AD=A0S8 7‘3 CMOIE*LLON UN1V nnm PA DEPT DF COMPUTER =--ETC F/6 12/1

ON THE COMPLEXITY OF COMPOSITION AND GENERALIZED COMPOSITION OF==ETC (V)
MAY 78 R P BRENT: J F TRAUB NOOOIQ-?G-C-OSTO
UNCLASSIFIED CMU=CS=-T78-128

END
-;‘8

i

|0 ke
—
| M)

| 3
==
)
o

||m|=| :“: i 22
-
2 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

TR P CHINID T

CMU-CS-78-128

ON THE COMPLEXITY OF COMPOSITION AND
GENERALIZED COMPOSITION OF POWER SERIES

R. P. Brent
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA
(Visiting from Australian National University)

Jes Fo Traub
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA

May 1978

This research was supported in part by the National Science Foundation under
Grant MCS75-222-55 and the Office of Naval Research under Contract N00014-76-
C-0370, NR 044-422. The work of the first author was also supported in part
by the National Science Foundation under Grant 1-442427-21164-2 at the Uni-
versity of California at Berkeley.

gy Ay ot < - o

ABSTRACT

Let F(x) = flx + f2x2 + ... be a formal power series over a field A.
Let FL%)(x) = x and for q = 1,2,..., define Fl¥(x) = F{T U F(x)). The
obvious algorithm for computing the first n terms of F[QJ(x) is by the com-

position analogue of repeated squaring. This algorithm has complexity about

log2 q times that of a single composition. Brent showed that the factor log2 q

can be eliminated in the computation of the first n terms of (F(x))q by a

change of representation, using the logarithm and expomential functions. We

show the factor log2 q can also be eliminated for the composition problem.
F[q](x) can often, but not always, be defined for more general q.

We give algorithms and complexity bounds for computing the first n terms of

F[q](x) whenever it is defined.

We conclude the paper with some open problems.

Keywords
Composition, fast algorithms, formal power series, symbolic computation,
generalized composition, functional equations, Schroeder function, iterationm,

similarity transformations.

[0 s

SR L g i<

TABLE OF CONTENTS

Page
TR R R rR e R SN e et S LU SR T WA T |
2. Complexity Model ' o, o % Wis e oo te o ol Db R L TR L TS
o The HEGULEE ‘R0 o Sty RU B Sy et T ined Bl s iod g
& MolEESEINE TW0 0 & e e R SRR WP R T 4.1
5o Malripliar URILY v v o Wl IR ORI B A Mt B b e 5.1
6. Multiplier Nomtrivial ROOt Of UNLEY & v « v « o « o o o o o « » 6.1
7., Summary and Opew PLOBlOBE " 'v s o i e e b e e e e e e 7.1
ACKBOWIGOgREREN - . 'V oy SRR SR B e e e WS s el

BANAOREERhY ot SR GRS T S e A i e e o« Bl

no— ra— —

1.1

1. INTRODUCTION
Let

x + £ x2 + Jiala

(l.1) F(x) = f1 2

be a formal power series over a field A. Let Fto](x) = x and for q = 1,2,...,

define the g-composite of F by
1.2y F = el Em).

Let H(x) be the reversion of F(x), i.e., the power series inverse to F(x)

under composition. For q = 1,2,..., define
1.3) T (x) = gl(x,

As we shall see below, the q-composite of F can often (but not always)
be defined for more general q. If q is not an integer, we shall call F[q](x)
a generalized g-composite. We confine ourselves to the case that FIQJ(X)
is a power series. One importaut special case of generalized composition is
q = 1/r, where r is an integer. Then G = Ftl/r](x) is an rth root of F
under composition, and satisfies the equation G[r](x) = F(x).

Let

(1.4) Fn(x) = flx P+ seu fnxn,
(l.5) G(x) = F[q](x) = glx + gzxz * s

(1.6) G (x) = gix + ... + gnxn.

Given q and Fo(x), we want to compute G, (x).

e st

P

1.2

In this paper we shall give algorithms and complexity bounds for com-

puting Gn(x) whenever it is defined. For integer q these algorithms are

asymptotically faster than the obvious algorithms.

We discuss the last point. Let COMPl(n) denote the complexity of com-
puting the first n terms of F(F(x)), and let q be a power of two. Then the
obvious algorithm for computing Gn(x) is by the composition analogue of
"repeated squaring', and has complexity COMPl(n)lg q. (We shall denote
log2 by 1g.) Can we eliminate the multiplicative factor of 1lg q?

An analogous problem is that of computing Rn(x), the first n terms of
(P(x))q. Asymptotically in n, the complexity of forming Rn(x) is the same
as the complexity of a single multiplication of two polynomials of degree n.
This follows from the observation that if A(x) is a power series with comstant
term unity, then (A(x))q = exp(q 1ln A(x)). This may be viewed as a change of
representation of A(x) to a new representation where multiplication is replaced
by addition, followed by the inverse change of representation. Brent [76]
showed that the change of representation could be computed "fast".

