
A D—A086 792 MARYLAND UNI V COU.E5C PARK COMPUTER SCItNCE CENTER F/s 9rn TI
CELLULAR flAPH ACCEPTORS. N.(U)
.AM 76 A WI) AFOSR—77—3272

UNCLASSIFIED CSC—TR—667 AFOSR—T*—7S—1363 NI.

_
u1~~~~

e

-r - - -_

-1 se 1EV E1~I~ LI
~ ~

,
‘

>-
COMPUTER SCIENCE

~~~~C~
)

I
~~~~ 

TECHMCAL REPORT SERIES
/ I) D C

UNWERSJTY OF MARYLAND
• COLLEGE PARX~ MARYLAND

20742

• ~‘ () ~j •
~~~~~ ~~~~~~~~~~~~~~~

£ prov.d for pubUo rsl..a. ;
distributiOs i)i it~~. 4

— 
-•- - — —---—••—

~~ • ___________________________•

~ 

__
~

• _
~~~

_
~~~~~~~~~~~~

_
~~-I•

•______ •— • ••



‘~i1C~ 
)~ ~c~~:”° 

I I I ~~~~

Cl ~~~~~~~~~~~ TO DDC

app’~~~~ 
f ~~ ~~b1t0 re~.a5 ~~~ 

O.~~ 
(7b).

1h~~ 

b~~U ~~~

DtStT t~~
tt O

~ 
£8

~~~~~~~~~ 
~~~0~~~tt0u Off toer



TR-667
AFOSR—77—3271 June 1978

CELLULAR GRAPH ACCEPTORS, 4

~~~~~~~~ 

- ..
‘

~0

Angela Wu
Computer Science Center SEP 19 1918 111
University of Maryland IH ill
College Park, MD 20742

-

L 1L~j t~1TV~~~I

31 W ABSTRACT

1=
Diameter—time algorithms are presented for recogni-

tion of rectangular and square arrays, Eulerian graphs ,
bipartite and complete bipartite graphs, stars, and
wheels by cellular d-graph acceptors. Slower algorithms
are given for construction of a depth-first spanning tree
(area time) and for identification of cut nodes , borders ,
and central points (diameter•area time). The recognition
of planarity is also discussed.

The support of the U.S. Air Force Office of Scientific
Research under Grant APOSR-77-327l~ is gratefully acknowledged,
as is the help of Mrs. Virginia Kuykendall in preparing this
paper.

-4

-

1. Graph structures recognized by cellular d-graph automata.

Cellular d-graph automata were defined in [1] . Efficient

algorithms for acceptance of various basic types of graphs,

including cycles, strings, trees and complete graphs, by cellu-

lar d-graph acceptors were given in [2]. In this section we

will present diameter time algorithms for recognizing rectangu-

lar and square arrays, Eulerian graphs, bipartite and complete

bipartite graphs, stars, and whee1 3. Due to its complexity ,

the transition function in each case will not be given explicitly .

Rather, the actions of the cellular d-graph automata will be

described informally .

1—~
- I

~

— I
\ r~~~~~~~_

-~~~~.- .- - . - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - —~~~~—--- — —

1 1 Rectangular and Square Arrays

In this section we will show that there is a cellular

4-graph automaton which recognizes rectangular arrays in

diameter time. This cellular automaton can also be easily

modified to recognize square arrays in diameter time.

Proposition 1: Let r be a d-graph with a distinguished

node D. If U(r), the underlying graph of r , is a rectangular

array, then the node farthest away from D is one of the

four corner nodes.

Proof: Suppose U(F) has r rows and s columns. A node on

the i-th row and j-th column may be identified by (i.j) for

l~i~r, 1~ j~ s. If D is (a,b) then the distance between D

and the node farthest away from D is max(Ii-a I + li-b i)
1 �i j ~r

= max l i—a I + maxlj-b I . This maximum occurs when i=l or r,
l�i�r l�j�s

and j=l or s, Therefore the node farthest away from D is

one of the four corner nodes (1,1), (l ,s), (r,l) or (r,s).

The states of the basic automaton M of the cellul ar

4-graph automaton that we will construct have a direction com-

ponent 6 = (a1, a2, a3, a4) where a~
c{O , N, E, W , SI and

a1 ~ a~ if ~~~~ for l~i<j~ 4. This quadruple at each node n

specifies the directions of the arcs at n. 6 = (a1 a2, a3, a4)

