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Algorithms for Reporting and Counting
G om.tric Intersections

by

Jon L. Bentley 1) and Th. ottmaan 2)

Abstract

An interesting class of “Geometric intersection Probl.ms” calls for
dealing with the pairwis. intersection. among a set of N objects in
th. plan.. These problems arise in many applications such as printed
circuit design , architectur al data bases, and computer graph ics.
Shemos and M o y  have described a number of algorithe. for detecting
If any two objects in a planar set intersect. Xn this paper we
extend their work by giving algorithms which count the number of
such intersections and algorithes which report all such intersections.

Reywords: Computational geometry, geometric intersection problems.
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1. Introduction -------

Many fascinating aspects of “Geometric Intersection Problems”
have been brought to light in the recent study of Shaxnos
and Hoey (1976). They investigated many different problems -

defined on sets of planar objects such as “do any two
objects intersect?”.

They pointed out that such problems arise in printed circuit
design (do any conductors cross?), architectural data bases
(are two items in one spot?), and operations research
(linear prograuun.tng can be rsduced to an intersection problem).
Shamos and Roey have given many optimal algorithms in their
paper both for detecting and for forrnin~ intersections of
many different classes of objects.
In this paper we answer some of the open questions raised
by Shamos and No.y by solving problems of the form ~~~~~
all intersecting pairs of objects” and “how many pairs
intersect?~. For example, we will give a fast algorithm
for reporting all intersecting pairs among a set of N line
segments in the plan.. This problem arises in printed
circuit board design, for crossovers must be placed at
all such intersecting points. In this application (and
many other.) it is critical that all such pairs be reported.

• In $ectii.~ 2 of this paper we will study an algorithm due
to Shamos end Ho.y for determining whether any pair of a
set of line segments intersect, and then generalize their
a.Lqor ithm to report all intersecting pairs. In that section
and the following we will assume that the reader is familiar
with Shamos arid H o y  (1976]. In Section 3 we i~ill see how
to modify the algorithm of Section 2 to solve many other
problems calling for reporting all intersecting pairs of
planar obj.cts. In Section 4 we return to a special case
of pla~~r line segments, namely when all such segments are
either horizontal or vertical. This case does arise in
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applications, and our algorithm for reporting all inter ’
secting pairs of such segments is faster than for the
general case (indeed , it is optimal) . We also solve the
problem of counting how many intersections there ar. in
such a set. We give directions for further work and
conclusions in Section 5.

2. Intersection of Line Segments

Ir~ this section we will examine the problem of “given N
line segments in the plane, report all intersecting pairs.”
We will investigate this problem by first describing an
algorithm due to Shamos and Hocy (1976] for detecting ~j any 

