

SIMULTANEOUS CONFIDENCE INTERVALS FOR LINEAR COMBINATIONS OF TWO INVERSE LINEAR REGRESSION PARAMETERS AD AO 58809 by S. Zacks TR-32 Technical Bepert No. 32 21 Aug This document has been approved FILE COPY for public release and sale; its distribution is unlimited. 2 22 PREPARED UNDER CONTRACT 00014-75-C-0529 PROJECT NR 042-276 j OFFICE OF NAVAL RESEARCH D SEP 20 1978

Reproduction in Whole or in Part is Permitted for any Purpose for the United States Government.

at 1

F

X

Department of Mathematics and Statistics CASE WESTERN RESERVE UNIVERSITY Cleveland, Ohio 78 09 06 020

and the state of the second

1. Introduction.

Consider the linear model $Y = \alpha + \beta x + e$, where x is a deterministic regressor, α and β unknown regression coefficients and e a normal random variable, with zero mean and variance σ^2 . For a fixed value, η , $x(\eta) = (\eta - \alpha)/\beta$ is called the inverse (linear) regression parameter. Given n points $(x_1, Y_1), \dots, (x_n, Y_n)$ one can determine exact γ -level confidence intervals to the inverse regression, on the basis of the leastsquares estimators of α and β , by applying the celebrated Fieller's Theorem (Fieller, 1944). Many different applications and extensions of Fieller's Theorem are available in the literature. In a recent issue of the American Statistician, Zerbe (1978) applied Fieller's Theorem to obtain confidence intervals for the ratio of arbitrary linear combinations of the parameters of the general linear model. Zerbe's generalization yields, as a special case, confidence intervals for the reltive potency of dilution bioassays. These confidence limits are obtained from the confidence limits of the difference of two inverse linear regression parameters, which correspond to parallel regression lines. This however, was originally solved by Fieller, in his famous 1944 paper. In the case of non-parallel linear regressions one cannot obtain exact confidence intervals as a special case of Zerbe's method. Formulae available in the literature are generally based on asymptotic approximations (see Armitage (1971), pp. 446-447). In the present paper we develop a method for determining exactly confidence intervals for any linear combination of the corresponding inverse linear regression parameters of two non-parallel lines. The method is based on a simultaneous application of the basic statistic used in Fieller's Theorem to the bivariate case. We obtain

a training to the second s

78 09 06 020

a joint confidence set, at level Y, for the two inverse linear regression parameters. The set is closed and convex, with continuous boundary, similar to an ellipse which has been asymmetrically extended. This simultaneous confidence region yields simultaneous confidence intervals for any linear combination of the parameters, by considering the proper tangential lines. The method is developed in Section 2 in a general manner and reduced by proper transformations to a canonical form. Fortran subroutine programs for determining the upper and lower confidence limits of the difference are provided in Appendix I. In Section 3 we compare the exact simultaneous confidence limits of the difference to the asymptotic limits. The comparison is done numerically by simulating samples of size n = 50 and n = 100; determining the least-squares estimators of the regression lines, the inverse regression estimates and the confidence limits for the difference of the inverse regression parameters. It is shown that the asymptotic approximations yield intervals which are too short compared to the exact method, even in samples of size n = 100. This illustrates that the commonly applied asymptotic formulae lead to intervals with smaller coverage probability than the nominal confidence level.

There is in the literature a considerable disagreement on the question whether the notion of relative-potency is meaningful in non-dilution assays. Cornfield (1964), in his famous paper on the role of parallelism in comparative bioassays, provided a long discussion of the theoretical aspects of this question. Cornfield developed in his paper a Bayesian procedure for determining (posterior) confidence intervals of the logrelative-potency, as functions of the inverse regression of the test

in the second second

-2-

preparation, $x_t(\eta)$. We apply in Section 4 the method developed in the present paper to obtain classical confidence intervals of log-relativepotency of comparative (non-dilution) photodynamic bioassays. These assays were performed by Epstein et al (1965) to test the toxicity of benzen-soluble organic extracts from air pollution samples. The standard preparation consisted of factory made benzo (a) pyrene (BaP). Some description of the assays and the nature of the biological response is given in Section 4. We illustrate the method developed here on actual sample data from Boston, Mass. and Chattanooga, Tenn. For an extensive statistical analysis and new indices based on photodynamic bioassays see Bialik, Epstein and Zacks (1978) and Bialik (1978).

In conclusion, the method developed here of determining exact confidence intervals is shown to be easily applicable. Although it requires computer analysis, the program is simple and the results can be obtained in a matter of seconds on any time-sharing equipment. Programmable calculators can be used too for determining these confidence limits.

2. Derivations.

Consider two regression lines:

and $Y = \alpha_s + \beta_s x + e$ (the "standard" line) $Y = \alpha_t + \beta_t x + e$ (the "test" line)

where α_s , β_s , α_t and β_t are the regression coefficients and e is a random variable having a normal distribution, $N(0, \sigma^2)$. It is assumed that the variance, σ^2 , around the two lines is the same. n_s independent trials are conducted to estimate the coefficients of the "standard"

-3-

line, and n_t independent trials are conducted to estimate the coefficients of the "test" lines. Let $\{x_{s,1}, \dots, x_{s,n_s}\}$ be the points at which the "standard" trials are performed and $\{x_{t,1}, \dots, x_{t,n_t}\}$ those for the "test" trials. We denote by \overline{x}_s and \overline{x}_t the averages of $x_{s,i}$ $(i=1,\dots,n_s)$ and $x_{t,i}$ $(i=1,\dots,n_t)$, respectively. Let $SD_s = \sum_{i=1}^{n_s} (x_{s,i} - \overline{x}_s)^2$ and define SD_t similarly. It is assumed that the "standard" and the "test" trials yield mutually <u>independent</u> random variables $Y_{s,i}$ and $Y_{t,j}$ $(i=1,\dots,n_s; j=1,\dots,n_t)$.