says that if a1 ~ 0 then the i—th arc end points to direction

a1, otherwise its direction is not yet determined. Initially,

the direction component 6 is (0,0,0,0) for every node. The

i-th arc end is said to have assigned direction S if a1 is

_ _ _ _ _ _ _ _ _ _ _ _ _ _

- - S
~~~~~~~~~~~ - -.



changed from 0 to S. 6 is said to be completed if a~~O for

1 ~i ~4.

For any 4-graph , the cellular automaton M=(r , M, 1-1)

with a distinguished ncle D at- the first step records in each

node ’s state a C, B or I to indicate that the node is a corner,

border or interior node if it has two, three or four non-#

neighbors. Then M identifies the node D’ farthest away from

D (2]. This can be done in diameter(r) time. Depending on

what kind of node D’ is, there are four cases :

Case 1: D’ has four # neighbors. In this case r has only

one non—# node. It is a degenerate rectangular array and M

accepts r. -

Case 2: D’ has three * neighbors and one non-# neighbor.

To be a rectangular array, r must be a string. Therefore

the string recognition automaton [2] is used.

Case 3: D’ has less than two # neighbors. Thus D’ cannot

be a corner node of a rectangular array. By Proposition 1,

r is rejected.

Case 4: D’ has exactly two # and two non-# neighbors, i.e.

it is a C node. M then starts to make direction assignments

to all the nodes. We can think of 0’ as the northwest corner

of r. The two arc ends at D’ leading to# nodes (we will call

them the * arc ends) are assigned directions N and W. For

the two arc ends leading to non-# nodes (the non-* arc ends),

there are three cases:



(a) One of the neighbors of D’ is an interior node; then

M rejects r.

(b) One of the neighbors, node m, is a C node. For r to

be a rectangular array, it must have two rows or two columns.

We can assign S to the arc end of D’ leading to m . This

gives r an orientation so that it has two rows. It is then

easy for n,m to send signals travelling along the upper and

the lower border at the same speed. Each step makes sure that

the two nodes receiving the two signals are neighbors. If

each signal reaches a corner node at. the same time, and these

two corner nodes are neighbors of each other, M accepts r.

For all other situations , say the signals cross or reach

an interior node or reach the corner nodes at different times,

r is rejected . -

(c) Both of the neighbors of D’ are B nodes. If U(~ ) is

a rectangular array, then its size must be r x s for some

r�3 and s�3. Each B node has one * neighbor, one I neighbor

and two neighbors which can be B or C nodes. One of the

non— * arc ends of D’ is assigned the direction E, say the

lower numbered of the two, while the other arc end is assigned

S. This direction assignment of D’ gives r an orientation

and determines the direction assignments of the other nodes

in r. D’ also sends out two signals , top and left. The top

signal passes from a node n to n’s east neighbor after direc-

tion E of n is assigned; and the left signal transmits from

- — — -.- ---- -- —- - - ~~~~~~~ — — - —---~~ — —~~~~~~~
--- —

- -~~~



n to n’s south neighbor after direction S of n is assigned ;

provided n is a B or C node and the neighbor to receive

either signal is a B or C node. If the neighbor to receive

the signal is a # node, then the top signal changes to a

‘right’ signal and the left signal changes to a ‘bottom ’

signal. The right signal will be passed to S neighbors

and the bottom signal will be passed to E neighbors provided

the directions are assigned and the neighbors are B or C

nodes. If the neighbor to receive the signal is not a B

or C node then a rejection signal is sent to D. When the

right and the bottom signals meet at a node, call it D” ,

transmission of the two signals stops. A rejection signal

is sent to D if D” is not a C node, or if any other two of

the four signals meet. These four signals, left, right, top

and bottom, define the borders of the d-graph r.

Each node n assigns directions to its arc ends accord-

ing to the following four rules:

Rule 1: Suppose n is the i-th neighbor of m and m is the

j-th neighbor of n. If the i-th arc end of m is assigned

E or S then the j-th arc end of n is assigned W or N

respectively. When a node first assigns direction N to any

one of its arc ends , a mark N’ is made on its state. This

mark N’ lasts for only one step and then disappears. Either

W and N of a node are assigned at the same step, or N is

assigned before W. In any case, after N is assigned , the node

counts four steps; if the assignment of 6 at the node is not

completed yet, then a rejection signal is sent to D.

— ,.

- — ~~~~



Rule 2: If n receives the top signal, then n must be a B

(or C) node. (One of) the * arc end(s) is assigned the direc-

tion N. Similarly , if n receives the left signal, (one of )

the # arc end(s) is assigned the direction W.

Rule 3: A node can assign directions E or S only after both

of its N and W directions have been assigned. Any time a

node makes an assignment of direction S, it sends a message

to its direction W neighbor n if n is not a # node, so that

in the next step, n has a mark 5’. This mark S’ lasts for

only one time step and then disappears at the next step.

(a) A top border node assigns direction E to its unassigned

arc end leading to a B or C neighbor , and S is assigned to

the other arc end. If no such unassigned arc end exists, a

rejection signal is sent to D.

(b) A right border node assigns direction E to its * arc

end and S to its unassigned arc end leading to a B or C

node. If there is no such unassigned arc end , a rejection

signal is sent to D.

(c) A C node receiving the top signal assigns E to the

unassigned * arc end and S to the arc end leading to a B

neighbor. J~ain a rejection signal is sent to D if there

are no such arc ends.

(d) The corner node D” where right and bottom signals meet

assigns E and S to the two * arc ends arbitrarily and a

signal F is sent toD’.

_______ -



(e) A node n assigns directions E and S when both of its

N and W directions are assigned and its north neighbor has

the mark S’ and one of the unassigned arc end leads to a

neighbor with the mark N’ . This unassigned arc end is

assigned direction E, and thus forces the only other unassigned

arc end to have direction S.. ~ node remains in the same state

after its N and W directions are assigned until the conditions

above are satisfied; or if four time steps have passed and

the conditions are not satisfied , then a rejection signal is

sent to D. In particular, if (i) more than one neighbor has

the mark N’ ; (ii) a neighbor is marked with N’ but the north

neighbor does not have the mark 5’; (iii) one of its unassigned

arc ends leads to a node with N assigned but the mark N’ had

already disappeared; or (iv) the north neighbor has the mark

S’ but it does not have an unassigned arc end leading to a

neighbor with mark N’ ; then a rejection signal is also initiated .

Rule 4: Any thr~ a direction assignment gives a conflict ,

namely , more than one arc end needs to be assigned the same

direction according to the rules above , then a rejection sig-

nal is sent to D.

When the signal F from D” reaches 0’, D’ sends out a

signal P which propagates from neighbor to neighbor as in the

spanning tree construction in (2]. If n is a top (or left)

node, it receives P from its west (or north) neighbor only ,

and then passes P to its other neighbors. If n is neither a

top nor a lef t node, it must receive P from its wes t and north



neighbors simultaneously and it always chooses to take P from

its north neighbor and then passes P to its south and east

neighbors. If a node receives P in any other way , say only

from its north neighbor but not the west neighbor , or from

three neighbors simultaneously,etc., then a rejection signal

is sent to D. When D ” receives P it sends a return signal

back to D’. When 0’ receives the return signal from D” , an

acceptance signal is sent to 0. Since D’ is a node farthest

away from D , if 0 receives the acceptance signal without

getting any rejection signal, then r is accepted . Note that

the transmission of the F, P, returning and acceptance sig-

nals all take order diameter time

If the underlying graph of r is a rectangular array
with r rows and s columns, it is easy to see that M accepts

r. We only need to show that the acceptance takes diameter

( F )  time.

After the northwest corner of F is identified , M pro-

ceeds to assign directions to the nodes in the top row of U(F).

Instead of doing the direction assignment row by row which

will take area time, M starts the assignment of the second

row as soon as it has enough information——before the first

row is completely assigned. At each row, the leftmost node

is the f i r st one with completed 6, and the set of such nodes

grows one node at a time. The N direction of a node n in

the second row can be assigned when it has a neighbor n1

in the first row with a completed 6. The W direction of

n is assigned when it has another neighbor whose 6 is corn-

pleted and n is its E neighbor , or if n is a left border node.

- - - - - - - _



Similarly, n can assign the E and S directions when it has

a neighbor m identified as the S neighbor of a node m1 in the

first row (this places m on the second row) and m1 is the E

neighbor of n1. The situation can be described by

W E W E

All these are specified by rule 3e of the direction assignment.

Now the set of nodes with completed 6’s in the second row is

extended by one- Then m can assign its W direction and so on.

Let us denote the node in the i-th row and j-th coluMn

by n(i,j). Thus n(i,j) is the W neighbor of n(i,j+1). Rule

3e implies that n(i,j) gets its W assignment one step after

n(i,j—l) has completed its 6 or n(i,j) is a left border node.

n(i,j) gets its N assignment one step after n(i-l,j) has corn-

- 
pleted its 6 and gets its E and S assignments one step after

n(i,j+l) gets its N assignment, i.e., two steps after n(i-1,j+l)

completes its 6. Figure 1 shows when each node in U (r) corn-

pletes its 6. The number in the circle is the time step at

which 6at that node is completed if the north west corner ’s

assignment is done at step 1.

$

-
-
- .- .,.

~
- —.,.-..-

--
. 

_ _ _~~ _ _ _ _ _ _____________



i

_ _ _ _ _ _ _  

• . 
. 
__

~~~=1+4 (r—].))

Figure 1

___________________________________ - _—_.--.t
~~~~~~— — — —  - -—.—----- — ______—_ -i.—_—— -1’~ 

—
‘. - .

~ -. ~~~~~~~~~~~ —



Since 2s-l+4(r-l) ~~
. 4 (r + s ) ,  the direction assignments

of r take time proportional to the diameter of V .

After the direction assignment, the propagation of

the signal P from D’ defines a spanning tree of a special

form rooted at D’ . It contains all the S-N arcs in I’ and

the E—W arcs between nodes in the first row. All the pro-

pagation of signals can be accomplished in order (diameter)

time. Thus r is accepted by ?~4 in diameter(F) time. We

have proved,

Proposition 2: If I’ is a 4-graph such that U(r) is a rec-

tangular array , the cellular 4-graph automaton M = (r ,M,l-l)

accepts F in diameter(F) time.

Figure 2 shows the direction assignment process of

a 5 x 4 rectangular array. The number beside each direction

shows when the assignment of that arc end is made. 5’ or N ’

inside the circles shows when the marks are made and it

is understood that they disappear at the next step. The

darkened lines indicate the spanning tree defined by the

signal P.

Figure 3 differs from Figure 2 in only two of its

arcs ; however , it no longer represents a rectangular array.

From Figure 3 we can see that the direction assignment is

successfully completed. The non-rectangular-array-ness

• will be found when signal P is transmitted, since node k

receives the signal P from its W neighbor only , so that

this d—graph will be rejected.

,1

- -,.~~-- — — - - - .~~~~~~- -.•- ,  - • L~ r___ _ _• -



II

(l)W
~~~~~~~

