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Summary

A theory of scattering of seismic body waves by
small random spacial fluctuations ih'density and elastic
parameters in an otherwiseisphericallk symmetricai Earth
model is developed.  It is shown that a primary wave
disturbancé of either P or S type travelling thrbugh
a slightly irregular sqlid medium will generate scattered
waves of both f and S types. Explicit formulas are
derived for the mean square amplitudes of P waves scattered

from several different assumed forms of primary P wave.

The theory assumes that the primary wave may be
locally approximated by a plane wave inside each part of the
scattering region whose size is comparable with -the mean
size of the irregularities present and that ordinary ray
theory may be applied to calculate the travel times and

amplitudes of both primary and scattered waves.

The theory supports the writer's earlier suggestion
that observed precursors to the seismic core phase PKIKP

may originate by scattering from the phases PKP1~ and PKP2

by irregularities in the vicinity of the Earth's mantle-core
boundary.
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1. Introduction

The writer (Haddon, 1972) recently drew attention
to certain inconsistencies between observational data on
so~called precursors tc the seismic core phase PKIKP and
corresponding theoretical results entailed by previous
iﬁterpretations of the precursors involving one or more
transition layers surrounding the Earth's inner core. He
suggested as an alternative interpretation that the pre-
cursors may originate by scattering from the main core

phases PKP and PKP, due to irregularities in the

1
neighbourhood of the mantle-core boundary. Subsequently,
Cleary and Haddon (1972) examined the new interpretation

in some detail and assembled a body of evidence in support.
Further support has recently been provided by Doornbos and
Husebye (1972) ffom their analysis of precursor wavetrains
recorded at the Norsar seismic array (see Haddon and Cleary,
1973). More recently, King (1973) has added further weight
to the scattering interpretation with results from his

analysis of precursor wavetrains recorded at the Warramunga

seismic array.

In addition to accounting for precursors to PKIKP,

seismic scattering may also account for several other observed

A T e S . S S
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seismic "phases". For example, Cleary and Haddon (1973)

have suggested that much of the body wave coda following P,
including the so-called precursors to PP observed by Bolt
and colleagues (1968) and others, may result from scattering

in the crust and uppermost part of the upper mantle.

~The main objection to the scattering interpretation
raised so far has been that it has not been shown thaé the
proposed séattering mechanism can account for the observed
amplitudes of the phases in question. It is therefore of
immediate importance to investigate the mechanism quantita-

tively. The present paper is a first step towards this end.

In this paper a simple theory of scattering of
elastic body waves by small randoﬁ fluctuations in density
and elastic parameters is developed by appropriately
generalising and extending certain aspects of the acoustic
scattering theory given by Chernov (1966). The theory below
not only establishes the plausibility of the proposed
scattering mechanism, but also provides an adequate model
for interpreting observational data quantitatively. For
example, application of the theory has already shown that

observed amplitudes of precursors to PKIKP can be accounted

for by postulating random fluctuations in density and elastic

parameters of order one per cent in the lowest 200 km of
the mantle. Further numerical details relating to. the
application of the theory will be published in a separate

paper.
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2. Basic Equations for Scattering

Let u; (i = 1,2,3) denote the rectangular 3
cartesian components of displacement of a point P(xi) in
a perfectly elastic medium in which the density p, incom-
pressibility k, and rigidity p vary slightly from their
mean values from point to point. The equations of motion

for small displacements in such a medium may be written

2

acu. ou. ou.
i : 9 2 ) 1 3
) = —((x - T ue) + u i ' (1)
atz OX{ 3 3xj axj EN f
]
Buk .
where 0 = g denotes the dilation.
k

The fluctuations in density and elastic parameters

will be denoted by Ap, Ak and Ay, so that o = + Ap,

Po
k = ko + Ak and y = Ho + Auy, where Por k0 and Wo denote
the mean values and it is assumed that |Ap| << Por | Ak ] << kg
and |Ap| << Wge For the present p4, kg and will be
assumed to be constants. (In later sections, theory developed
on this basis will be extended to cases where Por ko and Mo
are slowly varying functions of distance from the Earth's

centre.) Upon substituting for p, k and y in equation (1),

we obtain

o T T T e T TR A 07 N DY e - T P = A S R
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3 | 2
‘ d u,
1 90 2
P - (k, * ® U.) == = U "0
0 52 a" 30 ' g "k
!
2
97 u,
BN i 1 30 2
= Ap 5— + (Ak + 3 Aup) we= + AV uy (2)
ot i
i ; du, ou.
i S R SR
. i 3 j i
i ‘ i
ﬁ J When Ap, Ak and Au are all zero the equations

F (1) and (2) reduce to the usual equations of motion for a

0 denote.any solution of

homogeneous medium. Let uy

equation (2) when Ap, Ak and Au are all zero and let

u; = ui0 + ui1 denote a corresponding perturbation solution

¥ :

nf of equation (2) when Ap, Ak and Ap are non-zero. Upon

i substituting into equation (2), assuming that Iuill << Iuiol,

'§ and ignoring terms of second and higher orders in small

1

'% quantities, we obtain
i AT R (3)

‘ : o E2 65 3% Ix, T Yeh i giersl 2
LS o

!j where 6" = 5;;— ' 6" = 5;;— ’ £ = (xj)
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and

32“10 1 500 2 0
Qi(E't) = - Ap 3 + (Ak = 3‘ A].I) 'a—x- + AuV ui
ot 1
(4)
0 0
ou. ou.
3 s 0 2 i i
2y e B | -

Taking the divergence

and curl of equation (3) gives

2.1
1 9370 2,1
N G i vee = Gr. t) (5)
ao ot T'
and
S 2.1 ' »
i G T v E = ‘B(E,t) ' (6)
Bo ot
@ s 2R 4 2
where E = (xj) 7 Po% = ko + 3 Hg o+ pOBO = Uy
O 1 Rty 2
£ = curl (u;7) , 0(r,t) = div (Qi)/(ooao )

and Y(z,t) = curl (Q;)/(py8y%) .
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The resultants of the secondary scattered waves
originating from within any region V of the medium are
given by the following solutions of equations (5) and (6)

(see, e.g., Stratton, pp. 424-428).

el = z];‘n‘. I ‘ﬁlr O(E',t')dV' : (7)
v
g - £ f ar Yz, tmav’ , (8)
A"
where g‘ = (xi') denotes the source point, L= (xi) denotes

the field point at which the solutions are to be evaluated
at time t, R' = |[r - r'| is the distance between the
source and field points and t' =t - R'/u0 and t" =t - R'/B0

denote retarded times.