This suggests asking whether there is a change of representation which
reduces composition to multiplication. We shall see that there is, at least in
the "regular' case (see Section 3). Furthermore, the change of representation

can be computed "fast". This enables us to eliminate the multiplicative factor

of 1g 4. In addition we shall show (Sections 4-6) that even in the "non-
regular" cases we can still eliminate this factor. A bonus is that our algo-
rithms apply for non-integer q (so long as F[q](x) is a well-defined power
series).

The problem of composition and generalized composition occurs in many

applications including asymptotic analysis, difference equations, numerical

1.3

analysis, and dynamical systems. See, for example, Aczél [66], Cherry [64],
de Bruijn [70], Henrici [74], Knuth [69], Kuczma [68], Levy and Lessman
[6l],and Melzak [73]. The study of composition (often called iteratiom)

may be viewed as a major sub-field of mathematics. See Aczel [66], Gross
[72], and Kuczma [68] for very extensive bibliographies. However, little
attention seems to have been given to the development of algorithms for com-
puting FEQ](x) when F(x) is a given power series.

The following conventions are adopted below. We deal with formal power
series; that is, we do not concern ourselves with convergence. Power series are
denoted by upper case letters such as A(x) or simply A,with coefficients
denoted by the corresponding lower case letters such as a

i
k . =
A(x) = 3 x + ak+1xk+1 + ceesdy # 0,then ord(A) = k. It is convenient to

If

define ord(0) = =, If ord(B-C) 2 k we write B = C + O(xk). The polynomial
bo + blx + cee + bk_lxk.1 is denoted either by B(x) mod xk or by Bk-l(x)‘
It is convenient to define y(n,q) = 0(8(n,q)) to mean
{Y(n,q)| sK|8(n,q)| for all sufficiently large integer n and for all q
under consideratiom.

We summarize the remainder of the paper. Our complexity model is
specified in Section 2. 1In Section 3 we study the ''regular" case when the
multiplier £, is such that £ £ 0, fT #1, m=1,2,... . In the following

three sections we consider the cases f1 = 0; fl = 1; fT = 1, integer m > 1,

but f, # 1, respectively,

In each of Sections 3, 4, and 5 we define an "auxiliary" function, demcn-
strate it can be computed fast by "divide and conquer", and show how it can
be used to compute F[q]. The case studied in Section 6 can be reduced to
that of Section 5. In the concluding section we state a theorem (Theorem 7.1)

summarizing our results, state the defining equations for all cases, and mentiom

some open problems.

Y

2. COMPLEXITY MODEL

In this section we state our complexity model and summarize the complexity
results needed below. We assume that scalar arithmetic operations are performed
exactly and have unit cost. Thus our time bounds are invalid if, for example,
exact rational arithmetic is used. However, our algorithms should still be
useful in this case.

Given power series A(x) and B(x), the time required to compute A(x)B(x) mod <
is denoted by MULT(n). If ord(B) 2 1, the time required to compute A(B(x)) mod x
is denoted by COMP(n). We assume that MULT(n) and COMP(n) satisfy certain
plausible regularity conditions (see Brent and Kung [76, Section 1]). Then

Brent and Kung [76] show

(l+r)/2

(2.1) COMP(n) = O(min(n L@ 1z oY wir),

if matrix multiplication has complexity O(nr). If the field A is such that

fast algorithms like the FFT are available, then
(2.2) MULT(n) = O(n 1g n)

(see Borodin and Munro [75]), and it follows from (2.1) that

(2.3) COMP(n) = 0((n 1g n)7/?).

The bounds in this paper will be expressed in terms of the complexity

function
Ug nJ

(2.4) COMP,(n) = Z 29 comp(2" daTy.
j=0

o M A AN RO

2.2

Assume
(2.5) COMP(n) ~ n%s(n),

where o 2 1, and s(n) is a monotonic increasing positive function. For

8

example, s(n) might be (lg n)"~ for some constant 8 2 0. Then

0(COMP(n)), ifa>1

(2.6) cmezm)- *
O(COMP(n)1lg n), if ¢ =1

If the field A is such that (2.3) holds, then &« < 3/2. TIf this is best pos- *

sible, then COMPZ(n) may be replaced by O(COMP(n)) in our bounds. :
If = 1 and q is a fixed integer, then “repeated squaring" is asymp-

totically faster than our algorithms. Of course, if q is not an intager,

then "repeated squaring" is not an alternative to our algorithms. If o> 1,

our result (that we can eliminate the multiplicative factor of lg q) holds P

for all fields of characteristic zero and all finite fields of characteristic

p greater than n.

1f fg is defined, we denote the complexity of computing f} by POWER(Q) .

If q is a positive integer, then POWER(q) = 0(lg Q).

n
In Brent [76] it is shown that the complexity of computing ln(l+A(x))mod x

is O(MULT(n)) for any power series A, ord(A) > 0. Using 3Breant's results it
n

can be shown that the complexity of computing (B(x))q mod x 1is

O(MULT(n) + POWER(q)). By Brent and Kung (76, Lemma 4.2] MULT(n)=0(COMP(n)),

so we can absorb MULT(n) into COMP(n) in our analyses.

e

CEPGPES——.. S

2.3

Recall that COMPl(n) was defined as the complexity of computing the

first n terms of F(F(x)). It can be shown, by means similar to the proof

of Brent and Kung [76] that the complexity of reversion and composition

are asymptotically equal, that COMP(n) = O(COMPl(n)).

