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~.;The first paper presents a short introduction to the genera l Hearsay-
II s t r u c t u r e  and describes the September 1976 conf i guration of
know l edge-sources; it includes a detailed description of an utterance
be i ng recognized . The second paper discusses the general Hearsay-li
architecture and some of the crucial problems encountered in app lying
tha t architecture to the problem of speec h understand i ng .
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The Hearsay-Il system, developed at CMU as part of the five-year ARPA
understanding project, was successfully demonstrated at the end of that project In —

September , 1976. This report repr ints two Hearsay-Il papers which describe and . —

discuss that version of the system:
1. Erman & Lesser. “The Hearsay-Il System: A Tutorial”, Chap. 16 In W. A. Lea (ed.)

Tre,tds in Speec h Recognaion, Prentice-Hall , Englewood Cliffs, NJ, 1978 (in press).
(Copy-written by Prentice-Hall -- reprinted here with their kind permission.)

2. Lesser & Erman. “A Retrospective View of the Hearsay-Il Architecture ”, Proc.
Inter. J otat Conf. on ,4rt~ficsal Int e Uigence - 1977 , Cambridge, MA , 790-800.

The first paper presents a short introduction to the general Hearsay-Il structure and
describes the September 1976 configuration of knowledge-sources~ it includes a
detailed description of an utterance being recognized. The second paper discusses the
general Hearsay-li architecture and some of the crucial problems encountered In

- 
. applying that architecture to the problem of speech understanding.

For a more general view of Hearsay-Il as a structure for problem-solving, see:
3. ~rman & Lesser. “A Multi-Level Organization for Problem Solving Using Many,
Diverse, Cooperating Sources of Knowledge”, Proc. 4t h Inter. Joint Con! on
Artificial InteWgenc., Tbillsi, Georgia, USSR, Sept., 1975, 483-490.

For a description of the implomontation, see
4. Erman & Lesser. “System Engineering Techniques for Artificial Intelligence
Systems”, A. Hanson and E. Riseman (eds.) Computer Vision Systems , Acade mic Press,
Inc., NV, 1978 (in press). (Also available as CMU Technical Report , Dec., 1977.)

These four papers present a comprehensive overview of the Heariay-II projec t and
contain pointers to other relevant papers.
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Victor R. Lesser: Computer & Information Sciences Dept., University of Mass., Amhers t,
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THE HEARSAY- Il SPEECH UNDERSTANDING SYSTEM:
A TUTORIAL

Lee 0. Erm4n and Victor 1?. Lesser

INTRODUCTION

In 1971-72, the Hearsay-I speech understanding system was developed at Carnegie-
Mell on University -- the first of a series of such systems. Hearsay-i fReddy Erman & Neely -

73, Reddy Erman Fennell & Neely 73] was a successful attempt to solve the problem of
machine understanding of speech in specialized task domains. In this early system, the size of 

—the vocabulary (fewer than 100 words) and comp lexit y of the grammar were very limited.
Experiences with Hearsay -I led to the more generalized Hearsay-l i architecture (Lesser
Fennell Erman & Reddy 75, Erman & Lesser 75, Lesser & Erman 77) in order to handle more
difficult problems (e.g., larger vocabularies and less-constrained grammars ).

The active development of Hearsay-Il extended over three years. During this period, a
number of different knowledge-source configurations were constructed within the Hearsay-Il
framework. The most important of these are called configurations CO (January, 1975), Cl
(January, 1976), and C2 (September , 1976). This last configuration was very successful: it
came close to the original ARPA performance goals set out in 1971 to be met by the end of
1976 (Newell et ii , 73]. Its performance in September, 1976, was 90Z correct semant ic
interpretation of sentences over a 1011-word vocabulary and constrained syntax (CMU 77].

This presentation Is divided into three major sections. First, the Hearsay-il system
architecture is presented. The next section discusses in detail the C2 configuration —— the
particular types of knowledge that are contained in this configuration, and how this knowledge
interacts in order to recognize spoken utterances. The last section contains a detai’ed
example of C? recognizing an utterance.

THE HEARSAY-li ARCHITECTURE

The Hearsay-Il architecture is based on the view that the inherently errorful nature of
processing connected speech can be handled only through . the effective and efficient
cooperation of multiple, diverse sources of knowledge. Additionally, the experimental
approach needed for system development requires the ability to add and replace sources of
knowledge and to explore different control strateg ies. Thus, such changes must be relatively
easy to accomplish; there must also be ways to evaluate the performance of the system in
general and the roles of the various sources of knowledge and control strategies In par ticular.
This ability to experiment conveniently with the system is especially crucial because the
amount of knowledge is large and many people are needed to introduce and validate it.

A major focus of the design of the Hearsay-li system was the development of a
framework for experimenting with the representation of and cooperation among these diverse
sources of knowledge. Based on our experiences with Hearsay-I, we expected to need types
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2 Tutorial

of knowledg, and interaction patterns whose details could not be anticipated at the outset of
the project. Therefore , instead of designing a specif ic speech understanding system , we
con~.idt’red Hcar ay-l l as a model for a class of systems and a framework within which specific
conf igurations of that general model could be constructed and studied. One can think of
t-4earsay- Ii as a high-level system for programming speech unders tanding systems of a certain
t ype -- I.e., those that conform to the Hearsay-il model.

In the Hearsay-Il architecture , each of the d iverse t ypes of know ledge needed to solve
the speech problem is encapsulated in a k~ jec~p~ source (K S). For speech understanding,
typical KSs incorpo rate information about syntax , semantics , acoustic-p honetics , proso dics ,
sy llabification , coarticu lation , etc. The C2 configuration has about ten KS modules. KSs are
kept separa te, anonymous, and as independent as possible, in order to make the creation ,
modification, and testing of KS modules as easy as possible.

As one knowledge source makes errors and creates ambiguities, other KSs must be
brought to bear to correct and clarif y those actions. This KS cooperation should occur as
soon as possible af ter the introduction of an error or ambiguity in order to limit its
r amificat ions. The mechanism used f or providing this high degree of cooperation is the

~~pothes ize- .ancI- test paradigm. In this paradigm , solution-finding is v iewed as an iterat ive
process. Iwo kinds of KS act ions occur : 1) the creation of an hypothcs i,~ an “educated
guess ” about some aspect of the problem (e.g., that a particular word was spoken during a
spe cified portion of the utterance) , and 2) tests of the plausibility of some hypothesis or sets
of hypotheses. For both of these steps , the KS uses a priori knowledge about the problem, as
welt as the previously generated hypo theses. This “itera tive guess-building” terminates when
some subse t of the hypotheses generated describes the spoken utterance “welt-enough~’ to
satisfy some halting cri teria.

fl~ Blackboard

The requirement that knowledge sources be independent implies that the functioning
(and very existence ) of each mus t not be necessary or crucial to the others. On the other
hand, the KSs are required to cooperate in the iterative guess-building, using and correct ing
one another ’s guesses ; this implies that there must be interaction among the KSs. These two
opposing requirements have led to a design in which eac h KS interfaces to the others
externall y in a uniform way that is identical across KSs and in which no knowledge source
knows which or how many other KSs exist. The interface is Imptemen ted as a dynamic global
data structure , calle d the blackboard.

The blackboard is partitioned into distinct information levels (e.g., “phrase ”, “word”,
“sy llable ” , and “phone”); e a h  level holds a different representation of the problem space. The
current state of problem solution is represented in terms of hypotheses on the blackboard.
An hypothesis Is an interpretation of a por tion of the spoken utterance at a particular level
(e.g., an hypothesis might be that the word ‘today’ occurred from millisecond 100 to
millisecond 600 in the utterance ) . All hypotheses, no mat ter what their level, have a uniform
attribute-value structure. For examp le, each hypothesis hat. attributes containing i t s  level ,
begin- and end-time within the utterance (which can include notions of fuzziness), and
plausibility ratings. The level and time attributes place a two-dimensional structure on
hypotheses which partit ions the blackboard and can be used for addressing hypotheses. Note
that two or more hypotheses at the same level with significantl y overlapping times are
conipetito~ij is., they represent competing Interpretations of a portion of the utterance.
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TutorIal 3

Hypotheses at different levels are connected through an and/or directed graph
structure. Through these connections , hypotheses at each level can be described
approxima tel y as abs tractions of hypotheses a t the next lower level, A partial solution (i.e., a
group of hypotheses) at one level can be used to constrain the search at an adjacent level.
For examp le, cons ider a KS which can predict and rate words based on acoustic information
and another KS which knows about the grammar of the language. The first KS can generate a
set of candidate word-hypotheses. The second KS can use these hypotheses to generate
phrase hypothese s which can be used, in turn, to predict words likely to precede or follow.
These predic tions can now constrain the search for the first KS.

KnowIech~e-9ource Ac.t lvation

Each knowledge source is activated in a data-directed manner , based on the occurrence
on the blackboard of pa t te rns of hypotheses specific to its interes ts. For example, a KS which
knows how to make hypotheses about words given hypotheses about sy llables is activated
whenever any KS creates new sy l l ab le  h ypotheses. Once activated , a 4<9 may examine the
blackboard , typ ical l y in the vicinit y of the hypotheses that ac t ivated It. Based on its
knowledge, the KS may then modif y those hypotheses or other hypotheses , or create new
hypotheses. Such actions establish new patterns on the blackboard; these patterns may cause
other KSs to be activated. This mechanism for KS activat ion implements a data-directed form
of the hypothesize-and-test paradi gm.

Each KS has two major components: a precondition and an action. The purpose of the
prec ondition is to find a subset of hypotheses that is appropriate for action by the KS and to
invoke the KS on that subset; the subset is called the stimulus frame of the KS instantiation.
For examp le, the precondition of the KS that generates word hypotheses based on sy llables
looks for new sy llable hypotheses. To keep from having to fire continuously to search the
blackboard, cact i precondition declares the primitive kinds of blackboard changes in which it is
interested, Each precondition is triggered only when such primitive changes occur (and is
then given pointers to all of them). Whenever a precondition is executed , i t checks al t
blackboard events in which it is interested that have occurred since the last time it was
executed. For examp le, a “new hypothesis ” to an executing precondition is any hypothesis
which was created since the last time the precondition was executed.

The ac tion part of a KS is a program for applying the knowledge to the stimulus frame
and making appropriate changes to the blackboard. A sty lized description of the likely action
that the KS instantiation will perform (if and when It is allowed to execute) is called the
response frame. For examp le, a response frame for the sy llable-based w ord hypothesizer
Indicates that the action will be to generate hypotheses at the word level and in a time area
that includes at least that of the stimulus frame. The stimulus and response frames , w hich are
generated by the precondition component of the KS, provide information for comparing the
desirability of execution of a KS instantiation to thaI of other KS instantiations; this Information
Is used f or the scheduling of KS Inst antiations.

Scheduling of Knowledge-Sources

At any point, there are , in general, a number of pending tasks to execute -- both
invoked knowledge sources and triggered preconditions. (In practice , the number of pending
tasks often exceeds 200.) II very, very large amounts of processing power (and memory)
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4 Tutorial

were availa ble, one could consider actuall y ac tivating all KSs In all their possible contexts.
This would expand the blackboard with many (competing) hypotheses. Ass uming this would
eventually terminate (i.e., at some point no new contexts are created ) , a decision process could
t hen t r y  to pick from all the competing hypotheses that subset which best describes the data
- -  this would be the system ’s “solution” to the problem. Because of this cornbinator ic
exp losion of possibilities (caused mostl y by the problems of variabilit y and incomp leteness In
the signal and arrorfu lriess of the KSs), this comp lete expansion is not feasible. Therefo re , the
control strategy can pick only a smal l r.ubse l of the applicable KS activations ; this can be
thought of as exp loring a limited portion of the (potential) full y-expanded black board.

This selection process is implemented by a scheduler which calculates a priority for
cact i wait ing task and selects f or execution the task with the highest priority. The priority
calculation attempts , based on the specific stimulus and response frames of the actions , to
estimate the usefulness of the action in fulfilling the overal l system goal of recognizing thL
utterance. A more detailed exp lanation of the scheduler is contained in the next section and in
[Hayes ~Roth & Lesser ~~~

The Hearsay-li Implementation

Based on the a rch i tec tu re  just desc ribed, a hi gh-leve l programming system was
cons t ruc ted  to provide an environment for prog rammin g knowledge sources, configuring

g roups of them into systems , and executing them. Because KS Interactions occur via the
blackboard (tri ggering on patterns , accessing hypotheses , and making modifica tions) and the
blackboard has a uniform structure , KS interactions are also uniform. Thus, one se t of
tarilities can serve alt KSs. Faci lities are provided for

o defining the levels on the blackboard ,
o configuring groups of KSs into runriable systems ,
o accessing and modif ying hypotheses on the blackboard ,
a activating and scheduling KSs.

These facilities , along with other utilities for debugging and user (researcher) Interaction , are
calle d the Hearsay-Il ‘kernel’. The kernel is the high-level environment for crcat lng and
tes ting KSs and configurations of them [Erman & Lesser 78).

Hearsay- il is implemented in the SAIL programming system (Reiser 76), an Algol-60
dialect which has a sophisticated comp ile-time macro facil i ty as well as a large number of data
s tructures (including lists and sets ) and control modes which are implemented fairly eff ic ien tl y.
The Hearsay- Il kernel provides a high-level environment for KSs at compile- time by extending
SAIL’s data types and syntax through declarations of procedure cal ls , global variables , and
complex macros. This ex tended SAIL provides an explicit structure f or the specification of a
KS and its Interaction with other KSs (through the blackboard). The high-level environment
also provides mechanisms that enable KSs to specify to the kernel (usually in non-procedural
ways) a variety of information which the kernel uses when confi guring a system , scheduling KS
activit y, and controlling user interac tion.

The knowledge in a KS is represented using SAIL data structures and code, in whatever
form the KS developer fincI~ appropriate. The kernel environment provides the facilit ies for
structuring the lnterf ace between this knowledge and other KSs , via the blackboard. For
example , the syntax KS contains a gramma r for the specialized task language that is to be
rec ognized; this grammar is In a compact , network form. The KS also contains procedures for
searching this network , f or example , to parse a sequence of words. The kernel provides

: • 
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Tutorial 5

faci l i t ies ( 1) for tr i ggering this KS whenever new word hypotheses appear on the blackboard,
(2) for the KS to read those word hypotheses (In order to find the sequence of words to be
patcecl ) , and (3) for the K S to cre a le new hypotheses on the blackboard , Indicating the
structure of the parse.

THE KNOWLEDGE-SOURCES OF SEPTEMI3ER~ 197 6

In this section , a descri ption of the September , 1976 , version of the Hearsay-Il system
-- configurat ion C2 -- is given in term s of the functions and Interact ions of its knowledge
sources. Included is an examp le run of the system.

The task f or the system Is to answer questions about and retrieve documents from a
collection of computer science abstracts (in the area of artificial intelligence). Examp le
sentences are

“Which abstracts r e f e r  to theory of computation?” —

“List those articles. ”
‘What has McCarth y wr i t ten since nineteen seventy-four ’”

The vocabulary contains 1011 words (in which each extended form of a root , e.g., t he p lural of
a noun, is counted separat el y, if it appears). The grammar which defines the legal sentences
is context free and includes recursion. The sty le of the g rammar is such that there are many
more non-terminals than in conventional syntactic grammars; the information contained in the
greater nu mi er of nodes provides semantic and pragmatic constraint within the grammatical
structure. For example , in place of ‘Noun’ In a c onventional grammar , this grammar includes
such non-terminals as ‘Top ic’, ‘Author ’, ‘Year ’, ‘Publisher’, etc.