The equations (5), (6), (7) and (8) show that

under the influence of any primary wave uio, each element

of the inhomogeneous medium becomes effectively a source of
scattered waves of both P and S types. In the following
we shall restrict attention to scattered waves of P type

originating from primary waves of P type.




3. P Wave Scattering from a Primary P Wave by Random

Inhomogeneities

In general, the primary P wave distcurbance may

be represented by

ui = gl (i = 1,2,3) . (9)

where ¢ = ¢(§,t) satisfies the wave equation

¢ = @4, (10)

E 1
E 1
k- |
b |
E
=

=

Upon substituting from equation (9) into equation

(4) and using equation (10), we obtain

‘_ B el
Q; = (Bk + 3 8w - ag“Ap)e ;.

G D it sumn o Ao

{11)

2

where the subscripts following the commas denote partial

differentiations




We shall now assume that the fluctuations Ap, Ak

and Ap are given by

BT T LT T i v e

Ak/ko = mH , r (12)
_and Au/u0 = nH ,

where 2, m and n are constants and H = H(f) denotes an
isotropic stationary random function which has a correlation

Ii : function N given by

)
3 -
:; | 3 N = N(x) = <H(51)H(§2)> y (13)

&
-@ where r here denotes lfl - £2|. In the present paper we
H shall further restrict consideration to the particular case
!

) where N is given by
&8
N(r) = exp (- r°/0%) , (14)

where o¢ 1is a positive constant called the correlation

distance which characterises the scale of the random fluctua-

‘tions in H. It may be noted that the corresponding root

R S PTG TN IR SO S P Y R W, S I e Ty
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mean square fluctuations in Ap, Ak and Ap are given by

2. % :
<(4p)“> = 290 ’
%
<(Ak)%> = mk, } (15)
2 3
<(AU) > b nuo [ )

so that &, m and n represent the magnitudes of the root

mean square proportional changes in p, k and .

Upon substituting from equation (12) into equation

(11) and dividing through by poaoz, we obtain

o

2 = - &
(16)

where

Y; = (mk, + g— nuo)/(ooaoz) il g— (n = m) (Bo/mo)2 '

Y, = (Lo + 3 Lugh/(egugd) = 2, L (17)
and

Y3 = 2nup/(pyae2) = 2n(By/a,)>

3 0/ *Fo"o e A )

il e
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Taking the divergence of equation (16) gives

= el e I ETIer REET e 5
e s e Sl Maalae Y
where a1 =¥ = Vg s a, = Zyl - YZ .
a3 " Ys and a, = Yl - Y3 .

Multiplying corresponding sides of equation (7)
by their complex conjugates and averaging over the ensemble
of possible distributions of H giveé the following expres-
sion for the mean square amplitudes of scattered waves

originating inside the region V.

o

<|e|2> = —1_.7 I I i_‘]_'i.'r <e(£',t')0(£",t")> dv'av" , (19)

where 1r' = (xi.) and " = (xi") denote the integration

variables, R' = |r - r'| and R" = |r - r"| denote the

distances from the field to the source points, t' =t - R'/ao
and t" = t - R“/a0 denote the retarded times and the

overbar on 0O(r",t") denotes the complex conjugate.
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4. The Source Function for Scattered Waves

Upon substituting from equation (18) into equation
(19), we find that the right-hand side of the resulting

equation can be expressed as a sum of integrals, a typical

member of which is

a,a
o I 253 =
123 o] 2 I I R'R" Nri'i"j"[q),i'j'j'][d),i"j"]dv'dv" 5 (20)
vV
where N 1is the correlation function given by equation (14)

and the square brackets indicate that appropriate retarded

times are to be taken.

Upon transforming the integration variables in

each of the integrals like (20) by

]

2xj. 2§j + gj :

e 1;2,3 (21)

2X . n

i
N
%1

1

¥y
-

we obtain, for example,

ConlXy 1€, 1% v ) 3
.~ o asd 23 LT o N
2 ”[ dix, dx,dx ”[ FTE = Bes dg,d€,dE,
&

(22)

-




SO e
e - b e
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where, by equations (14) and (21), N is now given by
No= exp [- (6,2 + £,% + g0 /0%, (23)

and where G23(§1,£1,xi,t) denotes the transformed form of

[® 1[0 w] multiplied by a,a;. In equation (22)

(i'3'3 (i3
the domain of integration V for (§l,§2,§3) is identical
with the éomains ¥ for (xl.,xz.,x3.) and' (xlu,x2",x3")
while the domain Ve for (£;,E,,E5) depends on (§1,§2,§3).
However, because of the presence of either the factor N or

one of its derivatives in the integrands of each of the
integrals like (20), the sum of which‘comprise the right-hand
side of equation (19), each integrand will become small when

|€] becomes large compared with the correlation distance o.

It follows that if R', R" and the linear dimensions of V

are all large coﬁpared with o, then a satisfactory approxi-
mation to integrals like (20) can be obtained by replacing

the factor R'R" by Rz, where RZ =-{(§1 - xl)2 + (§2 - x2)2 +
(§3 - x3)2}, and the domain Ve by the iﬁfinite domain V_.

We thus obtain, for example,

dx,dx.,dx 3

L L2 3 9°N —

I = G(x,,&,,%,,t)dE,dE, dE
23 (4#)2 JJJ R2 JJJ agi2agj A e B o
[+ o]

S

1 23 o g g

= dx,dx.dx sa (24)
(4m) 2 ”J - M e B Yo

\'




- R

-.M»w - B

= N

3
i 33N 2
where 523 = JIJ _"'2—'—' G(legzlxilt)dgldgszB .

g &, 3€j

oo

Upon combining the complete set of terms constituting

the right-hand side of equation (19), we obtain

<ol = Ly ”[%d§1d§2d§3,

: 4
where § = ]}

(25)

It is convenient to refer to S as the source function for

scattered waves.

