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Algorithms for Reporting and Counting
Geometric Intersections

by

Jon L. Bentley N and Th. Ottmaan 2)

Abstract

An interesting class of "Geometric Intersection Problems" calls for
dealing with the pairwise intersections among a set of N cbjects in
the plane. These problems arise in many applications such as printed
circuit design, architectural data bases, and computer graphics.
Shamos and Hoey have described a number of algorithms for detecting
Af any two cbjects in a planar set intersect. In this paper we
extend their work by giving algorithms which count the number of
such intersections and algorithms which report all such intersections.
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f 1. Introduction

Many fascinating aspects of "Geometric Intersection Problems” ]
have been brought to light in the recent study of Shamos | 8
and Hoey [1976]. They investigated many different problems - ii
defined on sets of planar objects such as "do any two
objects intersect?".

They pointed out that such problems arise in printed circuit
design (do any conductors cross?), architectural data bases
(are two items in one spot?), and operations research

(linear programming can be reduced to an intersection problem).
Shamos and Hoey have given many optimal algorithms Lln their
paper both for detecting and for forming intersections of

many different classes of objects.

In this paper we answer some of the open questions raised
by Shamos and Hoey by solving problems of the form "report
all intersecting pairs of objects" and "how many pairs
intersect?”. For example, we will give a fast algorithm
for reporting all intersecting pairs among a set of N line
segments in the plane. This problem arises in printed
circuit board design, for crossovers must be placed at

all such intersecting points. In this application (and 13
many others) it is critical that all such pairs be reported. !

In Secticn 2 of this paper we will study an algorithm due

_ to Shamos and Hoey for determining whether any pair of a

L set of line segments intersect, and thiengeneralize their

1 algorithm to report all intersecting pairs. In that section
and the following we will assume that the reader is familiar
with Shamos and Hoey [1976). In Section 3 we will see how .
to modify the algorithm of Section 2 to solve many other E
problems calling for reporting all intersecting pairs of
planar objects. In Section 4 we return to a special case
of planar line segments, namely when all such segments are
either horizontal or vertical. This case does arise in




applications, and our algorithm for reporting all inter=-
secting pairs of such segments is faster than for the
general case (indeed, it is optimal). We also solve the
problem of counting how many intersections there are in
such a set. We give directions for further work and
conclusions in Section 5.

2. Intersection of Line Segments

In this section we will examine the problem of "given N
line segmencs in the plane, report all intersecting pairs."”
We will investigate this problem by first describing an
algorithm due to Shamos and Hoey [1976] for detecting if any
of the segments intersect, and then we will modify that
algorithm to report all intersecting pairs. In this paper
we will not carefully describe certain important points
such as the representation of line segments and algorithms
for deciding if a point is above or below a given segment;
we assume that the reader is familiar with Shamos and

Hoey [1976], where these details are discussed. Throughout
this section we will make the assumptions that no segments
in the set we are to broccss are vertical and that no three
segments meet at any one point -- to confront the details
Zor handling these situations is cumberscme and not par-
ticularly illuminating.

We will now briefly review Shamos and Hoey's algorithm for
determining if any two of a set of N line segments in the
plane intersect. The basic process of their algorithm
"draws vertical lines" through the endpoints of segments

in the set. They make the crucial observation that the
positions at which the different segments intersect a given
vertical line define a total ordering on those segments
(the “"above-below"” ordering) ,andif the segment set is free
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i | of intersections then the relative ordering of any par-

! ; ticular pair of segments will be the same at all vertical
: lines. (Note that if a line segment A is above segment B
i at one vertical line and B is above A at another, then
they must have crossed, or intersected, somewhere between
B the two vertical lines.)