Al o

e

3.1

3. THE REGULAR CASE

In this section we study the computation of F[qj(x) when fl * Q, ET ® 1,

m=1,2,... . We call this the regular case. Define the Schroeder function
S(x) by

(3.1) S(F(x)) = fIS(x), ord(s) = 1, s,=1.

S(x) exists and is unique (Schroeder [1871], Kuczma

[68, Chapter 6]). See also Parker (77]. 1t is easy to prove that, for all

integer q,

3.2) Fl(x) = S['ll(f% S(x)).

S(x) and S[-ll(x) play the role that the logarithm and exponential functions
play in computing ’_F(x))q fast. They reduce self-composition to scalar
powering. Note also the analogy with diagonalizing a matrix by a similarity
transformation.
If q is not an integer but q and the scalar f1 are such that f} is
defined, then (3.2) may be used to define FEQJ. We shall use the "divide and conquer"
strategy to compute S(x) fast and then show how to compute FEQ] from (3.2)
in total time O(COMP,(n) + POWER(Q)).
Although we wish to solve the functional equation (3.l1), to make the

"divide and conquer" c¢ivategy work we embed (3.1) in the more general linear

functional equation
(3.3) AMX)W(F(x)) = B(x)W(x) - C(x) = 0,

where W is the unknown. Note that this equation includes reversiom as a

special case., The "divide and conquer" algorithm introduced to solve (3.3)

-

3.2

may therefore be used to revert power series. This algorithm is different

from the one derived by Newton iteration and given in Brent and Kung [76].

Lemma 3.1 gives the basis for a "divide and conquer" algorithm for solving

(3.3). The proof is by substitution. Lemma 3.2 gives sufficient conditions
for the existence of a formal solution, and Lemma 3.3 gives an upper bound

on the time required to compute an approximate solutionm.

Lemma 3.1

1f n, p are non-negative integers, ord(F) 2 1,

(3.4) AUE®) = BEOU(X) - C(x) = x"R(x)

and

(3.5 A® FE®/OVE®) - BEVE + R(x) = 0D,
then

(3.6) AGOW(F(x)) - BEOW(X) - C(x) = 0(x"'P)

where

(3.7) W(x) = U(x) + x"V(x).]

Remark 3.1
If Lemma 3.1 is applied for n = p = Zj, §=0,1,2,..., we have an algo-
rithm for approximating W(x) which is quadratically convergent in the sense

of Kung and Traub [76]. =

Lemma 3.2

If ord(F) 21,

(3.8) aof“l‘ # b, for all m = 1,2,3,...

3.3

and

(3.9) a, = bo implies ¢y = 0

then there is a formal power series W, sarisfying (3.3), with ord(W) = 0 unless
=
<, 0 and a, # bo.

Proof. -

We shall construct WoaW sees such that W(x) = Z‘ wjxj satisfies (3.3).

We let =0
m
& ¥ j
(3.10) W_(x) 2: Wy
j=0

and show by induction on m that, for some power series Rm+1(x),

m1

(3.11) A(x)wm(F(x)) s B(x)wm(x) - C(x) = x Rm+1(x) = 0(xm+1).

Let

1 if ao = bo

co/(ao-bo) otherwise

(3.12) v =

Then (3.11) holds for m = 0, starting the induction. Assuming that (3.1l1)

holds for m 2 0, we define

R . (0)
(3.13) w , = ——Btl
m+1 £ o1
1

L

and apply Lemma 3.1 (withn= m+l, p= 1, U = Wm, V= wm+1) to deduce that
(3.11) holds with m replaced by m+l. Thus, the result follows by induction

on m. =

itk

il

b

Lemma 3.3
Suppose that WoreeesW 4 Can be found in time t(n) whenever the condi-

tions of Lemma 3.2 apply. Then
(3.14) t(2n) < 2t(m) + COMP(2n) + O(MULT(m)).

Proof

In time t(n) we find Ugseeost g such that (3.4) holds for some power
n-1
N j 2n
series R(x), where U(x) = Zujx . Compute U(F(x)) mod x in time COMP(2n),
and then find =0

AX)U(F(x)) = B(X)U(x) = C(x)

o
X

n
mod x

(3.15) R(x) =

in time O(MULT(n)). ([Note: MULT(2n) = O(MULT(n)).]
Since ord(F) 2 1, F(x)/x is a power series, and by an algorithm given

in Brent [76] we can compute (I"(x)/x)u mod x, and thus
~ n n
(3.16) A(x) = A(x) (F(x)/x) mod x ,
in time O(MULT(n)). Now (3.5) with p = n is just
T(x)V(F(x)) = B(x)V(X) + R(x) = 0(x™),
so we can find vo,....\v“_1 in time t(n). Using Lemma 3.1, we take

u if0sj<n

v ifn<j<2n

and the result follows. [}

3.5

Corollary 3.1
With the notation of Lemma 3.3,

(3.17) t(m) = O(COMP,(n)).

