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SECTION I

INTRODUCTION

In recent years, the development of mini computers
and certain algorithms have renewed interest that a
practical way may be found to extract from measured
vibration data the basic structural dynamic properties
which govern the modal response. Such an ability could
greatly enhance the usefulness of required ground vibration
tests of new or modified aircraft for evaluation of
aeroelastic, aeroservoelastic, dynamic loads and other

dynamic phenomena directly related to aircraft safety.

As a consequence of these developments, a number of
methods have been proposed by diverse groups, many of
which are outside the airframe industry. The unfamiliarity
of some of the methods, semantics problems, and proprietary
considerations, have hindered understanding of the
basics involved for evaluation, development or adaptation
for more specific airframe use. This report describes the i
foundations of some of the more prominent methods on a . }
common basis for initial comparisons and offers a method
based on the steady-state sinusoidal response rather than

the transient response used by the other methods.

We assume the structure is modeled by a system of
second order differential equations with constant coefficients.

In matrix and vector notation this system of equations can :




be written as
MX ¢+ Cx + Kx = f

The matrices M, C and K are of order m and are called the
mass, damping and stiffness matrices respectively. The

elements of these matrices are real numbers. The forcing

function or excitation f = f(t) is a vector function of time
with m components which may always be considered as known.
The response x = x(t) is also a vector function of time with
m components which are determined by measurement. The
components of the vector functions f(t) and x(t) may be

complex valued.

If the vector function u exp (At) satisfies the homogeneous
equation MX + Cx + Kx = 0 then the complex number A is called a
characteristic value and the vector u a characteristic or modal
vector associated with A. In this report we consider methods
for determining the modal parameters, that is, the characteristic

values )X or the natural frequencies and damping coefficients

and modal vectors u. The natural frequencies (or resonant |
frequencies) and damping coefficients (or damping ratios)
are readily obtained from the characteristic values and

conversely.

The methods considered in this report have the capability
of determining the vibration parameters and the matrices M,
C and K from the measured responses x(t) to excitations f(t)

which have only one (and always the same) component different

D T




from zero. For most of these methods, only symmetery of the
matrices M, C and K is required. It is not necessary to assume

any relation (e.g. proportional damping) between M, C and K.

If the matrices M, C and K are not symmetric then,
in general, one must excite the system at all stations.

That is, one needs a linearly independent set of excitation

functions f(t) and the corresponding responses x(t).

The excitation f(t) and the resulting response x(t)
are experimental quantities determined by measurements.
Accordingly these quantities are subject to error. For
purposes of this report we assume ideal (error free) data.
The various methods were examined to see if, at least in
principle, the desired quantities could be obtained
accurately by the method. The sensitivity of a method to
errors in the data could be a decisive factor in the selection
of a method. This aspect has not been treated because the
author is not sufficiently familiar with the practical

aspects of the experimentation procedures.

In Section II we propose a method for determining L
vibration parameters from the steady state response to
harmonic excitations. The method is based upon Eq. (A36)
of Appendix A. We show how to compute the characteristic
values Ak and the modal vectors uy - We also show how to
cope with the case of characteristic values of multiplicity
greater than 1. For this case one must excite the system at
a number of different stations separately. This number being

the same as the multiplicity of the characteristic value.

RS ).J




The method of Section II is readily extended to deal
with the case where the matrices M, C, and K are not
symmetric. For this nonsyvmmetric case one must perform
experiments (separately) at each station. The ability
to treat the nonsymmetric case seems to have been

overlooked for the most part.

In Section IIT we describe and discuss other methods
for determining vibration parameters. We believe that we
have described the major possible methods for determining
vibration parameters from experiments at a single degree
of freedom when no relations are assumed between the
matrices M, C, and K. In Section IV we describe and give
the results of numerical experiments with the method of
Section II. We note possible areas for further investiga-

tion and present our conclusions.

The theoretical treatment may be carried out in
either the time domain or the frequency domain. In
general, the experimental data appears in the time domain.
This time domain data is transformed to frequency domain
data by numerically Fourier transforming the time data.
However, if one measures the steady state response to
harmonic excitations then, essentially, one obtains the
experimental data directly in the frequency domain. Hence
note that the method of Section II can also be used in
methods which determine the frequency response function

experimentally.
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In Appendix A we give the mathematical background for the
methods described in this report. In Appendix B we display the
connection between the Fourier Integral, Fourier Series and trig-
onometric interpolating polynomials. Appendix B is background
material for method 2 of Section III. Appendix C is
background material for methods 4A and 4B of Section III.

Finally in Appendix D we give instructions for the user

and a program for the method of Section II.




SECTION 11

VIBRATION PARAMETERS FROM THE STEADY STATE RESPONSE
TO SINUSOIDAL EXCITATIONS

In this section we describe a procedure for determining the

"complex frequencies' and associated complex mode shapes of a
structure from its measured steady state response to sinusoidal
excitations of frequencies close to resonance. In principle,
only one "point" of the structure need be excited at appropriate |
frequencies, provided there are no multiple characteristic values.
The case of no multiple characteristic values is treated first
after which we show how to deal with multiple characteristic values.
Consider the following system of linear second order

differential equations wtih constant coefficients
Mx + CXx + Kx = f 1)

In Eq. (1) M, C and K are real, square matrices of order m. The
matrices M, C and K are referred to as the mass, damping and
stiffness matrices respectively. The vectors x = x(t) and f = f(t)
are of dimension m with time dependent components which may be

complex valued.

In Appendix A it is shown that the steady state response to a
harmonic excitation f(t) = r exp (iwt) of a system modeled by Eq.