Denote by a_s , b_s , a_t and b_t be the least-squares estimators of α_s , β_s , α_t and β_t , respectively. Let $\hat{\sigma}^2$ be the pooled-variance around the least-squares regression lines (see, Graybill (1977) for the theory and formulae of least-squares estimation). Fix η and let \hat{x}_s and \hat{x}_t denote the estimators of the inverse regression parameters $\xi_s = (\eta - \alpha_s)/\beta_s$ and $\xi_t = (\eta - \alpha_t)/\beta_t$, in which the least-squares estimators a_s , b_s ; a_t and b_t are substituted, respectively. We define the pivotal variables

 $u_{s} = (\eta - a_{s}) - \xi_{s}b_{s} = b_{s}(\hat{x}_{s} - \xi_{s})$,

(2.1)

(2.2)

$$u_t = (\eta - a_t) - \xi_t b_t = b_t (\hat{x}_t - \xi_t)$$
.

It follows immediately from the least-squares theory that u_s and u_t are independent random variables, normally distributed with zero means and variances

$$Var\{u_{s}\} = \sigma^{2}\left(\frac{1}{n_{s}} + \frac{(\bar{x}_{s} - \xi_{s})^{2}}{SD_{s}}\right),$$
$$Var\{u_{t}\} = \sigma^{2}\left(\frac{1}{n_{b}} + \frac{(\bar{x}_{t} - \xi_{t})^{2}}{SD_{t}}\right).$$

-4-

It follows that,

(2.3)
$$\frac{\frac{n_{s}b_{s}^{2}(\hat{x}_{s}-\xi_{s})^{2}}{n_{s}(\bar{x}_{s}-\xi_{s})^{2}} + \frac{n_{t}b_{t}^{2}(\hat{x}_{t}-\xi_{t})^{2}}{1 + \frac{n_{s}(\bar{x}_{s}-\xi_{s})^{2}}{SD_{s}}} \sim \sigma^{2}\chi^{2}[2]$$

where $\chi^2[\nu]$ designates a chi-squared random variable with ν degrees of freedom. The pooled-variance estimator $\hat{\sigma}^2$ is independent of the random variable specified in (2.3) having a distribution like that of $\sigma^2 \chi^2[\nu_p]/\nu_p$, where $\nu_p = n_s + n_t - 4$. Let $F_{\gamma}[2,\nu_p]$ denote the γ -fractile of a (central) F-distribution with 2 and ν_p degrees of freedom. It follows that

(2.4)
$$\frac{b_{s}^{2}(\hat{x}_{s}-\xi_{s})^{2}}{1+\frac{n_{s}(\bar{x}_{s}-\xi_{s})^{2}}{SD_{s}}} + \frac{\frac{n_{t}}{n_{s}}b_{t}^{2}(\hat{x}_{t}-\xi_{t})^{2}}{1+\frac{n_{t}(\bar{x}_{t}-\xi_{t})^{2}}{SD_{t}}} \leq \frac{2\hat{\sigma}^{2}}{n_{s}}F_{\gamma}[2,v_{p}]$$

holds with probability γ for all $(\alpha_s, \beta_s, \alpha_t, \beta_t, \sigma)$. Inequality (2.4) specifies a γ -level simultaneous confidence region for (ξ_s, ξ_t) . Define,

$$\zeta_{s} = \sqrt{\frac{n_{s}}{SD_{s}}} (\bar{x}_{s} - \xi_{s}) ,$$
$$\zeta_{t} = \sqrt{\frac{n_{t}}{SD_{t}}} (\bar{x}_{t} - \xi_{t}) ,$$

 $e^{\frac{1}{2}} = \frac{S}{e^{\frac{1}{2}}} + \frac{S}{e^{\frac{$

and of (Ball) deline

(2.5)

$$\hat{z}_{s} = \sqrt{\frac{n_{s}}{SD_{s}}} (\hat{x}_{s} - \overline{x}_{s}) ,$$

$$\hat{z}_{t} = \sqrt{\frac{n_{t}}{SD_{t}}} (\hat{x}_{t} - \overline{x}_{t}) ,$$

and the second second

(2.6)

ACCESSION	for
NTIS	White Section
DOC	Buff Section
UNANNOUN	C*D 070
JUSTI ICATI	ON
DISTRIBUTIO	M/AVALABILITY COLES
	101 101
······································	<u>, 31° CIAL</u>
A	, 31° CIAL

(2.7)

and

$$B_s^2 = \frac{SD_s}{n_s} b_s^2,$$
$$B_t^2 = \frac{SD_t}{n_s} b_t^2,$$

then inequality (2.4) is reduced to the canonical form

(2.8)
$$\frac{B_{s}^{2}(\hat{z}_{s}-\zeta_{s})}{1+\zeta_{s}^{2}}+\frac{B_{t}^{2}(\hat{z}_{t}-\zeta_{t})^{2}}{1+\zeta_{t}^{2}}\leq R^{2},$$

where $R^2 = 2\hat{\sigma}^2 F_{\gamma}[2, v_p]/n_s$. Since both summands on the LHS of (2.8) are non-negative, it follows that a necessary condition for (ζ_s, ζ_t) to satisfy (2.8) is that $\zeta_s^{(1)} \leq \zeta_s \leq \zeta_s^{(2)}$, where $\zeta_s^{(1)}$ (i = 1,2) are the two real solutions of the quadratic equation

