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ADAPTIVE DETECTION OF RENEWAL PROCESSES |
# A. Fogel and S.C. Schwartz E
Department of Electrical Engineering and Computcr Science |
Princeton University |
Princeton, NJ 08540 |
|
v |
Abstract
§ in this paper, we consider the adaptive dctecticn of renewal
E v processes whose inter-arrival times are Gamma distributed. 1t
|
iz is shown that the optimum detector exhibits a two-dimcnsional
é \ estimator-correlator structure for the two pertinent parameters.
{ ’ vhen the underlying statistics are partially known, the estirates
1
_i appearing in the receiver cannot be implemented. Three suboptimum
i
% schemes with surprisingly good small sample performance are derived |
£y
3; » and compared. ?
{
C
‘ B
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!.__Introduction

An increasing number of communication systems process signals
which can be modelled as point processes. These occur in various
arcas such as optical communications, nuclear medicine, and detec-
tiorn of scismic- events. Oftentimes, the sicnals are assumed to be
Poisson time-depcrdent processes and detection schomas under rthesze
ascuamptions have been investigated ((1]). However, many preocesses
depart sianificantly from Poisson statistics; the rezsure 2f depar-
tare usually is taken as the hazard function ([2]) which is ccn-
stant under the Poisson regime, but time-varying fcr cther renewal
processes.,

A renewal process is by definition a point process in which
the seguencc of times between occurence of events consistes of :.i.d.

rzndom -ariakles. In this paper, we investigate the detection cf

reacwal processes vhose inter-arrival times are I (u,k) distributed,

i.-e'o
k
£ixluk) = exp(- K )t &) /1 k) (1)
Vith two parameters, k and u, the Gamma distribution is @ gond
r.2del for a variety of problems. It convenientl; descrihes the
Poisson regime for k = 1 and measures the departure from Poisson

etatistics through the parameters k(([2)). 1In particular, charac-

teristics of bunching are quite well described since

E(x) =y ACCESSICN for

2
Var (x) = %—

so that T ey e et

(2)
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'rom (2), it c~n be seen that if k is areater than wne, we hzve
snreading of the observations (i.e. events are spaced recularly
:2ound the mean in time) whereas if k is less than one, cvents
¢rraibit a bunching, or correlated, pattern.,

Wwe will investigate the following two hypotheses HO and nlz
aades Hy, nois¢ (dark current) is received and the process iz
Poiseon w:th nean l/boz under Hy, the orserved poin* prccuss con-
tains a random signal to be detected and the inter-uarrival tires
are governed by (1). We will assume that the randny siunnl under
ul moydulates the information bearing parameters < and k, sc “h:ot
thec: are to be considered as random variables. Ziternatively,
cne right consider 4 as the information bearing parameter while
% ricflects the unknown dead time characteristic of a photomulta-
nlier device.

In order to determine the structure of the optimum detector
rinimizing the average probability of error under a Bayesian
criterion or maximizing the power for a fixed probability of false

xlarm, it is convenient to exploit the property that the Carna

distribution belongs to the exponential family. Indeed, let

e & (3,.0,)"
where
" k
91 L -1
(3)
0, & x
and
1
h(x) ¢ X

b(e) & 109 (8,) - 0,10g(-8,)

e Sl




Then, (1) can be written as
f(x|8) = h(x)exp(elx + 8,1lo9x - b(6)) (4)

which is the usual exponential form.

In the next sectior, we will extend some of the rosilts of
([3]) to the two-dirensiocnal exponential fzmily and show that,
irdercndent cf the bivariate prior density n(el.ez), the mar~ina:
density f(x) :s completely determined by the: conditionz) mean
estimates (CME) of 91 and 02. This resulting forn for the mar.i-
nal density leads to a general estimator-correlat~r structure for
detectors based on likelihood ratios.