0

of the segments intersect, and then we will modify that
algorithm to 

~~~~~ 
all, intersecting pairs. In this paper

we will not carefully describe certain important points
such as the representation of line segments and algorithms
for deciding if a point is above or below a given segment;
we assume that the reader is familiar with Shamos and
Hoey (1976], where these details are discussed. Throughout : I 0

this section we will make th. ass~m~ptions that no segments
in the set we are to process are vertical and that no three 

0

segments meet at any one point —— to confront the details
for handling these situations is cumbersome and not par~
ticularly illuminating. 0

We will now briefly review Shainos and Rocy’s algorithm for
determining if any two of a set of N line segments in the
plane intersect. The basic process of their algorithm
“draws vertical lines” tnrough the endpoints of segments
in the set. They make the crucial observation that the
positions at which the different segments intersect a given
vertical line define a total ordering on those segments
(the “above—below ordering) ,andif the segment set is free
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of intersections then the relative ordering of any par-
0 ticular pair of segments will be the same at all vertical

lines. (Note that if a line segment A is above segment B
at one vertical line and B is above A at another, then
they must have crossed, or intersected, somewhere between

- 

the two vertical lines.)

Once we have observed that there is a natural order
relation on sets of line segments with respect to any :
given vertical line it is easy to describe Shainos and 0

Hoey’s algorithm. The main loop of the algorithm “sweeps”
a vertical line left-to—right through the set of segments,

• stopping at each endpoint (this is implemented algorithmi- 0

cal.ly by sorting the 2N endpoints in an array and then 0

sequentially scanning through it~ .At each point during
this sweep we maintain the segments which intersect the

0 
vertical line defined by the current x-value, stored
in the order relation of the aegments with respect to the
vertical line. As a left endpoint is encountered during
the sweep we insert the segment into the ordering and as
a right endpoint is encountered we delete it from the
ordering. Whenever we insert a segment into the ordering
we compare it against both of its “top” and “bottom ”
neighbors in the relation and when we delete a segment
we compare th. newly adjacent segments -- if a given

- 
segment intersects any segment then it intersects one of

- those . Once such an intersection is found the algorithm reports 
-

- it and halts; if no such intersection is found then none
0 

exists among the segments.

The correctness of this algorithm has been proved by Shainos

- 
and Hoey. They showed that if the order relation R among
line segments is maintained as a balanced tree, then the

- 
running time of the algorithm is O(N lg N). W• include a

0 pseudo-ALGOL description of

I
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their procedure as Algorithm 2.1.

Q • the set of all, endp oints of segments,
stored in order by x-valu.s

0 

R • II R is the order relation of segments
currently examined

foreach endpoint p in Q (in ascending x-order) ~~
if p is the left endpoint -at se~jment s then

ii~sert s in
check if s intersects the segments directly
above or below it, and return that pair_if
it does

else /1 p is the right endpoint of S
check if the segments directly above
and below s intersect , if so return that pair ;
delete s from R.

Algorithm 2.1, Determine ~~ N planar segments intersect. ‘I

We will now examine the more general problem of reporting
all intersecting pairs, rather than just saying whether
or not there is at least one such pair. This problem was
posed by Shamos and Hoey, who asked if there exists an
algorithm to do this in time O(N ig N + k), where k is
the number of intersecting pairs. They showed this time
complexity to be a lower bound on the problem. We cannot
answer their question directly, but ye can modify their
algorithm to solve this problem in time O(N lg N + k lg N ) .

The correctness of Shamos and Hoy ’s algorithm is due to
the fact that if two segments intersect then at some point
they must become ad jacent in the vertical ordering. We
will now show how this fact allows is to construct an
algorithm for reporti’iq all intersecting pairs of segments.
We do this by ‘sweeping” a line through the point set
(as before) • always maintaining the correct vertical — -

- -
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0 order ing in set L (as before) , and then checking whenever
modifying R to see if newly adj acen t segments ever inter—
sect (a. before). Thus the algorithm we will presen t is

- substantially the sass as Shasos and Hoey ’s original , 
0

-
‘ but modified to maintain the correct total.. ordering on

the segments even after an intersection is found. Note
that if two segments are determined to inter sect (some— 0

where to the right of the current scan position), then
they will be in th. correct order up to the intersecting
point and at that point they should be “swapped” in the
order. Having made this observation it is trivial to
t~’dify Shanos and Roey’s algorithm. They updated the 

0

order R at the “critical’ times of enterin g and leaving
0 

the line segments. We will additionally update R at the
“critical” time of segment intersection . Our modified
version of Shamos and Rosy’s algorithm is presented in
pseudo—ALGOL as Algorithm 2.2.

I! :

t
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Q 4 the set of all endpoints of segments ,
stored in order by z—values;

f ~ ; II The order relation among segments
foreach point p in Q (in ascending x—order) do

~~~ 
p is the left endpoint of segment s then
insert s in H;
check if $ intersects the segments i~~ediately

above and below it and if it intersects
segment t then insert the intersection
point of s and t into Q (in x-order)

j~jj j1~ p is the right endpoint of segment s then
cheek the pair of segment. directly above

and below s for intersection and if they
meet then add their intersection point
to Q (in x—order) ;

delete s f rom R

iL!! /1  p is the intersection of segmen t s and t
report the pair as intersecting ; 0

swap the positions of s and t in H
(notice tha t they were and still are
adjacent) ;

check the upper segment (say s) for
intersection with the segment above
it , the lower (t) with segment
below it, and add any intersection - j ~0

points to Q

Algorithm 2.2. Report all intersections among N planar segments.