Proof
This follows from Lemma 3.3, the definition of COMPz(n), and the fact

that MULT(n) = O(COMP(n)). L

Corollary 3.2
If ord(F) = 1 and f: #1 form = 1,2,..., then we can zompute the first n

coefficients,so,...,su_1 of the Schroeder function S(x) satisfying (3.l) in

time 0(com’2 (n)).

Proof

We solve a special case of (3.3), namely
(3.18) (F(x)/x)W(F(x)) - £;W(x) = 0,

to obtain W oo sV by the method of Lemma 3.3. Then S(x) = xW(x)

-2
satisfies (3.1) mod xn, so s, = 0 and 'j = wj-l for j = 1,...,n-1, 2
Theorem 3.1

Assume ord(F) = 1, f‘i‘ #1fcra=1,2,... . Let f‘I‘ be defined and let
(3.19) G(x) = Fl 8 (xy.

Then Bgoree+18, , can be computed in time

(3.20) O(COMP,(n) + POWER(Q)) .

3.6

Proof el

—

Using the method of Corollary 3.2, we compute Sn_l(x) = Z s, xJ such

b
that s, # 0 and j=1

n
(3.21) sn_l(F(x)) = flsn_l(x) + 0(x)
in time O(COMPZ(n)). Now
- gl n
(3.22) Sn_l(G(x)) flsn-l(x) + 0(x),
and thus
PRL A ‘ n
(3.23) G(x) Sn-l (flsn-l(x)) + 0(x).

Using the method of Brent and Kung [76], we can compute Sg:i](x) mod xn in
time O(COMP(n)) = O(Cmﬂ’z(n)), and the 30""’3n-1 are obtained from (3.23)

in time COMP(n). The result foliows. 8

Remark 3.2

The condition f‘; # 1 is necessary so that the divisor in (3.13) is non-
zero. Thus, we need omly assume that fx: # 1 for m*1,2,...,n-2. If F is a formal
power series over a finite field with characteristic p, then it is necessary
to assume n S p. |

The prccfs above are constructive and give the following two algorithms.

r > rete

3.7
i
i Algorithm 3.1
N The algorithm #'(A,B,C,F,w,m) finds WoreeoaWo g such that W(x) satisfies

(3.3). It is defined recursively by:

If m = 1 then {use equation (3.12) to define wo} else
n~ m/27;

4 (A,B,C,F,U,n);

Compute R using equation (3.15);

Compute X using equation (3.16);

4 ®,B,-R,F,V,n);

w - v, 1l []

For j -~ 0 step 1 until n-1 do {vj -u 5 f

J;

Algorithm 3.2
The following algorithm computes G(x) = F[ﬂ(x) if the conditioms of

Theorem 3.1 apply:

1. Take A(x) = F(x)/x, B(x) = £, C(x) = 0 and find wy,...,¥ such

n-2
that W(x) satisfies (3.3) by applying #(A,B,C,F,W.n—l) (see Algo-

rithm 3.1).

2. Let) =0, s for j=1,...,n=-1, and compute S['I](fgS(x)) mod x"

371
1 using the composition and reversion algorithms of Brent and Kung [76].
I =

4. MULTIPLIER ZERO

In this section we study the case fl = 0. Since the problem is trivial
if F(x) = 0, we can assume ord(F) = k, 1<k< ®. We define auxiliary power

series S(x) by

(4.1) S(F(x)) = fk(S(x))k,Otd(S) =1, sl') I

This reduces to Schroeder's equation (3.1) if k = 1. By induction on q we

have, for all positive integer gq,
q q
@) Pl = P gD/ oD g 17y,

Remark 4.1
The restriction to positive integer q is essential here. For example,

take F = x3. Then F[q] does not exist as a power series for q = -l or q = 1/2, 3
The following lemmas reduce the solution of (4.1) to problems solved in

the previous sectiom.

Lemma 4.1

If ord(F) = k > 1 the equation
(4.3) W(F(x)) = kw(x) + {(k-1) + In[F(x)/(kak)]} 2V

has a solution W(x), and WoreeesW o can be computed in time O(COMPz(n)).

1

Proof
Lemmas 3.1 to 3.3 are applicable to (4.3), so W(x) exists and
WgseeesW _, can be computed in time O(COMPz(n)) by the method used in the

proof of Lemma 3.3. . a

vty o - R

4.2

Lemma 4.2

If ord(F) = k > 1 and W(x) satisfies (4.3), then
(b.4) S(x) = x exp(W(x)-1)
satisfies (4.1).

Proof
Substitute W(x) = 1 + 1n(S(x)/x) in (4.3). From (3.12), wy = 1, so S(x)

is a power series. a

Using the algorithm of Brent [76] we can compute the first n coefficients

of

q
(s)/x]* = exp(kIW(x)-1)]

q- -
in time O(MULT(n)) once wO""’wn-l are known. We can also compute fék lka D
in time POWER((kq-l)/(k-l)). Then, using a slight modification of the composi-

tion and reversion algorithms of Brent and Rung [76] we have:

Theorem 4.1

Assume ord(F) = k > 1, q 2 1 is a positive inceger, and
(4l .,/ kY
(4.5) G(x) = F''i(x)/x .
Then 30""’3n-1 can be computed in time

(4.6) O(COMP, (n) + POWER((k%-1)/ (k-1))). e

S R RTIIING M res > = \ B i

5.1

5. MULTIPLIER UNITY

Now we cemsider the case that the multiplier fl is equal to unity. We

define an auxiliary function T by
(5.1) TE®X) = F'(X)T(x), ord(T) = ord(F(x)-x).