(2.9)
$$B_{s}^{2}(\hat{z}_{s} - \zeta_{s})^{2} = R^{2}(1 + \zeta_{s}^{2}) .$$

These roots, if exist, are given by

(2.10)
$$\zeta_{s}^{(1)} = \frac{B_{s}^{2}\hat{z}_{s}}{B_{s}^{2} - R^{2}} + (-1)^{1} \frac{R}{B_{s}^{2} - R^{2}} [B_{s}^{2}(1 + \hat{z}_{s}^{2}) - R^{2}]^{\frac{1}{2}}.$$

Notice that $R^2 = O(\frac{1}{n_s})$ and therefore, if n_s is sufficiently large, $B_s^2 > R^2$ with high probability. Indeed, $SD_s/n_s = O(1)$ and $b_s^2 \Rightarrow \beta_s^2 > 0$, with probability one. If the real roots (2.10) do not exist, (2.8) does not hold and one cannot obtain exact confidence limits. The probability of such an event is, however, smaller than 1- γ . For every ζ_s in the interval $(\zeta_s^{(1)}, \zeta_s^{(2)})$, define

and the state of the state of the second

(2.11)
$$\Psi_{R}(\zeta_{s};\hat{z}_{s}) = R^{2} - B_{s}^{2}(\zeta_{s} - \hat{z}_{s})^{2}/(1 + \zeta_{s}^{2}).$$

It follows from (2.8) that the corresponding value of ζ_t , for a point within the confidence region, is between the two limits

$$\zeta_{t}^{(i)}(\zeta_{s}) = \frac{B_{t}^{2}\hat{z}_{t}}{B_{t}^{2} - \Psi_{R}(\zeta_{s};\hat{z}_{s})} + (-1)^{i}[\Psi_{R}(\zeta_{s};\hat{z}_{s}) \cdot B_{t}^{2} \cdot (1 + \hat{z}_{t}^{2})$$

(2.12)

$$\Psi_{R}^{2}(\zeta_{s};\hat{z}_{s})]^{\frac{1}{2}}/(B_{t}^{2}-\Psi_{R}(\zeta_{s};\hat{z}_{s})), \quad i=1,2.$$

In Figure 1 we present a computer graphing of the boundary (2.12), for the case of $n = n_s = n_t = 20$, $\hat{z}_s = .4385$, $\hat{z}_t = -.390$, $B_s = 1.918$, $B_t = 1.470$ and $R^2 = .049917$. The confidence region prescribed by the boundaries(2.10) - (2.12) is convex and has a smooth boundary. It is specified by a fourth degree curve, which looks like an asymmetrically extended ellipse. Simultaneous confidence intervals for any linear combination $w = \lambda_1 \zeta_s + \lambda_2 \zeta_t$, with specified values of λ_1 and λ_2 , can be obtained by considering the two tangential lines having slopes $-\lambda_1/\lambda_2$. The intercepts of these lines provide upper and lower confidence limits for w/λ_1 . In particular, for the difference $\delta = \zeta_t - \zeta_s$, we consider the two tangential lines with slope 1 and intercepts δ_U and δ_L , which are the upper and lower confidence limits for δ . For every x in the interval $(\zeta_s^{(1)}, \zeta_s^{(2)})$ consider the functions,

(2.13)
$$U(x) = \frac{B_{t}^{2}\hat{z}_{t} + [\Psi_{R}(x;\hat{z}_{s})B_{t}^{2}(1+\hat{z}_{t}^{2}) - \Psi_{R}^{2}(x;\hat{z}_{s})]^{\frac{1}{2}}}{B_{t}^{2} - \Psi_{R}(x;\hat{z}_{s})}$$

and

(2.14)
$$L(x) = \frac{B_{t}^{2}\hat{z}_{t} - [\Psi_{R}(x;\hat{z}_{s})B_{t}^{2}(1+\hat{z}_{t}^{2}) - \Psi_{R}^{2}(x;\hat{z}_{s})]^{\frac{1}{2}}}{B_{t}^{2} - \Psi_{R}(x;\hat{z}_{s})}$$

the state of the

The second second	2 _s = .43	385, $\hat{z}_t =3$	390, B _s = 1.91	8, $B_t = 1.470$	$R^2 = .049917.$
es 0.32	0.34	0.37	0.39	0.41	0.44
234	;	!			;
250	There are an		++		
267	A. S. S. S. S. S.	+			
300	+ *				
317 +					
333 +					
366 +	the second				
383 +					
399 +					
416 +					
449 +					
465 +	A STATE OF A				
482	maarer data				
515	+				
531		+			
548		22 NACES 109	Ealer + 1		
6. 0.44	0.47	0.49	0.52	0.55	0.57
6t 1	!	!	!	!	! 10220020
234 +					in indiates its
267			alitan of said		
284				+	
317				· · +	
333					+
350					NUC + U.S. O SHOT MADO
383					These to blue look
399					+
416					ARAN AND AND A
432					.
465				Sec. +	
482				many the top of the	
498			Are - The	•	
531			+		
548		+			
565 +			. Sui Seri Y		and the start
and a state of the state of the second	the second s	Sur Land	Manager and and the second		

and the second

FIGURE 1. Computer Graphing Of The Boundary (2.12) For n = n = 20.