Once we have observed that there is a natural order
relation on sets of line segments with respect to any
given vertical line it is easy to describe Shamos and
Hoey's algorithm. The main loop of the algorithm "sweeps"
a vertical line left-to-right through the set of segments,
stopping at each endpoint (this is implemented algorithmi-
» cally by sorting the 2N endpoints in an array and then

} ' sequentially scanning through it).At each point during
this sweep we maintain the segments which intersect the
vertical line defined by the current x-value, stored

in the order relation of the segments with respect to the
vertical line. As a left endpoint is encountered during
the sweep we insert the segment into the ordering and as
a right endpoint is encountered we delete it from the
ordering. Whenever we insert a segment into the ordering
we compare it against both of its "top" and "bottom"

R neighbors in the relation and when we delete a segment
we compare the newly adjacent segments ~-- if a given
segment intersects any segment then it intersects one of
those. Once such an intersection is found the algorithm reports
it and halts; if no such intersection is found then none
exists among the segments.

i AR § il A

The correctness of this algorithm has been proved by Shamos
and Hoey. They showed that if the order relation R among
i line segments is maintained as a balanced tree, then the

running time of the algorithm is O(N lg N). We include a
pseudo-ALGOL description of




their procedure as Algorithm 2.1,

Q < the set of all endpoints of segments,
stored in order by x-values
R+ // R is the order relation of segments
currently examined
foreach endpoint p in Q (in ascending x-order) do
if p is the left endpoint 'at seqment s then
insert s in R,

check if s intersects the segments directly
above or below it, and return that pair_if

it does
else // p is the right endpoint of S
check if the segments directly above

and below s intersect, if so return that pair;

delete s from R.

Algorithm 2.1. Determine if N planar sogments intersect.

We will now examine the more general problem of reporting
all intersecting pairs, rather than just saying whether

or not there is at least one such pair. This problem was
posed by Shamos and Hoey, who asked if there exists an
algorithm to do this in time O(N 1g N + k), where k is

the number of intersecting pairs. They showed this time
complexity to be a lower bound on the problem. We cannot
answer their question directly, but we can modify their
algorithm to solve this problem in time O(N 1lg N + k lg N).

The correctness of Shamos and Hoey's algorithm is due to
the fact that if two segments intersect then at some point
they must become adjacent in the vertical ordering. We
will now show how this fact allows us to construct an
algorithm for reportiag all intersecting pairs of segments.
We do this by "sweeping” a line through the point set

(as before), always maintaining the correct vertical
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ordering in set R (as before), and then checking whenever
modifying R to see if newly adjacent segments ever inter-
sect (as before). Thus the algorithm we will present is
substantially the sama as Shamos and Hoey's original,

but modified to maintain the correct total. ordering on
the segments even after an intersection is found. Note
that if two segments are determined to intersect (some-
vhere to the right of the current scan position), then
they will be in the correct order up to the intersecting
point and at that point they should be "swapped" in the
order. Having made this observation it is trivial to
nodify Shamos and Hoey's algorithm. They updated the
order R at the "critical” times of entering and leaving
the line segments. We will additionally update R at the
"critical" time of segment intersection. Our modified
version of Shamos and Hoey's algorithm is presented in
pseudo-ALGOL as Algorithm 2.2.




Q € the set of all endpoints of segments,

stored in order by x-values;
R €& ¢; // The order relation among segments
fgrgggh point p in Q (in ascending x-order) do
if p is the left endpoint of segment s then
insert s in R;
check i1f s intersects the segments immediately
above and below it and if it intersects
segment t then insert the intersection
point of s and t into Q (in x-order)
else if p is the right endpoint of segment s then
check the pair of segments directly above
and below s for intersection and if they
meet then add their intersection point
to Q (in x-order);
delete s from R
else // p is the intersection of segment s and t
report the pair as intersecting ;
swap the positions of s and t in R
(notice that they were and still are
adjacent);
check the upper segment (say s) for
intersection with the segment above
it, the lower (t) with segment
below it, and add any intersection
points to Q

Algorithm 2.2. Report all intersections among N planar segments.
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The correctnass of Algorithm 2.2 follows from the fact
that the total ordering R of segments is correctly main-
tained at all times. The details of the proof are ana-
logous to the argument in Theorem 2 of Shamos and Hoey
[1976]. To implement the algorithm efficiently we can
store R as a balanced tree and Q as a heap. As bdefore,

we assume that there are k intersecting pairs. The number
of times the foreach loop of Algorithm 2.2 is executed

is exactly 2N+k. Since the total order R can never contain
more than N segments each operation on R within the
foreach loop can be performed in Q(lg N) time. The cost
of each priority queue operation on Q is 0(lg [2N+k]) =
o(1g N) (since k¢ N?) if Q is represented by a heap. We
thus see that a cost of 0(lg N) is incurred at each of

the O(N+k) iterations through the loop, so the total
running time of the algorithm is O(N 1g N + k 1lg N).