E(1) W(2)
~~~~~~~~(7) #______ _____________ 

E(3) W(4) W(6) 
______

S(l) I S(3)  S(7)

~N(2) ~N(4) (6) N(8)

_____ ________ 
(4) E(7) w(8)~~~~~~ \E(9) w(lO) 

______W(6JJ~~~~~
’
~ 

~S~~l2) 
E(l0~ ~;

1s5 ~S(7) Is(9) Is ii

~N(6) IN (8) ~N( l0) ~ (l2)

(6)W~~~

E

~~~~E(9) W(lO) N’(S) E(ll) WO.2 
s’(16)erl3) W(14)

_ _ _

~

?
_ _ _ _ _

S(ll) ~S(l3) ~S(l5)S(9)

(12) ~N(l4) ~N(l6)IN(lO)

_______ _____________ (12) E(15) W(16)
____________ _______# ~~~~~~~~~~~~~~~ ~~~~~~~~~~

s’(zo)

~

E(l7) W(18)7 ‘\E(19)

S(13) S(15) s(17) S(19)L (14) ~(l6) ~N(l8)

~ (14)W

~~
IDE(17) W(18)(~~~~~~ E(19) W(20~~~~~~~~E(21) W(22)

(

“
~~~~~E(23) “

• ~S(l7) ~S(19) Is(21) ~S(23)

I I
9 9

Figure 2

— _____________________________ 
- -•.t- - - — - - - -‘-- .-



9 9 9 9

(1)w~~~~~~_ _ _ _ _  

E(1) W(2) 

(
~~~~~~~E(3) W(4 ) 

~~~~~~~~~(5) W(6)

S(l) ‘ S(3) S(5) S(7)

(6) node k “(8)N(2 ) ~N(4)

______ ________ 
(4) _

~(7) W (8) N’ (6)  N ’(8)  E(l0) 
~;~ 

(2)w~~~~~~~~~ 5) W(~~(~~~lO)E S’(12)

~~

ls(5) S(7) S ( 9 )  
~~(11)

- (8)  -

~N (6) N( lO) (12)

(6)w 
s’ l 2

s’ (14) 
— 

(16) 
~~~ 11~~~E(l5)~ E(ll) W( 12

~~~~~

’2

~~

E(13) W( 14) 
_______

IS(9) S(ll) IS(].3) ~S(15)

L(IO) (12) ~N(l4) ~N(16)

I, 
(l0)w~~~~~~~~~ E( 13) 

~~~~~~~~~~~~~~ 
(20)

______ __________ (12) E(l5) w(16) ~~~~~i~~~ E(17) w(l8) 7 \E l9

S(13) S(15) s(17) S(19)

~~
(l6) ~N(18) L(2O)

~
(14)W

~1I~~~

E(17) - • (~~~~~~~~~~ 19) W(20
~~~

E
~~~~~

E(2 1) W(22)
(

‘
~~~~

j
~E(23) #

~S(l7) 

r~~~~~

9) lS(21) IS(23)

I I

9 9 U U

Figure

4

— — - - -  -~~~~~~~~~~~ — —— — a- —~~~~~~~~~ -~~~~ -
- ••

~ -•_~ % ~~~
-•.•- - —•- - - - -  - —



Suppose r is a connected 4-graph accepted by M. If

acceptance was due to cases 1 and 2 after D’ was found, then

clearly U(F) is a rectangular array since it has only one node

or it is a string. For the remaining cases, the direction

assignment at each node is successful. Let us now look at

the process of direction assignment more carefully . After the

first 4 steps, the nodes of F having some arc ends assigned

directions have the following relations :

* *
D’ (1) N ( 2 )  N ( 4 )

* 
(l)W S’~~4) 

E(l) W(2)(
’ 

‘)E(3) W(4)

S(l) S(3)

N(2) N(4)

* 
( 2 ) W  

N’(4)

n1 n2

Since no rejection signal is generated at step 5, nodes n1
and n2 must be neighbors. Similarly , n2 and n3 must be neighbors

since no rejection signal is generated at step 7.

- - —~~~~~~--~~~~~~~~~ - --- - - - - • — _ _ _ _ _-- - _ _



U U

~N(l) ~N(2) (4) N(6)

(l)W Ej;) E(l) W(2) 

E~
6
~ 

E(3) 
- 
W(4) 6E(5 ) W( 6()

S(l) S(3) S(5)

N(2) N(4) L6
(2)W ~~~~~ E(5) W(6) 

____________U 
~ 

) (N’(4)) (N’(6)) -

n
1

N(6) -

(6)w

~ 

•

_ _ _~. - •~ + • -• ,-1 _ 
~~~-~~~~~~~~~ - - — - 

-,‘•
~~~~~~~~

- -~~~ ~~~~~~~~~
--

~~~~~ -


Now in the next two steps,

U U U Ii

(1) N(2) (4)

U
w -

S’(8) W (7)

m3 s

9__W (~~(g~~ff w(~\ E 7) w(8~(8

S S(7) n3

N N(8)
-

N’(8)

a
2

- —
• -~ ~~~~~~~~ — —

At step (9), if m1 and m2, n3 and n4 are neighbors then what

we have is a portion of a rectangular array . However, if m1 and n4
are neighbors and m2 and n3 are neighbors, no rejection signal

will be generated even though what we have is not a rectangular

array. In fact the direction assignment can be continued and

completed successfully as shown in the example of Figure 3. In

general, no rejection signal will be generated in the following

situations :

(1) When all the arcs join the nodes the same way as in a

rectangular array. In this case r is a rectangular array .

(2) There is an arc joining a node m to another node n ,

but the north neighbors of m and n are not neighbors. At

step £+1 m assigns E to its arc end leading to node n if node n

has the zna:k N ’ and the N neighbor of m has the mark S’.

node n node a node m’

For convenience of notation, let us denote D ’ by n(l,l).