(1) is y exp (iwt) where

n
) :
y = y(w,1) = kEI uk\kr/(lw - Ak) (2)

For k = 1 to n = 2m the vector functions xk(t) = u exp (Akt) are

linearly independent and satisfy the homogeneous equation

Mx + Cx + Kx = 0 (3)
6




Similarly, the vectors zk(t) = V) exp (Akt) are linearly independent
and satisfy the transposed homogeneous equation. The vectors uy
and Vi satisfy the normalization conditions expressed by Eq. (A17)
of Appendix A. The complex numbers Ak satisfy the characteristic
equation

det \M + AC + K] = 0 4)

The Eq. (2) is valid under very general circumstances. The only
requirement for the validity of Eq. (2) is that for a root kk of
multiplicity ™ the matrix AiM + AkC + K must be of rank m - my -

The complex numbers Ak and the associated vectors u, are the
""complex frequencies' and mode shapes which we want to determine.
The procedure to be described below extracts these quantities from
Eq. (2). For the nonsymmetric case the vectors vy are not scalar
multiples of the corresponding Uy - For the determination of the Vi
in the nonsymmetric case the system must be excited at each degree
of freedom with frequencies close to the resonant frequencies.

In principle, the procedure described below is general. In
the application of interest here the procedure is limited to systems
for which the characteristic values Ak lie close to the imaginary axis.
More precisely the iteration procedure suggested below requires values
w, satisfying the relation | A -y | < | AJ - iy | for all
Aj e Mer

For the case in which the matrices M, C and K are real symmetric
matrices, and the roots Ak of the determinantal equation, Eq. (4), are
simple and well separated, the vectors Vi differ from the Uy by a

numerical factor, at most. This case is considered now.




Lot r, denote the m dimensional wunit vector whose jth component is 1

! and all others are zero. For k= 1 tomand ¢ = 1,2 let Yo €Xp (imkct)

%__ he the steady state response to 'y exp (imk(t" Accordingly one makes
two measurements tor each characteristic value. The vectors Vg dre

computed from experimental data, that is, from the response to the

sinusoidal excitation ' sin (kat1, see Appendix A, Eq. (A40).

The QHUOS\N-ka;WCk1wSNISO that

Wy S Im l\k] < W (5)

and @, , is much less than w, . (The \, are indexed as described
k2 k+1, 1 K

in Appendix A.) For definiteness we discuss the case where the

excitation is in the first coordinate direction - The procedure

is the same regardless of the fixed coordinate direction excited.

Here now we describe the iterative procedure for determining
the characteristic values Xk and the associated vectors uk:unlvk.
First we give the equations for computing initial values for \k‘
u and Vi Then we give the equations for computing successive
refinements of these quantities until preassigned tolerances are
attained.

For j = 1 tomand ¢ = 1, 2, we have,on neglecting all but

one term from Eq. (2), i
Yoo = uvir /(lw,, - A.) () “
L il it i

as a first approximation. Set

. 10 As
£ " 1 1§ v .': s |
§ + [‘ll \‘1/)’"2 V‘zl "‘mil = \‘ )

where the sign is chosen so that Im [£] > 0. (If one assumes a value

for \i and computes £ from Eq. (7) it is clear that this is the

appropriate choice for the sign.) From Eq. (7) one obtains
8
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Aj - i(Ewjl -wjz)/(E - 1) (8)

for j - 1 tom. Thus Eq. (8) gives a first approximation to Xi. This
first approximation of Aj is needed for computing the first approximation

of the vectors uj and vj. From Eq. (6) we obtain

- ) 2 ; 2 ; E
vjl 2 y)2 ujvj TII(NJZ w,])/(lw_ll x,)(lm'z )‘,‘ 9
Now v}r1 = vlj is the first component of the vector Vj‘ We assume the
vector u, normalized so that its first component "1j = 1. Then from Eq. (9)
we have
e 3 Gogs 2 : 2 ; R
vlj (yljl ylj?_,(lmj1 Xj)(luﬁz xj)/l(mjz mjl) (10)
and the vector
u; = (yj1 - yjz)(uujl - Xj)(lez - Aj)/x(wj2 - wjl)vlj (11)
Hence v;.as a scalar multiple of uj,is given by
vj = vljuj (12)

Thus in the first stage the computations performed are those

indicated by Eqs. (7), (8), (10), (11) and (12).

Let x?, uq, and v? denote the new value which one

S
is in the process of computing and let A U and i denote the present

value of these quantities respectively. For j = 1 to m, set

~ n '1‘ o
ng = yjl -kfl ukvkrl/(l(l\jl - Xk) (]3)
k#j
Comput e

. /2

AT ~ -~
4 lyjlyjl/yjzyjzl (14)

where the sign is chosen as in Eq. (7), and

9
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N =) - wg)/ (6 - 1) (15)

Then
Wy (fwey - AV, 17)
J JETIL - T Y -
and
V! = v,
f vlJuJ (18)

where ); in Eqs. (16) and (17) is the x’j‘ computed in Eq. (15), v);
in Eqs. (17) and (18) is the Vlllj computed in Eq. (16), and in Eq. (18) uj

is the u? computed in Eq. (17). At the same time one is computing

A?, u? and v? one should record also
n _sn
Anej = N (19)
\{“ﬂ = a‘j‘ (20)
and
s " Y !

These identifications should be made in the first stage also.

The computations in the refinement process, Eqs. (13) through (21),
are repeated until either preassigned tolerance requirements are
satisfied or the maximm number of passes through the refinement process

is attained. In the latter event one is faced with the task of

10
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determining why the tolerance requirements were not satisfied. If

the tolerance requirements are satisfied, then the matrices M,C, and
K are detemined next.

Before discussing the camputation of the matrices M,C, and K let
us consider a modification of the above procedure which enables us to
handle the case of multiple characteristic values. For definiteness
suppose A, = A} Ay = Ay and the remaining characteristic values are

L ]

simple. let vjk and U denote the jf—h- component of the vectors Vi and
u respectively. According to the discussion in Appendix A we may

suppose

=y = ()

. 34

¥y Y337 Vs
(22)

u,, = u,, = u = ]

59 ey T 0

11 44

As for the case of no repeated characteristic values the remaining
u, vectors are assumed normalized so that the first component has the
value 1.

Let y(w,r)exp(iwt) denote the steady state response to the hamonic
excitation rexp(iwt). The vector y(w,r) is given by Eq. (2). Suppose
we have obtained experimentally the vectors y(wm, rl) for ¢ = 1, 2,
see Eq. (15) for k =1, 5, 6, ***, m and also the vectors
y(w“,rz), Y(“'St’rs) and (y(mn,r“). From this data one obtains a
first approximation to the characteristic values \k and the vectors u for
k = 1 tom in exactly the same way as for the case of no repeated charac-
teristic values.

