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SECTION I

INTRODUCTION

In recent years , the development of mini computers

and certain algorithms have renewed interest that a

practical way may be found to extract from measured

• vibration data the basic structural dynamic properties

which govern the modal response. Such an ability could

greatly enhance the usefulness of required ground vibration

tests of new or modified aircraft for evaluation of

aeroelastic , aeroservoelastic , dynamic loads and other

dynamic phenomena directly related to aircraft safety.

As a consequence of these developments , a number of

methods have been proposed by diverse groups , many of

which are outside the airframe industry. The unfamiliarity

of some of the methods , semantics problems , and proprietary

considerations , have hindered understanding of the

basics involved for evaluation , development or adaptation

for more specific airframe use. This report describes the

foundations of some of the more prominent methods on a

common basis for initial comparisons and offers a method

based on the steady-state sinusoidal response rather than

the transient response used by the other methods .

We assume the structure is modeled by a system of

second order differential equations with constant coefficients.

In matrix and vector notation this system of equations can

1 
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be written as

M x + C i + Kx~~ f

The matrices M, C and K are of order m and are called the

mass , damp ing and stiffness matrices respectively. The

elements of these matrices are real numbers. The forcing

function or excitation f - f(t) is a vector function of time

with m components which may always be considered as known .

The response x x(t) is also a vector function of time with

m components which are determined by measurement. The

components of the vector functions f(t) and x(t) may be

complex valued .

If the vector function u exp (At) satisfies the homogeneous

equation M~ + ck + Kx = 0 then the complex number A is called a

characteristic value and the vector u a characteristic or modal

vector associated with A. In this report we consider methods

for determining tl~~n~dal parameters , that is , the characteristic

values A or the natural frequencies and damping coefficients

and modal vectors u. The natural frequencies (or resonant

frequencies) and damping coefficients (or damping ratios)

are readily obtained from the characteristic values and

conversely.

The methods considered in thisreport have the capability

of determining the vibration parameters and the matrices M ,

C and K from the measured responses x(t) to excitations f(t)

wh ich have only one (and always the same) component different

2
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from zero. For most of these methods , only symrnetery of the

matrices M, C and K is required. It is not necessary to assume

any relation (e.g. proportional damp ing) between M , C and K.

If the matrices M , C and K are not symmetric then ,

in general , one must excite the system at all stations.

That is , one needs a linearly independent set of excitation

functions f(t) and the corresponding responses x(t).

The excitation f(t) and the resulting response x(t)

are experimental quantities determined by measurements.

Accordingly these quantities are subject to error. For

purposes of this report we assume ideal (error free) data.

The various methods were examined to see if , at least in

• principle , the desired quantities could be obtained

accurately by the method . The sensitivity of a method to

errors in the data could be a decisive factor in the selection

of a method . This aspect has not been treated because t he

author is not sufficiently familiar with the practical

aspects of the experimentation procedures.

In Section II we propose a method for determining

vibration parameters from the steady state response to

harmonic excitations. The method is based upon Eq. (A36)

of Appendix A. We show how to compute the characteristic

values A k and the modal vectors Uk. We also show how to

cope with the case of characteristic values of multiplicity

greater than 1. For this case one must excite the system at

a number of different stations separately. This number  b e i n g

the same as the multi plicity of the  c h a r a c t e r i s t i c  v a lu e .
3
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The method of Section II is readi ly extended to deal

wit h the case where the matrices M , C , and K are not

symmetric. For this n o n s v m m e tr i c  c a se  one must perform

experiments (separately) at each station. The abi lity

to treat the nonsymmetric case seems to have been

overlooked for the most part .

In Section III we describe and discuss other methods

for determining vibration parameters. We believe that we

have described the major possible methods for determining

vibration parameters from experiments at a single degree

of freedom when no relations are assumed between the

matrices M , C , and K. In Section IV we describe and give

the results of numerical experiments with the method of

Section II. We note possible areas for further investiga-

H tion and present our conclusions .

The theoretical treatment may be carried out in

either the time domain or the frequency domain. In

general , the experimental data appears in the time domain.

This time domain data is transformed to frequency domain

data by numerically Fourier transforming the time data.

However , if one measures the steady state response to

harmonic excitations then , essentially, one obtains the

experimental data directly in the frequency domain. Hence

note that the method of Section II can also be used in

methods which determine the frequency response function

experimentall y.

4
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In Appendi x A we give the mathematical background for the

methods described in this report. In Appendix B we display the

connection between the Fourier Integral , Fourier Series and tri g-

onometric interpolati ng polynomials. Appendi x B is background

ma te iiai for method 2 of Section 111. Appendix C is

background material for methods 4A and 4B of Section III.

Finally in Appendix D we give instructions for the user

and a program for the method of Section II.

5
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SECTION II
VIBRATION PA RAMETERS FROM THE STEADY STATE RESPONSE

TO SINUSOIML EXCITATIONS

In this section we describe a procedure for determining the

“complex frequencies” and associated complex mode shapes of a

structure from i ts measured steady state response to sinusoidal

excitations of frequencies close to resonance. In principle ,

only one “point ” of the structure need be exc ited at appropriate

frequencies , provided there are no nniltiple characteris t ic values .

The case of no multiple characteristic values is treated first

af ter which we show how to deal with mult iple characteris tic values.

Consider the following system of linear second order

H differential e9uations wtih constant coefficients

!~~ + C ~~+ Kx= f (1)

In Fq. (1) M, C and K are real , square matrices of order m. The

matrices M, C and K are referred to as the mass , dan~ ing and

stiffness matrices respectively . The vectors x = x(t) and f = f(t)

are of dimension m with time dependent components which may be

complex valued.

In Appendix A it is shown that the steady state response to a

harmonic exc itat ion f(t) = r exp (iwt ) of a system modeled by Eq.

(1) jç 
~ exp (iwt ) where

T
= y(w ,r) = 

~~ 
ukvkr/(iw 

- Ak
) (2)

k~l

For k = 1 to n = 2m the vector functions xk(t) = uk exp (Akt) are

linearly independent and satisfy the honxgeneous equation

M i + C~c + K x = O  (3)
6
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Similarly, the vectors zk (t) = vk exp (A kt) are linearly independent

and satisfy the transposed homogeneous equation. The vectors Uk

and Vk satisfy the normalization conditions expressed by Eq. (A17)

of Appendix A. The complex numbers Ak satisfy the characteristic

equation

det [A 2M + XC + K] = 0 (4)

- - The Eq. (2) is valid under very general circumstances. The only

requirement for the validity of Eq. (2) is that for a root Ak of

multiplicity ‘
~k 

the matrix A~M + XkC 
+ K must be of rank m m.K.

-; The complex numbers Ak and the associated vectors U
k 

are the

“complex frequencies” and mode shapes which we want to determine.

The procedure to be described below extracts these quantities from

Eq. (2) . For the nonsymetric case the vectors vk are not scalar

multiples of the corresponding Uk. For the determination of the Vk
in the nonsymetric case the system must be excited at each degree

of freedom with frequencies close to the resonant frequencies.

In principle , the procedure described below is general. In

the application of interest here the procedure is limited to systems

for which the characteristic values Ak lie close to the imaginary axis.

~bre precisely the iteration procedure suggested below requires values

W
K 

satisfying the relation I X~ - iw~ A
3 

- iw~ for all

r A
J
7~

Ak.
For the case in which the matrices M, C and K are real symmetric

matrices, and the roots Ak of the determinantal equation, Eq. (4) , are

simple and well separated, the vectors vk differ from the U
k 
by a

numerical factor, at most. This case is considered now.

7
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and a l l  ot hers .i re :e ro. For k — I to  in and 1 . .~ let v~~ exp ( t

he the s t ead~ st .i t e  rc~ponse to r 1 CX I) iw k .  t . Accord i i
~~~ lv out’ n~ikes

• t~~ measurements t o t -  each characteri st te  value . The vectors v~~ , are

computed from experimental data , that is  , iron the response to the

—inusotd.i l ( ‘XL I t a t  ion 1 1 ‘ 1 n (
~ k~

t 1 , sec \pI1en~1i x A, lq . -\.IO)

Ihe va l ues of are chosen so tha t

uI k1 In I ‘t k l 
~~~

~~~~~~ 

, is much less than 
~
1k+ . (ThC ‘k are i ndexed as dese r i bed

in Appendix A. ) For definiteness we discuss the case where the

e x c i t a t i o n  is in the f i r s t  coordinate direc t ion r 1 . The procedure

is the same reeard less of the fixed coordinate direct  ion exc i ted .

Here now we describe the i te ra t ive  procedure for determ i n ins’

the charac te r i s t i c  values and the associated vectors Uk and v k .

F i r s t  we t’jve the equations for computing initial values f o r

Uk and v 1~. Then we ~ lye the equat ions for comput ing successive

refinements of these quan t i t i e s  u n t i l  preass igned tolerances are

a t t ained.

For i 1 to in and Q = 1 , ., we have, on neglec t i ng a l l  hut

one term from Fq. (.~
),

— u.v!~r1/(i 
— \ • )  (t b )

as a f i r st approximation . Set

- \
E” 11 Y 11~~~2 ~~2 1 - 

-

where the sign is chosen so that t in Ri ‘~ 0. ( I f  one assumes a va lue

for \ . and computes ~ from Fq. ( )  it is clear that thi s is the

appropriate choice for the si gn. 1 From I t ~ . ( ~) one obtains
8
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i (~w~ -w~~)/((~ 
- 1) (81

for j - 1 to m. Thus Eq. (8) gives a first approxima t ion to A 1. This

f i rs t approximation of X~ is needed for computing the first approximation

of the vectors u~ and v~. From Eq. (b) we obtain

‘,j l  - 
— u~v~.r 1i(wj 2  

- w~1)/ (iw 11 - A~)(iw 12 
- A~ ) (9)

Now vj r 1 v1~ is the first component of the vector v~. We assume the

vector u 1 normalized so that its first component u~ = 1. Then from Eq . (9)

we have

- - Y1~ 2) ( iw ~1 
- A~) ( iw ~2 - A~)/i(w~2 

- w~~) (101

and the vector

u~ - ~~~ 
- Y~2) ( i w ~1 - X~)( i w ~~ - A~)/ i (w~2 

- w~1)v 1~ (11)

Hence v 1, as a scalar multiple of u3
is given by

vi vi j uj (12)

Thus in the first stage the computations perfo rmed are those

indicated by Eqs . (7) , (8) , (10) , (11) and ( 12 ) .

Let X~ , u?, and v’ denote the new value which one

is in the process of computing and let Ak, 
~
‘k and Vk denot e the present

value of these quantities respectively. For j - I to in, set

— Y
•) Q k~l 

u~v~r 1/ ( iu ~ 1 - Ak
) (131

k#j

(:o~ Iute

— ~ ~~j l~ I l ’~ J 2 2 1 (14)

where the sign is chosen as in Eq. ( 7 ) , and

9
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A? — ~(~(A)j~ 
- 

~j 2~”~~ 
- 1) (15)

Then

v~ . y
13~ (iw .~ 

- A~) (16)

:~ U? * ~~1(i~~1 - A~)/v1. (17)

and

v? = v1~u~ (18)

where X~ in Eqs . (16) and (17) is the A? computed in Eq. (15), v1~
in Eqs . (17) and (18) is the computed in Eq. (lb),and in Eq. (18) u.

is the u? computed in Eq. (17). At the same time one is computing

A?, u~ and one should record also

A” “ X ”  lQm+j j

• (20)

and

“
~~~+~~ 

=~ r~ (21)

These identifications should be made in the first stage also.

