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SUMMARY

Low frequency 1/t noise limits the ultimate sensitivity of semicon-

1 : ductor devices such as MOSFET (MOS Fileld-Effect-Transistor) and CCD (Charge

Coupled Devices), The study of the origin of the low frequency noise scurces
requires detailed measurements of the noise power spectra under a wide range
of device operating conditions. This report details the design and operation
of a hardwired noise correlation processor (corrvelator) which is interfaced
to a host computer for two-way handshaking operation. The correlator samples
the noise voltage from a device under study as well as calculates, averages
and stores the autocorrelation function of the noise. The host computer can
then sample the autocorrelation data, calculate the power spectrum and plot
the results, all on a low priority time sharing basis if necessarv. This
syvstem provides the tlexibility of programmable control and the speed and
accuracy of dedicated hardware correlator. In order to optimize the corvela-
tor design, a detailed analysis of sampling, correlation and noise theory

were undertaken which provided some important insights on sampling quantiza-

tion errors, and noise power averaging technigues

o

1sing incomplete corvela-

tion. These theoretical concepts apply to a wide range of situations ot

signal correlation, as well as noise power spectra measurements on silicon

semiconductor devices.
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DESIGH, ERROR ANALYSIS AND OPERATION OF

A NOISE AUTOCORRELATOR

I. INTRODUCTION

1 : In the research on the mechanisms of ncise generation in solid state
devices, the most time-consuming and tedious task is probably the manual ex-
perimental measurement of the noise power spectra, especially at low frequen-
cles such as 1 or 10 Hz. Brute force approach for manual narrow band noise
measurements is very time-consuming since meaningful results can be obtained
only after averaging over a time interval substantially larger than the re-

ciprocal bandwidth.

(7]

This report presents a theoretical analysis, design, and experimental
. implementation as well as operation of a computer-controlled automatic noise
data acquisition system. The stored noise data in the computer memory can be

analyzed further and presented in tabulated and graphic forms.

0

-

In designing a noise autocorrelator, it is important to study trade-

w

-

offs among hardware cost, speed, and accuracy. Socme of the subjects covered
in this report are generally applicable to all types of input signals for both
hardware and software correlators. However, we are interested primarily in
noise spectral analysis, and this will point ultimately to a hardware instru-

ment. We will find that some of the design parameters are surprisingly non-

critical, whereas others are extremely limiting. B8y examining the errcrs due

1

to all the parameters, the most efficient combination can be put together,

Very early, however, the decision was made to use digital rather than analog

(3]

computation due to the inherent advantages in the frequency and dynamic range.

W D A T

In the second chapter, the basic concepts of the Nyquist theorenm,

SR

Ty

the autocorrelation function, and the Wiener-rhintchine theorem are briefly




|

H

discussed along with mention of analog-digital conversion errors. The thi

chapter investigates the sampling time required to obtain a good average

each of the noise signal's

v

pectral components. This information is used in
chapter four to choose between hardware and software correlation and between
complete and incomplete data analysis schemes. The many samples, shown <

be necessary by the analysis, allow the use of large input quant

IO

£ation errors

(o8

while maintaining output accuracy, and determine the relative unimportance of
the error due to a finite number of samples. This is discussed in chapter

five. Finally, operation of the correlator is discussed in chapter six and

¥=
ui

illustrated with sample correlator outputs and computer printouts.

II. SAMPLING THEOREUS
The modern sampling theorem is generally credited to Nvquist™ and
P )
has been extended by Shannon”. This sampling or Nyquist theorem states that
a function limited to frequencies where |f|<fy can be perfectly reproduced by
sampling isolated points at a fixed frequency of 2f; or greater. This theorem
is somewhat idealized, however, and, in practice, errors are always present

due to high frequency aliasing, limited frequency resolution, and finite

Sampling a time function at a fixed frequency, 2y, is equivalent
mathematically to multiplication of the function by an impulse train or convo-
lution of the frequency spectrum by an impulse train. This results in repro-
ducing the frequency spectrum at intervals of 2f;. As leng as the spectrum is
exactly zero for |[f|<fy, there is no overlap of the adjacent identical frequen-

cy spectra, and the original spectrum can be obtained by running the signal

through a low pass filter or simply ignoring the

L1
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calculated spectrum. This is depicted graphically in Figures l(a) and l(d).