Starting with the first step of the direction assignment, for •

each node n(i,j), its E neighbor is denoted by n(i,j+l) and

its south neighbor is denoted by n(i+l, j) until the conflicting

- __ .._—~~~~~~~~~~~ — - - - - -~~~~~~
__

-- — -- — --

- ~~~~~~-

situation as
•
above arises. By the same reasoning as in Figure 1,

which shows the time step at which each node ’s direction assign-

ment is completed, if two nodes have the mark N’ at the same

time step and one of the nodes is n(i,j) then the others must

be n(i-k, j+2k) for some k#0 and -j<k’~i. ‘When the conflicting

situation arises, nodes n(i,j) and n(i-k , j+2k) both have the

mark N ’ , and node n(i - l , j) is joined to node n(i -k , j +2k) by

an arc for some O~k<i

- E w
n(i—k—1,j+2k)

E

, j+2k)

n ,

n(i—1,J) -

The distance from node n(l,l) to node n(l-l,j) is i-l-l+j-l =

i+j—3. The distance from node n(l,l) to node n(i-k-l, j+2k) is

i-k—l-l+j+2k-l = i+j-3+k>i+j-3 since k>O . When the direction

assignment phase is completed , signal P is sent from D’ =n (l ,l) .

After i+j-3 steps, P reaches node n(i - l , j) but not node

n (i — k — l , j+2k) . Thus in the next step , node n (i — k , j+2k)

receives P from its W neighbor but not its N neighbor , and a

rejection signal is generated. This is impossible because

I

- ‘- —--- --—- - - •- • .•-~~~~ -— - — —•--~~~~~
-- -

~I— —~~~~~~~~ —- -

• - - - - 4-t~~~~J.~& -

r is accepted by M. Therefore the direction assignment conflict

cannot happen. Since this is the only discrepency that can

occur in the direction assignment phase, the nodes with completed

6’s do indeed form a rectangular array.

In the following, we will show that F has no other

nodes. Assignment Rule 1 assures that no nodes can have

partially assigned 6 if F is accepted by M . Now suppose

there are nodes in F whose arc ends are not assigned. By

the connectedness of F , there is an unassigned node n which

is the neighbor of an assigned node m. All m ’s arc ends,

including the one leading to n, are assigned. MoreoveL the

arc end leading to n cannot be of direction N or W because

they are assigned only after the other end of the arc is of

direction S or E. But if the arc end of m leading to n has

direction S or E, then n has an arc end with direction N or

W. This is a contradiction. Therefore all nodes of F have

completed 6 ’ s.

The direction assignment of the nodes of F takes

diameter time (because starting from D’ , all the arcs at each

node are used and thus D” is reached from a shortest path).

All the other parts also take diameter time. Thus we have

Proposition 3: If a connected 4-graph F is accepted by

M = (F ,M,H) then U(r)- is a rectangular array.

Proposition 4: There is a cellular 4-graph automaton that

recognizes rectangular arrays in diameter time.

Proof: Combining Propositions 3 and 4. 1/

Corollary: There is a cellular 4-graph automaton that recog-

nizes square arrays in diameter time.

Proof: The cellular 4-graph automaton M in Proposition 4 can

be modified slightly to an M ‘ which recognizes square arrays.

When D’ gets signal F from D” , it sends an other signal that

zigzags down by going in directions E and S alternatively .

If this signal does not reach D” from its N neiqhbor , then a

rejection signal is sent to D, otherwise an acknowledge signal

is sent back to D’. D’ sends an acceptance signal to D only

when both this acknowledge signal and the returning signal

are received. II
For any d>4 , M can be modified in the obvious way so

that M can recognize the d—graphs which are rectangular arrays.

Based on the same principle, the result of this section can

be generalized to n-dimensional rectangular arrays.

—~~~—-—---— — - -- .— —

~_ • —

~~~~~~~~~~~~~~~~~~~~~ 
________ - --- 

-



1.2. Eulerian Graphs

An Eulerian graph is a connected graph such that

starting from any node, it is possible to traverse each arc

exactly once and pass through all points. It is well known

that a graph G is Eulerian iff every node of G has even degree.

A connected d-graph F is Eulerian if f its underlying graph

U(F) ip Eulerian.

Eulerian graphs can be recognized by a cellular d-graph

acceptor M =  (F , M, H) with a distinguished node D in radius

time as follows: Each non—# node sends a rejection signal

to D if it has an odd number of non-# neighbors. Whenever D

receives the rejection signal from any node, it rejects F.

Note that if no rejection signal is received by D within r+l

steps, where r is the radius of F centered at D , then F is

Eulerian. In Section 1.3.1 of [2], it is shown that it takes

twice radius time for D to know that the spanning tree has

been constructed. Therefore at the first step, M also starts

- 

the spanning tree construction. When D receives the message

that the spanning tree is constructed and no rejection signal

has arrived, r is accepted. Clearly the recognition process

takes twice radius time.

• —~



1.3. Bipartite and Complete Bipartite Graphs

A bipartite graph G is a graph whose nodes can be

partitioned into two subsets V1 and V2 such that every arc of

G joins V1 with V2. If G contains every possible arc joining

V1 and V2 then G is a complete bipartite graph , and is denoted

by Ka,b where a ,b are the cardinalities of V1 and V2. Clearly,

a graph is bipartite if f it is bicolorable since the nodes

of V1 can be given one color and the nodes of V2 the other

color.

Let F be a d-graph. A cellular d-graph acceptor M

with a distinguished node D recognizes bipartite graphs by

making sure that F is bicolorable. D colors itself (by having

a special mark in its state to denote the color) with one color,

say blue. A non—* node with one or more blue neighbors colors

itself red and a non-U node hav-ing one or more red neighbors

colors itself blue. A non-U node with all neighbors uncolored

does not change its state. If a node has both red and blue

neighbors, then F cannot be bicolorable and a rejection signal —

is sent to D. At the end of r+l steps, where r is the radius

of F centered at D, either all the nodes of F are colored

or one of the nodes has sent a rejection signal to D. At

the end of 2r+l steps if D has not received a rejection signal

then F is bicolorable. Again, by starting the construction

of the spanning tree at the first step, D knows that 2r steps

has passed when it receives the message that the tree has been

constructed. The time it takes for recognizing a bipartite

- —~~~-.-.-—.-- - -~~~~~ 

.• -



graph is twice the radius plus 1 time steps.

In a d-graph every node has at most d non-U neighbors.

The number of complete bipartite d-graphs is very limited ;

in fact ,  it is at most d ( d + l )/ 2 . If F is a d—graph such that

its underlying graph U ( F )  is then a~ d and b z.d .

To recognize a complete bipartite d-graph , the dis-

tinguished node D at the first step colors itself blue and

records the pair of numbers i,i0 in its state where i is the

number of non-U neighbors D has and i0 is the lowest numbered

arc end at D leading to a non-U node. At the next step, all

D’s neighbors color themselves red; D0, the i0-th neighbor of

D also records the numbers j , i in its state where j is the

number of non-# neighbors D0 has , and i is the f i rs t  of the

pair of numbers in D ’ s state. At the third step, i is sent

from D0 to all its neighbors , which also color themselves

blue ; the j’iumber j is sent to D from D ’ . At the fourth

step , each blue node with the number i makes sure that it has

i n on—U neighbors and all of them are red; otherwise a rejec-

tion signal is sent to D. D also sends the number j  to all

of its neighbors. At the fifth step, each red node with

the number j  makes sure that it has j  non-U neighbors and

all of them are blue; otherwise a rejection signa l is sent

to D. At the sixth step, if no rejection signal has reached

D then F is accepted. Every complete bipartite d-graph has

diameter 2. Such graphs are recognized in six steps, which

is three times the diameter.

-_ _ _ _  —~~ - - --- --~~~~~~~~~ —---

—4



1.4. Stars

A star is a special complete bipartite graph K l n
consisting of a center node which has n neighbors . Therefore

the cellular d-graph acceptor in the last section can easily

be modified to have one more requirement for acceptance of

stars, namely i=l or j=l.

An extended star consists of a center node with n

strings of nodes emanating from it, instead of n neighbors.

For example

is an extended star. The cellular d—graph acceptor with a

distinguished node D described below recognizes extended

stars in time proportional to the diameter of the graph. In

the first step, if D has £ 2 non-U neighbors, D sends out a

message T to find a node with more than two non—U neighbors,.

When a node with exactly two non-U neighbors receives T from

one of the non-U neighbors, it passes T to the other non-U

neighbor. A node with one non-U neighbor changes T to’signal

S and transmits S back to node D. If D receives S from all

of its non-# neighbors, M accepts the d-graph. If T reaches

a node D’ with more than two non—# nodes, or if D has more

than two non-U neighbors (at the first step), a signal E is

• transmitted to each of the neighbors of node D’. A node having

exactly two non-U neighbors simply passes E along. Whenever



E reaches a node with more than two non-U neighbors, a rejec-

tion signal is sent to D to reject the d-graph. Signal E is

changed to signal E’ when E reaches a node with only one non-U

neighbor. Signal E’ is sent back to node D. When node D’

receives signal E’ from all of its non-U neighbors, an accept-

ance signal is sent to D. If D’ receiver signal E from any

of its neighbors , it sends a rejection signal to D. The d-graph

is accepted if the acceptance signal is received by D without

f i rs t  receiving a rejection b~.gnal.

D receives S from all of its non-U neighbors only

when D has one or two non—U neighbors, and in this case the

cl—graph is a string which is a degenerate extended star . An

extended star has at most one node with more than two neighbors .