-8-

These two functions consist of the upper and lower boundary points of the confidence region defined by (2.12). The function U(x) is concave, having a maximum at $x = \hat{z}_s$. Let x_u be the (unique) point at which $\frac{\partial}{\partial x} U(x) = 1$, and x_L the point at which $\frac{\partial}{\partial x} L(x) = 1$. It is easy to verify that

$$(2.15) \qquad \frac{\partial}{\partial x} U(x) = \left\{ \frac{B_{t}^{2} \hat{z}_{t}}{(B_{t}^{2} - \Psi_{R}(x_{j} \hat{z}_{s}))^{2}} + \frac{1}{8} [\Psi_{R}(x_{j} \hat{z}_{s})B_{t}^{2}(1 + \hat{z}_{t}^{2}) - \Psi_{R}^{2}(x_{j} \hat{z}_{s})]^{-\frac{1}{2}} \cdot \frac{B_{t}^{2}(1 + \hat{z}_{t}^{2}) - 2\Psi_{R}(x_{j} \hat{z}_{s})}{B_{t}^{2} - \Psi_{R}(x_{j} \hat{z}_{s})} + [\Psi_{R}(x_{j} \hat{z}_{s})B_{t}^{2}(1 + \hat{z}_{t}^{2}) - \Psi_{R}^{2}(x_{j} \hat{z}_{s})]^{-\frac{1}{2}} \cdot \frac{\Psi_{R}^{2}(x_{j} \hat{z}_{s})}{B_{t}^{2} - \Psi_{R}(x_{j} \hat{z}_{s})} + [\Psi_{R}(x_{j} \hat{z}_{s})B_{t}^{2}(1 + \hat{z}_{t}^{2})]^{-\frac{1}{2}} \cdot \frac{\partial}{\partial x} \Psi_{R}(x_{j} \hat{z}_{s})]^{-\frac{1}{2}} \cdot \frac{\partial}{\partial x} \Psi_{R}(x_{j} \hat{z}_{s})$$

where

(2.16)
$$\frac{\partial}{\partial x} \Psi_{R}(x; \hat{z}_{s}) = \frac{2B_{s}^{2}(\hat{z}_{s} - x)}{(1 + x^{2})^{2}}$$

The derivative of L(x) can be expressed similarly, with minus signs before the second and third terms in the curly brackets of (2.15). The solution of the equations $\frac{\partial}{\partial x} U(x) = 1$ and $\frac{\partial}{\partial x} L(x) = 1$ is performed numerically. The upper and lower confidence limits for δ are given by

$$\delta_u = U(x_u) - x_u ,$$

(2.17)

In Appendix I we provide the subroutine functions which determine numerically the values of δ_u and δ_L .

were to a the start

 $\delta_{L} = U(x_{L}) - x_{L} .$

We conclude the present section with some comments about the asymptotic (large sample) confidence intervals. It can be shown (see Zacks (1971), pp. 241) that the asymptotic distribution of \hat{z}_s and \hat{z}_t are normal with means ζ_s and ζ_t , respectively; and asymptotic variances

(2.18)
$$AV\{\hat{z}_{s}\} = \frac{\sigma^{2}}{B_{s}^{2}n_{s}} (1 + \zeta_{s}^{2}),$$

and $m(\hat{z}_{s}) = \frac{\sigma^{2}}{\sigma^{2}} (z + \zeta_{s}^{2})$

$$AV\{\hat{z}_t\} = \frac{\sigma^2}{B_t^2 n_s} (1 + \zeta_t^2)$$
.

Accordingly, the asymptotic confidence limits of $\delta = \zeta_t - \zeta_s$, at nominal level γ , are given by

(2.19)
$$\hat{b}_{i} = (\hat{z}_{t} - \hat{z}_{s}) + (-1)^{i} U_{\underline{1+\gamma}} \frac{\hat{\sigma}}{\sqrt{n_{s}}} \left[\frac{1 + \hat{z}_{s}^{2}}{B_{s}^{2}} + \frac{1 + \hat{z}_{t}^{2}}{B_{t}^{2}} \right]^{s}$$
, $i = 1, 2$

where $u_{\frac{1+\gamma}{2}}$ is the $(\frac{1+\gamma}{2})$ th fractile of the standard normal distribution. In the following section we compare the behavior of the asymptotic limits with those of the exact ones.

3. <u>Simulation Comparison of the Exact and Asymptotic Confidence</u> Intervals for Differences.

In the present section we illustrate the exact and the asymptotic confidence intervals by performing simulation runs and computing the confidence limits for the simulated values. For the sake of simplicity we consider two-point designs, in which both the "standard" and the "test" are performed at the points z = -1 and z = 1. Altogether there are n = 2m observations around each regression line, m observations at z = -1 and m at z = 1. When there are only two regression points the least-squares regression line passes through the sample means corresponding to these points. Thus, we have generated in each case two independent standard normal variates U_{1}, U_{1} and simulated the sample means by

$$\overline{\overline{Y}}_{-1} = \mu_{-1} + \frac{\sigma}{\sqrt{m}} U_{-1}$$
$$\overline{\overline{Y}}_{1} = \mu_{1} + \frac{\sigma}{\sqrt{m}} U_{1}$$

The slope of the regression line is then $b = (\bar{Y}_1 - \bar{Y}_{-1})/2$ and its intercept is $a = (\bar{Y}_1 + \bar{Y}_{-1})/2$.