Note that if k is very close to N2 then the running time
of our algorithm is actually greater than the O(N?) time
of the "naive" algorithm which checks all (g) pairs for
intersection.

3. A General Algorithm
In their paper Shamos and Hoey showed how the algorithm

they give for detecting intersection among line segments
can be modified to detect intersection among sets of
many different kinds of objects. 1In this section we will
show how our algorithm for reporting all intersections
among line segments can be modified to report all inter-
sections among sets of many different kinds of objects.
We will explore this facet of our algorithm by first
mentioning general properties of objects sufficient for
the correctness of our algorithm when applied to a set
of such objects, and then use the general construction
to solve a particular problem.

Algorithm 2.2 depended on three properties of line segments
for its correctness. It can also be used to solve inter-
section problems on other objects as long as those objects
display the following three properties.




P1. A vertical line through the object intersects
it exactly once.

P2. For any pair of objects intersecting the same
vertical line it is possible to determine algorithmi-
cally (at constant cost) which is above the other

at that line.

P3. Given two objects it is possible to determine
algorithmically if they intersect, and if so to
compute their leftmost intersection point after
some fixed vertical line.

Property P1 ensures that an order relation R will exist for
any vertical line and Property P2 ensures that the relation
can be computed. Property P3 is used by Algorithm 2.2 as

it adds intersection points to Q; the leftmost intersection
point after the current scan position is the one which
should be added. So we see that if a class uf objects C

has properties P1 through P3, then we can report all inter-
sections among a set of C's by modifying Algorithm 2.2 to
read "C" whenever it reads "segment". The running time

of the modified algorithm is still O(N 1lg N + k 1lg N).

An example of a class of objects displaying the above three
properties are circular arcs in the plane, restricted to
exclude arcs which include a point with no derivative. (Note
that an arc with such a point can be represented by two 1
arcs without this property by "breaking" the arc into two
at the place where the slope becomes vertical). Such arcs !
can be described mechanically by giving a circle (center

and radius), two x-values defining the endpoints of the arc,

and one bit saying whether we are considering the upper or

lower part of the circle within the specified x-slab.

We have guaranteed that Property P! is satisfied by excluding

M
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arcs which are both concave up and concave down. It is a
trivial programming problem to design an algorithm showing
that P2 and P3 are both satisfied. This establishes the
fact that O(N lgN+k lg N) time is sufficient for re-

porting all k intersecting pairs among a set of N
circular arcs in the plane.

One application of the above algorithm for determining
arc intersection is the problem of "Buclidean fixed-radius
nearneighbors" .In this problem we are given N points

in the plane and then asked to report all pairs of points
within some distance d of one another by the Euclidean
metric. Notice that two points are within distance d of
one another if and only if two circles, each centered at
one of the points and both with radius d4/2, intersect.
Thus we can find all near neighbors by considering each
point in the set to be the center of a circle of radius
d/2 and then reporting all intersecting circles. (Note
that we will have to "break" each circle into its top

and bottom halves, however). This gives an O(N 1g N + k 1g N)
solution to the near neighbor problem. This same algorithm

can also be used to report all intersections among a set
of circles of varying radii.