Thus for first approximations compute as in Eq. (7)
Cj = : lyn(le'rk)Y(leprk)/YT(wj:’rk)'Y(mjzork)]l/‘ (:3)

11
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where k = 1 for j =1, 5, 6, ***, mand k = 3 for j = 3,

Then a first approximation to A,

j is given by

)‘j - I(ijjl = sz)/(EJ - 1) (24)
for j =1, 3, 5, 6, **+, m.
Next as in Eq. (9) we have
T > .
y(wjl,rk)-y(wjz,rk) u;Vv.er 1(wj2 ~(,mjl)/(1mj1 = Aj)(wjz - Aj)

JJk
~ (25)
Let yp(w-g,rk) denote the p— component of the vector Y(“jz’rk)'

J
Then from Eq. (25) we have
ij = [Yk(wjlnrk)‘yk(‘“jz.rk);(iwjl = )‘j)(i“’jz = )‘j)/i(‘ﬂjz = wjl)

(26)
where the value of k must be appropriately assigned depending on

j, see below Eq. (27). Eq. (26) gives the kzh component of the vector
Wie s

)
The modal vectors are obtained as before, Eq. (11). Thus

Uy = Iy (51T Y (@2 1 (g = A (g, = X)) iy, - wi g
where k =1 for j =1, 5, 6, *»», m, k=2 for j = 2 and k = j for
ji=3, 4.

For values of j for which \; is not a multiple characteristic

J
value the vectors vj are given by

vV, = V. .U, (28)

as before. For values of j for which Aj is a multiple characteristic
value the associated vectors vj are linear combinations of the
associated uj vectors. Rather than use subscripted subscripts we

chose to illustrate the procedure for determining the appropriate

12
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linear combinations by example.
For the example being described the vectors vy and v, are linear

e e oo S
i

combinations of the vectors u1 and u,.

Thus

b B | B Gl | e
(29)

Vg ®illgg Uy ¥ Bas My

Now the vectors U and u, are known from Eq. (27). The component Vi1

of vy and the component Vo of v, is known from Eq. (26). In addition,
because of the special form that we were able to assume for the vectors .

v and v, we have that the components Vo1 " V12 T 0 for the vectors

|
v, and vy respectively. Utilizing this information we can extract a
matrix equation from the system of vector equations, Eq. (29) for
determining the coefficients aij‘ Thus we have
u a a \' 0
R L W ) I ) (30)
o B o VISR T iz = Ny
After the coefficients aij are determined, the vectors vy and v, are | ﬂ

completely specified (that is, the first approximation thereof) by
Eq. (29).

In a similar fashion one has

V3 = b)) ug + by, “4}

i (31)
Vg " by U3 * by uy
From Eqs. (31) one obtains
Ugz Uy, by bn Vg3 0 o
- 32
Uz Uy b2 by 0 Vaa |
13




and hence the vectors Vs and v, are completely determined also. From
the above discussion it should be clear how to deal with any number
of multiple characteristic values whatever their multiplicity.

The computations described by Eqs. (23) through (32) provide

first approximations of the desired quantities. The refinement process

for the case of multiple characteristic values is basically the same as for

the case of simple characteristic values. We will abide by the same
conventions as adopted for the case of all simple characteristic values
see Eqs. (13) through (21).

Set as in Eq. (13)

n
3 B ied iy
Y(wjﬁ’rp) b Y(ij’rp) 'kflukvkrp/(lwkz Ak) (33)
k#j
Then replace )'(“’jz'rk) for ¢ =1, 2 by Y(“’jz’rk) in Eq. (23). With

the value of é:j thus obtained compute

11 QY ¥ i
Then
~ 5 35
V;I(J o [yl(‘”jl’rk)](l“’jl i A1) ()
“? g ;,(wjl'rk)/vkj (36)

and for values of j for which )‘j is not a repeated characteristic value

Jj‘ = V159 (37

The vj corresponding to a multiple characteristic value xj are computed
as above, see Eqs. (29), (30), (31) and (32).
The refinement process described by Eqs. (33) thru (37)

is repeated until the tolerance requirements are satisfied.




Once the characteristic values and the appropriately normalized
characteristic vectors are known the system matrices M,C, and K are

readily obtained. Set

P(w) = - wM+idC+K (38)
and

QW) = Juvi/ (u-zy) (39)
We noted, Eq. (A43) of Appendix A, that

Pw) = Q" () (40)
so that

P(w)Q(w) = I (41)

Let the prime (°) denote differentiation with respect to w.
Fram Eq. (38) we have

K = P(0)
iC = P*(0) (42)
-2M = P"(0)

From Eq. (41) we obtain

P(0) = Q"1(0)
P*(0) =-Q"1(0)Q"(0)Q" 1 (0) (43)
P'(0) = -(2P*(0)Q" (0)+P(0)Q" (0))Q "1 (0)




SECTION III
OTHER METHODS FOR DETERMINING THE VIBRATION PARAMETERS

In this section we describe and discuss other methods for deter-
mining the vibration parameters. We make no attempt nor claim to
discuss all methods. Indeed in the discussion below other ways to
achieve the same end will come to mind. Each variant of the methods
described below may, of course, be considered another method.

The methods of primary interest to us have two distinctive
features; First, they assume no relation whatsoever between the matrices
M, C, and K. Secondly, these methdds have the capability of determin-
ing (almost) all vibration parameters of interest from the data
arising from exciting the system at a single degree of freedom, at
least for the case where all the characteristics values are different
from one another.

The first method which we describe requires that the
system be excited at each degree of freedom individually. Hence, it
is not a method of primary interest. However, given the problem of
detemining the matrices M, C, and K this first method seems to be
an obvious approach to the solution. It shows, at least in principle,
that the matrices M, C, and K can be detemined from experimental data.