The computations in the refinement process , Eqs . (13) through (21) ,

are repeated until either preassigned tolerance requirements are

satisfied or the maximum nui~ber of passes through the refinement process

is attained. In the latter event one is faced with the task of

10
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determining why the tolerance requiremen ts were not satisfied . If

the tolerance requiroments are satisfied , then the matrices M ,C, and

K are determined next .

Before discussing the computation of the matrices M ,t , and K let

us consider a modificat ion of the above procedure which enables us to

handle the case of multiple characteristic values. For definiteness

$ suppose ‘2 A 1 A
4 

- and the romaining characteristic values are

simple. Let Vik and Ulk denote the component of the vectors V k and

Uk respectively. According to the discussion in Append ix A we may

suppose

v • v  - v  - v  - 021 12 43 34
(22)

U — u  — u  — u  — l11 12 33 44

- 
~~ 

As for the case of no repeated characteristic values the romathing

Uk vectors are assumed normalized so that the first component has the

value 1.

Let y(w ,r)exp(iwt ) denote the steady state response to the harmonic

excitati m rexp(iwt). The vector y(w ,r) is given by Eq. (2).  &zppose

we have obtained exper imentally the vectors y( w~~, r1) for t 1, 2 ,

H see Eq. (15) for k - 1, 5 , 6, “ , in and also the vectors

y( w 1~ ,r2 ) , y( w 3~,r3) and (y(w 3~
,r4). From this data one obtains a

first approximation to the characteristic values A k and the vectors U
K 

for

k - 1 to in in exactly the same way as for the case of no repeated charac-

teristic values.

Thus for first approximations compute as in Eq. (7)

— ~ fy 1(wj l , rk )Y (w J l , rk )/Y T U . 12 , rk ) y( wj , s rk ) J ” (23)

11
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where k — 1 for j 1, 5, 6, •‘• , m and k — 3 for j — 3.
Then a first approximation to is given by

— i(5w~1 
- Wj2 )/ (~j  (24)

for I — 1, 3, 5, 6 , • . e , m.
Next as in Eq. (9) we have
Y(wj l~rk)_ Y (w J2 .rk) — ujv

J
.r ki(wJ2 ~~.1)/(iW.1 

- A~) (iw~2 - A~)

th (2 5)
Let YP

(wJL~rk) denote the p— component of the vector y(w~ ~,rk). 4
Then from Eq. (25) we have

v
kJ 

— [Yk (wJl~rk) -Y k (wJ2~rk) . (iwJl 
- )I

J
) (iw

J 2  
- A~)/ i(w~2 - wj l )

(26)
where the value of k must be appropriately assigned depending on

j ,  see below Eq. (27) . Eq. (26) gives the k~1 component of the vector

vi.
The modal vectors are obtained as before, Eq. (11). Thus

u~ - ~~~~~~~~~~~~~~~~~~~~~ 
- A.)(iw., - 

~1~”t ~J 2 
- W i 1 )Vk i  (27)

• where k — I for j — 1, 5, 6 , • • • , m , k — 2 for j  = 2 and k = j  for

j — 3 , 4.

For values of j for which A~ is not a multiple characteristic

value the vectors v~ are given by

v
3 

— v1~u
1 (28)

as before. For values of j for which A1 is a multiple characteristic

value the associated vectors V
1 

are linear cou*~inations of the

associated u~ vectors . Rather than use subscripted subscripts we

chose to illustrate the procedure for determining the appropriate

12
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linear couthinations by example .

For the example being described the vectors and v2 are linear

combinations of the vectors u and u2
Thus

v1 — a 11 u1~~~a12 u
2 1

“2 
— a

21 u1 + a22 u2ç 
(29)

Now the vectors U
1 

and u2 are known from Eq. (27). The component v

of v1 and the component v22 of v2 is known from Eq. (26) . In addition,

because of the special form that we were able to assume for the vectors

v1 and v2 we have that the components v21 - V12 - 0 for the vectors

v1 and V
2 

respectively . Utilizing this information we can extract a

matrix equation from the system of vector equations, Eq. (29) for

- 
- 

determining the coefficients ajj .  Thus we have

[uii ‘~12] [a11 a
211 — 1~~ 

0 1 (30)
[u21 u22J 1a 12 a22j [0 v22j -:

After the coefficients a~j are determined, the vectors and v2 are

completely specified (that is , the first approximation thereof) by

Eq. (29).

In a similar fashion one has

v3 — b 11 u3 + b 12 u
41

— b + b  (31)V4 21 U3 22 u4,

From Eqs . (31) one obtains

[:~ ::] [:~ ~~~~~~~~ 

- [:~ V44] 
(32)

13 
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and hence the vectors v3 and V
4 

are completely determined also. From

the above discussion it should be clear how to deal with any rnmber

of multiple characteristic values whatever their multiplicity.

The computations described by Eqs. (23) through (32) provide

first approximations of the desired quantities. The refinement process

for the case of multiple characteristic values is basically the same -as for

tl~ case of simple characteristic values. We will abide by the same

conventions as adopted for the case of all simple characteristic values

see Eqs. (13) through (21).

Set as in Eq. (13)

“ Ty(w
1~
,r~) = ~~~~~~~ ~ EUkvkrP

/(iw
~ 

- Ak) (33)

k~j

Then replace y(wj~ ,rk) for .Q 1, 2 by Y(w
J~~

rk) in Eq. (23) . With

the value of thus obtained compute

= i(~~w11 
- wiz )/ (

~i 
- 1) (34 )

Then
n . (35)

“ic_i — [yl(wjl,rk)J(1~jl 
- A 1)

t1~~ Y(w~1~rk)/vkJ (36)

and for values of j for which A _i is not a repeated characteristic value

vJ
~j
l 

— ~~~~ (37)

The v_i corresponding to a multiple characteristic value A _i are computed

as above , see Eqs . (29) , (30) , (31) and (32) .

The refinement process described by Eqs. (33) thru (37)

is repeated until the tolerance requi rements are satisfied.

14
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C~ice the characteristic values and the appropriately normalized

characteristic vectors are known the system matrices M,C, and K are

readily obtained . Set

P(w) = - w~~+i~~+K (38)

and

Q(w) ~~~~~~~~~~~~ (39)

We noted, Eq. (A43) of Appendix A, that

P(w) — Q~~(w) (40)

so that

P(w)Q(w) — I (41)

Let the prime ( )  denote differentiation with respect to w.
From Eq. (38) we have —

K— P (0)

iC — P’(O) (42)

-2M—P” (O)

From Eq. (41) we obtain

P(0) - Q~~(Q)

P(O) —-Q (0)Q~(0)Q~~(0) (43)
P”(Q) = - (2P~(0)Q (O)+P(O)Q”(O))Q~~(o)

15
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SECTION III
OTHER METHODS FOR DETERMINING THE VIBRATION PA RAMETERS

In this section we describe and discuss other methods for deter-

mining the vibration parameters. We make no attempt nor claim to

discuss all methods. Indeed in the discussion below other ways to

achieve the same end will cane to mind. Each variant of the methods

described be]~~i may, of course, be cxrksidered another inetlxxl.

The methods of primary interest to us have ti~ distinctive

features; First, they assume no relation whatsoever between the matrices

M, C, and K. Secondly, these methOds have the capability of determin-

ing (almost) all vibration parameters of interest from the data

arising from exciting the system at a single degree of freedom, at

least for the case where all the characteristics values are different

from one another.

The first method which we describe requires that the

system be excited at each degree of freedom individually. Hence , it

is not a method of primary interest. However, given the problem of

determining the matrices M , C , and K this first method seems to be

an obvious approach to the solution . It sIu~is, at least in priniciple,

that the matrices M, C, ar~ K can be determined frun experimental data.

Let us excite the system of equations Mi + Cx + Kx = f at the kth

coordinate with exp (Iw 1t). The steady state response will be

‘
~ 

exp (iw 1t) for k - 1 to m. (See the discussion and Eqs (A35) (A40)
of Appendix A . From this set of experiments one obtains the matrix

equation

M + K + 
~~l 

C = 

~~~~~~~~~ 
(44)

16
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The Eq. (44) is solvable for the matrix C. We have

C — (1/~~)Im[y1...Y~]~~ (45)

If this set of experiments is repeated with an ~ then we

obtain a system of matrix equat ions

1 + - e y 1... y 1

(46)
2 -1- Re[y1.. 

~‘m1 2

which is readily solved for the matrices M and K.

Now let us note what is involved in this first method. The

experimental requirement is a “shaker” set up for each degree of

freedom of the system and an excitation at each degree of freedom of

the system at frequencies w
1 

and w2 .

The computations involved in this method are the determination of

the coltmiis of the matrices [y 1...y ~] 1, and t
~ l~

..
~m12 (See Eq. (A40) ;

computing the inverses of the complex matrices fy 1. . 
~ m11’ and [y 1. .

obtain ing the matrices M and K (Eq . 46) and the matrix C (Eq . (45)). In

addition , if one needs the modal vectors, natural frequencies and damp-

ing rat ios then one has to perform an eigenvalue and eigenvector analy-

sis involving the matrices M, C, and K. Stated in another way one has

to determine a linearly independent set of n functions of the form

u exp (~t) which satisfy the equation M5~ + C* + Xx - 0.

In the determination of the matrices M, C, and K there are no

simplifying assumptions. None of the operations or computations are

performed approximately. Indeed even symmetry of the matrices M ,C ,

and K is not needed or used .

17
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The value of the components of the complex vectors 
~k depend upon

the frequency . As usua l , let 
~jk 

denote the jth component of the vector

>k~ 
if one had a graph of as a function of w one weuld observe

that is small when ~ is not close to a natural frequency of the

system . This remark is evident from Eq (A36). Hence the inverses

[y1.. . y ]
~~ 

and [y1.. 
~~~~~ 

obtained from experimental data may be very

inaccurate for most choices of and ~~~~~

In the next method considered the frequency response function is de-

termined exper imentally as a function of frequency 
~~, ~i- 6] .  This method is

- -; characterized by its use of techniques of Fourier Analysis. An analo-

gous method based on the Laplace transform is also possible .

Let{F f(t)} denote the Fourier transform of the function f(t). We

have [~~~ 

2 M + iwC + K]F{x(t)} = F{f(t)}or

F{x( t ) )  = [ 2 M + iwC + K] 1 F {f( t ) } (47)

Now let f_i (t) denote a vector valued function of t with all but the

j th  component ident ically zero . Al so , let x _i (t) denote the response

tof_i (t). Then the jthcolunnof [-w2 M + i w C + K ] 1 isg iven by

j th colinm~ ~f [-w
a M + i £ + K] 1 

= F{x~(t)} I F {f ~ (t) } 48)

-1For j  running through the values from 1 to m the matrix [-~~ M + iwC + K]

is completely specified as a function of w , see Eq (A43) .

