to configure systems with subsets of KS modules (e.g.,
a "top-end" system that deals only with word and phrase hypotheses or a "bottom-end"
system which deals only at and below the word level) without modifications to the modules
involved.

The reason for having litlle difficulty with the subroutine interaction problem can be
traced to the data-directed activation of KSs. In general, interaction among KSs is
accomplished by having a KS modify the attribute structure of an hypothesis in a way which
causes some other KS(s) to be activated and attend to that hypothesis. In order for KSs to
communicate information which is not representable using the standard, kernel-supplied
attributes, the communicating KSs need only agree on the name of a new attribute and the
form of its value; this new atiribute can then be used to pass the information. Thus, it is not
necessary for a KS to know the names of the other KSs involved. Individual KSs which create,
are activated by, or use this information may be added to or deleted from the system without
requiring modifications to the other KSs.

A KS as a Hypothesis Generator

There are two major reasons, in addition to the one already discussed about context
validation, why total independence was not achieved; both of these relate to a KS as a
generator of hypotheses. The first reason concerns the control of the number of hypotheses
a KS should initially generate and the reinvocation of it to generate additional, alternative
hypotheses. The parameters associated with hypothesis generation should be set by a policy
KS which has a more global view of the current state of the recognition process. The need
then arises for a mechanism by which a policy KS can transmit its desires, in an anonymous
and independent manner, to the appropriate KS.

It was hoped initially that these "processing goals” could be specified in terms of the 4

12 Each module is implemented as a separately compiled body of code. A configuration is
specified at load time by selecting the desired modules. Additionally, any KS or precondition
can be inhibited at run-time, effectively excising it from the system.
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basic hypothesize-and-lest paradigm (l.e., by having the policy KS creale the appropriate type
of hypotheses which would in turn trigger the desired activity). However, "asking for
somelhing to be done™ cannol always be specified conveniently In this way nor In an
anonymous manner, For example, if there is a need for more word hypotheses to be
generated Iin a parlicular time area, the action of crealing a new hypolhesis at the phrase
level which will then be expanded at the word level does not procisely caplure the desired
activily, nor does the somewhat clumsy approach of modifying some attribute of the lower
level data (e.g., the syllable level) to force a KS to reprocess this data so as to accomplish the
desired activity. Note in this example, that by trying lo force the concept of processing goal
into the hypothesize-and-lest paradigm, the policy KS must know the type of input stimulus
that will trigger a KS to produce the desired results, thus violating the independence among
modules. In addition, 8 KS which is designed to do hypothesizing-and-testing does not
necessarily produce a response thal will precisely malch the desired processing goal. Due to
these difliculties of direclly embedding goal processing control in the hypothesize-and-test
paradigm, an alternative approach was developed (but not implemented) which integrates
smoothly with the data-directed control flow of Hearsay-Il.

This alternalive approach is based on introducing the concepl of a goal node into the
blackboard, with types of attributes distinct from those ot an hypothesis, and a means of
relating goals al diflerent levels. The aclion of crealing a goal at a particular level Is a
monitorable event thal lriggers a KS thal can do processing al that level. By making a goal
node distinct from an hypothesis, a policy KS can generate goals without interfering with KSs
that operate at that information level but that cannot respond to the goal. If the triggered KS
cannol directly satisfy the goal, it can generate a subgoal, linked to the original goal, to
generate data at another level which could be used by the KS to satisfy the original goal. In
this way, a policy KS can interact with KSs in an anonymous and independent way. For
example, If there is no KS to react to the goal, processing can still continue. In the same
manner, if there is more than one XS that can respond to the goal (i.e., competing KSs), the
scheduler can resolve this conflict without the need for any action by the KS thal generated
the goal. A goal node can also be used as a convenient place for a generator type of KS
action lo leave internal state Information about how much and what type of further processing
it can do In this area. i