Since the optimum detector usually cannct be imglemented be-
cause oI insufficient a-priori knowledge cf the stotistics of u
and k, we will investigate the properties of some related sub-
optimum detectors. This is done in Section IIT. In particular,

we will utilire a modified and a discrete maximum likelihood esti

mate ([(4]) in forming suboptimum detectors. The simulations to
be discussed illustrate the attractiveness of this subobtimum ap-

proach, especially in the important small sample case.

oy -
% of B "
PRTI LooU R TR . WL B T T




B i e =

o

S AL ,smm oy .‘...n...,,-m_....- By 5 AL

T——

TI. Detection of a Renewal Process with Gamma Inter-Ar: .val Times

. Bayesian test

We suppose that under both hypotheses HO ana iy, N cbserva-
tions (xi.itl.....n) independent and identically distributed
{(i.n.4.) a.¢ 9overned by (4): under no.e = eo = 'a:
krnovr, vecter, whereas under Hy., ¢ is a random vecter wita Nivariuve

wior € ~ T6) = ”(61.02). Moreover we assume that i1, and my

i
oioenr with pr.ors e3ual to Py and P respectivsly.  The detection

siehblem adrits & sufficient scatistic (([5))

t = (tlotz)' (5)

where

so0 that Hn and Hl become equivalent to the following, Under both

hypotheses

t ~ Fit}8) = exp (8;t, + 8,t, - nb(8) ~ F(t)) (€)

272
where € = OU is a known vector under Hy and under F;, £ 18 a rarico
vector withn prior m(8). Denoting the marginal of ¢ ur3dur Hl by
fit), the optimum detector is the likelihood ratio
L(t) = ;—fré-,‘-}—y ;1 ;9- (7)
0 ao 1

Now, f(t) is given by

£(t) = [le(e]o)m(e)ae (8)




[ ' I —

4 i.etl

® £(t) = exp(n(t))[fexp(8,t, + 0,t, - nb(8)Im(5,,0,'d8,25, (9)

Take the partial derivative of f(t) with respect to t, ~nd t,:

-‘ $ Pfe.e(t|le)m(s)de
2logfle) . Bple) L ¥4 e ire
Y tl Bti + 03] 1 1,2 ‘10)
Thus

8.) & rple) = il—‘g—%?-ﬁﬂ- anle) 3 w18 1
i i

j Since
¥ ) dlogf (t) = 210af(t) 4 , 2loaflt) 4 (12)
3ty i ac2 2
f upon substaituting (11) into (12), one cbtains
8 8 ) 13)
dlogf (t) = 8, (t)dt, + 8,(t)dt, + dB(t) ( 13)

(13) is a complete differential. Therefore if we intecrate alona

3 path such as represented in Fig. 1, we get

+ B(t) {13}

2

t
£(t) = kBrexp § 8, wiau,
t

t
+ [ sz(u)du
0 t

0

g T b ..?‘,“;..,-WQ. UL TREIRAAL . 2 o S b g S

A
where K(6) is the normalizing constant and t, is chosen artitrarily.

0

uyt

T T T T R S G e Y Ry

c Y

A A AR A e

e e

22y L S LT S o ey 5 s g
ot o el b 'm:m‘.n.mzmwﬂ Ah‘s ;.:».,‘«»‘.A L3




Lat
a & }
r@) & F 8 (wau, + [ 8, au, -8 %, - 6,00, (15) |
t t |
0 0 |
Atter substitution of (6) and (14%) into (7), onc can wriie the

likelihnod-ratio as

L(t) = x(ﬁ)exp(nb(eo))exp(r(sw) 1)

Jsilowing [6], the constant appoearing in (16) can bLe written in
a mOre convenient way., We multiply (16) by f(ti%o) »rnd intearate |

with respect to t. Since f(t) integrates tc 1, we oktain
g = 8
[K( )exp(nb(ao))] = E, (exp(r(8)); (17)
; 0

~2bstituting (17) into (16) and taking logarithms, the log-likelihood
ratio becomes

tB) =) - £, (expir®)) (18)

Hy

ihis 1= compared to the threshold Ln(po/pl) for ar optimum Raves
to2st. As scen from (18) and (15), the optimum reszc.ver i: com-
pletely determined by the CME's of el and 92 and disrlays an esti-
1rator-correlator structure.

o. Neyman-Pearson test

The Neyman-Pearson test is easily derivable €from (18), i.-.

AH]_ A
r(8) 3" v (@) (19)

Ho {

A
where ¢ (8) is chosen so that the probability of false clarm is set
eGual to a level a.

The above results constitute a canonical detector stracture
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‘zr renewal processes with gamra intcr-arrival tiimcs, <nc pat,
of course, spe:if? tre prior distributicn n(al.ez). when this
distr.butisn is no* krnown, Egs. (18! ani (19) suvtest rerlacing the
CME's by other estimates which are good apprexirations &2 it und
which regquire lees prior information. 7This is the cuvject of the
r.2Xt section.