If the matrices M, C, and K are symmetric and if the natural

frequencies of the system are well separated then the vibration parameters

can be determined from a single colimri of [-w 2 M + iwC + K] -l such as given

18
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by Eq (48) . For example , from Eq (A43) the first column of

N + I Cu + K]~~ is the expression

~ u~(v k1~
j
~~~ 

) (49)

Thus the vectors u
k

v
j k  

and the complex numbers A k for k = 1 to n

- 
- 

need to be determined so that the equality

n

k—l 
UkVlk/ ( iu ~

.A
k ) — F{x1(t)}/F(f1(t)

} (50)

holds (at least in a curve fitting sense).

This second method is suited to an impulse type excitation but

other forms of excitation may be used [4 ]. The experimental pro-

• cedures for these first t~~ methods differ. In this second method the

transient part of the response is important in the analysis process,

whereas, in the first method the steady state part was used. Note

that the method of Section II uses the same kind of experimental data

as the first method of this section.

For this second method we observe that there are ti~~~~ computational

tasks. First, a column of the frequency response function must be

computed, Eq (48), from the excitation and response data. Secondly,

the modal vectors and characteristic values must be extracted from the

computed frequency response function data. Let us examine these two

tasks further.

For the first task the excitation data and the components of the

vector response data are fitted by trigonometric interpolation poly-

nanials to obtain the frequency response function data, Appendix B.

If the system of differential equations M3C~ + Ck + Xx - f is of order

m then one has up to m+l fits by trigonometric polynomials, depending

19
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upon the n~nnbe r of degrees of freedom of interest. For a complete

analvs is (determinat ion of the matrices N , C , and K) a11 m~l f i t s  must

be made . I t  is recognized that the frequency response func t ion data

is the result of certain approximations.

A numbe r of ways for extracting the characteristic values and

vectors from the frequency response function data are noted in ($,.+~

~be problem of course is the determination of the quantities ukv lk ~u~1

so that the expression (4 9) f i t s  the frequency response funct ion

data. Present practice is to least squares fit the frequency response

function data by the express ion (49). The “normal” equa t ions , result -

ing from the direct approach to a least squares f i t  of the expression

(49) to the frequency resix nse function data, are not solvable exac t ly .

Thus the modal vectors, natura l frequencies and damping ratios are

determined approximately. The graph of the expression (39), after the

quant it ies ukv l k ~~ k have been determined , when compared wi th  the

graph of the frequenc y response function data, gives a visual check of

the fitting process.

It is clear from the above discussion that there is considerable

data manipulation and processing associated with this second method.

The desired vibration parameters are obtained by numerica l (approximate)

methods . On the other hand this second method may not be as sensitive

to errors in the data as some of the other methods .

In method 2 (just cons idered ) the vibration parameters are

obtained f rom the measured (exper imentally determined ) frequency response

function . In method 3 to be considered next , the vibration parameters

are obtained from the measured impulse response funct ion. This method

20
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is based on Eq (A3l) when expressed as Eq (A45) , Appendix A.

When the forcing function f(t)  has only one component, for

example, the first component different from zero then Eq (A45) sim-

plifies to

t
x(t) f~ 

11(t--r)f1(i)dt (51)

Set tk — T k — kL~r. Observe that Il (tj -r k ) = Il(u j  k) for k~j. If the

integral in Eq. (51) is evaluated by the trapezoidal rule we have

x(t~) = (I1(t~) f1(O)/2 fl(Tk))~
T (52)

Note that for j=l Eq (52) is solvable for 11(11). Now that

is known, then for j=2 Eq (52) is solvable for I1(T2) and so on. In

this way the impulse response function 11(t) is determined from experi-

mental data.

The impulse response function data is used to determine the vibra-

tion parameters. From Appendix A, Eq (A34) we have

11(t) =~~
u1,~
vlkexp(xkt) (53)

The quantities Ukvlk and Ak need to be determined so that the function

defined by Eq (53) fits the impulse response function data obtained

from Eq(52).

We will now describe briefly a way to obtain the vibration para-

meters from the impulse response function data. This procedure is given

also in [7, ~~ 270—280]. A component of 11(t) is of the same form as

11(t) as given by Eq (53). That is, the jth component of the vector

21
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valued function 11(t)  is scalar function of the form

n
g(t) = 

~ 
ak(exp(Xkt) (54)

k=l

Briefly stated, the problem is to determine the complex numbers Ak
and the coefficients ak from the data t~ = t+jh and g~ 

= g(t 1 ) for

O,I ,~ and so on.

The problem is solved in two stages. In the firs t stage the

Ak s are determined and in the second stage the coefficients ak.
First , we determine the coefficients Ck of a difference equation

g(t )  + C1g(t+h) 
+ . . .+ C~g( t+ nh )  = 0 (55)

which the functions cxii (A kt) (and hence any l inear combination of the

exp ( \ ~ t ) also) will sat isfy for a fixed value of h and all values of

t. Using the data we obtain the system of equations

+ + . .+ ~~~~~~ = (5~)

for k=I , ... , n which is solved for the C. s.

Now set

p = e x p  (Ah)

then

exp (Ajh) =

We see that g(t) = exp (At) will satisfy Eq. (55) if p is a root of

the polynomial equation

C~p~ + ... + C1p+l 
= 0 (57)

-

~~~ -~~~~~~~~ 
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Then

Xl i  log0
p (~ 8)

Thus the Ak 
are detennined by the n roots of Eq. (57).

The n roots of Eq. (57) are used a I co in the dot orm i nat ion

of the coefficients ak. From Eq. (54) we obtain the sv~ ( em of

equations

4 . . . 4 a p ~ 
—

for k = 0, 1 , . . . , ii- I . ft is sv~; tern  of eqtia t I oiis dote tu i  i no’; the

coefficient a . A met hod f o r  comput ing the Va i ties of t ho ~~ ‘ s f rom
B k