|
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v(t) V(f)

(a)

v(t) V, (f)

LiLitiand |

Ty 1/ Tg

4 wit) Wi(f)

(c)

Ta/2 /T,

Figure 1 The time dependence and the frequency spectra of (a) a noise signal,

(b) the impulse train and (c¢) the box function.

o o, g oo v . = pa—— — v~




Y imirad
+amited

Lava

in

by

Vv

PR EE S |

.

eNdl

edd

-
4
e

{

ha
W

-

al

» origin

Y
il

nd a
ad <

-

4

‘
m
=
b
(o)
~

a

.
s

S

o
N
248,
oo
QLY L
1 faut
face

o

\realizal

o

This

L

et

additiona

N
N

-y

:;!.’

il

N
an

.
:‘.
~

"
L

=

hy
use

~ b

equenc
pear

1OwWe Ve
For

£y

11l

W

1 ap
W

" A}
3
we

hav

ust

™

ed

LG
aw\

‘

)

N v

and,
am
tha

egquency

o
S

.

e
es,
o
V¢
s

AN

~

-
-y
ada

tion
-

'Y

-
J

4

uo

vy

Sam

e.ld

as
1o

o

e

.

1

e
O
N
AV
P
Lk
S

L e

»
PN

erVvad .
VYA A

T

)
As
285

A

AutocoY
Sem
imum

e

\
S sy-

I

.

"
NAaN

4

-
S5a
ency

A

ces

[
Y

ne

N
an
v
« Ul

equency

e vy

val
58
a

iS5
v
(SN
e
1d .

-

1

.
)r\
n

-

ar
L -
ha
aAu s
1
Juire

-

s

.
.

Dé

.
-
>
4

.

N
.

iV e
1
5
LSaN

3wy

v

)

4
L]
e

SP
e

we

-
-
.
.
s
-

over

S

”

“

oy
rage

~

quen
v
or ave

\

ALy

g fre

o 8

-

A




converter with a 2 us conversion time {or the four bits we will need. This
provides a factor of 50 between the nominal maximum frequency and the conver-
sion frequency. Also, the full scale fluctuation must be allocated for in a
wideband noise signal, and the very highest frequency components alone would
not be expected to have anything close to full scale amplitudes. We will find
that the individual sampled point quantization error due to the sma.l number
of bits used will be much larger than the A-D conversion time error.

In order to calculate the frequency spectrum, S(f) of a time func-
tion, v(t), it is first desirable to calculate the autocorrelation function

given by
w(t) = v(t)v(t+r) (1)

where 1 is the delay time in integer multiples of the sampling period. Then

the frequency spectrum is obtained through the Wiener-kKhintchine integral,

@

S(w) = u f (rt)coswrdr G2
0

There is also an inverse integral for the autocorrelation function given by

%? S(w)coswrdaw i)

/

0

w(t) =

The correlator has the job of sampling at high speed, calculating the auto-
correlation function, and storing it for introduction into a software inte-
gration program or a ltourier analyzer.

The numerical integration can take significant time, so the choice

of procedure used is critical. In particular, an appropriate range of {re-




quency must be chosen, If single decale frequency spectra are desired, a 200
point autocorrelation function must be calculated. This is because we need a
sampling rate 20 times the highest trequency, as discussed before, and a total
sample time equal to the period of the lowest frequency to insure good frequency
resolution. A two-decade spectrum can be obtained in one of two ways. f{irst,
two single-decade spectra can be patched together., This requires twice the
integration time and, if a higher frequency decade is added, 10% more correla-
tion time. The other alternative is a continuous two-decade spectrum. How-
ever, this requires a 2000 point autocorrelation tunction, increasing the
required integration time and the storage capacity by a factor of 10. It does
eliminate the 10% increase in correlation time, since the additional points
are obtained by increasing the sample rate rather than the total time, but
this does not offset the other problems. Anything less than one decade, how-
ever, obviously does not experience this order of magnitude gain in time and
memory, so one Jdecade seems to be the choice.