AR o 0T P AT

L
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5. Approximation of the General Wave Function ¢ by Plane

Waves

For each particular point r ='f*, say, the
functions 8 (above) depend (essentially) only on the
values of the wave function ¢ within the associated region
of (£1L£2,£3) where N and its derivatives are significantly
large. We shall now assume that within each such limited

region ¢ can be adequately approximated by a plane wave

function of the form-
—_* :
¢ = @fpfe ~F ) & gl = t)} , (26)
—%
where r = (xi), r o= (X: ) n = g(g ) denotes a unit
vector in the direction of the normal to the wavefront passing

s ey I ;
through the point r , and 1 = T(r ) denotes the time taken

—%
for a wave to travel from its origin O to the point r .

Now let % . Tg denote a transformation of coordi-

nates from the X; to a new "local" rectangular cartesian

reference frame 01y1y2y3’ which has its origin O at the

i

: ‘ - * ’ s i
particular point X; = X; in Xx;-space, its Y, axis 1in

the direction of the vector n and which contains the field

point P in the plane ¥ ™ 0. Since the equations (1) to

~ o » i e R Rt T e A R e e I

R
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(19) are all independent of the particular cartesian
reference frame used, these equations apply equally well
when referred to a "new" Xy coordinate system whose axes
coincide with those of the Y; system just introduced. 1In

the new coordinate system equation (26) becomes
¢ = ¢(xl + ag(T - £¥) (27)

where T is the time taken for the primary wave to travel
from its point of origin O to the origin Ol(ii*) of the
new coordinate system. For the remainder of this section

the variables Xir Xjor Xjmg etc. will all be taken to refer

to the new coordinate system, unless stated otherwise.

Corresponding to equation (27) the equation (18)

reduces to

2
JdH 9~ H 2
3 3 F + a4V HF , (28)

e(r,t) = alHF" + a
i 1 axl

where F = F(x; + o5(t - t)) = ¢"(x; + ay(t - t)) denotes
the dilation 60 of the primary wave and the primes on F
and ¢ denote differentiations with respect to Xq- Upon
substituting into equation (19) and using certain obvious

symmetry properties, we obtain

»

- 5 4 L o 3 e B
iy S W T (PSP TV SRS IR - L RS RARREY Gl VIR LSV AR S S

S B TS R AR Ay e

-

=ir e
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3
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- o " R T N T Ry e : ¥ L T I et e
. £, FERPRE FEV T T DS NI V RIS S SReE i LK REF T eesi 1) xy S

<jo]?> = ——1—7‘“‘-Hﬁ"{

(4m)
AVARY)
a.°NF,"F." + 2a.a N _ g wF ' 4 2a.a 2N F."F
1 1 =2 172 5xl“ ) G | 173 S 2 "1 %59
l“
+ 2a.a,V.2NF, "F
174" 2 1 72
R 3
2 3°N Ve 9°N -
+ a2 e e = T Fl Fz' + 2a2a3 mrs——— Fl F2
1 1 axl.axl“
+ 2a.a, —2— V.%NF,'F
274 5xl, 2= D)
4 A 2
2 3 N = 9 2 =
¥ ay ——mwe— BiB i 2008, ——g ¥, TS
93X, 4 3Xqwm S 9%,
1 1l 1
2 2 2 —4 ] ”n
+ a4 Vl V2 NFle}dV av
; (29)
where F, = Flag)y Fy = F(s,), ' i dF(sl)/dsl. etc.,
Sl = x1| + R' + 0.0(1' = &) Sz = xl" + R" + ao(‘l’ - t),

and R" and R" again denote the distances between the

source and field points.

Upon transforming the variables (x;,) and (x;u)
in equation (29) by the transformation (21) and approximating

"R'R" by R2 and VE by V_, as before, we obtain




s s e

T T T T T
s S o L dh i

T T T

-

2 1 S - = =
<|e| » = — dx,dx.,dx, ,
(4")2 JJJ R2 17278
\Y
where
B = Be ”J{
Vou
a,2NF."F." - 2a.a, N_p vF ' & 2a.a 2% F,"F
1 1 "2 172 551 l "2 153 9E 2 "F "2
1.
+ 2a.a,V2NF,"F
174 1
2 3
x 23N (R ] BN ©
a,  —3 F)'Fy' + 28,2, —5 F'F, + 2aa,
gri o 863
4 2
2 3°N = ] 2 =
+a3 ——4-F1F2+2a3a4—-2-VNF1F2
351 3&1
2.2.2 =
+ a4‘V v NFle}d£1dEZd£3 ’
2 32 a2 32
where V denotes + + and s and
: 2 2 2 1
. 351 352 353
now given by -
s, = X + kgl + R' + ao(r = £}
and s, = X, - %E, + R" + ag(t = €) .

1 2

o9

are

(30)

(31)

(32)

B ——
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Although the equations (25) and (30) are identical
in form, their derivations show that they have distinctly
different meanings. For, apart from referring to different
coordinate systems, the function ¢ given by equation (26)
has been assumed to approximate the general function ¢
involved in equation (25) only in the vicinity of the partic-

e
ular point x. = x.

i 4 in the original coordinate system. In

respect af the functions S given by equations (25) and (31),

however, it is evident that under the assumed circumstances
the value of the function. S given by equation (31) at the
point ii = 0 in the new coordinate system will approximate
the value of the function S in equ;tion (25) at the point
ii = ;i* in the original coordinate system to the extent
that the function ¢ given by equation (26) approximates

the general function ¢ involved in equation (25) inside the
region where N and its derivatives are significant. The
equation (31) for S evaluated at the point §i = 0 there-
fore provides an approximation to the function S in (25)

at the point i;r in the original coordinate system. In the

next section we shall reduce the expression (31) for S to

a simpler analytical form.

G AL 0

i e e o s e O i N M e il e S o v e S e
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6. Transformation of the Source Function Integral

Let r' denote the position vector OlP' of the

source point P'(xi.) referred to the local coordinate
system introduced in the previous section, R the distance
OlP from the origin 0, to the field point P(xi), n, a
unit vector in the direction OlP and ¢ the angle between

n and n,., as shown in figure 1.

3
(by choice of coordinate system) we find that to sufficient

Since |r'| << R and 0,P is in the plane x

accuracy

R' = R - Ql-r' = R - X, 1C0s ¢ - x2.sin ¢ ,
and similarly

R* = R~ mer" = R-x..co8¢ - xznsin o .