The grammar allows each word t o be followed, on the average, by seventeen other
words of the vocabulary. 1 The standard deviation of this measure is very hi gh (about 51),
sinc e some words can be followed by many others (up to 300 In several cases ) . For the
sentences used for performance testing, the average length Is seven words and the average
number of w ords that can follow any initial portion of the sentence is thirty-four.

Figure 1 gives a schematic of confi guration C2 as It was operational in September , 1976.
The levels are indicated by solid horizontal lines and are labeled at the left. kSs are Indicated
by vertical arcs with the circled end indicating the level where its stimulus frame Is and the
pointed end incficating the level of Its response frame. The name of a KS is connected to its
arc by a dashed horizontal line.

Sifteal Acquisitions Parameter Extraction. Segmentation. Labeling ~~~
An input utterance is spoken int o a medium-quality Electro-Voice RE-S i close-speaking

headset microphone in a fair ly noisy environment (>65 db). The audio signal is low-passed
filtered and 9-bit sampled at 10 KHz. All subsequent processing, as well as controlling the
AID converter , is digital and is done on a time-shared PDP-10 computer. Four parameters
(call ed ‘ ZAPDASH”) are derived by sImple algorithms operating directly on the samp led signal

1 Adual l y, a famil y of grammars was generated , v a r y ing In the number of words ( termina ls)  
—

and In the number and complexity of sentences allowed. The grammar described here and
used In most of the testing is called “X05”. 
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SEGMENT b ~~ b 

— SEC

PARAMETER b
Figure 1. The levels arid knowledge sources of confi gura tion C2.

(GoIdhe~g Rerfdy & Gill 77] . These parameters are extracted in real- t ime and are used init ial k-
to detect the beginning and end of the utterance.

The ZAPDAS H parameters are next used by the ~~~ knowledge-source as the bas is for
an acoust ic segmentation and classific al ion of the utterance. This segme nta lion is
acCD n1p Ii~.ht’d by an i te ra t i ve  refinement technique: First , silence is separatød f rom non—
silence ; then, the non-silence is br oken down into the sonorant and non-sono, ant reg ions , etc.
Eventuall y, five classes of segments are produced: silence , sonorant peak , sonorant non-peak ,
f r i ca t i ve , and flap. Associated with each classified segment is Its duration, absolute amplitude ,
and amplitude relative to its neighboring segments (i.e., local  peak , local value , or plateau ) .
The segments are conti guous and non-overlapping, with one class design,~t ion for each .

Finally, the SEG KS does a f iner labeling of each segment. The labels are ~Ilophonic-
like; there are currently 98 of them. Each of the 98 labels is defined by a vector of auto-
correlation coefficients (Itahura 75]. These temp lates are generated from speaker-de pendent
training data that have been hand-labeled. The result of the labeling process , which matches
the central portion of each segment against each of the temp lates using the Ilakura metric , is 

-

a vecto r of 98 numbers; the i’th number is an estimate of the (negative log) probability that
the segment represents an occurrence of the I’th altophone in the label set.

Word $polting (PQM~ ~~~ WQRD-CTL)

The initial generation of words , bottom-up, is accomp lished by a three-step process.
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I

I 
First , using the labeied segments as input , the ~QM knowledge source [Smith 763

generates hypotheses f or likel y sy llable classes. This is done by firs t identif y ing sy llable
nuclei and then “parsing ” outward from each nucleus. The sy llable-class parsing is driven by
a probabilistic “grammar ” of “sy llable-class -> segment” productions; the rules and their
probabilities are learned by an off - l ine program which is trained on hand-labeled utterances.
(The current training, which Is speaker-dependent , uses 60 utterances containing about 360
word tokens.) For each nucleus position, several competing sy llable-class hypotheses are
generated -- typ ical l y three to eight.

The syllable c lasses are used to hypothesize words. Each of the 1011 words in the
vocabulary is specified by a pronunciation descri ption. For wor d hypot hesization purposes , an
inverted form of the dictionary is kept , in which there is associ ated with eac h sy llable-class all
the words which have some pronunciation containing that sy llable-c lass. The ~~~ KS [Smith
763 looks up each hypothesized sy llable class and generates word candidates from among
tho~~ words containing that sy llable-clas s. For each word that is multi—sy llabic, all of the —

syllables in one of the pronunciations must match above a threshold. Typica lly, about 50
words of the 1011-word vocabulary aie generated at each sy llable nucleus position.2

Finally, the generated word candidates are rated and their begin- and end-times
adjus ted by the WIZARD procedure [k4ckeown 77]. For each word in the vocabu lary, WIZARD
has a network which describes the possible pronunciations. This rating is calculated by

- - finding the path through the network which best matches the labeled segments , using the
distances associated with each label for each segment j, the rating is then based on the
difference between this best path and the segment labels.”

The result of the processing to this point is a set of words.. Each word includes a
begin-time , an end- time , and a confidence rating. MOW selects a subset of these words , based
on their times and ratings , to be hypothesized; it is these selected word hypotheses that form
the base for the “top-end” processing. Typ icall y, these hypotheses include about 75Z of the
words actually spoken (i.e., “correct” word hypotheses). Each correct hypothesis has a rating
whic h ranks It on the average about three , as compare d to the five to twenty-f ive or so
incorrec t hypotheses which compete with it (i.e., which significantl y overlap it in time). The
non-selecte d words are retained internall y by MOW for possible later hypothesization .

The amount of hypothesization that MOW does is controlled by the WORD-CTL (‘Word
Control ’) KS. WO RD-CTL creates “goal” hypotheses at the word level; these are interpreted
by MOW as indicating how many word hypotheses to attempt to create in each time area. One
can think of MOW as a generator of word hypotheses (from the candidates it creates
internally) and WORO-CTL as embodying the policy of how many to hypothesize. This clear
separat ion of policy from mechanism has facilitated experimentation with various control
schemes. For example , a trivial change to WORD-CTL , such that goal hypotheses are
generate d only at the start of the utterance (“left-hand end”), results in MOW creating word
hypotheses only at the start , thus forcing all top-end processing to be left-to-ri ght.

2 Since the September , 1976, version , the POM and MOW KSs have been rep laced by Noah
(Smith 77, Smith & Sambur 78 (section 7-3.2.2.3)]. This KS outperforms POM—MOW on the
1011-word vocabulary (in both speed and accuracy) and is able to handle much larger
voca bularies —- it has a performance degradation which is only logarithmic in vocabulary
size in the range of 500 to 19,000 words.

3 WIZARD is, in effect , a miniature version of the HARPY speech recognition system [Lowerro
76, Lowerre & Reddy 78], excep t that it has one network for each word, rather than one

T network with all words and all sentences.

~
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WORD-Cu fires at the star t  of processi ng of an utte rance in order to create goal
hypotheses . Subsequentl y, it may re-tr igger if the over-al l  search process stagnates;  this
condi lion is recognized as there being no waitin g KS insta ntiations above a cer ta in priorit y (aC .

desc ribed in the section below on “Atte ntion Focussing ”) or as the global mea5.ures of current
state of the probtern solution riot having increased in the last several KS execut ions.

Tpp -~~ d Processing

Word- Island Generation (WORD-SEQ. WORD-SEQ-C u) - The WORD-S~Q knowled ge source
[Lecser Hayes-Roth Birnbaum & Cronk 77) has the jo~ of genera ting, from the wo rd
hypotheses generated bottom-up, a small set (about three to ten) of word 5equence
hypotheses. Each of these sequences , or islands, can- be used as the basis f or expans ion into z
larger islands , hopefull y culminating in an hypothesis that spans the entire uttera nce. Multi-
word islands are used rather than sing le- word islands because of t h e  relativel y poor rel iabd it y
o f rat ings of sing le words as well as the limited syntactic constraint supp lied by sing le words.

WORD-SE Q uses two kinds of knowled ge to ge nerate multi-wor d islands:

o A table derived from the grammar indicates for every ordered pair of words in the
vocabulary (1011 x 1011) whether that pair can occur in that order in some sentence
of the defined language. This binary table ~which contains about 1.77, “1”’s) thus
defines “language-adjacen cy ”.

o Acoustic-phonetic knowledge, embodied in the JUNC T (‘juncture ’) pr ocedure , is app l i ed
to pairs of word hypot heses and is u~ed to decide if that pa ir might be considered to
be time-adjacent in the utterance. JUNCT uses the dictionary pronunciations and
examines the segments at their junctur e (gap or overlap ) in making its decision.

WORD-SE Q takr~s the highes t - ra ted  sing le wo rds arid generates multi-wor d sequences
by expanding them with other hypoth ec ized words that are both time- and language-adjacen t.
This expansion is controlled by heurist ics based on the number and ratings of competing word
hypotheses. The best of these wo rds sequences (which occasionall y includes sing le wor ds )
are  hypothesized.

The WQRD-SEQ-CT L, (‘Word-Sequence-Control’) KS controls the amount of
hypothes ization that WORD-SE Q does by creating “goal” hypotheses which are interpreted by
WORD-SE Q as i ndicat i ng how many hypotheses to create. This provides the same kind of
separation of policy and mechanism achieved in the MOW/WORD -CTL pair of KSs. WORD-SEQ-
CTI. fires at the sta rt of processing of an utterance in order to create the goal hypotheses.
Subsequentl y, WOPD-SEQ-CTL tri ggers if stagnation is recognized; it then modifies the word-
sequence goal hypotheses thus stimulating WORD-SEQ to generate new word-seq ience islands
from which the search may be be more fruitful. WORD-SEQ will generate the additional
hypotheses by decomposing word-sequence islands already on the blackboard or by re-
generating islands which were Initially discarded because their ratings were too low .

Word-~ eguence Parr.ing (PARSE) - Because the syntactic constraint used in the generation of
the word sequences is only pa ir-wise , a sequence longer than two words might not be
syntac ticall y acceptable. The PAR SE knowledge source of the SASS module (Hayes-Roth

- ~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ —rn~~~-. -
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Erman Fox & Mostow 77, Hayes-Roth Mostow & Fox 78] can parse a word sequence of
arbi t rary  leng th , using the full constraints given by the language. This parsing does not
require that the word sequence form a complete non-terminal in the grammar nor that the
sequence be senten ce-init ial or sentence-f inal -- the worc.s need only occur conti guously
somewher e In some sentence of the language. If a sequence hypothesis does not parse , the
hypothesis is marked as “rejected ”. Otherwise , a phrase hypothesis Is created. Associated
with the phrase hypothesis is the word sequence of which It Is composed , as well as
information about the way (or ways ) the words parsed.

W prd Predictions fr om Phrases (PREDICT) - The PREDICT knowledge source of the SASS
module can, for any phrase hypothesis , generate predictions of all words which c~n
immediately precede and all which can immedia ’ely f ollow that phrase in the language. In
doing the computation to generate these predictions , this KS uses the parsin~, Informa tion
attached to the phrase hypothesis by the parsing componen t. —

Word Verification LVFPIFYJ - An attempt is made to verif y t he existence of or reject each such
predic ted word, in the context of its predicting phrase. This verification is handled by the
VI~RIFY knowledge source. If verified , a confidence ra ting for the wor d must also be
generated. First , If the word has been hypothesi7ed previousl y and passes the test for time-
adjacency (by the JUNCT procedure), it is marked as verified and the word hypothesis is
associated with the prediction. (Note that a single word hypothesis may thus become
associa ted with several different phrases.) Second, a searc h is made of the internal store
created by MOW to see if the candidate car, be matched by a previously-generated candidate
which had not been hypothesized. Agaih, JUNCT make s a judgment ab:~.jt t ime-adjacency.
Finally, W IZARD compares its word-pronunciation network to the segments In an attempt to
verify the prediction.

For each of these different kinds of verif icat ion, the approx imate begin-time (end-time)
of the word being predicted to the right (left) of the phrase is taken to be the end-time
(begin- time) of the phrase. The end-time (begin-time) of the predicted word is not known and,
in fact , one requirement of the verification step is to generate an approx Imate end-time
(begin-time) for the verified word. In general , several differen t “versions ” of the word may
be generated which differ primarily in their end-times; since no context to the right (left ) of
the predicted word is given, several different estimates of the end (beginning) of the word
may be plausible based solely on the segmen tal Information.

Word-P hrase Concatenation (CONCAT) - For each verified word and its predicting phrase, a
now and longer phrase may be generated. This process , accomplishe d by the CONCPIT
knowledge source of SASS , which Is similar to the PARSE knowledge source , Involves parsing
the words of the original phrase augmented by the newly verified word. The extended phrase
is t hen hypothesized and includes a rating based on the ratings of the words that compose It.

If a verified word Is already associated with some other phrase hypothesIs , CONCAT
tries to parse that phrase with the predicting phrase. If successful , a new , larger phrace
hypothesis Is created which represents the merging of the two phrases.

Complete Sentences and Halting Crit cria (
~IQ~ 

- Two unIque “word” hypotheses are

~ 

— 
- 
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genera ted before the f i rs t  and aft e r the last segment of the utterance to denote begin and
end of utle rance , respectivel ~ . These same “wor ds ” are included in the synta c t ic  s peci f ic at ion
of the language and appear as the first and last terminals of every comp lete sentence. Thu s,
~iny verif ied phrase that includes these as its extreme constituents Is a comp lete sentence and
spans the entire utterance. Such a sentence becomes a candidate for selection as the
system ’s recognition result.

In general , the control and rating strat egies do not gua rantee tha t the f i rst  cucli
com p lete spanning hypothesis found will have the highest rating of al t possible ~.panning

~ent ev~ce hypolheses that might be found ii the search were allowed to continue , so the
s~- c t e m does not just stop wi lh the f irst  one generaled. Howpver , the character ist ics of such
an hypothesis are used by the ~J,QP knowledge source to prune from fur thor cons ide ration
other pa rtia l hypotheses which , because of their low ratings , are unlikely to be extendible into
spanning hypotheses with rat ings highor than the best already—discovered spanning sent ence.
This heuris t ic pruning procedu re is based on the form of the ratings funct ion (I.e., how the
ratin g of the phrase l& derived fro m its constitu ent wards ), The pr unin g procedure con’.iderc
each part i a l  phrase and Li .O5 the rat i n~’c of other wor d h~ pot hese s in the time ar eas not
c ovt ’rC c f  b-~ th~ phi ase to determine it th~ p hras e mig ht be e~ tendiblo to a phras e r ated
higher than the spanning hypothesis; if not , the pa rtial phr are is pruned. This pruning proc r’~.
and the rating and halting policies a te discussed in (Moslow 77].

The recognition processing finally halts In one of two ways : First , there may he no
more partial hypotheses loft  to consider for predicting and extending. Because of the

— coml,inntorics of the grammar and the likelihood of finding some prediction that is rated at
feast above the absolute rej ect ion threshold, this form of termination happens when the
pruning procedure has been effective and has eliminated all compet itors. Second , the
e~pendituro of a preciefined amount of computing resources (time or space ) also halts the
recognition process; the actual thresholds used are set according to the past performance of
the system on similar sentences (i.e., of the given length and over the same vocabulary and
grammar).