This condition is checked by signal E. The E signal also

makes sure that only strings emanate from D’ . Therefore the

cellular cl-graph acceptor recognizes extended stars. Clearly

the time it takes is proportional to the radius of the d-graph.

-- —‘-I..- ~~~~ - -



1.5. Wheels

A wheel is obtained from a star by having the non-

center nodes form a cycle. For example

is a wheel. Let M = (F, M, H) be a cellular d-graph

acceptor that works as follows:

Step 1: Each node having three non-U neighbors identifies

itself as a B node. -

Step 2: A rejection signal is sent from a node n to node D

if (i) n is a non—B node having a non—U, non—B neighbor , or

(ii) n is a non-B node which is - not D and it does not have

node D as a neighbor or (iii) n is a B-node with more than

one non-B neighbor. A node m is marked C if (iv) m is a

non—B node having D (a B—node) as a neighbor, or (v) m is

node D and a non-B node, or (vi) rn is node D and a B—node

with all B neighbors (the B mark of n is erased) .-

Step 3: B neighbors of C change their marks from B to S.

Step 4: A rejection signal is sent from any B node remaining .

— At step 5, the spanning tree construction starts. After 2r

steps, when D knows the spanning tree has been constructed

and no rejection signal was received , M accepts the cl—graph F.

Obviously,  if I’ is a wheel then M accepts F.

If F is accepted by M, then no rejection signal is initiated

at step 2. Suppose there are no non-B nodes at step 2; then

D is a B node and all of its three non-U neighbors are B nodes.

Steps 3 and 4 guarantee that there are no other nodes. There-

fore F is the wheel ~~~~~~~~~~~~~~~~~~~

— -——---— -~——  -— - - .— — --T _ 
~~

— — ----

~~~~~

—-- — - - — - - - _ _ _ _ _ _

Suppose there are non-B nodes. All the non-U neighbors of

the non-B nodes are B nodes. If 0 is a non-B node , all its

neighbors are B nodes , which implies there is no non-B node

• having D as a neighbor. If D is a B node then there can

only be one non-B node having D as a neighbor. Therefore

there is only one node marked with C. Steps 3 and 4 and

no rejection signal mean that all the B—nodes are neighbors

of the C node, so that r is a wheel.
It is clear that the recognition process for wheels

takes at most 2r+4 steps, which is proportional to the radius

of the d-graph.

I
- a

-
•
~~

-- S. - ~~
•

— ~•- --

2. Some Slower Algorithms

In this section we present some algorithms which take

:1 time proportional to at least the area (=the number of nodes)

of the graph. The construction of a depth-first spanning

tree is a linear time algorithm. Due to the nature of depth-

first search, a linear algorithm is optimal. The algorithms

to identify cut nodes, bridges and central points are of order

diameter * area time. The recognition of planar graphs by

cellular cl-graph automata is extremely slow, even though there

are linear time sequential algorithms to test planarity using

a random access computer model.

- -
• - —

~~~~~~~~~~ --
--- -

- ‘-



2.1. Depth First Spanning Tree and Node Ordering

In [2 1 it is shown that a spanning tree of a d-graph

F can be constructed by a cellular cl—graph automaton in time

• proportional to the diameter of F. The tree constructed corres-

ponds to a breadth-first spanning tree and its importance is

seen in some of the applications in [2 1. The depth-first

spanning tree (DFST) is also very useful in designing algo-

rithms [3 , 4 ] .  However , due to the nature of depth-first

search , the nodes need to be explored one at a time so that the

construction of a DFST takes time at least equal to the num-

ber of nodes in the graph. The DFST gives an ordering of the

nodes based on the order in which the nodes are explored .

Once the nodes of F are ordered , they can be considered as a

string of nodes and many algorithms such as firing squad synchron-

ization on strings can be applied to the automata at the nodes.

Consider a cellular cl-graph automaton M = (F,M ,H) with a

distinguished node D that operates as follows: the states of M

have an ancestor component of length 1 and a descendant component

which is a set of size ~d-l whose elements belong to

1l,2,...,d}. The ancestor component of the distinguished node

D is considered to be part of the descendant set. These components

are initially all empty . A node with an empty ancestor component

• is said to be unvisited . During the first  step, D records the

smallest arc end number leading to a non—U node (the least non—U

arc end number) in its ancestor component which is considered as



D’s descendant. D also creates a signal P. At any time step,

one and only one node has one of the signals P or P’ (P’ will

be defined below) . In subsequent steps:

(1) Suppose node m has the signal P , i is the largest

number in its descendant component , node n is the i-th neighbor

of m, and m is the j-th neighbor of n. Thus n must be unvisited

(otherwise m cannot have i as the largest number in its descendant

component). Then n records j in its ancestor component and takes

the signal P. If n has an unvisited non-U neighbor , it puts

the least unvisited non—U arc end number in its descendant

component; otherwise n changes signal P to P’ .

(2) Suppose a node m which is not D has signal P ’ , i

is in its ancestor component, and node n is the i-th neighbor of

m. If n has unvisited non—U neighbors, then n takes P’, changes

P’ to P and puts the least unvisited non—# arc end number in

its descendant component; otherwise it simply takes signal P’.

(3) Suppose node D has signal P’. If D has unvisited

non-U neighbors then it changes P’ to P and puts the least

unvisited non— U arc end number in its descendant component;

otherwise D signals the completion of the DFST construction.

Starting with node D, each time signal P reaches a new

node , it is passed to an unvisited neighbor of the new node ,

if any. P’ is invoked only when all the non-U neighbors of

a node are visited and P’ indicates going back to the ancestor

of the node. Clearly, this gives a depth first spanning tree

- -_ _ _  - .- —- -- _____-- -_ _

- —• •~, •~ - .  - ‘~•‘-••‘ -•-—



of F with the root at D. The ancestor and descendants of each

node are stored in the corresponding components. Note that

each time a number is added to the descendant component, it

is the smallest one qualified. Thus they are added in increasing

order so that the largest number in the set is always the last

one added . Therefore the numbers in the ancestor and descendant

components give an ordering of the nodes corresponding to the

order they are visited.

For each node n which is not D, the arc from n ’s ancestor

in the DFST is travelled once by signal P to set n ’s ancestor

component and is travelled once by signal P’ when all of its

descendants are visited. Therefore the construction of the

DFST takes time proportional to the number of nodes of F, which

we refer to as area(F).

Suppose it takes t(F) steps to determine whether a specific

node (say the distinguished node) has a certain property X.

During the construction of the DFST of F , when a new node n is

- reordered , instead of passing signal P to the least unvisited

non-U neighbor immediately, n is first checked to see if it

has property X and an appropriate mark is made at n. When the

last node is checked and the DFST is constructed, all the nodes

with property X are identified. The process takes time pro-

portional to t(F) times aL~ a(F).