T(x) exists and is unique up to a scaling factor (Kuczma [68, Lemma 9.4]).

Let G(x) = F[q](x). Then we show elow that G(x) may be computed from the equation
(5.2) T(G(x)) = G'(X)T(x).

Remark 5.1
T may also exist if f, # 1. If F is such that the Schroeder function §

exists, then T(x) = cS(x)/S'(x), where ¢ is a nonzero constant. 3

Example 5.1

If F(x) = 2x+x2, then S(x) = ln(l+x), T(x) = (1+x)1ln(l+x), F[q](x) = (1+x)

[]
—
.

If F(x) = x/(l-x), then T(x) = . i |
Although we wish to solve the functional equation (5.1), as before we

need to embed (5.1) in a more general equation. Throughout this section we

define d by F(x) = xiv-fdxd +oeees £y # 0,and let k be any integer greater

than d. Then we shall solve
l-d k
(5.3) x [(F(x)/x) Y(F(x)) = F'(X)Y(x)] = A(x) = 0

for Y(x).
Lemma 5.1 gives the basis for a ""divide and conquer" algorithm for solving

(5.3). Lemma 5.2 gives sufficient conditions for the existence of a formal solution,

5.2

and Lemma 5.3 gives an upper bound on the time required to compute an
approximate solution. Lemma 5.4 establishes (5.2) and gives a sufficient

condition for G to be uniquely defined.

Lemma 5.1

Let n, p be non-negative integers. If

(5.6) xS F /O TVE®) - F'®U®] - A = R(x)
and

5.5 N E@/OCVE®) - F @U@]+ RE = 0P,
then

5.6 "N E@/ONE®) - FrON®] - A = 0P
where

(5.7) W(x) = U(X) + X V(x)

Proof
By direct substitution. Note that since F(x) = x + fdxd + «.., the

terms in square brackets in (5.4) to (5.6) have ord 2 d-1. =

Lemma 5.2

There is a formal power series Y(x) such that
5.8 U E@/HYE@) - F@Y@] =A@

Proof ”

We shall comstruct Vor¥preee such that Y(x) = Z.ijj satisfies (5.8).

j=0

Recall our assumption that k > d = ord(F(x)=x). Take

5.3

a
(3.3} 3¢ ™ DT,
and let n
= \ J
(510 Y0 =) yx
j=0

Thus

(5.11) xl-d[(F(x)/x)kYn_l(F(x)) - FLOY, (0] - A = x"R_(0)

is true for n = 1 (where Rn is some power series). Define

-Rn(O)

(5.12) y, = (ktn-d) £

for n 2 1. Using Lemma 5.1 with p = 1, it is straightforward to prove that

(5.11) holds for all n 2 1, by induction on n. Thus, the result follows. @&

Lemma 5.3

Suppose that yo,...,yn_1 can be found in time tz(n) whenever the condi-

tions of Lemma 5.2 apply. Then
(5.13) tz(Zn) < 2:2(n) + COMP(2n+d-1) + O(MULT(n)).

Proof

In time t,(n) we find Upseeest such that (5.4) holds for some power
n:_l
series R(x), if U(x) = Z‘ ujxj. Compute U(F(x)) mod x
n J=0
R(x)mod x from (5.4). Then £find VoresesVoq such that V(x) satisfies (5.5)

2n+d'1 ‘nd t:hen

with p = n (this takes time tz(n) + O(MULT(n))). From Lemma 5.l we can take

uj if0ssj<n

y k)
J
vj-n

ifns<j<2n

so we get yO""’y2n-1 in time 2t2(n) + COMP(2n+d-1) + O(MULT(n)) as

required.

Corollary 5.1

With the notation of Lemma 5.3, tz (n) = O(COMPz(n)).

Corollary 5.2

There exists a formal power series T(x) such that ord(T) = d and
(5.14) TEFE)) =F'(X)T(x).
Moreover, td""’tn-l can be found in time O(CCMPz(n)).

Proof
(5.15) If A(x) = x Fr xd @)Y = (fd+1-f§) s
and

d+1

5.16) =N F@ /0 NE®) - P @Y@] = A®

then

d+

(5.17) T(x) = xd + x 1Y(x)

satisfies (5.14). Thus, the result follows from Lemma 5.2 and Corollary

S.1l.

Lemma 5.4

Let q be an integer, T satisfy (5.14), and

(5.18) G(x) = Fl%)(x).
Then

(5.19) T(G(x)) = G'(x)T(x),

B e i e A —— —

5.5

and the power series G(x) is uniquely determined by (5.19) and the condition
d
(5.20) ord(G(x) - x - qfdx) > d.