Let us excite the system of equations Mx + Cx + Kx = f at the kth
coordinate with exp (iwlt). The steady state response will be
Yy €XP (iwlt) for k = 1 to m. (See the discussion and Eqs (A35) - (A40)
of Appendix A . From this set of experiments one obtains the matrix

equation

2 s =1
“w) M+K+ iy C= [yl...ym] 1 (44)

16




The Eq. (44) is solvable for the matrix C. We have
C = (/u)Inly;...n ]} (45)

If this set of experiments is repeated with an wy # 0y then we

obtain a system of matrix equations

2 2 -1
“w) M+ K Re[yl...ym] 1

(46)
2 -1
Twy M+K = Re[yl...ym] 2
which is readily solved for the matrices M and K.
Now let us note what is involved in this first method. The
experimental requirement is a "shaker' set up for each degree of
freedom of the system and an excitation at each degree of freedom of
the system at frequencies w©y and Wy
The computations involved in this method are the determination of
the colums of the matrices [yl...ym]l, and [yl...ym]2 (See Eq. (A40);
computing the inverses of the complex matrices [yl. "ymll’ and (yl. . .ym]z;
obtaining the matrices M and K (Eq. 46) and the matrix C (Eq. (45)). In
addition, if one needs the modal vectors, natural frequencies and damp-
ing ratios then one has to perform an eigenvalue and eigenvector analy-

sis involving the matrices M, C, and K. Stated in another way one has

to determine a linearly independent set of n functions of the form
u exp (\t) which satisfy the equation MX + Cx + Kx = 0.

In the determination of the matrices M, C, and K there are no
simplifying assumptions. None of the operations or computations are

performed approximately. Indeed even symmetry of the matrices M,C,

and K is not needed or used.
L 17
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The value of the components of the complex vectors Yk depend upon
the frequency « . As usual, let yjk denote the jth component of the vector
Yir 1T one had a graph of iyjkl as a function of w one would observe
that iyjk! is small when w is not close to a natural frequency of the
system. This remark is evident from Eq (A36). Hence the inverses
[yl...ym]-i and [yl...ym]'é obtained from experimental data may be very
inaccurate for most choices of w0y and w,.
In the next method considered the frequency response function is de-
termined experimentally as a function of frequency w, [1-6]. This method is
characterized by its use of techniques of Fourier Analysis. An analo-
gous method based on the Laplace transform is also possible.

Let{F f(t)} denote the Fourier transform of the function f(t). We

have [w 2 M + iuC + KJF{x(t)} = F{£(t))or
Fix(t)} = [-u? M + iaC + K] L FI£(t)) A7)

Now let fj (t) denote a vector valued function of t with all but the
jth component identically zero. Also, let xj (t) denote the response

to fj(t). Then the jth column of [~w2 M+ iuC + K]'1 is given by

jth colum of [-w2 M+ i uC + K] ™1 = Fix; (8)) / FUE (D) (48)

For j running through the values from 1 to m the matrix [-wz M+ iwC + l(]‘1
is completely specified as a function of w , see Eq (A43).

If the matrices M, C, and K are symmetric and if the natural
frequencies of the system are well separated then the vibration parameters

1

can be determined from a single colum of | - M.+ AL+ K] ~* such as given
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by Eq (48). For example, from Eq (A43) the first column of

[-wz M+ i Cut K]'l is the expression
n
E ) w v/ (Re-rp) (49)

Thus the vectors Wik and the complex numbers )‘k for k=1 ton
need to be determined so that the equality

n
k=z=l ukvuJ(iw-Xk) = F{xl(t) }/F{fl(t)} (50)
holds (at least in a curve fitting sense).

This second method is suited to an impulse type excitation but
other forms of excitation may be used [4 ]. The experimental pro-
cedures for these first two methods differ. In this second method the
transient part of the response is important in the analysis process,
whereas, in the first method the steady state part was used. Note
that the method of Section II uses the same kind of experimental data
as the first method of this section.

For this second method we observe that there are two computational
tasks. First, a column of the frequency response function must be
computed, Eq (48), from the excitation and response data. Secondly, 1
the modal vectors and characteristic values must be extracted from the
computed frequency response function data. Let us examine these two
tasks further. 3

For the first task the excitation data and the components of the
vector response data are fitted by trigonometric interpolation poly-
nomials to obtain the frequency response function data, Appendix B.
If the system of differential equations MX + Cx + Kx = f is of order

m then one has up to m+1 fits by trigonometric polynomials, depending
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upon the number of degrees of freedom of interest. For a complete
analysis (determination of the matrices M, C, and K) all m+1 fits must
be made. It is recognized that the frequency response function data
is the result of certain approximations.

A number of ways for extracting the characteristic values and
vectors from the frequency response function data are noted in [3,4].

The problem of course is the detemmination of the quantities WV and

SO that the expression (49) fits the frequency response function
data. Present practice is to least squares fit the frequency response
function data by the expression (49). The "mormal" equations, result-
ing from the direct approach to a least squares fit of the expression
(49) to the frequency response function data, are not solvable exactly.
Thus the modal vectors, natural frequencies and damping ratios are
determined approximately. The graph of the expression (49), after the
quantities WYk and % have been determined, when compared with the
graph of the frequency response function data, gives a visual check of
the fitting process.

It is clear from the above discussion that there is considerable
data manipulation and processing associated with this second method.
The desired vibration parameters are obtained by numerical (approximate)
methods. On the other hand this second method may not be as sensitive
to errors in the data as some of the other methods.

In method 2 (just considered) the vibration parameters are

obtained from the measured (experimentally determined) frequency response

function. In method 3 to be considered next, the vibration parameters

are obtained from the measured impulse response function. This method
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is based on Eq (A31) when expressed as Eq (A45), Appendix A.
When the forcing function f(t) has only one component, for
example, the first component different from zero then Eq (A45) sim-

plifies to
t
x(t) = fo I, (t-0)f; ()dr (51)

Set t) = 7 = kat. Observe that Il(tj-rk) - Il(rj_k)fbr k<j. If the
integral in Eq. (51) is evaluated by the trapezoidal rule we have

x(t;) = (I)(t;) £(0)/2 +k§111(1j_k) £, ()8t (52)

Note that for j=1 Eq (52) is solvable for 11(11). Now that Il(rl)
is known, then for j=2 Eq (52) is solvable for 11(12) and so on. In
this way the impulse response function Il(t) is determined from experi-
mental data.