After computing these estimates for the "standard" and the "test" regression lines we determined $\hat{z}_s = (\eta - a_s)/b_s$, $\hat{z}_t = (\eta - a_t)/b_t$ and the exact confidence intervals, at level $\gamma = .95$, according to the subroutine functions of Appendix I. In our computations we assumed that σ^2 is known and applied the formula $R^2 = \sigma^2 \chi^2_{\gamma} [2]/n$. Asymptotic confidence limits were computed in each run according to formula (2.19) using the time value of σ instead of the estimator $\hat{\sigma}$. In Tables 1 and 2 we present the results of 50 such simulation runs. Table 2 presents cases with sample sizes twice as large (n = 100) as those of Table 1 (n = 50). We see that the asymptotic limits yield intervals which are too small, even when n = 100. Thus, the asymptotic formulae yield intervals whose coverage probabilities are smaller than the nominal ones. We remark that the computation of 50 runs took about six seconds on a time-sharing (Honeywell GE-430) computer. The determination of the exact confidence limits in each case is a matter of a split of a second.

and the second of the

Run	Pot	nt Estima	tes	Exact I	imits	Asy.	Limits
No.	Î,	² t	ô	[₿] L	ôu	⁶ ًد	δ _u
1	0.141	0.102	039	199	0.123	168	0,090
2	0.275	0.209	066	228	0.099	197	0.064
3	0.185	0.146	039	202	0.127	170	0.092
4	0.178	0.088	090	245	0.067	214	0.035
5	0.179	0.143	036	191	0.120	160	0.088
6	0.240	0.215	025	187	0.140	155	0.106
7	0.255	0.121	134	286	0.019	255	012
8	0.214	0.204	009	172	0.157	141	0.122
9	0.220	0.186	034	191	0.127	161	0.093
10	0.214	0.213	002	156	0.156	126	0.123
11	0.150	0.148	002	153	0.150	123	0.118
12	0.203	0.145	058	214	0.101	183	0.068
13	0.167	0.130	037	188	0.116	158	0.084
14	0.215	0.169	046	199	0.110	169	0.078
15	0.194	0.188	005	165	0.157	134	0.123
16	0.218	0.114	103	255	0.049	225	0.018
17	0.241	0.079	162	338	0.015	303	022
18	0.191	0.094	097	252	0.058	221	0.026
19	0.248	0.069	178	335	022	303	053
20	0.188	0.186	002	1/1	0.172	139	0.134
21	0.264	0.178	086	249	0.080	217	0.045
22	0.153	0.203	0.051	111	0.218	081	0.182
23	0.216	0.134	083	236	0.072	205	0.040
24	0.154	0.103	051	212	0.114	181	0.080
20	0.152	0.062	090	240	0.060	210	0.029
20	0.212	0.241	0.029	125	0.107	- 095	0.134
er	0.183	0.060	123	207	0.041	234	0.008
20	0.177	0.105	008	- 919	0.101	- 102	0.120
20	0.162	0.120	- 057	- 225	0.099	- 194	0.059
30	0.100	0.093	- 022	- 191	0.119	- 159	0.039
22	0.193	0.073	- 110	- 276	0.057	- 242	0.023
22	0.100	0 122	- 106	- 265	0.055	- 224	0.020
34	0.208	0.204	004	161	0.158	131	0.124
35	0.233	0.232	001	172	0.177	140	0.138
36	0.228	0.173	055	215	0.108	183	0.074
37	0.224	6.070	154	313	0.004	281	028
38	0.235	0.199	037	204	0.135	172	0.098
39	0.235	0.071	165	323	006	291	038
40	0.149	0.197	0.048	121	0.222	088	0.184
41	0.217	0.196	021	185	0.148	153	0.112
42	0.247	0.122	124	291	0.045	258	0.010
43	0.220	0.061	160	318	000	287	032
44	0.224	0.110	114	273	0.047	241	0.014
45	0.204	0.304	0.100	068	0.274	036	.0.236
46	0.184	0.153	030	191	0.133	160	0.099
47	0.256	0.181	076	235	0.087	204	0.053
48	0.266	0.181	085	241	0.072	210	0.040
49	0.269	0.145	124	287	0.040	255	0.006
50	0.223	0.217	006	178	0.171	145	0.133

and the start of the

TABLE 1. .95-Confidence Limits for δ ; n = 50; $\alpha_s = 3.5$, $\alpha_t = 3.5$, $\beta_s = 2.5$, $\beta_t = 1.75$, $\eta = 4.0$, $\sigma = .5$.

Run	Poi	Int Estima	tes	Exact	Limits	Asy. I	imits
NO.	2 ⁸ 8	² t	ŝ	δ _L	ô _u	ŝ	ŝ
1	0.168	0.121	048	134	0.040	117	0.022
2	0.241	0.179	062	150	0.026	133	0.008
3	0.192	0.144	047	135	.0.041	118	0.024
4	0.188	0.113	075	160	0.011	144	006
5	0.189	0.143	046	131	0.040	114	0. 023
6	0.221	0.183	039	126	0.049	109	0. 032
7	0.230	0.131	100	- 184	015	- 167	- 032
è	0.207	0 177	- 031	- 118	0 059	- 101	0 040
ä	0.211	0 166	- 044	- 121	0 042	- 114	0.025
10	0.211	0.100	- 026	- 111	0.042	- 005	0.023
10	0.208	0.182	026		0.050	095	0.043
11	0.173	0.146	027	110	0.058	094	0.041
15	0.201	0.144	057	143	0.029	126	0.012
13	0.181	0.136	046	129	0.039	113	0.022
14	0.208	0.157	051	135	0.035	119	0.018
15	0.197	0.168	029	115	0.058	099	0.041
16	0.210	0.127	083	167	0.002	151	015
17	0.222	0.110	112	203	020	185	039
18	0.195	0.116	079	164	0.006	148	011
19	0.225	0.102	124	209	038	192	055
20	0.193	0.165	028	118	0.062	100	0.044
21	0.234	0.162	072	160	0.016	143	002
22	0.174	0.175	0.001	086	0.090	069	0.072
23	0.209	0.138	071	156	0.014	139	003
24	0.174	0.122	053	140	0.035	123	0.018
25	0.174	0.098	076	159	0.008	143	009
26	0.206	0.198	009	- 094	0.077	078	0.060
27	0.191	0 099	- 092	- 179	- 004	- 162	- 021
50	0 100	0.157	- 031	- 119	0.059	- 102	0 041
20	0.100	0 122	- 057	- 143	0.000	- 196	0.041
20	0.170	0.133	057	- 140	0.028	- 120	0.011
30	0.170	0.110	- 042	- 100	0.024	- 110	0.007
51	0.196	0.153	043	120	0.041	110	0.024
32	0.190	0.106	085	173	0.004	155	014
33	0.222	0.138	084	1170	0.003	154	014
34	0.204	0.176	028	114	0.059	097	0.042
35	0.218	0.189	029	119	0.062	102	0.044
36	0.215	0.159	056	143	0.032	126	0.014
37	0.213	0.103	110	196	024	180	041
38	0.219	0.172	047	136	0.043	119	0.025
39	0.219	0.103	116	202	030	185	047
40	0.172	0.171	001	~. 090	0.089	073	0.071
41	0.209	0.171	038	126	0.051	109	0.033
42	0.226	0.132	094	182	004	165	022
43	0.211	0.098	113	199	026	182	043
44	0.213	0.125	088	174	001	158	018
45	0.202	0.230	0.028	~. 061	0.118	044	0.100
46	0.191	0.149	043	130	0.045	113	0.027
47	0.231	0.163	068	154	0.020	137	0.005
18	0.237	0,164	072	- 157	0.014	141	004
49	0 200	0.144	094	- 191	006	- 164	- 024
50	0.230	0.101	- 021	- 191	0.040	- 104	0.044