I qs . (59) is g iv en in , p .‘ ~‘l

Let denote an n - ~l imens i ona I Vector whose components a t o  I

• , p~ 
I 

i p ~~c t I ye Iv • wh et e  p~ I a root of ~~ (~
. ‘ 1  . Ihe

coefficient ma trix for th e  (‘is , l q. ~~~ can he w i i t  t en iii th e

(lyad ic form

n

~ ~~~ I.’Xp (
~~~. t ) P1 ( ( i ( i )

k— I 1% 1%

I t  is clear from this expression that the coefficient mi t ri \ t a t ’  t h e

(~~~~~S is  nonc i ngii 1;i r pr ovideti the roots of Eq. (5’) a t o  a I I

d i f f e r e n t .  This  expt - o’~~ion may a Iso be he l p ful  in  e x a m i n i n g  t h e

coe f f i c i en t  mat i i x  of t hc (~ s for i l l  coiid i t  ion ing .

The fact that the character 1st ic values are all different does

not guarantee that the coefficient matrix for the (~ s is nonsingtila r.

For example, i f  the characteris t ic  va lues A 1 and and the sanq~le

interval h satisfy the condition

23
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= .~1l i (~ 1)

then

= exp( . \ .h )  = eX p(A kh)

and the c o e f f i c i e n t  m a t r i x , by Eq. ( S O) j~; ~ i ngular .

l e t  tt ’ rev i ew Ni h I l t  t li ~’ c om p t i t a t  io ie~ n i to t t ’cd  in  t hk t i i e tho j .

l i t ~~~~t • the re a t e  t l i & ’ H U i t ’ I  I t  i i  i i i t c~~~r ; i l  i o n - j i i i  f l u ’  t lOtOIIlIhII , It t o i i  of t ltt ’

i niptil ce lesponce I LIflt  ! ion d i t i .  ~i ’ co f t l Iv  • t he  I I i l t ’ I F  - v t  i r n i  y ou Nv

~‘i• (r.c~) umis t in’ ~1v ~~l for t iit ’ tlhFtt ’roui~ 0 equa l ion OL ’t  I R- i o I i t ’ ;  C

I i i ’ o i s  i i i  t III’ tOO If i t  I ent  m a t  i i  \ ;iinl i i ,  t 1w ri ~lu t h uni  -
~ ide ol

lq . (Ste ) n i l I i i  I o t t t h e  t ‘ ‘~~. Ih i rdtv . the ioO t~ ot N 1. ( ‘ I

iuumist be de t e r i nhu ied . I •ot I v , I ho I u i i e i t v~ t enl g u v e i l  NV q . ( . 1 )

t itL i st be ~t ’ tved lot th e r ir up i 1 f udc s ‘t k for ( ‘ . l t 1i ‘ ‘ 1 0 0  01  I

of i n t e re s t .

We w i l l  ret eu to tNt ’ itox t I no met iun l s  met litnl -1 \ intl lB

!t”~~ t ’C t ~ O ly , I ~ • • 1 (1 1 . lii t h ose met Innk I 1w i t i l t  I I ~o

or i t ~ I n a t )  dat  a i o h it  ion x t ) of the luuno i~eun ’ou . t ’~~u i l  t t o n

• ~ Cx + Kx 0. h u t ’ vect or  futuc t ion x ’ t  1 1’’ a I in c h o u m i l m m i ~t t ion

of the Ittuc t iou i ~ iy ’\r (  \k t I. hliu ~ x( t )  is  of the same form as

the impulse response ftuict ion.

It is clear that the procedures described in method 3 could be

used to determine the characteristic values and associated charac-

teristic vectors from the function x(t). The function x( t )  is ori gina l

experimental data whereas the impulse response function is computed f rom

experimental data. Thus the numerica l integration step of method 3 used

to thtairt the inpalee respa~se functici~ ccxild be eliminated in tl~ case

24
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where x(t) is a free response of the structure. }bwever , the system

matrices M, C, ar~ IC are not oaipatakle fran the results so obtained (see

remarks whid~ follcM Eq (A43) of ~çeMix A).

The equations and details of computations in the methods 4A

and 4B are given in Appendix C. Here we only need to note what is

involved in these two methods and contrast and compare them with the

other methods whenever possible.

The first step in Methods 4A and 48 is the determination of the

“system” equations. The second step is the determination of the

characteristic values and vectors from the system equations obtained

- •. in the first step. All the previous methods, except for the very

first of this section, first determined the characteristic values and

a particular normalization of the characteristic vectors so that the

system equations can he determined from these quantities.

In method 4A the system equations determined are the equations

of an equivalent first order system, Eqs (C4) and (CS) of Appendix C.

Thus, the matrices M, C, and K are not obtained in this method. A

numner of numerical integrations, see h i s . (C20) and (C2l), are needed

to produce the data required in the determination of the system

equations , see Eq (C9) .

The method 48 is free of the numerical integrations required

in method 4A. This freedom is achieved by determining a system of

difference equations which has the same solutions as the differen-

tia l equations (see the discussion following Eq (C22) of Appendix C).

The matrices N, C, and K are not obtained in method 48.

After the system equations are obtained an eigenvalue and

25 
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eigenvector analysis are performed to obtain the characteristic

values and vectors. One should note that the matrices involved in
the computations in methods 4A and 4B are twice as large as those

in the other methods.

In the preceding pages of this section we have described methods

2, 3, 4A and 4B. These methods essentially satisfy our self imposed

requirements. That is, the matrices M, C, and K are not assumed

linearly connected and the vibration parameters can be determined from

the response to the excitation at a single point. In the discussion of

these methods one acquires some awareness of computational require-

ments. I-however, the previous discussion was primarily concerned with

the foundations of the methods. Here now we want to make quantitative

estimates of some computational costs associated with two of the methods.

The Fast Fourier Transform Algorithm provides a significant reduc-

tion in the cost of the computations indicated by Eq. (48) . Thus an

operations count for the process which gives the value of a component

of F{x~ (t) 
} at N stations is of the order of N log2N. In method 3

the determination of the value of a component of 11(t) at N stations is

the same as solving a triangular system of linear equations. Hence,

the operations count is of the order of N(N+l)/2.

The method of Section II and the methods 2 and 3 can determine

the natural frequencies, damping ratios and corresponding mode shapes

at specified degrees of freedom of interest. That is, (we haven’t

emphasized this point ) one doesn’t have to compute these vibration

parameters for all m degrees of freedom. I-bwever, the system matrices

M, C, and K can be determined by the method given above only if the

26
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components of the appropriately normalized characteristic vectors

are known for all m degrees of freedom .

- ‘ 
In methods 4A and 4B “equivalent” system matrices of order n = 2m

are determined first. Thus , one nust select m degrees of freedom and

collect and use the response data at all of these degrees of freedom.

- - The selection of the data collection stations and the sampling frequency

may influence the calculation of the characteristic values and associated

characteristic vectors. There are similar difficulties associated with

the other methods.

1
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SECTION IV
RESULTS AND CONCLUSIONS

In th i s sec tion we descr ibe the numer ical exper iments used in

testing the method of Section II and give the results of these experi-

ments. We note again some of the observations made in the previous

sections.

Sample problems to test the method of Section II are readily con-

structed. One uses Eq. (A36) of Appendix A for this purpose. Thus,

in Eq. (A36) we assigned appropriate values to A k and U
k 
for k=l to

m. This in turn fixes the values of A k, Uk and Vk for k=l to n=2m.

Then for a given vector r and values of w Eq (A36) gives vectors y.

We used the vectors y, obtained in this manner , in the method of

Section II to compute the A ki Uk and V k.

For a system with m 4  the computed values of A k, Uk and V k agreed

with the assigned values to about 8 decimal places after 10 or so

i terations. In Appendix D we display the computed values and assigned

values In one case where the characteristic values are all different

I and in a second case for a characteristic value of multiplicity 2. 
-

~

These results show that the method of Section II is computationa llv

feasible and capable of high accuracy.

The methods discussed in Section III are also capable of high

accuracy , at least In principle. However, as is well known , the

excessive cost of high accuracy frequently results in compromise.

Limitations on computational capabilities also limit the atta inable

accurac y .
The method of Sec tion II requ i res the s teady state res ponse

28
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to a sinusoidal excitation. Method 2 computes the frequency response

function from Impulse or random excitation. Method 3 computes an

Impulse response function also from an impulse — like excitation . Methods

4A and 4B are based upon the free response. Thus , the way in which

a structure is excited influences the choice of method for computing

vibration parameters . Al ternate ly, first choosing a method for com-

puting vibrations parameters detennines how the structure is excited .

From these remarks it is clear that the various methods comple-

men t one another . We have noted that the method of Section II assumes

the structure is li ghtly damped . If this is not the case then

methods 3 or 4A or 4B are possibly better suited to determining the

vibration parameters . On the other hand if one wants the matrices

- 1 M , C , and K then a method other than method 4A or 4B should be used .

In all the methods there is some stage which involves the

determination of the characteristic values Ak and the modal vectors
Uk. In the method of Section II, the numbers Ak and the vectors

UIK are determined directly from the experimental data. In the

- . 
other methods certain intermediate steps are necessary before

calculating the Ak and Uk. Thus in the methods 4A and 4B one first

determines the matrices of a system equivalent (in the sense noted

earlier) to the system given by the matrices M, C and K. The Ak
and 

~ 
are then obtained as the solution to the generalized algebraic

eigenvalue problem defined by the matrices of the “equivalent” system.

In method 3 one first determines an impulse response function

which we denoted by 
5
(t). The function I~(t) is defined as the

29 
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sol ut ion of a Volterra integral equation of the first kind , Eq . (Si) .

By t rans forming to the frequency domain , the integral equation problem

of method 3 is reduced to the algebraic problem of method .~ . See

[111. The impulse response function (or its transform, that is , the

frequency response function,is assumed to have a specific form,

Eq. (53) or Eq. (50)). After either the impulse response or the

frequency response function is known the identification of parameters

Ak and Uk begins.

Our purpose in this report was to present (Section II) a method

for determining the characteristic values, modal vectors and the mass ,

damping and stiffness matrices M , C , and K fr om the steady state response to

sinusoidal excitat ions at frequencies close to resonance . The mathe-

mat ica l backgr ound for th is method (A ppendix  A ) w i t h  a few add it ions

is also the background for other methods which we described and discussed

in Section III. Thus, we were able to note difficulties (e.g, an inte-

gration being replaced by a numerical process) with each method .

The effects of these difficulties need to be investigated further.

These effects could be determined by analysis but, possibly, more readily

by numerical experiments. Thus n~.m~rical experiment could determine the

computer resources required by each method to obtain the solution to a

prescribed accuracy . Secondly, the sensitivity of each method to error

in original data could be estimated also by iu~ rica]. experiment .
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APPENDIX A
SYSTENS OF LINEA R DIFFERENT IA L EQUATION S WITH

CONSTANT COEFFICIENTS

In this section we give the mathematical background (notation

and assut~ tions) for procedures for determining mass , stiffness and

damping properties of a structure . The mathematics required is a

knowledge of the nature and properties of the solutions to a system

of second order linear differential equations (Lagrange’s equation)

with constan t real coefficients . The determining of the structural

parameters , mathematically speaking, is of the nature of an inverse

problem. Specifically, we are concerned with determining the

differential operator (those constant coefficients). Such a system of

differential equations can be characterized by the solutions of the

homogeneous equation and the transposed homogeneous equat ion . The roots
0

of its characteristic equation and the associated characteristic vectors

are required for one such characterization .

Below we develop expressions for solutions of a system of

second order linear differential equations with constant , real

coefficients. These expressions are obtained from expressions for

the solutions to an equivalent first order system of equations . The

results obtained are found in texts which discuss systems of ordinary

differential equations in some detail , however not always in the

explicit form given below. For additional details concerning systems

of differential equations see references [12, 1.3, 14J

Let

rii
2 

+ CD + K] x(t) — f(t) (Al)
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where D indicates differentiation with respect to t , denote a system

of second order differential equations . The mass, damping and

stiffness matrices, M , C and K , are square matrices of order m with

real entries. The vectors x - x(t) and I = f(t) are of dimension

m with time dependent components which may be complex valued. The

matrices M, C ani K are usually synmetric but this condition is not

essential for the development given here .

It is assu~ied that the homogeneous equation

(A2)

has n = 2rn linearly independent solutions. The associated

characteristic equation is

det [~~2 + CA + K] = 0 (A3)

The left hand side of Eq. (A3) is a polynomial in A with real

coefficients . This polynomial is of actual degree n. Since the

coefficients of the characteristic equation are real, the complex

conjugate of each complex root of Eq. (A3) is also a root.

If A is a simple root of the characteristic equation then there

is a solution of the homogeneous equation of the form

x(t) = u exp (At) (A4)

where u is a nontrivial constant vector. The vector u satisfies the

condition

+ CA + K] U = 0 (AS)

and is unique except for a non-zero multiplicative factor. If A is

a root of multiplicity k > 1 we assume the matrix MA 2 
+ CA + K is of

rank m - k. In this event there is a linear manifold of vectors of

dimension k and every vector u in this linear manifold satisfies Eq. (AS).
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Accordingly for every such vector u , x(t) u exp (At) is a solution

• of the homogeneous equation.

The roots of the characteristic equation are oftentimes referred

to as characteristic values or eigenvalues . The vectors u which

satisfy Eq. (AS) , will be referred to as the modal or characteristic

vectors or eigenvectors corresponding to the characteristic value A.

The characteristic equation

det [MTAZ + cTA + J(T] = 0 (A6)

of the transposed homogeneous equation

MT
~ 

+ c
T
t + KTx = 0 (A7)

has exactly the same roots as Eq. (A3) . For a given A the matrices

+ CA + K and MTA Z 
+ CTA + KT have the same rank . Consequently ,

the dimensions of the solution sets of Eqs . (A2) and (A7) , corresponding

to a characteristic value A , are the same . If the matrices M, C and K

are sy~mietric then the solution Sets are identical . In either

event there are n characteristic values Ak and associated constant vectors

uk and vk such that f o r k = l t o n

Xk (t) = Uk 
exp (Akt)

and

Zk(t) = vk exp (Akt)

are linearly independent solutions of Eqs . (A2 ) and (A7) respectively.

Set x1(t) = x(t) and x2 (t) t1(t). Then the system of fi rst

order equations

I 0 0 -I x1 0

+ =

0 M *2 K C x2 f (A8)
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is equivalent to the system given by Eq. (al). If the matrices M, C,

at~ K are synn~trical one can obtain an equivalent first order system

which is also synuetrical [is) . Express Eq. (AS) sy~rbo1ica1iy as

A~’ + B y = f  (A9)

Basic or fundamental solutions of the homogeneous equation

A~’ + B y = 0  (AlO)

are of the form ü exp (At) , where ü is a vector of dimension n. It

is clear that a linearly independent set of modal vectors is given by

ukiUk 
~Akukj  

(All)

for k = 1 to n, where Ak and U
k 
are the characteristic values and

associated modal vectors of a set of linearly independent solutions of Eq.

• (A2). The characteristic values Ak satisfy the characteristic equation

det [XA +BJ = 0  (A12)

and the associated modal vectors ÜIK satisfy the condition

[AkA + B]ük = 0 (A13)

For the transposed homogeneous first order system

AT~ + BTy = 0 (A14)

the modal vectors Vk, for k = 1 to n , are given by

= ~(1/Ak)KTvkk (A15)
vk

In Eq. (A15) Ak and Vk denote the characteristic values and modal

vectors of a set of linearly independent solutions of Eq. (A7).

The stiffness matrix K is not required to obtain the vk from 
~~

A modal vector iTk corresponding to the characteristic value Ak
satisfies the condition

- Ak ~~A + ~~B = 0 (A16)

____ - ~~~~~~~~~~~~~~~~~~~ ~~~~~~
- 
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From Eqs . (A13) and CAb ) it follows that if j ~ k and A~ ~ Ak,
- 

- then the associated modal vectors and satisfy the orthogonality

conditions

~JAÜk = 0 and ~JBu~ = 0 (A17)

Even though Ak takes on the same value for several consecutive values

of the index k, the associated model vectors ük and V
k can be

- 1 determined so that the orthogonality conditions Eq. (A17) still hold

for j # k. The vectors 
~
1k and V

k may be normalized so that in

addition to the orthogonality conditions they satisfy also the conditions

- •
~ 

V~AÜk = 1 and ~~BÜk 
= - Ak (Al 8)

Write

U = [U1 •• •  u~] and V = [~~ • • •  ~~] (A19)

Here U denotes a matrix whose kth column is the vector

Similarly, the kth columu of the matrix V is the vector 
~~ 

Let

A denote a diagonal matrix with the characteristic values Ak in the

diagonal positions. The relations given in Eqs. (A17) and (A18) can

• 

- 

be expressed in matrix form also, namely

VTAU = I and VTBU = -A (A20)

Note that the V vectors oorrespa~ ing to a characteristic

value A of multiplicity greater than 1 may be assumed to

have a special form, at least if the coordinate vectors are appro-

priately ordered. For definiteness, si.~pose A 1 is of multiplicity 2.

Let and be linearly independent modal vectors corresponding to A 1.

Then any linear combination of and is also a modal vector

35
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corresponding to A1. From this fact it follows that there are

-• 
linearly independent vectors 

~l 
and i~2 corresponding to A1 such

that , see Eq. (Ai S) , the first component of v1 is not zero, the

second component is zero, the first component of v
2 is zero,and

the second component is not zero. Corresponding to these vectors

and of special form there are vectors U] and which satisfy the

orthogonality and normality conditions, Eqs . (All) and (A18) .

Thus whatever the degree of multiplicity of A greater than 1,

we may assume that there is a linearly independent set of ~ vectors ,

the v portion of which has the special form jus t described for some

consecutive set of components. Moreover , corresponding to these v

vectors of special form there are ü vectors which satisfy the orthogonality

conditions Eq. (A17) . The normality conditions can be met by appro-

priately adjusting (there are infinitely many ways) the magnitudes of the

ü and ~ vectors .

Let A - A(t) denote the diagonal matrix of order n for which the

kth diagonal element is exp(A kt) .  Set (see Eq. (Al9) )

13(t) U A (A21)

Then

0(t) - Ii AA = U hA (A22)

and

A + B =  [ A U A + B U ] A — 0  (A23)

We now seek a particular solution y(t) of Eq. (A9 ) where we

suppose

y(t) = U(t)z(t) (A24)

and the vector function z(t) is to be determined . Substitute y(t) and

y(t ) ,  as determined from Eq. (A24), into Eq. CM) and use the results ,

36
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Eq. (A23) to obtain

AU A z(t) — f (t) (A25)

Mol tiplying Eq. (A25) by A 1(t)V~ we obtain

tt 1 Tz(t) = A (t)v f(t) dr (A26)

Hence
tt

y(t) = J U A(t - r)V f(t ) dT (A27)
0

Partition the matrices U, A(t - t) and into (m x m)-submatrices

U U - A 011 12 
, A(t - T) = 11 

—
U21 U22 0 A22 (A28)

and
V11 V12

• V =
V21 V22

This partitioning is in conformity with the partitioning of the

vectors ii, ~ and y, Eqs. (All), (A15) and (A8) . One readily obtains

from Eq. (A27)

• x1(t) = f [U11A11(t 
- T)V1, + u1~~2 (t - T)V22]f(T) dT

— 

(A29)

It is clear that the term U11A11(t - r)V12f(t ) represents

[exp A1(t 
- T)U1 

•• •  exp Am (t - T)Um
] v~ f( T)

v~ f( t)  (A30)

= [exp A1(t 
- r)u1v~ •• ‘  exp Am(t - T)UmV

~
] f(t)

A similar expression is obtained for the term U12A22 (t - r)V 22f(t ) .
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Thus we obtain , in dyadic form, the expression for x1(t)

n ~tx0(t) = E J uk’~~ 
exp A~ (t - r ) f ( t )  dT (A31)

k=l 0

Note that the subscript on x has changed from 1 to 0. The

use of the subscript 1 is discontinued because we no longer care

to emphasize the relation to Eq. (A8). The subscript 0 is used because

x0(t) as given by Eq. (Mi) is the particular solution which

satisfies Eq. (Al) with zero initial conditions .

Take f( t )  = h(t) r~ where h(t) = 0 for t < 0, h(t)  = 1 for

t > 0 and r~ denotes the j th coordinate vector. The j th component

of r. is 1 and all other components are zero. Also, let vJk denote

the j th component of the vector vk. From Eq. (A31) the step response

H~ (t) due to a unit step excitation at the j th station is

f
t 

fl
H.(t) = J E UkV.k exp A~(t 

- t) dT (A32)
k-i0

That is

• n n
H.(t) = - Z (i/A k) Ukv.k + E (i/Ak) uk’~~k 

exp (Akt) (A33)
3 k—i k-i

The impulse response I~ (t) is obtained from the step response H~ (t) by

differentiation. Thus differentiating Eq. (A33) gives

I.(t) = E UkV . exp (A t) (A34)
k—i
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The responsc x (t) to the harmonic excitation r cxp (i wt)  is

x (t) = _