In any calculation based on experimental results, there is errvor
associated with the finite limits of the Wiener-khintchine integrals. For
example, if we have a noise spectrum that is flat between u and w, i.e.

S(w)=1l, and zero elsewhere, the autocorrelation function from Equation (J3) is

glt) = — | S(w)ecoswtdw

T3 (sinw, t=sinw, 1) (u)

Yy
1 i

The calculated power spectrum, S$'(y) is then

L

-y -




¢ m
S'(w) = u g —— (sinws t - sinw)T)coswrdr
J 2wy -
‘\)
] . ”
= Si(wotw)t + Si(wr=w)t = Si(w)tw)rt
i m = m L m
- Si(wp=w)t ] (5)
where
' .
. { 31n t 2
Si(x) = | — it (6)
] t
\]

)

In a typical case, Ery is one-half the lowest frequency in the one-

<&

decade spectrum of interest and %# is twice the highest frequency.
21

This is

an approximation, since the filter rolloff is sharp but finite. If we assume,

from our previous analyses, that t_ =

\Ullm =T
+

Wy T = 40On
by

1

m .‘ku‘l.:ﬂ)‘

then we have

Wt = 21 + 20w (7)
m
The function S5i(x) can be closely approximated by
" " . 4 . A "
Si(x) * = - f(x)cos(x) - g(x)sin(x) (8)
where, for x>n, we have
f(x) = =
X
A e T
giX ::' ‘S Fix) \“)




Because wat is so large, the first two terms in the expression for

S'(w) can be approximated by %, so that we get

cos(wtw) )t cos(w-wy )T
m m

l-m ™ T
S! > —_—t . —
(w) ;{2 e (wtwy )T *3 (w-w) )T

m m

1 cos(m+wl)Tm cos(m—w[)rm
= + = i 1

1 m L (uH"(ul)T (w—wl)r ] (10)

m m
where we used Si(x) = =3i(-x) in the last term. Obviously the assumed spec-

trum is recovered in the first term, but there is an error given by the second

and third terms.

—

A similar calculation for S(w) = = gives

cos(wtwy )T
m

. B s Y o
S'(w) = ;{1.";[ZSLH(me)LL(wlfm)+ (w+w1)rm
cos(w-wl)rm
+ 1} (115
(w-wl)rm
where
Ci(x) = j( goslt) 4 (12)

We can make Ci(wlrm) zero by appropriate choice of w, (e.g. Wy Tz 3.4), giving

an error result very similar to Equation (10),

cos(m+m1)rm cos(w=-wy )t

'/ :l -_L. m 4
S'"(w) ;[1 = ) (13)

y N
(mfun)r (w"’dl\r
m m

AU et sl
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The actual error is dependent on w, and also on the exact rorm

of the filtering at w, which has been idealized in the above calculation.

However, tor u11m=3.4, which corresponds to a minimum cutoff frequency of 0.4l

times the lowest frequency in the calculated spectrum, the error is about 3%

maximum for the assumed flat spectrum and about 7% maximum for the assumed 1/

spectrum, This value of f| is reasonable from the standpoint of eliminating
unwanted frequencies without altering the desired spectral components.

The theoretical calculation is useful for obtaining the gross fea-
tures of this error, but, because of the ideal spectra that were assumed, it
is doubtful that the calculation can be used to subtract out the error. The

~

il s : 2n e

best way to eliminate it is to simply average over Aws=— and smooth the cal-
.
m

culated spectrum. This point illustrates the true nature of this error. It
is the frequency resolution error in the Wiener-kKhintchine integral predicted
by the Nyquist theorem due to the finite sampling time, Yot If t -+ w», the
error is zero for all spectra. It is true that the error is also zero for

@, =0 in the flat spectrum [Equation (10) ], but the concept of frequency reso-

lution is irrelevant if there is no structure in the spectrum.