Transforming these expressions by use of the
equations (21), then substituting into equation (32) and

putting X} = Xy = X3 = 0 we find that

sl = p€1 + qu + aoT' '

52 ¥ pgl s qu + aoT' ’

0

(33)




T

TG i e

Ebam s e o AT e ddidatiie
s e S WA A
g T - S b

P(xj)

Fig. L The local coordinate system for evaluating the source

function S.




where P sin2¢/2 - q = - sin ¢/2 cos ¢/2

L] -
and anT R + aO(T e

Upon integrating with respect to £3 all those
terms in the integrand of equation (31) involving derivatives

with respect to 53, we find that all such terms vanish

because F1 and F

its derivatives vanish at the limits of integration. The

, are independent of 53 while N and

equation (31) therefore becomes

v
a.’NF."F." - Davrar s F."F.'" + 2a.a azN F."F
1 NFy"F, Io'se; F1T2 178 ;200 2
1
52 52 =
+ 2ala4 77+ > NFl F2
984 9E,
2 3
2 32N " 33N i
- a" —5 Fy'Fy’' + 2aa; —5 F,'F,
S 13
1 | 1
2 2
5| 2 5 4
+ 2a,a + NF.'F
124 3T 3 F|NE, 'Fy
il5e," " eg,
4 5 5 2
s 5 5 5 =
+ a3 ;E—z Fle + 2a3a4 - 5 " 5 + = 3 NFlF2
1 1 [%6) 2
4 4 4
2| 29 3 .
s § vy R s S NFle}d€1d52d€3 '
9y A, 3k,

(35)
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where Fl = F(sl), etc., and s and s, are given by

equations (34).

Integrating the various terms in eguation (35) by
parts with respect to 51 and 52, as appropriate, and

using the results that

q = (F,F,) = p =~ (F,F,) q? 2% .F,) - p? 22 (e.F
= ’ - ’
&y 0 TE, V12 ——2351 1" 2 "_2'352 1°2
.
etc., we obtain
S = Re Nla,2F."F." + 2a.a. <2 (F."F.") + 2a.a 2 (F."F.)
e T ik 172 e 1 %2 1%s5 2 1%
\ 1 3E,
- a 2 .-.—a—z_- (F 'F ') — 2a a 33 (F '-f)
2 o 28 om iy RS
351 9t
+ a2 2 (F F,) Af.dE.dE
5 —735 12 [ Asgesy v
< (36)
where ag = (a3 + a4) + a4q2/p2 and the other symbols are as

previously defined.

After some further manipulations using results like

9 (R ] -0 9 wE ot
Re JI[ N SEI (Fl F2 )d€1d£2d53 = Re IJJ N 7 (Fl F2 )d£1d£2d£3 0
v v

©o 0

i
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] we finally obtain

S = Re II[ N{chl"Fz“ + czFl“'Fz' + c3Fl""F2}d£1d€2dE3 '
: v

oo

g where
| |
| 2 2 2
; Cl = al f 2pa2(al o paz) + ZP as(al = 3(pa2 = p as)) ’
c = 2pa,(a, - pa,) + 4 2a (- a, + 2(pa, - 2a ))
1 2 A TR LS R TR R LT D

2 2
and C3 = 2P as(al N (pa2 TP as)) .

0 i i e o e & " “
S g e A KA ..”..'-,..u—-m-v.h..

(37)

N

(38)

I
!
!
!

|
!
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7. Summary

: When the general primary wave disturbance ¢
(equation (9)) can be adequately approximated by plane waves
of‘the form of equatién (26) within each subregion of V
whose linear d;mensions are of order o, then the mean
square amplitude of scattered waves originating inside V
and arriving at the field point P at time t is given

by equation (25) where the source function S is given by

equation (37).




8. Scattering from a Simple Harmonic Primary Wave

In this section we obtain an explicit expression
for the source function S (equation (37)) for the case
when at each fixed point r = r of the scattering region

V the primary’wave can be represented by
By = Ay exp(iks) ’ (39)

where s = n-(r - f) + ay(t = t) and where the unit normal

vector n, the wavenumber k and the amplitude Ao are

-~

}; assumed to vary relatively slowly with T, and 1 = (1)

denotes the time taken for the wave to travel from its

source to the point P(r), as before. For this case we have

L

'F(s

1) A0 exp(iksl) ;i

(40)

2) AO exp(iksz) ’

where s and s, are given by the equations (34).

Upon substituting from equations (23) and (40) into

equation (37), we obtain.

BT IR, TR RS

PR P

x



[ | s = (e = oy + ekt iag)? [[[ exn(- (5,7 + £,% + £,2)/02
| | y

oo

+ 2ik (pg; + qzz)]deldczdc3 ’

“m oy =g, id c3)k4|Ao|203(/F)3exp(- kzczsin2¢/2) . (40)

’ .From the equations (18) and (38) we find that

1l

2 2
(al - 2pa2 + 4p as) '

= (’Yl - YZCOS ¢ - Y3Sin2¢)2 ’

R ——

s

o Ry e PR
s i

e R T (41)
where Yir Yy and Y3 are given by the equations (17).

Substituting for S from equation (40) into

equation (25), we obtain

2 2.4 3
r“|a, | “k*o
AT R 0

2
16v/m v R

exp (- k%0%sin2¢/2)av , (42)

O A I e e

3 ‘4 where dV denotes dxldxzdx3.
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When IAol, R, ¢, etc., vary significantly throughout
the region V, the equation (42) would generally need to be
evaluated numerically. If, however, equation (39) adequately
represents the primary wave throughout the whole of V with
k, Ao, and n all practically constant, and if also R is
large compared with the linear dimensions of V, then the
integrand of (42) will be practically constant and we

immediately obtain

2 2,4 3
vrela k"o

16/7R?

2

<|e|2> exp (- kzo sin2¢/2) : (43)

where V here denotes the volume of the scattering region.
For the particular case of a fluid medium the

equation (43) reduces to agreement with a corresponding

result given by Chernov (p. 52).

e i e i S




9. Scattering from a Random Primary Wave

The observed wavetrain following P frequently
appears to have a random phase character. 1In the present

section we therefore consider the scattering from a primary

wave which at each fixed point r =T of the scattering

.region V can be represented by
90 = AOF(S) ' (44)

vhere s = n:(r - I) + ag(T - t), as before, A, denotes the
root mean square amplitude, and where F here denotes a
real stationary random function with a correlation function

M given by
M= .<F(s )F(s,)> = exp(- (s, - s )2/A2) (45)
1l 2 1l 2 i

In this equation A denotes the correlation parameter
characterising the range and distribution of wavelengths
in the signal.