Once the recognition process Is haltcd , a selection of one or more phrase hypotheses is
made to represen t the result , If at least one spanning sentence hypothesis was found, t h e
highest-rated such hypothesis l~ cho~on; otherwise , a selection of several of the highest - - r a ted
of the pnrtl~l phrase hypotheses Is made , biasing the selection to the longest ones which tend
to overlap (in time) the least.

H~pothes i~ Ratings W~~1j 
- The RPOI KS runs in high priority immediately af ter  any KS action

that creates a new hypothesis or Ihat modifies an existing hypothesis. RPOL uses rat i n g

Informa tion on the hypothesis , as well as rat ing Information on hypotheses to which t h e
s timulus hypothesis Is connected, to calculate the over-all rating of the stimulus hypothesis.

j~~~ i n  E~~~~irn - The top-end processing operations Include (a) word-i sla nd generation ,
(b) word sequence parsing, (c) word prediction from phrases , (d) word ver if ication, and (e)
word-p hrase concatenation. Of these , (c), (d), and (e) are the mos t frequent ly performed.
Typically, there are a number of these act ions wa it ing to be performed at v~ r3ous plac es in
the utte rance. The selection at each point In the processing of which of these act ions to
perform Is a pr oblem of combinator lc control , since the execution of each action usuall y
genera tes other actions to be done. 

- --~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ — — - - ~~~~ ~~ ———~~~~~ —~~ - -—~~~~~~~~~-—-— -~~ 
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To handle this problem , the Hearsay- Il system h~s a st ati sti ca ll y-based scheduler
t Hayes -Roth & I esser ‘ ‘] which c alcul ates a pr iorily for eac h actio n and sele ts, at each ti me,
the wait  ii~g action with the highest priori ty .  The prior il y calculat ion at tempt s to estimate the
usef u lness of the act ion in lul(dling the over --all s y s t e m  goat of re ogni~ing the ut te r an- e. The
c alculation is based on the stimulus and response (ramCs specified when the action is
tr i ggered. ror example , the word ve r i f ie r  is tr igger ed whenever words are predicted from a
phrase hypothesis ; the info rmation passed to the scheduler in order to help ca lculate the
priority of this instantiation of the ve rif ier includes such things as the time and rating of the
predicting phrase (in the stimulus frame ) and the number of words predicted (as given in the
response frame ) . In addilion to the action -specif ic information , the scheduler keeps t rack of
the overall state of the system in terms of the kinds and qualit y of hypot heses In each time
area.

Inte~p!etat iQn and Pecp onc ’ (~EM~~L DISCQ) —

The ~ITM~ NT knowledge-source (rex & ~~sfo w ‘‘1 acc ep ls the word sequence(s) result —

of the recognition process and generates an interpret ation in an unambiguous for mat for
intera c t ion wi th the data ba’ .t that the speaker is que’ ying. The inter pretat i on is con s tructed
by actions associated w ith “!.emanticall y interesting ” non-terminal s (which have been p r e —
specIfied for the grammar ) in the par!.e tree(s ) of the recogni?ed sequence(s). If ret ognilion
results in two or more part ial  sequences , SEMt~NT c onstructs a consistent Interpretat ion based
on all of the partial sentence s~ taking into account for eac h part ial sentenc e Its rat ing,
temporal posi tion, and semantic consistency, as compar ed to the other partial sentence s .

The Q1S~Q (‘discourse ’) knowledge-source (Hayes-Roth Gill & Mostow 77] accepts the
f ormatted Interpretat ion of SEMANT and produces a response to the speaker. This response
is often the display of a selected portion of the queried data base, In order to r et a i n  a
coherent interpretation across sentences , DISCO has a f inIte-state model of the discourse
which Is updated with each interaction.

Following is a dccc riphion of the recoRnihion of th~ utte rance “ARF ANY BY FEIG LNI3A( IM
AND FELDMAN’” hy configuration C2 of Hea rsay-l i. 4 Each mator ~~~ of the processing is
shown; a s tep usually corrv~ponds to the action of a knowledge source. Execution of the
preconditions is not shown explicit l y, nor is in(licalion given of knowledge-source instant iat ions
which are never sct*dulecl. Also , execution s of RPO L are not shown.

The name of the KS act ivated at each step follows the step numt,er . If the KS name is
followed by an asterisk , this indicates that the hypo theses in the stimulus f rame of this KS
instantiati on are all corr ect .  Single numbers In parentheses after hypotheses are the i r r at i ngs
(on a scale of 0-100). All times given are In centl-second unitsi thus the duratIon of the whole
utte rance, which was 2.25 seconds , Is 225, When begin- and end-times of hypotheses are
given, they appear as two numbers separated by a colon (e.g., 52:82). Hypotheses which are
correc t are marked with an asterisk.

4 For reas ons of clarIt y, the description differs from the actual run In a few deta ils , 
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Figure 2.d. Syllable-Classes.
Figure 2.c. Segments.
Figure 2.b . The correct words (for reference).
Figure 2.a. The waveform of “Are any by FeiRenbaurn and Feldman?” .

Fig. 2. The example utterance.

The waveform of the spoken utterance Is shown in Fig. 2.a. The “correc t” word
bound aries (determined by human inspection) is shown in Fig. 2.b for reference. The
remaining sections of Fig. 2 contain all the hypotheses created by the KSs on the blackboard
(except that the goal hypotheses created by WOR D-CTL and WO RD-SEQ-CTL arc not shown).
Each hypothesis is indicated by a box; the hypotheses are grouped by level -- segment ,
sy llable , w ord, word-sequenc e, and phrase. Within each hypothesis box , the number preceding
the colon indicates the step number in which the hypothesis was created. The symbol
following the colon names the hypothesis, At the word level and above, a “a” following the
~ymI,ol indica tes that the hypothesis is correct. The trailing number within the hypothesis box
Is the rating, on a scale of 0 (lowest) to 100.

THIS PAGE IS BEST 4UALIT? TPACTICABL*
TI~0M ~~~ 1S~~~ I~

) 1)D~ _ _--

“

~

: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~ - _... .- -~~~~ --~~~ —~~~~~~-~~ -.-~--



0 50 tOO 150 200

F ~~~~
— - —

~~~~~~~~~~~~~~~~~~
-- 13

I ___________

~~~~~~~~~~~~~~~~~i~__Th_~~~

__

_ _
~~~~

___
_

__J

4

_________ ____ -___ ___

h 
- 

~~~~~~~~~~~~~~~~~~~~~~~ L . $.. 
___________ 

I 
__________

— t~ 
,~a j r . r E c . L u. A ’,~~

.
~ ~~~~~~~ U I

2 1 Ci E.~~ . -1 ~~~~~~~~~~~~ ~ . :‘~:.-‘~-J €3

%9- ~~~~~~~~ 
• ,3 ,~~. ~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~ ______ ____ ______

3 .A~3E. ,L .~. ’S6  16 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______

a

a ~ ~~~~ j Ar’~3-~cL~’A~I1-; go —

a ~~
- A

~~~~~ :f 
______

H 
~~~• “ • ~~~~~ • I

- — _______

i:~ ~~~ :s C:7 0 60 1- - - 
- ~~~~~~~~ _J~ - - -

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ .1! 
______

- - .ç .‘..- ,,~ - I t  .7: II Q. IA  ~~~~~~~~ 70 
_ ,,,_~

L1_i~ L’’ - £4)T 114  ‘&4 ~~~N 70

• i ~~~~~~~~~ .%r zrJI3~~ui~. 70

It:. AN’V~~~~ 5 
~ — 

~

~1 1~ ~E~~~Y 55 €~ _ _J 14 LL. J.IAN 70

‘, ir’ - S T.Ot. ,.T ~5 
~ ~~~~~~~~~~~ ‘~: ‘.‘.~.‘. •3~

_____________ 
sa ’ .s . j  ~~~~~~ Av ,~~~~~~so ~~~~~~— :w so ; ~~~~~~ 5I3

5 R(CIDY 50 1 I~ ~~~~ ~~ Is. ..‘ ‘. ‘.‘ ‘~~.

5 45.’~j  
I *%.. 

~~~ so
L~~~~r’  ~~~ L’t SO I ~ : CUP~~5 ~~~~ - 5  i ‘

I ~ ~~~~~~ ‘~5 ‘.~ — ~ -
—~~~~~~~~~~ I_ — - - —  — - - ..

,~~ 
A T  • 0 ~ 

.
~:.“ .IAN -

~~ ‘ 
‘
~~ ‘.‘~

~ -:.: ‘ - -‘ .-~ s , , _ j  ‘ .
~
. - ... .t • . ‘.; 50

-- 

1i€ii~~j  
-

~~~~~

__ _ _ _

e L5 ~‘~~1 ~~~~~~~~~~~ it a 
-

—

~~ - 
5 i € 5 j ~~~ ~~ ‘•~~~~~~~ ?0 

—______

~ ~~ ,4f 65 ~ ‘~~7€ 70 . ‘~~ 5C~ ’dr~C.
‘O ‘oH 

— 
7~

’
~~I~ ~~ s J

I’. ~~~~~~~ 
___________ 

~, ~~~~~~ .0 ! ‘ ~ ;v r\ ’s

!5- •
~~~~

3 ~~~ro~~] ~~~~~~~~~~~~ ________.