III. NOISE SAMPLE TIME
The magnitude of a particular frequency component in a noise signal
will vary statistically in time. Therefore, it is important to know how long

: 1 . s v o -‘4
the signal must be sampled in order to obtain a good average. Van der Ziel

La 7}

has derived this result for an RC filter of time constant, T, and found the

relative accuracy to be 1/v2BT for a bandwidth, B, in the signal. We will

follow his derivation but modify it to our sampling technique.

-
-




Let x(t) be the random input to a quadratic detector with a current

output of I=x-. We want to average long enough to get I. The autocorrelation

of the error is [I(t)-T](I(t+1)=1]). Van der :ielu shows that

(ICO)-TI(I(t+r)-T] = 2T%c2(x) (1s)
where c¢(1t) is the normalized autocorrelation function of x(t) given by

clr) = x(t)x(t+r)/ x° (15)

The spectral intensity of the error is given by the Wiener-ahintchine

integral of equation (2), namely

e
S(w) = 4 l LICt)=T](I(t+r)-1)coswrdr
J
Q
P
= 4 f TR0 ()eoswrdr ()

‘

Q

The autocorrelation function of a square band of intensity, Sy, bandwidth, B

and center frequency, f;, is given by the inverse Wiener-ikhintchine integral:

BN
1 .
e¢'(t) = == | §'(w)eoswtdw
Pl D
"3‘\\.”: !
=S¢ | cosanfdf
! $ \
l\)-t.‘ ‘
= SplsinnBr)(cos2nfyt)/ nBr L7)
Ha know that I = X~ = SyB, so, from Equation (15),




o ( r)/SQB

= (sinnBt)(cos2nfyt)/nBr (18)

Inserting this c(r) into Equation (16) gives

S(f)

"
ro
vi

*
—
[oe]

]
”
~
o

2\
1

’
w

=0 £>B (19)

Rather than an RC filter with a response function (l+w t%)”!, we
have a sampling interval, T, that is a box, with a response function (sinmfT)/
"fT. Thus, integrating over frequency to get the fluctuating output, Y%, we

have

1o

dt

el sinnfT
J it

Brf oy .
y ’Sl x [ B sin(x) _ smn\x)]d“
5 ’ T E meTe ;

where x = nfT.

If we let T get very large relative, to B, the second term goes to

¢ e Sin(R)
zero and the integral of ii;——— goes

rt

Q

ro) =

, S0 that

and the relative error is




There is a small difference of v2 from the RC time

constant result,

From chapter two, we know that B is simply the reciprocal of the
’ }

maximum autocorrelation delay, L/rm. As we shall see in the next chapter,

we will average n autocorrelation functions to get the final result,
1

measuring time is T = ny . This gives a relative error of (— X nrm\

.A >
-

» and n is chosen to get the desired accuracy (e.g.

IV. CORRELATION PROCEDURE
Normally, the autocorrelation function is obtained by sampling 2n

-

points at equal intervals. Each of the n points is then multiplied by
the next n points to get n X n produ The n products with the same delay
between the two sampled points are then added together and divided by n to

get an average. This provides one point in an n-point autocorrelation func-

“

tion based on Equation (1).

A software program was written to perform this calculation and an

example of the result is shown in Figure 2 for a 0.2Hz sine wave and two

different amplitudes. The autocorrelation function of Figur

Wiener-Khintchine integral or power spectrum in Figure 2b

performed on a Wang 720C desk calculator. The autocorrelation
function requires about eight minutes and power spectrum about thirty
point autocorrelation function is used to calculate a &0 point
pectrum. Most of the 40 points in this case are off the scale.