The impulse response function data is used to determine the vibra-

tion parameters. From Appendix A, Eq (A34) we have

n
Il (®) =kZlukv1kexp (th) (53)

The quantities WY1k and Me need to be determined so that the function
defined by Eq (53) fits the impulse response function data obtained
from Eq(52).

We will now describe briefly a way to obtain the vibration para-
meters from the impulse response function data. This procedure is given
also in (7, pp 270-280]. A component of Il(t) is of the same form as
Il(t) as given by Eq (53). That is, the jth component of the vector
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valued function Il(t) is scalar function of the form
n
g(t) =kzl ak(exp(xkt) (54)

Briefly stated, the problem is to determine the complex numbers Ak
and the coefficients a from the data tj = t+jh and 8 ~ g(tj) for
j =0,1,2 and so on.

The problem is solved in two stages. In the first stage the
Xk's are determined and in the second stage the coefficients a .

First, we determine the coefficients Ck of a difference equation
g(t) + Clg(t+h) +...0% Cng(t+nh) = () (5%5)

which the functions exp (th) (and hence any linear combination of the
exp (Akt) also) will satisfy for a fixed value of h and all values of

t. Using the data we obtain the system of equations

Cifk * Cofpay *++o* Cfyen-1 = 81 (56)

for k=1, ... , n which is solved for the Ci S.

Now set
p = exp (Ah)
then
exp (Ajh) = p)
We see that g(t) = exp (At) will satisfy Eq (55) if p is a root of

the polynomial equation

Cp" *+.eo® Cip*L = 0 (57)
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Then

Ah = logep (H8)

Thus the A, are detemmined by the n roots Pk of Eq. (57).

k
The n roots Px of Eq. (57) are uscd also in the determination
of the coefficients A From Eq. (54) we obtain the system of

equations

k K
¢ boad BLP * R 50
L W T Bk (59)
for k = 0,1, ..., n-1. This system of equations determines the
coefficient . A method for computing the values of the uk's from
Eqs. (59) is given in [7, p 274].

Let Pk denote an n-dimensional vector whose components arve 1,

Pyr sror B

coefficient matrix for the (&s, Eq. (50) can be written in the

respect ivelv, where Py is a root of Eq. (57). The

dyadic form

n ™
g gl o, :
Ly Pk o (Wt By By (59)

[t is clear from this expression that the cocfficient matrix for the
Cis is nonsingular provided the roots Pr of Eq. (57) are all
different. This expression may also be helpful in examining the
coefficient matrix of the C&s for ill conditioning.
The fact that the characteristic values \k are all different does
not guarantee that the coefficient matrix for the Cis is nonsingular.

For example, if the characteristic values Ai and Ak and the sample

interval h satisfy the condition
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h(y-Ap) = 2ni (01) !

then

pj = exp(.\jh) = oxp()\kh) = Py (62)

and the coefficient matrix, by Eq. (60), is singular.

Let us review briefiy the computations involved in this method.
First, there are the mmerical integrations in the determination of the
impulse response function data.  Scecondly, the Lincar svatem given by
Eq. (56) must be solved for the difference cquation coefticionts (‘i.
Frrors in the coefficient matrix and in the right hand side of
Eq. (50) will affect the (',.":a. Thirdly, the roots of Iq. (57)
must be determined.  Lastly, the linear systom piven by Fg. (59)
must be solved for the amplitudes a for cach depree ol frecdom
of interest.

We will refer to the next two methods as method 4\ and 4R
respectively, [8, 9, 10]. In these methods the inttial (or
original) data is a solution x(t) ot the homogencous cguat ton
M‘.; v Ox + KX = 0. The vector function x(t) is a liear combinat ion
of the functions ukv.\pl\kt). Ihus x(t) is of the same form as

the impulse response function.

[t is clear that the procedures described in method 3 could be
used to determine the characteristic values and associated charac-
teristic vectors from the function x(t). The function x(t) is original
experimental data whereas the impulse response function is computed from
experimental data. Thus the numerical integration step of method 3 used

to obtain the impulse response function could be eliminated in the case
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where x(t) is a free response of the structure. However, the system
matrices M, C, and K are not canputable from the results so obtained (see
remarks which follow Eq (A43) of Appendix A).

The equations and details of computations in the methods 4A
and 4B are given in Appendix C. Here we only need to note what is
involved in these two methods and contrast and compare them with the
other methods whenever possible.

The first step in Methods 4A and 4B is the determination of the
"system'' equations. The second step is the determination of the
characteristic values and vectors from the system equations ocbtained
in the first step. All the previous methods, except for the very
first of this section, first determined the characteristic values and
a particular normalization of the characteristic vectors so that the
system equations can be determined from these quantities.

In method 4A the system equations detemmined are the equations
of an equivalent first order system, Eqs (C4) and (CS) of Appendix C.
Thus, the matrices M, €, and K are not obtained in this method. A
numoer of numerical integrations, see Egs. (C20) and (C21), are needed
to produce the data required in the determination of the system
equations, see Eq (C9).

The method 4B is free of the numerical integrations required
in method 4A. This freedom is achieved by detemining a system of
difference equations which has the same solutions as the differen-
tial equations (see the discussion following Eq (C22) of Appendix ().
The matrices M, C, and K are not obtained in method 4B.

After the system equations are obtained an eigenvalue and

25

e e AT SR e PN T AR K33 A Y . - ) i el




Y
—

e i ocan il
H

eigenvector analysis are performed to obtain the characteristic

values and vectors. One should note that the matrices involved in
the computations in methods 4A and 4B are twice as large as those
in the other methods.

In the preceding pages of this section we have described methods
2, 3, 4A and 4B. These methods essentially satisfy our self imposed
requirements. That is, the matrices M, C, and K are not assumed
linearly comnected and the vibration parameters can be determined from
the response to the excitation at a single point. In the discussion of
these methods one acquires some awareness of computational require-
ments. However, the previous discussion was primarily concerned with

the foundations of the methods. Here now we want to make quantitative

estimates of some computational costs associated with two of the methods.