~cEA 60 I ‘ ‘~1 ~~ ‘ O  I

40 - F,~L€ T EEN 65 1 ; s A — ..r ‘0 j ~~~~~~COP’. 65 • ~01 ~ C.C ‘S
[5. F.~G’TcEN 65~_J k ~4~MCQ 65 

~_ , J 15 ~‘.rs ‘s

~3~J [
~ 

ARPA € 0 . ~~- ~‘~‘~v 
~I ~ ‘~

.?S1~”.’. 
~~~ 

L~
~~~~~~~~~~ 

~~~
Fi.gure 2.h. Phrases . A~~0~~~ $7

Figure 2.g. Word—sequences. I

Figure 2.f. Word s (createU by VERIFY).
F:gure 2-c . Words (created by MOW).
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None of the ~nks between hypotheses are shown in FIg. 2. In general , each hypothesis
is connec ted via mulli ple binary links to hypotheses above and below it. For examp le, a wor d
hypothesis has downward links connecting It to each of the sy llables which compose It and
upward links connecting it to each phrase and/or word-sequence in which It takes part.

- 
‘ 1. KS: WORD-CTL

Stimulus: Sta rt of processing.
Action: Create goal hypotheses at the word level. These will control the amount of

- 
I hypothesizat ion that MOW wilt do.

2. KS: WORD-SEQ-Cu
Stimulus: Start of processing. .

Ac lion: Crea te goal hypotheses at the word-sequence level. These wilt control the
amount of hypothesization that WORD-SEQ will do.

3. KS: SEG
Stimulus : Creation of ZA POASH parameters for the utterance.
Act ion: Create segment hypotheses with vector of es timated allophone probabilities. (The

severa l highes t-rated labels of each segment are shown in Fig. 2.c.)

4. KS: POM
Stimulus: New segment hypotheses.
Action: Create sy llable-class hypotheses.

Figure 2.d shows the sy llable-class hypotheses created. Each class name is made up of
single-letter codes representing rIa~ses of phones, as follows:

Code Phone-class Phones in class
A A-like AE ,AA ,AH,AO,AX
I I-like IY,IH,EY ,EH,IX ,AY
U U-like OW,UI4,U,(.JW,ER,AW,OY,EL,EM,EN
L liquid Y,W,R,1
N nasal M,N,NX
P stop P,T,K,B,D,G,DX
F fricative HH,F,TH,S,SH,V,DH,Z,ZH,CH,JH4WH

5. KS: MOW
Stimulus: New sy llable hypotheses.5
Action: Create word hypotheses.

Steps 1, 3, 4, and 5 comprise the low level, bottom-up processing; this results in a
select ion of word hypotheses (created in step 5). Figure 2.e depicts these word hypotheses.

Four words (AR E, BY, AND, and FELDMAN) of the six In the utterance were co rrect I y
hypothesized; 86 Incorrect hypotheses were generated. The 90 words that were
hypothesized represents approximatel y 1.5Z of the 1011-word vocabulary for each one of the
6 words in the utterance.

5 MOW will also be re-invoked upon a modification to the word goal hypotheses by WORD-
CII. 

-.----—.--,----
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6. KS: WORD -SEQ
Stimulus: New words created bottom-up.
Ac lion: Create 4 word-sequence hypotheses: AND-FELDMAN-]5 (90,145 :225) , (-A RE

(97 ,0:28), SHAW-AND-MARV IN(75 ,72:157), EIGHI(85,48:57).

Step 6 results in the generation of 4 multi-word sequences. (See Fig. 2.g.) These will be
- 

- 
used as initial , alternative anchor points for additional searching. Note that two of these
islands are correct , each representing an alternative search path that potentiall y c a n  lead to a
correct inte rpretat ion of the utterance.

In earlier versions of KS configuration of the system (e.g., C l), low-level processing was
not done in the serial , lock-step manner as in steps 3, 4, and 5 (I.e., level-to-level, where each
level is comp letel y processed before processing on the next higher level is begun). Rathor ,
processing w as clone in an asynchronous , data-direc ted manner (i.e., as interesting hypotheses
were generated at one level , they were immediately propagated to and processed by l(Ss
operating at hig her levels). It was found that the asynchronous processing at these lower
t”eI~ (e g., segment , sy llable , and word ) was inappropria te because there was not enough
accu racy  in redibilit y ratings of hypotheses to fo r r~’ hypothesis Islands that could direct the
s pa r r t ’  reliabl y. It is only with the word-sequence hypotheses produced in step 6 that the
rrl ia~ ilit y of the hypothesis ratings is high enough that selective search can be employed.
This conclu’ ion is substantiated by experiments with several island-driving strateg ies [Lesser
Has. es-Roth Birnbaum & Cronk 77).

High level processing on the multi-word sequences is acc omplished by the following KSs:
PAR SE, PREDICT , VER IFY, CONCAT , ST OP, and WORD-SEQ-CTL. Since an execution of the
VERIFY KS will of ten immediatel y follow the execution of the PREDICT KS (each on the same
hypothesis), we have combined the descriptions of these two KS executions into one step for
ease of understand ing. -

Steps 7 through 10 involve the PARSE KS. The PARSE KS verifies whether a multi-word
sequence (created in step 6) is a legal language fragment of the grammar. If the sequence is
gramma tical , a phrase hypothes is Is cons tructed from ii; otherwise , the sequence is marked
rejec ted. In this example , alt four multi-word sequences were verif ied to be valid language
fragments. However , if a multi-word sequence had been rejected , the WORD-SE Q KS might be
reinvoked to generate additional multi-word sequences in the time area at the rejected
sequence. WO RD-SEQ would generate the additional hypotheses by decomposing word-
sequence islands already on the blackboard or by re-generating islands which were Initiall y
discarded because their ratings were too low. Additiona l word-sequence hypo theses might
also be generated in response to the modifica tion of “goal” hypo theses at the word-sequence
level by the WO RO-S EQ-CTL.

The scheduling s trategy is so para rneteri zed that processing at the phrase level is delayed
until an adequate number of highly-rated phrase hypothesis Islands are generated. This
strategy is not built directly into the scheduler , but rather is accomp lIshed (1) by
appropriately setting external scheduling parameters (I.e., the high se tting of the priorities of
WORD-SEQ and PARSE KS actions in contrast to those of PREDICT, VERIFY, and CONCAT),6 and
(2) by taking into account the current stale of hypotheses on the phrase level of the
blackboard in evaluating the usefulness of potential KS actions as described by their response
frames.

7. KS: PARSE’
Stimulus: [-ARE’ (wor d sequence)
Ac tion: Create phrase: (+ARE ’ (97,0:28)

6 These settings are determined empirically by observing a number of training runs. They
are not adjusted durIng test runs of the system.
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8. KS: PARSE’
Stimulus: AND-FELDMAN-’)’ (word sequence)
Ac tion: Create phrase: ANI).FELDMAN.]’ (90,145:225)

9. KS: PARSE
Stimulus: EIGHT (word sequence)
Action: Create phrase: EIGHT (85,48:57)

10. KS: PARSE
Stimulus: SHAW -ANI)-MARVIN (word sequence)
Ac tion: Create phrase: SHAW4AND.MARVIN (75,72:157)

Each of the four executions of the PARSE KS (steps 7-10) results in the creation of a
phrase hypothesis; each phrase is shown in Fig. 2.h. Each of these hypotheses causes an
invocation of the PREDICT KS. The PREDICT KS attempts to extend a phrase hypothesis
through the predictions of words that can, according to the grammar , follow or precede the
hypothesis. Its action is to attach a “word-predictor ” attribute to the hypothesis which
specifies the predicted words. Not all of these PREDICT KS instantiat ions are necessaril y
executed (and thus indicated as a step in the execution history). For insta nce, fu rther
processing on the phrases [.ARE and AND+FELDMAN.) is sufficientl y positive that the
scheduler never executes the instantiation of PREDICT f or the phrase SHAW+AND .MARV IN
(created in step 10). In turn, V ERIFY is invoked by the placing of a word-predictor attr ib ute
on a phrase hypothesis. For each word on the attribute list that VERIFY verifies (against the

- -~~ segmental data), It creates a word hypothesis (if one does not already exis t) and the word is
placed on a “word-verifica tion” at tribute of the phrase hypothesis. (Such newly-created word
hypotheses are shown in Fig. 2.1.) CONCAT is then invoked on phrase hypotheses which have
word-verification attrIbutes attached. For each verified word, the phrase and new word are
parsed together and a new, ex tended phrase hypothesis is created (and shown in Fig. 2.h). If
all word predictions to the right or loft of the phrase had been rejecte d, the phrase
hypothesis is marked as “rejected ”, as is the underlying word-sequence hypothesis if all the
phrase hypotheses it supports are rejected. (Note that this last action will re-trigger WORD-
SEQ to generate more word sequences.)

11. KS: PREDICT & VERIFY’
— Stimulus: [+ARE’ (phrase)
— Action: Predict (from the grammar ) 292 words to ri ght. Reject (using the acoustic

information) 277 of them. The four highest -rated of the fifteen verified words are
REDDV(85,26:52), ANY’(65,24:49), HUGH(55,30:39), and YOU(55,28:39).

12. KS: CONCAT
Stimulus; (+ARE’ (phrase), REDDY (word)
Action: Create phrase: [+ARE+REDDY (91,0:52)

13. KS: CONCAT’
Stimulus: (+ARE’ (phrase), ANY’ (word)
Action: Create phrase: [+ARE4ANY’ (86,0:49)

In steps 11 through 13, the highly-rated phrase (+ARE is extended and results in the
generation of the additional phrases (.ARE+REDDY and [+ARE+ANY . These phrases , however ,
are not Immediately extended because the predicted words REDDY and ANY are not rated
sufficien tly high. Instead, t he scheduler, pursuing a strategy more conservative than str ict

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ ~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Tutorial 17

best-first , Investigates phr ases t hat look almost as good as the best one. This scheduling
s trategy results in the execulion of the PREDICT and VERIFY t(Ss on two of the other initial
phrase islands: AND.FELDMAN.) and EIGHT.

14. KS: PREDICT & VERIFY ’
Stimulus: AND.FELDMAN4 ]’ (phrase)
Action: Predict 100 words to lef t. Reject 76 of them. The best of the verified 24 (In

descending rating order ) are FEIGENF3AUk4 ’(8O,72:150), WEIZENI3AUM( 70,72:150),
ULLMAN( 70,1 I 6:150), NORMA N( 70,108:150), and NEWI3ORN(70,108: 150)

15. KS: PREDICT & VERIFY
Stimulus: EIGHT (phrase)
Ac tion: Predict the word NINE to right and verif y it (80,52:82). Predict SEVEN to left ,

rejec t prediction.

The attempted extension of the phrase EIGHT at step 15 Is not successful -- none of the
grammatica lly predicted words is ac oustically ver if ied , even using a lenient threshold. Thus, ~~~ -

this phrase Is marked rej ected and is dropped from further consideration.

16. KS: CONCAT’
Stimulus: FEIGINI3AIJk4’ (word ) , ANOsF ELDUAN.] ’ (phrase)
Action: Create phrase: FEIG[NI3AUMsAND.FELDUA N+)’ (85,72:225)

Beginning w ith step 16 , the highly-rated left word extension FEIGENI3AUk4 to the phrase
ANI).FELDMAN.) looks suff iciently promising that processing now continues in a more depth-
first manner along the path FE IGENI3AUk4.AND.FELDMAN.] through step 25.~ Processing on
the path (+ARE+REDDY does not resume until step 26.

17. KS: PREDICT & VERIFY’
Stimulus: FEIGENI3AUM.AND.FELDMAN+]’ (p hrase)
Ac tion: Predict eight words to left. Reject one (DISCUSS). Find two already on

blackboard: BY 4(80,52:72) and AI3OUT(75,48:72). Verif y five others: NOT(75,49~82), ED
(75,67:7 2), CITE(70,49:82), QUOTE(70,49:82), CITES(65 :49:82).

In steps 18 through 24, alternative word extensions of FE!GEN13AUMi.AND.FELDk.4AN.) are
exp lored. As a result of this exp loration, the phrase BY+FEIGENI3AUU+AND.FELDMAN.) is
considered the most credible.

18. KS: CONCAT
Stimulus: BY’ (word), FEIGENI3AUM.AND.FELDUAN+)’ (phrase)
Ac tion: Create phrase: BY+FE IGENI3AUM+AND+FELDMAN.f (84,52:225)

19. KS: CONCAT
Stimulus: ABOUT (word), FEIGENBAUM+AND.FELDMAN.]’ (phrase)
Action: Create phrase: ABOUT+FEIGENI3AUM.AND.FELDMAN.] (83,48:225)

7 The rating on an hypothesis Is only one parameter used by the scheduler to assi gn
priorities to waiting KS instanliations . In particular , the length of an hypothesis is also
Important. Thus, FEIGENI3AUM with a rating of 80 looks better than REDDY with a rating of
85 because it is much longer.

-~~~ ~~~~~~~~~~~~ 
-
~~~ 
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20. KS: PREDICT & VERIFY
Stimulus: ABOUT.FEIGENUAUM.AND.FELDMAN.) (phrase)
Action: Predict one word to left: WHAT. Verif y it ( 10,20:49).

21. KS: COF~JCAT
Stimulus: CITE (word), FEIGCNI3AUM.ANDeFELDMAN+] (phrase)
Ac tion: Create phrase: CITE+FEIGENI3AUM.AND.FELDMAN+) (83,49:225)

22. KS: PREDICT & VERIFY
Stimulus: CITE+FEIGENI3AUU.ANI)+FELDMANe) (phrase)
Ac tion: Predict four words to left . Reject two of them: BOOKS, PAPERS. Verif y THESE

(25,28:49), YEAR(20,30:49).

23. KS: PREDICT & VERIFY ’
Stimulus: GY.FEIGENI3A(Jk4.AND.FELDK4AN.]’ (phrase)
Ac lion: Predict len words to left. Reject five: ABSTRACTS, ARE , BOOKS, PAPERS ,

REFERENCED. Find two  ~Iread y on blackboard: ANY’(65 ,24:49), THESE(25 ,28:49).
Veri fy three more: ART ICLE(25,9:52), W RITT EN(25,24:52), ARTICLES( 10,9:52).

24. K S: CONCAT
Stimulus: NOT (word) , FEIGENI3AUM.ANI).FELDMAN.]’
Action: Crea te phrase: NOT.FEIGENI3AUM+AND.FELDMAN+] (83,49:225)

25. KS: CONCAT’
Stimulus: ANY’ (word), BY.FEIGENflAUM4ANI).FELDMAN. 1’ (phrase)
Action: Create phrase: ANY+BY+FEIGCNI3AIJk4.AM).FELDMAN.J’ (82,24:225)

(.ARE+ANY.BY.FEIGENI3AUk4+ANI).FELDMAN.]’ (85,0:225) is also create d, from
[eA RE+A NY and BY.FEIGEN13AUM.AND.FELDUAN.).

In step 25, the word ANY is concatenate d onto the phrase IJY.FEIGENI3AUM.AND+
FEI.DMAN.]. ~4owever , ins tead of only creating this new combined phrase , the CONCAT KS also
notices that the word ANY is the last word of t~.e phrase (~ANDeANY; this leads the CONCAT
KS to merge the two adjacent phrases [.ARE .A’JY and BY.FEIGENI3AUM.AM).FELDMAN+J into
a single enlarged phrase , after first ascertaining that the resulting phrase is grammaticall y
allowed. This merging bypasses the several single-word PREOICT , V ERIFY, and CONCAT
actions that would be necessary to generate the enlarged hypothesis from either of the tw o
original hypotheses in an incremental fashion. Thus, the recognition process is sped up, not
only because the several single-word actions are eliminated , but also because KS actions on
competing non-correct hypolheses are avoided since these actions do not appear to the
scheduler as attract ive as acti ons on the new, enlarged hypothesis. Such mergings occur in
approximately half of the runs on the 1011-word grammar with the small branching factor
(“X 05”); in grammars with higher branching factors , the merging of phrase hypotheses occurs
w ith even higher frequency.

It has been our experience that , just as a multi-word island Is more credible than the
ind ividua l words that compose It , so a merged phrase hypothesis is more credi ble than its two
con~ti luent phrases. For example , about 80Z of the mergings In X05 runs produce correct
hypotheses. In more comp lex grammars , this statistic drops to about 357., but there are
correspondingly more phrase Inergings that occur.

The newly-created merged phrase also happens to be a complete sentence; I.e., It has
begin- and end-of-utterance markers at as Its extreme constItuents. Thus , It Is a candidate  f or
the interpretation of the utterance.

~

- - - - -
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26. KS: S TOP -

Stimulus: (.ARC .ANY.13Y .FEIGENI3AUN.AND.FELDMAN.)’ (c omplete phrase)
Action : Deactivation of several score hypotheses.

STOP responds to the creation of a c omple t e phrase. STOP tes ts each phrase hypothesis
on the blackboard to see whether there is any possibili ty of extending it to produce a
complete phrase that is rated higher than the one just created. It performs this heuristic test
by t rying to combine the phrase , just based on simple time adjacency constraints , in the best
pos~.ible way w ith wa r d .  alread y hypothesized. Each phrase that cannot be extended by this
process into a word ‘ equence that spans the entire utterance and is better than the newl y
created complete phra.~e ‘s discarded. Subsequently, the RPOL. KS (whose executions are not
shown here) will discard hypotheses as they are created if they also cannot pass the same
test.

Of the hypotheses not discarded, ex tens ions to the phrase (.ARE now appear as the most
lIkely candidates to produce new and better complete phrases, This search for better
complete phrases results , in steps 27 through 36, in the examination of numerous al ternat ive
c~ tensrons , each of which is promising.

27 . KS: PREDICT & VERIFY
Stimulus: (.,ARE.REDDY
Action: Predic t thrt !e words to right. Verif y CITED(60,52:86), OR(30,52:67), AND

(25,52:82).

28. KS: CONCAT
Stimulus: (eARE (phrase), t 4UGU (word)
Ac tion: Create phrase: (.ARE.HUGH (83,0:39)

29. KS: CONCAT
Stimulus: (‘ARE (phrase), YOU (word )
Action: Create phrase: (.ARE+YOU (83,0:39)

30. KS: CONCAT
Stimulus: (.ARE.REDDY (phrase), CITED (word)
Action: Create phrase: (+ARE+REDDY+CITED (80,0:86)

31. KS: PREDICT & VERIFY
Stimulus: (+AR E+REDDY.CITEO (phrase)
Ac tIon: Predict two words to ri ght. Verify BY(75,83:98), IN(20,86:114).

32. KS: CONCAT
Stimulus: (.ARE.REDDY+ClT[D (phrase), BY (word )
Action: Create phrase: (eARE.REDDY+CITEDeBY (80,0:98)

33. KS: PREDICT & VERIFY
Stimulus: (.ARE+REDDY.CITC0.BY (phrase) 

—

Action: Predict one word to right. Verity ANY(30,105:126).

34 . KS: PREDICT & VERIFY
Stimulus: (.ARE.HUGI4 (phr ase)
Ac tIon: Predict one word to right. VerIfy NAGEL(40,42:63).

—— -
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35. KS: PREDICT & VERIFY
Stimulus: (.ARE.YOU (phrase)
Action: Predict three words to right. Reject USUALLY. Verif y REGULARLY(25 ,39:1 16),

Al WAY $( 15,39:72).

36. KS: CONCAT
Stimulus: (+ARE+REODY (phra~.), OR (word)
Action: Create phrase: t+A RE+REDDY.OR (79,0:67)

37. KS: CONCAT
Stimulus: (.ARE+REDDY (phrase), AND (word )
Ac tion: Create phrase: [+ARE+REDDY+AND (78,0:82)

38. KS: STOP
Stimulus: Stagnation
Act ion: Stop search and accept (.ARE+ANY+BY4FEIGENI3AUM4AND4FELDMAN4)’.

-I
K S STOP is again executed; this executi on is caused by the lack of any KS instantiations

that are rated sulficientl y high. STOP here makes a decision to terminate the search process
and accept the phrase [.ARE+ANY+BY+FEIGENI3AUM+AND.FELDMAN.] as the correct
inte rprc~at ion.

39. KS: SEMANT’
- - 

Stimulus: Recognized utterance: (+ARE+ANY+BY.FEIGENBAUM+AND.FELDUAN.]
Action: SEMANT parses the utterance , using t he same grammar , but with semantic

routines on some of the non-terminal nodes. The execu tion of these routines
incrementall y produces the following structure: -

F:[ U:( [ ARE ANY BY FEIGENI3AUM AND FELDMAN])
N:( SPRUNE!LIST

S:($PRUNE!LIST!AUTHQR K:(A:(( FEIGENI3AUM $ FELDMAN)))))
]

“F” denotes the total message. “U contains the utterance Itself. “N” indicates the main
t ype of the utterance (e.g., REQUEST , HELP, etc.), “S” the sub-type. “K” denotes the
different attributes associated with the utterance (e.g., “A” Is the author and “T” is the
top ic).
This structure is passed on to the discourse component, whic h queries the data base
and responds to the speaker.