Wang machine was used because the sampling hardware was readily availabl

L2 and
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this machine is inexpensive enocugh to dedicate to a simple task. However,

the machine is limited in its sampling and computation speed. Faster machines

could be employed to speed up the computation, but the slow sampling rate of

about 1l00Hz is general to all but very expensive and sophisticated equipment.
At the very least, then, some sort of high-speed buffer is necessary

to sample and store the data prior to transmission to the computer. Given

this prospect, it is reasonable to include hardwired computation in the samp-

ling buffer, particularly when noise correlation is proposed. In the example
of Figure 2. we had a signal which is nonstatistical, thus, only one autocor-
relation function is required. However, from chapters two and three, we Xnow
that 400 autocorrelation functions, each requiring 400 sampled points, are
necessary to get a good time-averaged one-decade noise spectrum. If all the
points are sampled and stored, this requires 150,000 words of memory. If the
calculations are made after each 400 point block is sampled, then only a 200
word cumulative memory for the averaged autocorrelation function plus a 400

word memory for one sampled block is required. However, eight minutes of com-

putation would transpire between samples, greatly increasing the total sampling
time and causing problems of drift control. A faster machine could reduce the
computation time to a few seconds, but the sampling time alone can be several
hours and this would entail too much use of an expensive machine.

In order to avoid these problems, the concept of incomplete corre-
lation can be effectively used. This term describes a scheme in which the
first sampled point is multiplied by the next n points to get a crude auto-
correlation function. Because all the points are not correlated with each
other, incomplete use is made of the available data and more samples must De

taken. Only one of the n points is correlated, so we use = of the available

ol o

information. In our one decade frequency

v

pectrum with a 200 point autocorre-

lation function we expect to use 1/200 of the possible data.




Actually, the information loss is not that severe. For perfectly

band-limited spectra, the Nyquist criterion requires a 20 point autocorrelation

function for a one decade spectrum. We increased that to 200 to account for
imperfect band limiting and to increase the resolution of the autocorrelation
function, but the order of magnitude increase in data gives nothing like a
factor of 10 increase in information. Therefore, the information loss factor
due to incomplete correlation is between 20 and 200, probably closer to 20.
This is also the increased time factor required for a fixed accuracy in a
modified Equation (22).

In order to verify this analysis, autocorrelation functions were
cajculated over various numbers of sample sets using a software simulation of
incomplete correlation. For each number of sample sets or total time inter-
val, eight functions were computed and a percent variance at particular fre-

quencies in the computed spectra were calculated. The input was white noise

limited to 1.0Hz and sampled at 20Hz. The dots in

experimental results at two frequencies, while the solid lines are the theoc-
retical predictions from Equation (22). Note that this data lies generally

between the 20 and 200 information loss factor corrections and follows the
slope of these lines.

Offsetting the increased time required for sampling by the use of
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incomplete correlation is the complete eli
This is accomplished by hardwiring an asynchronous calculator of the auto-
correlation function that takes place between sample times up to a rate of

sy - ~ 1 ~ 1 Wele 1 ya . -1
mpossible to do for complete correlation because of the

s

100KHz. This is
lengthy clocked calculations required unless all 200 points are calculated

in parallel. Hardwiring this parallel calculation is impossible for cost and

size reasons.
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Figure 3 The percentage noise power variance as a function of the number of
sample periods with incomplete correlation as a parameter.
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onfirm the time compariscen advantage of the lncomplete corre.da-

7]

tion method, the times for the various alrternatives have been plotted in
Figure 4 against the lowest frequency in a one decade spectrum. The complete

correlation times were plotted for the Wang calculator and also for a H8P21MXN

Wang. £Each point on these two curves represents 400 sets or data, each or =00
points, resulting in a 200 point averaged autocorrelation function. The samp-

ling rate is 20 times the highest frequency in the one decade range, and the

(o8

total time is the sampling time plus the computation time.

L b -

The third curve represents incomplete correlation based on the samp-

ling time only, since all calculations are performed between the samples.

Yore samples are required than in the other case due to information leoss, so
30 times as many samples are used to get this curve, 12,000 sets in all. he

crossover frequency for incomplete correlation is 0.06 Hz for th

nce we are interested in a 0.1 Hz

[

lator and 6.0 Hz for the minicomputer. S

and higher range of frequencies, the Wang calculator is clearly eliminated.

ware correlator in the required nigh speed sampling and storage buffer.