Proof

It is easy to prove (5.19) by induction for positive q, and the result

for negative q then follows. It is also easy to prove by induction that

(5.20) holds if G is defined by (5.18). From Lemma 9.4 of Kuczma [68] the

solution of (5.19) satisfying (5.20) is unique, so the result follows.]

Once T(x) is known, we can solve (5.19) for G(x), using the "initial

condition" (5.20). Since (5.19) is a nonlinear differential equation for G,

we can use a Newton-type method as described in Brent and Kung [76]. The

algorithms are given below. First we summarize the result:

Theorem 5.1

Assume f1 =] and iet G = F[q](x). Then go,...,zn_l can te computed in
time O(Caﬂ’2 (n)).

Proof
First find :d""’tn-l such that T(x) satisfies (5.1),

as in Corollary

5.2, in time O(CQ‘IPz(n)). Then solve (5.19) and (5.20) by Algorithm 5.3
below (in time Q(COMP(n)) to find Bgores8 1y 8
Remark 5.2

Note that q need not be an integer in Theorem 5.1. Kuczma (68, Theorem

9.15] considers the question of when F[q](x) is analytic. See also Baker (64]

and Szekeres [64]. »

i

5.6

Algorithm 5.1

The algorithm B(A,F,Y,k,d,n) finds S TREEES AN such that Y(n) satisfies

(5.8). It is assumed that n > 0, agseeesd

and fl""’ f

Gl are given,

and that the conditions stated after Example 5.1 are satisfied. 3B(A,F,Y,k,d,n)

is defined recursively by:

If n = 1 then {define ¥, by (5.9)}
else {p -~ Mm/27;
8(A,F,U,k,d,p);

Compute U(F(x)) mod xd+2p-1;

Compute R(x) mod x® from (5.4) with n replaced by p;

B8(-R,F,V,k+p,d,p);

For j « 0 step 1 until j-1 do

by = vy 5y = Vi

Algorithm 5.2
The algorithm $(F,T,d,n) finds cd,...,tn

-1

such that T(x) satisfies (5.14).

It is assumed that fl""’fn-l are given and that the conditions of Corollary

5.2 are sacisfied.

Ye0; T=0;¢t, ~1;

d

if o > d+l1 then {compute A(x) mod xn-d-l
S(A,F,Y,d+1,d,n=d-1);

For j = d+1 until n-1 do t:j - yj-d-l}'

from (5.15);

P

s —————
VG
.

5'7

Algorithm 5.3

The following algorithm computes 8prec 8, 1> such that G(x) = F[q:'(x).

It is assumed that td""’tn-l have been computed using Algorithm 5.2.

d
G~x+qfdx;
k~1;
while k+d < n do

{k - min(2k,n-d);

-
T T(G(X)%l G' (NT(x) i k-l;
x T(x)

.9 _ T GE) k-2
U - T(%) mod x :
E -~ epr”" U(y)d9 dod = b

[}

- ol k.
VRS j"; E(YR(y)dy mod x';
GG+ de mod xk+d}

Remark 5.3
It can be verified that all the quantities appearing on the lefthand

sides in Algorithm 5.3 are indeed power series. ¥

b

6.1

6. WMULTIPLIER NONTRIVIAL ROOT OF UNITY

In this section we consider the only remaining case: f1 1, f? = 1 for

some integer m > l. By Remark 3.2 we may assume m < n-2, We also assume q is an

integer.

Remark 6.1

The restriction to integer q is essential here. For example, let
F=-x+ x2 + x3. There is no formal power series for F[I/Z](x). That is,
£
there is no power series G(x) such that G“zl(x) = F(x) (Kuczma [68, p. 304)). @

In what follows we shall use the following algebraic relatioms:
6.1) FlPH](x) = F[P](F[ﬂ(x))’
6.2) FlPU(x) = RIPI(x), where R(®) = F{¥ (),

for integer p, q. If q is negative we compose F[-l] instead of F, so without

loss of generality we may assume that q is positive. Let
(6.3) q =ar + s,

where r 20, 0 s <m. We can evaluate M = F[m] = X+ ..., and F[s] by the
obvious "squaring' method in time O(COMP(n) lg m) = QO(COMP(n) lg n). Then,

[92] & (] 40 time

using the method of Section 5, we can evaluate F
0(cour2(n)). Finally, F[Q] = F[mr](F[’]) may be evaluated by performing one
composition. (An additional reversion is required if q < 0.) Thus we have

established

Theorem 6.1

Assume ord(F) = 1, f, s 1, f? = 1 for some m such that 1 <m < n-2,

g LR > e

6.2

q integer, and let G = F[q]. Then 31,...,gn_1 can be evaluated in time
O(COMP(n) 1lg m + COMPz(n)) . a
't
P Remark 6.2

If A is the real field (so the only roots of unity are + 1) then Theorem

6.1 shows that 8p2cees8,_ Can be evaluated in time O(COMPZ(n)). g

-y s —

7.1

7. SUMMARY AND OPEN PROBLEMS

From Theorems 3.1, 4.1, 5.1, and 6.1 we have

Theorem 7.1

Let F(x) be a formal power series, ord(F) 2 1, and let G(x) = F[q](x).