~~~
_

~~ 

[t 1 j~V j~ • r exp ( A kt)I
- 

(A35)

k-i 
IIIkV k • r exp(iwt) J / ( iw  -

In Eq. (A35) the response x ( t )  is expressed as the “sun~’ of two sums .

The first sum is a linear combination of solutions of the homogeneous

equation , Eq. (A2), called the complementary function. i1~e second sum

is a particular solution of Eq. (Al) with f(t) = r exp (hot). If the

characteris tic valu es A
k are complex numbers with Re l A k i < (I t hen the

complementary funct ion goes to zero as t becomes large . The complemen-

tary function is a transien t and the par ticular solu t ion is called the

steady state solution.

Whether the complementary function is transient or not , set

y = I~
, 
~
lkVk~

’( ~ - A~) I r (A3~)

Then y exp (iwt) is a particular solution of F1. (Al) when f(t) — r cxp( iwt ).

For the time being we will refer to y exp(iwt) as the steady state solu tion .

Many procedures for determining values for structura l paramet ers arc based

on Eq. (A36) . It follows that

[ -w 2M ÷ K + ho C~ y = r (A37)

and from this equation that

~~~ + K - i~ ci ~ = (A38)

Then (by linearity)

[MD2 + Cl) + K J Ir e xp (iwt )  - cxp (-hot )  I/2i r sin wt

(A39)
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That is, [y exp(iwt) - ~ exp(-iot)]/Zi is a particular response to the

sinusoidal excitation r sinwt.

This response to the sinusoidal excitation can be rewritten as

[y exp(iwt) - ~~ exp(-iat)]/2i — [(y - ~)/2i] cos cot + [(y + ~)/2 ] sin cot

— Im [~~1 cos cot + Re [y] sin cot (A40)

From this equation it is clear that if the steady state response to a

sinusoidal excitation r sin cot is known then the steady state response

- 

I 
to the harmonic excitation r exp(icot) is known and conversely .

Let a3 denote the ~~ component of Re [y] and b~ the j~ 1~ component

of Im [y] . Then in the usual fashion we have

aj sin cot + b~ cos cot [a~ + b~]1~
2 sin (cot + e

~
) (A4l)

when

tan = b~/a~ (A42)

Eq. (A41) provides an aiternate expression for the steady state response

to a sinusoidal excitation.

The Eqs. (A36) and (A37) contain an important relationship, namely

1 ~[-w~M + K + ito C] = E ukv~/(ico 
- Ak) (A43)

The right hand side of Eq. (A43) is the frequency response function.

If the modal vectors uk and vk and the characteristic values A k are

known, then Eq. (A43) can be used to determine the matrices M, C and K.

We nust rmnember that Eq. (A43) is not true for arbitrary modal vectors

Uk and Vk. The Eq. (A43) was obtained by assuming the vectors uk and Vk
appropriately normalized .

Let f~ (t) denote the j~th~ ccmçonent of the vector f(t) and as before ,

40
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Vik the j th component the vector vk. Then
- m

v~f(t)  — E v .k f .( t )  (A44)
j =l 3

Using this result we can rewrite Eq. (A31) as
t

x0(t) = J E uk ( E v .k f .(t ) )  exp A
k(t -

0 k-i j=1 ~

= J [E (E ulKv. exp A (t - r))f.(i)]dt
~=l k=l ~0 ’

That is, we obtain
t

• m
I x~(t) = I (E I.(t - r) . f.(’r))d’r (A45)• ‘-p j  

~~~~~ 
3 3

- 0 - ’

The Eq. (A45) expresses the response x0(t) as a sum over j of the

convolution of the jth impulse response with the jth component of

the excitation.
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APPENDIX B
THE FOURIER INTEGRAL, FOURIER SER IES AND TRIGONOMETRIC

INTERPOlATING POLYNOMIALS

In this section we exhibit the relation between the Fourier

series representation , a trigonc~~ tric interpolating polynomial

representation and the Fourier Transform of a real valued function

f(t) . The results of this section may be found or ferreted out of

standard references such as [7, 15, 16]. They are included here for

completeness and ready reference. Let us assume that the function

f(t) satisfies whatever conditions needed so that any indicated operations

on or representations of f(t) are valid.

If 1(t) is periodic of period r then 1(t) is representable as

a trigonometric series.

f(t) = a0/2 + E (an cos nwt + b~ sin nwt) (Bi)
1

where to = 2~r/r .  The Fourier coefficients are given by the equations

an = (2/i) f 1(t) cos n to dt

b~ = (2/i) J f(t) sin n to dt (B2)

Substituting the complex form

cos nwt * (exp (inwt) + exp (-i n wt) J /2  (B3)

and

sin nwt — (exp (incot) - exp (-incot) ]/2i (B4)
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in Eq. (Bl) and collecting like terms in exp ( incot) and exp (-incot)

one obtains

f ( t )  = a0/2  + (1/2) E [(an~
ib. ) exp (incot ) + (a +ib ) exp (-inwt)1

n-i fl n n

(BS)

Next , setting

C0 = a0/2

C~ = (an - ib~)/2 (B6)

C~~ =(an + ib~)/2

(note C = 

~ ) one obtains-n n

f(t) = 
~ C~ exp (ikwt ) (B7)

-

~~~

the Fourier series representation of 1(t) in complex form. The complex

Fourier coefficients Ck are given by

Ck = 
~E f f(t)  exp (-intot) dt (B8)

A function f(t)  defined by the equation

1(t) k~ 
Ck exp (itokt) =k~1 Ck exp (2irikt/i) (B9)

is a trigonometric interpolation polynomial in complex form . The complex

coefficients are determined by the ftmction values assigned to f(t )  at

the points t - j r/N for j = I to N. First , we obtain a rule for

computing the coefficients Ck~ Next , if f(t)  is a periodic function

of period t and if f(t) is the trigonometric interpolat ing polynomial

satisfying the conditions

fU r /N) • f(j r/N) (BlO)
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for j - 1 to N , we obtain the relation between the coefficients

of the interpolating polynomial and Ck of the Fourier series.

The desired results are obtained from readily established properties

of the N , N~ l roots of unity . The principal N~~ root of unity is

= exp (2iri/N) (B]1)

Then

1 (B12)

and

r~~- 1 = 0

= (r1 - l)(r~~ + r~~
2 + • • •  + r1 + 1) (B13)

Since for N~~~l, r1~~~1it foilows that

+ r~~
2 + •• •  + r1 + 1 0 (B14)

rk = r~ = exp (2lTik/N). (BlS)

for k = 1 to N (or k = 0 to N - 1, as convenient). Then

= 1

and it follows

+ + • • •  + rk 
+ 1 = 0 (Bl6)
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provided k ~ N (or 0) and for k - N (or 0)

-

~ 
r
~~~