4. Intersections of Horizontal and Vertical lLine Segments

In this section we consider the special case of planar

line segment intersections inwhich each of the N given line
segments is either vertical or horizontal. The problem of
finding all intersecting pairs in a set of horizontal and
vertical line segments arises in many applications. When
designing an integrated circuit conductors are often
restricted to horizontal and vertical lines;detecting all
crossings of conductors calls far finding all intersecting
pairs of vertical and horizontal line‘segments. Rectilinearly
oriented squares and rectangles are built from vertical and




horizontal line segments. Thus, an algorithm for finding
intersecting pairs of vertical and horizontal line
segments can be used to detect all (properly) inter-

| secting pairs of squares and rectangles. Finally, we

%, will show how the "L fixed radius near neighbors"

b | problem (which asks for all pairs of N points in the

iu pPlarewithin some fixed distance d of one another) can

L be solved efficiently by this algorithm, if the distance
' is measured by the L_ metric.

{ In order to simplify the presentation of the algorithm
: and to clarify the discussion we first restrict the input
to the case where no line segments ovaerlap. All x-values
of vertical lines and left and right endpoints of horizontal
lines are pairwise distinct. We will later mention how
to handle these cases. In the problem of interest .we
are given N vertical or horizontal line segments in the
f plane. Each vertical line segment A is specified by its
% x-coordinate x(A) and the y-values of its lower and upper
2 endpoints bot (A) and top(A). Each horizontal line segment
is similarly specified by its y-coordinate y(B) and by
the x-values of its left and right endpoints left(B)
and right(B). We will let M be the sat of x-coordinates
M = {x(A)|A verticallu{left(B) |B horizontall}y
U{right (B) |B horizontal).
Note that M has at most 2N elements.

P a-

The main loop of our algorithm sweeps a vertical line
from left to right through the set M. We use a data structure i
R to store horizontal line segments currently intersecting i
| the verticel lines ordered by their y-coordinates.

! Initially R is empty. Whenever a left (respectively right)endpoint of a
i horizontal line segment S is scanned S is inserted into

(respectively deleted from) the structure R.

When a vertical segment is encountered during the sweep

we check for intersection with horizontal line segments

D 'Jh---n--i-ill-I;l-I-lIIllllllllIIlllllllllllllllllllll-Ji
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in R. We describe this algorithm in paeudo-ALGOL as
Algorithm 4.1

Q + the set M in ascending x-order (stored in such a way
that for each p in Q we can recognize to which
line segment p belongs and whether p is
the x-value of a vertical line segment or
the left or right endpoint of a
] horizontal segment).

R« ¢ // The order relation amonj horizontal
line segments (ordered by y-values)

foreach p in Q (in ascending x-order) do
if p is the x-value of the left endpoint of a
horizontal line segment S then insert
S in R.

else if p is the x-value of the right endpoint
of a horizontal line segment S then
delete S from R.

else // p is x-value of a vertical line

segment S
determine A = successor (bot(S),R),
e *= ~~<- - o the least y-value greater than

or equal to bot(f) in R;

determine B = predecessor (top(S),R),
the greatest y-value less than or
equal to top(S): §

foreach horizontal line segment T occurring
in R between A and B do return (S,T)
as an intersecting pair.

Algorithm 4.1 Report all intersecting pairs of N
planar horizontal and vertical line 1
segments.




It is easy to see that Algorithm 4.1 correctly finds all
intersecting pairs of line segments: Whenever a vertical
line segment S is considered R contains exactly the
horizonal line segments crossing the vertical line

X = X(S) =p (ordered by y-values). The algorithm then
reports all pairs (S,T ) where T crosses S. The data
structure R can be implemented as a balanced tree. Hence,
the time to perform the operations insert, delete,
successor and predecessor is 0O(log N). Peporting the inter-
secting pairs can be done in time proportional to

their number if we use an appropriate implementation of °
balanced trees. Brother (leaf-search) trees of Ottmann
and Six [1976]) (see van Leeuven [1976) for an English
exposition),for example, can be used for this task

where the leaves of the tree are kept in a doubly linked
list. The structure Q can be implemented as a sorted
linear list. Sorting the elements of M and stcring them
in increasing order takes time O(N logN). Hence the total
performance time of the algorithm is O(N log N + k) where
k denotes the number of intersecting pairs.