.

Taking the statistical average of equation (37)

over the ensemble of random functions F and using (45),

we obtain

|

, e -y e " T T R i e o T e e e j
. - iy il s s 5 S Y i e it e e TN S S i o 2 46




e

s

&
Ly A

o e e S

4 4 4
g 34m 34m 2%m
R III N{cl e o MR S i °3,;;‘I}d51d§2d53 '
v, 1 98, 1798, 1
et il it g N (MY AE. Ak AE (46)
i W Tr¥o 3/%0 R e o B

Substituting for M and N from equations (23)

and (45) and using (34), we obtain
Jii

ar?a ? Bl o o
<§> = '——~z——-IJI (3 - 128“/A° + 4s°/)7)
A :
Ve , (47)
X EXP(" (512 + 522 + 532)/02 > 52/>\2]d€1d£2d53 v
where s = 2p€1 + 2q€2.
Changing variables in equation (47) by
u = & sin ¢/2 - £, cos ¢/2 , ]
v = & cos ¢/2 + &, sin ¢/2 , . (48)
W L 53 ’ J

b ST T T T B TR e
4 e f > 2 3




P

.-..w.-
Ay - S o

I

B e —

hL—J;-J‘lll;llllillllliammA'

T >
» 3% -
we obtain
e .__T.."2A°2 ”f (3 - 48pu?/2? + 64p2uing
A

v

]

X exp[- uz[ff + %%] = (v2 + wz)/oz]dudvdw .

Integrating (49) gives

12r2a,2 (/) 303
E 7
)‘4(1 + 4—;’7 sin2¢/2]

<S> =

-7

and substituting into equation (25) gibes

28
<62> = 3 0 dv
4Ty R2A4[1 + 40° sin2¢/2]572 .
A2

As in the previous section, if the integrand of
this expression varies significantly throughout the region
V, then the expression would generally need to be evaluated
numerically. If the integrand remains practically constant

throughout V then we obtain

4 3vra, 243

<p“> 02,
2,4 40
4/TR°A {1 + 7Fr

’

: 5
sin2¢/2]

where V again denotes the volume of the scattering region.

(49)

(50)

(51)

(52)

Lo NE » N > T P 5
it o o i PR PR SSROTEHNT PP NPRNSNORTIE AW S W ;.Y O T M ISP, 33
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10. Scattering from a Wavepacket of Finite Length

We here consider scattering from a primary wave

disturbance of the form

Py = F(s) = AGE(s)G(s) , (53)

where s = n-(r - g) + aO(T - t), E(s) represents the

envelope shape of the wavepacket and AOG(s) represents
either the simple harmonic wavetrain given by equation (39)
or the random wavetrain given by equation (44). Differen-

tiating equation (53) gives

Ff(s) = [1+ Eﬁ;ﬁig # [Gégzj)]]AoE(S)G' (s) . (54)
If E(s) is a relatively slowly varying function compared

with G(s) we may approximate in equations such as (54) by
neglecting the derivatives of E(s). For example, if

E(s) = e"sz/L2 and G(s) = e®5 then the second term in

the brackets in equatioh (54) will generally be less than

f% , which is relatively small compared with unity whenever

the wavepacket contains several cycles.

Under the assumed circumstances we readily obtain

—— - . . . T——— e
LM' bl —— s i ot S il ol N N oo O b AL W VPR DR R W 0 B

e e et o gy A e s
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f
{
|
] 2 1 rzleE|2k4°3 2 3 3
<|o|“> I 3 exp(- k“c“sin“¢/2)av , (55)
16/m v R :
and
, 2 3 P2|A0E|203
, L R2A4[1 + -‘?22- sin2¢/2]
i / A
4
i

j corresponding to the equations (42) and (51), respectively,
| J bty . where E = E(aot') and aor' =R + ao(r - t). It may be
3 noted that the integrands of equations (55) and (56) are
significant only‘ih those parts of V where E(aoT') is

significant. The scattering region.may therefore be taken

infinite when appropriate.
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| 11. Scattering from a Pulse-Like Primary Wave

As a final example of the application of equation 4

(37), we consider the scattering from a primary wave pulse
which at each fixed point E = f of the scattering region

can be represented by

] ; 60 = A, exp (- sz/Az) : (57)

i where s = n-(r - ) + ay(t = t) and A here characterises
‘ the length of the pulse. 1In this case we must evaluate

equation (37) with

}

!

L F, = F(s;) = &, expl- 5,2/2%) ,
 + : (58)
; and F. = F(s,) = K, expl~- 8.2/1%)

2 2 < e 2 '
1
4

where S and s, are given by the equations (34). |3

Consider, for example, the integration of the first

term in the integrand of the expression (37).




o ———

! = " " 2
3 I, = JJJ NF,"F,"d§,dE,dE, , |
vV, :
|
2 2 2
A 4s 4s ;
= -%r II[ -2+ ——%— -2+ g exp(— (glz + 522 + 532)/02 :
A X A ;
Vco b
5 2 2 2
(s,° + 8,°)/A ]d51d£2d£3 .
(59)

‘ ]

} Changing variables to u, v, w by using the equations

(48) gives :

4 (
A S 2 2
-—94- exp (- zxz)J” 4 = 26[BY 4+ x| + 16/RY 2pX‘u” , ¢4
A v \ A A Xz

oo

( .
x exp[-_ Ji + 2-g]uz - (v2 + w2)/02]dudvdw ;

(60)

ot
X = -£§—— i P = sin2¢/2 and aor' = R + ao(r - t) .