+ r
~~
2 + ...+r

N + l = N  (B17)

From Eqs. (B15) and (Bl4) it follows that

+ r, + • • •  + rN 
= 0 (818)

and from Eq. (15)

(B19)

Note also that

rk 
= exp ( -2 lT ik/N ) exp (21TiN/N)’exp (-2rTik/N)

= rNk (B20)

Consider the matrix

r~~r~~r~~••• r~

M • r~ r~ r~ r~ (B21)

r~ r~ r~

Since rj~ r~ the matrix M is syn~netric. The matrix product

H’ M [s~~J (B22)

where

N 1 .
s. Z i-” • r~ (B23)

k—i ~ k
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1) l I t — )  then

~~ 
— E  exp (-2wijkJN) exp (2irijk/N) — N (B24)

2) I f L ~~~j  then

s~~ = E  r~~ • r~ -Z ~~~~~ 
= 0 (B25)

since ~~~~~ ~‘ 1. It follows from Eqns . (B24) and (B25) that

• M M — M M — N I  (B26)

-4 From Eq. (B9) for t = jr /N we have

f(jr/N) E c~ r
k (B27)

k-i

for j = 1 to N. This system of equations can be expressed in vector f orm

A A

1Cr/N) C1
f(2t/N) c2

= M

A A

f )  CN

It follows from Eq. (B26) that

f(r/N)

= (l/N)M (B29)

N 
f(r)
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Eqns . (B28) and (B29) exhibit the relation between the coefficients

Ck and the values of the function 1(t) at the points t j r/N for J 1

to N. Thus if we have any (real valued) function 1(t) which is well de

fined at the points j r /N for j = 1 to N and if we set f( j r/N)— f ( jr/N)

then Eq. (B29) determines the coefficients Ck and Eq. (B9) defines a

periodic functior, of period t which satisfies the conditions f(jr/N)

f ( j -r/N) for j = 1 to N.

From Eq. (B29) we see that the coefficients Ck are obtained as

the product of a vector multiplied by a matrix. If one defines an

operation as a multiplication of two (complex) numbers followed by

an addition, then the product of an N-vector by a matrix of order N,

in general, requires N2 operations. An algorithm is developed in [17]

which, in principle, determines the Ck’5 in less than 2 N log2 N operations.

Implementations of this algorithm are referred to as Fast Fourier

Trans formers .

Let f(t) denote a periodic function of period r and let f(t)

be the trigonometric polynomial which interpolates f(t) at - the points

t = j r /N for j = 1 to N. For t = j r/N , for j = 1 to N we have by Eq. (B7)

f( jr /N )  = Ck exp (2Trikj /N)
-: 

. (B30)
E Ck[exP 2rik/N]

3

Now we can express the integer k , -
~~~ < k < ~~, as

k = t . N + k 1 (B31)

where0<k1 < N - 1 .  Hence

exp 2trik/N — exp 2ir ik1/N (B32)

____  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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It follows that

E Ck [exp 2wik/N 1~ = E CtN + [exp 2ri/N]~ ~ CQ,~~1-~~~ -
~~~ (B33)

+ •. .  + [exp 2iri (N-l)/N ]3 E C~N + N-l

and then from Eqs . (B27) and (B33) that for k = 1 to N - 1

Ck - E  CLN+k (B34)

and

N~~~~ C&N

Let f(t) be defined only for 0 < t < r. Here now we will

exhibit the relation between the Fourier coefficients of some periodic

extensions of f(t) and particular values of the Fourier transform

of f(t). First, however, let us describe what we mean when 1(t) is

extended periodically “in the standard way”. It is clear that for

any value of t , -~~ < t < ~ we can write

• t = a r + t 1 (B35)

and 0 < t1 < r. Then we set

f (t) = f( t1) (B36)

The complex Fourier coefficients of 1(t) are given by Eq. (B8)

ICk = J 1(t) exp (-ikwt) dt (B37)

(It is instructive to plot , or at leas t , draw some vertical line
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segments representing t i Ck i at points kto on a horizontal axis for
k = 0, + 1, + 2 , • . . .

Suppose we def ine

f1(t) — f(t )  for 0 < t < i

(B38)
f1( t ) — 0  fo r T < t < 2 r

and then extend f1(t) periodically in the standard way. The complex
Fourier Coefficients for f1(t) are

2r CJ~
1) 

= J 1(t) exp (-ikwt/2 ) dt (B39 )

Observe that

2r = ICk (B40)

for k = 0, + ~ , + 2 , •• • . We note that doubling the interval from

r to 2t has halved the distance between successive plots of the values

2rJ C~1~ J as compared to successive plots of the values tiCkI. Repeating

this process, that is, increase the interval from 2i to 4r define

f 2 (t) 1(t) for 0 < t < r (B41)

— 0  fo r r < t < 4 r

and extend f2 (t) periodically in the standard way then the distance

between successive plots of the values 4rJC~
2
~I is hal~ the distance

between successive plots of the values 2TlC1~~~I .  Thus we can make

the number of complex Fourier Coefficients which plot in some fixed

interval about the origin as large as we please by choosing the interval
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r < t - b sufficiently large.

If now we define the Fourier Trans form of f(t) by the equation

T

$ (w) f 1(t) e 1Wt dt — f(t) e~~Wt dt (B42)
J -oo Jo

then it is clear that

$(2 ir IcJt) — TCk (B43)

for n — 0, + 1, + 2 , •‘~~ and that

$(wk/t) 2tC~~ (B44)

for n = 0, + 1, + 2 , •“ , and so on.

The Fourier series representation and Fourier transform of a function

1(t) are not readily available for use in general because of the

- 
-
~ intergration process required for the determination of the Fourier

coefficient and the Fourier transform. However , in view of the

relat ions exhibited above between the Fourier coefficients , certain

values of the Fourier transform and the coefficients of the trigonometric

interpolating polynomial it is clear that if the trigonometric

polynomial interpolates f (t) (or an appropriate periodic extension

of f (t)) at sufficiently many points , the coefficients of the trigonometric

polynomial will be good approximations of the Fourier coefficients and ,

when properly scaled, of these certain values of the Fourier transform

of f(t) .

50 

_ _ ~~~~~~~
- - - ~~~- -I-- ~~~~~~~~~~~ _ i._ __ - -



____________ 

~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,- -V.,- 
~~~~~~~ I I_ .

APPENDiX C
SYSTEMS OF LINEA R DIFFERENCE EQU ATI ON S

In this section we review the material which is basic for the

two methods for determining certain structural parameters given in

[8,9] and [10) respectively .

For the first method given in [8,9] the system of m second orde r

equations

(Cl)

is exchanged for the system of n = 2m first order equations

x1 — x 2
(C2)

= -M 1Kx1 
- M~~Cx2 

+ M4f

This system may be written as

‘ = A y + f  (C3)

where the matrix A in partitioned form is given by

A = 0 I
-l -l (C4)

-M iC -M C

Stçpose we know a nontrivial solution y (t) of the homogeneous

equation

(CS)

For n different values of time tk~ k - 1 to n set

— y(t k ) (C6)
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and
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~~ 

- 

= dY/dtJ~ = (C7)

From Eq. (CS) we obtain the matrix equation

= A[y1 ... y~] (C8)

It follows that if the matrix [y~ •‘• y~] is nonsingular then

A = b’1 ‘ ~
‘n~ 

[y1 y~] (C9)

We shall see that the homogeneous solution y(t) must be a linear

combination of the n linearly independent solutions defined by the

modal vectors and characteristic values, Appendix A. Thus we may write

y(t) ü1 exp (A1t) + •• •  + Ü~ exp (X~t) (ClO)

where here denotes either the k~~ modal vector or the zero vector.

For brevity let us write also

Zik 
= exp (Aj tk) (Cll)

Then the matrix [y1 ~‘n
1 may be expressed as the product of two

matrices

~
‘n1 

— 
~.1l “2 ‘ ‘  t1,1J z11 z12 

• . .  z1~ 
(C12)

• •• • S . .  •. .
z ~~~~~nl n2 nn
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It is clear from Eq. (C12) that if for any values of k, ük is the
zero vector then the matrix [y1 

•
~~

• y ]  is singular.

The next task is the determination of functions y(t) and ‘ (t)

which satisfy the condition ~~‘ = Ay when the given information is the

second derivative ~(t) of a function x(t) which satisfies ~~ + (~ + Kx 0.
Let us set

~(t) = ~(t) + (Cl3)

Hence by Eq. (C2) we have

c2 (t) = ~(t) + (C14)

x2 (t) = J E ~(T) + dr + C1 (C1S)

and

t T
x1(t) = J dTJ [i(s) + 

~~~~ 
ds + C1t + C2 (C16)

The quantities x1(t) , i1(t) , x2 (t) and c2 (t) defined by Eqs. (C14) ,

(C15) and (C16) satisfy the equation

xi (t)1
— A  I (Cl7)

i2 (t) x2 (t)J

Now since Eq. (Cl7) holds in particular for t = 0 , the Eq. (Cl7)

simplifies to

rt rt rr
J [2 (r )+2 ]dr 

J dTJ [~(s)+~~~] d s + C t
0 —A (C18)

f t
~(t) J [~~~~(t)  + dr

- 
. 0
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All the quantities in Eq. (C18) are known except the integration

constant C1. Replace t by ctt in Eq. (Cl8). One then has

j at 
+ 2~] 