To simplify the presentation of Algorithm 4.1 we assumed
that no pair of line segments share endpoints or lie on
the same line, but these assumptions can be removed by
increasing the "bookkeeping” performed by the algorithm.
To handle the case that endpoints of segments might
intersect other segments we must be careful to process
"multiple events" at a vertical line during the sweep

in the order "insert new horizontal endpoints", “check
vertical segments", "delete o0ld horizontal endpoints"”.

We must also report any pair of vertical (likewise
horizontal) segments that meet -- this can be accomplished
before the main body of Algorithm 4.1 is ever invoked. We
will sketch the procedure for detecting overlap among
pairs of horizontal lines; the case of vertical lines is
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exactly the same. We first sort all horizontal segments

by y-value and then consider only "clusters" of segments
sharing the same y-value. Within each cluster we sort the
endpoints by x-value, and a scan through the resulting

list can'report all overlapping pairs in time proportional
to their number. Neither of the special cases we have

just sketched alters the O(N lg N + k) running time of

Algorithm 4.1.

We now briefly describe how to modify 2Xlgorithm 4.1 for
counting the number of intersecting pairs of N horizontal
or vertical line segments (without reporting them). We '
associate a counter with each element A in R which
indicates the number of elementspreceeding A in R. When-
ever the sweeping vertical line encounters a vertical
line segment S we determine A = successor (bot(S),R) and
B = predecessor (top(S) ,R) ; the number of horizontal line
segments intersected by S is the difference between the
counter of B and the counter of A. This number is added
to the total number of intersecting pairs found so far.
In a balanced tree counters can be updated after an
insertion or deletion in time 0(log N). Hence, the
modified algorithm will report the total number of inter-
secting pairs, after O(N log N) steps which is optimal.

Finally, we apply Algorithm 4.1 to solve the "L, fixed
radius near neighbors" ‘' problem. In this problem we are
given N points in the plane and asked for all pairs of
points within some distance d of one another by the L
metric (i.e. the maximum coordinate metric). The crucial
observation is that two points are within distance d of
one another if and only if two squares of side length 4
and with sides parallel to the coordinate axes, each
centered at one of the points, intersect. Hence, for
finding all pairs of near neighbors we surround each
point with a square centered at that point (with side

E——
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length d and sides parallel to the coordinate axes). :
Then we use Algorithm 4.1 for reporting all pairs of E
§, intersecting squares. This gives an O(N log N + k)
solution to the "L, fixed radius near neighbors" problem.
The same result was obtained in atotally different
manner by Bentley, Stanat and Williams (1977].

e

| i

S. Conclusions
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We will now briefly summarize the research described in f
this paper. In Section 2 we showed how Shamos and Hoey's
algorithm for detecting whether any two of N planar line
segments intersect can be modified to report all such
intersecting pairs; the running time of the resulting
algorithm was O(N 1lg N + k 1g N). In Section 3 we modified
the algorithm of Section 2 so it can report all intersections
in planar sets composed of more complicated objects

than line segments; the running time of the algorithm was 1
not changed. We then examined a special case of line i 3
segments (when each is either horizontal or vertical) in ‘
Section 4 and showed how all intersecting pairs in such i
a set could be reported in O(N 1lg N + k) time and | ]
counted in O(N 1lg N) time. Both of those performances i
are optimal. The existence of these algorithms partially i
answers a number of questions posed by Shamos and Hoey. i §
These algorithms are particularly interesting because
they are among the first algorithms with complexity it g
described not only as a function of the problem input
size, but jointly as a function of problem input and I 3
output sizes. ;1

S e R
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The most outstanding open problem we have raised in this
paper is whether all k intersections among N line segments
can be reported in O(N lg N + k) time. (Perhaps one

reason that our algorithm fails to meet that bound is

!‘

i
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;5 A number of geometric intersection problems remain unsolved. 1
3
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that it reports the intersection points sorted by x-value:
this might in itself require O(k 1lg k) time.) The reader
interested in further open problems may consult the list
given by Shamos and Hoey [1976]. Perhaps some of the
methods we have used in this paper can be applied to
those problems.
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