Finaliy, it should be clear that the results c¢f t} iz =scction

c»n <33ilv ke extended to the n-dimensional exponential family. |
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1IT. Adaptive Detection of Renewal Processes
Let
910 = = Mg + 8yp =1
(20)

1lvsn, the optimum Bayesian and Neyman-Pearson test: ar=s 1iven by

1la) and (1¢). As suqgested above, these tests arc otten rol used
teenies 2F insufficient prior knowledge or beca:ze the CMT's oSf

91 ar.l 82 are simply difficult to implement. Consegiently, it is
ratural to investigate the properties cf suboptimur. detectors ob-
-2incd by substitutino suboptimum estimatcrs for th: CME's in (1€)
({41),

c3.. Y- derived from modifications of the maxirun litelihocd esti-

s {19}, In it is shown that good approximation.. to CME's

rate (MLE). As one might expect, the resultinc detecicr perfor-
mence iy cless to the optamum. What iz curprisina 158 th-t tnis
is trve even fcr very small samples (n=3 or 4). +e now der vo

ttir:c detection schemes based on the MLE and mcd:ifications of 1it.

This 1is done in increasing order of assumed pricr krow.sdce., The
first is the MLE which assumes no prior knowledge on 4 ¢¥ %. The
rruncated MLE assumes that the range of u and k is knowi. Finzlly,

th. discrete MLT assumecs further that the parameter x carn conly take
on onc of a finite number of values.
A. MLE Detector

We first have to calculate the MLE's of 4 ana k or, eguiva-

lently, of 01 and 92. From (3) and (6} the maximum likelihood

eguations have the form

[}

2 -~
mra——— | = tl/n
Y
0(32) - log(- &) = t,/n
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where W, 31, 32 denote the MLE's of the correspcnding parareters

ind § is the derivative of the Gamma function.

{2

Th~ soluti.m te
) is not immediate and does not lend itself to analy-ic irt--

cration. However, if one assumes that ¥ (i.c. 92) 1s =uff,ciently

terze £o that Stirlina's forrula ([7)) can be used,

s nave
+(@F.) = log ¥, - —L-
¥ 2 7
2
arg
. !
n
31
-1
¢ &
a~al ;]'. ...—2.. S
32 k=3 (log (=) - =) =2

For later use, we make the following obzerwvatior::

1) ?1 and 32 can now be integrated.

2) X is a reasonable estimate since it is always positive, a

prcperty which stems from the fact that the arithretic rean :s

iarjger than the geometric mean. We now have to calculate tne in-

tegrals
£
1@) &7 7 (uay, (23)
t
0
and
t
1@, & f ¥, way, (23 )
tﬂ

where the integrations should be performed along a convenient path.

In Appendix A, thcse integrations are carried out, the final result
keing:

- - i X o

I(Fl) + I(‘z) 2" logtlog(n ) - ] 25)

Note a@ain that in (25), the sign of the argument raises no problem

W R4 SV, S T IR R U A TV T
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since it is positive. Wwe

then obtain the MLE EBayesian de¢“ector
by substituting (25) into (19).

We also have to i:lculcte the

guantity
t t T
.|Q _tl.- -2 —l-——zu‘ iev
K Enoexngo t2 2 log(log - = 1) ie
owrite (26) a=n;
t t
exp [n(log ;l - ;3)] 3 i}
Kt = & - 7 exp (- nleg == + == (27)
Hn tl s 2 )3 =0
© leg o= e K]
;8 t2
7y a theorem due to Pitman ([8), page 217), t, and lug ;= = 25 Bec

independent. This property permits the factcrinc of the expecta-

tion in (27) and since t1 is Gamma distributed under Pn. we have

t -n

E, exp(- n lo k4 -—) = 1 : (—l‘ ex 'El
!lo P Sr n T(r:;'a n p.l,,
£, n=1 1 .2
3
PR A L T 3 '
“HET R Rt Gt e
“0 n O
sO trat
K' ==

(2

Hence, the MLE yields an undefined Bavesian detector, a phenomencn

cricountered for other classes of problems ([9], fec. V.R, and (121,

Sec. 3.4 of Chap. 2).