~QNCLUS TONS

The Hearsay- Il system has been successful. It came very close to meeting the ARPA
performance goals: In September , 1976, the C2 configuration achieved correct semantic
Interpre tation of 907. of a test set of utteranc es (with 732 of the utterances being recognized
word-for-word correc tly). This performance was with the highl y cons trained “X05” grammar
over the 1011-word vocabulary. The test set contained twenty-two utterances , averaging
seven words each. These utterances were totall y new t o the system and were run “blind”.
The processing time averaged 85 mipss (million instructions per second of speech) on a
POP-lO computer. (Subsequentl y, some trivial Implementation modifications reduced the
pr ocessing costs to about 60 mipss.)

-
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In addition to Its successful performance , the structure of the system Is Interesting. An
at te mpt was macic from the start to develop a clean model for the kinds of com plex
,ute rac t ,ons thaI would be reqtii re~ of the various sources of knowledge. A l t h ou g h the system
w ac modif ied substa ntiall y as experi ence was gained, it retained its fidelit y to that model,
rid’cating ils valid it y. A detailed discussion of the evolution of the architecture wi th  respect

to the model can he found in (Lesser & Erman 77). Several other problem areas have been
at tacked wi th organi:at ions st rong ly influenced by the Hearsay- Il structure: image
underd.incling [Pr ager et at 77) , reading comprehension (Rumumelhart 76], prote in—
cry s ta l logr a p hic anal ysis (Enr,etmore & Nil 77), si gnal unders tanding (Nil & Feigenbaum 78],
and comp lex lear ning (Soloway 77].
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A RETROSPECTIVE VIEW OF
THE HEARSAY-li ARCHITECTURE’

Victor R. Lesser and Li. D. Erna4n

ABSTRACT

The Hearsay model has been presented as a paradigm for attacking errorful knowledge-
Intensive problems requiring multiple, coopera ting knowledge sources. The Hearsay—I!
architecture is the latest attempt to explore the model. This paper describes experiences
gained while successful ly app lying this architecture to the problem .of speec h understanding.
The major conclusions are: —

1. The paradigm of viewing problem solving In terms of hypothesize-and-test actions
distributed among distinct representations of the problem has been shown to be
computa tionally feasible. - 

—

2. A global working memory (the “blackboard”), in whic h the distinct representations are -

- 

- integrated in a uniform manner , has made it convenient to construct and integrate the
- ~

. - individual sources of knowledge needed for the problem solution.
3. The use of a uniform data-directed structure for controlling knowledge-source activity

has made the system easy to understand and modify.
4. A solution has been demonstrated to the problem of focus-of-attention In this type of

control environment. This solution does not need to be modified when the sources of
knowledge in the system are changed.

INTRODUCTION

The Hearsay model (Red73Mo] has been developed for problem-solving in domains
which must use large amounts of diverse, errorful , and incomplete knowledge in order to
search in a large space. 2 The Hearsay-! architecture and system (Red73Wx and Erm74En)
represented a firs t (and successful ) attempt to apply that model to the problem of
understanding connected speech in specialized task domains. In thIs first application, the size
of the voca bulary (less than 100 words) and cOmplex ity of the grammar were very limited.

Experiences with Hearsay-I led to the more generalized Hearsay-I! architecture
(Ies75Or and Erm75Mu] in order to handle more difficult problems (e.g., larger vocabularies
and less-constrained grammars ). The first configuration of knowledge sources (KSs) for
Hearsay-Il -- configuration Cl -- was complete in January, 1976 (CMU76W4]. This
implementation had poor performance (e.g., 101. sentences correct in 85 MIPSS (million
instructions per second of speech) on a 250-word vocabulary). Experience with this
conf i guration has led to a substantially diffe rent set of KSs -- configuration C2 (CMU77Su3.
This configuration performs substantially better (e .g., 857~ correc t In 60 MIPSS on a 1,000-
word vocabulary).

I This paper Is slightly modified from its original IJCAI-77 form.
2 Other approaches for solving this class of problem include production systems , f r ames

(Min74Fr ), heterarchical struc tures (Wa1770v and Woo76Fi], relaxation techniques tBar76MS
and Ros76ScJ, Planner (i4ew72De ], QA4 (Rul73Qa], and the locus model (low76Ha arid
Rub77Lol

I
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The Hearsay-Il system , with the second confi guration, has been successful: It comes
close to the original performance goals set out in 1971 to be met by the end of 1976 for the
ARPA speec h understanding ef fort (New73Sp] and does so with a system organization that is
of interost because of the potential for its application to other problem areas. Several other
problems have been attacked with organizations strongly influenced by the Hearsay-Il
struc ture: image understanding (Pra77Se], reading compre hension (Rum76To), protein-
crys tallographic analysis [Eng77Knj, signal understanding [Nii77Ru), and comp lex learning
(Sol 771< n].

This paper Is divided Into two major parts. The first part presents an overview of the
Hearsay model, t he Hearsay-Il architecture , which is a further specification of this model, and
the two KS configurations. (More detailed descri ptions of these configurat ions are contained
In the appendix.) The second part of the paper discusses the implication of these experiences
for the Hearsay mod& and the Hearsay-Il arch itecture. In particular , those aspects of the
archi tecture are identified that have contributed most strong ly to the success of the system,
as well as those parts that need the most future work.3 This discussion is structured around
two themes -- the multi-level global data base (blackboard) for KS cooperation, end the
asynchronous , data-d irec ted control structure for KS act ivation .4

OVEfiV1EW OF THE HEARSAY MODEL

A number of characteri stics of the problem drive the Hearsay model’
1. l.arge search space.
2. Dive’~s, sources of knowiedge. Many of the kSs are large; some have large internal

search ~roblems of their own.
3. Error and variability. These are c haracteristics of both the input data (the acoustic

~.ignal) and the processing of knowledge sources.
4. Experimental approach needed for system development. This implIes the need for

Iterating the system and running over large amounts of data.
5. Performance requirement -- accuracy and speed. This Is true of any practical solution

~ the problem as well as during development (because of the experimental nature).

The basic notions of the Hearsay model (Red73Mo] were developed in response to the
requirements jus t stated:

1. The KSs are kept separate , Independent, and anonymous. This separation is felt to be
a decomposItIon which is natural and also can help make the combinatoric problems
more trac table. For development purposes , the separation should help with system
modIfica tions (especially adding and modifying KSs) and evaluation.

3 The fact that certaIn parts of the implementatIon need further work does not necessarIly
indicate deficiencies wi th the basic Hearsay model, but rather points out inadequacies In the
Hearsay-lI Implementation of the model. It Is to the model’s credit that even though some of
its more sophis ticated capabilities are not implemented effectively, it still provides an
appropria te framework for the successful solution of a complex task. Thus, one of the
intents of this paper Is to define some of the major design goals for the next iteration In
t he imp lementation of the Hearsay model.

4 While this paper discusses the means of organizing the knowledge and applying it to the
problem, It does not describe In detail nor quantify the knowledge In the system. At least as
muc h work has been expended on specify ing and debugging the knowledge In the system as
on building and refining the structure to hold and apply that knowledge.
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2. A global data structure -- the bLackboard -- is the means of communicat ion and
Interaction of KSs. This provides an hypothesize-and- test means of Interaction. Each
KS accesses and modifies the blackboard in a uniform way.

3. A KS responds to changes to the blackboard which it is concerned with; If applies its
knowledge within the context of such a change. This Implies data-directed activation
of KSs.

OVERVIEW OF THE HEARSAY-li ARCHITECTURE

The Hearsay-Il architecture is one framework for implementing the Hearsay model. In
this section, a very brief overview of that archItecture Is given. More details are described In
(les75Or and Erm75Mu].

The ~lachboard

The blackboard is partitioned into distinct information Let’eLs ; each level is used to hold a
different representation of the problem space. (Examples of levels are “phrase”, “word”,
“syllable”, and “segment ”.) The decomposition of the problem space into levels Is a natural
parallel to the decomposition of the knowledge into separate KSs. For most KSs , the KS needs
to deal with only a few (usually two) levels to apply its knowledge. Its interf ace to the rest of
the system is in units and concepts that are natural to It.

The sequence of levels forms a loose hierarchical structure in which the elements at
eac h level can be described approximatel y as abs tractions of elements at the next lower level.
The possible hypotheses at a level form a problem space for KSs operating at that level. A
par tial solution (i.e., a group of hypotheses) at one level can be used to constrain the search
at an adjacent level. For exampIe, consider a KS which can predict and rate words based on
acoustic information and another KS which knows about the grammar of the language. The
f irst KS can generate a set of candidate word hypotheses. The second KS can use these
hypotheses to generate phrase hypotheses which can be used, in turn, to predict words lIkely

¶ to precede or follow. These pred ict ions can now constrain the search for the first KS. 
-

Associated with each level is a set of primitive elements appropriate for representing
the problem at that level; e.g., the elements at the word level are the words of the vocabulary
to be recognized. The major units on the blackboard are hypotheses. An hypothesis is an
interpretation of a portion of the spoken utterance at a particular level. E.g., an hypothesis
might represent the assertion that the word “GIVE” was spoken at the beginning of the
utterance. Each hypothesis at a given level Is labeled as being a particular element of the set
of primitive elements at that level.

Each hypothesis, no matter what its level, has a uniform attrib ute-value structure. Some
attributes (and values) are required of all hypotheses and others are optional, as needed.
Included among the required attributes of an hypothesis are its level (e.g., w ord), its element
name (e.g., “GIVE”), and an estimate of its time coordinates within the spoken utterance (which
can Include notions of “fuzziness” of estimate). The level and time attributes place a two-
dimensional structure on hypotheses which partitions the blackboard and can be used for
addressing hypotheses. Note that two or more hypotheses at the same level with significantl y
overlapping times are conipe eitorsi i.e., they represent competing interpretations of a portion —

of the utterance.

— — - - -— - - - - - —~~~~- 
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Other attributes of an hypothesis include information about Its structural r.tatwnships
wit h other hypotheses (forming an AND/OR graph), validity ratings (i.e., es timates by KSs of
the “truth” of the hypothesis), and processing state. The processing state attributes are
summaries and classifications of the other attributes. E.g., the values of the rating attributes
are su,nniarized by the “rating state ” attribute that takes a value from the set “Unrated”,
“Neutral”, “Verified” , “Guaranteed”, or “Rejected”. New attr i butes can be created by any KS
an d may be used~tor passing arbitrary Information about an hypothesis between instantiat ions
of the same or different KSs.

A KS can create new hypot heses, specif y ing values for at tributes of the new
- - hypothesis. Given the “name” of an hypothesis, a KS can examine or modify attributes of that

hypothesis. In addition, sets of hypotheses may be retrieved associativel y, based on the
va lues of their attributes (e.g., all hypotheses at the sy llable level whose durations are greater
than 250 msec.). The hypothesis structure is uniform across all levels In the blackboard.
Thus, the form of access and modification to hypotheses by KSs can also be uniform and Is
accomp lished by calling kernel procedures; the set of these procedures comprises the
bLackboard handLer.

In addition to the information in each hypothesis which can be accessed by KSs ,
auriLasry state inforniat o,s is maintained by the blackboard handler in specialized data
structures . Examp les of this information are (1) a representation of hypotheses at each level
arranged for efficien t associative retrieval by time and (2) the name of the highest-rated
hypothesis in each time area. These aux ilIary structures are updated by the blackboard
handler automaticall y as KSs make changes to the blackboard.

Structure of Knowledge-Sources

Each KS has two major components: a precondition and an act&on. The purpose of the
precondition is to find a subset of hypotheses that are appropriate for action by the KS and
to invoke the KS on that subset; the subset is called the ninw lus frame of the KS Instantiation.
For example , the precondition of the KS that generates word hypotheses based on sy llables
looks f or new syllable hypotheses. When invoking the KS, the precondition provides the
system scheduler with, in addition to the stimulus frame , a stylized description of the likely
action that the KS Instantiation will perform (if and when it is allowed to execute) ; this
es timate of action is called the respons. frame. For example , a response frame for the
syllable-based word hypothesizer (MOW) indicates that the action will be to generate
hypotheses at the word level and in a time area that Includes at least that of the stimulus
frame. The action part of a KS Is a program (written in SAIL [ReI76SA]) for apply ing the
knowledge to the stimulus frame and making appropriate changes to the blackboard. In
general, the changes made will serve to trigger more KS activations.

To keep from having to fIre the precondition continuously to search the blackboard,
eac h precondition declares to the blackboard handler in a non-procedural way the primitive
kinds of blackboard changes in which it is Interested. Each precondition Is triggered only
when such primitive changes occur (and is then given pointers to all of them). This changes a
polling action Into an interrupt-driven one and is more eff icient , especia lly as the number of
precondit ions gets large. After being triggered (and when scheduled for execution), the
precondItion (also a SAIL procedure) can do arbitrary searching of the blackboard for
hypothesi, configurations of interest to Its KS.

- ---
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Several KSs may be grouped together into modules, The KSs within a module may share
code and long-term built-in data. A discussion of the module construct , Including its
implIca tions f or KS Independence, is given below in the section on “KS Independence”.

Sc hedul I ng

Whenever a precondition is executed , it checks all blackboard events in which It is
Interested tha t have occurred since the last time it executed. For example , a “new hypo thesis ”
to a precondition is any hypothesis which was create d between the last time the precondition
executed and Its current execution. Thus, a precondition may be thought of as executing, then
“sleeping” for a time while retaining state , then waking (executing again) and being able to find
all new events of interest to It.

However , whenever a KS executes , It uses the stimulus frame specific to that invocation. —

Each KS execution goes to completion; that is, the KS cannot put itself to “steep”, waiting V or
some other event (on the blackboard) to occur.

At any poin t , there are , in general, a number of pending tasks to execute -- both
invoked KSs and tri ggered preconditions. (In practice , the number of pending tasks often
exceeds 200-) A scheduler in the kernel [Hay77FoJ calculates a priorIty for each waiting task
and selects for execution the task with the highest priority. The priori ty calculation attempts
to estimate the usefulness of the action In fuif illing the overall system goal of recognizing the
utterance. This estimat ion is based on the specific stimulus and response frames of the
actions and on overall blackboard state information, which includes such notions as the best
hypotheses in each time area in the utterance , and how much time has elapsed since the
current bes t hypothesis was generated. The priority of a KS is recalculated if the validIty of
its stimulus frame Is changed or the auxiliary state pertinent to evaluating the signifIcance of
the response frame Is modified.

Some KSs are not directly involved in hypothesizing and testing partial solutions;
instead, these control the search by Influencing the activation of other KSs. These policy KSs
can be used to impose global searc h strategies on the basic priority scheduling mechanism.

THE CON~I~ URATIONS
- 

Following are brief overviews of configurations Cl and C2, to provide a basis for
subsequent discussion. The appendix contains more detailed descriptions of the KSs , as well
as pointers to published papers.