TABLE 2. .95-Confidence Limits for δ_i n = 100, $\alpha_s = 3.5$, $\alpha_t = 3.5, \ \beta_s = 2.5, \ \beta_t = 1.75, \ \eta = 4.0, \ \sigma = .5$.

4. Confidence Intervals for the Relative-Potency in Comparative Bioassays.

In the present section we illustrate the application of our method to the determination of exact confidence limits of the log-relative-potency in comparative bioassays. The experiments described here were performed in 1963 and 1964 (see Epstein et al (1965)). They consisted of a series of photodynamic bioassays in which air-pollution samples from various sites in the U.S.A. were chemically analyzed. The benzo-soluble organic extracts were then diluted in aceton and the substances applied on a Paramecium Caudatum under ultraviolate radiation. The measurement of response was the time required (in minutes) to kill (or deactivate) 90% of 30 cells in the suspension. This observed random variable is called the LT90. Three dosages of the organic extracts were applied (10⁻⁶, 10⁻⁵, and 10⁻⁴ [g/ml]). It was empirically shown that Y = ln (LT90) is approximately normally distributed, and that the expectation of Y is related to the log-dose linearly. Each assay was repeated m = 4 times independently. A standard assay was also performed with similar doses of factory made Benzene-a-Peryne (BaP). Also in the standard preparations Y = ln (LT90) was linearly related to the log-dose of the BaP. The slopes of the regression lines were, however, significantly different. The log-relative-potency at level η is defined as the difference δ between the inverse regression parameters 5, and 5,. In Table 3 we provide the LT90 values and the leastsquares estimates of the regression parameters. We include the "test" preparations from assays performed with the 1963-air-pollution data from Boston, Mass. and Chattanooga, Tenn., and corrsponding "standard" preparations. In Table 4 we provide the exact .95-confidence limits for the log-relative-potency, corresponding to LT90 = 30(2) 50. These confidence

-14-

limits were computed according to the subroutine functions of Appendix I, after reducing the statistics to the canonical ones. We see in Table 4 that corresponding to LT90 of 40 minutes, the standard preparation of BaP is at least a hundred thousands times more potent that the organic extracts from Boston and at least two million times more potent than those from Chattanooga. The same method can be used to compute the confidence limits of the relative potency of the organic extracts from Chattanooga compared to Boston. These confidence limits are presented in Table 5.

TABLE 3. The LT90 Values and the *ln* (LT90) to log-dose Regression Estimates, for the Photodynamic Bioassays.

a share at	Bos	ton, Ma	ss.	Chat	tanooga	, Tn.	100.00	BaP	
dose [g/ml]	10-4	10-5	10-6	10-4	10-5	10-6	10 ⁻⁴	10-5	10-6
LT90 (min)	10.91	25.86	85.62	14.93	37.42	85.23	5.97	7.41	9.37
	14.38	24.59	83.21	15.23	38.21	82.41	5.68	6.83	8.97
	14.22	28.53	86.50	15.68	38.78	83.16	6.22	7.38	9.64
1000	34.68	28.81	87.04	15.79	39.01	84.02	7.04	7.64	9.80
a	3.4	468 ± •	06324	3.6	029 <u>+</u> .	03162	2.01	99 <u>+</u> •	03162
ъ	.9	251 ± .	07746	.8	463 ± .	03873	.20	96 <u>+</u> .	03873
ô ²	.0	12	Š.,	.0	03	0.5	*)	-	

*) $\hat{\sigma}^2$ is the pooled estimate of the variance around the "standard" and the "test" regression lines.

and the second of the

	Bo	ston	Chatta	anooga
L T 90	Lower	Upper	Lower	Upper
30.0000	4.3784	13.5967	5.5451	8.9085
32.0000	4.5138	14.1597	5.7176	9.2310
34.0000	4.6398	14.6871	5.8798	9.5413
36.0000	4.7588	15.1839	6.0328	9.8334
38.0000	4.8720	15.6530	6.1778	10.1086
40.0000	4.9799	16.0960	6.3157	10.3688
42.0000	5.0804	16.5135	6.4473	10.6153
44.0000	5.1776	16.9221	6.5735	10.8492
46.0000	5.2708	17.3150	6.6906	11.0749
48.0000	5.3586	17.6859	6.8028	11.2952
50.0000	5.4442	18.0355	6.9111	11.5060

TABLE 4. .95-Confidence Intervals of the Log-Relative Potency of the Standard (BaP) Against the Organic Extracts.