Now integrating with respect to u, v and w gives

4(/?)303A zexp(- 2x2)

0 2 2.2 2
1,572 [y (1 -2%x52 + vl - ¥) 1 + 2x%)
(61)
+ 3p204/A4]
Y =14 290 g4n2 /2
791n¢ .
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Upon similarly integrating the other terms in

equation (37) and combining, we obtain

4 (/M 30a 2

2 4 2
s = = exp(~.2X") {g,.X" + g X" + g.) , (62)
14y572 1 2 3
Where gl = 4a12Y2 ’ )
= (- 6a,%¢? + 2v(c, ~ 3c,)) b (63)
92 1 1 3’

Fa-unir?s 3 Y% + (c; - 3¢, + e ¥, |

93

and X and Y have the same meanings as in equations (60) and

(61) .

By equations (25) and (62) the resultant mean square
amplitude of scattered waves arriving at P from V is given

by

2 g OR lgyXt & g, x> + 95) 2 |

r2)\%y

T T
3 7 b b 1
ST MR WEWPIST PLRIT. P’ ST, (Y I SRR RN SN SRR, iy
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12. Application of Scattering Theory to Spherically

Symmetrical Earth Models

Consider an Earth model which is spherically
symmetrical except for small random fluctuations in the
density and elastic parameters inside a certain region V.
Let Por ko, Hor %o and Bo denote the mean density,
incompressibility, rigidity and_ P and S velocities at
distance r from the centre of the model. In the present
section we shall derive a formula for the resulting P type
scattering when a primary P wave propagates through the
irregular region V. We shall assumé that the primary wave
originates from a spherically symmetrical point source A
and that ordinary ray theory (see, e.g., Bullen (1963),
chapters 7 and 8) may be applied to calculate travel times

and amplitudes of both the primary wave and the secondary

-scattered waves excited by the primary wave.

Let I denote the energy in the primary wave

emitted per unit solid angle from the source A and let e

‘be the angle which any ray makes with the level surface r =

through A (see figure 2). Then the energy E per unit

area of the portion of the wavefront emerging at an angle ep

to the level surface r = Iy through any point B is given

by (Bullen, p. 126)

P ——




i e A e sl

e R e

Fig. 2 The primary wave ray AB and the scattered wave ray BC for

o a primary source A, a scattering point B and a receiver C in

a spherically symmetrical earth model: yx is the angle of inter-
section of the diametral planes containing AB and BC, e_, e_, eB'
and e are the angles at which the rays intersect the level
surfaces through A, B and C.




- - 39 - T

cos e deA

diap

A
sin e, Ssin AAB

' (65)
r B

where AAB denotes the angle AOB subtended by A and B

.at the centre - O of the model and the range e, to e, + deA f

corresponds to the range A to A

AB

AB + dAAB

For a simple harmonic wavetrain the amplitude A

of the wave is related to the energy E per unit area of 2

) i o
o e A e

l ‘ wavefront by (Bullen, p. 128) ; J

{‘ A = £.E (66)

where the factor f depends on the wavelength and period of

the wave and the density of the medium. A similar relation-

O

ship holds generally for plane waves of similar waveforms.

From equations (65) and (66) we obtain

B . e

2 I cos e,
A = £ v g
B B rB2 sin eg sin AAB

deA
dbpp

’ (67)

where AB is the amp}itude of the primary wave at B and

fB is the value of the factor f at B. The expression (67)

will be applied shortly to give the amplitude of the primary

wave in scattering formulas such as (55), (56) and (64). We
shall first consider effects of the model's velocity structure.

on amplitudes of scattered waves.

- A - T*Q‘*‘-”'&'\' SR Ay
e i b i 75 e N MMMM_‘A* "
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The equations (55) (56) and (64) can all be written

in the form

Jol? = 1725132\/ : (68)
(4m)° vV R
where AV represents an infinitesimal volume element of V.
The resultant of the scattered waves arriving at the field
point P may thus be regarded as the sum of contributions
originating in the volume elements AV comprising V. The
contribution from a single element AV may be represented by

<A02> = SAV ‘. ; (69)

(41rR)2

The energy per unit area of wavefront arriving at

the field point P from AV is given by

sE = 38V, 6
£, (4TR) :
This contribution may be regarded as coming from a point
source B within AV which emits SAV/(fo(4n)2) units of
energy per unit solid angle in the direction BP. The
equations (55), (56) and (57) all apply only to the case

where P’ ko and Mo are all constants throughout the "

o

3 TR BTSSR MR Ay e
T SR TE THRRTE BT Vg W5, (3 SR TP N IS8, S5




region connecting B and P. We shall now extend these
i results to the case of a spherically symmetrical model where

Por ko and Hg vary with r.

If a point source of intensity SAV/(fo(4n)2)
were located at a point B in a spherically symmetrical
model then the energy AEC per unit area .of wavefront
originating at B and passing through a field point C

would be given by (cf. Bullen, p. 126)

‘
:
3
4
3

B (o
this ray makes with the level surface r = r

. £ 2
)
1 3 SAV cot,gB d TBC i
C 2 2 sin e, sin A 2 7 E
1 ‘ (4w) fBrC ng C-5n BC (dA BC
% where eB' is the angle which any ray leaving B makes with
i the level surface r =r through‘ B, e is the angle which

c through C,

TBC is the travel time of a wave travelling from B to C

along the ray, ABC is the angle BOC subtended by B and

C at the centre O of the model and ng = rB/aB. Thus in

< i A g

R

order to allow for geometrical focusing effects associated

with velocity structure in the Earth model we must replace

the equation (70) by the equation (71). The corresponding
- : l contribution to the mean square amplitude of the waves

arriving at C 1is then given by

PSRN ST ORNRII S ST S SN U, SO S oy W W SN e S
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2
f SAV cot e_.' 4a T
<00%> = — P 2|, (72)
(4m) fBrC ng sin ec sin ABC da BC

where fc is the value of the factor £ at C. The

resultant mean square amplitude at C from all the elementary

sources AV then becomes

: 2
£ icat e ! a°T
<02 = L1 f — = =2 |sav (73)
(4m) v fBrC nB'sin ec sin ABC -dA BC

where S denotes the source function appropriate to the

l particular primary wave assumed (e.g. equations (40), (50)

or (62)).