Figure 1 gives a schematic of configuration Cl as It was operational In January, 1976.
The levels are Indicated by solid horizontal lines and are labeled at the left. KSs are indicated
by vertical arcs with the circled end indicating the level where it~ stimulus frame is and the
pointed end indicating the level of its response frame. The name of a KS is connected to its
arc by a dashed horizontal line. As segment hypotheses were generated from the acoustic
data (SEG), they might be combined to form larger segment hypotheses (CSEG). Phone
hypotheses were created , based on one or more contiguous segments (PSYN). Syllables were
predicted from the phones (POM) and words from the syllables (MOW). Phrase hypotheses
were constructed from con*iguous word or phrase hypotheses whIch were syntactically 

—

consistent (RECOG). Other KSs (PREDICT, RESPELL, and POSTDICT) accomp lished various
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syntactic extension and prediction functions at the phrase and word levels. Verification of
predic ted words was carried out by expanding the words into their expected syllables (WOM),
expanding the sy llables into expected phonemes (MOS), and matching the sequences of
expec ted phonemes with the recognized phones (TIME and SEARCH). Changes of ratings of
hypotheses were propagated to structur all y connec ted hypotheses (RPOL). The FOCUS policy
KS controlled the search by setting priorities for various kinds of KS actIons.

Figure 2 gives a schematic of confi gura tion C2 as it was operational In September ,
1976. First , all segment hypotheses are generated from the parametric representation of the
acoustic signal (SEG). Next , sy llables are predic ted from the segments (POM). Then, w ords are
predicted from the syllables (MOW); the most likely words In each time interval placed on the
blackboard (WORD-CTL). Next, a heuristic word-sequence hypothesizer (WORD-SEQ) attempts
to identify the most probable sequences of word hypotheses (consisting of successive
language-adjacen t word pairs). Because this KS exp loits statistical methods to improve
credibility, the Initial word sequence hypotheses are much more accurate than are hypotheses
based on single words. Subsequently, KSs are invoked to attempt to parse the hypothesized
word sequences to determine if they are gram matical (PARSE), to predic t possible time—
adjacent grammatical word extensions (PREDICT), to hypothesize and verify new words
satisfying these predictions (VERIFY), to concatenate grammatical and time-adjacent word
sequences (CONCAT), to propagate ratings (RPOL), to reject phrases and to determine when
the serach should be terminated (STOP) , and to generate new word sequence hypotheses
(WO RD-SEQ-CTL).

The major system-re lated differences between these configurations 5 are listed here;
they will be discussed individually throughout the paper.

1. CI has asynchronous processing throughout. C2 has an InitIal pass of sequential,
bottom-up processing to the word level; I.e., all segments are created, then all
sy llables, then a selection of words.

2. Cl used the blackboard extensivel y for intra-KS state-saving between instantlations of
a KS (e.g., SEARCH and RECOG-PREDICT-RESPELL-POSTDICT). In C2, this was greatly
reduced, with KSs doing more computation internally and In larger units (e.g., VERIFY
and PARSE-PREDICT-CONCAT).

3. C2 generated simpler hypothesis networks than those in Cl. For example, SEARCH and
T IME built complex structures to represent verif ications of words; VERIFY builds very
simple ones for the same purpose.

EXPERIENCES WITH HEARSAY-il

ThIs section addresses the following questions: How well did the Hearsay-Il system meet
Its original design goals and were these goals appropriate for problem solving in the speech
understanding domain (and more generally in errorfui domains which require extensive
sear ch)? This discussion is based on approximatel y three years of experIence with the
Hearsay-lI architecture , including numerous iterations of both the system architecture and KS

5 Though we are here concerned with systems issues , it is worth pointing out that WORD-SEQ
Is a novel KS which significantly contributes to the success of C2. It limits the search space
by providing large hypotheses which act as islands of reliability and bases for further
search. This KS uses approz&rnate syntactic knowledge to examine efficiently many
al ternative sequences of low-reliability word hypotheses and generate a small number of
more re liable phrase hypotheses.

~
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configurations.5 These questions will be discussed in the context of two major aspects of the
Hearsay-lI architecture: the blackboard global data base, and KS interac tion and control.

Blackboard Data Base

There are two major design themes reflected in the structure of the blackboard. The
first theme is the avoidance of expensive and complicated backtracking control structures by
the representation of alternative , distributed hypotheses In an integrated multi-level manner.
The second design theme is the representation of all information levels with a high-level,
uniform structure , in order to allow all KSs to contribute their information to the blackboard In
an Identical and anonymous manner.

Distributed Representation

It was hoped that the firs t design theme would (a) avoid the redundant calculation of —

previously-generated results and (b) allow i(Ss to apply their knowledge selectiveiy to places
In the blackboard where further processing would resolve contradictory evidence supporting
likely, alternative hypotheses.7

The ability to save partial results on the blackboard in an integrated manner , in terms of
hypothesis sub—networks , has been a very positive characteristic of the architecture; It avoids
a significant amount of unnecessary recalculation of results previously generated.8 This was
especially true for KSs operating at the word and phrase levels. This was also true f or KSs in
the Cl configuration operating at lower information levels , for examp le, the TIME and SEARCH
KSs. However, later versions of these KSs (e.g., VERIFY in C2), for reasons of efficiency (to be
discussed later), do not save partial results on the blackboard.

The use of an integrated representation as a way of efficiently resolving competition
among KSs wanting to work on the same hypotheses has not been exploited, nor has the
ability to bring to bear specialized knowledge dynamically to resolve the conflict among
compe ting, alternative hypotheses (for example, a specialized KS to resolve ambiguity between
two word hypotheses that are very close acousticall y -- e.g., “sit” and “split”). In addition, the
abil i t y given by the integrated representation to re-evaluate airtomatica liy (i.e., without KS
intervention) an hypothesis’ cr edibility when its supporting environment is modified is not
exp loited in the C2 configuration (although it was Cl). In the C2 configuration, hypothesis
credibility is never modified in an explicit sense; rather , new a~d different hypotheses are
created. A side effect of this approach is that hypotheses are never deleted from the
blackboard.

6 The emphasis on the two configurations as fixed points can be misleading; rather than
appearing full-grown, the configurations evolved over time, wi th numerous iterations
required first to develop Cl and then C2 from Cl.

7 Hayes-Roth (Hay77Ro), in discussing how to evaluate the potential usefulness of a KS action,
introduces the concept of d&agnos r~city as an important component in a KS priority function.
Diagnosticity is a measure of how much contradictory evidence could potentially be resolved
by a particular KS action.

8 The usual manner of accomplishing this Is having each KS, as It is about to create a new
hypot hesis, f irst check that a hypothesis does not already exist which Is sufficientl y similar
to the one It is about to create.
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One explanation for the lack of full use of the integrated, multi-level representation of
hypotheses could be lust that the particular task domain of speech understanding does not
need these capabilities. However , it is our feeling that there are fundamental weaknesses in
the I4earsay- II representation of an integrated , multi-level hypothesis; these weaknesses (to
be dIscussed below) make It difficult , both in terms of execution time and programming
complexity, to perform the desired analyses of the hypothesis structure and Its surrounding
environment. This type of analysis is the key to the effective use of the sophisticated
processing capabi lities that are possible within the framework of the Hearsay model.

~ypothesis Network Structure

A major problem in using the blackboard Is that one cannot operate on a network (in its
simp les t form , a tree ) of Interconnected hypo theses as a composite unit. There Is a basic
confusion In Hearsay-Il’s implementa tion of hypothesis networks between (a) the hypothesis at
the top of the tree (the highest level of interpretation ) and (b) the whole tree; the state
information associated with an hypothesis is very local and does not adequately characterize
the state(s) of the hypothesis network(s) connected to it. In order to operate effectively in a
distributed manner on Interconnected multi-level hypothesis networks , the state information

- - associated with an individual hypothesis must allow a KS to analyze quickly the local
environment of an hypothesis and, more èmporta ntl y, the role that the hypothesis plays in the
larger context of the hypothesis networks it is part of. One of the consequences of this
deficiency is the difficult y encountered in making appr opriate scheduling decisions because the
more global impor t of a potential KS action cannot be determined easily.9

For example, in configuration Cl, an hypothesis at the phrase level was constructed out
of hypotheses at the phrase , word, syllable, surface-p honeme, phone, and segment levels.
Because of the asynchronous nature of processing, a phrase hypothesis could be supported
by word hypotheses in different stages of verification -- some might be fully verified , other s
only partially verified, or some totall y unverified. Possible KS actions waiting to work on this
hypothesis network could be a separate verification of each unverified word, an attempt to
ex tend the phrase in either the right or left direction, a search for co-ar ticulation effects
among clii ferent word pairs, or a V till verification of a partially verified word. These actions
represent processing at different information levels. Given the existing hypothesis
Interconnection primitives , there Is no way to determine easily that all these actions relate to
the same hypothesis network , nor what Impor t each action could potentially have In judging
the credibility of the entire network.

Another symptom of this problem is the inability to express , except in a very limited
way, what type of processing has already been applied to an hypothesis network and what
fur ther processing could possibly be applied. This inability again impacts the scheduler
because it makes it difficult to schedule “compe ting” KSs (i.e., KSs which could work on the

9 It is expensive to trace through an hypothesis network to determine the global import of a
potential KS action. But this cost is not unreasonable relative to the total system execution
time for a configuration which contains KSs that perform moderately large amounts of
internal computation. However, the major computational expense comes in dynamically
upda ting the global import of a pending KS action as modifications are made to the
blac kboard since there are a large number of these modifications: It Is necessary both to
Vinci which waiting KS instantiations have priorities that are affected by the modification and
then to recalculate the priorities for those affected.
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same or different parts of a specific hypothesis network) appropriately. Because of these
difficul ties there has been, in later KS configurations , only a very limited (and simply
represen ted and anal yzable ) form of KS competition.

Another aspect of the inadequate network struct ure Is that the primitIves for specify ing
structural relationships between hypotheses require many interme diate levels to represent
certain types of connectivity patterns. This need for many intermediate levels Is expensive in
in storage space and, more importantly, time; it requires a great deal of network searching
through the connection structure to analyze the relationshi p of an hypothesis to its mmediate
surrounding env ironment. These intermediate levels represent a level of detail which is
unnecessary for some types of KS analysis and which interfere wi th these analyses by making
them unwarrantedl y complex. Once it has been constructed, it Is impossible to bypass this
level of detail in situations in which it is not pertinent. For example , an information level may
contain many intermediate subleveis built out of the connection primitives; a KS using
information at this level may want only to examine those hypotheses which are the highest
sublevel in each time area. This type of operation , given the current blackboard retrieval
primitives, requires the examination of all hypotheses in a specified time area. Another
complication of not being able to hide these intermediate levels is that a KS in some cases has
to know the exact structure of the intermediate levels used by another KS In order to be able
to skip over them, thus making the KSs less independent. -s

In summary, the experience to date on the distril,uted representation approach indicates
that the implementations of this concept explored so far are neither general nor efficient
enough in two major Interrelated aspects -- how hypotheses can be combined into a network
and how the state information associated with an individual hypothesis reflects the hypothesis
networks connected to It. To elaborate further , what is missing from the blackboard structure 

—is a way of viewing the shared network structure from a different perspective. This
perspective should permit the particular path through the network that defines a specific
composi te hypothesis to be both viewed In isolation from other paths that are intertwIned
with it , and also In a way that eliminates superfluous sub-structure. From this type of
perspec tive, the Importance of potential KS actions could be judged efficientl y and rela ted to
the history of previous processing. ’°
Uniform Blackboard Structure

Let us now examine the second major design theme used to structure the blackboard: a
uniform structure at all information levels. From a programming point of view, both in terms
of KS writers and system impiementors, the uniform structure of the blackboard has been a
good design choice. By having a uniform structure , a var iety of standard blackboard creation,
accessIng, display, anal ysis, and dobugging functions could be developed that are usable by alt
KSs. These standard functions , some of which are quite complex , make It convenient for a KS
writer to interface his knowledge source with the system. The ease with which this
interfacing could be accomplished is exemp lified by the fact that , In a period of six months,
configuration C2, which Is almost entirely now relative to Cl , was developed and debugged.
Becaijce of this uniform structure of hypotheses and their connections, it Is often possible for
a KS to be recoded so that it generates a different local hypothesis structure without
requiring the recoding of other KSs in the system; this is true because a KS can probe the

10 A possible approach for implementing this different type of perspectIve Is discussed In
work by Heridrix IHen75Ex) on partitioned semantic networks. 
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blackboard with sophisticated built-in retrieval operations which, in many cases , shield the KS -;
fr om changes made by other KSs. For examp le, there Is the structwr4-adJaeency blackboard
primitive which, given a hypothesis, finds all hypotheses at a particular information level that
are immediatel y adjacent to the given hypothesis based on the AND/OR connection structure
among hypotheses.

The uniformity of the attribute structure of hypotheses also makes it possible to
monitor efficiently for blackboard changes which are to trigger preconditions. Each
precondition needs only to declare to the blackboard handier the names of the attributes at
each level in which it Is Interested. When an attribute is changed, the blackboard handler then
triggers all preconditions interested in it.

The uniform blackboard structure, though efficientl y imp lemented, ls not appropriate as
a scratchpad for the internal computations of a KS. This type of use of the blackboard is
of ten inappropriate because its uniform, general structure does not come completely free in
the storage requirements for an hypothesis and the cost of creation and access; most Internal
computations of a KS do not need this generality. An example of a misuse of the blackboard
was the case of the syntax analyzer knowledge source, SASS [Hay77Un]. In early versions of
this KS, the blackboard was used to hold the partial parse trees developed in attempting to
parse a language fragment; current versions of this KS, which use a tailored, internal data
structure for parsing, are two orders of magnitude faster than the original blackboard-based
version of this KS. This case history seems to confirm the notion that there are advantages to
specialization of structures: one for KS interaction (i.e., the blackboard), an d separa te ones
for each KS.

The blackboard has also proven to be useful as a data base for the scheduler
(Hay77Fo]. Because of the uniform hypothesis structure, Instantiations of KSs can specify
scheduling information In a uniform way (as stimulus and response frames), allowing new KSs
to be introduced without having to modify the scheduler. The representation of alternative
hypotheses in an integrated, uniform fashion also makes It possible to compare directly the
pending KS instantiations to determine which will likely contribute most to further progress;
the scheduler 1) can determine those areas on the blackboard that most need further work
and locate the pending KS instantiations that are relevent to those areas and 2) estimate the
amount that a KS Instantiation will improve the quality of hypotheses In the area of its action.

Long-Term Information Structures

Associated with each information level of the blackboard, there Is, as prevIously
discuss ed, a set of primitive elements that are used to label hypotheses at that level. The
kernel interf ace provides facilities for creating, accessing, and displaying these labels. In
addition, arbitrary data structures can be associated with each label. These structures , for
example at the word information level, can be simple, such as the average expected duration
of each word, or complex, such as a network which specifies alternative syllabic spellings for
each wor d. In the complex case , this structure often is used to relate labels at one
information level with labels at another; this relationship Is used by a KS which operates
between different levels (e.g., in the example given here, WOM In configuration Cl). These
data structures related to labels constitute much of the long-term (built-In) KS-defined
information structures of the system and often represent most of the problem-specific
knowledge In a KS.

__________________ -
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Each KS (or group of KSs) defines whatever ad hoc structure seems appropriate for the
particular kind of information to be represented. There has been no attempt to define a
uniform set of kernel interfaces for creating and accessing these long—term data structures ,
nor a set of relationships (connection primitives) for relating labels at different levels.
However , It seems possible to attempt to define a small number of representations within the
kernel; these structures would mimic the hierarchical structure of the blackboard. (Hanson and
Riseman in their work on image understanding have a system architecture (Pra77Se] very
similar to the blackboard and have included a complementary long-term memory structure.)