The block diagram of a high speed sampler and correlator is shown

in Figure 5. The A-D converter digitizes the data, passing it into the latch
and multiplier. The latch holds the first point in a 200 point set, s¢ that
it is multiplied by every other point as well as itself. These products are

fed into the adder, where they are added to the cumulative total in the shift 1
register memory. The shift register memory is 200 bits long, so that the delay R

1

between the two multiplied points remains synchronized with the shift register

1 ~ . 1 by 4o T e b ~ - i < S N 13
memorv. There are several shift registers, .latches, adders, etc., inh paral.el

'
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The calculation times as a function of the lowest frequencv for complete

and incomplete corvelation using a desk calculator or a minicomputer.,
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to process multibit numbers. A clock pulses the A-D coverter, the latch, the
shift registers, and the controlling counters. One counter counts the 200
points in a data set, and the other counter counts the number of data sets. A
digital-analog converter is used to reconvert the data stored in the shift
register for oscilloscope display. The shift register data is also available
for output to a computer for computing the power spectrum from the autocorrela-
tion function at a later time. Note that the multiplication and addition is
completely asynchronous and requires only about 10U nanoseconds. This means
that the A-D converter is the limiting factor in determining sampling speed.

At the present time (January 1976), eight bit converters with 2 us conversion
times are available for about S100. Thus, we can easily contemplate 200 XHz

clock rates.

V. QUANTIZATION AND SAMPLING ERROR

The number of digital bits required for good accuracy should be
known because it can drastically affect the hardware cost and speed pertform-
ance. The speed/cost ratio of the A-D converter is inversely proportiocnal
to the number of bits required. Also, the multipliers and adders are gener-

ally four bit chips. The adders can be wired in parallel, but eight bit

multipliers are generally more complicated than simply two four-bit multipliers.
Additional logic and shift registers are also required to accommodate more bits.

Although superficial analysis indicates that the full scale accuracy

e

. ok : § 0,
of an n=bit calculation is no better than 100/2 %, the fact that we are ana-

« Oy
o
lyzing a randomly distributed noise signal allows us to do much better. Widrow

L

has used distribution functions and their transforms to indicate that this

3 &
PN

indeed so. A graphical depiction of this analysis which is similar to Figure

a2

1 for the Nyquist criterion is shown in Figure 6. The Caussian distribution
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Figure 6 The noise voltage amplitude distribution function and its Fourier
transform.
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standard deviation.
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available. F(V) is
Note that F(V) is r

A good 1%
least three standar
6h

\
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or 1 > * h. We
ations on either si
This will prevent c
possible numbers, d
side of zero. Thus
nificantly greater
Widrow's
simple integration

can give a good ser

d deviations down the Gaussian curve so

tage is denoted by f(v), where o is the root mean square or

However, f£,;(v) is the experimental distribution obtained

data, since only data separated by the bit size, h, is

the transform of f(v), and F;(V) is the transform of £,(v).

ecoverable from Fi(V) as long as -— »» 757 or h << mu,

accuracy criterion would require having the overlap at

] 3
hat — 2 —

2h 21 Q0

t

should also insist on having at least four standard devi-
de of the distribution center within the full scale limits
lipping of the signal. A four bit machine has sixteen

ividing the full scale into eight units of width h on each

, Wwe can have o = 2h, which would give total accuracy sig-

el

&

than 1%.
use of Fourier transforms is very enlightening, but a

of the distribution function over the quantization error

ies solution that converges rapidly for ¢ s h and also in-

dicates how the total error varies with 0 and the true average. To do this,

bit his results
normalized function
against v/h in Figu
has values which ar
difference between
this error over the

of many samples is

Thus, we

n, ROUNDv, which rounds off any v to the nearest available
in a staircase function with each step of width h. The

s, v/h, (v/h)?, ROUND v/h and (ROUND v/h)*® are plotted

re 7. The function ROUND v/h is zero for -
e integral multiples of h. The ervor at each v is the
this function and the f(v)=v function. If we integrate
distribution function, the error resulting in the average
calculated.