TABLE 5. .95-Confidence Limits to the Relative Potency of the Organic Extracts from Chattanooga Compared to Boston.

SHEED, A SHEED.

antical a latence

LT90	Lower Limit	Upper Limit
30	.471	.883
36	.494	.918
42	.507	.963
50	.513	1.032

Appendix I

We present here subroutine functions, in FORTRAN, for the computation of the upper and lower confidence limits of the difference $\delta = \zeta_t - \zeta_s$. The input variables are: $A \leftarrow B_s^2$, $B \leftarrow B_t^2$, $x \leftarrow \hat{z}_s$, $Y \leftarrow \hat{z}_t$ and $R \leftarrow R$. The confidence level, sample size, and the value of $\hat{\sigma}^2$ are all determining the value of R according ot the formula given in Section 2.

(See Month . Dar well states

· 11-13 .

Maria and a second

and the state of the second

-17-

100	FUNCTION WU (A, B, X, Y, R)
110	C=A
120	E=B
130	U=X
140	V=Y
150	Q=R
160	QS=Q+Q
170	DS=QS+(C+(1.+U+U)-QS)
180	HL=(C+U-SQRT(DS))/(C-QS)
190	HU=(C+U+SQRT(DS))/(C-QS)
200	D=.01
210	X1=HL+D
220	1 Y1=DU(X1,C,E,U,Y,Q)
230	IF (1,-Y1) 2,3,3
240	2 X1=X1+D
250	GO TO 1.
260	3 XU=X1-D/2.
270	$FR=QS-C \Rightarrow (U-XU) \Rightarrow (U-XU) \neq (1, \pm XU \Rightarrow XU)$
280	FXU=E+V/(E-FR)
290	GXU=FR+E+(1.+V+V)-FR+FR
300	GXU=SQRT (GXU) / (E-FR)
310	FXU=FXU+GXU
320	WU=FXU-XU
330	RETURN
340	END
350	FUNCTION DU (H, A, B, X, Y, R)
360	W=H
370	C=A
380	E=B
390	U=X
400	¥=Y
410	Q=R
420	$FR=Q \bullet Q - C \bullet (U - W) \bullet (U - W) / (1 + W \bullet W)$
430	$EFR=2.\diamondC\diamond(U-W)\diamond(1,+W\diamondU)/((1,+W\diamondW)\diamond\diamond2)$
440	GFR1=E+V/((E-FR)++2)
450	SFR=FR+E+(1.+V+V)-FR+FR
460	GFR2=1./SQRT (SFR)
470	GFR2=(E+(1.+V+V)-2.+FR)+GFR2/(2.+(E-FR))
480	GFR3=SQRT (SFR) / ((E-FR) ++2)
490	DU=(GFR1+GFR2+GFR3)+EFR
500	RETURN
510	END
the second second second second second	and an and a second

Contract of the second of the second

SUBROUTINE FUNCTION FOR THE LOWER CONFIDENCE LIMIT OF $\delta = \zeta_t - \zeta_s$.

1 ave

and should

100	in the second second	FUNCTION WL (A, B, X, Y, R)
110		C=A
120		E=B
130		U=X
140		V=Y
150		Q=R
160		QS=Q♦Q
170		DS=QS+(C+(1.+U+U)-QS)
180		$HL=(C \bullet U - SQRT(DS)) / (C - QS)$
190		HU=(C + U + SQRT(DS)) / (C - QS)
200		D=.01
210		X1=HU-D
220	1.000	Y1=DL (X1,C,E,U,V,Q)
230		IF(1Y1) 2,3,3
240	2	X1=X1-D
250		60 TO 1
260	3	XU=X1+D/2.
270		FR=QS-C+(U-XU)+(U-XU)/(1.+XU+XU)
280		FXU=E+V/(E-FR)
290		GXU=FR+E+(1.+V+V)-FR+FR
300		GXU=SQRT (GXU) / (E-FR)
310		FXU=FXU-GXU
320		WL=FXU-XU
330		RETURN
340		END
350		FUNCTION DL (H, A, B, X, Y, R)
360		W=H
370		C=A
380		E=B
390		U=X
400		V=Y
410		Q=R
420		FR=Q + Q - C + (U - W) + (U - W) / (1 + W + W)
430		EFR=2.+C+(U-W)+(1+W+U)/((1+W+W)+*2)
440		GFR1=E+V/((E-FR)++2)
450		SFR=FR+E+(1.+V+V)-FR+FR
460		GFR2=1./SQRT (SFR)
470		GFR2= (E+ (1.+V+V)-2.+FR)+GFR2/(2.+(E-FR))
480		GFR2=-GFR2
490		6FR3=SQRT (SFR) / ((E-FR) ++2)
500		GFR3=-GFR3
510		DL = (GER1+GER2+GER3) +EER
520		RETURN
530		END

Angeline Ristartichen 20, tes 5, 200-20, 208-208.

and the state of t

References.