If q satisfies the following conditions:

(1) 1If ord(F) > 1, then q is a positive integer;

(ii) 1If the multiplier f1 is a nontrivial root of unity, then q is

an integer;

(iii) fg is defined;

and if f} is given, then gl,...,gn can be computed in time O(COMPz(n)) and

this bound is independent of q. "

Different defining equations are used for the various cases we have had

to consider. For the reader's convenience we summarize them here. As before,

¢ = pld],

I'

II.

III.

Iv.

Regular case: f, #0, fT # 1, m=1,2,... . Define S by

S(F(X)) = £,5(x), ord(s) = 1. Then G(x) = s['ll(f}s(x)).

£, = 0. Define § by S(F(x)) = fk(S(x))k. ord(s) = 1, s, = L.

q q
Then G(x) = s(-1] {f{k '1)/(k-1)[8(x)]k } .

f1 = 1, Define T by T(F(x)) = F'(x)T(x), and ord(T) = ord(F(x)-x).

Then determine G(x) from T(G(x)) = G' (xX)T(x).

fl F1, fT =] for some integer m > 1. This can be reduced to

case III.

TN DL

7.2

It is possible to compute G using the same functional equation for

cases I-III. Define U(x) by

(7.1) TR » ESEL "ntsl, ard (H6x)) = ord (FLO-0).
ord (F)

U(x) exists and is unique up to a scaling factor. In fact, in cases

I and II we have
(7.2) U(x) = ¢ s(x)/s' (x),

and in case III we have U(x) = ¢' T(x), for some non-zero constants

c and c¢'. Also, it is easy to prove that G satisfies

G' (x)
143 u(G = U(x).
(7:3) (G(x)) [ord ()]0 (x)

Although a unified treatment of cases I-III using (7.1) and (7.3)
would be possible, it is simpler to use the Schroeder function S(x) of
(3.1) in case I and the generalized Schroeder function of (4.1) in case
II, for then G is given explicitly by (3.23) or (4.2) instead of implicitly
as a certain solution of (7.3). Also, in proving properties of algorithms
for the computation of G by either method, it is natural to comsider

cases I-III separately.

The techniques of Sections 3 and 5 can be applied to far more
general nonlinear functional equations. We shall report on this

elsewhere.

To conclude we list some open problems suggested by the results of the paper.

l. 1If the field A i{s such that MULT(n) = O(n lg n) then the fastest algo-
rithm known for composition is O((n lg n)3/2). No nontrivial lower bound

is knowm.

e o i S -

7.3

L‘ b. Although there are only n inputs and n outputs, the best upper

bound known is O((n 1lg n)3/2). This is comparable to matrix

multiplication wiaere there are 2n2 inputs and n~ outputs but the
7

best upper bound known is o(n]'8). Can the Brent-Kung upper

bound be reduced?

€. TIs «> 1 in the notation of (2.5)? An affirmative answer would

show that COMPz(n) = O(COMP(m)) .

2. Brent and Kung [76] showed that, for the reversion problem R(x) = F[-]'](x),
the complexity of computing Rn(x) is O(COMP(n)). Comsider computing
Rn("o) for a scalar n. This problem has n inputs and one output. Brent
and Kung (76] showed its complexity to be OMULT(m)). If G(x) = FEQJ(x),
what is the complexity of computing Gu(xo)? Is it less than the complexity

of computing G, (x)?

3. What are the numerical properties of our algorithms? For example, we

expect the computation of the Schroeder function to be ill-conditioned

e ——

if fT is close to 1 for some m < n-2; see (3.13). Cherry [64] discusses

this problem in conjunction with a problem in dynamical systems.

+ 4. What are the complexity bounds for exact arithmetic over the ratiomal field?

a. Is composition harder than multiplication? (It is at least as hard.)

| SO

19356 -

A.l

ACKNOWLEDGEMENTS

We are deeply indebted to M. L. Fredman who pointed out to us the
critically important idea of using the Schroeder function to effect a
change of representation in the regular case. We thank D. E. Knuth who
pointed out to us that a single functional equation, (7.1), can be used
for three of the cases. Finally, we thank M. Sapsford, CMU, for his

careful reading of the manuscript.

BIBLIOGRAPHY

Acz€l [66]

Baker [64]

Borodin and Munro [75]

Brent [76]

Brent and Kung [76]

Cherry (64]

de Bruijn [70]

Gross [72]

Knuth [69]

Kuczma (68]

Kung and Traub [76]

B.1l

Acz€l, J., Lectures on Functional Ejuations

and Their Applications, Academic Press,
New York, 1966.

Baker, I. N., "Fractional Iteration Near
a Fixpoint of Multiplier 1," J. Austral.
Math. Soc. 4, 1964, 143-148.

Borodin, A. and Munro, I., The Computational

Complexity of Algebraic and Numeric prob-
lems, American Elsevier, New York, 1975.

Brent, R. P., '"Multiple-Precision Zero-
Finding Methods and the Complexity of Ele=-
mentary Function Evaluation," in Analytic

Computational Complexity (edited by J. F.
Traub) , Academic Press, New York, 1976, 151-176.