have
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Figure 7 The round-off function, ROUNDv, as a function of the normalized
voltage v/h.
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E = l (ROUNDv = v)exp(-(v=V)? /207 ] dv (23)
where E is the error and V is the truye average of the distribution. The
E second term is simply the average of v or V, giving

L J (ROUNDv)exp(=(v-V)¢/20%]dv - V (24)

l v -h(n+k2) A ~ 9
E = — J 1 nh exp[-(v-V)</20<]dv - V (25)
Y2TO n= -® 'h(n-ﬁ) |

Changing variables, we let x = (v-V)v20 so that

L w i-[m\g-v,‘h Ih/v3o
E== 7 | __nh exp(-x=)dx - V (26)
v nz - /[n-%V/hIh/V2o
Finally, we use
“ 0 5 ~—
-X" i -
} g dx = v—‘~— erf(x) 27)

so that

13 — -
E== ¥ n{erfl(n#s = V/h)h/V20] ~ erfl(n-% - V/WOh/vT01} = v (28)




A graph of this error is plotted in Figure 8 against the average
voltage, V. Both axes are normalized to h, as is the parameter, o. For
o = 0.5h, the error is already down to 0.0023h, which is very small. The
0=0 curve represents the other extreme, where the total error is identical
to the error of a single sampled point. Mathematically in this case, the
distribution function is an impulse centered at V, so the integral simply
gives the single point error at V.

In our situation, we are interested in noise power, so we would
like to get the error in v®, To do this, we again integrate the distribution
function over the error, in this case (ROUNDv)?-v2, Just as in Equation (28),
the second term in the integrand gives the true average which is now

)
-

— . :
ve = 0 + V<, and the total result is

3 n?{erfl(n+} - V/h)h/vY20] - erfl(n-% - V/h)h/vV20] - (02 + Vv3)
n: -0

(29)

A graph of this error is given in Figure 9 plotted against the normalized
voltage, V/h, with 0 as a parameter. Note that the error saturates for large

3 3
o at .083h< or h</l2.

2 , . . .

The factor h</12 can be understood by treating the quantization error

- ; 6 - ;
as an additional noise source. Katzenelson has shown that the input noise
signal and the quantization noise are uncorrelated, so that their autocorrela-
tion functions can be added. Also, if o is large, the quantization noise dis-

tribution function is not a gaussian, but a box of width h and height %. When

the square of the quantization noise voltage, v-

Q\

is multiplied by the distri-
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Figure 3§ The quantization error of the noise voltage, v, as a function of the

average voltage.
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bution function and integrated, we get the autocorrelation function of the

quantization noise at t=0.
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(30)

Finally, we must determine how the quantization noise is autocorre-
3 R 5 " 6 ; SESE
lated for t>0. Widrow and Katzenelson have used the (1,l) moment of the

transform of the distribution functicn to obtain

h? ¢ y? 2 /p2
DQ(Y) = 17 expl-ur (1-p(t)]Jo“/h*} (31)

where p. and p are the correlation coerficients of the quantization noise and

Q
the input noise signal respectively. This formula is accurate for p(t) close
bl

to unity. When p=1, pQ = %% as we saw before. However, if o<h in the expo-
nent, DQ can be expected to decrease much faster than p. This fact is illus-
trated in Figure 1Q. Since the second point in the autocorrelation function
of the input signal would normally have p<0.99 and because we have o=2h in
our four bit machine, the maximum error is about 0.2(h</12) for the second
point and probably less than 0.05(h?/12) for the others.

Actually, even the h®/12 error for the t=0 point is a factor of 3

beiow the single point error and can be ignored for 2% accuracy. is so

easily corrected, though, that it is worthwhile to do so. For extreme cases,

the t>0 error can be corrected using Equation (20) in an iterative manner.