I
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The correc tness of Algorithm 2.2 follows from the fact
that the total ordering R of segments is correctl y main-
tained at all times . Th. details of the proof are ana-
logous to the argument in Theorem 2 of Shamos and Rosy
(19761. To t~pleaent the algorithm efficiently we can
score H as a balanced tree and Q as a heap . As before ,
we ass~me that there are k intersecting pairs. The number

of times the foreach loop of Algorithm 2.2 is executed
is exactly 2N+k . Since the total order H can never contain
more than N segments each operation on H within the

.Latusk loop can be performed in O(lg N) t ime. The cost
of each priority queue operation on Q is O(lg ( 2N+k]) •

~(1g N) (since k~~N
2) if Q is represented by a heap. We

thus see that a cost of O(lg N) is incurred at each of 
0

the O(N+k) iterationa through the loop, so the total
r~mning time of the algorithm is O(N lg N + k lg N).
Note that if k is very close to N2 then the running time
of our algorithm is actually greater than the 0(N2) time

of the “naive” algorithm which checks all (
~
) pairs for

intersection.

3. A General Algorithm -

In their paper Shamos and Ho.y shoved how the algorithm
they give for detecting intersection among line segments
can be modified to detect intersection among sets of
many different kinds of objects. In this section we will 

0

show how our algorithm for reporting all intersections
among line segment. can be modified to report all inter—
sections among sets of many different kinds of objects .

F We will explore this facet of our algorithm by first
mentioning general properties of objects sufficient for
th. correctness of our algorithm when applied to a set
of such objects , and then use the general construction
to solve a particular problem .

Algorithm 2.2 depended on three properties of line segments
for it. correctness . It can also be used to solve inter-

section problems on other objects as long as those objects
display the following three properties .

~0~~ ~~~ ~~~~~~~~~~~~~~~~~~~ - 00 - -~~~~~~~~
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P1. A vertical line through the object intersects
it exactly once.

P2. For any pair of objects intersecting the same
vertical line it is possible to determine algorithini—
cally (at constant cost) which is above the other
at that line.

P3. Given two objects it is possible to determine
algorithmically if they intersect, and if so to

4 compute their leftmost intersection point after
some fixed vertical line.

0 Property P1 ensures that an order relation R will exist for
any vertical line and Property P2 ensures that the relation 0

can be computed. Property P3 is used by Algorithm 2.2 as
it adds int•rsection points to Q; the leftmost intersection
point after the current scan position is ~he one which
should be added. So we see that if a class ~f objects C
has properties P1 through P3, then we can report all. inter•
sections among a set of C’s by modifying Algorithm 2.2 to
read “C” whenever it reads “segment”. The running time
of the modified algorithm is still O(N lg N + k ig N).

• 1

An example of a class of objects displaying the above three
properties are circular arcs in the plane, restricted to

i 
exc)ude arcs which include a point with no derivative. (Note
that an arc with such a point c~n be represented by two
arcs without this property by “breaking ” the arc into two
at the place where the slope becomes vertical). Such arcs
can be described mechanically by giving a circle (center
and radius), two x—values defining the endpoints of the arc,
and one bit saying whether we are considering the upper or
lower part of the circle within the specified x-slab.
We have guaranteed that Property P1 is satisfied by excluding -
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arcs which are both concave up and concave down. It is a
trivial programming problem to design an algorithm showing

I that 92 and P3 are both satisfied. This establishes the
fact that O(N lgN+k lg N) time is sufficient for re—

- 
porting all k intersecting pairs among a set of N
circular arcs in the plane.

One application of the above algorithm for determining
arc intersection is the problem of ‘~uclidean fixed—radius
nearneighbors” .In this problem we- are given N points
in the plane and then asked to report all pairs of points
within some distance d of one another by the Euclidean 0

metric. Notice that two points are within distance d of
one another if and only if two circles, each centered at
one of the points and both with radius d/2, intersect.
Thus we can find all near neighbors by considering each
point in the set to be the center of a circle of radius
d/2 and then reporting all intersecting circles. (Note
that we will have to “break” each circle into its top
and bottom halves, however). This gives an O(N lgN+ k lg N)
solution to the near neighbor problem. This same algorithm
can also be used to report all intersections among a set
of circles of varying radii. 