The other major reason for violating the independence criterion was based on an
efficiency consideratlion. As previously mentioned, it is comparatively expensive to create an
hypothesis on the blackboard. The cost of hypothesis creation Is especially critical with a KS
that can potentially generate a large number of hypotheses. For example, the syntax
prediction KS (EXTEND, in C2) can creale, based on a prediction from a single phrase
hypolhesis, several hundrod word hypotheses. Each of these must then be processed by the
word verifier KS (VERIFY) and verified or rejected. Before these hypotheses are verified they
share almost identical structures. All bul twenty, perhaps, will be rejected by VERIFY. To
avoid the expense of expanding these as distinct blackboard word hypotheses, special data
structures have been construcled to store the predicted words compactly; these data
structures are then attached as an attribute of the phrase hypothesis. This example further
llustrates the weakness In the current Hearsay-Il implementation of efficiently representing
and processing groups of hypotheses.

Uniformity ot Control

Another Issue associated with the data-directed control structure Is the ease with which
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ditterent global control strategies can be explored. The uniform inlerface conventions used
for specifying and activating KSs and preconditions, logether with treating policy (strategy)
KSs in the same way as other KSs makes the total system easy to modify and understand.

As part of the uniform convention for specifying each KS, non-procedural declarations
are required which tell the system the type of paltern thal lriggers the KS and the type of
action that can resuit from the activation of the KS. By separaling the activation of a KS from
its scheduling, (t has been easy to introduce new global strategies by applying a new priority
evaluation function to the information supplied by each KS. In addition, by allowing a policy
KS to be able to trigger upon cerlain conditions that occur in the scheduling "data base” (such
as the absence of any invoked KSs, or the lack of any invoked KSs above a certain priority
level), it is possible to add different types ot policy KSs into the system in a modular manner
(e.g., WOSCTL In contiguration C2).

In the initial specification of the Hearsay-1l architecture, the approach required for
focus of control was not well developed and represented one of the major conceptual
problems which would determine the success of the design. As a resull of work on this
problem over the iast three years, it is felt that the problem, though not completely solved, is
now understood well enough so that it no longer represents a major obstacle to the effective
use of the architecture. It is interesting to note that much of the discussion In preceding
sections s based on a betler understanding of what features need {o be present in the
architecture in order to efficiently support complex focus of control strategies.

Parallel Processing

One of the initial design goals of the Hearsay-ll architecture was that it should be
efliciently (and correctly) executable on a multiprocessor [Les75Pa and Fen75Mu). In order to
test the parallel processing capabilities of this architecture on an actual KS configuration, a
multiprocessor simulation syslem was embedded in the multiprocess implementation ot
Hearsay-1l. Each KS in this configuration was modified with the appropriate synchronization
primitives,

The result of this simulation, which used an early version of the C1 contiguration that
was slrictly bottom-up in its processing (because it did not include the SASS module), showed
that effective parallelism factors of four to six could be achieved [Fen77Pa]l Untortunately,
there does not exist similar simulation data for a fully configured C1 ar C2 configuration, both
of which include top-down processing. However, it is expected that the C2 configuration
would eéxhibit a much higher degree of parallelism, because KS interaction is more loosely-
coupled and the system does a large amount of breadth-first type of search.

The parallelism factors of four to six that were achieved were less than expected.
Further experiments were performed to delermine the reason for these low factors. One of
these experiments was to run the sysltem with all uses of the synchronization primitives
turned otf. In this mode, the parallelism factors increased to fourteen. This dramatic increase
is due to the fact that much superfluous synchronization was performed in each KS to maintain
data consistency because no assumplions were made about how the blackboard was modified
by other KSs. This superfluous synchronization, combined with synchronization primitives
whose granularity of locking was too coarse, led to unnecessarily large areas of the
blackboard being locked in order 1o maintain data consistency; this resulted both In significant
Interference among concurrently executing KS processes and a high system overhead
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(between 50 and 100 percent) in order to support parallel processing. As with context
validation (discussed above), this was a price paid for complete independence among KSs.