In contrast, the Neyman-Pearson test is well derired and

derived by substituting (25) into (19). Dividiug bv n, we gect

t t t t
1@ =1 109(1094--1“-1‘-,,—4-—-,,—2- LY $ (28)
0

(g

TAV I

g T e » .
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s+ Truncated MIE Detector

Since the optimum detector is determined by CME's, wne micht
expect that by modifying the MLE for some given partial a-pricri
kriowledge of the parameters, the resulting estimates will be
closger to the CHME's, and the associated Jdetector will exl..cit @2
rerformance which is closer to that of the optimun. 7Tni+ will é
indecd be the case. In this sub-section, we ascume prior Xnow-
ledge of the dvnamic range of u and k, i.e., the boundaries arec

kacwa:

u € luL.uul s

k ¢ [kt'ku]

We consider the following estimates:

= . ek i o

RS o AR

% £ (29)
- Moo= if o > uy,
e ana
Z k=% if k, s K<k
» k=% if¥X>k (30)
- u u
1 k=k, if¥<k

u
The associated estimates 51 and 52 are given by

] k 5
.“ §1=-ﬁ 4 Qz-ﬁ {31)

| & In Appcndix B, we calculate the integrals 1(51) and 1(52) defined
il as in (23), (24). With the following definitions




s _.‘“w..r... ‘.”.'_......-—._,u_w i b e i b 2

i R R S e e

=18

= f(x) if £f(x) 2 0

t£x)1”
=0 if f(x) <0

lifx20

cix)
= 0 if x <0

we show

La@) + 13,0 = - k, (Qogy,-1) - k, (~v,)" » ely;-1;

+ %-c(yl-l){tlog(2kllogyl)]c(-v&)-llog(Zku)loqyllc(-vj)i

k
+
+ k,(logy1 - loguu)+ - ;£1y1 - uu) + k£72
u

+ 1
- kt(yz-vl) -3 [log(zkca)] X c(yz-v{)

-

1 : i 3
boh llog(zkla)]c(sz-vu) + ku(y2 Yo'

Equation (32) is obviously a complicated expression.

(32)

However, it

is easily implementable on a computer using the built-in positive

difference function or on special purpose hardware ucsing lim:ters.

We coneider only the associated N-P detector which is obtained by

substituting (32) into (19).




e

. Discrete MLE Dotector

Here,

~£ L and 2lsc sug20sc

‘¢ assor» the a=-priori knowledge of ‘he dynu-ic range

that k can only take on an inteqger valuc

.*wn “ron. a finite set, i.e.

“e form the icllowing

A

and

while

*+ 4 3k, * ¢~

€ ik, .k, + 1,...,k}

¢
. s §
estimates

:er

t
i R
n ks ']

£.

t

L}
) =
<
H
™
rr :l
-
v
[
e
w
)

. 1
= € ——— L
“L b 8 4

if?skl

+

N~ D=

L2

(3:2)
for i =1]1,...,k

fe T 1

-4
(35)

o, =4

I&ho notaticn here should not be confused with the CMC

notation,

e A s ol



A

The resulting N-P detector obtained by substitutinag 1(61) and
A

1{92) into (19), ie derived i1n Appendix C. We introduce the

following nntation:

3 l'-'"

t
» _2
1 + Yo 5 7

B B S T P T S

1

, 1 e iz
e RAEh C AR e L ° Loaadly = %

= . 1 i -
e e 20k, +1)- J A Ry %,

W2 then have :

) 1ty >1

S - A +
o (1(8;) +T1(8,)) ==k, (logy,-1) + k,‘(loc_ry1 - ]oq_u)

ku;kc 4 ku;kL ; (36)
+ (=v + k,y, + (y, = v.)
P a T s e T
<) 1If M, < Yy <1
k -k,
1 1@y +18.)) = -k, (logy,=1) + T ) x,y, (37
n 1 2 i Sl gy R g - A
3) If Yy < My
k -k
1 1@, +18,)) =-%, (1 19+ —
iyl it S W R M B 1N
x -k k -k
u ¢ S8, u 4
- E-ntel r -yp? (38)

i=1 Hy Hy  im

o PR

A v Ay e e
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As commented on in Section III.B, this receiver is also rnot that
IS difficult to implement.
D. Sfimulation Results
Simulations have been performed for the Neymar-Pearson tests
associated with §, 8 and §, and are denoted respectively by DET.1,
D"T.2 and DET.3. Under HO' the observaticns are exponentially
distributed with mean l/ho. Under Hy, they are T"ik/u,k) distri-

buted, k is uniformly distributed on the integers ik,.k +1,...k“)

147
and 4 is independent of : and uniform on [ut.uu1. For this

cxample, the optimum test which we designate DET.4, can be obtained

’ d.rectly from the likelihood ratio calculated in Appendix D. 1It
cshould be noted that although available in this example, this de-
tector cannot be set into an estimator-correlator structure angd,

as indicated in Table 3 below, the computing time required for its

implementation is much larger than that of any of the tests pre-

viously described.