The major drawback of not having a prodefined long-term memory is that if KSs want to
share this Information they have to agree among themselves upon a specific structure, thus
violating Independence considerations. In addition, unIform structures could mske KSs easier
t~ understand, develop, and analyze.

On the other hand, these long-term structures must be highly optimized because of their
large size and the high frequency with which they are accessed. ’ ~ The approach taken of
tailoring these structures to the particular KS(s) using them allowed for efficient
Implementations in terms of both time and space. It is also possible that explicit tailoring has
led to KSs which are easier to understand than If they were forced to fit their requirements
into a uniform structure.

Thus, there are still open questions about the desirability of providing uniform
structures for representing the knowledge In KSs; hopefully, future implementations wIll
explore these possibilities. .

Conclusions About Blackboard Usage

In trying to draw some conclusions about our experiences with the use of the
black boar d, the main issue that constantly comes up is time and space efficiency. In errorful
task domaIns, such as speech understanding, a large number of alternative Interpretations of
the data must be examined and analyzed. The blackboard concept is effective In the Hearsay-
Ii implementation to the degree that it allows this search to be efficient. Analysis of the Cl
configuration indicated that certain types of KS processing on the blackboard were not
effIc ient. Relmp lomentatlon of the KSs in order to eliminate those types of processing resulted
In the C2 configuration. The major uses of the blackboard in the C2 configuration are:

1. A storage area for high-level Intermediate results generated by the search. This
storage area avoids the unnecessary recalculation of those results If they are
encountered on future search paths.

2. A communication area for KSs, with strong and simplified assumptions by a KS of what
structures can be generated by other KSs.

3. A data base for the scheduler.
4. A common display, debugging, and performance evaluation area.

11 For examp le, the description of the grammar used by the l(Ss within the SASS module In
configuration C2 is a network of 3100 nodes. Each node has about seven pointers to other
nodes, plus several pieces of auxiliary Information. A typical KS act ion , e.g., parsing a tour-
word phrase, might make 100 to 5,000 node accesses. 

—- ~~~~~~~~~~~ _— ~~~~~~~~~~~~~~~~~~~~~~~ 
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KnowIedge-5ourc~ Interaction and Control

The asynchronous , data-directed control structure used In Hearsay-I l was designed to
permIt:

1. The quick refocusing of attention to appropr iate hypotheses in the blackboard.
2. The flexible reconfiguration of the system with different sets of Independent (and

possibiy competing) KSs , and dIfferent global control strateg ies.
3. The exp loration of parallel processing .

This section will examine each of these requirements along two dimensions: Were the
capabilities embodied in the requirement important to the project , and how well did the control
s tructure (in ternis of time , space, and ease of represen tation) implement these capabilities?

Appropriateness of a Data-Directed Control Structure

The first requirement , quick refocussing, was based on the following model for
processing in the speech domain. Processing can be organized in terms of the incremental
additions of small units of information to a limited number of alternative hypotheses. The
limited number of al ternatives derives from the view that there are islands of reliability in t he
acou’.tic data tha t can be used to anchor the search. Each small Increment of information
should help to verify, refute , or augment (expand) an hypothesis. A KS action, though
perf ormed in a local context , could also have the side effect of contributing informa tion useful
in the evaluation of alternative hypotheses (i.e., In other contexts ) . Thus, after each
incremental add,t,on of information (throug h the execution of a KS), It is necessary to re-
examine the set of potential actions that now can be activated and determine which of these
will most likely resolve amb~guit y. An asynchronous, data-direc ted architecture makes it
convenient to Implement suc h a processing strategy by permitting KS action to be directed by
the data: II delays the application of knowledge until there Is enough information for a
meaningful result (decision), and it re-app lies the knowledge when, at a later time, additional
information is generated that bears on the original decision.

In those parts of the blackboard where processing fol lowed this model, the data-
directed control structure was very effective. However , at lower levels of speech processing
(i.e., segmentation and labeling, sy llable hypothesis generation based on segments , end word
spot ting based on sy llables), this model was found to be inappropriate because there is not
enough reliability in credibility scores of hypotheses to form hypothesis islands that can
reliably anchor the search. Thus, processing at those levels cannot be selective (depth-first).
and Instead requires a complete scan (bread th-first), for w hich asynchronous control has no
advantages (and considerable costs ).

A major change in going from configuration Cl to C2 was making the lower levets of
processing more sequential and bottom-up. Not until the word level is reached do hypothesis
credii~ility scores have enough reliabilit y to justif y the more complex processing required of
an asynchronous, data-direc ted control structure. The presence of these islands of reliability
is In itself not a sufficient condition for the use of this sophisticated control structure. What Is
additionally required is that there is either a significant cost to evaluate each alternative or a
large number of alternatives (combinatorlc exp losion in the search space); only then is the
overhead involved in implementing a data-directed control structure worthwhile.

In addition to the control overhead, an async hronous control structure requires a more

__________ 

-—- ______
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comp lex internal structure for a KS. This comp lex ity arises because , as new information is
asynchr onously generated, a KS must have the additional log ic to determine whe ther this new
informati on allows it to make a decis ion It could not previously make or whether this
information contradicts a previous decision, in the latter case, It mus t modify the previous
decision, which may involve modif y ing decisions made as a consequence of the original one.
Where processing involves a comp lex hypothesis network structure wit h much detailed
s tructure , the nature of acynchronous processing in response to a change at the detailed level
is costl y, both in terms of processing time and comp lexi ty of the KS, and should be avoided
unless the compensato ry benefits are large. As previously mentioned, the Inadequacies in t he
blackboard structure which make it di f f icul t  to skip over detailed s tructure exacerbate these
problems. (The SEARCH KS in confi guration CI is an examp le of a KS working asynchronousl y
at a detailed level. Although the acoustic-phoneti c knowledge app lied by SEARCH was
represented by a relatively simple data structure within the KS, the code necessary for
examining and incremen tally building large, integra ted, and competing AND/OR structures on
the black board was very complex and the number of KS executions needed to verif y a wor d
was large -- on the order of ten to one hundred. In C2, the function of word verification was
rep laced by the VERIFY KS -- here, verifying a word Is an atomic act (as far as other KS
actions are concerned) and is carried out using tailored structures internal to the KS. Each
execution of VERIFY forced a recalculation of the detailed structure , rather than sharing such
structures across executions.)

Qverhead Costs of Data-Directed Control

The overhead cost of implementing an asynchronous data-directed control structure for
computation of medium level granularity (i.e., a KS action which involves greater than 1/10
second of internal computa tion) is not significant. The major cost involves monitoring each
modif y operation to the blackboard to determine whether any preconditions are interested in
being notified of this specific change. This cost of monitoring and notification makes a modify
operation 12 times as expensive as a read operation. However , in the C2 configuration there
are 29 times as many reads as modif y opera tions , thus making this aspect of implementing a
data-direc ted control only 4Z of the total cost of a run.

Ano ther cost associated with implementing this type of control structure Involves
main taining a scheduler queue of waiti ng KS instantiations arid performing priority calculations
to decide which instantiation to run nr~xt. However, these focus of control calculations ,
possibly expressed in a different way, are necessary in any problem-solving system that
involves a dynamic search. The more general implementation of these calculations in the
context of an asynchronous control structure does not appear to generate significantl y more
system overhead than a speciaIi~ed implementa tion of them In a system with more explicit
controf structure. The cost of maintaining and updating the scheduler queues and calculating
the priorities was about 57. to 77. of a total run.

Further costs involved in implementing this type of asynchronous control structure arise
because of the delay between the invocation of a KS and its execution. The KS must , in
general, contain code that revalidates its invocation context before beginning execution.
However , by making some assumptions about the type of processing other KSs couid effect at
particular information levels, there was in practice very little need for context revalidation.
KSs did not In general interact by modifying previously-made assumptions and detailed
struc tures constructed by other KSs , but rather through the incrementai addition of new
hypotheses to existing structures or the verification of previously unverified hypotheses.

______ -~ ~~~~~~~ 
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KS Inclepenclencp

As ind icate d above, comple te independence among KSs was not accomplished. However ,
information about the processing character istics of other KSs is generally very restricted , and
re lates only to KSs which share either dynamic information on the blackboard or long-term
static information. To facilitate such data sharing, the concep t of a inodul. was introduced into
the architecture. A module contains a set of preconditions and KSs which share common
structures and rela ted accessing procedures. The KSs contained in a module generally
operate at the same or adjacent informalion levels and thus also share specialized accessing
and display routines for these information levels of the blackboard. A module usually
represents the code of one KS programmer and typ icall y contains one to four KSs and one to
four preconditions. The clustering of KSs by their long-term information structures turned out
to be a convenient decomposition for separably Instantiable but related activit y. The K S
m odule is the atomIc unit which is the basic building block for different KS configurations. 12

How Important is the property of independence of KSs? For the two configurations
discussed here, the KS modules are not comp letel y independent. However , during the lifetime
of the project , which involved numerous iterations of KSs, there has been very little difficulty
encountered by this lack of comp lete independence (i.e., the “subroutine inter 3ct ion problem”
did not haunt us). It has been possible to confi gure systems with subsets of KS modules (e.g.,
a “top-end” sys tem that deals only wi th word and phrase hypotheses or a “bottom-end”
system which deals only a t and below the word level) without modificatIons to the modules
involved.

The reason for having little difficulty with the subrouline interaction problem can be
traced to the data-directed activation of KSs. In general, Interac tion among K Ss is
acc omplished by having a KS modif y the attribute structure of an hypothesis In a way which
causes some other KS(s) to be activated and attend to that hypothesis. In order for KSs to
communica te information which is not representable using the standard, kernel—supp l ie d
at tributes, the communicating KSs need only agree on the name of a new attribute and the
form of its value; this new attribute can then be used to pass the Information. Thus, it is not
necessary for a KS to know the names of the other KSs involved. IndIvidual KSs which create ,
are activated by, or use this Information may be added to or deleted from the system without
requiring modifica tions to the other KSs.

A KS as a Hypot hesij Cenerator

There are two major reasons , In addi tion to the one already dIscussed about context
validation, why total independence was not achieved; both of these relate to a KS as a
generator of hypotheses. The first reason concerns the control of the number of hypotheses
a KS should initially generate and the reinvocation of it to generate additional, al ternative
hypotheses. The parameters associated with hypothesis generation should be set by a policy
KS which has a more global view of the current state of the recognition process. The need
then arises for a mechanism by which a policy KS can transmit its desires, In an anonymous
and Independent manner, to the appropriate KS.

It was hoped Initially that these “pr ocessing goals ” could be specified in terms of the

12 Each module Is implemented as a separa tely compiled body of code. A configuration is
specified at load time by selecting the desired modules. Additionally, any KS or precondition
can be inhibited at run-time, effec tively excising it from the system.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ . ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ______
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basic hypothesize-and-lest paradigm (I.e., by having the policy KS create the appropriate type
of hypotheses which would In turn tr igger the desired activity). However , “asking for
¶.On~ottiing to be done” cannot always be specified conveniently In this way nor in an
anonymous manner. For example , if there Is a need for more wor d hypotheses to be
generate d in a particular time area , the action of creating a now hypothesis at the phrase
level which wilt then be expanded at the word level does not precisely capture the desired
activit y, nor d oes t he somewhat clumsy approach of modif y ing some attribute of the lower
level data (e.g., t he sy llable level) to force a KS to reprocess this data so as to accomplish the
desired activity. Note In this examp le, that by try Ing t o force the concept of processing goal
into th~ hypothesi ze-and-lest paradi gm , the policy KS must know the typo of input stimulus
that wIll trIgger a KS to produce the cl~sirecl results , thus viola ting the Independence among
modules. In addition, a K S which i~ designed to do hypothesizing-and-testing does not
necessari ly produce a response that will precisely match the desired processing goal. Due to
these difficulties of directl y embedding goal processIng c ontrol In the hypothesize-and-test
paradigm, an alternative approach was developed (hut not Implement ed) which integrates
smoothly with the data-dire cted control flow of Hearsay-Il.

This alterna tive approach is based on introducing the concept of a goal node into the
blackboard , w i th typos of attributes distinct from those of an hypo thesis , and a moans of
rela ting goals at diUerent levels. The action of creating a goal at a particular level is a
monitorab le event that triggers a KS that can do processing at that level. By making a goal
node c1u .tinc t from an hypothesis , a policy KS can generate goals without interfering with KSs
that operate at that information l~v~l hut that cannot r~’sponci to the goat. if the tri ggered KS
cannot directly satisf y the goal, it can generate a subgoal , linked to the original goal, to
generate data at another level which could be used by the KS to satisfy the original goal. In
this way, a policy KS can interact w ith KSs in an anonymous and independent way. For
example, if there is no KS to react to the goal, processing can still continue. In the ~amo
manner, if there Is more than one KS that can respond to the goal (i.e., competing KSs) , the
scheduler can resolve this confl ict wi thout the need for any action by the KS that generated
the goal. A goal node can also be used as a convenient place for a generator type of KS
action to leave internal slate in forma t ion about how much and what typo of further processing
It can do In this area. -

The other major reason for violating the independence criterion was based on an
efficiency consideralion. As previousl y mentioned, It is compar ativel y expensiv e to create an
hypothesis on the blackboard. The cost of hypothesis creation is especially critical with a KS
that can potentIally genera te a large number of hypotheses. For examp le, the syntax
prediction KS (EXTEND, in C2) can create, based on a prediction from a single phrase
hypothesis, several hundred word hypotheses. Each of these must then be processed by the
word v ’rifier KS (VERIFY ) and verified or rejected. Before these hypotheses are verified they
shat-e almost Identical structures. All but twenty, perhaps , will be rejected by VER IFY. To
avoid the expense of expanding these as distinct blackboard word hypotheses, special data
s tructur es have been constructed to sloro the predicted words compactly; these data
structures are then attached as an attribute of the phrase hypothesIs. This examp le fur ther
illustrates the weakness in the current Hearsay-Il Implementation of efficiently representIng
and pr ocessing groups of hypotheses.

Uniformi ty pf Co~iroJ

Another issue associated with the data-directed control structure Is the ease with which
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different global control strategies can be explored. The uniform inter face conventions used
f or specifying and act ivating KSs and preconditions, together with treating policy (strategy)
KSs In the same way as other KSs makes the total system easy to modify and understand.

As part of the uniform convention for specifying each KS, non-procedural declarations
are required which tell the system the type of pattern that triggers the KS and the type of
action that can result from the actIvation of the KS. By separating the activation of a KS from
Its scheduling, it has been easy to introduce new global strategies by applying a new priority
evalua tion funct ion to the information supplied by each KS. In addItIon, by allowIng a policy
KS to he able to trigger upon certain conditions that occur in the scheduling “data base ” (such
as the absence of any Invoked KSs , or the lack of any Invoked KSs above a certain pr iority
level ), it Is possible to add different types of policy KS. into the sy s tem In a modular manner
(e.g. , WOSCTL In configuration C2).