- —_—
~~~~~~~~~

—-- — - _____
~~
S-__ — ______ —

• - -

2 . 2 . Subgraph Isomorphism

It was indicated in [5] that we were not able to find a

cellular cl-graph automaton that will decide if a d-graph F

has a subgraph isomorphic to a given labelled graph a in

time proportional to the diameter of I . In this section , we

will exhibit a cellular d-graph automaton that decides the

subgraph isomorphism problem in area time.

Let Ta be a spanning tree of a and let the height of T1~

be k. For a d-graph F with a distinguished node D, suppose

we want to know if F has a subgraph isomorphic to a such that

D corresponds to the root node of Ta; then we can use a method

similar to those described in [5]. First the cellular cl-graph

automaton M assigns a unique color to each node within distance

k from D. The color of a node n can be represented by the se-

quence of arc end numbers which constitute a path from D to n;

thus uniqueness is guaranteed . Each node also has a max-

distance number which is initially zero for each node and the

max-distance number of D is always 0. A non—D node n changes

its max-distance number to i+1 if i is the maximum of its

neighbors’ max-distance numbers and if i<k. After k steps, all

the possible level k nodes of Ta have max-distance number k.

A node with max-distance k records the level k node of Ta it

can be, if any, in its state as in [5]. In general, a colored

node having the correct level i neighbors of Ta records in its state

the level i-l node of Ta it qualifies to be and all the nodes

in its subtree. After 2k steps, if there is a subtree at D

isomorphic to Ta~
D will have the subtree recorded . Then M

can proceed to check if the arcs in a_T
a exist. 2k more steps

later , D knows if there is a subgraph of F isomorphic to a with

D corresponding to the root of Ta• It is easy for D to tell

when 4k time steps have passed by the breadth first spanning

tree construction (with root D) .

As indicated in Section 2.1, during the DFST construction ,

whenever a new node n is reached, the following is done before

signal P is passed to another node: if n does not have the

same label as the root Ra of Ta or n has fewer non—U neighbors

than TaI then P goes to the next node. Otherwise, we test

whether there is a subgraph of F isomorphic to a with n corres-

ponding to Ra~
treating n as D in the above; if such a subgraph

is found a success signal is sent to the distinguished node,

otherwise all the colors of the nodes within distance k from

n are erased. When all the nodes have been tested and no

success signal has been received , we know that F does not have

a subgraph isomorphic to a.

The above subgraph matching process takes time proportional

to k a r e a(r) where k is the he ight of Ta • Thus finding a

spanning tree of a with minimal height is desirable. (It

can be seen from the discussion of central points in Section 2.4

that if we choose a central point C as the root and build a

breadth first spanning tree as in Section 1.3.1 of [2], the height

of such a Ta will be minimal]. The number of states of the

cellular d-graph automaton is a function of a and d and is in

general large . The result of this section does not contradict

the fact that subgraph isomorphism is a NP-complete problem

_ _ _ _— ~•

[6,7] because our cl-graphs have bounded degree d. This makes

the nondeterminism at each step bounded by a function of d

and a, and therefore they can be represented by a bounded,

though large, number of states.

2.3. Cut Nodes and Blocks

Let F be a d-graph and N be a node of I’ . To find if a

node N of F is a cut node of F , a cellular cl-graph automaton

M= (F,M,H) partitions the non-U arc ends at N so that two arc

ends belong to same class if f the arcs belong to the same

block , i.e., there exists a simple cycle containing them.

From the definition and properties of cut nodes, N is a cut

node if f there is more than one class of non— U arc ends at

N [3, 4]. The arcs in each class belong to the same block.

The states of M have a d-tuple (al, a2...,ad) which is

initially all zeros. This d-tuple at node N is called the par-

tition vector and is used to record the partition of the arc

ends at N. The d-tuples at the other nodes are used to record

arc end equivalences. At the f i rs t step , the partition vector

is set so that a
~
=i if the i-th arc end of N leads to a non-U

node, and a . 0 otherwise for ~~~~~~ Therefore each arc end
1

belongs to a different class. If N has only one non-#

neighbor, then N is not a cut node. Otherwise M starts the construc-

tion of a breadth—first spanning tree (BFST) rooted at N as in

Section 1.3.1 of [2],except that N sends out d signals instead

of just one. The i-th neighbor of N gets the signal i which

will be propagated from non-U ne ighbor to non-U neighbor . A

node m receives signals i , j from its neighbors if f there are

two paths from N to m , one contains the i-th neighbor of N, the

other contains the j—th neighbor. Hence the i-th and the j-th

arc ends of N belong to the same class of the partition.

-

__
—

Whenever a node m receives signals
~0’~~1’••~~’~~k from its neighbors

where i0<i 1< .. <1k’ m chooses a neighbor m ’ which gives it the

smallest signal i0 as its immediate ancestor in the BFST.

Singal i0 is transmitted to its unmarked neighbors and m sends

a classification signal (io,il,...,ik) to m ’ to be transmitted

up the BFST to its ancestors. A node m with signal j 0 having
neighbors with signals j 1, . . ., j~ such that j 1_1< j 1 for ~~~~~~
also sends a classification signal

~~~~~~~ 
. . , j1) up to its

ancestors. Any node receiving a classification signal passes

the signal to its ancestor . A node receiving more than one

classification signal merges them and sends the merged classifi-

cation signal up to its ancestor since they all belong to the

same class of the partition. Each classification signal is

of length at most d. Hence the d-tuples at the nodes can be

used for their transmission. When N receives a classification

signal (io,...,ik) and the partition vector of N is (al,...,
ad),

then a. , a. ,...,a. are all set to mm ta. ,a. ,... ,a. } .

‘0 ‘1. ‘k 10 11
In case more than one classification signal is received by N,

the partition vectors are reset so that if {i0,i1,. .. ,iJ~}fl

{j 
1 then min {a. , . . . ,a. ,a .  ,. ..,a. } is used.10 ‘k ~~If {io,il,...,ik}1I{jo,jl,...,jzl Ø  then a~ ,a~ ,...,a~ are

0 1 k
set to their minimum and a. ,...,a . are set to their own

minimum. One step after the BFST is constructed , all the

possible classification signals are on their way to node N.

Therefore when N receives the message indicating the completion

of the spanning tree construction, N knows that the partition

of its arc ends is also complete. The i—th and j-th arc ends

— __•_
-b.-.--——-- —  — -— - - —— — -— — —--—- p

-- -S.- - --• -



of N belong to the same block if f a~=a3~
0 in the partition

vector (al,...,ad). The non—zero components of the partition

vector have the same value if f N is not a cut node. The time

for N to decide if it is a cut node is twice the radius of F

“centered” at N, which is no more than the diameter of F.

Combining the above with the construction of a DFST of F ,

all the cut nodes of F can be identified in time proportional

to area(F~ times diameter(r). It is easy to tell then if F

is biconnected ( a block, containing no cut points). All the

blocks of F can easily be identified by the partition vector

at each node which tells which arcs at the node belong to the

same block. In this case the transmission of the classification

signal should not use the d-tuples which are the partition

vectors so that their values will not be destroyed. Clearly

an extra d-tuple is needed in the states of M.

Note that the identification of the cut nodes is done one

node at a time. Attempts to do the identification in parallel

lead to possible confusion of signals from different nodes.

Tarjan [ 4] has a sequential algorithm which takes time pro-

portional to the number of edges of a graph, in which a DFST

is constructed and the cut nodes (~ the root) are those nodes

n having a son s such that there are no arcs connecting any

descendents of s (includin g s itself ) and a proper ancestor

of n. However this algorithm is allowed to use integers as

large as the size of the graph ; thus each node can have a dif-

ferent number for distinction. The state set of the cellular

d-graph automaton N is the same regardless how large the

_ _ _ _ _ _ _  —

S 
- - -~



d-graph 1’ is. The inability to distinguish the signals

originating from different nodes creates problems for parallel

identification of cut nodes, just as it did for attempts to do

subgraph isomorphism in diameter(F) time.

- Ti • - -- . -• • 
-- —-- - —

~

-  a.— —
- 4 ~~~~~~~~~ —



2 . 4 .  Bridges

Let r be a d-graph and T be a breadth-first spanning tree

(BFST) of F constructed using the method in Section 1.3.1 of [2].

If an arc (m,n) of I’ is not a tree arc in T, then node m and

node n must have a least common ancestor node k such that k~m

and k~ n. The arcs in the tree path form k to m and those in

the tree path from k to n , t3gether with arc (m ,n ) ,  form a

cycle. Hence (m,n) is not a bridge. Therefore a bridge of I’

must be an arc of the BFST.