The Fast Fourier Transform Algorithm provides a significant reduc-
tion in the cost of the computations indicated by Eq. (48). Thus an
operations count for the process which gives the value of a component
of F{xj(t)} at N stations is of the order of N log,N. In method 3
the determination of the value of a component of Il(t) at N stations is
the same as solving a triangular system of linear equations. Hence,
the operations count is of the order of N(N+1)/2.

The method of Section II and the methods 2 and 3 can determine
the natural frequencies, damping ratios and corresponding mode shapes
at specified degrees of freedom of interest. That is, (we haven't
emphasized this point) one doesn't have to compute these vibration
parameters for all m degrees of freedom. However, the system matrices

M, C, and K can be determined by the method given above only if the
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components of the appropriately normalized characteristic vectors
are known for all m degrees of freedom.

In methods 4A and 4B ''equivalent' system matrices of order n = Zm
are determined first. Thus, one must select m degrees of freedom and
collect and use the response data at all of these degrees of freedom.

The selection of the data collection stations and the sampling frequency
may influence the calculation of the characteristic values and associated

characteristic vectors. There are similar difficulties associated with

the other methods.
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SECTION IV
RESULTS AND CONCLUSIONS

In this section we describe the numerical experiments used in
testing the method of Section II and give the results of these experi-
ments. We note again some of the observations made in the previous
sections.

Sample problems to test the method of Section Il are readily con-
structed. One uses Eq. (A36) of Appendix A for this purpose. Thus,
in Eq. (A36) we assigned appropriate values to Ak and Uy for k=1 to
m. This in turn fixes the values of As Uy and Vi for k=1 to n=2m.
Then for a given vector r and values of w Eq (A36) gives vectors y.

We used the vectors y, obtained in this manner, in the method of

Section II to compute the xk’ up and Vir

For a system with m=4 the computed values of Ak’ Uy and Vi agreed
with the assigned values to about 8 decimal places after 10 or so
iterations. In Appendix D we display the computed values and assigned
values in one case where the characteristic values are all different
and in a second case for a characteristic value of multiplicity 2.
These results show that the method of Section II is computationally
feasible and capable of high accuracy.

The methods discussed in Section III are also capable of high
accuracy, at least in principle. However, as is well known, the
excessive cost of high accuracy frequently results in compromise.
Limitations on computational capabilities also limit the attainable
accuracy.

The method of Section II requires the steady state response
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to a sinusoidal excitation. Method 2 computes the frequency response

function from impulse or random excitation. Method 3 computes an
impulse response function also from an impulse-like excitation. Methods
4A and 4B are based upon the free response. Thus, the way in which
a structure is excited influences the choice of method for computing
vibration parameters. Alternately, first choosing a method for com-
puting vibrations parameters determines how the structure is excited.
From these remarks it is clear that the various methods comple-
ment one another. We have noted that the method of Section II assumes
the structure is lightly damped. If this is not the case then
methods 3 or 4A or 4B are possibly better suited to determining the
vibration parameters. On the other hand if one wants the matrices

M, C, and K then a method other than method 4A or 4B should be used.

In all the methods there is some stage which involves the
determination of the characteristic values Ak and the modal vectors
U - In the method of Section II, the numbers Ak and the vectors
u, are determined directly from the experimental data. In the
other methods certain intermediate steps are necessary before
calculating the Ak and Uy . Thus in the methods 4A and 4B one first
determines the matrices of a system equivalent (in the sense noted
earlier) to the system given by the matrices M, C and K. The Ak
and u are then obtained as the solution to the generalized algebraic
eigenvalue problem defined by the matrices of the "equivalent'' system.

In method 3 one first determines an impulse response function

which we denoted by Ij(t). The function Ij(t) is defined as the
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solution of a Volterra integral equation of the first kind, Eq. (51).
By transforming to the frequency domain, the integral equation problem
of method 3 is reduced to the algebraic problem of method 2. See
[11]. The impulse response function (or its transform, that is, the

frequency response function,is assumed to have a specific form,

Eq. (53) or Eq. (50)). After either the impulse response or the
frequency response function is known the identification of parameters

A and U begins.

Our purpose in this report was to present (Section II) a method
for determining the characteristic values, modal vectors and the mass,
damping and stiffness matrices M, C, and K from the steady state response to
sinusoidal excitations at frequencies close to resonance. The mathe-
matical background for this method (Appendix A) with a few additions
is also the background for other methods which we described and discussed

in Section III. Thus, we were able to note difficulties (e.g., an inte-

gration being replaced by a numerical process) with each method.

The effects ot these difficulties need to be investigated further.
These effects could be determined by analysis but, possibly, more readily
by numerical experiments. Thus numerical experiment could determine the
computer resources required by each method to obtain the solution to a

prescribed accuracy. Secondly, the sensitivity of each method to error

in original data could be estimated also by numerical experiment,




APPENDIX A

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

In this section we give the mathematical background (notation
and assumptions) for procedures for determining mass, stiffness and
damping properties of a structure. The mathematics required is a
knowledge of the nature and properties of the solutions to a system
of second order linear differential equations (Lagrange's equation) 1

with constant real coefficients. The determining of the structural

b parameters, mathematically speaking, is of the nature of an inverse
problem. Specifically, we are concerned with determining the
differential operator (those constant coefficients). Such a system of
differential equations can be characterized by the solutions of the
homogeneous equation and the transposed homogeneous equation. The roots
of its characteristic equation and the associated characteristic vectors

are required for one such characterization.