0

4. Intersections of }iorizontal and Vertical Line Segments

In this section we consider the special case of planar
S 

line segment intersections in which each of the N given line
segments is either vertical or horizontal. The problem of
finding all intersecting pairs in a set of horizontal and
vertical. line segments arises in many applications. When
designing an integrated circuit conductQrs are often
restricted to horizontal and vertical lines;detecting all
crossings of conductors calls f~~finding all intersecting
pairs of vertical and horizontal line segments . Rectilinearly
oriented squares and rectangles are built from vertical and

- - I
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horizontal l ine segments . Thus, an algorithm for finding
intersecting pairs of vertical and horizontal line 

—

segments can be used to detect all (properly) inter-
secting pairs of squares and rectangles. Finall?, we
will show how the “L,_ fixed radius near neighbors”
problem (which asks for all pairs of N points in the 0

0

plar* within some f ixed distance d of one another) can
be solved efficiently by this algorithm, if the distance
is measured by the L , metric.

In order to simplify the presentation of the algorithm
and to clarify the discussion we first restrict the input
to the case where no line segments overlap . All x-valu.s
of vertical lines and left and right endpoints of horizontal
lines are pairwiso distinct. We will later mention how
to handle these cases. In the problem of interest -we
are given N vertical or horizontal line segments in the
plane. Each vertical line segment A is specified by its
x-coordinate x (A) and the y—valuea of its lower and upper 

- 
-

endpoints bot (A) and top (A) . Each horizontal line segment
is similarly specified by its y-eoordinate y(B) and by
the x—val~ies of its left and right endpoints 1sf t(B)
and right(3). We will, let N be the sat of x -coordinates

ii — (x(A)~A vertical)U (left (B) JB horizontal)U
0

-i U (right(B)JB horizontal). - 
-

~

Note that N has at most 2N elements .

-i - The main loop of our algorithm sweeps a vertical line
from left to right through the sat N . We use a data structure
R to store horizontal line segments currently intersecting
the vertical lines ordered by their y-coordinates.
Initially R is empty . Whenever a lefe (respectiyely rs,qht)endpcint of a
horizontal line segment $ is scanned S is inserted into
(respe ctively deleted from) the structure R.
When a vertical segment is encountered during the sweep
we check for intersection with horizontal line segments

0~~~~~~ 0~~~~~~~~~~~~~~ 00 ~~~~~~~~~
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in R We describe this algorithm in pseudo-ALGOL as
Algorithm 4.1 - - -

Q • the set N in ascending x-ord.r (stored in such a way
that for each p in Q we can recognise to which

• line segment p belongs and whether p is
the x-value of a vertical line segment or
the left or right endpoint of a
horizontal segment).

R • 1/ The order relation amon’i horizontal 
-

line segments (ordered by y-values)

foreach p in 0 (in ascending x-order ) ~~
if p ii the x-value of the left endpoint of a ~0

horizontal line segment S then insert
Sin R.

else if p is the x-valus of th~ right enipoint
of a horizontal line segment $ then
delete S from R.

else // p ii x—valus of a vertical line
segment S •

0

determine A — successor (hot(S) ,*)g
- - -- ~~~~~- • • the least y—val u . greater than

- . 
or equal to hot(S) in ~s

determine B — predecessor (top(S),R),
• the greatest y-valu e less than or

equal to top(S);

foreaoh horizontal line segment T occurr ing
in R between A and B do return (S.?)

as an intersecting pair .
Algorithm 4 1  keport all, intersecting pairs of N

planar hori zonta l and vertical line
segments.
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It is easy to see that Algorithm 4.1 correctly finds all
intersecting pairs of line segments; Whenever a vertical
line segment S is considered R contains exactly the
horizonal line segments crossing the vertical line
x a K (S) a p (ordered by y—values). The algorithm then
reports all pairs (S,T) where T crosses S. The data

-~ 

structure R can be implemented as a balanced tree. Hence, -
the time to perform the operations insert, delete,

• successor and predecessor is OClog N). Reporting the inter-
secting pairs can be done in time proportional to
their number if we use an appropriate implementation of~
balanced trees. Brother (leaf-search) trees of Ottznann
and Six (1976] (see van Leeuven (1976] for an English

-H exposition),for example, can be used for this task
where the leaves of the tree are kept in a doubly linked
list. The structure Q can be implemented as a sorted
linear list. Sorting the elements of N and storing them
in increasing order takes time 0CM 10gW. Hence the total

- - performance time of the algorithm is O(N log N + k) where
• k denotes the number of intersecting pairs.