A surprising result was that system performance, in terms of accuracy, was as good
with the synchronization disabled as its performance with the full synchronization. The
explanation for this phenomenon is that the asynchronous, data-directed control of Hearsay-II
is robust in the face of cerlain types of synchronization errors. For example, consider the
normal activity sequence of a KS which involves first examining the blackboard, and then,
based on the values read, modifying the blackboard. Suppose that between the time when the
KS read the value of an attribute on the blackboard and when it modified the blackboard, the
value of the attribute was changed; therefore, the modification was inconsistent with the
current state of the blackboard data. However, because of the data-directed nature of KS
activalion, the changing of the attribute will probably trigger the same KS to be reinvoked to
recalculate its original modification. Thus, the need is obviated for a KS, while executing, to
iockout the areas of the blackboard it has read, in order to maintain the consistency of its
modifications. In addition, other types of inconsistency can often be resolved because another
KS with a diflerent view of the problem will correct an incorrect hypothesis whether it
resulted from a synchronization error, a mistake in the theory used by the KS, or from
errorful data. Thus, this self-correcting nature of information flow among KSs, created
through the use of a data-directed form of the hypothesize-and-test paradigm, in many cases
obviates the need for explicit use of synchronization. .

CONCLUSIONS

The major conclusions on the use of the muilti-level blackboard structure are the.
following: :

1. The paradigm of viewing problem solving in terms of hypothesize-and-lest. actions
distributed among distinct representations of ‘the problem .(where. these
representations form a hierarchy of abstractions) has "been  shown to be a
computationally feasible approach to solving knowledge-intensive tasks. This paradigm
also provides a convenient framework for structuring and applying knowledge. This
has been demonstrated both by the successtul application of the Hearsay-Il
architecture to the speech understanding task and also its adoption as an approach to
problem-solving in a diverse set of other domains such as image understanding
[Pra77Se), reading comprehension [Rum76To), protein-crystallographic analysis
[Eng77Kn], signal understanding [Nii77Ru], and complex learning [Sol77Kn].

2. The representation of allernative hypotheses in an integrated manner on the
blackboard has been shown to have positive aspects. In particular, the integrated
representation avoids unnecessary recalculation and makes it easy to compute a global
view of the current state of the problem solution, for the purpose of focussing. The
problems still to be resolved arise because the Integrated representation permits
hypotheses to be used simultaneously in (shared by) multiple contexts (hypothesis

13 Another example of this self-correcting type of computational structure is a class of
iterative refinement methods used to solve partial differential equations. This type of
computational structure can be decomposed for multiprocessor implementation so as to
avoid most explicit synchronization at the expense of more cycles to reach convergence
[Bau76As). This decomposition is accomplished by not requiring each point in the
difierential grid to be calculated based on the most up-to-date value of its neighboring
points.
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networks). Existing primitives for grouping allernative hypotheses are inefficient in
space, and, more imporlantly, make it difficult to determine easlly the different
contexls that use a hypothesis; these primitives also do not provide a convenient
framework for representing and delermining the fact that two contexts have very
similar hypothesis structures.

3. There are problems with the current formulation of a partial solution as a distributed
network of hypotheses at different information levels, There is a basic confusion in
the Hearsay-Il implementation between the hypothesis in the network which is at the
highest level of abstraction (interpretation) and the entire network. This contusion,
combined wilh the probiem of handling of mulliple uses of a hypothesis, makes it
diflicult to perform some of the complex focus-of-attention strategies possible in the
archilecture.

4. The uniform structure of the blackboard at all information levels has turned out to be a
very positive feature of the archilecture. It has made it possible to integrate new KSs
Into the system easily and to develop a large set of utilities applicable to all KSs. It
has also permitled numerous reimplementations of the internal structure of the
blackboard without requiring KS modification,

The major conclusions on the uniform, asynchronous, data-directed control structure are
the following:

5. The use of an Implicit and uniform conlrol structure for KS cooperation makes the
system easy to modify and understand. The separation permitted between the
invocation of a KS and its scheduling makes it convenient to implement a variety of
scheduling policies without KS modification,

6. The overhead costs involved in implementing this type of control structure are
acceptable for KSs which do moderafe amounfs of infernal computation at each
invocation (e.g., more than 1/10 second in the current implementation).