P —

We simulated hypotheses Ho and Hl

calculated the empirical distributions of the four tests under

1000 times (m=1000) and

both hypotheses. To determine the various thresholds for a sicni-

B

’ ficance level a, we used the following non-parametric method dis-
cussed by Davis ani Andreadakis (11]), and which can also be found
in ((12]). Let r(l), r(2),...,r(m) be the order statistics of any
of the tests investigated under Hj. The (l-a)th guantile Gl is
such that

Prnolr >qy ) =0

I' ® Consider the event

E || Ex(r(3) > q,)

: e
L ey -
b o PSSARIUIS Ro v 23% NSO I SREY
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E occurs if at least (m-j+l) values of r are greate: that 9 q’

corresponding to the probability of having at least (m-j+l1)
successes in m Bernouilli trials with a beinag tre probability of

a success. Hence

Pr{E) = I, (m-3+1,3)

where I“(a.b) is the incomplete Beta function. 1In thic case, it

can be approximated by

v (1-a)
where
) "2’52
N(a,1) = = [ e dx
Jon -e

Consequently, for m=1000, if we choose j=963 (or j=918), there is

8 96.4% probability that the false alarm is less than 5% (or 10%)

when the thresholds are taken to be r(963) and r(918), respectively.

The results, summarized in the following tables, illustrate
some significant differences in the small sample case for various
values of the parameters. In general, DET.3 is superior to DET.2
which in turn, performs better than DET.l. DET.3 is quite fre-
quently much better than DET.l and very close to the optimum. 1In

the large sample case (n greater than 10), as one might expect,

the detectors have similar power.

ERUR——— ———————
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Number
of
Samples

& w

H O N

io

Number

Sarples
3
4
4
4
4

10

|"0 “4. “u
.3 .S 3
D 1l 3
3 1 5
Tt 5K 3
Y .5 3
3 (TR 3
uO “L "
. e 3
5 1 3
3 b S
1 5 3
1 .5 3
1l .5 3
DET.1

112

Power of Power of Pcw~er of Power of

DET.2

773
.784
.443
.484
324
797

DET.3

DET.4
(optimum)

.876
.858
435
<681
.523
.832

Power of Power of Power of Power of

k‘ ku DET.1l
1l 3 .731
1 3 .689
5 9 354
4 7 .433
2 5 .346
2 5 .708
Table 1. a = 5%
kL ku DET.1
1 3 .816
1 3 « 760
5 9 <549
4 7 «635
2 5 .495
2 s .800
Table 2. a = 10%
DET.2 DET.3
112 115
Table 3.

Dm.z

.824
.832
.699
.681
.501
.879

DET.4
495

Approximate Sum of Computing Time
for the First and Two Last Rows of Table 1.

DET.3

911
.887
. 128
.74€
577

seconds

DET.4
(optimur)

.915
. 901
«760
«799
. 660
.893
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IV. Conclusion

In this paper, we investigated the detection c¢f rencwal pro-
cesses whose inter-arrival times are Gamma distributed. We first
developed the structure of the optimum Bayesian and Neyman-Pearson
tests for the two-dimensional exponential family. The main char.c-
teristic of these detectors is that they fall into the categcry cf
estimator-correlators since they are determined by integrals of
the CME's of the two pertinent parameters. One implication of this
s:racture is the implementation of suboptimum tests by substituting
various estimates for the CME's.