The equation (73) will now be referred to a coordi-

:-'.'7""".“— el o A e

nate system which is particularly suitable for numerical
evaluation of the integral. Let wB denote the angle

between any fixed diametral reference plane passing through

P e o

A, and the diametral plane passing through the focal point

A and the scattering point B. We shall take as independent
variables wB' e and ry. (The particular advantage of
this coordinate system is that the surfaces defined by

bg = ¥y wB =V, e, = e, and ey = e, define a tube of
rays emerging from the focus A.) 1In the coordinate system

taken the volume element dVB bounded by the surfaces WB'

: wB + de, enr ©ep + deA, Iy and rp + drB is given by

TP . 8 i e R e i
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T R g R

- 43 =

P
dvB = rg” sin AABdAABdedrB - (74)

where dAAB corresponds to deA. Combining equations (67)

and (74) gives

S
2 cos e

i A
AB.de = fBI -s—ﬁ—e—B' deAdedrB . (75)
“—, -

Finally, writing S = SBAB2 and substituting into equation

(73) gives
. ; ,
(02> g fCI - cos eA cot eB a TBC i e
2. 2 Nn. sSin e, sin e, sin A 2 B A 'B B'
(4n) ", B B ififas o BC (dA
C Vl 7 S BC

(76)

where the domain Vl for (eA.wB,rB) corresponds with the

domain V for (§i,§2,§5).
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13. Scattering from Wavepackets in a Spherically Symmetrical

Model

For scattering from a wavepacket of the form of

equation (53), where AOG(s) is given by either equation

(39) or (44), the equation (76) gives

. f. T PZ[E(aOT')]2k4o3 cos en cot eB'
ot o B JII : . =
) lﬁ/irc Nng Sin ey sin ec sin A,
1
P (77)
2 _
d T
X ZBC exp (- kzozsin2¢/2)deAd\derB ;
dA .
BC
and
g 3¢ r?(E(agt') 1207
<0°> = e
4/7r 2 I 4 T A T i
C V., np A1 + =~ sin“¢/2
17 5B AZ
(78)
cos e, cot eB' dZTBC
sin e_ sin e, sSin & TR deAdedrB ¥
B BC |dA BC

corresponding to equations (55) and (56) respectively, where

t' is now given by

¥
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While equations (77) and (78) are in an ideal

form for numerical integration in some applications, in
others where scattering may occur at or near the lowest
points of the primary wave rays, it is more suitable to
change from the variable rp to Spr where Sp denotes

the length of the ray path from A to B. This trans-

formation may be accomplished simply by substituting ds

dr B

An outline of a procedure suitable for evaluating

the integrals (77) and (78) will be given in §15.




; ‘ - 46 -

14, Scattering from a Pulse-Like Primary Wave in a

i
! / Spherically Symmetrical Model - 4

In this case the mean square amplitude of scattered

waves at P is given by substituting from equation (62)

into equation (76). We thus obtain

f T ge% JJI J[glx4 + gzx2 + 93]exp(- 2x%)de v dr, , (80)
l \"

1

i ) where

3 '

fcIo cos e, cot ep d TBC

Pt Ve 4.,5/2 2 : ; ! 2 ! (81)
4/1A°Y I . "ng sin ey sin ec sin ABC dA BC

and where X is now given by

s

X = (T, ¢ Ty~ ] . : (82)

B e

-

In general, if for a particular observation point
C and a particular time t under consideration, the
associated values of the scattering angle ¢ are small to

moderate, then it happens that X varies only relatively

slowly throughout the region V. In such circumstances the

integrand 6f (80) would therefore vary only slowly throughout
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V so thz integral can be evaluated numerically using the
| same procedure as for the integrals (77) and (78) (to be

outlined in §15).

For larger values of ¢, however, X will change

more rapidly and the main contribution to the integral will

2 < 1. Under

3 come from that limited part of V where X
4 these circumstances it is advantageous to integrate over X

analytically as follows. :

L

We first change the integfation variables in (80)

from (eA,wB,rB) to (eA,wB,sB) where Sp denotes the

length of the ray from A to B. The expression (8)) then

becomes

ik e

<0%> = JJJ J[gix4 + gzx2 + g3}exp(— 2x%) sin egde,dypdsy . (82)

i e e LaliCis Cahalle)
P e 2

Now let 0, denote a point on the ray defined by (eA,wB)

-

at which 1' = 0 (equation (79)), and let leyz denote

a local rectangular cartesian coordinate system which has

its origin at the point 01+ its x-axis in the direction of
the ray passing through 01 and which contains the field
point P in the plane 2z = 0. We shall suppose that the ray

through 0, may be treated as coinciding with the x-axis in

Yk iy o

e —
R - - B T e e ot et e L =
o SN b el TR e it S RN i _}_J- ‘A_:‘l‘md B abacucidal s
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an interval -a < x < b, to be specified shortly, and that

in the same interval the pencil of rays defined by the
deA de de ay

ranges e, - —3— to e, + —55 and wB v to wB + —75

may be treated as parallel. We now replace dsB by dx

in
equation (82) and integrate along the elementary pencil from
X = -a to x =, +b. The corresponding contribution to the

integral'(82) is then given by

" [x=b

f J[glx4 + gzx2 + g5 exp (- 2x2)dx sin eBdeAd\bB . (83)
X=-a

d<o“> =

Since by choice of O1 we have TAol + TOlC -t =0, the

equation (82) gives, to sufficient accuracy,

%0
St = (TAB g TA01] : [TBC g Tolc] ’

= %[x - (x cos ¢ + y sin ¢)] ’
= 2(px + qy)/A , (84)

where p = sin2¢/2 and q = - sin ¢/2 cos ¢/2 (cf. equation
(34)). Changing the integration variable from x to X in
equation (83) by use of (84), we obtain
2pb
X=
-§—' AJ

4 2 2 ;
d<92> = I ap glx + g, X" + g3]exp(- 2X“)dx }sin eBdeAdwB '

e 2pe

(85)




where we have set y = 0 in equation (84) (since the pencil
of rays is indefinitely thin). Approximating further by
treating J sin egr Pr 91/ 9y and gy as constant on the
interval =-a < x < b and integrating (85) with respect to
X; we obtain

AT 5
d<62> = T K(a,b) sin eg deAdwB .

where

3/2 372

o 3/m ‘ 2 a 2 b
K(a,b) = 9 3:3377 erf[——TlLJ + erf[——ijJ]

2.2

- e ool =2 o b oxe[- 2

A

@

2.2

T %\%{[9 exp[_ EP__;_] + b3 exp[- 2232133]

A

3/2

sl ()
s onl- 2 el 2

A

and where J sin epr Pr 970 95 and gy are to be evaluated

at the point 01.