Below we develop expressions for solutions of a system of
second order linear differential equations with constant, real
coefficients. These expressions are obtained from expressions for
the solutions to an equivalent first order system of equations. The

results obtained are found in texts which discuss systems of ordinary

differential equations in some detail, however not always in the
explicit form given below. For additional details concerning systems
of differential equations see references [12, 13, 14]
Let 1
MD? + CD + K] x(t) = £() (A1)
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where D indicates differentiation with respect to t, denote a system
of second order differential equations. The mass, damping and
stiffness matrices, M, C and K, are square matrices of order m with
real entries. The vectors x = x(t) and f = f(t) are of dimension
m with time dependent components which may be complex valued. The
matrices M, C and K are usually symmetric but this condition is not
essential for the development given here.
It is assumed that the homogeneous equation
; Mk + Cx + Kx = 0 (A2)
has n = 2m linearly independent solutions. The associated
characteristic equation is
det M2+ A + K] =0 (A3)
The left hand side of Eq. (A3} is a polynomial in A with real
coefficients . This polynomial is of actual degree n. Since the
coefficients of the characteristic equation are real, the complex
conjugate of each complex root of Eq. (A3) is also a root.
If A is a simple root of the characteristic equation then there
is a solution of the homogeneous equation of the form
x(t) = uexp (At) (A4) !
where u is a nontrivial constant vector. The vector u satisfies the
condition
MZ+Cr+K u=0 (AS)
and is unique except for a non-zero multiplicative factor. If A is
a root of multiplicity k > 1 we assume the matrix MAZ + Cx + K is of

rank m - k. In this event there is a linear manifold of vectors of

dimension k and every vector u in this linear manifold satisfies Eq. (AS).
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Accordingly for every such vector u, x(t) = u exp (At) is a solution
of the homogeneous equation.

The roots of the characteristic equation are oftentimes referred
to as characteristic values or eigenvalues. The vectors u which
satisfy Eq. (AS), will be referred to as the modal or characteristic
vectors or eigenvéctors corresponding to the characteristic value A.

The characteristic equation

det M2 +ca+ k) =0 (A6)
of the transposed homogeneous equation
M% + CTx + Klx = 0 (A7)

has exactly the same roots as Eq. (A3). For a given A the matrices
MAZ +Cx + K and MTAZ + CTA * KT have the same rank. Consequently,
the dimensions of the solution sets of Eqs. (A2) and (A7), correspcnding
to a characteristic value A, are the same. If the matrices M, C and K
are symmetric then the solution sets are identical. In either
event there are n characteristic values Ay and associated constant vectors
ukand Vi such that for k =1 ton

X (t) = u exp (A t)
and

zk(t) = Vi exp (Akt)
are linearly independent solutions of Eqs. (A2) and (A7) respectively.

Set xl(t) = x(t) and xz(t) = xl(t). Then the system of first

order equations

0 M| x, K cl Ix 3 (A8)




is equivalent to the system given by Bg. (Al). If the matrices M, C,
and K are symmetrical one can obtain an equivalent first order system
which is also symmetrical [15]. Express Eq. (A8) symbolically as

Ay + By = £ (A9)

Basic or fundamental solutions of the homogeneous equation

Ay + By = 0 (A10)
are of the form U exp (At), where U is a vector of dimension n. It
is clear that a linearly independent set of modal vectors is given by

B

% 11
AUk ()

for k = 1 to n, where Ak and u, are the characteristic values and
associated modal vectors of a set of linearly independent solutions of Eq.
(A2). The characteristic values )\ satisfy the characteristic equation

dét [M +B] =0 (A12)
and the associated modal vectors ﬁk satisfy the condition

[MA + Bl = 0 (A13)

For the transposed homogeneous first order system
Ay + Bly = 0 (A14)
the modal vectors ¥, , for k = 1 to n, are given by
b = |-y
s (A15)
Vk
In Eq. (A15) A and Vi denote the characteristic values and modal
vectors of a set of linearly independent solutions of Eq. (A7).
The stiffness matrix K is not required to obtain the v, from Vk.
A modal vector Vk corresponding to the characteristic value Ak

satisfies the condition

o P, A A16
M HA + B =0 (A16)




From Eqs. (A13) and (A16) it follows that if j # k and Aj # Ak’
then the associated modal vectors Vj and ﬁj satisfy the orthogonality
conditions

ViAG, = 0 and V:Bi, = 0 (A17)
J J
Even though Ak takes on the same value for several consecutive values
of the index k, the associated model vectors ﬁk and Vk can be
determined so that the orthogonality conditions Eq. (Al17) still hold
for j # k. The vectors ﬁk and Vk may be normalized so that in

addition to the orthogonality conditions they satisfy also the conditions

"UT -~ T T ~ = -
vKAuk =1 and VkBuk Ak (A18)
Write
U Tp0ptexe (0] anl v R esh g ] (A19)

Here U denotes a matrix whose kth column is the vector ﬁk.
Similarly, the kth colum of the matrix V is the vector V;. Let
A denote a diagonal matrix with the characteristic values Ak in the
diagonal positions. The relations given in Eqs. (Al17) and (Al8) can
be expressed in matrix form also, namely
VAU = T and VTBU = -A (A20)

Note that the v vectors corresponding to a characteristic
value X of multiplicity greater than 1 may be assumed to
have a special form, at least if the coordinate vectors are appro-
priately ordered. For definiteness, suppose Al is of multiplicity 2.
Let 91 and Vz be linearly independent modal vectors corresponding to Al.
Then any linear combination of Vl and Vz is also a modal vector
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corresponding to Ape From this fact it follows that there are
linearly independent vectors \71 and \72 corresponding to A, such
that, see Eq. (Al5), the first component of vy is not zero, the
second component is zero, the first component of v, is zero,and

the second component is not zero. Corresponding to these vectors \71
and i’rz of special form there are vectors fxl and ﬁz which satisfy the
orthogonality and normality conditions, Eqs. (A17) and (Al18).

Thus whatever the degree of multiplicity of A greater than 1,

we may assume that there is a linearly independent set of V vectors,
the v portion of which has the special form just described for some

consecutive set of components. Moreover, corresponding to these v

vectors of special form there are U vectors which satisfy the orthogonality

conditions Eq. (A17). The normality conditions can be met by appro-

priately adjusting (there are infinitely many ways) the magnitudes of the

u and V vectors.
Let ;t = A(t) denote the diagonal matrix of order n for which the

kth diagonal element is exp(xkt). Set (see Eq. (A19))

UCt) = U A (A21)
M .