di] -A j
c x 1  

+ 
~~~] ds + 

(C19)

2(cxt) j a [2(i) + di

Finally multiply Eq. (Cl8) by c~ and substract from Eq. (C19) .

One obtains an equation which contains the matrix A but no other

• unknown quantities .

Thus from the above discussion we obtain for the vector functions

‘(t) and y(t)

t t
y(t) [2(t) + 2o1 di - c~J0 [2(t) + 2o~ 

di
(C20)

2 (ctt ) - 2(t)

- • 
and

1at 1T ~t ~.T 
-

y(t)— J drJ [2(s)+2h1 ds- czl dii [2(s)+2,0]dsJo JO U J0 J0

(C2l)
• ~at çt

I [ 2 ( t ) + x 0l dt - ct I [2 (t)+2]dtJo

The quantities y(t) and ‘(t) are computed from the measured quantity

~(t). They are obtained by a nunerical integration process which

has been made somewhat more laborius by the necessary elimination of

an integration constant . Convenient values for ~ are readily apparent .

Let us suilnarize the discussion of this section up to this point .

We noted above that the homogeneous system of equations (f 0),  Eq. (Cl)
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has a set of linearly independent solutions. Next given a linear

combination of all these linearly independent solutions, the matrix A

of an equivalent first order system, Eq. (CS) , can be determined from

the known values of this solution of the homogeneous system Eq. (Cl) .

The second method , given in [10], is similar in principle to the

first. However , it avoids the numerical integration , Eqs. (C20) and

(C21) required by the first method. The procedure which enables one

to bypass the numerical integration is described in [ 7 , pp. 272-280].

This second method is based on the fact that corresponding to the

homogeneous differential equation, Eq. (Cl) , there is a companion

difference equation (of second differences) having the same solution

set . Then , as above , given a linear combination of all the members of a

linearly independent set of solutions of the homogeneous equation

(f E 0), Eq. (C1), one can determine an equivalent equation of first

differences . Let us explain in detail the remark just made .

Consider a system of equations of second differences

x(t + 2h) + Bx(t + h) + Cx(t) = 0 (C22)

where B and C denote matrices of order m and x(t) is a vector valued

function of t of dimension m. It is clear that

x( t) = u exp (At) (C23)

satisfies Eq. (C22) if

— exp (Ah)
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satisfies the characteristic equation

det[n2I + B~ + C) — 0 (C24) •

and u is a corresponding characteristic vector satisfying the condition

[n2I + Bfl + C]u 0 (C25)

Set

x1(t + h) - x2 (t) 0

x2 (t + h) + Cx1(t) + Bx2(t) = 0 (C26)

The system of equations , Eq. (C26) can be written as

- - x1(t  + h) 0 -I ’
~ x1 (t)

+ 
•~ = 0  (C27)

x2 (t + h) C B] x2 (t)

a system of equa tions of first differences which is equivalent to

Eq. (C22).

Let

n
• x(t) = Z uk exp (Ak t) (C28)

k-i

n - ~n, be a sum of linearly independent functions which satisfy

the conditions Eqs . (C24) and (C2S). If the values of x (t) are

knoie~ at times tk and t~ + h for k - 1 to N then we have the matr ix

equation

x1(t1 
+ h) • • ‘  xi(tn + h) 

+ fo -I x1(t 1) • •‘ x1(tn) 
=

x2(t1 + h) ~~~~ x2 (t~ + h) [C B x2 (t1) • . .  x2 (ta)
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Eq. (C29) is solvable for the matrix of the system (C27) if the

matrix

x1(t) •‘• x1(t~)

x2 (t) •‘~~ x2 (t~)

is nonsingular

From thi s discussion it is clear that given a function x(t) as

defined by Eq. (C28) one can determ ine a system of equations of first

differences which the n-dimensional vector valued function

fx(t)
y(t) = [x(t + h) (C30)

satisfies. Thus we determine the matrices

= x(t ,) • • •  x(t~)

x(t 1 + h) 
~~~~ 

x(tn + h) (C31)

and

Fx~t1. + x t ~+ll1
+ ‘~~ x(t~ + 2h) (C32)

Then, if~~ is nonsingular , y(t) defined by Eq. (C30) satisfies the

system of equations of first differences

y(t + k) - • •~ y(t) — 0 (C33)
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APPENDIX D

C(]¼IPtTFER PROGRAM

We now describe the organization of , and the calling procedure

for invoking the use of , a collection of subprograms , written in

FORTRAN to implement the methed described in Sect ion II .  It accepts ,

as input , the frequencies 
~~ 

and 
~~2’ the vectors 

~kl and 
~k2

(obtained from experimental data) , together with various other data,

and produces , as output, the characteristic values, Ak, the modal

vectors , Uk and Vk, and the mass , damping, and stiffness matrices,

M , C , and K. A section on program testing is also included.

ORGANIZATICI4 - Subroutine AAS, called by the user , allocates

virtual storage in the work array, W, and calls subprogram BBS.

BBS monitors and controls the computations and calls into use the

following subprograms:

EIGEN - computes an approximation to a characteristic value,

Ak, given the associated frequencies w~~~, ~~~~~ and the vectors

and 
~k2 (or 

~kl and 
~~~~ 

See Eqs . (7) , (8) , (14) and (15), Section

VUS - ccmputes an approximation to a modal vector Uk and the

first component of the associated vector Vk, given the frequencies

and t
~k2’ the characteristic value, Ak~ and the vectors 

~kl 
and

~k2 
(or 

~kl 
az~1 ~~~~ 

See Eqs. (l0),(ll),(16), and (17), Section II.

YVECS - computes ‘
~kl and 

~
‘k2 ’ given the vectors 

~kl and

the frequencies u~i1(] , 
~~~ 

and the current approximations to the

characteristic value, Ak, and the modal vectors Uk and V~. See

tiq. (13) , Section II.
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RECVR - computes the system matrices M , C, and K, given the

characteristic values, A k, and the modal vectors 1J,~ and Vk. See Eqs.

(38)-(43), Section II.

INV , ?~!flhT, LIJ3 - used by RECVR to perform various matrix

operations.

Together , these subprograms utilize 10 cells of temporary work

space in blank CCI¼tION , in addition to the work array, W.

CALLING PROCEIJJRE - The calling program, written by the user,

will contain the equivalent of the following FORTRAN statements :

-; EXTERNAL DATA

CCtIPLEX 1d\~tBfl-~(H) ,tJ (H ,H),V(H,H)

REAL fl1(H,M) ,C(M,M) ,KA (M,M) ,W(NW)

CALL AA.S (9 ,DATA ,TOL , IMAX ,LAMBDA,U ,V ,H1,C ,KA , I ,W)

where :

M IS an integer input variable, indicating an m by m sys-

tem of second order differential equations .

DATA is the name of a user written subroutine subprogram, called

by 1385 to obtain certain input data. The form of this is

described in a later section . The name “DATA” is symbolic,

of course , and can be any legal subroutine name that does

not conflict with ones in use in the collection . ($ee

list under ORGANI ZATION)

TOL is a real input variable , the tolerance used to control

program convergence. Let be the ith iterate of Ak.

The process is said to converge, no further iterations
being performed , if - I < TOL , for all

k, k-l,2,...,m. Some care should be exercised here to
59
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ensure that 1OL is not unreasonably small.
IHAX is an integer input variable, the maximum number of itera-

t ions allowed. 15<IMAX<30 would probably be reasonable.

LAMBDA is a complex output array, of dimension m, containing the

characteristic values, Ak, k—l,2,. . ,m.

U,V are complex , m by m , output arrays , containing the modal

vectors, Uk and Vk, re9pectively. U (I , K) will contain the

I-th component of vector Uk, and similarly for V(I ,K) and Vk.
EM ,C ,KA are real, m by m, output arrays, containing the mass damp-

ing, and stiffness matrices, M, C, and K, respectively.

I is an integer output variable , containing the number of

iterations required for convergence. If convergence is

not achieved, I is set to IMAX +1.

~ is an array used by the subprograms as temporary work space .

It ri~st be dimensioned at least 4m2+~~.

DESCRIPTION OF SUBROUTINE DATA - this subprogram , written by the user ,

is called by BBS to provide it with the following data:

1. the frequencies 
~~ 

and 
~~2’ k=l ,2 ,.. . ,m.

2. the vectors 
~k1 

and 
~k2 ’ k~il ,2 ,...,m; and of length m.

These are obtained from experimental data.

This subprogram should contain the equivalent of the following FORTRAN

statements:

SUBROUTINE DATA (~4,CMEGA,Yl ,Y2)

REAL ~J~EGA (N)

CaIPLEX Yl (M ,M) ,Y2(H,M)

where:
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M is an integer input variable, the same M as provided in the
initial call to AAS. - 

-

1’~1ECA is a real output variable, of dimension N=2M, which will

contain 
~kl and ‘~k2’ 

as follows:

~1EGA(l) will contain

~1EGA(2) will contain

OMEC1A(M) will contain

OMEfA(M~l) will contain -

OMEGA (N) will contain um
Yl,Y2 are complex, m by m, output arrays, which will contain the

vectors 
~kl 

and 
~k2’ 

respectively. Yl(I,K) will contain the

I-th component of vector 
~k1’ 

I,k=l,2. .. ,m; and similarly

for Y2(I,K) and

PROGRAM TESTING - The results of two test cases with m~4 are

given in Tables I and II. For these tests the values of Ak~ Uk and

Vk were specified. Then given the input frequencies, wkl and wk2,
we computed the vectors 

~kl 
and 

~k2’ 
using Eq. (2) of Section II.

Using a tolerance of iO 8, convergence was achieved in 11 iterations.

The following tables display the agreement achieved between the

specified and computed values of and Uk. Similar agreement was

achieved for Vk, obviously.
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In the first test case the Ak are all different. In the

second case A1=A~,. The remaining Ak and the Uk and Vk are the

same as in the first case. The specified values for the Ak and Uk
are given in the tables. For the Vk we took V1 

= ii/2 .

= i/r. i0~~U2, V3 = i~’2~ lO~~U3 and V4 = i~’T~ lO \J4. Note

in Table 2 that the computed values of U1 and U2 are l inear combina-

tions of the specified values of U1 and U2.
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TABLE I

CHARACTERISTIC VALUES ALL DIFFERENT

Data Exact Computed

A
1 -0 .2 ÷ i - .20000000 + 1.0000000 i

A
2 -0 .05 + Zi - .050000000 + 2.0000000 i

A 3 -0.1 + 3i - .10000000 + 3.0000000 i

A -0.175 + 4i - .17500000 + 3.9999999 i

1 1.

2/3 .66666668 + .841 X 10 8 i.
U1 81 1 1.0000000 + .228 X 10 j

1 0 - .173 X io 8 
- .154 X io 8 j

1 1.

-3/2 -1.5000000 - .390 X i
U2

0 .148 X l0~~ + .677 X io 8 i

1 1.0000001 + .177 X 10 i

1 1 1  1.

2/3 .66666665 - .313 X l0 8 
~U3

-13/9 -1.4444444 - .214 X 10 8 i.