(86)
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So far, the range (-a,b) has not been defined.
It should first be noted that no matter how large a and b
are taken, the contributions to the integral (83) from outside
the range -A/(2 sin2¢/2) < x < A/(2 sin2¢/2) are negligible.
We need therefore be concerned with defining a and b only
in cases where it is appropriate to take a or b 1less than
A/ (2 sin2¢/2). Such cases may arise when the region V
containing the irregularities is limited in extent (as, for
example, where V 1is a concentric spherical shell r, <r«< rz).
It is then appropriate to take a and b so that x = -a
and x = b correspond to the points of entry and exit of the
ray (eA,wB) to and from the region .V. Upon combining the
contributions (86) from all the ray penbils, equation (80)

becomes

: AJ K(a,b) sin e, de,dy
<62> = IJ PTS B S s (88)
)

where in general a = a(eA,wB) and b = b(e and I

A’ wB)
denotes the domain of (eA,wB) corresponding to V

1°
If the dimensions of V and the magnitude of ¢
are such that 2pa/X and 2pb/) exceed unity, then we may

approximate by taking a + » and b + «». Equation (87)

then becomes

. ¥ o BRI e e DT TR
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which, upon substituting from equations (36), (38), (41) and

(63), becomes
K(a,b) = T /3 T (90)

2 (equation (41)) is the

‘where (remarkably!) the factor
same factor as appears in the scattering formulas for simple

harmonic and random primary waves.

If the above conditions are'satisfied for all

(e inside any domain Z(eA,wB), then by equations (81),

A' lpB)
(88) and (90) the scattering from that part of V inter-

cepted by the tube of rays defined by I 1is given by

2
L}
I{ - F203 cos ea cot e d TBC

£ B
5/2 sin e

I
<e2> e 3 C

v : de,dy., , (91)
C sin ABC dAZBC A"'B

2 3
32/2 r.” Y ngpPATY

where the point B is here to be taken as the point on the

ray (eA,wB) where 1' = 0 (equation (79)).




to determine TAB’ AAB and eB.

(5) The epicentral distance ABC from the

scattering point B to the observation point C is then

given by

1
|
1 cos Bpy, = cOs 8 cos Bpp + sin A sin 8,5 cos ¥y . (92)
, ]
|

} (6) Ordinary ray theory is then applied to

determine the travel time -TBC' the angles of emergence

2
L}
ep and ec and d

2 ;
TBC/dA BC’ corresponding to ABC and In.

(7) The angle X between the diametral planes
;- containing the primary wave ray AB and the scattered wave
b+ ray BC (see figure 3) is given by

: cos AAB cos ABC - cos A i

: cos x = - = . (93)
.; sin AAB sin ABC

(8) The angle ¢ between the direction of the

primary wave ray at B and the associated scattered wave ray

is given by

cos ¢ = sin e sin eB' + cos ey cos eB' coS X .




Fig. 3 Diametral planes and angles associated with the source A, the 3
receiver C and a scattering point B.
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! ‘ (9) The integrands of equations such as (77), (78),
(80), etc., are thus determined numerically at each point of

V and hence the integrals may be determined, apart from the

multiplicative factor (fCI).

In practical applications it will usually be

convenient to compare the amplitudes of scattered waves

i with the amplitudes of the associated direct waves at the

f Earth's surface. 1If, in equation (67), the point B is
taken to coincide with a point D at the surface, then we

~

obtain

. 3 (fDI) cos e, de,
| A = |
D 2 . 4 da ’ |
rD sin eD sin AAD AD |
|
(£.I) cot e d2T
o D A AD
* 2 : : 2 ; e
rD Na sin eD sin AAD da AD

Since fD = fC the equations for scattered wave amplitudes,
and also the equation (95) for direct wave amplitudes all
contain the factor (fCI). The relative amplitudes are

therefore independent of this factor.

A further point to be noted is that if either the

primary wave or the resulting scattered waves pass through .

interior boundaries at which discontinuities in Por k0 or

i.ﬂ.hLIihllllllllilll‘hi-iHEFMA bt ool i G e oS st o e B n T 3 e e RS




M, occur, then the amplitudes should be modified appro-

[  priately to take account of energy losses by reflection and

conversion from P to S. 1In some applications allowance

for attenuation effects would also need to be made.

e e Jeasm + e A
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{ 16. Concluding Remarks

In deriving the various equations given in this
paper; a number of approximations and simplifying assump-

I
% tions have been made. In each particular application it

i will therefore generally be necessary to consider whether

‘ or not the various approximations made are satisfactory.

1 In general, it is to be expected that the theory will give

‘ ; reliable re;ults whenever the primary wave may be reasonably
approximated by a plane wave in each part of the scattering
region whose linear dimensions are comparable with the
characteristic size of the postulated‘inhomogeneities.» For

i short period waves this will usually be the case except

! near caustics and geometrical shadow boundaries. Even in

these exceptional cases it is not unreasonable to expect

T '
?3 on physical grounds that formulas such as (77), (78) and (91)
i

will provide satisfactory first approximations of scattered

. wave amplitudes. In this connection it is notable that in
applications involving scattering from the vicinity of {1

caustics, the integrands of equations (77) and (78) are not

| singular in spite of the infinite amplitudes associated with
g caustics on simple ray theory. 1In fact, equations (77) and 1
B | (78) show that on the theory given, the scattering amplitudes

associated with any particular ray tube leaving the source
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are (almost) independent of variations in the cross-sectional

area of the ray tube along its length.

The above theory has been applied to calculate
amplitudes of waves scattered from PKP waves in the lowest
200 km of the mantle. The results show that fluctuations

in density and elastic parameters of order one per cent in

 that region fully account for the observed amplitudes of

precursors to PKIKP. Although, as indicated above, the
results on scattéfing from the vicinity of caustics need to
be treated with some caution, in the case of PKP the
numerical calculations give practicaily the same amplitudes
for waves scattered from P before entering the core as

for waves scattered from PKP after leaving the core. The
plane wave approximation used in this paper should be fully
satisfactory in the former case at least, which is sufficient
to establish the plausibility of the scattering mechanism.
Further details on application of the theory to the PKIKP

precursor problem will be published in a separate paper.
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