We then applied the estimator-correlator property to the case
of Gamma distributed observations and investigated three related
tests. The first detector, DET.l, is based on the MLE, and as pre-
viously observed, the Bayesian test is undefined whereas tha2 Neyman-
Pearson version seems to perform quite well even for a small number
nf samples. The second test, DET.2, is based on the truncated MLE
which assumes knowledge of the dynamic range (boundary) cf the
parameters. Finally, we investigated the properties of DET.3, the
test based on the discrete MLE of k assuming that k can only assume
a value on a finite set of integers. This test is well-suited for
the situation where observations are taken at the output of a photo-
multiplier with a fixed dead-time characteristic. DFET.3 and DET.2
outperformed DET.1 and often in the small sample case, the perfcr-
mance of DET.3 is markedly superior to that of DET.1l and very close
to the optimum. Consequently, based on these preliminary simula-
tions, DET.3 is a fairly adequate test for the detection of a large

class of renewal processes.
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Appendix A

We integrate the MLE's "1 and "2 which are solutions to (22).

The'r are rewritten as:

t t -1
i e oo SR Q.
“1 - 7¢; (log — ) {1.n)
k. #. =t !
.l _l_ / ]
¥, =~ 3 (log = - —2) 2.A) |
t2fn|\ |
!
>
1 e
tl/n
v t
0 . (®
n (O)
1 —
(d)
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Since
ot
the admissible points % are located below the curve
y = log :%

and therefore one should be careful in choosing the path of
intecration.
!
1) Case 1: - > 1
We integrate along path (a). Then

n
1(31) = i 'G'l(u)du1 = - } e du, (3.3)

t mmm— e ————
0 0 ul(log o n)

(N

‘Alonc the part of the path for which the integral does not vanish,

we have
tz = t20 = 0
Thus t
1
t log—>
1/n
1(3’)--&1‘ ;‘_U_._QI n-d—s
1 2 ologv 2 1 s
e
t
1(3'1) = - g— loglog -% (4.2)
Now
t du
I(Fz) - [ 72(u)du2 - %—} ul— - (5.A)
t t 2.2
0 0 log e

Along the part of the path where the integral does not vanish, we
have

..n_ﬂ:u : . . - - e

T




! v
i :
! -22-
I
' Thus g .
i € du log ha: [
- 1 (E ) = -1- I —-2L = - -‘-‘. log n I (G.A)
log "'5 n log =4

o ki
2) Case 2: - <1l

H~re, we integrate along path (b). We have

t

B - l r n .y

1)) 24, 6, & iy
ul(log ~& - n)

[

and using the same changes of variables as those lealing to (4.2)

| one okttains:

Finally, from (4.A), (6.a), (7.A) and (8.A), we obtain in both cases

o e

L 1@,) = -2 log a___n i7.2)
1 1 2 t2

T

H

: Similarly,

31

e~ t

i 2 du t
I Y

:‘ !

£, ot
n 2
1@,) +1@,) = - 5 log [1og L. —;] (9.A)
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Appendix B

Here, we integrate the estimates 51 and 52 given in (31),
Re in Aprendix A, the admiesible region of values that % 2N
¢ s
taXe cn is located below the curve y = log ;l. Several cases have

t- be investigatecd which will be referred to in Fia. B below.
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e assume that My > e, k, > % and make use of the notation introu-

4
duced for (32) and in Fig. B. 1t is easily verified that

k = k, iff y, < v,
k=k iffv, Sy, v, (1.E)

k = k, iff y, > v,

- 5} 2, ™ e <V =u,

|
{ ] Integrate along the path (a):

13,)/n = - I -f du, = - k, (logy,-1) (2.8}
e

We now integrate 52 and several subcases have to be considered.

i} It Yy > Vo' then

,'..:,1..‘, AR O PV A S L3S

v v Y
] 4 u u 2
b |

i 1@8,)/n=[ x du += — ¢ ] x du
o 2 0 L * v, logyl-u2 v u 2
- u

3 or

i L sne ik

: 1(6,)/n = k,v, ~ 5-1oq(ku) + k, (y,-v,) (3.B)
B
g i
3 ii) 1f v( < Y,y < vu
; 1
] - -
| 1(,)/n = kv, - 5 log(2k,2) (4.B)
2 iii) 1f Yy < Vyo then
r |
B |

. 1(52)/n =k, v, (5.B)

Then, (3.B - 5.B) can be rewritten in a single formula, i.e.,

R wian,. o of
~

e 3%
e 5. B X e gk i i 1 f\! A &
WMMA‘ Ml il o . Tk =
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ol AR
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2B,

1(6,)/n = k,y, = k, ly,=v,)" = 3 log (2k,a)c (y,-v, )