0 .137 X l0~~ + .123 X 10~~ i
-

~~~~~ 1 1.

-1/ 2 - .50000002 + .364 X io 8
U4 0 .142 X io 8 - .355 X l0~~ i

-5/2 -2.4999999 + .108 X l0~ i
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TABLE II

A OIARACFERISTIC VALUE OF t4JLTIPLICITY 2

Data Exact Computed

A 1 -0 .2  + i - .20000000 + 1.0000000 i

A 2 -0 .2 + i - .20000000 + 1.0000000 i

A3 -0.1 + 3j . - .10000000 + 3.0000000 i

A4 -0.175 + 4i - .17500000 + 4.0000000 i

1 1.

2/3 - .52610556 - .704 X 10-12 ~
U1 1 .44948974 + .123 X 10~~~ ‘

0 .55051026 + .285 X io 12 
j

1 1. 
F

-3/2 -2.7340926 + •343 X 10~~ ~
U2 0 - .56958119 - .253 X l0 10 

~
1 1.5695812 - .232 X i0~~ i

1 1.

2/3 .66666667 - .253 X 10~~ i
1J3 -13/9 -1.4444444 + .401 X 10~~ i

0 -.840 X ~~~~ + .117 X 10 9i

1 1.

u -1/2 - .50000000 - .374 X 10~~~ i

‘I 10 100 - .292 X 10 + .631 X 10

-5/ 2 -2.5000000 + .427 X l0~~ i
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~HI$ PACE IS ~~~T QuiL l?! Y LC?~~~~~~
FR~M COPY 

FURI4IS~~D TO DDO ~~~~~

SIJf5ROUTIP%F AAS (H, OATA,TO L, IPAX,LAH BDA ,u,V, Fti,C,KA,I ,W)
C
C THIS StIRFOUTINE ALLO (~ATES VIRTUAL STORAG~ IN THE WORKC ARRAV , w, OEPf~N0ING ON THE PAPAMETEP , H, AND CA LLS THE CORE
C SURROUTIN F ~flS.
C

tXT E~NA L ()ATA
O IM tN SION W (3. )

• K 2 M
IY 1 t+ ’(
1Y2 1Y 1+K
IY I Y ? + K
K s K ~ M
I YT I Y + K

1T3 1Y
ITI:1T3+X
IT~~ ITI.+K
CALL B~S (M ,PATA ,TOL ,IM~ X ,LAMB0A ,U,V ,EM,C,KA ,I, W (I)

3. , W ( X Y i ) , W ( IY 2 ) , W ( IY ) , W ( IV T ) , W ( IT 3 ) , W ( I T ~~
) , W ( I T ! ) )

RE TURN

H
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UAIiIT’I

~~~~ 1Ski~D TO DDQ .
~~-

SU B RO IJ T IP E BB~ ( M , O A T A , T O L , I M A X , LA MB DA , U ,V , E M , C , K4 , LL
1 ,0MEGA ,Y 1,Y2, V ,Y T , T ! ,T~~,T5 )

C
C THIS SUB~ OU1INE M O N ITOF S AN D CONIPOLS A LL CALCULAT I C P% 5 ,
C INC LUDING THE READI NG OF THE INPUT DATA h A  THE USER W R ITTEN
C SUBROUTIN E ‘DATA’ .
C

EXTERNAL DAT A
DIMENSION OMEGA ( 1, )
COMPL EX T ,LA M BD A (l) ,Yt (M), Y 2 (M ),V (M ,M ),U(9, M) ,Y (M ,M ), Y T (M ,1)

C
C READ INPUT DA TA t OMEGA’S AND RESPONSE VECTORS V
C

CALL DATA (M, OM rGA, Y ,V T)
C
C FIRST A PP ROXIMATION
C

00 20 (j , M

OMt OMEGA (K)
-; 0 M2=O M EGA ( K+M )

C
C OBTAIN ErG c N~lALuE , LAM F3OA(K )

• C
CA LL EIGEN (Y(1,K) ,YT (1,K),OMI,0M2,LAMBDA (K),M)

C
C OBTAIN EIGENVECTORS, U AND V
C

CA LL VUS (Y (1,K),YT (1,K),LAMB0A (K),OM ~,OM 2.V (j,K),U (i,K),M)20 CONTINUE
• C
• C REFINEMENT P°OCEDU~E

c
DO 5~ L=1,IMAX
K N O

C
DO 1, (, (j , H
OMI=OMEGA (K)
OM 2 OM EGA ( K + N )

C
• C OBTAIN NEW V VECTO’S, Vi AND Y2
• C

CALL. YVECS ( K , O M E G A , Y ,Y T , L A M B D A , V , U , Y j ,V 2 , M )

C
C OBTAIN NEW EIGENVALUE , I = LAMBOA (K )
C

CALL EIGEN (Y 1 ,V 2 , O M 1 ,0 M 2 , T , M)
C
C OBTAIN NEW EIG ENVECTORS
C

CA LL VUS (Y j , Y 2 , T , O M 1 , 0 M 2 , V ( i , K ) , U t 1 , K ) , M I
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THIS PAGE I-S BEST QUALITY PRACTICABlE
YR$.)M cOki iUI~ lSI~ I) TO DDC —

C
C TEST FOR C flNVE R G~~NCE AND STORE NEW E X CE NVALUE
C

IF (CA B S (LAMB DA (K ) —T ) •G~~. TOL) KN=K N4I
‘C LAP ~B 0A (K )~ T

C
C IF C0~~~RGrNCE W A 3  M E T , GO TO FO
C

IF (KY ~ .E Q. 0) 60 TO 63
50 CONTINU~C

C CONVt ~ GENC E FAILE D
C

LL :IMAX4 1
GO TO 70

C
C SET ITFR ~ TIOM CO UNT ~ND CO MP UTE THE
C PEMAI NING ELE M ENTS OF VECTOR V
C
6C L L L
70 00 83 K 1 , M

00 81’ J 2 , M

~ V (J ,K ) V (1 ,K )~ U (J ,K )
C
C ~ECOVE P M 4T~ ICES M , C, K
C

CA LI. ~ECVR IU,V,LAM~ tJA, M ,EM ,KA,C,T3,T~~,T5)
RE TURN
E N D

SUBROUTINE FIGEN l’vj ,Y?,OMI,0112,T,M)
C
C THIS SUB R OU TINE COM ~ t JTF S AN AP PROXIMATION TO LAM B DA(K),
C GIV EN THE FREOUENCIE~ DMEG A( K j AND OM ~ GA (K 2 I , AND THE
C CURRENT A PPRO YIP~ATI OP4 TO THE VECTORS Y (K1 ) AND Y (K’)
C

COM PLEX V 1 (1), V 2 (1),T ,Tj,T2
CO MMO 4 T1,T2
T1= (C. ,0.)
12= ( 0 . , 0 . I
1)0 ir 1 1 , M
T i = T i + Y 1 ( I P ’2

IC T~ =T2 +Y2 (I)”2
T CS’)PItTI/12)
IF (A IIAG IT ) •LT. 0.) T=— T
T1 :CM °LX (!i. ,OMj)
T2 :CMPLX (0. ,0P12)
Ti (1 T1—T2)/(T— i. )
RET I ~F N
E N O
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1~ IS PAGE iS BEST QUALITY PRLCflCA,~4
~ -~ i~iH~~ TO DDC _,. —

SUBROUTI NE VUS (V 1 VT , LAM BDA ,OM I ,0M2 ,V , (J, M)
C
C THIS SUBROUTINE COMPUTES VECTO F U (K ) AND THE i-ST
C ELEM ENT OF VECTOR V (K ), GIVEN THE CURRENT AP PR OXIMATION

fl C TO THE CH ARACTERIST IC VALUE LAM D OA (K ) , THE FREQUENCIES
C OME GA (K1 ) AND OM EGA (K2 ), AND THE CURRENT APPROXIMATION

• C TO THE VECTORS YC KI ) AND Y(K2).
• C

COMPLEX Y (i),VT (t ),LAM ~OA ,v ,u (U ,Oj
COMMON 01
OI Y T ( I ) — Y ( i )
V :Oh/(j ./ (CMPLX (0 .,OM2)~~LAMBDA )— j ./ (C M PLX (O. ,OMt)— LAM3 D A) )
U( I) (1.,0.)
DO 10 L 2 , M
U (L )= (YT (L ) — Y (L ) )/DI

10 CON TINUE
RE T UFN
EPI C

SUBROUTINE YVECS (K ,OMEG A ,Y,YT ,LAM BOA,V,U,Y j,Y2 ,M)
C
C THIS SUBROUTINE COMPU TES AN APPROXIMATION TO THE
C VECTORS VI KI ) AND Y (K 2 ) , GIVEN THE FREQUENC IES OME GA (KI )
C AND OME GA (K2 ) , THE RES PONSE VECTORS V, AND THE CUR RENT
C VALUES OF ALL LAM BD A’S , V’S, AND U’S.
C

DIMENSION OMEGA (L)
H COM PLEX Y (M, M ) ,Y T (M ,M) ,LA MP DA( j ),V (M ,M) ,U(M,M ) ,Yj(j),V2 (j),

I Ti,T2,Si,S2,T
COMMON T1,T2,S1,S2 ,T
TI=CM PLX (0. ,OMEGA (K ))
12 -~C$PL X ( ‘3 . , OMEGA ( K+ H) )
no 30 1 1,M
5i Y(I,K)
S2 VT (I ,K)
no 20 L 1 , M
T=V (i ,L )~~U (I ,L )
IF (L •EO . K) GO TO 10
Si:S1—T/ (T1.— (LA MB OA (L )P )
S2 S2—T/ (T2- (LAMRD A U)))

10 S1sSt~~(CONJG (T) )/ (Ti— (CON JG (LA MBO A (L ) )) )
S2 S2— (CON JG (T ))/ (T2— (CON JG (LA M BOA (L ))))

20 CONTINUE
VU !)-2Si
Y2 (I) :52

~C CONTINUE
PETU RM
END
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THIS PAGE 15 BEST QUALITY PRACTICABLE
FROI( COPY 7i~~ISREI) TO DDO ......—

SURPOUTIN E RECVR (U , V, LAMB OA ,M ,EM ,KA ,C , T1,T2 ,T3)
C
C TillS SUBROUTINE COMPUTES THE MA SS, DAMPING , AN D
C STIFFNESS MATRICES , H , C, A ND K , GIVEN THE FINAL. VALUES
C OF ALL LAMBDA’S , V’S, AND U’S.
C

COMMON T ,L ,VV ,M 2 ,N
COM PLEX U (M,M) ,V (M ,M) ,LA MBDA (j) ,T ,L ,VV
D IMENSION ~H ( 1) , K A ( 1 ) , C ( t ) , T 1( i ) , T 2 ( i ) , T 3 ( i )
M 2 M ~ M
00 10 1 1,M2

10 T i ( I ) = T 2 ( I ) = T 3 ( I ) = 0 .
C
C COMPUTE MATR ICES I 11( 0), —I~~I4 ’ ( 0 ) ,  .5’H’’(O) -

C
00 20 K 1,M
L L A MBO A (K )
N 0
00 20 J i,M
VV V (J ,K )
00 20 I 1,M
N N4I
T —U ( I ,K) ~VV /L
Ti (N ) T1 (N ) +REAL(T)
T=T/L
T2 (N )=T2 (N ) +FEAL( T)
T T/L
T3 (N )= T3 (N ) —R EAL (T )

20 CONTINUE
00 30 1 t , 12
T 11I) 2.~~T 1(I )
T 2 ( I ) = 2 . ~~T 2 ( I )
T3 ( I) 2.~ T3 ( I)

‘0 CONTINUE
C
C COMPUTE REA L MATRICES H, C, K
C

CA LL 11W (T3.,KA , M, EM )
CA LL MIMI (M ,M ,M ,T2 ,KA,1 1
CALL HTMl (M ,M ,M ,KA,Tj,C)
CALL MIMI (M ,M,M ,C ,T2 ,T 1)
00 40 11, M 2

‘.0 C ( I ) i — C ( I )
CA LL MIMI (M,M ,M ,KA , T3 ,T2)

- ~- DO 50 1 1,M 2
so T3 (!):Ti (I)+T2 (I)

CALL MIMI (M , Pl ,M,T 3,KA, EM )
j  RETURN

EPIC

1 
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