Brent, R. P. and Kung, H. T., "Fast Algo-
rithms for Manipulating Formal Power Series,"
Department of Computer Science Report,
Carnegie-Mellon University, 1976, to appear
in J.,ACM.

Cherry, T. M., "A Singular Case of Itera-
tion of Analytic Functions: A Contribu-
tion to the Small-Divisor Problem," in
Nonlinear Problems of Engineering (edited
by W. F. Ames), Academic Press, New York,
1964, 29-50.

de Bruijn, N. G., Asymptotic Methods in
Analysis (Third Edition), North-Holla

Publishing Company, 1970.

Gross, F., Factorization of Meromorphic
Functions, U,.S. Government Printing Office,

Washington, DC, 1972.

Knuth, D. E., The Art of Computer Program-
ming, Vol. 2, Addison-Wesley, Reading, MA, 1969.

Kuczma, M., Functional Equations in a
Single Variable, PWN-Polish Scientific

Publishers, Warsaw, 1968.

Kung, H. T. and Traub, J. F., "All Algebraic
Functions can be Computed Fast," Department
of Computer Science Report, Carnegie-Mellon
University, 1976, to appear in J.ACM.

——

Levy and Lessman [61]

Melzak [73]

Parker [77]

Schroeder [1871]

Szekeres [64]

B.2

Levy, H. and Lessman, F., Finite Differ-
ence Equations, Pitman, London, 1961.

Melzak, Z. A., Companion to Concrete

Mathematics, John Wiley and Sons, New York,
1973.

Parker, D. S., Jr., "Nonlinear Recurrences
and Parallel Computation," in High Speed
Computer and Algorithm Organization (edited
by D. J. Kuck, D. H. Lawrie, A. H. Sameh) ,
Academic Press, New York, 1977, 317-320.

Schroeder, E., "fber iterierte Funktionen,"
Math. Ann. 3, 1871, 296-322.

Szekeres, G., "Fractional Iteration of
Entire and Rational Functioms," J. Austral.
Math. Soc. 4, 1964, 129-142.

Vg

INCLASSIFIEL

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

e 2. GOVT ACCESSION NO.
CMU-CS-78-128

1. RE 1S CATALOG NUMBER

and Submu) . .
ON THE COMPLEXITY OF COMPOSITION AND GE 12D |
gpMPosiTION OF POWER SERIES - :

mrent and. J.F. /rraulj/

REPOAT & PERIOD COVERED

Interim

e e
7. AUTHGR(s)

. CONTRACT OR GRANT NUMBER(s)

N00014-76-C-0370- et
L4 LA 2

9. PERFORMING ORGANIZATION NAME AND ADDRESS —
Carnegie-Mellon University

! Computer Science Department
. " Pittsburgh, PA 15213

ORK UNIT NUMBERS '

e

11. CONTROLLING OFFICE NAME ANO AQORESS

Office of Naval Research
Arlington, VA 22217

12. REPORT DATE
May X978 -
Ts

34

Ta. MONIT.ONHCG AGENCY NAME & ADDRESS(/! dilferent %mﬂmq Oftfice)

same as above

1S. SECURITY CLASS. (of this repart)

. UNCLASSIFIED
18a. DECLASSIFICATION/ DCOWNGRADING
SCHEDULE

R row S va=3
16. OISTRIBUTION STATEMENT (of this Repert)

Approved for Public Releasei Distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, If dilferent irom Repert)

18. SUPPLEMENTARY NOTES

obvious algorithm for computing the first n terms

19. KEY WORDS (Continue on nmr eide if y and dy block der) bir
o i “.l
2 o/
f u, '((&
ol ¢ Py YA
L OLX) - s
/ // (-
/ e

e ; o
20. ABSTRACT (Continue en reverse side u/‘ and | ty by bleck ber) \

Let F(x) = E';x + f;@«b .«s be a formal power series over a field A.

et #0%%(x) = x and for q = 1,2,..., define rfq?(x) e f) r(x)). The

of F/[Sp(x) is by the com-

position analogue of repeated squaring. This algorithm has complexity about 4 aod

EDITION OF 1 NOV 63 1S OBSOLETE

DD , 38" 1473

UNCLASSIFIED

Y 2 7

o,

$/N 0102-014° 6601)

SECURITY CLASSIFICATION OF TH(S AAGE ("hen Date

¢¢3 g&L

e -

ED

<LCURMTY CLASSIFICATION OF THIS PAGEhen Deta Entered)

n /—‘_”\—~- r
1032 q times that of a single composition. Brent showed thnr.’ the factor logz q

can be eliminated in the computation of the first n terms of (F(x))a by a
To The @ powe, _—

change of representation, using the logarithu Qnd exponeatial functions. We

show the factor log; q can also be eliminated for the composition problem.
&@(x) can often, but not always, be defined for more general q.

We give algorithms and complexity bounds for computing the first n terms of

?[3)\ (x) whenever it is defined. _—

e ————— .
P Ay —

We conclude the paper with some open problems.

Reywords
Composition, fast algorithms, formal power series, symbolic computatiom,
generalized composition, functional equations, Schroeder function, iterationm,

similarity transformatioms.

SECUMTY CLASSIFICATION OF THIS PAGE(When Date Entered)