7. This control structure is not appropriate for domains in which the hypothesis
credibility ratings are not selective enough to suggest strongly good paths to search.
8. The problem of focus of attention in this type of control environment, though not
completely solved, Is now understood well enough so that it no longers represenis a
major obstacle to the effective use of the architecture. The integrated representation
of alternatives on the blackboard, which permits a global view of the current state of
problem solution, and the data-directed control structure make it possible to quickly

refocus attention to the appropriate places in the blackboard.

9. The initial atlempt to have completle KS independence (in both a sequential and parallel
processing environment) resulted in a significant amount of overhead, and thus seems
nol to be worth the cost. A more balanced approach, based on some knowledge about
the type of processing done by other KSs in the configuration, has been more
effective. This knowledge does not violate anonymity of KSs because it is based on a
functional characterization of their activity and not on their "names". Using this
approach, KS configurations are still highly modular (i.e., there has been no serious
subroutine interaction problem) without paying the severe costs (in complexity of KS
programming and execulion time) of complete independence.

10.Parallel processing can be exploited eflectively in this architecture. The techniques
which are nceded because of the errorful nature of the processing in this problem
domain provide a form of processing which is also robust in the face of data
inconsistency caused by not imposing complete synchronization among parallel
processes. Thus, the overhead costs of the synchronization are reduced substantially,
allowing eftective use of parallelism,
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APPENDIX -- CONFIGURATIONS OF KNOWLEDGE SQURCES '

Configuration Cl

The KSs of C! (see Figure 1) are functionally described here briefly. The name given in
parentheses following the name of the KS is the module in which it was embedded.

SEG (SEG) -- The SEG KS [Gol76Se] generated, from the digitized acoustic signal, a
sequence of contiguous, variable-length segment hypotheses.

CSEG (PSYN) -- This KS [Sho76Ph] combined segment hypotheses into larger segment
hypotheses. The stimulus frame was a sequence of three contiguous segment hypotheses; the
action was to generate one or more new segment hypotheses, each of whose times lay within
the time span of the three hypotheses in the stimulus frame. The precondition for this KS was
triggered highly asynchronously -- whenever a new segment hypothesis was created. The KS
was then invoked once for every pair of segment hypotheses immediately preceding and
following the new one.

PSYN (PSYN) -- This KS [Sho76Ph] created phone hypotheses, based on segment
hypotheses. The stimulus frame was also a sequence of three contiguous segment hypotheses;
the action was to generale one or more phonetic hypotheses, again with times within the
boundarirs of the stimulus hypotheses. The comment above about asynchrony of execution of
CSEG also holds for PSYN.

POM (POMOW) -- The POM KS [Smi76Wo] generated syllable hypotheses from phone
hypotheses. The stimulus frame contained phone hypotheses that were classified as syllable
nuclei; the action of the KS was to create syllable hypotheses based on the stimulus frame and
adjacent segment hypotheses. The precondilion for this KS was very complex because it made
no assumptions about the order in which phone hypotheses would be created. Thus, the
crealian of a new phone hypolhesis of any kind (syllable nucleus or other) triggered the
precondition and caused an invocalion of the KS for each nucleus hypothesis with which the
new phone hypothesis might possibly interact.

MOW (POMOW) -- The MOW KS [Smi76Wo] generated word hypotheses from contiguous
syllable hypotheses. The stimulus frame consisted of a newly-created syllable hypothesis; the
output word hypotheses covered the same time as the stimulus hypothesis, but could also
encompass syllable hypotheses on either side of the stimulus hypothesis (i.e., for multi-syliabic
words.) If the stimulus hypothesis suggested a multi-syllabic word but the hypothesis for the
other syllables did not exist, the word would not be hypothesized; however, if at some later
time the required syllable hypothesis did appear, the KS would be triggered (by the new
syllable) and the word hypothesized.