1 : > (6.B)
t3 lcg.Zkua)c(yz-vu) + ku(y2 - vu\
b) 1I: Yy > Mo integrate along path (b):
) y
u k 1 k
- P =% o S
I@,)/n = -] == au, +[ == du)
e 1 M u
1
or
_ ¥,
= - = - — — s .B)
I(el)/h kL(loguu 1) 2 (y1 nu) B)
Iin this case, 1252) is again given by (6.B).
c) 1f Z, * Y, * z,, then integrate along path (c),
z Y
4 k 1l du
1 1
1@,)/n=-_ £ 4qu, - 5 —
1l e U1 1 2 z, ulloc_m1
or
I(8,)/n=-k, (o= - 1) - & 1og(2k, loay. ! (8.B)
1 2 2% Pl R LR s

)
Again, 1(52) is given in (6.B).

d) If1< Y, < z,» we integrate alonc path (d), so that

k '
2B, 0/n = =%, (ol o 1) = & Jog =k - & (logy, = =2y (9.%)
1Y L2k, 2 "k, u oI,y k|

and again, 1(52) is given by (6.B). We can include {2.R, 7.B, B.RB,

9.B) within a single formula, i.e.,

1@))/n = - Xk, (logy;-1) = k, (-v,)" + 3 1log (2K, Logy, )e(~v,)

. n , (10.8)
R—
uu(yl"‘u)

1 L
-3 loa(2kulogy1)c(-v“) + kt(log uu)

D T
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Case 2: Yy < 1 (path (e))

a) Ify,< v,
1(51)/n = - k, (logy,-1) (11.8)
b} If vV, S Y, SV
Yy
1l du
1 1
1(§,)/n = - &, (logs,-1) - =
1) H ¢ 935, 2 £L ul(logul-yz)
1
1(51)/n = - kL(logsc-l) - 3 log(2k,a) (12.B)
c) If Yy > Var
1(8,)/n = - k, (logs,-1) - l-l Ei -k (v -y.) (13.BR)
1 ¢ V1Og8y 2 e k, o ours .
Eqs. (11.B - 13.B) may be summarized as
I@,)/n = - k, (logy,-1) = k, (y,=v,)* = & 10g(2k,a) (y-v,)*
1 L 1 L Y™V 2 "PIiER R Uty
1 + + (14 .B)
* 8 log(Zkua)(Yz-vu) + ku(yz-vu)
tor a), b), c), of case 2, we have
1(52)/n = keyz (15.B)

From

(6.B), (10.B), (14.B) and (15.B), one obtains Eq. (32).
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Appendix C

In this appendix, the discrete MLE detector is derived. The

A A A
estimates H, Q, 61 and 8., are given in (33), (34) and (35) and

2
have various forms according to the position of t in the plane.

The paths of integration are represented in Fig. Cl and Fig. C2

below.
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e assume that

My L My > e

and k& 21

With the nctation introduced below (35), it ie readaly verified

that (34) is equivalent to:

£ = k& iff v, s Vv

f = ki AEE YV, Syy S vig L=l k -k, -1 f1.c)

£ -x ifey <y
u ku-kt 2

1. Case 1: 1f y, > 1, then consider Fig. C.l and integra‘e along

the appropriate path.

A
a) 1f Yy ® 2, 1(91) is given in (2.B) and (7.E).
1y T€ Y,y £ vy,

2
1@, =,£ k,du, = nk,y, (2.0)
ii) 1f vy < Y, < vz,
18, /m = kyvy + O 41) (v,=vy) = kY, + (y,=v)) (3.C)
iii) 1f v, € Y, $ Vi
1(32)/h = kcyz + (Yz‘v1) + (yz-vz) (1.0)

Cne can summarize (2.C - 4.C) and the other subcases as
e ku:k‘ -

r) 1I1f z, < Yy € 2y, then




Y1 k., +1
e T TR Lot ST g
1@,)/n = - LTe v s e S e

zy 1
or
2 1 (€.C)
1(91)/11 - - kt(logyl" ) - Vl .
18.) is still given by (5.0).
Y  1E z, < ¥y s z,.
A ~
1 ‘(91)1’11 = k', (109}'1-1) o vl - Vz (705)