Let (a ,b) be an arc of the BF’ST of r, where a is the

ancestor of b in the tree. Suppose the root node sends a signal

B down the tree and colors the nodes blue. When signal B

reaches node b, it is changed to signal R to color the nodes

red so that node b is colored red while node a is colored blue .

Note that the other descendents of a are also blue . Signal R

is sent only down the subtree with root b. Any time a blue

node m has a red neighbor n and (m ,n)~~(a ,b) then (a ,b) is not

- a bridge since (a,b) belongs to the cycle containing the arc
(m ,n) and the paths from the least common ancestor of m ,n to

nodes m and n.

A cellular d-graph automaton N with a distinguished node D

can decide if an arc (p,q) of r is a bridge by constructing a
BFST of r , and if (p,q) is a tree arc , then starting the color-

ing of nodes as above. This process takes time proportional

to the radius of r “centered” at D.

To identify all the bridges of r , a BFST T of I’ is con-

structed and then each tree arc is tested. The order of the

_ _ _ _ _ _ _ _  - — ----



arcs of T is induced by the DFST of F : when a new node n is

added to the DFST, the unique are joining n and its ancestor in

the BFST is tested, and the answer is stored in the node. The

• time it takes to identify all the bridges is proportional to

area(F) times diameter(F). It should be pointed out that not

every arc of the BFST needs to be tested since during the BFST

construction, if a node n receives the signal (originating from

the root) from more than one neighbor , then the arc leading to

n ’s ancestor cannot be a bridge.

Proposition: An arc (m,n) of a cl-graph r is a bridge if f the
subgraph consisting only of the arc (m,n) (with its endpoints)

is a block. -

Proof (=>): If (m,n) is a bridge then (m,n) does not belong to

any cycle; therefore (m,n) by itself is a block.

(<=) : If (m,n) is not a bridge then (m,n) is part of a

cycle. Thus (m,n) belongs to the same block as the other arcs

of the cycle. Therefore {(m,n)} is not a block. II
This proposition shows that if the cut nodes or blocks of

F are identified as in the previous section, then the bridges

of F can be identified in one step since they are just the

blocks consisting of only one arc. The singleton blocks are

readily identified from the partition vectors at each node;

each of its arc ends is in a class of the partition by itself.

— _____%_ - —~~~~~~~—- - — -_ _ _ _ _ _



2.5. Central Points

Given a d—graph F, for any non-U node n of 1’, r(n) = the

radius of r with “center ” n is the maximum of the distances

• between n and any non-U node of F. C is a central point of F

if r (C)  = min{r(n) I n  is a node in F). Note that there may be

more than one central point in a cl-graph. Many of the algorithms

we have presented take time proportional to the radius of F

with “ center” the distinguished node . Tnese algorithms are more

efficient if the distinguished node is located at a central

point. A central point is interesting also because it is the

best location for a communication or emergency center in a net-

work. In this section we exhibit a cellular d-graph automaton

N that can identify a central point in time proportional

to area(f) times diameter(F) by finding r(n) for each node n

of r and then comparing them. The following proposition shows

that a longest branch of a depth—first spanning tree is long

enough to store r(n) in unary for each node n.

Proposition: Let F be a d-graph and let £ be the length of a

longest branch of a depth—first spanning tree of F; then I

the distance between any two nodes of F.

Proof: Suppose there exist nodes m and n such that the distance

between them is >1. Without loss of generality we can assume

that n is visited before n in the construction of the DFST.

Then m must be a descendent of n in the DFST. The branch con—

tam ing both n and m has length �(distance between n and m)>L.

• This contradicts the assumption that £ is the length of a long-

est branch of the DFST. Therefore the distance between any two



nodes of F is £ 1. //

Corollary: £ ~ r(n) for any node n of F.

Proof: r(n) = (maximuiu of the distance between n and any non-U

node of F)~ . max {I} = I. //

On any d-graph r, M = ( F ,M ,H) with a distinguished node D

operates in the following 5 stages :

(1) N constructs the DFST of F with D as its root. A

longest branch of the DFST is identified in the same way that

a longest branch of the BFST is identified in Section 1.3.2

of ( 2 ]. This longest branch of the DFST will be used as a

counter to store r(n)’s. Each node of the counter has two

channels so that two numbers can be stored in it simultaneously .

(2) N constructs the BFST of F with D as its root. This

tree gives the shortest paths from any node of r to D. r(D)

is found and stored in the counter in unary using a method

similar to that in Section 1.3.2 of [2] and described in more

detail in 4(b) below.

(3 )  At each node n, the state has a component p(n) which

is a number in {O ,1,...,d}. Let Q(n) denote the p(n)-th

neighbor of node n if p(n)$O. D, n1=Q(D), n2=Q(ni1),..., N=Q(nh),

where p(D), p(nl),...,p(nh) are non zero and p(N) is zero, denotes

a path from node D to N when node N has the property that the

radius of F with center at N is stored in the counter defined

• in (1). Therefore, after r(D) is stored in the counter, p(D)

is set to zero.