To simplify the presentation of Algorithm 4.1 we assumed
that no pair of line segments share endpoints or lie on
the same line, but these assumptions can be removed by
increasing the “bookkeeping” performed by the algorithm.
To handle the case that endpoints of segments might
intersect other segments we must be careful to process
“multiple events” at a vertical line during the sweep
in the order “insert new horizontal endpoints” , “check

-
~~ 

-
~ vertical segments” , “delete old horizontal endpoints”.j We must also report any pair of vertical (likewise

horizontal) segments that meet -- this can be accomplished -
before the main body of Algorithm 4.1 is ever invoked. We
will sketch the procedure for detecting overlap among
pairs of horizontal lines; the case of vertical lines is

- - ~- 0--~~~~~~~~~~~~~~~~ •~~~~~~ -~~~~ ~~~~~~~ 
‘

- 
-
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exactly the same. We first sort all horizontal segments
r by y-value and then consider only “clusters” of segments

sharing the same y-value. Within each cluster we sort the
endpoints by i-val ue, and a scan through the resulting
list can report all overlapping pairs in time proportional
to their number . Neither of the special cases we have
just sketched alters the O(N lg N + k) running time of
Algorithm 4.1.
we now briefly describe how to modify Algorithm 4.1 for

I0 counting the number of intersecting pairs of N horizontal
or vertical line segnten~ (without reporting them) . We
associate a counter with each element A in R which
indicates the number of elementapreceeding A in R. When— 

-
0 ever the sweeping vertical line encounters a vertical

line segment S we determine A—successor (bot(S) ,R) and
B — predeceisor (top CS) , R); the number of horizontal line
segments intersected by S is the difference between the
counter of B and the counter of A. This number is added
to the total number of intersecting pairs found so far.
In a balanced tree counters can be updated after an
insertion or deletion in time O(log N). Hence, the
modified algorithm will report the total. number of inter—
seating pairs, after 0(N log N) steps which is optimal.

0 

Finally, we apply Algorithm 4.1 to solve the “L , fixed
radius near neighbors” problem. In this problem we are
given N points in the plane and asked for all pairs of
points within some distance d of one another by the
metric (i.e. the maximum coordinate metric). The crucial
observation is that two points at. within distance d of -

on. another if and only if two squares of side length d
and with sides parallel to th. coordinate axes, each
centered at one of the points, intersect . Hence , for
finding all pairs of near neighbors we surround each
point with a square centered at that point (with side

~

-•—
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length d and sides parallel to the coordinate axes).
Then we use Algorithm 4.1 for reporting all pairs of
intersecting squares. This gives an 0(N log N + k)
solution to the “L0, fixed radius near neighbors” problem.
The same result was obtained in atotally different
manner by Bentley, Stanat and Williams (1977].

5. Conclusions

we will now briefly summarize the research described in
this paper. In Section 2 we showed how Shamos and Hoey’s
algorithm for detecting whether any two of N planar line
segments intersect can be modified to report all such
intersecting pairs; the running time of the resulting
algorithm was O(N ig N + k lg N). In Section 3 we modified
the algorithm of Section 2 so it can report all. intersections
in planar sets composed of more complicated objects
than line segments; the running time of the algorithm was
not changed. We then examined a special case of line
segments (when each is either horizontal. or vertical) in
Section 4 and showed how all intersecting pairs in such
a set could be reported in O(N lg N + k) time and
counted in 0(N ig N) time. Both of those performances
are optimal. The existence of these algorithms partially

-
~~ answers a number of questions posed by Shaxnos and Hoey.

These algorithms are particularly interesting because
they are among the first algorithms with complexity
described not only as a function of the problem input

-
~~ size, but jointly as a function of problem input and

output sizes.

A number of geometric intersection problems remain unsolved.
The most outstanding open problem we have raised in this
paper is whether all. k intersections among N line segments
can be reported in 0(N ig N + k) time. (Perhaps one
reason that our algorithm fails to meet that bound is
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that it reports the intersection points sorted by x—value:
this sight in itself require O(k lg k) time.) The reader
interested in further open problems may consult the list
given by Shamos and Rosy (1976]. Perhaps some of the
methods we have used in this paper can be applied to
those probl~~s.
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