- Armitage, P., <u>Statistical Methods in Medical Research</u>, Wiley Interscience, New York, 1971.
- [2] Bialik, O., Statistical Methods for the Analysis of Photodynamic Bioassay and Indexing Airpollution Toxocity. Ph.D. Dissertation, Department of Mathematics and Statistics, Case Western Reserve University, 1978.
- [3] Bialik, O., Epstein, S.S. and Zacks, S., Indexing of Air Pollution Based on Photodynamic Activity of Organic Pollutants, 1978 (forthcoming).
- [4] Cornfield, J., Comparative Bioassay and the Role of Parallelism, Jour. Pharmacology and Experimental Therapeutics, 25, No. 4, (1964), 617-657.
- [5] Epstein, S.S., Saroicki, E. and Falk, H.L., Photodynamic Bioassay of Polycyclic Atmospheric Pollutants, Jour. Air Pollution Control, 15, No. 4, (1965), 174-176.
- [6] Fieller, E.C., A Fundamental Formula in the Statistics of Biological Assay and Some Applications, <u>Quarterly Jour. of Pharmacy and</u> <u>Pharmacology</u>, <u>17</u>, (1944), 117-213.
- [7] Graybill, F.A., <u>Theory and Applications of the Linear Model</u>, Duxbury Press, Massachusetts, 1976.
- [8] Zacks, S., The Theory of Statistical Inference, John Wiley, New York, 1971.
- [9] Zerbe, G.O., On Fieller's Theorem and the General Linear Model, <u>The</u> <u>American Statistician</u>, <u>32</u>, No. 3, (1978), 103-105.

LELUNITY CLASSIFICATION OF THIS PAGE(When Date Entered)

--

· · · c

exact confidence limits are compared numerically to asymptotic confidence limits in order to illustrate the deficiency of the method based on asymptotic formula. An application to comparative (non-dilution) bioassays is shown too.

ndelat .3

the second the second second second

I I I I I I I I

The product of the second s

The I can be start to I and

and and a second of the last the provides of

SECURITY CLASSIFICATION OF THIS PAGE(When Dere Entered)

the one bocomentario	N PAGE	READ INSTRUCTIONS
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)		S. TYPE OF REPORT & PERIOD COVER
SIMULTANEOUS CONFIDENCE INTERV COMBINATIONS OF TWO INVERSE RE	ALS FOR LINEAR GRESSION PARAMETER	5. PERFORMING ORG. REPORT NUMBER
	• •	
7. AUTHOR(a)		. CONTRACT OR GRANT NUMBER(.)
S. Zacks		NR 00014-75-C-0529 PROJECT NR 042-276
9. PERFORMING ORGANIZATION NAME AND ADDRE	ESS	10. PROGRAM ELEMENT, PROJECT, TA
DEPARTMENT OF MATHEMATICS AND S CASE WESTERN RESERVE UNIVERSITY	TATISTICS	
11. CONTROLLING OFFICE NAME AND ADDRESS	<u></u>	12. REPORT DATE
OFFICE OF NAVAL RESEARCH		August 21, 1978
ARLINGTON, VIRGINIA 22217		20
14. MONITORING AGENCY NAME & ADDRESS(II dilla	erent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADIN SCHEDULE
DISTRIBUTION OF DOCUM	ENT UNLIMITED.	m Report)
DISTRIBUTION OF DOCUM	ENT UNLIMITED.	m Repori)
DISTRIBUTION OF DOCUM	ENT UNLIMITED.	m Report)
DISTRIBUTION OF DOCUM	ENT UNLIMITED.	m Report)
DISTRIBUTION OF DOCUM	ENT UNLIMITED.	n Report)
DISTRIBUTION OF DOCUM	ENT UNLIMITED.	m Report)
DISTRIBUTION OF DOCUM 17. DISTRIBUTION STATEMENT (of the obstract enter 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary Fieller's Theorem, inverse regre compurative bloassays, relative- tants.	ENT UNLIMITED.	Dus confidence intervals, ation, toxicity of pollu-
DISTRIBUTION OF DOCUM 17. DISTRIBUTION STATEMENT (of the obstract enter 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary Fieller's Theorem, inverse regre compurative bloassays, relative- tants. 10. ADSIRACT (Continue on reverse side if necessary	ENT UNLIMITED, red in Block 20, 11 different fro and identify by block number, essions, simultaned -potency, air pollu	Dus confidence intervals, ation, toxicity of pollu-
TO DISTRIBUTION OF DOCUME TO DISTRIBUTION STATEMENT (of the obstract enter TO DISTRIBUTION STATEMENT (of the obstract enter TO DISTRIBUTION STATEMENT (of the obstract enter TO DISTRIBUTION STATEMENT (of the obstract enter Fieller's Theorem, inverse regression Confidence intervals for the obtained from the least-squares applying the celebrated Fieller method based on the simultaneous simultaneous confidence interval gressions of two independent regressions of two independent regressions are pro-	ent UNLIMITED, red in Block 20, 11 different fro red in Block 20, 11 different fro end identify by block number; essions, simultaned -potency, air polly end identify by block number; he inverse linear is estimators of the Theorem. In the p s application of F: ls to any linear co gression lines, which by ided to assist in	Dus confidence intervals, ntion, toxicity of pollu- regression parameter can be regression coefficients by present paper we develop a celler's Theorem to obtain publication of the inverse r ich are not parallel.) Comp actual computations. The (continued on the back)
DISTRIBUTION OF DOCUME 17. DISTRIBUTION STATEMENT (of the obstract enter 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary Fieller's Theorem, inverse regre compurative bioassays, relative- tants. 19. ABLIRACT (Continue on reverse side if necessary Confidence intervals for the obtained from the least-squares applying the celebrated Fieller method based on the simultaneous simultaneous confidence interval gressions of two independent reg ter subroutine functions are pro	ENT UNLIMITED, red in Block 20, 11 different fro and identify by block number) essions, simultaned potency, air pollu- and identify by block number) he inverse linear of estimators of the Theorem. In the p s application of F: ls to any linear co gression lines, whi builts	Dus confidence intervals, ation, toxicity of pollu- regression parameter can be regression coefficients by present paper we develop a celler's Theorem to obtain ombination of the inverse r ich are <u>not parallel</u> .) Comp in actual computations. The (continued on the back)