In the Initial specification of the Hearsay-Il architecture , the approach requir.d for
focus of control was not woll developed and represented one of the major conceptual
problems which would determine the success of the design. As a result of work on this
problem over the last three years , it is felt that the problem, though not comp le t ely solved, Is
now unders tood well enough so tha t It no longer represents a major obstacle to the effective
use of the architecture. It Is interes ting to note that much of the discussion in proceding
sections Is based on a better understanding of what features need to be present In the
architec ture In order to efficiently support complex focus of control strateg Ies.

Parallel ProceSsInR

One of the initial design goals of the Hearsay-It architecture was that It should be
efficiently (and correctly) executable on a multiprocessor (Les75Pa and Fen75Mu). In order to
test the parallel processing capabilities of this architecture on an actual KS configuration, a
multiprocessor simulation system was embedded In the multiprocess ImplementatIon of
Hearsay-Il. Each KS In this configuration was modified with the approprIate synchronIzation
primitives.

The result of this simulation, which used an early version of the Cl confIguratIon that
was strictl y bottom-up In Its processing (because it did not include the SASS module), showed
that effective parallelism factor s of four to six could be achieved (Fen77Pa). Unfortunately,
there does not exist similar simulation data for a fully configured Cl or C2 configuration, both
of which Include top-down processing. However , ii is expected that the C2 confIguration
would exhibi t a much higher degree of parallelIsm, because KS interaction Is more loosely-
coupled and the system does a large amount of breadth-first type of search.

The parallelIsm factors of four to six that were achieved were less than expected.
Further experiments were performed to determine the reason for these low factors. One of
t hese experiments was to run the system with all uses of the synchronization primitives
turned oU. In this mode, the parallelism factors increased to fourteen. This dramatIc Increase
is due to the fact that much superfluous synchronization was performed in each KS to maintain
data consistency because no assumptions were made about how the blackboard was modified
by other KS.. This superfluous synchronization, combined with synchronization primitives
whose granularity of locking was too coarse , led to unnecessarily large areas of the
blackboard being locked in order to maintain data consistency ; this resulted both In significant
Interference among concurrently executing KS processes and a high sy*t.m overhead 
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(between 50 and 100 percent) in order to support parallel processing. As with context
validation (discussed above), this was a price paid for complete Independence among KSs.

A surprising result was that system performance , In terms of accuracy, was as good
with the synchronization disabled as its performance with the full synchronization. The
explanation for this phenomenon is that the asynchronous, data-directed control of Hearsay— Il
is robust in the face of certain types of synchronization errors. For examp le, consider the
normal activity sequence of a KS which involves first examining the blackboard, and then,
based on the values read, modi f y ing the blackboard. Suppose that between the time when the
KS read the value of an attri bute on the blackboard and when it modified the blackboard, the
value of the attribute was changed; therefore , the modif ication was inconsistent with the
current state of the blackboard data. However , because of t he data-directed nature of KS
ac tivation, the changing of the attribute will probably trigger the same KS to be reinvoked to
recalculate Its original modification. Thus, the need is obviated for a KS, while executing, to
lockout the areas of the blackboard It has read, in order to maintain the consistency of its
modifica tions. in addition, other types of inconsistency can often be resolved because another
KS with a different view of the problem will correct an incorrect hypothesis whether it
rest itte d from a synchronization error , a mistake in the theory used by the KS, or from
errorful data. Thus, this self-correcting nature of information flow among KSs , create d
through the use of a data-directed form of the hypothesize-and-test paradigm, In many cases
obviates the need for exp licit use of synchronization.13 

- 

-

CONCLUSIONS

The major conclusions on the use of the multi-level blackboard structure are the.
following: -

1. The paradigm of viewing problem solving In terms of hypothesize-ai~d-te.st . actions
dis tributed among distinct representations of -the problem :(where . these - -

representations form a hierarchy of abstractions ) has - been shown to be a
computationally feasi ble approach to solving knowledge-Intensive tasks. This paradigm
als o provIdes a convenient framework for structuring and applying know ledge. This
has been demonstrated both by t he successful application of the Hearsay—Il
archi tecture to the speech understanding task and also its adoption as an approach to
problem-so lving in a diverse set of other domains such as image understanding
tPral7Se], reading comprehension (Rum76To], protein-crystallographic analysis
(Eng77Kn], signal understanding [Nil77Ru], and complex learning (Sol77Kn].

2. The representation of alternative hypotheses in an integrated manner on the
blac kboard has been shown to have positive aspects. In particular , the integrated
repr esentation avoids unnecessary recalculation and makes it easy to compute a globa l

- view of the current state of the problem solution, for the purpose of focussing. The
problems still to be resolved arise because the Integrated representation permits
hypotheses to be used simultaneously in (shared by) multiple contexts (hypothesis

13 Another example of this self-correcting type of computational structure is a class of
iteratIve refinement methods used to solve partial differential equations. This type of
computational structure can be decomposed for multiprocessor Implementation so as to
avoid most explicit synchronization at the expense of more cycles to reach convergence
(Bau76AsJ. This decomposition is accomplished by not requiring each point in the
differentia l grid to be calculated based On the most up-to-date value of Its neighborIng
points.

______ - ~~~~~~ :_ ~~~~~~~~~~~~~~~~~~~~~~~~~ --•~~~~
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networks). Existing primitives foi~ grouping alternative hypotheses are Ineff icient in
space, and, more importantly, m ake it difficult to determine easIly the different
contexts that use a hypothesis; these primitives also do not provide a convenient
framework for representing and determining the fact that two contexts have very
similar hypothesis structures.

3. There are problems with the current formulation of a partial solution as a distributed
network of hypotheses at different information levels. There is a basic confusion in

- 
. the Hearsay-Il Implementation between the hypothesis In the network which I. at the

highest level of abstraction (interpretation) and the entire network. This confusion,
combined with the problem of handling of multiple uses of a hypothesis, makes it
difficul t to perform some of the complex focus-of-attention strateg ies possible In the
architecture.

4. The uniform struc ture of the blackboard at all informatIon levels has turned out to be a
very positive feature of the architecture. It has made it possible to Integrate new KS.
into the system easily and to develop a large set of utilities applicable to all KS.. It
has also permitted numerous roimplomentations of the internal structure of the
blackboard wIthout requiring KS modification.

The major conclusions on the uniform, asynchronous , data-directed control structure are
the following:

5. The use of an Implicit and uniform control structure for KS cooperation makes the
system easy to modify and understand. The separation permitted between the
invocation of a KS and its scheduling makes It convenient to Implement a variety of
scheduling policies without KS modification.

6. The overhead costs Involved in Imp lementing this type of control structure are
acceptable for KSs which do moderate amounts of internal computation at each
Invocation (e.g., more than 1/10 sec ond in the current implementation).

7. This control structure is not appropriate for domains in which the hypothesis
cred ibilIty ratings are not selective enough to suggest strongly good paths to search.

8. The problem of focus of attention in this type of control environment , though not
completely solved, is now understood well enough so that it no longers represents a
major obstacle to the effective use of the architecture. The integrated representation
of alternatives on the blackboard, which permits a global view of the current state of
problem solution, and the data-directed control structure make it possible to quickly
refocus attention to the appropriate places in the blackboard.

9. The Initial attempt to have complete KS Independence (in both a sequential and parallel
processing environment) resulted in a significant amount of overhead, and thus seems
not to be worth the cost. A more balanced approach, based on some knowledge about
the type of processing done by other KSs in the configuration, has been more
effective. This knowledge does not violate anonymity of KS. because it Is based on a
functional characterization of their activity and not on their “names”. Using this
approach, KS configurations are stilt highly modular (i.e., there has been no serious
subroutine Interaction problem) without paying the severe costs (In complexity of KS
programming and execution time) of complete independence.

1O.Parallel processing can be exploited eflectively in this architecture. The techniques
which are needed because of the errorful nature of the processing In this problem
domain provide a form of processing which Is also robust In the face of data
inconsistency caused by not Imposing complete synchronization among parallel
processes. Thus, the overhead costs of the synchronization are reduced substantially,
allowing effect ive use of parallelism.
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APPENDIX -- cpNrIGunAnpN$ OF KNOWLEDGE SOURCES

Coc~fjp~uratipn Cl~
The KSs of Cl (see Figure 1) are functionally described here briefl y. The name given In

parentheses following the name of the KS is the module in w hich it was embedded.

~~ 
(SEG) -- The SEQ KS [GoI76SeJ generated , from the digitized acoustic signal , a

sequenc e of conti guous , variable-leng th segment hypotheses.
CSEG (P5Th) -- This KS (Sho76Ph] combined segment hypotheses into larger segment

hypotheses. The stimulus frame was a sequence of three contiguous segment hypotheses; the
action was to generate one or more new segment hypotheses, each of whose times lay within
the time span of the three hypotheses in the stimulus frame. The precondition for this KS was
tr igge ie d highly asynchronously -- whenever a new segment hypothesis was created. The KS
was then invoked once for every pair of segment hypotheses Immediatel y preceding and
fo llowing the new one.

PSYN (PS~’N) -- This KS (Sho76Ph] created phone hypotheses, based on segment
hypotheses. The stimulus frame was also a sequence of three contiguous segment hypotheses;
the action was to gene rate one or more phonetic hypotheses , again with times within the
bounclarlr,s of the stimulus hypotheses. The comment above about asynchrony of execu4 ion of
CSEG also holds for PSYN.

~~ 
(POMOW) -- The POM KS [Smi76Wo ) generated sy llable hypotheses from phone

hypotheses. The stimulus frame contained phone hypotheses that were classified as sy llable
nuclei; the action of the KS was to create sy llable hypotheses based on the stimulus frame and
adjacent segment hypotheses. The precondition for this KS was very complex because it made
no assumptions about the order in wl,ich phone hypotheses would be created. Thus , the
creation of a new phone hypothesis of any kind (sy llable nucleus or other) triggered the
precondition and caused an invocation of the KS for each nucleus hypothesis with which the
new phone hypothesis might possibl y interact.

~~~ 
(POMOW) -- The MOW KS (Smi76Wo) generated word hypotheses from contiguous

sy llable hypotheses . The stimulus frame consisted of a newly-created sy llable hypothesis; the
output word hypotheses covered the same time as the stimulus hypothesis , but could also
enc ompas s sy llable hypotheses on either side of the stimulus hypothesis (i.e., for multi-sy lla bic
worth..) If the stimulus hypothesis suggested a multi-syllabic word but the hypothesis for the
other sy llables did not exist , the word would not be hypothesized; however , if at some later
time the required sy llable hypothesis did appear , the KS would be triggered (by the new
sy llable) and the word hypothesized.

RF.COG (SASS) -- This RECOGnition KS (Hay 76Sy] used syntactic knowledge to generate 
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phrase hypotheses from contiguous word or phrase hypotheses. The precondition triggered
on a now phrase or word hypothesis (or one with a changed rating). If the triggering
hypothesis completed, with existing hypotheses, a phrase and the constituents were rated
sufficien tly hig h, the KS was invoked. This was a bottom-up parsing action.

PREDICT (SASS) -- The PREDICTion KS (Hay76Sy] used syntactic knowledge to generate
a new phrase hypothesis, given another phrase hypothesis that was highly rated. This was
essentially a “sidewise ” or “outward” ac tion.

RESPELL (SASS) -- This KS (Hay 76Sy), given a predicted phrase hypothesis (i.e., one
wi th no links to lower level hypotheses , either phrase or word) wI th a sufficiently hi gh
preclir.tion rating, generated hypotheses of the constituents (words and/or phrases) of the
predicted hypothesis. Thus, respe lling drove processing downward, from predIcted
hypotheses towards the word level, so that predictions could ultimately be ma tched to acoustic
data and verified or rejected.

POSTDICT (SASS) -- Given a weakly recognized or predicted phrase or word
hypothesis, this KS (Hay76Sy] looked for other hypotheses that tended to confirm It. Such
hypotheses were linked to the “pos tdicted” hypothesis, increas ing its rating.

WOM (W OMOS) -- This KS [Cro76Wo] was tri ggered on new word hypotheses that were
not linked to syllable hypotheses (i.e., ones tha t were generated “from above ”, by RESPELL or
PREDICT). For each such hypothesis, It generated (via a dictionary lookup) expec ted sy llable
hypotheses which were likely to describe it.

~~~~~~~~~ 
(WOMOS) -- The MOS KS (Cro76WoJ, given a new sy llabic hypothesis, genera ted

(v ia a dictionary lookup) a se t of surface-phonemic hypotheses which described the sy llable.
] JJ~ 

(POSSE) -- This KS (Cro76Wo] responded to the creation of a new phone or
surface-phonemic hypothesis and attempted to create a link between the new hypothesis and
an exis ting hypothesis at the other level.

SEARCH (POSSE) -- This KS (Cro76Wo] responded to the creation of a new link between
a phone hypothesis and a surface-phoneme hypothesis and attempted to create new links
adjacen t to the triggering one. Thus, TIME and SEARCH together incrementally built , through
structural connections on the blackboard , a synchronization of a sequence of surface-
phonemes representing a sy llable with a sequence of lower-level, acous tically-based phones.

- 
- 

The SEARCH KS was very complex in that it built up competing synchronizations (multiple
interpretations); this was clone with localized, incremental actions and while attempting to have
the competing interpretations share maximal consistent sub-structures.

PPOL (RPOL) -- This policy KS (Hay 76Hy] was responsible for propagating validity
ratings. It triggered on the creation of an hypothesis , the establishment of a structural
connection between two hypotheses, or the change of rating of an hypothesis. It calculated
ratings for an hypothesis based on the values of KS-assigned attributes and the ratings of its
structurally connected neighboring hypotheses.

FOCUS (FOCUS) --This policy KS imposed a global control strategy on the function of all
other KSs in the system. It imposed this control through the setting of goal hypotheses which
indicated to a KS both that it should attempt to generate particular types of hypotheses ar,d
also what internal criterion (thresholds) It should apply in order to generate such hypotheses.

The strategy implemented by this KS was based on a progressive enlarging of the
search space of hypotheses as existing hypotheses prove fruitless ; the idea behind this
strategy Is that one should open up the combinatorics in the search space only when
absolutely necessary. The strategy was implemented by setting up Initial goal hypotheses
wi th very high criteria for hypothesis generation and then successively lowering these
thresholds when the search stagnated.

—
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PHRAS E �~ c~
I I— —

~ 
- RESPELL 

I \ ------ -

SYLLABLE 0 0 ‘
I
I — eon

SURFACE- 4
H 

PHONEI1E 
f 

f — — — — —  TIME

— — — - SEARCH
PHONE 0 ~~I —

f’\ — — — C S E G  :
SEGTIENT 0 , 0 ‘

SEC

PARAMETER b
Figure 1. The levels and knowledge-sources of configuration Cl .

(As operationa l in January, 1976.)

Configura tion C2

The KSs of C2 (see Figure 2) are described in the companion “Tutor ial” paper.

-Level ,-  a
— — SEMANT

— — — — — - STOP
PHRASE $

l — — ~ r 4 — — — —  PARSE
WORC’-SEOUENCE 0

— —
LORO CII

UORO 0 
~i.__ VERIFY 

-±- .- -- MOW
SYLLABLE 0 ~ —

Poll

SEGMENT b f — SEC

FAR~ flETER b
Figure 2. The levels and knowledge-sources of configuration C2.

(As operational in September , 19 6.)
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