(4 ) N visits each node of F according to the order induced

by the DFST. When N visits node n, it (a) identifies n’, the

_ _ _ _ _ _ _ _  - - 

~~~~~~~~_ • : .  

—

- ~~
.

— _ _ _ _ _ _ _ _ _

node farthest away from n; and (b) stores r(n) in unary in

the counter by generating a pulse u from node n every other

step after a signal S is sent from n to n ’ until a signal S’

reaches n. 5’ is generated by node n ’ when signal S reaches

node n ’ . Both S and 5’ are sent at unit speed . Each pulse

u is passed on to node D, the first node of the counter. When

D gets the pulse u, it increments the counter by 1 and this

pulse u is dissolved. D knows no more pulses u will come from

node n if it does not receive any pulse in two consecutive

steps. (c) The new number is discarded if it is not smaller

than the old number stored in the counter. Cd) If the new

number is smaller then the old number is discarded and the

new number is stored in the old number ’s channel. Moreover

the shortest path from D to n (which is given by the BFST rooted

at D from (2)) is recorded in the state as p(m)’s for all the

m ’s in the path and p(n) is set to zero.

(5) When N finishes visiting every non—U node of F so that

(4) above is done for each node , the number in the counter

gives the radius of F centered at a central point. The center

can easily be identified by following the path specified by

p(D) and the p(n)’s.

Let t(i) denote the time for M to perform the task in

stage i above , 1~ i~ 5. Then t (l) = C1~area (F) for some constant

• C1, t (2) = C 2 •r (D) , for some constant C2, t(3)=l, t(5)=r(D), and

t(4)=sum of s(n) for each n in F where s (n)=b 1•r (n) + b 2 •r (D) ,

for some constants b1,b2. Since r (n)~ .diameter(F) for every

node n in F, the time it takes N to identify a central point

is proportional to area(r) times diameter (F).

N can be modified by taking the following into considera-

tion. A node n with only one non-U neighbor m is not a central

point when there are other nodes present since the distance

between any node k~n and node m is 1 less than that between

k and n. If n ’ is a node farthest away from n , n is not

necessarily a node farthest away from n’. For example, in the

string # ~ir-~~~
. _____S U n” is

the node farthest away from n’. However r(n’) � r(n) because

r(n’)=maximum of the distance between n’ and any non—# node

of F �distance between n’ and n = r(n) since n’ is a node

farthest away from n. Therefore n ’ can be eliminated from

consideration of being a central point when we are only inter-

ested in finding a central point rather than all central points.

The modified cellular d-graph automaton N’ will be faster than

N , even though the speed is still on the order of area(F)’diameter(F)

for many d-graphs.

— -- - _--,--- - — _ _ _ _ _ _ _ _ _ _ _-________— —~~~~------- -

• -
~~

.--.

2.6. Planar Graphs

Planarity of graphs has been studied quite extensively .

Many of the sequential algorithms use the approach of construct-

ing a representation of a planar embedding of the given graph ,

such that a graph is planar if f such a representation can be

completed. Hopcroft and Tarjan [8] discovered a sequential

planarity algorithm that is linear in the number of nodes of

the graph. Their measure of time complexity is based on using

a random access computer model, and a memory cell is allowed

to hold integers with absolute values as large as kV for some

constant k, where V is the number of nodes in the given graph.

Hence it is possible to associate a different integer with each

node. Our cellular cl-graph automata have fixed memory regard-

less of the size of the input graph. This makes distinguishing

the nodes and thus testing the embedability of a graph in the

plane difficult.

There are three other criteria for planarity (9]. The

earliest characterization was given by Kuratowski [10]. He

proved that a graph is planar if f it has no subgraph homeo-

morphic to the complete graph C5 or the complete bipartite

graph K33 . This is equivalent to saying that a graph has no

subgraph contractible to C5 or K33 . In view of our results on

subgraph isomorphism in Section 2.2, one may expect to be

able to find an efficient cellular d-graph automaton using

Kuratowski’ s criterion to test planarity. However, the length

of the sequence of cont~~ctions depends on the graph given.

— - ---

Whitney [11 , 12] expressed planarity in terms of the

existence of a dual graph, which is difficult for a cellular

d-graph automaton to verify. MacLane [13] expressed planarity

in terms of cyclic structure; a graph G is planar if f every

nontrivial block of G has a cycle basis Zl~ •••~
Zm and one addi-

tional cycle Z0 such that every arc occurs in exactly two of

these m+l cycles. The value of m is determined by the number

of arcs and nodes in the graph, hence is dependent on the graph

given. It is not clear how a cellular d—graph automaton can

use this criterion.

On extremely slow algorithm for planarity testing would be

for a cellular d-graph automaton to test the existence of

subgraphs contractible to C5 by systematically choosing 5 nodes,

and testing if there are ten non-intersecting paths, one path

for each pair of nodes. Similarly , the existence of K3 3 can

be checked by selecting two sets of three nodes each and testing

for the correct nonintersecting paths.

It is interesting that in spite of the existence of linear

sequential algorithms for planarity, we can only f ind an extremely

slow cellular cl--graph automaton algorithm to recognize planar

graphs. One reason is that planarity is a very global property

which is difficult for a cellular d-graph automaton to discover.

_ _ _ _ — Th~~~~~~~~~

—
-

~~~~~~~~~~~~
__

S 
- — - - - -~a~~~ - - -  - -~~~



References

1. A. Wu, Cellular graph acceptors, TR-599 , Computer Science

Center, University of Maryland, College Park , MD , November

1977.

2. A. Wu, Cellular graph acceptors , 2, TR-621, Computer Science

Center, University of Maryland, College Park , MD, December

1977.

3. A.V. Aho , I.E. Hopcroft, and J.D. Ullman, The Design and

Analysis of Computer Algorithms, Addition-Wesley , Reading,

Massachusetts, 1974.

4. R.E. Tarjari, Depth first search and linear graph algorithms,

SIAM J. Computing 1, 1972, 146—160.

5. A. Wu , Cellular graph acceptors , 3, TR-648, Computer Science

Center, University of Maryland , College Park , MD, April 1978.

6. S.A. Cook, The complexity of theorem proving procedures ,

Proc. 3rd STOC, 1971, 151—158.

7. R.M. Karp, Reducibility among combinatorial problems, in

Miller and Thatcher , eds., Complexity of Computer Computations,

Plenum Press , NY , 1972, 85—104.

8. J. Hopcroft and R. Tarjan, Efficient Planar ity Testing,

JACM 21, 1974, 549—568.

9. F. Harary , Graph Theory, Addison-Wesley , Reading , Massachusetts,

1969, 102—116.

‘a
_______ — ,— 

—

- -.5, - - 
—~ — -- _ _S- __ ~__



i _
~~~~~~~ • — 

.~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ - -

~~~~~
- - _ 

— —

10. K. Kuratowski, Sur le prcblè~ des courbes gauches en

topologie, Fund. Math 15, 1930, 271—283.

11. H. Whitney, Non-separable and planar graphs, Trans. Amer.

Math. Soc. 34, 1932 , 339—362.

12. H. Whitney , Planar graphs. Fund. Math 21, 1933, 73-84.

13. S. MacLane, A structural characterization of planar corn-

binatorial graphs , Duke Math. J. 3, 1937 , 340-372.

4
_ _ _  - —~~~~~~~~~~---- - ~~—



F

UNCLASSIFIED . •

SECURITY CLASSIFICATION OF THIS PAGE (II?~en Date Entered)

~ REPdRT DOCUMENTATION PAGE 
READ INSTRUCTIONS

_____________________________________________________ 
BEFORE _COMPLETING _FORM

L REPOR ~4J~~~~ER

~~~~~~~~~~~~~~~~~~~~~ 7 8 — 1 3 6 
~~~~~~~~ 

~2. GOVT ACCESS ION NO. 3 REC IPI ENTS C A T A L O G  NUMBER

~~~~~~~~~ une) 5• TYPE OF REPORT & PERIOD C9VE REO
_ _ --- I((•L~~~-~ •RAPH ACCEPTORS , ~

Interim

C —TR-6671•
—

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+. OR GRANT NUMBER(s)7. AUT HORft)

(~~~~
~)

Ange la/Wu /
-•

~~AFO’SR-77-327l

9- PERFORMING ORGANIZATION NAME AND ADDRESS *0. PROGRAM ELEMENT. PROJECT . TAS t(
AR ORK UNIT NU SUniversity of Maryland

Computer Science Center
College Park, Maryland 20742 ~~~~~~~~~~~~~~~ i

II. CONTROLLING OFFICE NAME AND ADDRESS • ~~ ~~~~~~~~~~ I~~sT(~ /~ Jur*~~~~78
Air Force Office of Sci entific Research/NM”—~ T~~~~~NUMBER OFPAGES

Boiling AFB, Washington, DC 20332 50
*4 MONITORING AGENCY NAME & AOORESS(If different from Contro1lln~ Office) *5. SECURITY CLASS.~~o&thI i~repa41 _

UNCLASSI FIED (~..~/~
1 7

IS.. DECLASSIFICATION; 001 D~~~ D1P4~~~SCHEDULE

~S. DISTRIBUTION STATEMENT (of this Report)

Approved for publi c release; distr i bution unlimited .

Il. DISTRIBUTION STATEMENT (of lb. abstract entered in Block 20. if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Cont inue on reverse aide if noc.seery med identify by block number)

Forma l languages
Cellular automa ta
Graph automata

-
Graph property recognition

20. A’
~ 5T RACT (Continue on revere , side if necessary med identify by block number)

- ________________________

Diameter-time - algor i thms are presented for recognition of rectangular and
square arrays, Eu l erian graphs , bipartite and complete bi partite graphs ,
stars, and wheels by cellu lar d-graph acceptors. Slower algorithms are
given for construction of a depth-first spann i ng tree (area time) and for
identif ication of cut nodes, borders , and centra l points (diameter’area time •The recognition of plana r ty Is also discussed .

~/(D~~ c-tV
n FORM

JAN 73 473 EDITION OF I NOV SS IS OBSOLETE
UNCLA\S IF I ED

- SECURITY CLASSIFICATION OF THIS PAGE (1W,

C- - - — - -~~~~~~~~~~—- -

- - -
-:i~~~~~~

- -~