Cas=s a), k), c). and all cther subsequent casecs for ¥y > 1, can

ho rewritten es

A yl +
I(8;)/n = -k, (logy,-1) + k, (lcy ::\
ku-kL M (8.C)
¥ 8 ev )
i=1l i

while 1(8,) is given by (5.C).
2. Case 2: Iin, < Yy < 1, then consider Fig. C.2 and integrate
along the appropriate paths.

a) 1If Y1 > 8

A
1(61)/n = - kt(logyl-l) (3.C)
b) If s, <y, s

1@,)/n = - k, (logy,-1) + (v, - v} (10.¢)

and in general, for Hy < Yy < 1, we get
3 ku-k£

i=1

i (11.¢)

e KA
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i ¥}. Case 3: If Yy € Hyo we have to consider the various valucse
trat b, can assume.
, a) If M, > 8,. we investigate the following subcases.

i)  If Y3 > s, then similarly as before

K,
18,1 /n = - k, (Lo, -1) + - 5 (y=y;) (12.¢)
|
ii) 1f s, < Yy s S . §
8,0/m = -x 1) + 1 . ! a
! 1(8y)/n = - k, (logu,-1) ™ (s;=v,) + a, M,-yy) (13.C)

(12.¢), (13.C) and the subseguent cases can be written as

k =k X
8.0/ ==k, (1 ok b i s & ) (14
I( 1) n = - 4( ogu, = ) el "i"yl) I, M, =Yy (14.C)

b) 1If S, < ¥, < s again several sub-cases have to bs investigated.

1f s, < ¥ye we have using (10.C)
k,+1

I\a )/n = - Kk (log,.l"-l) + (yz-logut + T:"T)
s

(15.¢C)

oy - b o T
'«,-Mw-"-. -.4;.7.-.--....,.—«_-._...-_“.4..

and in general for LIPS < Yy £ 8. is= 2""'ku'kL' we qet

1
1(31)/n = - kL(log.l&-l) + (y2 - 1°9“L + 'iTz::I)

| k -k
| - b 4 (s -y) "'_L‘U -y,)
. By ux 33 g Tt

We can regroup (14.C) and (16.C) as

1(81)/11 = -k (10911‘ 1) + (y, - logu, + _J?'TI)

k. =k
+ L uL' : (Si-}’l)+ + L Yy




e o

In fact, (17.C) can be generalized to the cases

Si"_l < u& < ‘i P § = 2'...'ku-k‘. as fOllWS:

I(sl)/n = - k, (1 -1) + ku;k&( - lo + 1 i
1 g N, i s My T Tk, -1
e L (18.c)
1 L + + EL
- =— L (s,-u,) - (s.,-y;) | +—=W,-y,)
e | i=2 172 ¢ hy ~ 4 =3
For vy < 1, we always have

1®,) = nk,y, (19.C)

Finally, Egs. (5.C), (8.c), (11.c), (18.C) and (19.C) vield the
results stated in (36), (37), and (38).

TTTTIRL




‘ =33~

y | Appendix D

i We derive the optimum detector DET.4. The marginal of t

under H, which we denote by f(t), can be written as:
£(t) = JLe(t|u,k)m(k)m (u)dkdu (1.9)

where m(k) and 1 (4) are the priors on k and u respectively. Con-

i ( seguently, we have

L 1 u 1 k
£(t)= - - p) ‘_r ——exp(-—t +rt, 4B (t))au
(ku k4’+1) (u “-L ktk u‘(u r (k) el 2
(2.D)
“.
Let
i
i
) 3‘]‘“ exp(-—tl) -—lgdu (3.D)
“L “
b
Er g
33 We integrate by parts:
i
f o
J'[**P e "——r] PR e B e w)
/ tlku My 1 My ¥
t
»
; Iterating the integrations by parts and denoting
%
‘ kt
.
E |
' one gets
| kt!
W nk-2 _i o
, k=2)1 -z Ve u
4 J = -‘-——lFT" e ¢ & (5.D)
B (kty)" jmo 1!
El kt
et §
He
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Hence, substituting (5.D) into (2.D) and using (6), the likelihcod-

E | : retio which we denote by L(t), is equal to:

| t, k
F £(t l su Xk(nk-2)!
. L(z) # = Cexp— I —-‘n;:ﬁ——— exp[(x-1)t,]

2

— (6.0)

_, nk=2 _i | Pu
x|le"? ¢ &

i=0 1!

where

n
<3

C=

DI
(k,~k ! ) (uu-u L )

T e T T T T
’ 3 o vy

e T
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