RECOG (SASS) -- This RECOGnition KS [Hay76Sy] used syntactic knowledge to generate
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phrase hypotheses from contiguous word or phrase hypotheses. The precondition friggered
on a new phrase or word hypothesis (or one with a changed rating). If the triggering
hypothesis completed, with existing hypotheses, a phrase and the constituents were rated
sufficiently high, the KS was invoked. This was a bottom-up parsing action.

PREDICT (SASS) -- The PREDICTion KS [Hay76Sy] used syntactic knowledge to generate
a new phrase hypothesis, given another phrase hypothesis that was highly rated. This was
essentially a “sidewise" or “outward" action.

RESPELL (SASS) -- This KS [Hay76Sy], given a predicted phrase hypothesis (i.e., one
with no links to lower level hypotheses, either phrase or word) with a sufficiently high
prediction rating, generated hypotheses of the constituents (words and/or phrases) of the
predicted hypothesis. Thus, respelling drove processing downward, from predicted
hypotheses towards the word level, so that predictions could ultimately be matched to acoustic
data and verified or rejected.

POSTDICT (SASS) -- Given a weakly recognized or predicted phrase or word
hypothesis, this KS [Hay76Sy] looked for other hypotheses that tended to confirm it. Such
hypotheses were linked fo the “postdicted” hypothesis, increasing its rating.

WOM (WOMOS) -- This KS [Cro76Wo] was triggered on new word hypotheses that were
not linked o syllable hypotheses (i.e., ones that were generated "from above”, by RESPELL or
PREDICT). For each such hypothesis, it generated (via a dictionary lookup) expected syllable
hypotheses which were likely to describe it.

MQS (WOMOS) -- The MOS KS [Cro76Wo], given a new syllable hypothesis, generated
(via a dictionary lookup) a set of surface-phonemic hypotheses which described the syllable.

TIME (POSSE) -- This KS [Cro76Wo] responded to the creation of a new phone or
surface-phonemic hypothesis and altempled o create a link between the new hypothesis and
an existing hypothesis at the other level.

SEARCH (POSSE) -- This KS [Cro76Wo] responded fo the creation of a new link between
a phone hypothesis and a surface-phoneme hypothesis and attempted to create new links
adjacent to the triggering one. Thus, TIME and SEARCH together incrementally built, through
structural connections on the blackboard, a synchronization of a sequence of surface-
phonemes representing a syllable with a sequence of lower-level, acoustically-based phones.
The SEARCH KS was very complex in that it built up competing synchronizations (muitiple
interpretations); this was done with localized, incremental actions and while attempting to have
the competing interpretations share maximal consistent sub-structures.

RPOL (RPOL) -- This policy KS [Hay76Hy] was responsible for propagating validity
ratings. It triggered on the creation of an hypothesis, the establishment of a structural
connection between two hypotheses, or the change of rating of an hypothesis. It calculated
ratings for an hypothesis based on the values of KS-assigned atlributes and the ratings of its
structurally connected neighboring hypotheses.

FOCUS (FOCUS) --This policy KS imposed a global control strategy on the function of all
other KSs in the system. It imposed this control through the setling of goal hypotheses which
indicated to a KS both that it should attempt {o generate particular types of hypotheses and
also what internal criterion (thresholds) it should apply in order to generate such hypotheses.

The strategy implemented by this KS was based on a progressive enlarging of the
search space of hypotheses as existing hypotheses prove fruitless; the idea behind this
strategy is that one should open up the combinatorics in the search space only when
absolutely necessary. The stratlegy was impiemented by setting up initial goal hypotheses
with very high criteria for hypothesis generation and then successively lowering these
thresholds when the search stagnated.
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