Also, these errors are small only for V near zero, such as the range of Figure
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of the correlation coefficient of the input noise voltage, oy
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3, which is normal for noise measurements. However, strongly biased signals

(V>>0) could have a much larger error as indicated by the trend of

"y

igure 9.

T}

The preceding an of this chapter assumes an infinite number

o
2
v
i
(7

of points sampled so as to obtain perfect Gaussian or rectangular distribu-

tion functions. In reality, however, a finite number of sampled points yield

v

an imperfect distribution. How much this non-ideal distribution contributes
to error is the question we must address now.
4
It is well known that if a random variable, v, is distributed with
e . 2 - . . Y .
mean, V, and variance, o<, and a random sample of size n is taken, then the
— . - . . I . . > 2 -~
sample mean, v, will be distributed with mean, V, and variance a3z = o=/n. The
—

o . - . . g e ) X . 5
1=0 value of the autocorrelation function is 0~ +V=, so this 1s the reference

[N

or mean. If we want 939% assurance of accuracy, then the integral over the

tail remainder in the variance distribution must be .0l or less. This occurs

[

t 2.60.. A normalized error, x, then requires

-
3
o

@.6u s = x(0f + V) (

I
(V]
—

We only tighten the restriction by letting V

(2.60.)° « xo-
=

’
.
(o7}
=

=

(9%
s

-

Since 12,000 samples of the autocorrelation function are taken in

rt

he incom=-
plete correlation procedure and even more in the complete correlation proced- 3

ure, this finite sampling error is less than 6.76/12,000 = 5.6 x 10~ = 0.056%




This calculation is oversimplified and dces not account for the very tricky
T#0 cases, but it does illustrate how insignificant this error is in our case.
It should be noted that this sampling error occurs in both c¢he signal noise

and the quantization noise, but both are very small.

XPERIMENTAL RESULTS

o |

VI
The correlator described in the preceding chapters was built and

successfully debugged. In its final form, the instrument has several con-

venience features such as input overload and output ready lights, adjustable

clock, adjustable output gain, adjustable number of samples, and an output

(]

recirculate mode for oscilloscope display. Oscilloscope photographs o
actual correlator calculated autocorrelation functions are shown in Figure 11l.
for sinusoidal, square wave, white noise, and Lorentzian noise inputs. The
upper trace in each case is the autocorrelation function and the lower trace
is the input signal.

The correlator-calculator system is organized in a handshaking
manner with two-way communication. The correlator signals the calculator
when it has completed its calculation. The calculator then clocks out the
stored autocorrelation function into its memory, calculates the spectrum,
plots, and prints the result. Because the autocorrelation function can be
stored indefinitely and clocked out by the calculator in segments of arbi-

trary length, the demand on the calculator is minimal. This is particularly

y

important for time-sharing applications instead of a dedicated caiculator.
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Figures 12 and 13 contain plots of the correlator-calculated auto-

correlation function and the subsequent calculator-calculated frequency

: : : - : - 1

spectrum. The input signal here is Lorentzian noise with a (STICTINLA] spec-
L/%o

trum. There is some point scatter, but a three point average shown in Figure

14 gives a smooth curve with little loss in frequency resolution. In fact,

tiie small filter hump at about 600 Hz is still retained.

VII. CONCLUSION

We have analyzed the correlation probelm in detail, especially as
it pertains to automatic noise measurement. The various errors were studied
in order to design the most efficient system in terms of speed, accuracy,
size, cost, and convenience. The error sources considered in this study in-
clude high frequency aliasing, low frequency resolution, A-D conversion,
finite time, finite sampling, and quantization. Software calculation of the
Wiener-Khintchine integral using this analysis shows that hardware correlator
is most effective. The correlator uses the incomplete correlation method and
four bit input resolution. This system combines the high frontend speed or broad-
band width and accuracy of a dedicated, hardwired correlator with the flexi-
bility of a dedicated calculator or time-sharing computer which gives soft-

ware calculated, tabulated and graphic outputs.
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