UCt) = U AA = U AA (A22)
and )

AU+ BU=[AUA+BU] A=0 (A23)

We now seek a particular solution y(t) of Eq. (A9) where we
suppose
y(t) = U(t)z(t) (A24)
and the vector function z(t) is to be determined. Substitute ).'(t) and

y(t), as determined from Eq. (A24), into Eq. (A9) and use the results,
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‘ Eq. (A23) to obtain

AU A z(t) = £(t) (A25)
Multiplying Eq. (A25) by A"1(t)V), we obtain

2(t) = IZ A LeovTE(D) de (A26)

Hence
t ~ T
y(t) = IO UA(t - T)V £(1) dt (A27)

Partition the matrices U, A(t - 1) and VT into (m x m)-submatrices
£

E U,, U i AsEt
{ L S
i Un Yy J 0 Ay (A28)
and
W N
' 1n V12
. A
' Va Va2
1 -

This partitioning is in conformity with the partitioning of the
vectors u, v and y, Eqs. (All), (A15) and (A8). One readily obtains
from Eq. (A27)

t P ~
= - - f d
x, () jo [Uy Ry (8 - OV, + Uy, (& - TIV,lECR) dn
(A29)
It is clear that the term Uul\u(t - T)Vlzf('r) represents

[exp Ap(t - Ty *++ exp A (t - Ty ] v'{ £
v:; £ 30

= [exp Al(t - T)UIV’{ ses eXp )‘m(t - -t)umv:;] f(1)

A similar expression is obtained for the temrm Ulezz(t - T)szf(T).
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Thus we obtain, in dyadic form, the expression for xl(t)

n t T
xo(t) =k§1 IO W vy exp Ak(t - f (1) dr (A31)

Note that the subscript on x has changed from 1 to 0. The
use of the subscript 1 is discontinued because we no longer care
to emphasize the relation to Eq. (A8). The subscript 0 is used because
xo(t) as given by Eq. (A31) is the particular solution which
satisfies Eq. (Al) with zero initial conditions.
Take f(t) = h(t)r:j where h(t) = 0 for t < 0, h(t) = 1 for
t >0 and T denotes the jth coordinate vector. The jth component
of rj is 1 and all other components are zero. Also, let vjk denote
the jth component of the vector Vi From Eq. (A31) the step response

Hj (t) due to a unit step excitation at the jth station is

t
n
Hj (t) = Io kfl ukvjk exp Ak(t - 1) dt (A32)
That is
n n
Hj (t) = - kfl (1/>«k) ukvjk + kzl (1/xk) ukvjk exp O‘kt) (A33)

The impulse response IJ. (t) is obtained from the step response Hj (t) by

differentiation. Thus differentiating Eq. (A33) gives

n
Ij (t) = kfl ukvjk exp O‘kt) (A34)
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The responsc xm(t) to the harmonic excitation r cxp (iwt) is |

n

T

X (t) = -8  [uv, « rexp(A,t)] +
W k=1 k k k

(A35)
n

= [V * T exp(iut) /(o - A)
In Eq. (A35) the response xw(t) is expressed as the "sum'' of two sums.
The first sum is a linear combination of solutions of the homogeneous
equation, Eq. (A2), called the complementary function. The second sum
is a particular solution of LEq. (Al) with f(t) = r exp (iwt). 1[ the
characteristic values Ay are complex numbers with Re |Ak| < 0 then the
complementary function goes to zero as t becomes large. The complemen-
tary function is a transient and the particular solution is calléd the
steady state solution.

Whether the complementary function is transient or not, sct
n T _
y = [|& ukvk/(im - xk)] e r (A36)
1

Then y exp(iwt) is a particular solution of Eq. (Al) when f(t) = r exp(iwt).
For the time being we will refer to y exp(iwt) as the steady state solution.
Many procedures for determining values for structural paramcters are based \

on Eq. (A36). It follows that

[-aM+K+iaCly=r (A37)
and from this equation that
[-wM+ K- inC] ¥=r (A38)

Then (by lincarity)
[MDZ + CD + K] [y exp(iwt) - y exp (-iwt)]/2i = r sin wt
(A39)
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That is, [y exp(iwt) - y exp(-iwt)]/2i is a particular response to the
sinusoidal excitation r sinwt.

This response to the sinusoidal excitation can be rewritten as
[y exp(iwt) - y exp(-iwt)]/2i = [(y - y)/2i] cos wt + [(y + ¥)/2] sin wt

= Im [y] cos wt + Re [y] sin wt (A40)

From this equation it is clear that if the steady state response to a
sinusoidal excitation r sin wt is known then the steady state response
to the harmonic excitation r exp(iwt) is known and conversely.

Let aj denote the j-t-b- component of Re [y] and bj the j-—t-}l component
of Im [y]. Then in the usual fashion we have

2,1/2

. < [a? ;
aj sin wt + bj cos wt [aj + bj] sin (ot + ej) (A41)

6. = b.
tanJ bJ

/aj (A42)
Eq. (A41) provides an alternate expression for the steady state response
to a sinusoidal excitation.

The Eqs. (A36) and (A37) contain an important relationship, namely

[oM+K+inc)l= g ukv{/(im -2 (A43)

The right hand side of Eq. (A43) is the frequency response function.

If the modal vectors u, and vy and the characteristic values 1, are
known, then Eq. (A43) can be used to determine the matrices M, C and K.
We must remember that Eq. (A43) is not true for arbitrary modal vectors
Uy and Vi The Eq. (A43) was obtained by assuming the vectors u, and vy
appropriately normalized.

Let fj (t) denote the jg- component of the vector f(t) and as before,
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ij the jth component the vector Vie: Then

T m
v £(t) = jEI Vi (©) (A44)

Using this result we can rewrite Eq. (A3l) as

t
n m
(t) = R ) TR SR LY
X, Jo A X . ka j T)) exp k( 1)dT
t m n
g Jo }51 ££1 Vi P (€ - D (D]t

That is, we obtain
t

m
xo(t) = ] C I.(t-1) . f.(1))dr (A45)
'=1 -] J
0
The Eq. (A45) expresses the response xO(t) as a sum over j of the
convolution of the jth impulse response with the jth component of

the excitation.




APPENDIX B

THE FOURIER INTEGRAL, FOURIER SERIES AND TRIGONOMETRIC
INTERPOLATING POLYNOMIALS

In this section we exhibit the relation between the Fourier
series representation, a trigonometric interpolating polynomial

representation and the Fourier Transform of a real valued function

f(t). The results of this section may be found or ferreted out of
standard references such as [7, 15, 16]. They are included here for
completeness and ready reference. Let us assume that the function
f(t) satisfi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>